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The traditional lecture has been a standard teaching tool for university courses all 
around the world. However, students have different methods of learning, and for those 
who learn best through visual means, lectures are often not enough to understand the 
concepts. This is a particular problem in computer science, because a strong grasp of the 
fundamentals is vital to a student’s understanding of the complexities of programming 
and computing in general.  

Computer Science Illustrated is an endeavor to help visual learners comprehend 
computer science topics through a series of illustrations, which are made available online 
for use as handouts in class and posters in the computer labs. These illustrations are 
designed to present concepts as engaging and memorable visual metaphors combined 
with concise explanations or short narratives, intended to maintain the students’ interest 
and facilitate retention. An additional goal of the project is to make learning the concepts 
an entertaining experience through the use of colorful and whimsical characters in the 
illustrations. In producing our twenty-seven illustrations, we determined which topics 
were most difficult for students to understand in our university’s introductory computer 
science courses and followed a step-by-step process of design, redesign, and revision to 
generate resolution-independent illustrations. In this report, we will present the rationale 
behind illustrating computer science concepts, the systematic process we employ to 
create and distribute our illustrations, the challenges faced during development, and a 
case study detailing the creation of a specific instance of our illustrations. We will also 
describe the results of assessing the effectiveness of our illustrations as visual aids used in 
courses, and conclude with additional paths this project may take in the future. 
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1.1 Visual Learning and Constructivism 

Humans are highly visual creatures; sight is the average person’s dominant 
method of perceiving the world. Indeed, the retinas in the eyes contain nearly 70 percent 
of the entire human body’s sensory receptors, and optic nerve fibers comprise one-third 
of all the nerve fibers conveying information to the central nervous system [16]. On top 
of this, three of the four lobes of the human brain are involved in processing visual 
information received from the optic nerves for tasks such as object recognition and color 
processing [18]. Since sight is a human’s strongest sense, it is only natural that visuals 
play a significant role in people’s daily lives and in learning. In fact, there has been a 
long tradition of using images in education, spanning centuries, though empirical and 
systematic investigations of its effectiveness did not take place until the 1970s [19].

Strange it is, then, that the lecture has emerged as the most common teaching 
strategy utilized by instructors in grade schools, universities, and other educational 
institutions. It is characterized by the instructor giving what is best described as a lengthy 
oral presentation, sometimes accompanied by text and diagrams written on boards or 
projected on a screen, on the lesson of the day. The heavy emphasis on verbally 
conveying information to students makes it a primarily auditory education method, and it 
is this point that causes problems for many students. Education research has shown that 
students have preferred modes of learning, and can be categorized accordingly using the 
Index of Learning Styles, a set of forty-four questions designed to determine a student’s 
learning preferences [8]. Felder defines these modes of learning using a four-dimensional 
space: active-reflective, sensing-intuitive, visual-verbal, and sequential-global [7]. In the 
visual-verbal dimension, it has been shown that students can be differentiated according 
to cognitive style, learning preference, spatial ability, and general achievement [14]. The 
students we are most interested in helping are on the visual end of the spectrum.  

The relationship between a student’s learning style and his or her performance in 
computer science courses is a topic of considerable interest in computer science 
education research. Chamillard's study revealed that there was a correlation between 
learning style and course performance, regardless of the instructor teaching the course 
[4]. More specifically, a study conducted by Thomas et al. showed that verbal learners 
performed significantly better than visual learners in introductory programming courses 
[20]. The implication is that current methods of teaching computer science present an 
advantage to students who learn verbally rather than visually. Students who learn visually 
learn best from images, charts, diagrams, and animations, which are often missing from 
computer science lectures due to the abstract nature of many concepts and the time and 
skill required to produce them. Thus, visual learners frequently have difficulty 
understanding computer science topics. The primary goal of Computer Science 
Illustrated is to assist visual learners by providing illustrations that convey the concepts. 
However, all students can benefit from this work, because it allows them to see the 
material presented in a fun and different way. 
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Constructivism also plays a role in a student’s understanding of computer science 
subjects. According to the constructivist theory, students create knowledge structures by 
mentally selecting and organizing visual and verbal material and subsequently integrating 
it with prior knowledge they have on the subject [17]. These structures can be fallible, 
due to gaps in understanding. However, the gaps can go unnoticed, as they often do in 
computer science education, because performance does not necessarily indicate 
understanding [2]. As a result, some students possess mental models based on incorrect 
prior knowledge and require guidance to reconstruct them. At the same time, other 
students may enter a computer science course with no prior model of the concepts and 
may require guidance to prevent faulty constructions. Thus, Computer Science 
Illustrated also serves a purpose in constructivist learning by helping students establish 
or repair mental models.

1.2 About the Artist 

As a visual learner, I often created drawings and diagrams in my class notes to 
reinforce my memory and help myself understand lessons. This was a strategy I carried 
over from middle school into my undergraduate years, and it was fueled by my passion 
for drawing, a trait that emerged early in my childhood. I am a primarily self-taught 
cartoonist, learning to draw from watching cartoons, reading comics, and sketching in my 
spare time. Eventually, I added graphic design to my skill set.  

In my sophomore year of college, I joined the graphics team of California 
Engineer, a student-run magazine that published undergraduate research, and eventually 
became the graphics manager. As my drawings became more popular among students, I 
was commissioned to create t-shirt designs for several student groups, including Eta 
Kappa Nu, the electrical engineering honor society, and the computational game theory 
research and development group Gamescrafters. 

Some might wonder why I did not pursue the art major, considering my interest in 
the subject. Indeed, I might have, had it not been for a summer science camp I took as a 
sophomore in high school. Not only did I learn to program in C and how to put together a 
computer, but I also developed a fascination with computer science. I also felt that since 
computer science was a subject I knew relatively little about at the time, it would be an 
intellectually stimulating field to explore. Thus I decided to pursue computer science, a 
choice that sowed the seeds of this research project. 

1.3 The Origins of Computer Science Illustrated 

Most research projects begin with reading papers and finding open problems; this 
endeavor began with cartoons. In my first computer science course, CS3: Introduction 
to Symbolic Programming, I often drew computer science-related cartoons, as well as 
some of the drawings I used to help grasp the concepts, on the computer lab’s 
whiteboards. The lead teaching assistant of CS3 at the time, Clint Ryan, discovered that 
many students were amused and intrigued by the whiteboard drawings, and he thought 
they could be used as helpful reminders of the course topics. Through contact with the 
other teaching assistants, Clint eventually discovered I was behind the artwork, and 
requested that I produce some illustrations for use in lab sections. It was then the 
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precursor to Computer Science Illustrated was developed—a set of seven illustrations 
hand-drawn in ink depicting several aspects of Scheme, including higher-order functions, 
list constructors, word-sentence selectors, and empty words and sentences, and common 
mistakes students make when using some of Scheme’s built-in functions. During my 
junior year, Dr. Daniel Garcia discovered these illustrations, whereupon he offered me a 
formal research project to produce illustrations for the benefit of computer science 
education. Thus it was from anonymous and spontaneous whiteboard artwork that 
Computer Science Illustrated emerged as a venture to improve computer science 
education.

 Numerous endeavors have been made to incorporate visuals into computer 
science education. In the commercial sphere, it is already known that attractive and 
understandable visuals are important to the success of an informational text. Often, the 
visuals in computer science texts are diagrams, graphs, or data tables, but some authors 
apply a more artistic touch to their work. One notable example is Larry Gonick’s 
Cartoon Guide to Computer Science, a book describing the basics of computer science, 
such as binary numbers and logic gates, as well as the history of computing through 
hand-drawn diagrams and an assortment of characters [9]. While a majority of the 
illustrations are simply decoration or entertaining commentary for the ideas described in 
the text, some serve as representations or visual mnemonics of the concepts. For instance, 
to teach readers about how adders are used, Gonick depicts the adder in circuit diagrams 
as a black box with a snake, the coincidentally named adder, in it. These comical 
reminders help readers remember ideas by associating concrete objects with the abstract 
concepts. The result is a text that simultaneously reads like a graphic novel and offers a 
friendly introduction to basic computer science concepts. 
 In the space of computer science education research, attempts have been made to 
develop curricula that benefit different types of students, including visual learners. One 
such attempt is a software engineering course layout proposed by Layman that takes the 
students’ personality types and learning styles into consideration [13].  To accommodate 
visual learners, Layman’s course includes pictures and charts in lecture and requires 
students to draw diagrams for assignments and projects. Other approaches take less 
drastic measures, seeking to appeal to students by including multimedia in the existing 
curriculum instead of restructuring the entire course. Of these other approaches, most fall 
into the category of algorithm visualization.

