
Designing Distributed Systems for Heterogeneity

Philip Brighten Godfrey

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-82

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-82.html

May 21, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Designing Distributed Systems for Heterogeneity

by

Philip Brighten Godfrey

B.S. (Carnegie Mellon University) 2002
M.S. (University of California, Berkeley) 2006

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Ion Stoica, Chair

Professor Scott Shenker
Professor David Aldous

Spring 2009

The dissertation of Philip Brighten Godfrey is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2009

Designing Distributed Systems for Heterogeneity

Copyright 2009

by

Philip Brighten Godfrey

1

Abstract

Designing Distributed Systems for Heterogeneity

by

Philip Brighten Godfrey

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Modern distributed and networked systems are highly heterogeneous in many

dimensions, including available bandwidth, processor speed, disk capacity, security, fail-

ure rate, and pattern of failures. The theme of this dissertation is that this heterogeneity

can not only be handled, but rather should generally be viewed as an asset.

We begin by introducing a framework, the price of heterogeneity, to model the

effect of heterogeneity in parallel and distributed systems. Our results in this framework

show broad classes of systems in which heterogeneity cannot be a disadvantage. We then

develop practical methods for distributed systems to adapt to and take advantage of het-

erogeneity. The Y0 distributed hash table achieves improved load balance, route length,

and congestion with low overhead in environments with heterogeneous node capacities,

such as bandwidth or processing speed. Addressing heterogeneity in reliability, we show

that randomization in node selection strategies typically reduces failure rates—a property

that permits better understanding of subtle properties of existing systems, as well as the

design of new systems. Finally, we study how to improve stability in the Internet’s inter-

domain routing protocol, while carefully managing tradeoffs with network operators’ per-

ferred routes. These results show how both performance and reliability can be improved

in heterogeneous environments.

Professor Ion Stoica
Dissertation Committee Chair

2

i

To my family

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Modeling the Effect of Heterogeneity . 3
1.2 Heterogeneity and Load Balance in Distributed Hash Tables 5
1.3 Minimizing Churn in Distributed Systems . 6
1.4 Stabilizing Internet Routing . 8
1.5 Dissertation Plan . 9

2 Modeling the Effect of Heterogeneity 10

2.1 Introduction . 10
2.2 Model . 14
2.3 The Simulation Lemma . 15
2.4 Scheduling on Related Machines . 18

2.4.1 Minimum Makespan Scheduling . 18
2.4.2 General Objective Functions of Job Completion Times 19
2.4.3 General Objective Functions of Machine Completion Times 20
2.4.4 A Complementary Result . 21

2.5 Precedence Constrained Scheduling . 21
2.5.1 A Lower Bound for the Simulation Technique 22
2.5.2 Upper Bounds . 24

2.6 Resource Constrained Scheduling . 26
2.7 Scheduling With Release Times . 28
2.8 Network Construction . 28
2.9 A Worst Case for Testing . 30
2.10 Related Work . 31
2.11 Summary . 32

3 Heterogeneity and Load Balance in Distributed Hash Tables 33

3.1 Introduction . 34
3.2 Preliminaries . 36

3.2.1 Model and Assumptions . 36

iii

3.2.2 The ID Selection Problem . 37
3.2.3 Basic Virtual Server Selection (Basic-VSS) Scheme 38

3.3 The Y0 DHT . 40
3.3.1 Low Cost Virtual Server Selection (LC-VSS) Scheme 41
3.3.2 Successor Lists . 41
3.3.3 Finger Tables . 43
3.3.4 Routing . 43

3.4 Analysis . 44
3.4.1 Load Balance Bounds . 44
3.4.2 Load Movement Bounds . 45
3.4.3 Overlay Construction and Degree Bounds 46
3.4.4 Route Length . 49

3.5 Simulation . 50
3.5.1 Load Balance . 51
3.5.2 Normalized Degree . 52
3.5.3 Route Length . 54

3.6 Related Work . 55
3.7 Conclusion . 58

4 Minimizing Churn in Distributed Systems 60

4.1 Introduction . 61
4.2 Churn Simulations . 64

4.2.1 Model . 64
4.2.2 Selection Strategies . 65
4.2.3 Traces . 67
4.2.4 Simulation Setup . 68
4.2.5 Results . 69

4.3 Analysis . 73
4.3.1 Stochastic Model . 73
4.3.2 Fixed and Preference List Strategies 74
4.3.3 Intuition for Random Replacement . 74
4.3.4 Analysis of Random Replacement . 75

