
Computer Science Illustrated

Ketrina Yim

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-79

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-79.html

May 21, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Computer Science Illustrated:
Engaging Visual Aids for Computer Science Education

By: Ketrina Yim
University of California, Berkeley

This report is dedicated to my parents, Pony and Sue Yim, who constantly supported my
academic and artistic development, and to all the teachers throughout my education who
encouraged me to keep on drawing, whether it was in my notes, on my homework
assignments, or on the whiteboard.

3

The traditional lecture has been a standard teaching tool for university courses all
around the world. However, students have different methods of learning, and for those
who learn best through visual means, lectures are often not enough to understand the
concepts. This is a particular problem in computer science, because a strong grasp of the
fundamentals is vital to a student’s understanding of the complexities of programming
and computing in general.

Computer Science Illustrated is an endeavor to help visual learners comprehend
computer science topics through a series of illustrations, which are made available online
for use as handouts in class and posters in the computer labs. These illustrations are
designed to present concepts as engaging and memorable visual metaphors combined
with concise explanations or short narratives, intended to maintain the students’ interest
and facilitate retention. An additional goal of the project is to make learning the concepts
an entertaining experience through the use of colorful and whimsical characters in the
illustrations. In producing our twenty-seven illustrations, we determined which topics
were most difficult for students to understand in our university’s introductory computer
science courses and followed a step-by-step process of design, redesign, and revision to
generate resolution-independent illustrations. In this report, we will present the rationale
behind illustrating computer science concepts, the systematic process we employ to
create and distribute our illustrations, the challenges faced during development, and a
case study detailing the creation of a specific instance of our illustrations. We will also
describe the results of assessing the effectiveness of our illustrations as visual aids used in
courses, and conclude with additional paths this project may take in the future.

4

 Dedication..3

 Abstract...4

1. Introduction..6

1.1. Visual Learning and Constructivism..6

1.2. About the Artist..7

1.3. The Origins of Computer Science Illustrated...7

2. Related Work..8

3. Production Process...9

3.1. Development...9

3.2. Challenges...12

3.3. Case Study: MapReduce...15

4. Distribution..19

5. Results..20

6. Future Work..23

7. Conclusion..25

8. Acknowledgments..25

9. References..25

10. Appendices...27

10.1. Appendix A: The Precursors to CS Illustrated..27

10.2. Appendix B: MapReduce for CS3...35

10.3. Appendix C: MapReduce for CS61A..40

10.4. Appendix D: Other Illustrations for CS3 and CS61A.....................................44

10.5. Appendix E: Illustrations for CS61C..54

10.6. Appendix F: List of Visual Metaphors..65

5

1.1 Visual Learning and Constructivism

Humans are highly visual creatures; sight is the average person’s dominant
method of perceiving the world. Indeed, the retinas in the eyes contain nearly 70 percent
of the entire human body’s sensory receptors, and optic nerve fibers comprise one-third
of all the nerve fibers conveying information to the central nervous system [16]. On top
of this, three of the four lobes of the human brain are involved in processing visual
information received from the optic nerves for tasks such as object recognition and color
processing [18]. Since sight is a human’s strongest sense, it is only natural that visuals
play a significant role in people’s daily lives and in learning. In fact, there has been a
long tradition of using images in education, spanning centuries, though empirical and
systematic investigations of its effectiveness did not take place until the 1970s [19].

Strange it is, then, that the lecture has emerged as the most common teaching
strategy utilized by instructors in grade schools, universities, and other educational
institutions. It is characterized by the instructor giving what is best described as a lengthy
oral presentation, sometimes accompanied by text and diagrams written on boards or
projected on a screen, on the lesson of the day. The heavy emphasis on verbally
conveying information to students makes it a primarily auditory education method, and it
is this point that causes problems for many students. Education research has shown that
students have preferred modes of learning, and can be categorized accordingly using the
Index of Learning Styles, a set of forty-four questions designed to determine a student’s
learning preferences [8]. Felder defines these modes of learning using a four-dimensional
space: active-reflective, sensing-intuitive, visual-verbal, and sequential-global [7]. In the
visual-verbal dimension, it has been shown that students can be differentiated according
to cognitive style, learning preference, spatial ability, and general achievement [14]. The
students we are most interested in helping are on the visual end of the spectrum.

The relationship between a student’s learning style and his or her performance in
computer science courses is a topic of considerable interest in computer science
education research. Chamillard's study revealed that there was a correlation between
learning style and course performance, regardless of the instructor teaching the course
[4]. More specifically, a study conducted by Thomas et al. showed that verbal learners
performed significantly better than visual learners in introductory programming courses
[20]. The implication is that current methods of teaching computer science present an
advantage to students who learn verbally rather than visually. Students who learn visually
learn best from images, charts, diagrams, and animations, which are often missing from
computer science lectures due to the abstract nature of many concepts and the time and
skill required to produce them. Thus, visual learners frequently have difficulty
understanding computer science topics. The primary goal of Computer Science
Illustrated is to assist visual learners by providing illustrations that convey the concepts.
However, all students can benefit from this work, because it allows them to see the
material presented in a fun and different way.

6

Constructivism also plays a role in a student’s understanding of computer science
subjects. According to the constructivist theory, students create knowledge structures by
mentally selecting and organizing visual and verbal material and subsequently integrating
it with prior knowledge they have on the subject [17]. These structures can be fallible,
due to gaps in understanding. However, the gaps can go unnoticed, as they often do in
computer science education, because performance does not necessarily indicate
understanding [2]. As a result, some students possess mental models based on incorrect
prior knowledge and require guidance to reconstruct them. At the same time, other
students may enter a computer science course with no prior model of the concepts and
may require guidance to prevent faulty constructions. Thus, Computer Science
Illustrated also serves a purpose in constructivist learning by helping students establish
or repair mental models.

1.2 About the Artist

As a visual learner, I often created drawings and diagrams in my class notes to
reinforce my memory and help myself understand lessons. This was a strategy I carried
over from middle school into my undergraduate years, and it was fueled by my passion
for drawing, a trait that emerged early in my childhood. I am a primarily self-taught
cartoonist, learning to draw from watching cartoons, reading comics, and sketching in my
spare time. Eventually, I added graphic design to my skill set.

In my sophomore year of college, I joined the graphics team of California
Engineer, a student-run magazine that published undergraduate research, and eventually
became the graphics manager. As my drawings became more popular among students, I
was commissioned to create t-shirt designs for several student groups, including Eta
Kappa Nu, the electrical engineering honor society, and the computational game theory
research and development group Gamescrafters.

Some might wonder why I did not pursue the art major, considering my interest in
the subject. Indeed, I might have, had it not been for a summer science camp I took as a
sophomore in high school. Not only did I learn to program in C and how to put together a
computer, but I also developed a fascination with computer science. I also felt that since
computer science was a subject I knew relatively little about at the time, it would be an
intellectually stimulating field to explore. Thus I decided to pursue computer science, a
choice that sowed the seeds of this research project.

1.3 The Origins of Computer Science Illustrated

Most research projects begin with reading papers and finding open problems; this
endeavor began with cartoons. In my first computer science course, CS3: Introduction
to Symbolic Programming, I often drew computer science-related cartoons, as well as
some of the drawings I used to help grasp the concepts, on the computer lab’s
whiteboards. The lead teaching assistant of CS3 at the time, Clint Ryan, discovered that
many students were amused and intrigued by the whiteboard drawings, and he thought
they could be used as helpful reminders of the course topics. Through contact with the
other teaching assistants, Clint eventually discovered I was behind the artwork, and
requested that I produce some illustrations for use in lab sections. It was then the

7

precursor to Computer Science Illustrated was developed—a set of seven illustrations
hand-drawn in ink depicting several aspects of Scheme, including higher-order functions,
list constructors, word-sentence selectors, and empty words and sentences, and common
mistakes students make when using some of Scheme’s built-in functions. During my
junior year, Dr. Daniel Garcia discovered these illustrations, whereupon he offered me a
formal research project to produce illustrations for the benefit of computer science
education. Thus it was from anonymous and spontaneous whiteboard artwork that
Computer Science Illustrated emerged as a venture to improve computer science
education.

 Numerous endeavors have been made to incorporate visuals into computer
science education. In the commercial sphere, it is already known that attractive and
understandable visuals are important to the success of an informational text. Often, the
visuals in computer science texts are diagrams, graphs, or data tables, but some authors
apply a more artistic touch to their work. One notable example is Larry Gonick’s
Cartoon Guide to Computer Science, a book describing the basics of computer science,
such as binary numbers and logic gates, as well as the history of computing through
hand-drawn diagrams and an assortment of characters [9]. While a majority of the
illustrations are simply decoration or entertaining commentary for the ideas described in
the text, some serve as representations or visual mnemonics of the concepts. For instance,
to teach readers about how adders are used, Gonick depicts the adder in circuit diagrams
as a black box with a snake, the coincidentally named adder, in it. These comical
reminders help readers remember ideas by associating concrete objects with the abstract
concepts. The result is a text that simultaneously reads like a graphic novel and offers a
friendly introduction to basic computer science concepts.
 In the space of computer science education research, attempts have been made to
develop curricula that benefit different types of students, including visual learners. One
such attempt is a software engineering course layout proposed by Layman that takes the
students’ personality types and learning styles into consideration [13]. To accommodate
visual learners, Layman’s course includes pictures and charts in lecture and requires
students to draw diagrams for assignments and projects. Other approaches take less
drastic measures, seeking to appeal to students by including multimedia in the existing
curriculum instead of restructuring the entire course. Of these other approaches, most fall
into the category of algorithm visualization.