The main goal of algorithm visualization is to facilitate the understanding of 
algorithms by using graphics to demonstrate how they work. Studies have shown that 
student engagement with algorithm visualizations increases learning [11]. Approaches 
can range in complexity, from simple flow charts to Biermann and Cole's "comic strip" 
approach, which explains binary search and splay trees through sequences of static 
images [3]. Attempts have also been made to present visualizations of algorithms at 
various levels of abstraction, such as Müldner's Algorithm Explanation [15]. Animation 
is another option considered in algorithm visualization, since seeing the algorithm in 
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action often helps with the understanding of its inner workings. Sorting algorithms are 
commonly explained through animated visualizations, as seen in Baecker’s Sorting Out 
Sorting, a video explaining nine sorting methods [1]. While these visualizations have 
proven to be effective education tools, they are limited by three ways. First, their main 
purpose is to teach how algorithms work, so the methods used do not necessarily extend 
to all computer science concepts. Second, many algorithm visualizations, particularly 
animations, are presented through the computer and thus cannot be used as offline 
resources. Third, the visualizations rely on abstract lines and shapes, which can convey 
actions without visual distraction but make it difficult to form memorable mental pictures 
of concepts.

Our approach can be considered a complement to algorithm visualization. It 
covers essential concepts as well as algorithms, and the illustrations are printable, which 
makes them accessible away from the computer. We also make use of visual metaphors 
to connect computer science concepts with concrete characters and objects, which 
students can more easily relate to than lines, shapes, and numbered nodes. This can help 
students when they attempt to formulate mental images.

3.1 Development 

The process of producing one of our illustrations follows the standard design 
process between artists and clients. Development of an illustration begins with 
determining which concept should be visualized. Ideally, we would produce illustrations 
for every concept taught in the introductory computer science courses we currently cover, 
but limited time and resources force us to be more selective. Topics are typically chosen 
from the set of subjects students most often have difficulty grasping within the courses. 
This information is usually gathered from discussions with the faculty teaching the 
courses, as they have direct experience with students’ difficulties and are able to identify 
challenging topics from the results of various course activities. Occasionally, as in the 
case of MapReduce we describe in Section 3.3, the faculty will directly suggest a topic to 
illustrate. 

Once a suitable topic has been selected, we begin planning out the illustration. At 
this stage, we hold meetings to discuss which aspects should be represented by images 
and which should be included as accompanying text. While the pictures are designed to 
convey as much of the information as possible, the inclusion of text is sometimes 
unavoidable, such as when code fragments or narrative segments form an integral part of 
the illustration. The product of these meetings is a set of sketches plotting out the basic 
structure of the illustration and rough ideas for the characters and objects that will be 
used as visual metaphors of the concept. 

In the next step, we design the visual metaphors that will illustrate the concept. 
The basic ideas created in the planning stage are fleshed out in this part of the process, as 
we begin to consider factors such as how understandable, memorable, and aesthetically 
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appealing the metaphors are. To maximize effectiveness, the metaphors must be 
simultaneously visually attractive to engage audiences and clear and memorable to 
enhance retention of the represented concept. To address visual appeal and make the 
experience of learning from the illustrations entertaining, we design the characters in a 
cartoon style. We also have to take into consideration any existing metaphors that may 
have to work with the one currently being designed. The illustrations often contain 
multiple metaphors, new and old, interacting with each other, so consistency with prior 
metaphors is essential in preventing confusion among students. Developing the visual 
metaphors is both the most important and the most difficult aspect of producing an 
illustration.
 We then take the sketched layout and visual metaphors and generate a low-fidelity 
prototype of the illustration. Here, the layout of the illustration is planned out, 
determining the location of each image and text segment. The appearance of the visual 
metaphors is also refined to be more aesthetically appealing and to bring it closer to the 
final look. The prototype is typically drawn by hand on paper, since the ability to make 
quick changes facilitates the process of revision. 

Finally, no illustration is considered complete without revisions. Much of the 
revision occurs within the project group, but typographical errors, metaphor 
inconsistencies, and other mistakes can still slip by unnoticed in the sketches and initial 
prototype. It may also be possible that the prototype illustration is not as understandable 
as the sketches were. Thus, it is important to receive critique of the illustration from as 
many individuals external to the project as possible. We present the prototypes, usually as 
scanned images transmitted through electronic mail, to the teaching faculty and other 
members of the course staff and ask for feedback regarding accuracy, consistency, and 
clarity. Aside from corrections and suggestions for improvement, responses from the 
previewing audience can also include different opinions on how to present the concept 
and advice involving possible alternative visual metaphors. If deemed valid and 
incorporated into the illustration, these responses can sometimes significantly alter the 
appearance of the final product, as well as increase the iterations of revision needed. An 
illustration may undergo numerous revisions before being considered ready for 
distribution, but at some point it must be considered “done” so that the next topic can be 
tackled.  For this we have a set of guidelines to determine the completeness of an 
illustration: 

��All typographical and visual errors have been corrected 
��The meaning of the text is clear 
��The visual metaphors used are understandable 
��For code segments, the code is free of syntax errors and the output is 

consistent with the input 
��If the illustration contains aspects common to multiple illustrations, the 

visual metaphors used for those aspects are consistent 
On occasion, a revision in one aspect necessitates revision in the rest of the illustration. 
Thus the guidelines must be consulted at every revision step. Once the illustration 
satisfies all of the guidelines, it is added to the collection for distribution. 
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Figure 1: From sketches to final illustration: the initial sketch (top-left), the first prototype (top-right), the 
revised prototype (bottom-left), and the fully-colored and digital illustration (bottom-right). 

 Before an illustration can become part of the Computer Science Illustrated
collection, however, it must be converted into a digital format [Fig. 1]. This means we 
draw the illustrations digitally. Digital drawing is an essential part of the project; it allows 
for online distribution of the illustrations and flexibility in printing. This step involves 
transforming the paper prototype into vector graphics and text in Adobe Illustrator, the 
industry standard for creating and editing vector illustrations. We use vectors instead of 
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rasterized images for the digital illustration because vector graphics are infinitely scalable 
without loss of quality, while scaling raster images results in image degradation and 
causes individual pixels to be visible. This scalability is necessary to allow the illustration 
to be printed in arbitrary dimensions, provided that the dimensions match the document’s 
aspect ratio. In this stage, the prototype is scanned, imported into Illustrator, and traced 
over, or it is used as a reference for the digital version, which is drawn from scratch. The 
conversion phase is also the point at which we add color and further detail to the 
illustrations. The colors used tend to be bright to make the illustrations eye-catching and 
whimsical. Details are added to the illustrations to make them professional, and include 
gradients for shading, grounding shadows, and variations in character poses to prevent a 
“cut-and-paste” appearance. All of the work is done on drawing tablets, the standard tool 
of graphic designers and illustrators in industry. To make the most efficient use of time, 
this conversion can take place in parallel with the revision step. The illustrations are 
stored as Portable Document Format (PDF) files, which preserve the vectors while still 
being accessible to most computers.  
 The production process for one illustration requires two weeks, working six to ten 
hours per week, on average. The actual drawing and digitization of the illustrations is 
spread out over this span of time, but in total takes up just one to three days for the entire 
development. Planning and revision occupies the bulk of the two-week span. However, 
revision of one illustration often occurs concurrently with the planning and drawing of 
another illustration [Fig. 2]. 

Figure 2: The development pipeline. Usually, an illustrator will work on no more than two illustrations at 
any given time. More illustrators mean more illustrations can be produced in parallel. 

3.2 Challenges 

As the description of the production process suggests, generating an illustration is 
by no means a simple task. There are several considerations that must be adhered to 
during the development process in order to ensure that the illustration is maximally 
effective at conveying the necessary information to students. We will describe the four 
challenges encountered when designing an illustration: what to illustrate, what metaphors
to use, level of detail, and keeping consistent.
 The first challenge usually faced occurs in the planning stage—tackling the 
question of what needs to be illustrated. As we mentioned in the previous section, we 
choose to illustrate what students consider to be difficult topics. The challenging concepts 
are not usually obtained from students directly, because many students “don’t know what 
they don’t know.” In other words, many students may feel they understand a certain 
concept, only to find that they struggle with it during projects and exams. However, 
instructors and teaching assistants are often able to identify problematic areas from 
interaction with students during office hours and discussion, as well as from the portions 
of assignments and tests where students are weakest. Therefore, we gather the set of 
topics to illustrate from the course staff. From the collected set, we typically choose 
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subjects that are not usually accompanied by diagrams when presented in lecture. They 
are often abstract, complex, or otherwise challenging to illustrate, resulting in a scarcity 
of imagery that makes these topics harder for visual learners to understand. In addition, 
we must determine the reasons why students find a topic difficult to understand. For 
certain topics, particularly those that are specific to a programming language, the trouble 
could come from confusion regarding the syntax of implementations. For other topics, the 
difficulty may emerge from the semantics behind the concept. Identifying the problem 
areas allows us to decide what aspects of the topic to visualize and guides the creation of 
visual metaphors. 