4.4 Applications . 77
4.4.1 Anycast . 78
4.4.2 DHT Neighbor Selection . 80
4.4.3 Multicast . 82
4.4.4 DHT Replica Placement . 86

4.5 Discussion . 88
4.6 Related Work . 89

4.6.1 Page Replacement . 89
4.6.2 Heuristics for Distributed Systems . 90

4.7 Conclusion . 90

iv

5 Stabilizing Internet Routing 91
5.1 Introduction . 92
5.2 Preliminaries . 95

5.2.1 Model of BGP . 95
5.2.2 Metrics . 96
5.2.3 Approaches to Stabilizing BGP . 97

5.3 Lower Bounds . 99
5.3.1 Convergence . 100
5.3.2 Hardness of Minimizing Interruptions 100
5.3.3 Tradeoff Procedure . 101

5.4 Stable Route Selection . 103
5.4.1 Fitting SRS into BGP . 104
5.4.2 The SRS Heuristic . 105

5.5 Analytical and Simulation Evaluation . 106
5.5.1 Methodology . 106
5.5.2 Results . 107

5.6 Experimental Results . 115
5.6.1 Methodology . 116
5.6.2 Results . 117

5.7 Evaluation with Route Views Update Feeds 121
5.7.1 Methodology . 122
5.7.2 Results . 122

5.8 Related Work . 124
5.9 Conclusion . 125

6 Conclusion 127

6.1 Limitations and Future Work . 128
6.2 A Final Remark . 130

Bibliography 132

A Proofs for Chapter 2 144

A.1 NP-Completeness of SIMULATION . 144
A.2 Proof of Corollary 3 . 144
A.3 Proof of Theorem 5 . 146

B Proofs for Chapter 3 147

C Proofs for Chapter 4 153

C.1 Proof of Theorem 8 . 153
C.2 Worst-Case Analysis of Random Replacement 155
C.3 Facts Concerning Dynamic Strategies . 156
C.4 Facts Concerning Fixed Strategies . 157

D Proofs for Chapter 5 160

v

List of Figures

1.1 Distributions of CPU speed, bandwidth, and reliability in several distributed
systems. 2

2.1 Two families of examples showing the tightness of the Simulation Lemma.
Here α = 2− 1/n. In both examples, every assignment of C to C′ gives some
element of C′ at least α times its capacity. 16

2.2 An instance of PCS on which the simulation technique fails. 23

3.1 The Basic Virtual Server Selection Scheme (Basic-VSS), run at each node v. . 39
3.2 Parameters of both Basic-VSS and Y0’s LC-VSS. 39
3.3 ID selection illustrated. 41
3.4 Y0’s LC-VSS scheme run at each node v. 42
3.5 Routing in Y0. A close-up of part of the ID space is shown. 44
3.6 Tradeoff between maximum share and average normalized degree, achieved

through varying α, for n = 2048. For Chord, α ∈ {1, 2, 4, 8, 16}, and for Y0,
α ∈ {1, 2, 4, . . . , 128}. 51

3.7 Maximum share . 52
3.8 Load balance of overlay links and routing load 53
3.9 Average normalized degree . 53
3.10 Route length . 54

4.1 Churn (left) and fraction of requests failed in Chord (right) for varying α,
with fixed k = 50 nodes in use and the synthetic Pareto lifetimes. 69

4.2 Chord in the PlanetLab trace (one trial per data point). 70
4.3 Churn with varying average number of nodes in use traces. The key at

lower right applies to all six plots. 71
4.4 Churn of Random Replacement relative to other strategies. The key at right

applies to all three plots. 72
4.5 Preference List strategies in the PlanetLab trace. Note the log-scale x axis. . 73
4.6 Simulation and analysis of churn with varying session time distribution,

n = 20, and α = 1
2 . 76

4.7 Anycast simulation results. 79
4.8 DHT neighbor selection simulation in Gnutella trace. 81
4.9 Multicast simulation results. 84

vi

4.10 Replica placement simulation results. 88

5.1 Performance of various strategies in the stability-availability space, with
batching off and on. SRS’s delay parameter is fixed at ∞. Unless otherwise
specified RFD refers to flap damping with Cisco standard parameters. . . . 109