The main goal of algorithm visualization is to facilitate the understanding of
algorithms by using graphics to demonstrate how they work. Studies have shown that
student engagement with algorithm visualizations increases learning [11]. Approaches
can range in complexity, from simple flow charts to Biermann and Cole's "comic strip"
approach, which explains binary search and splay trees through sequences of static
images [3]. Attempts have also been made to present visualizations of algorithms at
various levels of abstraction, such as Müldner's Algorithm Explanation [15]. Animation
is another option considered in algorithm visualization, since seeing the algorithm in

8

action often helps with the understanding of its inner workings. Sorting algorithms are
commonly explained through animated visualizations, as seen in Baecker’s Sorting Out
Sorting, a video explaining nine sorting methods [1]. While these visualizations have
proven to be effective education tools, they are limited by three ways. First, their main
purpose is to teach how algorithms work, so the methods used do not necessarily extend
to all computer science concepts. Second, many algorithm visualizations, particularly
animations, are presented through the computer and thus cannot be used as offline
resources. Third, the visualizations rely on abstract lines and shapes, which can convey
actions without visual distraction but make it difficult to form memorable mental pictures
of concepts.

Our approach can be considered a complement to algorithm visualization. It
covers essential concepts as well as algorithms, and the illustrations are printable, which
makes them accessible away from the computer. We also make use of visual metaphors
to connect computer science concepts with concrete characters and objects, which
students can more easily relate to than lines, shapes, and numbered nodes. This can help
students when they attempt to formulate mental images.

3.1 Development

The process of producing one of our illustrations follows the standard design
process between artists and clients. Development of an illustration begins with
determining which concept should be visualized. Ideally, we would produce illustrations
for every concept taught in the introductory computer science courses we currently cover,
but limited time and resources force us to be more selective. Topics are typically chosen
from the set of subjects students most often have difficulty grasping within the courses.
This information is usually gathered from discussions with the faculty teaching the
courses, as they have direct experience with students’ difficulties and are able to identify
challenging topics from the results of various course activities. Occasionally, as in the
case of MapReduce we describe in Section 3.3, the faculty will directly suggest a topic to
illustrate.

Once a suitable topic has been selected, we begin planning out the illustration. At
this stage, we hold meetings to discuss which aspects should be represented by images
and which should be included as accompanying text. While the pictures are designed to
convey as much of the information as possible, the inclusion of text is sometimes
unavoidable, such as when code fragments or narrative segments form an integral part of
the illustration. The product of these meetings is a set of sketches plotting out the basic
structure of the illustration and rough ideas for the characters and objects that will be
used as visual metaphors of the concept.

In the next step, we design the visual metaphors that will illustrate the concept.
The basic ideas created in the planning stage are fleshed out in this part of the process, as
we begin to consider factors such as how understandable, memorable, and aesthetically

9

appealing the metaphors are. To maximize effectiveness, the metaphors must be
simultaneously visually attractive to engage audiences and clear and memorable to
enhance retention of the represented concept. To address visual appeal and make the
experience of learning from the illustrations entertaining, we design the characters in a
cartoon style. We also have to take into consideration any existing metaphors that may
have to work with the one currently being designed. The illustrations often contain
multiple metaphors, new and old, interacting with each other, so consistency with prior
metaphors is essential in preventing confusion among students. Developing the visual
metaphors is both the most important and the most difficult aspect of producing an
illustration.
 We then take the sketched layout and visual metaphors and generate a low-fidelity
prototype of the illustration. Here, the layout of the illustration is planned out,
determining the location of each image and text segment. The appearance of the visual
metaphors is also refined to be more aesthetically appealing and to bring it closer to the
final look. The prototype is typically drawn by hand on paper, since the ability to make
quick changes facilitates the process of revision.

Finally, no illustration is considered complete without revisions. Much of the
revision occurs within the project group, but typographical errors, metaphor
inconsistencies, and other mistakes can still slip by unnoticed in the sketches and initial
prototype. It may also be possible that the prototype illustration is not as understandable
as the sketches were. Thus, it is important to receive critique of the illustration from as
many individuals external to the project as possible. We present the prototypes, usually as
scanned images transmitted through electronic mail, to the teaching faculty and other
members of the course staff and ask for feedback regarding accuracy, consistency, and
clarity. Aside from corrections and suggestions for improvement, responses from the
previewing audience can also include different opinions on how to present the concept
and advice involving possible alternative visual metaphors. If deemed valid and
incorporated into the illustration, these responses can sometimes significantly alter the
appearance of the final product, as well as increase the iterations of revision needed. An
illustration may undergo numerous revisions before being considered ready for
distribution, but at some point it must be considered “done” so that the next topic can be
tackled. For this we have a set of guidelines to determine the completeness of an
illustration:

��All typographical and visual errors have been corrected
��The meaning of the text is clear
��The visual metaphors used are understandable
��For code segments, the code is free of syntax errors and the output is

consistent with the input
��If the illustration contains aspects common to multiple illustrations, the

visual metaphors used for those aspects are consistent
On occasion, a revision in one aspect necessitates revision in the rest of the illustration.
Thus the guidelines must be consulted at every revision step. Once the illustration
satisfies all of the guidelines, it is added to the collection for distribution.

10

Figure 1: From sketches to final illustration: the initial sketch (top-left), the first prototype (top-right), the
revised prototype (bottom-left), and the fully-colored and digital illustration (bottom-right).

 Before an illustration can become part of the Computer Science Illustrated
collection, however, it must be converted into a digital format [Fig. 1]. This means we
draw the illustrations digitally. Digital drawing is an essential part of the project; it allows
for online distribution of the illustrations and flexibility in printing. This step involves
transforming the paper prototype into vector graphics and text in Adobe Illustrator, the
industry standard for creating and editing vector illustrations. We use vectors instead of

11

rasterized images for the digital illustration because vector graphics are infinitely scalable
without loss of quality, while scaling raster images results in image degradation and
causes individual pixels to be visible. This scalability is necessary to allow the illustration
to be printed in arbitrary dimensions, provided that the dimensions match the document’s
aspect ratio. In this stage, the prototype is scanned, imported into Illustrator, and traced
over, or it is used as a reference for the digital version, which is drawn from scratch. The
conversion phase is also the point at which we add color and further detail to the
illustrations. The colors used tend to be bright to make the illustrations eye-catching and
whimsical. Details are added to the illustrations to make them professional, and include
gradients for shading, grounding shadows, and variations in character poses to prevent a
“cut-and-paste” appearance. All of the work is done on drawing tablets, the standard tool
of graphic designers and illustrators in industry. To make the most efficient use of time,
this conversion can take place in parallel with the revision step. The illustrations are
stored as Portable Document Format (PDF) files, which preserve the vectors while still
being accessible to most computers.
 The production process for one illustration requires two weeks, working six to ten
hours per week, on average. The actual drawing and digitization of the illustrations is
spread out over this span of time, but in total takes up just one to three days for the entire
development. Planning and revision occupies the bulk of the two-week span. However,
revision of one illustration often occurs concurrently with the planning and drawing of
another illustration [Fig. 2].

Figure 2: The development pipeline. Usually, an illustrator will work on no more than two illustrations at
any given time. More illustrators mean more illustrations can be produced in parallel.

3.2 Challenges

As the description of the production process suggests, generating an illustration is
by no means a simple task. There are several considerations that must be adhered to
during the development process in order to ensure that the illustration is maximally
effective at conveying the necessary information to students. We will describe the four
challenges encountered when designing an illustration: what to illustrate, what metaphors
to use, level of detail, and keeping consistent.
 The first challenge usually faced occurs in the planning stage—tackling the
question of what needs to be illustrated. As we mentioned in the previous section, we
choose to illustrate what students consider to be difficult topics. The challenging concepts
are not usually obtained from students directly, because many students “don’t know what
they don’t know.” In other words, many students may feel they understand a certain
concept, only to find that they struggle with it during projects and exams. However,
instructors and teaching assistants are often able to identify problematic areas from
interaction with students during office hours and discussion, as well as from the portions
of assignments and tests where students are weakest. Therefore, we gather the set of
topics to illustrate from the course staff. From the collected set, we typically choose

12

subjects that are not usually accompanied by diagrams when presented in lecture. They
are often abstract, complex, or otherwise challenging to illustrate, resulting in a scarcity
of imagery that makes these topics harder for visual learners to understand. In addition,
we must determine the reasons why students find a topic difficult to understand. For
certain topics, particularly those that are specific to a programming language, the trouble
could come from confusion regarding the syntax of implementations. For other topics, the
difficulty may emerge from the semantics behind the concept. Identifying the problem
areas allows us to decide what aspects of the topic to visualize and guides the creation of
visual metaphors.