As mentioned in the previous section, designing metaphors for the illustrations is 
a major challenge in this project. The effectiveness of each illustration ultimately relies 
on the effectiveness of the metaphors used to convey the concepts. As Grillmeyer noted in 
his thesis on animations of Scheme functions, a representation that is convincing and 
reasonable to an expert may not necessarily help a new learner [10]. A visual metaphor 
can cause confusion if it is too complicated, too obscure, or is based on knowledge a 
novice might not have. To allow students to quickly and easily make the connection 
between what occurs in the illustrations and the ideas they represent, the imagery must be 
simple, clear, and memorable. The additional factor of aesthetic appeal enhances 
retention and recall of the metaphor and its corresponding idea and helps provide 
encouragement for students to use the illustrations as supplements to the lecture or lab. 
These characteristics can frequently be at odds with each other; many aesthetically 
appealing designs are not simple or easy to memorize, while the simplest or clearest 
representation may not be the most attractive. In designing a metaphor, we seek to 
achieve a balance among the four competing factors, a task depending heavily upon the 
knowledge, skill, and creativity of the illustrators. Appendix F contains a list of the 
metaphors that have been developed so far for the illustrations. 

Often metaphor generation involves producing a design that encapsulates the most 
important aspects of the represented concept or element, rather than arbitrarily drawing 
an object or character and designating it the symbol. For instance, in Scheme lists, the 
characteristics to emphasize are the groupings established by the lists’ parentheses and 
the fact that list elements are ordered. Thus lists are symbolized by ordered rows of 
values occupying rectangular buckets marked with parentheses [Fig. 3]. By embodying 
the key aspects of the concept or element, the resulting metaphors will not only serve as 
visual reminders of those aspects, but they will also be “appropriate.” In other words, the 
metaphors will be understandable to students who already have a working knowledge of 
what they represent, allowing them to follow along when the metaphors are used to teach 
something they are less familiar with. 

Figure 3:  Visual metaphors for a simple Scheme list of arbitrary colored elements (left) and a nested 
Scheme list of numbers (right). The nesting of buckets makes the nesting of parentheses more apparent. 
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Just as clarity, memorability, understandability, and visual appeal must be 
balanced in each visual metaphor, compromises must be made regarding the level of 
detail provided by each illustration. Insufficient detail can contribute to confusion and 
reduce the illustration’s usefulness, but covering too many points at once can overwhelm 
the viewer. Thus the depth to which a concept is covered in one illustration must be 
carefully considered. In general, the depth of detail in the illustrations matches the depth 
to which the topics are taught in the course. Providing less than this baseline makes for an 
insufficient supplement to lecture, while going too far beyond it could bog students down 
with unnecessary facts. Abstraction is a common tactic for controlling the level of detail 
in visualizations, but there may still be a large amount of information to convey after the 
abstractions are applied [10]. Additional rules are applied to manage information density 
in illustrations, the first of which is that concepts with multiple subtopics should be 
spread out over a series of illustrations. Complex subjects, such as the different types of 
binary integer representation, floating point numbers, or caching, fall into this category, 
and as such are presented as ordered sets of two or more illustrations where each covers a 
separate subtopic. These subtopics can be combined or further subdivided, depending on 
the level of detail at which these must be taught. We do try to minimize the number of 
illustrations per set, because a subtopic illustration and can require as much, if not more, 
time and resources as illustrating a full topic. The fact that some concepts require 
coverage with multiple illustrations brings up another development challenge—
maintaining consistency.  

Consistency among visual metaphors in illustrations, and among the illustrations 
themselves, is essential to the project. The visual metaphors are designed to help students 
establish a mental image of computer science concepts. Sudden changes in 
representations can disrupt these constructions, causing confusion and misunderstanding. 
Therefore, a metaphor must remain an effective representation of an aspect regardless of 
where it is being used or what other metaphors it is combined with in an illustration. It is 
also important to prevent inconsistency arising from contradictions between illustrations 
in a topic set or course, either through the images or in the accompanying text. There are 
two main cases where consistency must be ensured. First, when a concept is divided up 
into a set of illustrated subtopics, any visual metaphors common to the set must be 
compatible with the variety of ways each subtopic is depicted. Simultaneously, 
illustrations within the same course set can also rely on shared visual metaphors, so a 
visual metaphor must also be compatible with different topics within the course. For 
example, the representations of different Scheme functions share a common appearance, 
regardless of the number or type of arguments they take [Fig. 4].  
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Figure 4: All Scheme functions are given the appearance of an input-output machine. The top pipes 
represent input, while the bottom pipe symbolizes output. In the case of every, a higher-order function, 

the input pipes feature additional components, a wide pipe for function input and a docking station for 
sentence input, to show that it accepts a different type of input from the other functions. 

Unnecessary visual variations here could lead students to false conclusions, such as one 
saying functions are different datatypes. Maintaining consistency typically occurs during 
the metaphor design stage and is addressed by centering the design on the existing 
metaphors and illustrations that the new one must work with or by combining existing 
metaphors. Ignoring the possible relationships between the old and new metaphors is not 
an option, since illustrations can use multiple metaphors interacting with each other to 
convey information. For example, the docking station found on higher-order function 
machines was developed to maintain the consistency of list and sentence input as boats. If 
the characters’ or objects’ modes of interaction are not compatible, inconsistencies will 
emerge during the narratives.  
 The last challenge we will discuss mostly concerns the future of Computer
Science Illustrated, though it is also relevant to the present. An additional objective for 
us is to make the project multi-generational, having it continue long after the original 
illustrators have graduated. Of course, this continuation would involve recruiting new 
students, who will inevitably have different thoughts, beliefs, and artistic styles. 
Currently, the issue is minor for now since there are just two artists, but it can only grow 
as more illustrators are involved. Differing mindsets and styles of drawing have 
implications in metaphor design and consistency. It is possible for each illustrator to have 
a different idea for visualizing a certain concept. At the same time, variance in drawing 
styles can create visual incongruence in an illustration or set of illustrations, even when 
the same metaphor is drawn. However, forcing a standardized style can stifle the 
expressive capabilities of the illustrators and possibly discourage potential artists from 
joining or staying in the project. Therefore, we have considered several measures to 
maintain visual consistency and allow for artistic differences. One is to have each 
illustrator focus on a particular subject. While subjects are not always fully isolated from 
each other, grouping by subject eliminates inconsistencies that would occur if multiple 
artists were to work on the same illustrations. Another is to unify illustration sets through 
the use of a standardized color palette. The idea here is that though the visual metaphors 
may vary in appearance due to stylistic differences, common colors will act as an 
indication that two depictions of a metaphor are not two separate metaphors. 
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3.3 Case Study: MapReduce 

 In this section we describe a specific instance of developing illustrations, for a 
Scheme-based implementation of MapReduce [6]. Originally the product of Google, it 
was introduced in 2008 to one of Berkeley’s Scheme-based introductory computer 
science courses, CS61A: Structure and Interpretation of Computer Programs, by 
Brian Harvey in an effort incorporate cluster computing fundamentals into the early 
stages of the students’ education [12].  Later on, it also became a component of another 
introductory computer science course at Berkeley, CS3: Introduction to Symbolic 
Programming, also taught in Scheme. The novelty of the MapReduce implementation, 
combined with the fact that Scheme was a language rarely used by other campuses, 
meant that there was a shortage of outside resources, particularly visual material, for 
students to consult when faced with the MapReduce curriculum. We determined that 
Scheme-based MapReduce was an ideal candidate for illustration. 
 One of the first things we encountered was the complexity underlying the 
Scheme-based MapReduce. CS61A is a course that teaches the Scheme list, pair, and 
stream datatypes. Thus, the implementation of MapReduce takes a mapper, reducer, a 
data value serving as the reduction’s base case, and the file directory as input and 
produces an output stream of key-value pairs that must be queried with stream accessing 
functions to extract results. We decided that there would need to be an introduction to the 
MapReduce function, detailing its input arguments; a description of the processes taking 
place within a MapReduce function call; and example code depicting a usage of 
MapReduce and its resulting output. We divided these up into multiple illustrations: one 
to provide the basic overview, one to visually depict the inner workings, and one to 
present an example interpreter sequence demonstrating MapReduce and the stream 
accessing functions in action. 
 Additionally, due to curricular differences, MapReduce is taught differently in 
CS3 and CS61A. In CS3, where students are not exposed to Scheme’s stream datatype, 
MapReduce is presented as three functions: reduce-map-letter, reduce-map-
word, and reduce-map-sentence. For input, these functions take a mapping 
function, a reducing function, and the directory of files to be processed, and as output 
they produce a single element. Since the output is one value, emphasis is placed on the 
reduction step, where the order in which the data is processed can affect the outcome of 
MapReduce. On the other hand, in CS61A MapReduce is presented as a single 
mapreduce function that takes a mapper, reducer, the reducer’s base case, and the file 
directory and outputs a data stream. The internal workings of each course’s 
implementations also differ significantly. As a result, we decided it was necessary to 
create separate sets of illustrations for each course. Both CS3 and CS61A would have the 
overview and visualization of the internals, but CS3 would have additional illustrations to 
explain the differences among the three MapReduce functions and how the reduction step 
can create different outputs for the same input. 
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Figure 5: Metaphors used in the MapReduce illustrations. From left to right: the mapper and reducer as 
function machines, a key-value pair as a tub containing a value holding a key, stream-filter as a heavily 

modified function machine, and the output stream as a literal stream of water. 