5.2 Complementary CDF of interruptions per month over all measured source-
destination pairs. SRS’s delay parameter is fixed at ∞. 112

5.3 Deviation and interruption rate of SRS(δ) for various δ. SRS’s delay param-
eter δ varies from 100 sec to effectively ∞ (a value longer than the one-month
trace). 113

5.4 CDF of mean path length over all measured source-destination pairs. 114
5.5 Interruption rate under partial deployment of a stability-aware routing strat-

egy, with delay parameter δ = ∞ and batching off. 115
5.6 A diagram of our software router, showing two nodes with a flow of data

from Machine 1 to Machine 2. 117
5.7 Gap lengths in the software router experiments under the two environ-

ments. Packets are spaced at ≈ 5-second intervals. 119
5.8 Fig. 5.7(a), zoomed in. 120
5.9 Correlation between number of interruptions in simulations, and packet

loss in experiments, for the two environments. 121
5.10 Results of Route Views update feed evaluation. 123

vii

List of Tables

2.1 Bounds on the price of heterogeneity shown in this chapter. 13

4.1 The real-world traces used in this chapter. The last column says that 50% of
PlanetLab nodes had a mean time to failure of ≥ 3.9 days. 68

5.1 BGP Decision Process . 104
5.2 Effect of varying link delay. 110
5.3 The fates of packets in the software router experiments. 118

viii

Acknowledgments

I am greatly indebted to my thesis advisor, Ion Stoica. For more than six years

he has been a brilliant and reliable force guiding me towards both questions and answers.

He has given me the taste and confidence to do important research, and for that reason his

influence on me will last many years. A second person who stands out as greatly shaping

my career at Berkeley is Scott Shenker, who has perhaps the highest known bandwidth

and lowest latency for emission and absorption of novel research ideas. David Aldous

deserves many thanks not only for serving on my dissertation committee, but also for

teaching two courses that gave me a solid statistical foundation and enabled me to do

some of the research that appears herein.

I have been fortunate to have an amazing set of colleagues at Berkeley. The work

in Chapter 2 of this dissertation was joint with Richard Karp [46]; Chapter 3 was with

Ion Stoica [48]; Chapter 4 was with Scott Shenker and Ion Stoica [47]; and Chapter 5 was

with Matthew Caesar, Ian Haken, Yaron Singer, Scott Shenker, and Ion Stoica [45]. Many

friends and colleagues provided helpful comments and discussions on this work: Bryan

Clark, Anwitaman Datta, Alex Fabrikant, Rodrigo Fonseca, Karthik Lakshminarayanan,

David Molnar, Christos Papadimitriou, Satish Rao, Lakshminarayanan Subramanian, Jane

Valentine, Hakim Weatherspoon, and those that I have missed. Alex Fabrikant provided

essential n0menclatural assistance. The authors of [8, 14, 52, 106, 115] were generous in

sharing their data sets. The authors of [33] shared a simulator which was the starting

point for our simulations of Chapter 5. A National Science Foundation Graduate Research

Fellowship and Cisco Systems provided financial support for these projects.

During my graduate studies, I very much enjoyed and learned from my collab-

orations on work not included in this dissertation, with Kamalika Chaudhuri, Alex Di-

makis, Igor Ganichev, Brad Karp, John Kubiatowicz, Karthik Lakshminarayanan, Kannan

Ramchandran, Satish Rao, David Ratajczak, Sylvia Ratnasamy, Sean Rhea, Sonesh Surana,

Kunal Talwar, Martin Wainwright, Yunnan Wu, and Harlan Yu. In addition, I am grateful

to my colleagues who made it a pleasure to work here, including those already listed and

Byung-Gon Chun, Lisa Fowler, Kris Hildrum, Dilip Joseph, Jayanthkumar Kannan, Henry

Lin, Blaine Nelson, Lucian Popa, Michael Schapira, and Hoeteck Wee.