As mentioned in the previous section, designing metaphors for the illustrations is
a major challenge in this project. The effectiveness of each illustration ultimately relies
on the effectiveness of the metaphors used to convey the concepts. As Grillmeyer noted in
his thesis on animations of Scheme functions, a representation that is convincing and
reasonable to an expert may not necessarily help a new learner [10]. A visual metaphor
can cause confusion if it is too complicated, too obscure, or is based on knowledge a
novice might not have. To allow students to quickly and easily make the connection
between what occurs in the illustrations and the ideas they represent, the imagery must be
simple, clear, and memorable. The additional factor of aesthetic appeal enhances
retention and recall of the metaphor and its corresponding idea and helps provide
encouragement for students to use the illustrations as supplements to the lecture or lab.
These characteristics can frequently be at odds with each other; many aesthetically
appealing designs are not simple or easy to memorize, while the simplest or clearest
representation may not be the most attractive. In designing a metaphor, we seek to
achieve a balance among the four competing factors, a task depending heavily upon the
knowledge, skill, and creativity of the illustrators. Appendix F contains a list of the
metaphors that have been developed so far for the illustrations.

Often metaphor generation involves producing a design that encapsulates the most
important aspects of the represented concept or element, rather than arbitrarily drawing
an object or character and designating it the symbol. For instance, in Scheme lists, the
characteristics to emphasize are the groupings established by the lists’ parentheses and
the fact that list elements are ordered. Thus lists are symbolized by ordered rows of
values occupying rectangular buckets marked with parentheses [Fig. 3]. By embodying
the key aspects of the concept or element, the resulting metaphors will not only serve as
visual reminders of those aspects, but they will also be “appropriate.” In other words, the
metaphors will be understandable to students who already have a working knowledge of
what they represent, allowing them to follow along when the metaphors are used to teach
something they are less familiar with.

Figure 3: Visual metaphors for a simple Scheme list of arbitrary colored elements (left) and a nested
Scheme list of numbers (right). The nesting of buckets makes the nesting of parentheses more apparent.

13

Just as clarity, memorability, understandability, and visual appeal must be
balanced in each visual metaphor, compromises must be made regarding the level of
detail provided by each illustration. Insufficient detail can contribute to confusion and
reduce the illustration’s usefulness, but covering too many points at once can overwhelm
the viewer. Thus the depth to which a concept is covered in one illustration must be
carefully considered. In general, the depth of detail in the illustrations matches the depth
to which the topics are taught in the course. Providing less than this baseline makes for an
insufficient supplement to lecture, while going too far beyond it could bog students down
with unnecessary facts. Abstraction is a common tactic for controlling the level of detail
in visualizations, but there may still be a large amount of information to convey after the
abstractions are applied [10]. Additional rules are applied to manage information density
in illustrations, the first of which is that concepts with multiple subtopics should be
spread out over a series of illustrations. Complex subjects, such as the different types of
binary integer representation, floating point numbers, or caching, fall into this category,
and as such are presented as ordered sets of two or more illustrations where each covers a
separate subtopic. These subtopics can be combined or further subdivided, depending on
the level of detail at which these must be taught. We do try to minimize the number of
illustrations per set, because a subtopic illustration and can require as much, if not more,
time and resources as illustrating a full topic. The fact that some concepts require
coverage with multiple illustrations brings up another development challenge—
maintaining consistency.

Consistency among visual metaphors in illustrations, and among the illustrations
themselves, is essential to the project. The visual metaphors are designed to help students
establish a mental image of computer science concepts. Sudden changes in
representations can disrupt these constructions, causing confusion and misunderstanding.
Therefore, a metaphor must remain an effective representation of an aspect regardless of
where it is being used or what other metaphors it is combined with in an illustration. It is
also important to prevent inconsistency arising from contradictions between illustrations
in a topic set or course, either through the images or in the accompanying text. There are
two main cases where consistency must be ensured. First, when a concept is divided up
into a set of illustrated subtopics, any visual metaphors common to the set must be
compatible with the variety of ways each subtopic is depicted. Simultaneously,
illustrations within the same course set can also rely on shared visual metaphors, so a
visual metaphor must also be compatible with different topics within the course. For
example, the representations of different Scheme functions share a common appearance,
regardless of the number or type of arguments they take [Fig. 4].

14

Figure 4: All Scheme functions are given the appearance of an input-output machine. The top pipes
represent input, while the bottom pipe symbolizes output. In the case of every, a higher-order function,

the input pipes feature additional components, a wide pipe for function input and a docking station for
sentence input, to show that it accepts a different type of input from the other functions.

Unnecessary visual variations here could lead students to false conclusions, such as one
saying functions are different datatypes. Maintaining consistency typically occurs during
the metaphor design stage and is addressed by centering the design on the existing
metaphors and illustrations that the new one must work with or by combining existing
metaphors. Ignoring the possible relationships between the old and new metaphors is not
an option, since illustrations can use multiple metaphors interacting with each other to
convey information. For example, the docking station found on higher-order function
machines was developed to maintain the consistency of list and sentence input as boats. If
the characters’ or objects’ modes of interaction are not compatible, inconsistencies will
emerge during the narratives.
 The last challenge we will discuss mostly concerns the future of Computer
Science Illustrated, though it is also relevant to the present. An additional objective for
us is to make the project multi-generational, having it continue long after the original
illustrators have graduated. Of course, this continuation would involve recruiting new
students, who will inevitably have different thoughts, beliefs, and artistic styles.
Currently, the issue is minor for now since there are just two artists, but it can only grow
as more illustrators are involved. Differing mindsets and styles of drawing have
implications in metaphor design and consistency. It is possible for each illustrator to have
a different idea for visualizing a certain concept. At the same time, variance in drawing
styles can create visual incongruence in an illustration or set of illustrations, even when
the same metaphor is drawn. However, forcing a standardized style can stifle the
expressive capabilities of the illustrators and possibly discourage potential artists from
joining or staying in the project. Therefore, we have considered several measures to
maintain visual consistency and allow for artistic differences. One is to have each
illustrator focus on a particular subject. While subjects are not always fully isolated from
each other, grouping by subject eliminates inconsistencies that would occur if multiple
artists were to work on the same illustrations. Another is to unify illustration sets through
the use of a standardized color palette. The idea here is that though the visual metaphors
may vary in appearance due to stylistic differences, common colors will act as an
indication that two depictions of a metaphor are not two separate metaphors.

15

3.3 Case Study: MapReduce

 In this section we describe a specific instance of developing illustrations, for a
Scheme-based implementation of MapReduce [6]. Originally the product of Google, it
was introduced in 2008 to one of Berkeley’s Scheme-based introductory computer
science courses, CS61A: Structure and Interpretation of Computer Programs, by
Brian Harvey in an effort incorporate cluster computing fundamentals into the early
stages of the students’ education [12]. Later on, it also became a component of another
introductory computer science course at Berkeley, CS3: Introduction to Symbolic
Programming, also taught in Scheme. The novelty of the MapReduce implementation,
combined with the fact that Scheme was a language rarely used by other campuses,
meant that there was a shortage of outside resources, particularly visual material, for
students to consult when faced with the MapReduce curriculum. We determined that
Scheme-based MapReduce was an ideal candidate for illustration.
 One of the first things we encountered was the complexity underlying the
Scheme-based MapReduce. CS61A is a course that teaches the Scheme list, pair, and
stream datatypes. Thus, the implementation of MapReduce takes a mapper, reducer, a
data value serving as the reduction’s base case, and the file directory as input and
produces an output stream of key-value pairs that must be queried with stream accessing
functions to extract results. We decided that there would need to be an introduction to the
MapReduce function, detailing its input arguments; a description of the processes taking
place within a MapReduce function call; and example code depicting a usage of
MapReduce and its resulting output. We divided these up into multiple illustrations: one
to provide the basic overview, one to visually depict the inner workings, and one to
present an example interpreter sequence demonstrating MapReduce and the stream
accessing functions in action.
 Additionally, due to curricular differences, MapReduce is taught differently in
CS3 and CS61A. In CS3, where students are not exposed to Scheme’s stream datatype,
MapReduce is presented as three functions: reduce-map-letter, reduce-map-
word, and reduce-map-sentence. For input, these functions take a mapping
function, a reducing function, and the directory of files to be processed, and as output
they produce a single element. Since the output is one value, emphasis is placed on the
reduction step, where the order in which the data is processed can affect the outcome of
MapReduce. On the other hand, in CS61A MapReduce is presented as a single
mapreduce function that takes a mapper, reducer, the reducer’s base case, and the file
directory and outputs a data stream. The internal workings of each course’s
implementations also differ significantly. As a result, we decided it was necessary to
create separate sets of illustrations for each course. Both CS3 and CS61A would have the
overview and visualization of the internals, but CS3 would have additional illustrations to
explain the differences among the three MapReduce functions and how the reduction step
can create different outputs for the same input.