As is the case for most of our illustrations, the MapReduce processes were 
presented as pictorial narratives, so that students would watch the process unfold by 
following the list element characters as MapReduce and its helper functions process them 
[Fig. 5]. To keep consistent with the existing Scheme illustrations, the MapReduce 
functions were represented by input-output machines and lists and pairs were shown as 
tubs of ordered list elements. However, some modifications were made to several 
functions and the representation of pairs to act as visual mnemonics of their purpose and 
highlight certain aspects. Some modifications were applied to elements shared by both 
sets of illustrations. The mapper function was colored with a globe pattern, as opposed to 
the standard silver, to remind students that such functions were meant to “map” lists and 
sentences. The reducer was depicted as a machine with a belt squeezing its midsection, to 
emphasize the fact that it compresses lists to single elements. Other modifications were 
applicable only to the CS61A MapReduce. Key-value pairs were still depicted as tubs, 
but the values within them held large metal keys labeled with the pairs’ word keys. 
Finally, stream-filter, one of the stream accessing functions, was illustrated as a 
function machine with a transparent top half revealing the filter inside. We also created 
one completely new visual metaphor for the CS61A illustrations—a stream of water with 
pairs floating on it for the output stream. 

Revisions and changes in the example code occurred throughout development, 
and had significant impact on the illustrations’ appearance. For instance, the interpreter 
sequence illustration initially contained only the definition of the mapper function and the 
MapReduce call. When it was decided that it would also be necessary to include data 
extraction from the output stream, the interpreter sequence changed to include stream-
filter and other stream access functions. In turn, this created the need to develop 
metaphors for those functions and incorporate them into the illustration [Fig. 6].

The results of this development were seven MapReduce illustrations: three for 
CS61A, and four for CS3. These illustrations, along with descriptions of their respective 
courses, are presented in Appendices B and C. They were distributed to the students of 
the courses as handouts in lecture, one of the several routes that our illustrations travel 
after development. 
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Figure 6: Two sketches of the Scheme MapReduce interpreter sequence. Initially, the illustration focused 
on the fact that MapReduce produced an output stream (top). Later, to explicitly show how results are 

extracted from the stream, stream-accessing functions were included in the illustration. 
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 Once an illustration is produced, there are three main methods that it can be put to 
use in a computer science course. Online distribution is one avenue we have established. 
The illustrations that we have created so far are available in PDF on a publicly accessible 
website, along with brief descriptions of the project, the illustrators, and recurring 
characters in the illustrations. The PDF files can be viewed in the web browser, if the user 
has a PDF reader plugin, or downloaded for offline viewing and printing. 

The second use we intend for the illustrations is as course handouts, 
supplementing the lecture or discussion sections. Handouts are not a common feature in 
computer science courses, as they can be time-consuming to produce, but they can be 
invaluable to visual learners as a reference. These handouts can be distributed during 
class and used as a starting point for presenting topics, or provided afterwards as 
summaries of the lessons covered. We foresaw the possibility of printing illustrations as 
handouts, so all those currently produced are designed to fit the standard 8.5”x11” paper 
size. The illustration PDF files are also ready to print as soon as they are opened in a PDF 
reading program. 

Finally, the resolution-independence of our graphics also allows larger scale 
printing, allowing users to print them as computer lab posters. Given the fact that our 
illustrations are currently structured in a portrait, rather than landscape, layout for course 
handouts, our initial prints were 2’x3’ posters. These can serve as semester-long 
reminders of the concepts while students work in the computer labs or as a quick 
reference. Due to the different aspect ratios between the handouts and posters, two 
versions of each illustration are created, one of which has slight adjustments to 
accommodate the poster dimensions. Our posters are printed by BigPosters.com on 
glossy paper with archival ink to protect them from fading under frequent light exposure. 
For additional protection, we also frame the posters prior to placing them on the 
computer lab walls. We use thin black poster frames, which minimize visual distraction 
away from the poster, purchased from Aaron Brothers. Each poster takes approximately 
ten days to process, print, and ship, and costs $56.25 to produce, $31.25 for the poster 
printing and $25.00 for the frame. 

With these distribution options, particularly online availability, a couple issues 
need to be addressed. One is the matter of intellectual property. Since the illustrations are 
meant to be freely distributed, steps must be taken to prevent them from being used for 
profit. We considered two possibilities: copyright and Creative Commons licensing [5]. 
Copyright laws are automatically applied to online content, but they impose restrictions 
on distribution by requiring every user to ask for permission to use the illustrations. A 
Creative Commons license, on the other hand, allows the waiving of certain rights to 
facilitate free distribution.
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Figure 7: The Creative Commons license chosen for Computer Science Illustrated. It is placed at the 
bottom of the homepage and illustrations page on the website. 

Thus, we opted for the Creative Commons Attribution-Noncommercial-Share Alike 3.0 
United States License to enable non-commercial use of the illustrations and the creation 
of derivative works based on them [Fig. 7]. The other issue is the illustrations’ 
applicability outside of UC Berkeley. Currently, nearly half of the illustrations created 
cover topics involving Scheme, as they cater to CS3 and CS61A. However, Scheme is 
used in very few other schools, so illustrations of this category would have limited 
usefulness. Therefore, we have moved on to focus more on the topics of non-Scheme 
courses, such as CS61C: Machine Structures. Further details regarding this expansion are 
described in the future work section. To appeal to campuses other than Berkeley, we 
structured the website to organize the illustrations by topic rather than by course name. 

Informal presentations of Computer Science Illustrated have shown that the 
reception of our project from students and faculty is overwhelmingly positive. However, 
we realize the need to quantitatively measure the illustrations' effectiveness. Our 
illustrations are currently designed for Berkeley’s introductory computer science courses, 
so we held experimental assessments on the students taking them. We conducted two 
such assessments so far, one in CS3 and one in CS61CL, a lab-based version of CS61C. 
We chose these two courses because their lab sections are presented through UCWISE, a 
platform for displaying lessons, activities, and student assessments online [21].  

For the study conducted on CS3, which took place early in the semester, the lab 
sections of the course were randomly divided into two groups: the control group and 
experimental group. The students were not informed of this division, and all received the 
same instruction in lecture. During the lab sessions, students were given their regular 
short quizzes to test their understanding of the concepts covered. However, the 
experimental group was allowed to view three illustrations relevant to the topics covered 
so far, in this case the word and sentence datatypes and functions involving them, before 
taking the quiz. The quiz consisted of seven questions concerning the word and sentence 
datatypes. To ensure fairness, in case the illustrations offered a significant advantage, 
every student received the illustrations at some point; the control group was allowed to 
view them after completing the quiz. The quiz scores collected were then analyzed to 
gauge whether the illustrations were helpful for the students' understanding of the 
concepts.

This method of assessment required careful consideration of the types of 
questions we wanted to include in the quizzes. Questions that specifically asked for 
details explained by the illustrations or the lesson text would give an unfair advantage to 
the experimental and control group respectively, which would potentially create 
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misleading results. Thus questions did not involve examples found directly in either the 
illustrations or the text. Moreover, we considered the timing with which the quizzes were 
administered. Providing the illustrations to the experimental group minutes before the 
quizzes most likely would not allow time for students to fully comprehend the metaphors 
and remember the ideas. 

On that note, we decided to structure the second study, conducted before the 
second round of midterms on CS61CL, a little differently. The procedure was very 
similar to that of the first study, except the illustrations, covering caching, were presented 
the week prior to the quiz [Fig. 8]. This gave the students of the experimental group more 
time to study the illustrations and us the chance to determine if any deep learning was 
taking place. Additionally, the control group was given text-only equivalents of the 
illustrations, so that the assessment would be a direct comparison between illustrated 
lessons and text-based lessons. The quiz consisted of three questions about caching and 
cache misses in general. Again to maintain fairness, the control group received the 
illustrations and the experimental group received the text equivalents after the quiz. 

Figure 8: An illustration incorporated into a UCWISE activity for CS61CL: Machine Structures.