Berkeley has been a unique place to work at the intersection of networking and

theory, and I would like to recognize the professors who encouraged me in this area:

ix

Richard Karp, Christos Papadimitriou, Satish Rao, Scott Shenker, and Ion Stoica.

Many people had a strong influence on me and gave me the excitement about

mathematics, computer science, and research that led me to pursue graduate studies. In

this regard I am indebted to my undergraduate research advisor, Lenore Blum; a set of

Carnegie Mellon classmates, Bryan Clark, Kevin Milans, and James Pistole; David Scott

of Ripon College, who demonstrated how much fun discrete math could be; Christine

Stewart, the dedicated advisor of the math club at Ripon High School; and the man who

would never be caught on a street corner without a 2× 3 matrix in his back pocket, the

Big W himself, Jim Watson.

I leave Berkeley with an unparalleled set of friends. I will not forget the late

nights in the Great Hall, sushi dinners, hikes, gigs, countless hours that put a smile on

my face, and certain activities best left unmentioned. I cannot imagine what Berkeley

would have been like without Ana Ramírez Chang, Bor-Yuh Evan Chang, Omid Etesami,

Alex Fabrikant, Joseph D. Flenner, Nazanin Shahrokni, the musicians of Brasshopper, the

devious residents of Highland Place, and my friends from International House—who, to

my great fortune, are too numerous to mention here. I would also be remiss to leave out

Frankie and Stella, Maggie and May, Emslie, Grizza von Grazzelstein, Detroit McMoog,

Augustus Gus “Eddie the Meatball” Gunderson, and Ava.

I am especially grateful to my parents, Eric and Ann Marie Godfrey, and to my

brother, Forest Godfrey, for their continual encouragement. It was invaluable to be able to

retreat to a home filled with family and good food. Finally, I owe an immeasurable debt to

Jane Valentine, whose unwavering love and support have made me a better person.

1

Chapter 1

Introduction

Distributed and networked systems have become highly heterogeneous. Rather

than running on clusters or supercomputers composed of identical nodes, today’s dis-

tributed systems have wide variation in participants’ failure rates, bandwidth, processing

speed, security, and other dimensions. This heterogeneity can result from many factors,

ultimately driven by explosive growth of the Internet. Modern Internet applications have

giant scale, so that even within a single data center there are various generations of equip-

ment. They may involve specialized nodes, from well-provisioned servers down to nodes

whose specialty is fitting in pockets. Participating nodes are often owned and adminis-

tered by many different entities. And they are deployed globally on top of the largest

distributed system of them all, the Internet, which exemplifies all of these characteristics.

One can get a quantitative sense of this heterogeneity through measurements of

particular systems (Figure 1.1). In the following systems, we will compare the 95th and

5th percentiles of distributions to remove outliers. Emulab, a network testbed housed

in a data center at the University of Utah, consists of nodes which differ by 8× in total

CPU speed (summing the cores) [34]. BitTorrent, the massively popular peer-to-peer file

distribution system, has peers whose uplink bandwidths differ by 154× [61]. The voice-

over-IP application Skype has a network of superpeers with widely varying reliability:

the lengths of their sessions—that is, periods of continuous uptime—differ by 136× [52].

And the session lengths of routes on the Internet differ by about 1, 150, 000×, based on

one month of data from Route Views [102]: some sessions lasted the entire period, others

were separated by only the one-second measurement granularity, and the entire spectrum

in between was well represented.

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

F
ra

ct
io

n
of

 n
od

es

Total CPU speed (GHz)

(a) CPU speeds in Emulab [34].

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000
F

ra
ct

io
n

of
 n

od
es

Upload bandwidth (KB/sec)

(b) Upload bandwidth of BitTorrent users, as mea-

sured by Isdal et al. [61].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

F
ra

ct
io

n
of

 s
es

si
on

s

Session time (hours)

(c) Session times of Skype superpeers, as measured

by Guha et al. [52].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 s
es

si
on

s

Session time (hours)

(d) Session times of Internet routes, derived from

one month of Route Views data collected during De-

cember 2008 [102].

Figure 1.1: Distributions of CPU speed, bandwidth, and reliability in several distributed

systems.