16

Figure 5: Metaphors used in the MapReduce illustrations. From left to right: the mapper and reducer as
function machines, a key-value pair as a tub containing a value holding a key, stream-filter as a heavily

modified function machine, and the output stream as a literal stream of water.

As is the case for most of our illustrations, the MapReduce processes were
presented as pictorial narratives, so that students would watch the process unfold by
following the list element characters as MapReduce and its helper functions process them
[Fig. 5]. To keep consistent with the existing Scheme illustrations, the MapReduce
functions were represented by input-output machines and lists and pairs were shown as
tubs of ordered list elements. However, some modifications were made to several
functions and the representation of pairs to act as visual mnemonics of their purpose and
highlight certain aspects. Some modifications were applied to elements shared by both
sets of illustrations. The mapper function was colored with a globe pattern, as opposed to
the standard silver, to remind students that such functions were meant to “map” lists and
sentences. The reducer was depicted as a machine with a belt squeezing its midsection, to
emphasize the fact that it compresses lists to single elements. Other modifications were
applicable only to the CS61A MapReduce. Key-value pairs were still depicted as tubs,
but the values within them held large metal keys labeled with the pairs’ word keys.
Finally, stream-filter, one of the stream accessing functions, was illustrated as a
function machine with a transparent top half revealing the filter inside. We also created
one completely new visual metaphor for the CS61A illustrations—a stream of water with
pairs floating on it for the output stream.

Revisions and changes in the example code occurred throughout development,
and had significant impact on the illustrations’ appearance. For instance, the interpreter
sequence illustration initially contained only the definition of the mapper function and the
MapReduce call. When it was decided that it would also be necessary to include data
extraction from the output stream, the interpreter sequence changed to include stream-
filter and other stream access functions. In turn, this created the need to develop
metaphors for those functions and incorporate them into the illustration [Fig. 6].

The results of this development were seven MapReduce illustrations: three for
CS61A, and four for CS3. These illustrations, along with descriptions of their respective
courses, are presented in Appendices B and C. They were distributed to the students of
the courses as handouts in lecture, one of the several routes that our illustrations travel
after development.

17

Figure 6: Two sketches of the Scheme MapReduce interpreter sequence. Initially, the illustration focused
on the fact that MapReduce produced an output stream (top). Later, to explicitly show how results are

extracted from the stream, stream-accessing functions were included in the illustration.

18

 Once an illustration is produced, there are three main methods that it can be put to
use in a computer science course. Online distribution is one avenue we have established.
The illustrations that we have created so far are available in PDF on a publicly accessible
website, along with brief descriptions of the project, the illustrators, and recurring
characters in the illustrations. The PDF files can be viewed in the web browser, if the user
has a PDF reader plugin, or downloaded for offline viewing and printing.

The second use we intend for the illustrations is as course handouts,
supplementing the lecture or discussion sections. Handouts are not a common feature in
computer science courses, as they can be time-consuming to produce, but they can be
invaluable to visual learners as a reference. These handouts can be distributed during
class and used as a starting point for presenting topics, or provided afterwards as
summaries of the lessons covered. We foresaw the possibility of printing illustrations as
handouts, so all those currently produced are designed to fit the standard 8.5”x11” paper
size. The illustration PDF files are also ready to print as soon as they are opened in a PDF
reading program.

Finally, the resolution-independence of our graphics also allows larger scale
printing, allowing users to print them as computer lab posters. Given the fact that our
illustrations are currently structured in a portrait, rather than landscape, layout for course
handouts, our initial prints were 2’x3’ posters. These can serve as semester-long
reminders of the concepts while students work in the computer labs or as a quick
reference. Due to the different aspect ratios between the handouts and posters, two
versions of each illustration are created, one of which has slight adjustments to
accommodate the poster dimensions. Our posters are printed by BigPosters.com on
glossy paper with archival ink to protect them from fading under frequent light exposure.
For additional protection, we also frame the posters prior to placing them on the
computer lab walls. We use thin black poster frames, which minimize visual distraction
away from the poster, purchased from Aaron Brothers. Each poster takes approximately
ten days to process, print, and ship, and costs $56.25 to produce, $31.25 for the poster
printing and $25.00 for the frame.

With these distribution options, particularly online availability, a couple issues
need to be addressed. One is the matter of intellectual property. Since the illustrations are
meant to be freely distributed, steps must be taken to prevent them from being used for
profit. We considered two possibilities: copyright and Creative Commons licensing [5].
Copyright laws are automatically applied to online content, but they impose restrictions
on distribution by requiring every user to ask for permission to use the illustrations. A
Creative Commons license, on the other hand, allows the waiving of certain rights to
facilitate free distribution.

19

Figure 7: The Creative Commons license chosen for Computer Science Illustrated. It is placed at the
bottom of the homepage and illustrations page on the website.

Thus, we opted for the Creative Commons Attribution-Noncommercial-Share Alike 3.0
United States License to enable non-commercial use of the illustrations and the creation
of derivative works based on them [Fig. 7]. The other issue is the illustrations’
applicability outside of UC Berkeley. Currently, nearly half of the illustrations created
cover topics involving Scheme, as they cater to CS3 and CS61A. However, Scheme is
used in very few other schools, so illustrations of this category would have limited
usefulness. Therefore, we have moved on to focus more on the topics of non-Scheme
courses, such as CS61C: Machine Structures. Further details regarding this expansion are
described in the future work section. To appeal to campuses other than Berkeley, we
structured the website to organize the illustrations by topic rather than by course name.

Informal presentations of Computer Science Illustrated have shown that the
reception of our project from students and faculty is overwhelmingly positive. However,
we realize the need to quantitatively measure the illustrations' effectiveness. Our
illustrations are currently designed for Berkeley’s introductory computer science courses,
so we held experimental assessments on the students taking them. We conducted two
such assessments so far, one in CS3 and one in CS61CL, a lab-based version of CS61C.
We chose these two courses because their lab sections are presented through UCWISE, a
platform for displaying lessons, activities, and student assessments online [21].

For the study conducted on CS3, which took place early in the semester, the lab
sections of the course were randomly divided into two groups: the control group and
experimental group. The students were not informed of this division, and all received the
same instruction in lecture. During the lab sessions, students were given their regular
short quizzes to test their understanding of the concepts covered. However, the
experimental group was allowed to view three illustrations relevant to the topics covered
so far, in this case the word and sentence datatypes and functions involving them, before
taking the quiz. The quiz consisted of seven questions concerning the word and sentence
datatypes. To ensure fairness, in case the illustrations offered a significant advantage,
every student received the illustrations at some point; the control group was allowed to
view them after completing the quiz. The quiz scores collected were then analyzed to
gauge whether the illustrations were helpful for the students' understanding of the
concepts.

This method of assessment required careful consideration of the types of
questions we wanted to include in the quizzes. Questions that specifically asked for
details explained by the illustrations or the lesson text would give an unfair advantage to
the experimental and control group respectively, which would potentially create

20

misleading results. Thus questions did not involve examples found directly in either the
illustrations or the text. Moreover, we considered the timing with which the quizzes were
administered. Providing the illustrations to the experimental group minutes before the
quizzes most likely would not allow time for students to fully comprehend the metaphors
and remember the ideas.

On that note, we decided to structure the second study, conducted before the
second round of midterms on CS61CL, a little differently. The procedure was very
similar to that of the first study, except the illustrations, covering caching, were presented
the week prior to the quiz [Fig. 8]. This gave the students of the experimental group more
time to study the illustrations and us the chance to determine if any deep learning was
taking place. Additionally, the control group was given text-only equivalents of the
illustrations, so that the assessment would be a direct comparison between illustrated
lessons and text-based lessons. The quiz consisted of three questions about caching and
cache misses in general. Again to maintain fairness, the control group received the
illustrations and the experimental group received the text equivalents after the quiz.

Figure 8: An illustration incorporated into a UCWISE activity for CS61CL: Machine Structures.

 The study conducted on the CS3 students suggested that student understanding of
concepts improved when the lessons were supplemented with the illustrations. On
average, the group of students who received the illustrations scored higher on the quiz
than the control group. The average score experimental group was 6.053, while the
control group had an average score of 4.771. Both scores were out of seven points.

On the other hand, the study conducted on the CS61C students produced
inconclusive results. There was no significant difference between the average quiz scores
of the control and experimental groups, which were 2.429 and 2.433 respectively. These
quiz scores were out of three points. Several conclusions can be drawn from this

21

outcome. It may be that the quiz was too short or the questions too general to produce
responses indicative of the students’ understanding of the concepts. Perhaps the
supplements provided improved comprehension, regardless of whether they were purely
text or illustrations. It is also possible that in giving both groups a week to absorb the
information, the students consulted other resources and achieved nearly equal levels of
understanding. Future assessments will require longer quizzes and stronger consideration
of the types of questions to ask.

In addition to conducting the experimental assessments, we also surveyed the CS3
students for their opinions of the illustrations. We added four questions pertaining to the
illustrations to the course survey that was given to the students at the end of the semester.
The first asked students to rate the effectiveness of the illustrations with a score from one
to seven, with seven being the highest score; the second asked if illustrations should be
presented for other computer science courses; the third had students select all the ways
they used the illustrations; and the fourth was an open-ended question asking for overall
comments on the illustrations. Figure 9 contains tables of the results from the first three
questions.