 The study conducted on the CS3 students suggested that student understanding of 
concepts improved when the lessons were supplemented with the illustrations. On 
average, the group of students who received the illustrations scored higher on the quiz 
than the control group. The average score experimental group was 6.053, while the 
control group had an average score of 4.771. Both scores were out of seven points. 

On the other hand, the study conducted on the CS61C students produced 
inconclusive results. There was no significant difference between the average quiz scores 
of the control and experimental groups, which were 2.429 and 2.433 respectively. These 
quiz scores were out of three points. Several conclusions can be drawn from this 
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outcome. It may be that the quiz was too short or the questions too general to produce 
responses indicative of the students’ understanding of the concepts. Perhaps the 
supplements provided improved comprehension, regardless of whether they were purely 
text or illustrations. It is also possible that in giving both groups a week to absorb the 
information, the students consulted other resources and achieved nearly equal levels of 
understanding. Future assessments will require longer quizzes and stronger consideration 
of the types of questions to ask. 

In addition to conducting the experimental assessments, we also surveyed the CS3 
students for their opinions of the illustrations. We added four questions pertaining to the 
illustrations to the course survey that was given to the students at the end of the semester. 
The first asked students to rate the effectiveness of the illustrations with a score from one 
to seven, with seven being the highest score; the second asked if illustrations should be 
presented for other computer science courses; the third had students select all the ways 
they used the illustrations; and the fourth was an open-ended question asking for overall 
comments on the illustrations. Figure 9 contains tables of the results from the first three 
questions.

The survey revealed that the students’ reception of the illustrations was very 
positive in general. The average rating students gave the illustrations was 5.12, with the 
most frequent rating being a 6. More than half the students wanted to see illustrations 
offered in other computer science courses, and most students used the illustrations as 
introductions and to create mental models of the concepts. In the open-ended responses, 
most of the students who used the illustrations stated that they were “helpful in 
visualizing what some of the functions did,” “easy to read and understand,” “a cool way 
to teach CS to beginners,” “amusing”, and “cute.” Some said that the concepts were 
“easier to comprehend” after seeing the illustrations. A couple of students also claimed to 
be visual learners, and thought the illustrations were very useful to them as a result. 
Among the small minority of students who did not find the illustrations helpful, the most 
common comment was that the textbook and other course material were adequate for 
their understanding, suggesting these students already had a good grasp of the concepts 
prior to viewing the illustrations. 

One important discovery made during the studies was that the results of 
assessments, whether they were quizzes or informal discussion, offered valuable insight 
for revisions, as the students’ responses could reveal weaknesses in the illustrations. For 
instance, when the illustration covering Scheme list constructors was presented during the 
CS3 lecture, the instructor found that some students took the visual metaphors too 
literally and mistakenly assumed the list and append functions took exactly two 
arguments, instead of arbitrarily many arguments. This problem emerged from the fact 
that the examples given by the illustrations used only two arguments. We took this issue 
into consideration, and made plans to create a new illustration mapping out the effects of 
several numbers of inputs on the list constructor functions. As the illustrations become 
more widely used, we can expect more of this type of feedback emerging from their 
application in courses, which we will undoubtedly use to further improve the quality of 
the illustrations. 
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Figure 9: Results from the survey questions given to CS3 students at the end of the semester. 70 students 
submitted responses. For the third question (bottom), multiple answers were permitted in case students had 

more than one use for the illustrations. 

 There are multiple routes that Computer Science Illustrated could follow in the 
future. One of the most logical is to continue expanding and revising the collection of 
illustrations for the introductory computer science courses. Part of this would involve 
finding more topics to illustrate in the courses currently covered and further improving 
the illustrations already in the collection. Simply because an illustration satisfies the 
guidelines we described in this paper does not mean there is no room for improvement. 
Expanding the collection also involves extension to cover topics in data structures, taught 
in an introductory course known as CS61B in Berkeley, which were set aside in focusing 
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on topics regarding Scheme and machine structures. This expansion of the collection will 
also demand continued assessment of effectiveness, as insights gathered from the data 
will help guide the project’s development and improve the illustrations. 
 Another branch of future work could be to illustrate enough topics in a course 
such that the course’s entire curriculum, or at least a majority of it, could be taught 
through the products of Computer Science Illustrated. This endeavor would most likely 
involve using illustrations as handouts, producing illustrated lecture slides, and 
developing lab or discussion activities based on the illustrations and the narratives within. 
Here the illustrations would play a much more active role in the course, rather than being 
passively presented to the students as course supplements. This presents the opportunity 
to create more engaging computer science courses through active learning and refreshed 
representations of course concepts. 
 A third future work option is to extend the project’s coverage to include advanced 
computer science topics, such as those taught in upper-division courses. Advanced topics, 
such as theory, artificial intelligence, and databases, tend to be more abstract, 
complicated, and difficult to visualize than subjects presented in the introductory courses. 
Even those often accompanied by many images, such as computer graphics, can be 
challenging for students to understand. Potentially, visual learners could benefit even 
more from illustrations in advanced courses due to the increased problems they might 
have in creating mental images. 
 Yet another route we could take in Computer Science Illustrated is to increase 
awareness of the project to expand its usage. Currently, despite being available online, 
use of the illustrations is largely limited to within the introductory computer science 
courses of Berkeley. Of course, this restriction is primarily due to the fact that most of the 
illustrations are quite specific to Berkeley, particularly the ones covering Scheme. This 
extension of the project would be best pursued after the collection is further expanded to 
cover data structures or advanced computer science subjects. The intention would be to 
encourage other schools to use Computer Science Illustrated in their courses, possibly 
even to create similar ventures to unite art and computer science for the benefit of 
education.
 The most ambitious extension of Computer Science Illustrated would be to go 
beyond the space of static images and produce animations to convey the concepts. Given 
its popularity in both film and television, computer-generated, three-dimensional 
animation may be the medium of choice to maximize engagement of students. It would 
also be an ideal opportunity to incorporate techniques from animated algorithm 
visualization. For example, the boat metaphor could be combined with sorting animations 
to explain list sorting in Scheme. The tradeoff is that this type of animation requires a 
large time and resource investment, which could be mitigated with a sufficiently large 
group of artists. A less intensive alternative is to utilize digital two-dimensional 
animation, such as Flash animation, to more closely adhere to the current style of the 
illustrations. Additionally, interactivity could be included in these animations, creating 
small activities or games, to encourage further engagement by allowing students to 
actively participate. Regardless of the medium chosen to animate, both would require 
significantly more time to produce than static illustrations, especially with interaction 
involved. As such, topics to animate would have to be chosen even more carefully.  
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 We have presented an approach to facilitate computer science education through 
the use of visually engaging and informative illustrations made available to students as 
course handouts, an online resource, and large posters to view in the computer lab. The 
detailed process we go through and the challenges we must address for every illustration 
ensures the visual metaphors encapsulating the concepts are understandable, memorable, 
and consistent within the groups they are used. The products of our efforts were sixteen 
illustrations for CS3 and CS61A and ten illustrations for CS61C, all available online and 
included in Appendices D and E.
 The assessments we conducted to evaluate the effectiveness of the illustrations 
suggest that they are useful as supplements to the lessons taught in class. Surveys have 
also shown that students are highly in favor of using the illustrations as entertaining 
introductions to the concepts, as well as guides to forming mental models. Student 
feedback has also been useful in revealing areas in which the illustrations could be 
improved. With further assessment, revision, and expansion of the collection, Computer
Science Illustrated could be a component of every computer science course at Berkeley. 

First, I would like to thank Dan Garcia, my research advisor, and second reader 
Michael Clancy for supporting the project, providing assistance during the assessments, 
and taking the time to read and revise this report. I also want to thank Nate Titterton and 
Colleen Lewis for providing access to UCWISE and teaching me how to use the system 
to conduct the assessments. Additionally, I would like to thank the Weiner fund and the 
Office of Educational Development, who provided Instructional Improvement Grant, for 
financially supporting the project. Finally, I wish to thank Sally Ahn for lending her 
wonderful creativity and artistic skill to the project and for making it possible for 
Computer Science Illustrated to continue beyond my graduation.   
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10.1 Appendix A: The Precursors to Computer Science Illustrated 

The following are the hand-drawn illustrations that were created prior to the formation of 
the project. These illustrations went through a less rigorous process of development and 
revision than their digital counterparts, but they laid the foundations for the project. The 
illustrations are presented in the following order: 

Page 28: Higher-order functions in Scheme. 
Page 29: List constructor functions in Scheme. 
Page 30: Common mistakes students make when using lists and list functions. 
Page 31: The difference in argument processing between the accumulate

function and a function that takes an arbitrary number of arguments in 
Scheme. 

Page 32: Empty words and sentences and the empty? predicate function in 
Scheme. 