The survey revealed that the students’ reception of the illustrations was very
positive in general. The average rating students gave the illustrations was 5.12, with the
most frequent rating being a 6. More than half the students wanted to see illustrations
offered in other computer science courses, and most students used the illustrations as
introductions and to create mental models of the concepts. In the open-ended responses,
most of the students who used the illustrations stated that they were “helpful in
visualizing what some of the functions did,” “easy to read and understand,” “a cool way
to teach CS to beginners,” “amusing”, and “cute.” Some said that the concepts were
“easier to comprehend” after seeing the illustrations. A couple of students also claimed to
be visual learners, and thought the illustrations were very useful to them as a result.
Among the small minority of students who did not find the illustrations helpful, the most
common comment was that the textbook and other course material were adequate for
their understanding, suggesting these students already had a good grasp of the concepts
prior to viewing the illustrations.

One important discovery made during the studies was that the results of
assessments, whether they were quizzes or informal discussion, offered valuable insight
for revisions, as the students’ responses could reveal weaknesses in the illustrations. For
instance, when the illustration covering Scheme list constructors was presented during the
CS3 lecture, the instructor found that some students took the visual metaphors too
literally and mistakenly assumed the list and append functions took exactly two
arguments, instead of arbitrarily many arguments. This problem emerged from the fact
that the examples given by the illustrations used only two arguments. We took this issue
into consideration, and made plans to create a new illustration mapping out the effects of
several numbers of inputs on the list constructor functions. As the illustrations become
more widely used, we can expect more of this type of feedback emerging from their
application in courses, which we will undoubtedly use to further improve the quality of
the illustrations.

22

Figure 9: Results from the survey questions given to CS3 students at the end of the semester. 70 students
submitted responses. For the third question (bottom), multiple answers were permitted in case students had

more than one use for the illustrations.

 There are multiple routes that Computer Science Illustrated could follow in the
future. One of the most logical is to continue expanding and revising the collection of
illustrations for the introductory computer science courses. Part of this would involve
finding more topics to illustrate in the courses currently covered and further improving
the illustrations already in the collection. Simply because an illustration satisfies the
guidelines we described in this paper does not mean there is no room for improvement.
Expanding the collection also involves extension to cover topics in data structures, taught
in an introductory course known as CS61B in Berkeley, which were set aside in focusing

23

on topics regarding Scheme and machine structures. This expansion of the collection will
also demand continued assessment of effectiveness, as insights gathered from the data
will help guide the project’s development and improve the illustrations.
 Another branch of future work could be to illustrate enough topics in a course
such that the course’s entire curriculum, or at least a majority of it, could be taught
through the products of Computer Science Illustrated. This endeavor would most likely
involve using illustrations as handouts, producing illustrated lecture slides, and
developing lab or discussion activities based on the illustrations and the narratives within.
Here the illustrations would play a much more active role in the course, rather than being
passively presented to the students as course supplements. This presents the opportunity
to create more engaging computer science courses through active learning and refreshed
representations of course concepts.
 A third future work option is to extend the project’s coverage to include advanced
computer science topics, such as those taught in upper-division courses. Advanced topics,
such as theory, artificial intelligence, and databases, tend to be more abstract,
complicated, and difficult to visualize than subjects presented in the introductory courses.
Even those often accompanied by many images, such as computer graphics, can be
challenging for students to understand. Potentially, visual learners could benefit even
more from illustrations in advanced courses due to the increased problems they might
have in creating mental images.
 Yet another route we could take in Computer Science Illustrated is to increase
awareness of the project to expand its usage. Currently, despite being available online,
use of the illustrations is largely limited to within the introductory computer science
courses of Berkeley. Of course, this restriction is primarily due to the fact that most of the
illustrations are quite specific to Berkeley, particularly the ones covering Scheme. This
extension of the project would be best pursued after the collection is further expanded to
cover data structures or advanced computer science subjects. The intention would be to
encourage other schools to use Computer Science Illustrated in their courses, possibly
even to create similar ventures to unite art and computer science for the benefit of
education.
 The most ambitious extension of Computer Science Illustrated would be to go
beyond the space of static images and produce animations to convey the concepts. Given
its popularity in both film and television, computer-generated, three-dimensional
animation may be the medium of choice to maximize engagement of students. It would
also be an ideal opportunity to incorporate techniques from animated algorithm
visualization. For example, the boat metaphor could be combined with sorting animations
to explain list sorting in Scheme. The tradeoff is that this type of animation requires a
large time and resource investment, which could be mitigated with a sufficiently large
group of artists. A less intensive alternative is to utilize digital two-dimensional
animation, such as Flash animation, to more closely adhere to the current style of the
illustrations. Additionally, interactivity could be included in these animations, creating
small activities or games, to encourage further engagement by allowing students to
actively participate. Regardless of the medium chosen to animate, both would require
significantly more time to produce than static illustrations, especially with interaction
involved. As such, topics to animate would have to be chosen even more carefully.

24

 We have presented an approach to facilitate computer science education through
the use of visually engaging and informative illustrations made available to students as
course handouts, an online resource, and large posters to view in the computer lab. The
detailed process we go through and the challenges we must address for every illustration
ensures the visual metaphors encapsulating the concepts are understandable, memorable,
and consistent within the groups they are used. The products of our efforts were sixteen
illustrations for CS3 and CS61A and ten illustrations for CS61C, all available online and
included in Appendices D and E.
 The assessments we conducted to evaluate the effectiveness of the illustrations
suggest that they are useful as supplements to the lessons taught in class. Surveys have
also shown that students are highly in favor of using the illustrations as entertaining
introductions to the concepts, as well as guides to forming mental models. Student
feedback has also been useful in revealing areas in which the illustrations could be
improved. With further assessment, revision, and expansion of the collection, Computer
Science Illustrated could be a component of every computer science course at Berkeley.

First, I would like to thank Dan Garcia, my research advisor, and second reader
Michael Clancy for supporting the project, providing assistance during the assessments,
and taking the time to read and revise this report. I also want to thank Nate Titterton and
Colleen Lewis for providing access to UCWISE and teaching me how to use the system
to conduct the assessments. Additionally, I would like to thank the Weiner fund and the
Office of Educational Development, who provided Instructional Improvement Grant, for
financially supporting the project. Finally, I wish to thank Sally Ahn for lending her
wonderful creativity and artistic skill to the project and for making it possible for
Computer Science Illustrated to continue beyond my graduation.

[1] Baecker, R., Sorting Out Sorting. Videotape, 1981.
[2] Ben-Ari, M., Constructivism in Computer Science Education. Proceedings of

the 29th SIGCSE technical symposium on Computer Science Education; 1998
Feb 25-28; Atlanta, GA. New York: ACM Press; (c1998) 257-261.

25

[3] Biermann, H. & Cole, R., Comic Strips for Algorithm Visualization. NYU
Technical Report 1999-778, (1999).

[4] Chamillard, A. & Karolick, D. Using Learning Style Data in an Introductory
Computer Science Course. ACM SIGCSE Bulletin, Vol. 31 No. 1 (Mar 1999)
291-295.

[5] Creative Commons. Creative Commons. Website. http://creativecommons.org/
[6] Dean, Jeffery & Ghemawat, S., MapReduce: Simplified Data Processing on

Large Clusters. Proceedings of OSDI ’04: 6th Symposium on Operating System
Design and Implementation; 2004 Dec 6-8; San Francisco, CA. Berkeley:
USENIX Association; (c2004) 10-10.

[7] Felder, R., Learning and Teaching Styles in Engineering Education.
Engineering Education, Vol. 78 No.7, (1988) 674–681.

[8] Felder, R. & Spurlin. J., Applications, Reliability, and Validity of the Index of
Learning Styles. International Journal of Engineering Education, Vol. 21 No. 1
(2005) 103-112.

[9] Gonick, L., The Cartoon Guide to Computer Science. New York: Harper &
Row, Publishers, Inc., (1983).

[10] Grillmeyer, O. Animations of Scheme Functions and Algorithms. Website.
http://oliver.grillmeyer.googlepages.com/thesis. (Fall 2001)

[11] Grissom, S. et al., Algorithm Visualization in CS Education: Comparing Levels
of Student Engagement. Proceedings of the 2003 ACM symposium on Software
Visualization; 2003 Jun 11-13; San Diego, CA. New York: ACM Press;
(c2003).

[12] Johnson, M. et al., Infusing Parallelism into Introductory Computer Science
Curriculum using MapReduce. University of California, Berkeley Technical
Report UCB/EECS-2008-34, (2008).

[13] Layman, L. et al., Personality Types, Learning Styles, and an Agile Approach to
Software Engineering Education. ACM SIGCSE Bulletin, Vol. 38 No. 1 (Mar
2006) 428-432.

[14] Mayer, R. & Massa, L., Three Facets of Visual and Verbal Learners: Cognitive
Ability, Cognitive Style, and Learning Preference. Journal of Educational
Psychology, Vol. 95 No. 4, (Dec 2003) 833-846.

[15] Müldner, T. & Shakshuki, E., A New Approach to Learning Algorithms.
Proceedings of the International Conference on Information Technology:
Coding and Computing; 2004 Apr 5-7; Las Vegas, NV. Los Alamitos: IEEE
Computer Society; (c2004).

[16] Noback, C. and R. Demarest, The Human Nervous System: Basic Principles of
Neurobiology. McGraw-Hill, Inc., (1981).

[17] Otero, J. et al., The Psychology of Science Text Comprehension. Mahwah:
L.Erlbaum Associates, (2002).

[18] Rolls, E. and G. Deco, Computational Neuroscience of Vision. USA: Oxford
University Press, (2002).

[19] Schnotz. W., Towards an Integrated View of Learning From Text and Visual
Displays. Educational Psychology Review, Vol. 14 No. 1 (March 2002) 101-
120.

26

[20] Thomas, L. et al. Learning Styles and Performance in the Introductory
Programming Sequence. Inroads, Vol. 34 No. 1, (Mar 2002) 33-37.

[21] UCWISE. UCWISE. Website. http://www.ucwise.org/.

10.1 Appendix A: The Precursors to Computer Science Illustrated

The following are the hand-drawn illustrations that were created prior to the formation of
the project. These illustrations went through a less rigorous process of development and
revision than their digital counterparts, but they laid the foundations for the project. The
illustrations are presented in the following order:

Page 28: Higher-order functions in Scheme.
Page 29: List constructor functions in Scheme.
Page 30: Common mistakes students make when using lists and list functions.
Page 31: The difference in argument processing between the accumulate

function and a function that takes an arbitrary number of arguments in
Scheme.

Page 32: Empty words and sentences and the empty? predicate function in
Scheme.

Page 33: The word and sentence selector functions in Scheme.
Page 34: Common mistakes students make when using words and sentences in

Scheme.

27

28

29

30

31

32

33

34

10.2 Appendix B: MapReduce for CS3

Course Description: CS3 introduces students to computer programming, emphasizing
symbolic computation and the functional programming style. In this course, students
write code in Scheme, a dialect of the LISP programming language.

The following illustrations were created to explain CS3’s implementation of MapReduce.

Page 36: Introducing the MapReduce functions and their arguments.
Page 37: Explaining the difference among the three functions.
Page 38: The steps executed within a reduce-map-word function call to perform

a word count.
Page 39: Explaining the reduction step of MapReduce as a function called

reduce-arbitrarily.

35

MapReduce
Parallelism and Functional Programming

reduce-map-word

MapReduce
Parallelism and Functional Programmingg

reduce-map-sent

Finally, there's the vast body of data to be processed,
specified by a filename, but encoded as a list. It's
either a list of sentences, a list of words or a list of
letters (depending on whether it was passed to
reduce-map-sent, reduce-map-word, or reduce-
map-letter respectively). If given a directory
instead of a single file, MapReduce treats the input as
a file composed of the concatenation of the individual
files in the directory.

Next is the reducer, which collects and
combines the values returned from the
mappers, into one value.
(A reducer is the kind of function used as
an argument to reduce.)

The first of the arguments is a mapper, a
function that takes a sentence, word or
letter (depending on whether it was passed
to reduce-map-sent, reduce-map-word,
or reduce-map-letter respectively) and
outputs some value. There are no constraints
on what this value can be. (A mapper is the
kind of function used as an argument to map.)

MapReduce is a system that
makes writing parallel code
easier for programmers.

In CS3, we provide three
functions that differ only in
how they interpret data.
Each takes three arguments:

reducer

mapper

reduce-map-letter

Eac

36

MapReduce
Why Have sent, word, and letter?

reduce-map-word
reduce-map-sent reduce-map-letter

What exactly is the difference among these MapReduce functions?

?

The answer lies in how they turn files into lists!

reduce-map-sent creates a list of sentences, one sentence for each line of the file.

reduce-map-word creates a list of the words in the file, ignoring carriage returns.

reduce-map-letter creates a list of the characters in the file, ignoring all whitespace.

st of the words in the file ignoring carriage returns

()

() ()

list of sentences one sentence for each line of the file

() ()()

()

'((to be or not to be) (to wit))

'(to be or not to be to wit)

'(t o b e o r n o t t o b e t o w i t)

37

(lambda (w)
(if (equal? w
‘to) 1 0))

+

'(appearances of “to”
in “phrases.txt” is 3)

MapReduce
Distributed Word Count with reduce-map-word

A series of mappers take the
file, encoded as a list of
words by reduce-map-word,
and make intermediate lists.
Each mapper gets a subset of
the data.

The intermediates
are combined into
a single list in an
arbitrary order.

The list is arbitrarily
reduced to a single value
using the input reducer.

The output emerges for the user to
view or use. The output type depends on
the input reducer.
Because the list and the reduction is
arbitrary, the output can sometimes be
unpredictable!

()

reduce-
arbitrarily

+

(lambda (w)
(if (equal? w
‘to) 1 0))

(lambda (w)
(if (equal? w
‘to) 1 0))

t()

ates
nto
an
r.

()
.

()
()

38

Reduction in MapReduce
list What does (reduce-arbitrarily list '(0 1 2 3 4 5)) do?

(((0 1) (2 3)) (4 5))

(0 (1 ((2 3) (4 5)))) ((0 ((1 (2 3)) 4)) 5)

Depending on the order in which values are chosen, the same function call can give different results.

Two neighboring
values are chosen
on a first-come,
first-serve basis.

However, if you use an
associative reducer,
such as + or *, the
result will always be
the same!

list

listlist

list list

(((0 1) (2 3)) (4 5))
n which values are chosen, the same f

()

(0 (1 ((2 3) (4 5))))

()

((0 ((1 (2 3)) 4)) 5)

()

39

10.3 Appendix C: MapReduce for CS61A

Course Description: CS61A is an introduction to programming and computer science,
exposing students to techniques of abstraction at several levels: within a programming
language, using higher-order functions, manifest types, data-directed programming, and
message-passing; and between programming languages, using functional and rule-based
languages as examples. Programming projects and assignments are done in Scheme.

The following illustrations were created to explain CS61A’s implementation of
MapReduce:

Page 41: Introducing the MapReduce function and its arguments.
Page 42: Explaining the steps taken in a MapReduce function call using

document word counting.
Page 43: The example word count depicted as a Scheme interpreter sequence

that a student would enter. Sally Ahn created this particular
illustration.

40

MapReduce
Parallelism and Functional Programming

MapReduce
Parallelism and Functional Programmingg

base
case

mapreduce

Finally, there‛s the vast body of data to
be processed, encoded as a stream of
key-value pairs.

Then comes the base case, which is
usually the "identity" of the reducer
function given to accumulate.

Next is the reducer, which collects and
combines values. It plays a vital role in
turning intermediate key-value pairs into
output.
(A reducer is the kind of function used
as an argument to accumulate, also
known as reduce)

The first argument is the mapper, a
function that takes one key-value pair
and outputs a list of intermediate
key-value pairs.
(A mapper is the kind of function
used as an argument to map.)

MapReduce is a system that makes
writing parallel code easier for
programmers.

It takes four arguments:

reducer

base
case

mapper

Key-value pair

41

MapReduce
An Example: Distributed Word CountAn Example: Distributed Word Count

base case

attach1to
eachword

+

A series of mappers take the lines
of files and make intermediate

key-value pairs.

The intermediate pairs
are grouped by key.

Using the input reducer,
reduce processes combine
the grouped data values into
a single value.

Keep in mind that we‛ve drawn
the reduce processes with
keys to make this step
clearer, but in reality they
don‛t know the keys!

The output emerges as a stream in an
arbitrary order. Users can query this

stream to find the count of a specific word.

term

() ()

base
case

reduce

+

p
ed by key.
mediate pairs

the gro
a single

Keep in
the red
keys to
clearer
don‛t kn

base
casee

base

case

reduce

+ bas
e

cas
e

reduce

+

base
case

reduce

+

base

case

reduce

+

42

MapReduce
The Wordcount in Code

MapReduce
The Wordcount in CodeT

stream-filter

mapreduce

stream-car

kv-value

att
ach

1to

eac
hwo

rd

unix% ls /docs
hamlet.txt phrases.txt

unix% stk
;; Define the mapper
;; Typical kv-pair:
;; (phrases.txt . (to wit))
;; Output:
;; ((to . 1) (wit . 1))
> (define (attach-1-to-each-word document-line-kv-pair)
 (map (lambda (wd-in-line)
 (make-kv-pair wd-in-line 1))
 (kv-value document-line-kv-pair)))
attach1toeachword

;; Invoke mapreduce as a distributed word count
> (define wordcounts
 (mapreduce attach-1-to-each-word + 0 "/docs"))
wordcounts

;; Display the elements of the output stream
> (show-stream wordcounts 5)
((or . 1) (be . 2) (not . 1) (wit . 1) (to . 3))

;; Query the stream for the count of the word "be"
> (kv-value (stream-car (stream-filter
 (lambda (kv) (equal? (kv-key kv) 'be)) wordcounts)))
2

base
case

+
attac

h1to

eachw
ord

(lam
bda

(kv)

(equ
al?