Page 33: The word and sentence selector functions in Scheme. 
Page 34: Common mistakes students make when using words and sentences in 

Scheme. 
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10.2 Appendix B: MapReduce for CS3 

Course Description: CS3 introduces students to computer programming, emphasizing 
symbolic computation and the functional programming style. In this course, students 
write code in Scheme, a dialect of the LISP programming language.

The following illustrations were created to explain CS3’s implementation of MapReduce.  

Page 36: Introducing the MapReduce functions and their arguments. 
Page 37: Explaining the difference among the three functions. 
Page 38: The steps executed within a reduce-map-word function call to perform 

a word count. 
Page 39: Explaining the reduction step of MapReduce as a function called 

reduce-arbitrarily.

35



MapReduce
Parallelism and Functional Programming

reduce-map-word

MapReduce
Parallelism and Functional Programmingg

reduce-map-sent

Finally, there's the vast body of data to be processed, 
specified by a filename, but encoded as a list. It's 
either a list of sentences, a list of words or a list of 
letters (depending on whether it was passed to 
reduce-map-sent, reduce-map-word, or reduce-
map-letter respectively). If given a directory 
instead of a single file, MapReduce treats the input as 
a file composed of the concatenation of the individual 
files in the directory.

Next is the reducer, which collects and 
combines the values returned from the 
mappers, into one value. 
(A reducer is the kind of function used as 
an argument to reduce.)

The first of the arguments is a mapper, a 
function that takes a sentence, word or 
letter (depending on whether it was passed 
to reduce-map-sent, reduce-map-word, 
or reduce-map-letter respectively) and 
outputs some value. There are no constraints 
on what this value can be. (A mapper is the 
kind of function used as an argument to map.)

MapReduce is a system that 
makes writing parallel code 
easier for programmers.

In CS3, we provide three 
functions that differ only in 
how they interpret data. 
Each takes three arguments:

reducer

mapper

reduce-map-letter

Eac
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MapReduce
Why Have sent, word, and letter?

reduce-map-word
reduce-map-sent reduce-map-letter

What exactly is the difference among these MapReduce functions?

?

The answer lies in how they turn files into lists!

reduce-map-sent creates a list of sentences, one sentence for each line of the file.

reduce-map-word creates a list of the words in the file, ignoring carriage returns.

reduce-map-letter creates a list of the characters in the file, ignoring all whitespace.

st of the words in the file ignoring carriage returns

(                      )

(                      ) (       )

list of sentences one sentence for each line of the file

(                      ) (       )(                      )

(                                        )

'((to be or not to be) (to wit))

'(to be or not to be to wit)

'(t o b e o r n o t t o b e t o w i t)

37



(lambda (w) 
(if (equal? w 
‘to) 1 0))

+

'(appearances of “to” 
in “phrases.txt” is 3)

MapReduce
Distributed Word Count with reduce-map-word

A series of mappers take the 
file, encoded as a list of 
words by reduce-map-word, 
and make intermediate lists. 
Each mapper gets a subset of 
the data.

The intermediates 
are combined into 
a single list in an 
arbitrary order.

The list is arbitrarily 
reduced to a single value 
using the input reducer. 

The output emerges for the user to 
view or use. The output type depends on 
the input reducer.
Because the list and the reduction is 
arbitrary, the output can sometimes be 
unpredictable!

(         )

reduce-
arbitrarily

+

(lambda (w) 
(if (equal? w 
‘to) 1 0))

(lambda (w) 
(if (equal? w 
‘to) 1 0))

t(         )

ates
nto 
an 
r.

(         )
.

(         )
(                      )
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Reduction in MapReduce
list What does (reduce-arbitrarily list '(0 1 2 3 4 5)) do?

(((0 1) (2 3)) (4 5))

(0 (1 ((2 3) (4 5)))) ((0 ((1 (2 3)) 4)) 5)

Depending on the order in which values are chosen, the same function call can give different results.

Two neighboring 
values are chosen 
on a first-come, 
first-serve basis.

However, if you use an 
associative reducer, 
such as + or *, the 
result will always be 
the same!

list

listlist

list list

(((0 1) (2 3)) (4 5))
n which values are chosen, the same f

(            )

(0 (1 ((2 3) (4 5))))

(            )

((0 ((1 (2 3)) 4)) 5)

(            )
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10.3 Appendix C: MapReduce for CS61A 

Course Description: CS61A is an introduction to programming and computer science, 
exposing students to techniques of abstraction at several levels: within a programming 
language, using higher-order functions, manifest types, data-directed programming, and 
message-passing; and between programming languages, using functional and rule-based 
languages as examples. Programming projects and assignments are done in Scheme. 

The following illustrations were created to explain CS61A’s implementation of 
MapReduce:

Page 41: Introducing the MapReduce function and its arguments. 
Page 42: Explaining the steps taken in a MapReduce function call using 

document word counting. 
Page 43: The example word count depicted as a Scheme interpreter sequence 

that a student would enter. Sally Ahn created this particular 
illustration. 
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MapReduce
Parallelism and Functional Programming

MapReduce
Parallelism and Functional Programmingg

base 
case

mapreduce

Finally, there‛s the vast body of data to 
be processed, encoded as a stream of 
key-value pairs.

Then comes the base case, which is 
usually the "identity" of the reducer 
function given to accumulate.

Next is the reducer, which collects and 
combines values. It plays a vital role in 
turning intermediate key-value pairs into 
output.
(A reducer is the kind of function used 
as an argument to accumulate, also 
known as reduce)

The first argument is the mapper, a 
function that takes one key-value pair 
and outputs a list of intermediate 
key-value pairs.
(A mapper is the kind of function 
used as an argument to map.)

MapReduce is a system that makes 
writing parallel code easier for 
programmers.

It takes four arguments:

reducer

base 
case

mapper

Key-value pair
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MapReduce
An Example: Distributed Word CountAn Example: Distributed Word Count

base case

attach1to
eachword

+

A series of mappers take the lines 
of files and make intermediate 

key-value pairs.

The intermediate pairs 
are grouped by key.

Using the input reducer, 
reduce processes combine 
the grouped data values into 
a single value.
 
Keep in mind that we‛ve drawn 
the reduce processes with 
keys to make this step 
clearer, but in reality they 
don‛t know the keys!

The output emerges as a stream in an 
arbitrary order. Users can query this 

stream to find the count of a specific word.

term

(            ) (    )

base 
case

reduce

+

p
ed by key.
mediate pairs 

the gro
a single

Keep in 
the red
keys to
clearer
don‛t kn

base 
casee

base 

case

reduce

+ bas
e 

cas
e

reduce

+

base 
case

reduce

+

base
 

case

reduce

+
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MapReduce
The Wordcount in Code

MapReduce
The Wordcount in CodeT

stream-filter

mapreduce

stream-car

kv-value

att
ach

1to

eac
hwo

rd

unix% ls /docs
hamlet.txt phrases.txt

unix% stk
;; Define the mapper
;; Typical kv-pair:
;; (phrases.txt . (to wit))
;; Output:
;; ((to . 1) (wit . 1))
> (define (attach-1-to-each-word document-line-kv-pair)
    (map (lambda (wd-in-line) 
   (make-kv-pair wd-in-line 1)) 
     (kv-value document-line-kv-pair)))
attach1toeachword

;; Invoke mapreduce as a distributed word count
> (define wordcounts 
    (mapreduce attach-1-to-each-word + 0 "/docs"))
wordcounts

;; Display the elements of the output stream
> (show-stream wordcounts 5)
((or . 1) (be . 2) (not . 1) (wit . 1) (to . 3))

;; Query the stream for the count of the word "be"
> (kv-value (stream-car (stream-filter
    (lambda (kv) (equal? (kv-key kv) 'be)) wordcounts)))
2

base
case

+
attac

h1to

eachw
ord

(lam
bda 

(kv)

(equ
al?

  (k
v-ke

y kv
)

'be)
)
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10.4 Appendix D: Other Illustrations for CS3 and CS61A 

The following illustrations are applicable to both CS3 and CS61A, unless stated 
otherwise, because they use Scheme and there is overlap in the topics covered. Many of 
these are revised versions of the precursors seen in Appendix A. 

Page 45: Explaining the differences between accumulate and standard 
evaluation.

Page 46: Explaining empty words and sentences and introducing the empty?
predicate.

Page 47: Introducing the word and sentence selectors. 
Page 48: Common mistakes students make when using the word and sentence 

datatypes. 
Page 49: Explaining how functions can be the input and output of other 

functions.
Page 50: Introducing higher-order functions. 
Page 51: Introducing the list constructors: cons, append, and list.
Page 52: Common mistakes students make when using lists (specific to CS3). 
Page 53: Common mistakes students make when using lists (specific to 

CS61A).
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Input

Input

Input

Because accumulate processes data from 
right to left...