 (k
v-ke

y kv
)

'be)
)

43

10.4 Appendix D: Other Illustrations for CS3 and CS61A

The following illustrations are applicable to both CS3 and CS61A, unless stated
otherwise, because they use Scheme and there is overlap in the topics covered. Many of
these are revised versions of the precursors seen in Appendix A.

Page 45: Explaining the differences between accumulate and standard
evaluation.

Page 46: Explaining empty words and sentences and introducing the empty?
predicate.

Page 47: Introducing the word and sentence selectors.
Page 48: Common mistakes students make when using the word and sentence

datatypes.
Page 49: Explaining how functions can be the input and output of other

functions.
Page 50: Introducing higher-order functions.
Page 51: Introducing the list constructors: cons, append, and list.
Page 52: Common mistakes students make when using lists (specific to CS3).
Page 53: Common mistakes students make when using lists (specific to

CS61A).

44

Input

Input

Input

Because accumulate processes data from
right to left...

...while the arithmetic evaluation goes
left to right!

Arithmetic Operations:
accumulate vs Evaluate

Notice that...
> (accumulate - '(9 5 2 1))
5

> (- 9 5 2 1)
1

Why are the return values different?es different?

accumulate

-

!

-

-

-

Input

Input

Input

-

-

-

-

()
?!

45

No words here! This
sentence is empty!

#t!

(half full)Empty Words
and Sentences!

(half empty)

Hey there!

This is an empty word. It must be given double
quotes, to make it "visible".

Can you see me
now?

""

Checkin' for emptiness,
one argument at a time!

""

I don't see any
characters, so
you must be
empty! #t!

Empty words are the identity of the word function, much like zero is the identity of +.
Thus, empty words seem to disappear when you call word on them with non-empty words.

You‛ll still see the empty words when you use sentence, though.

How can you tell when a word or sentence is empty? Simply call the predicate empty?!

How does empty? work? It returns true if the input is a word with no characters
or a sentence with no words and false otherwise.

Not empty!
#f!

My stomach
is empty,
though...

#f!

> (empty? alfred)
#t!

p y
and Sentences!

This is an empty word.

Can yo
n

""

on, much like zero is
ll word on them wit

""

I see a word in this sentence,
so it's not empty! #f!

 (the word, however, is empty...)

word

You‛ll still u use sentence, though.

word

l see the empty words when yol

word

()() ""

() ()

()

ord or sentence is empty? Simply call th

()
""

""

> (sentence “” 'a 'bc)
(“” a bc)

> (word “” 'bc)
bc

46

Selector Procedures
for Words and Sentences!

Selector Procedurees
for Words and Sentences!

429

cal

bc
d

a

(roll on cal)

(xy zw pq)abcd

42

> (return-value-type '(bf bl))
same-as-input

> (return-value-type '(first last))
words

Do I have some sentence
stuck between my teeth?

These are the selectors for words and sentences.

When given a word or a sentence...

first returns the
first part of the input...

last returns the
last part...

butfirst returns all
but the first part of

the input...

And butlast returns
all but the last part!

Select other parts of words and sentences, such as the second or third element, by combining selectors!

(roll on cal bears)

The second-to-last
word in the sentence!

(12 34 56)

56 (zw pq)

> (last (butlast '(roll on cal bears)))
cal

One thing to note here is that the selectors don‛t actually change the input they‛re given. They
make a copy of the input and do their work on the copy.

47

(crash some more!)Common Errors Involving
Words, Sentences, and

Their Functions
Wor

Giving empty words or sentences to selectors:

Giving sentences to procedures that only take words (and vice versa):

Not quoting sentences or non-numerical words:

HEY!

bound
var.

Processing
Center

Bound Vars

quote

Sorry, but without a
permit, I'll have to
assume that you're a
variable that's not
on the list.

=42

+

entences or non-numerical woumerical woorrds:

()()

()

quote
self-
eval

48

;; Compute sum of squares
> (define (sum-of-sq x y)
 (+ (* x x) (* y y)))
sum-of-sq

> (sum-of-sq 3 4)
25

> (define (add2 n) (+ n 2))
add2

;; Invoke a function twice
> (define (call-twice func x)
 (func (func x)))
call-twice

> (call-twice add2 20)
24

;; Generate a linear equation function
> (define (make-linear a b)
 (lambda (x y) (+ (*a x) (* b y))))
make-linear

> ((make-linear 5 2) 1 7)
19

49

Higher-Order Procedures
for Sentences!

Higher Order Procedures
for Sentences!

every

keep

accumulate

> (useful-with? 'HOFs 'lambda)
#t!

accumulate

word

l

keep

odd?

every

sqrt ()

()

()

?!

()

50

> (arguments 'cons)
2
> (arguments 'append)
many
> (arguments 'list)
many

dump

list

cons

append

List Constructors
When given two lists...

cons

List Constructors
When given two lists....

> (list '(r g b) '(c m y k))
((r g b) (c m y k))

> (cons '(r g b) '(c m y k))
((r g b) c m y k)

> (append '(r g b) '(c m y k))
(r g b c m y k)

'(c m yns '(r g b) y k)
b) c m y k)b) c m y k)

> (list '(r (llist '(r li t '(
((r g b) (c

> (
(r

b) '(c m y k)
g b c m y k)

(append '(r g b
g b c m y k)

Keep in mind that the list constructors don‛t change the input given
to them. They make copies of the input and work with the copies.

51

Giving append a non-list as an argument:

cons-ing a list to a non-list (i.e. second argument isn't a list):

Using list selectors on non-lists:

Using word and sentence selectors on lists (i.e. data abstraction faux pas):

L1

*wobble
 wobble* WHUNK!

Giving append a non-ving append a nnonivving append a

"Crash!"

Common Errors Involving
Lists and Their Functions

Avoid, avoid, avoid!

(non-list first arg is ok)

?!

? ?

> (works? this)
#t
> '(but it is not
good programming
style)

> "so..."
> (do? this)
#f!

*shake
 shake*

Why isn't anything
coming out?

ment isnt (i.e. second argummentrgumt (i e second arcond ar

eshak s

L1

L1

L1

L1

52

Giving append a non-list as an argument:

cons-ing a list to a non-list (i.e. second argument isn't a list):

Using list selectors on non-lists:

Giving lists to a function that takes only non-lists as arguments (or vice versa):

L1

*wobble
 wobble*

WHUNK!

Givi -lisn-ninnng append a no

"Crash!"

Common Errors Involving
Lists and Their Functions

Avoid, avoid, avoid!

(non-list first arg is ok)

?!

? ?

*shake
 shake*

Why isn't anything
coming out?

L1

*It's stuck.

ment isn (i.e. second argumment irgum(i e second arcond ar

keshak

L1

L1

L
1

53

10.5 Appendix E: Illustrations for CS61C

Course Description: CS61C covers the internal organization and operation of digital
computers. Topics covered include machine architecture support for high level languages
and operating systems, elements of computer logic and CPU design, pipelined
architecture and other aspects of machine parallelism, and the tradeoffs involved in
fundamental architectural design decisions. Programming assignments are primarily in
the C programming language.

The following illustrations cover several major topics of CS61C, including binary
integers, floating-point numbers, pointers and arrays, and caching.

Page 55: Introducing binary integer representations.
Page 56: A comparison of the integer representations, Part 1: negation and

representing zero.
Page 57: A comparison of the integer representations, Part 2: integer

incrementing.
Page 58: A comparison of the integer representations, Part 3: a summary.
Page 59: Introducing the IEEE 754 floating-point number.
Page 60: Explaining how to convert floating-point numbers to decimals, and

how to represent denormalized numbers, infinity, and NaN.
Page 61: Presenting the floating-point numbers on a number line.
Page 62: Introducing caches.
Page 63: Explaining cache associativity.
Page 64: Explaining cache misses.

54

In the early days of computing, designers made computers express numbers using unsigned binary.

To include negative numbers, designers came up with sign magnitude.

Then designers created one‛s complement.

Finally, designers developed two‛s complement.

computing designers made computeers express nunu

But the computer had to count backwards
for the negative numbers.

Plus, this introduced positive and negative zero.

Hey guys! How
do you negate

numbers?

55

Comparing Integer Representations
Negation and Zeroes

aring I t R s tg Integer Representg Integer R
Negat

Repres
Zeroes

eger R
ion and

Hi! And welcome to the “Best Integer
Representation” competition!

Here, we‛ll choose who gets to be the
world‛s standard for computer integers!
But first, let‛s introduce our contestants:

Round 1 - Negation

Round 2 - Zeroes

In this competition, we‛ll use 8-bit numbers. Now let‛s get started!

Unsigned Sign
Magnitude

One‛s
Complement

Two‛s
Complement

Bias

Flip sign bit Flip all bits
Flip all bits

and add 1

Subtract
from 12710

Oh, dear! It looks like Unsigned can‛t negate. But this competition has only
started, so Unsigned still has a chance of catching up to the others.