...while the arithmetic evaluation goes 
left to right!

Arithmetic Operations:
accumulate vs Evaluate

Notice that...
> (accumulate - '(9 5 2 1))
5

> (- 9 5 2 1)
1

Why are the return values different?es different?

accumulate

-

!

-

-

-

Input

Input

Input

-

-

-

-

(          )
?!
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No words here! This 
sentence is empty! 

#t!

(half full)Empty Words 
and Sentences!

(half empty)

Hey there!

This is an empty word. It must be given double 
quotes, to make it "visible".

Can you see me 
now?

""

Checkin' for emptiness, 
one argument at a time!

""

I don't see any 
characters, so 
you must be 
empty! #t!

Empty words are the identity of the word function, much like zero is the identity of +. 
Thus, empty words seem to disappear when you call word on them with non-empty words.

You‛ll still see the empty words when you use sentence, though.

How can you tell when a word or sentence is empty? Simply call the predicate empty?!

How does empty? work? It returns true if the input is a word with no characters 
or a sentence with no words and false otherwise.

Not empty! 
#f!

My stomach 
is empty, 
though...

#f!

> (empty? alfred)
#t!

p y
and Sentences!

This is an empty word.

Can yo
n

""

on, much like zero is
ll word on them wit

""

I see a word in this sentence, 
so it's not empty! #f!

 (the word, however, is empty...)

word

You‛ll still u use sentence, though.

word

l see the empty words when yol

word

(          )(          ) ""

(          ) (          )

(              )

ord or sentence is empty? Simply call th

(              )
""

""

> (sentence “” 'a 'bc)
(“” a bc)

> (word “” 'bc)
bc
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Selector Procedures 
for Words and Sentences!

Selector Procedurees
for Words and Sentences!

429

cal

bc
d

a

(roll on cal )

(xy zw pq)abcd

42

> (return-value-type '(bf bl))
same-as-input

> (return-value-type '(first last))
words

Do I have some sentence 
stuck between my teeth?

These are the selectors for words and sentences.

When given a word or a sentence...

first returns the 
first part of the input...

last returns the 
last part...

butfirst returns all 
but the first part of 

the input...

And butlast returns 
all but the last part!

Select other parts of words and sentences, such as the second or third element, by combining selectors!

(roll on cal bears)

The second-to-last 
word in the sentence!

(12 34 56)

56 ( zw pq)

> (last (butlast '(roll on cal bears)))
cal

One thing to note here is that the selectors don‛t actually change the input they‛re given. They 
make a copy of the input and do their work on the copy.
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(crash some more!)Common Errors Involving 
Words, Sentences, and 

Their Functions
Wor

Giving empty words or sentences to selectors:

Giving sentences to procedures that only take words (and vice versa):

Not quoting sentences or non-numerical words:

HEY!

bound 
var.

Processing
Center

Bound Vars

quote

Sorry, but without a 
permit, I'll have to 
assume that you're a 
variable that's not 
on the list.

=42

+

entences or non-numerical woumerical woorrds:

(          )(          )

(          )

quote
self-
eval
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;; Compute sum of squares
> (define (sum-of-sq x y)
 (+ (* x x) (* y y)))
sum-of-sq

> (sum-of-sq 3 4)
25

> (define (add2 n) (+ n 2))
add2

;; Invoke a function twice
> (define (call-twice func x)
 (func (func x)))
call-twice

> (call-twice add2 20)
24

;; Generate a linear equation function
> (define (make-linear a b) 
 (lambda (x y) (+ (*a x) (* b y))))
make-linear

> ((make-linear 5 2) 1 7)
19
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Higher-Order Procedures
for Sentences!

Higher Order Procedures
for Sentences!

every

keep

accumulate

> (useful-with? 'HOFs 'lambda)
#t!

accumulate

word

l

keep

odd?

every

sqrt (          )

(          )

(          )

?!

(          )
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> (arguments 'cons)
2
> (arguments 'append)
many
> (arguments 'list)
many

*dump*

list

cons

append

List Constructors
When given two lists...

cons

List Constructors
When given two lists....

> (list '(r g b) '(c m y k))
((r g b) (c m y k))

> (cons '(r g b) '(c m y k))
((r g b) c m y k)

> (append '(r g b) '(c m y k))
(r g b c m y k)

'(c m yns '(r g b) y k)
b) c m y k)b) c m y k)

> (list '(r (llist '(r li t '(
((r g b) (c

> (
(r

b) '(c m y k)
g b c m y k)

(append '(r g b
g b c m y k)

Keep in mind that the list constructors don‛t change the input given 
to them. They make  copies of the input and work with the copies.
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Giving append a non-list as an argument:

cons-ing a list to a non-list (i.e. second argument isn't a list):

Using list selectors on non-lists:

Using word and sentence selectors on lists (i.e. data abstraction faux pas):

L1

*wobble
       wobble* WHUNK!

Giving append a non-ving append a nnonivving append a

"Crash!"

Common Errors Involving 
Lists and Their Functions

Avoid, avoid, avoid!

(non-list first arg is ok)

?!

? ?

> (works? this)
#t
> '(but it is not 
good programming 
style)

> "so..."
> (do? this)
#f!

*shake
     shake*

Why isn't anything 
coming out?

ment isnt (i.e. second argummentrgumt (i e second arcond ar

eshak     s

L1

L1

L1

L1
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Giving append a non-list as an argument:

cons-ing a list to a non-list (i.e. second argument isn't a list):

Using list selectors on non-lists:

Giving lists to a function that takes only non-lists as arguments (or vice versa):

L1

*wobble
       wobble*

WHUNK!

Givi -lisn-ninnng append a no

"Crash!"

Common Errors Involving 
Lists and Their Functions

Avoid, avoid, avoid!

(non-list first arg is ok)

?!

? ?

*shake
     shake*

Why isn't anything 
coming out?

L1

*It's stuck.

ment isn (i.e. second argumment irgum(i e second arcond ar

keshak     

L1

L1

L
1
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10.5 Appendix E: Illustrations for CS61C 

Course Description: CS61C covers the internal organization and operation of digital 
computers. Topics covered include machine architecture support for high level languages 
and operating systems, elements of computer logic and CPU design, pipelined 
architecture and other aspects of machine parallelism, and the tradeoffs involved in 
fundamental architectural design decisions. Programming assignments are primarily in 
the C programming language. 

The following illustrations cover several major topics of CS61C, including binary 
integers, floating-point numbers, pointers and arrays, and caching. 

Page 55: Introducing binary integer representations. 
Page 56: A comparison of the integer representations, Part 1: negation and 

representing zero. 
Page 57: A comparison of the integer representations, Part 2: integer 

incrementing. 
Page 58: A comparison of the integer representations, Part 3: a summary. 
Page 59: Introducing the IEEE 754 floating-point number. 
Page 60: Explaining how to convert floating-point numbers to decimals, and 

how to represent denormalized numbers, infinity, and NaN. 
Page 61: Presenting the floating-point numbers on a number line. 
Page 62: Introducing caches. 
Page 63: Explaining cache associativity. 
Page 64: Explaining cache misses. 
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In the early days of computing, designers made computers express numbers using unsigned binary.

To include negative numbers, designers came up with sign magnitude.

Then designers created one‛s complement.

Finally, designers developed two‛s complement.

computing designers made computeers express nunu

But the computer had to count backwards 
for the negative numbers.

Plus, this introduced positive and negative zero.

Hey guys! How 
do you negate 

numbers?
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Comparing Integer Representations
Negation and Zeroes

aring I t R s tg Integer Representg Integer R
Negat

Repres
Zeroes

eger R
ion and 

Hi! And welcome to the “Best Integer 
Representation” competition! 

Here, we‛ll choose who gets to be the 
world‛s standard for computer integers! 
But first, let‛s introduce our contestants:

Round 1 - Negation

Round 2 - Zeroes

In this competition, we‛ll use 8-bit numbers. Now let‛s get started!

Unsigned Sign 
Magnitude

One‛s 
Complement

Two‛s 
Complement

Bias

Flip sign bit Flip all bits
Flip all bits 

and add 1

Subtract 
from 12710

Oh, dear! It looks like Unsigned can‛t negate. But this competition has only 
started, so Unsigned still has a chance of catching up to the others.

0000 0000
1000 0000

0000 00001 1 1 1  1 1 1 1

0111 11110000 0000

Now things are getting interesting! Unsigned and Two‛s Complement get two points each 
for having one zero and being able to represent zero with all zero bits. Bias‛s zero isn‛t all 
zero bits, but it gets a point for having only one zero. And though they have two zeroes, 

Sign Magnitude and One‛s Complement get a point for having a zero of all zero bits.
zero bits, but it g

NNow hthing
for having 
zero bits but

Round 1 is easy. Just tell me 
how you negate a number!

Now for Round 2! Show me 
all the ways you represent 
zero! 

Um...

0000 0000

-12710

-12710

-12
710

t looks ar! Idea
, so Unsrted,star

d c
as 

like Unsigned
signed still ha

BuB
cat

can‛t negate. ‛t t
a chance of c

etittit
thethe

ut this compett thit thi
tching up to t

-127

tion has only ti h l
e others.

getting i
ro and b

are g
e zer

gs a
one

Uns
re

interesting! U
being able to 

wo
o w

signed and Tw
epresent zero

nnt 
bitbit

o‛s Complemen
with all zero b

nts each 
o isn‛t all 

get two poin
ts. Bias‛s zero

0 1 1 1 1

2 2 2 3 2
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255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000 111

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000 111

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

Comparing Integer Representations
Increments and Monotonicity
iaring
Inc

I t R p s tRepresent
ity

I t Rg Integer R
crement

Repres
Monotonici

eger R
ts and M

Round 3 - Incrementing

-2

0

255

0

-255

128

-128

00000000 01111111 11111111

1
-1

127

-127

10000000

Very nice! Unsigned has a graph that is continuous 
and has a unit slope. This means we can use an 

unsigned comparator to compare integers! 
We‛ll give Unsigned two points for that.

What‛s this? Sign Magnitude has a very unusual 
increment indeed. It has a unit slope for positive 
integers, but the slope becomes -1 for negatives. 

Sorry, but no points for Sign Magnitude this round. 

Another monotonically increasing graph with unit 
slope! You can use an unsigned comparator to 

compare integers here, too. Bias gets two points!

Just like One‛s Complement, Two‛s Complement 
has a discontinuous graph and unit slope. So 

we‛ll give Two‛s Complement a point.

There‛s a discontinuity in the graph for 
One‛s Complement, but we do like how 

it has a consistent unit slope. 
That‛s one point for One‛s Complement.

1

y

-128
-127

00

inc
 un
t

11111111

oontntininuous graph ththhatat i iss coco
n use an s means we can

to compare integers!to compare inte

-255

0000

Whh tat‛‛s t thhhihi ?s? S Sign Mag
increment indeed. It ha
integers but the slopebut the slope

for y in the graph 
how ut we do like h

nt unit slope

1111111

fory in the graph

5

00

Just like One‛s Comple
has a diiscontinuous g

we‛ll give Two‛s Cll i T ‛ C

-255

00

Just like One‛s Comp

oo Bias gets two points!oo Bias gets tw

1111111

witithh unit creasing gra hph w
ator to nsigned compara

p i ts!Bi s ts t

1

4

2 3

4 4
-127

10

On to Round 3! Using this board, graph how your value changes when you 
increment your bit pattern from 00000000 to 11111111!  We‛ll give each player 
a point for having a continuous graph and a point for a consistent unit slope.
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Unsigned

Sign Magnitude

One‛s Complement

Two‛s Complement

Bias

Comparing Integer Representations
The Thrilling Conclusion!

inaring Int R p s ntRepresentInt Rg Integer R
The Thr

Repres
onclusion!

eger R
rilling Co

B

One Zero?Negation? Zero = 
0000 0000

Monotonically 
Increasing?

Continuous?
We‛ve finally arrived at the 
end of our competition. Let‛s 
see that scoreboard!

Well, well! It appears we have a three-way tie among Unsigned, Two‛s Complement, 
and Bias! We can certainly give each of our winners a prize, though!

Unsigned, you‛ll be the representation 
for data whenever users call upon the 
unsigned modifier in C! I‛ve heard that 
other languages use it, too, so you‛ll 
work for them as well.

Bias, you‛ll represent the exponent in 
IEEE-754 floating-point numbers! The 
fact that we can compare exponents 
with an unsigned comparator will come in 
handy!

And you, Two‛s Complement, because 
you can negate and have one zero that 
is expressed as all zero bits, you will be 
the representation of integers for 
binary computers all around the world!d!

-12710

unsigned char foo = 24;
0001100020002

signed char bar = -24;
111010002
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3.141592

Floating-Point Numbers!Floa ers!ating-P NumbPoint 

An IEEE 754 floating point number consists of three parts:

(Also known as the Significand)

the Exponent,the Sign, and the Mantissa.

The Sign, as its name suggests, 
determines the sign of the number.

The Exponent plays a vital role in determining 
how big (or small) the number is. However, it‛s 
encoded so that unsigned comparison can be 
used to check floating-point numbers.

To see the true magnitude of the 
Exponent, you‛d need to subtract the 
Bias, a special number determined by 
the length of the Exponent.

And last but not least, the Mantissa 
holds the significant digits of the 
floating point number.

s a vital role in determininit l l i d t
th numb is H it

+

100000002

01000000000
000000000000200

010000000001000000000
0

00000000
0

-12710
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Floating-Point Numbers: 
All Together Now!

01000000000
0000000000002

+

Once all the parts of the floating-point number are obtained, converting 
it to decimal is just a matter of applying the following formula:

Notice that the Mantissa actually represents a fraction with an implicit 1 in front of it, instead of an 
integer! In addition to representing real numbers, the IEEE 754 representation can also indicate...

positive or negative infinity,

and even when something is not a 
number! This is called NaN.

a
number! This is

and even wh
number! T

+

Th
e
Th s called NaNhis is

t
s ca
met
s cahis is

n som
his is

hing is n
lled NaN

111111112

N.N.
ot a 

N

00000000000
0000000000002

-

- 111111112+

the set of numbers known as denormalized 
numbers (including zero),

+-

ppositive negatnege or nfinitnitty,ty,tive in

-12610

-12710

,t, insteadd oof an of

Example:

=02

NaNs aren‛t 
comparable, but 

they can be 
different!

If this is all zeroes, 
the float is zero!
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Floating-Point Numbers: 
The Great Number Line

Due to the format of the IEEE-754 standard, the floating-point numbers can be plotted on a number line. 
In fact, the floating-point numbers are arranged so that they can be incremented like a binary odometer!

NaN

+ Floating 
Point 

Number

+ Denormalized 
Number

+ 0-

-

-

+ -
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Caches: 
What Are They For?

For computers, memory accesses 
are like going to the library, 

Finding the necessary 
information in the page 
of a book,

And going back home to do the 
work involving that information.

While computers don‛t mind 
going back and forth like this 
for data, it usually means users 
have to do a lot of waiting.

Fortunately for users, computers have caches, 
which is the equivalent of keeping copies of the 
books needed on a shelf near the workspace. 
Through a number of mechanisms, caches give the 
illusion of being able to access memory very quickly!

Loading... Almost...

Hurry up, will ya?!

Home
Sweet
CPU

n.

0x0CA829F0

load word 
0x02009AD0

ssary
e page

0x0CA829F0

0x002008... 0x00200A...
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Cache Associativity

Tag Index Offset

Tag Offset

Tag Index Offset

Direct Mapped

2-Way Set Associative

4-Way Set Associative

Fully Associative

No index is needed, since a cache block can 
go anywhere in the cache. Every tag must be 
compared when finding a block in the cache, 
but block placement is very flexible!

A cache block can only go in one spot in the 
cache. It makes a cache block very easy to 
find, but it‛s not very flexible about where 
to put the blocks.

This cache is made up of sets that can fit 
two blocks each. The index is now used to 
find the set, and the tag helps find the 
block within the set.

Each set here fits four blocks, so there are 
fewer sets. As such, fewer index bits are 
needed.

Just as bookshelves come in different shapes and sizes, caches can also take on a variety of forms 
and capacities. But no matter how large or small they are, caches fall into one of three categories: 
direct mapped, n-way set associative, and fully associative.

0       1        2       3       4       5      6       7

0                 1                2                 3

0          1

Tag Index Offset

They all look set 
associative to me...

Memory 
Address

m = 8
That‛s because they are! The direct mapped 
cache is just a 1-way set associative cache, 
and a fully associative cache of m blocks is 
an m-way set associative cache!
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Cache Misses
When you just can‛t find 
what you‛re looking for...

Sometimes, the cache doesn‛t have the memory block the computer‛s looking 
for. When this happens, it‛s called a cache miss. There are three causes of 
cache misses. Just remember the three C‛s: 

ompulsory

apacity

onflict

Compulsory misses happen when a 
block is referenced for the first 
time. The computer can‛t get a 
block that doesn‛t exist yet!

The block is not in the cache 
because there is no space in the 
cache for it. Caches are of finite 
size, after all.

These types of misses happen only 
in direct-mapped and set-
associative caches. Multiple blocks 
can be mapped to a set, forcing 
evictions when the set is full.

Hey! I needed 
that!
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10.6 Appendix F: List of Visual Metaphors 

Below is a list of the visual metaphors used in the illustrations so far, along with a written 
explanation of each metaphor’s meaning. 
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