0000 0000
1000 0000

0000 00001 1 1 1 1 1 1 1

0111 11110000 0000

Now things are getting interesting! Unsigned and Two‛s Complement get two points each
for having one zero and being able to represent zero with all zero bits. Bias‛s zero isn‛t all
zero bits, but it gets a point for having only one zero. And though they have two zeroes,

Sign Magnitude and One‛s Complement get a point for having a zero of all zero bits.
zero bits, but it g

NNow hthing
for having
zero bits but

Round 1 is easy. Just tell me
how you negate a number!

Now for Round 2! Show me
all the ways you represent
zero!

Um...

0000 0000

-12710

-12710

-12
710

t looks ar! Idea
, so Unsrted,star

d c
as

like Unsigned
signed still ha

BuB
cat

can‛t negate. ‛t t
a chance of c

etittit
thethe

ut this compett thit thi
tching up to t

-127

tion has only ti h l
e others.

getting i
ro and b

are g
e zer

gs a
one

Uns
re

interesting! U
being able to

wo
o w

signed and Tw
epresent zero

nnt
bitbit

o‛s Complemen
with all zero b

nts each
o isn‛t all

get two poin
ts. Bias‛s zero

0 1 1 1 1

2 2 2 3 2

56

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000 111

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000 111

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

Comparing Integer Representations
Increments and Monotonicity
iaring
Inc

I t R p s tRepresent
ity

I t Rg Integer R
crement

Repres
Monotonici

eger R
ts and M

Round 3 - Incrementing

-2

0

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

Very nice! Unsigned has a graph that is continuous
and has a unit slope. This means we can use an

unsigned comparator to compare integers!
We‛ll give Unsigned two points for that.

What‛s this? Sign Magnitude has a very unusual
increment indeed. It has a unit slope for positive
integers, but the slope becomes -1 for negatives.

Sorry, but no points for Sign Magnitude this round.

Another monotonically increasing graph with unit
slope! You can use an unsigned comparator to

compare integers here, too. Bias gets two points!

Just like One‛s Complement, Two‛s Complement
has a discontinuous graph and unit slope. So

we‛ll give Two‛s Complement a point.

There‛s a discontinuity in the graph for
One‛s Complement, but we do like how

it has a consistent unit slope.
That‛s one point for One‛s Complement.

1

y

-128
-127

00

inc
 un
t

11111111

oontntininuous graph ththhatat i iss coco
n use an s means we can

to compare integers!to compare inte

-255

0000

Whh tat‛‛s t thhhihi ?s? S Sign Mag
increment indeed. It ha
integers but the slopebut the slope

for y in the graph
how ut we do like h

nt unit slope

1111111

fory in the graph

5

00

Just like One‛s Comple
has a diiscontinuous g

we‛ll give Two‛s Cll i T ‛ C

-255

00

Just like One‛s Comp

oo Bias gets two points!oo Bias gets tw

1111111

witithh unit creasing gra hph w
ator to nsigned compara

p i ts!Bi s ts t

1

4

2 3

4 4
-127

10

On to Round 3! Using this board, graph how your value changes when you
increment your bit pattern from 00000000 to 11111111! We‛ll give each player
a point for having a continuous graph and a point for a consistent unit slope.

57

Unsigned

Sign Magnitude

One‛s Complement

Two‛s Complement

Bias

Comparing Integer Representations
The Thrilling Conclusion!

inaring Int R p s ntRepresentInt Rg Integer R
The Thr

Repres
onclusion!

eger R
rilling Co

B

One Zero?Negation? Zero =
0000 0000

Monotonically
Increasing?

Continuous?
We‛ve finally arrived at the
end of our competition. Let‛s
see that scoreboard!

Well, well! It appears we have a three-way tie among Unsigned, Two‛s Complement,
and Bias! We can certainly give each of our winners a prize, though!

Unsigned, you‛ll be the representation
for data whenever users call upon the
unsigned modifier in C! I‛ve heard that
other languages use it, too, so you‛ll
work for them as well.

Bias, you‛ll represent the exponent in
IEEE-754 floating-point numbers! The
fact that we can compare exponents
with an unsigned comparator will come in
handy!

And you, Two‛s Complement, because
you can negate and have one zero that
is expressed as all zero bits, you will be
the representation of integers for
binary computers all around the world!d!

-12710

unsigned char foo = 24;
0001100020002

signed char bar = -24;
111010002

58

3.141592

Floating-Point Numbers!Floa ers!ating-P NumbPoint

An IEEE 754 floating point number consists of three parts:

(Also known as the Significand)

the Exponent,the Sign, and the Mantissa.

The Sign, as its name suggests,
determines the sign of the number.

The Exponent plays a vital role in determining
how big (or small) the number is. However, it‛s
encoded so that unsigned comparison can be
used to check floating-point numbers.

To see the true magnitude of the
Exponent, you‛d need to subtract the
Bias, a special number determined by
the length of the Exponent.

And last but not least, the Mantissa
holds the significant digits of the
floating point number.

s a vital role in determininit l l i d t
th numb is H it

+

100000002

01000000000
000000000000200

010000000001000000000
0

00000000
0

-12710

59

Floating-Point Numbers:
All Together Now!

01000000000
0000000000002

+

Once all the parts of the floating-point number are obtained, converting
it to decimal is just a matter of applying the following formula:

Notice that the Mantissa actually represents a fraction with an implicit 1 in front of it, instead of an
integer! In addition to representing real numbers, the IEEE 754 representation can also indicate...

positive or negative infinity,

and even when something is not a
number! This is called NaN.

a
number! This is

and even wh
number! T

+

Th
e
Th s called NaNhis is

t
s ca
met
s cahis is

n som
his is

hing is n
lled NaN

111111112

N.N.
ot a

N

00000000000
0000000000002

-

- 111111112+

the set of numbers known as denormalized
numbers (including zero),

+-

ppositive negatnege or nfinitnitty,ty,tive in

-12610

-12710

,t, insteadd oof an of

Example:

=02

NaNs aren‛t
comparable, but

they can be
different!

If this is all zeroes,
the float is zero!

60

Floating-Point Numbers:
The Great Number Line

Due to the format of the IEEE-754 standard, the floating-point numbers can be plotted on a number line.
In fact, the floating-point numbers are arranged so that they can be incremented like a binary odometer!

NaN

+ Floating
Point

Number

+ Denormalized
Number

+ 0-

-

-

+ -

61

Caches:
What Are They For?

For computers, memory accesses
are like going to the library,

Finding the necessary
information in the page
of a book,

And going back home to do the
work involving that information.

While computers don‛t mind
going back and forth like this
for data, it usually means users
have to do a lot of waiting.

Fortunately for users, computers have caches,
which is the equivalent of keeping copies of the
books needed on a shelf near the workspace.
Through a number of mechanisms, caches give the
illusion of being able to access memory very quickly!

Loading... Almost...

Hurry up, will ya?!

Home
Sweet
CPU

n.

0x0CA829F0

load word
0x02009AD0

ssary
e page

0x0CA829F0

0x002008... 0x00200A...

62

Cache Associativity

Tag Index Offset

Tag Offset

Tag Index Offset

Direct Mapped

2-Way Set Associative

4-Way Set Associative

Fully Associative

No index is needed, since a cache block can
go anywhere in the cache. Every tag must be
compared when finding a block in the cache,
but block placement is very flexible!

A cache block can only go in one spot in the
cache. It makes a cache block very easy to
find, but it‛s not very flexible about where
to put the blocks.

This cache is made up of sets that can fit
two blocks each. The index is now used to
find the set, and the tag helps find the
block within the set.

Each set here fits four blocks, so there are
fewer sets. As such, fewer index bits are
needed.

Just as bookshelves come in different shapes and sizes, caches can also take on a variety of forms
and capacities. But no matter how large or small they are, caches fall into one of three categories:
direct mapped, n-way set associative, and fully associative.

0 1 2 3 4 5 6 7

0 1 2 3

0 1

Tag Index Offset

They all look set
associative to me...

Memory
Address

m = 8
That‛s because they are! The direct mapped
cache is just a 1-way set associative cache,
and a fully associative cache of m blocks is
an m-way set associative cache!

63

Cache Misses
When you just can‛t find
what you‛re looking for...

Sometimes, the cache doesn‛t have the memory block the computer‛s looking
for. When this happens, it‛s called a cache miss. There are three causes of
cache misses. Just remember the three C‛s:

ompulsory

apacity

onflict

Compulsory misses happen when a
block is referenced for the first
time. The computer can‛t get a
block that doesn‛t exist yet!

The block is not in the cache
because there is no space in the
cache for it. Caches are of finite
size, after all.

These types of misses happen only
in direct-mapped and set-
associative caches. Multiple blocks
can be mapped to a set, forcing
evictions when the set is full.

Hey! I needed
that!

64

10.6 Appendix F: List of Visual Metaphors

Below is a list of the visual metaphors used in the illustrations so far, along with a written
explanation of each metaphor’s meaning.

65