3

This dissertation concerns building distributed systems in such heterogeneous

environments, with the theme that although heterogeneity can be challenging to deal with,

it should generally be seen as an advantage to be exploited in systems design. Many sys-

tems take the easy way out and assume identical components. But if we adapt systems to

their variable characteristics, we can often achieve better performance in heterogeneous envi-

ronments than in comparable homogeneous environments.

Our contributions build an understanding of the effect of heterogeneity in dis-

tributed systems, and develop techniques to adapt to and take advantage of heterogeneity:

Chapter 2 introduces a framework, the price of heterogeneity, to model the effect of het-

erogeneity in parallel and distributed systems. In this framework, we show broad

classes of cases in which heterogeneity cannot be a significant disadvantage.

Chapter 3 shows how to adapt distributed hash tables to heterogeneity in node capaci-

ties such as bandwidth or processing speed, obtaining improved load balance, route

length, and congestion with low overhead.

Chapter 4 addresses heterogeneity in reliability. We show that randomization in node

selection strategies typically reduces failure rates—an often subtle property that per-

mits better understanding and design of distributed systems.

Chapter 5 studies how to improve stability in the Internet’s interdomain routing protocol,

while carefully managing tradeoffs with network operators’ preferred routes.

We outline each of these chapters next.

1.1 Modeling the Effect of Heterogeneity

We begin with a high-level question which will set the stage for later chapters of

this thesis: how does the performance of a system depend on the amount of heterogeneity of its

capacity distribution?

It is not surprising that increasing heterogeneity can either improve or degrade

performance, depending on the particular system, its workload, its environment, and its

notion of performance. Nevertheless, we are able to show large classes of cases when per-

formance roughly monotonically improves as the heterogeneity of the participants increases.

4

To show this, we introduce a theoretical framework, the price of heterogeneity

(PoH), that measures the worst-case effect of increasing heterogeneity. We are given a cost

function g(C, W) describing a system’s performance as a function of its nodes’ capacities

C and workload W. For example, in a scheduling problem, g(C, W) could represent the

minimal time to complete a set of jobs with lengths W on a set of processors with speeds

C. We next formalize the statement that a set of capacities C′ is “more heterogeneous” than

another set C (C � C′) with majorization, a commonly used partial order that is consistent

with variance. Finally, the price of heterogeneity of g compares the ratio of costs when

moving from any capacities C to any more heterogeneous capacities C′, taking the worst

case over all W, C, and C′:

sup
W,C,C′: C�C′

g(C′, W)

g(C, W)
.

The power of this framework is that it abstracts away the details of the workload

and capacity distribution: for cost functions that have a small PoH, we are guaranteed

that performance cannot significantly degrade in more heterogeneous environments. In

addition, when the PoH is small, the homogeneous capacity distribution is provably close

to the worst case, which is useful for testing systems.

Our analysis shows that many important models of systems do, in fact, have

small PoH. We prove bounds on the PoH ranging from 2− 1
n to O(log n) where n is the

number of nodes, for scheduling problems with a broad range of objective functions, with

job precedence constraints, and with resource or shared-lock constraints; for a load balanc-

ing problem motivated by distributed hash tables; and for a low-diameter network con-

struction problem. Most of the upper bounds are obtained via a “Simulation Lemma” that

we introduce, which appears to have fairly wide applicability. One problem we consider,

scheduling with release times, has unbounded PoH.

In summary, Chapter 2 provides quantitiatively justified intuition for the view of

heterogeneity as an asset, setting the stage for later chapters of this thesis which introduce

systems design techniques to take advantage of heterogeneity. Moreover, in Chapter 4, we

will build on the framework presented here to analyze the effect of heterogeneous failure

patterns.

5

1.2 Heterogeneity and Load Balance in Distributed Hash Tables

The proposition that heterogeneity is helpful for some system rests on the as-

sumption that the system effectively adapts to its environment. The remaining chapters of

this thesis will develop techniques for adapting to and taking advantage of heterogeneity.

Chapter 3 concerns design of hetergeneity-aware distributed hash tables (DHTs).

A DHT is a highly scalable distributed storage system that manages objects stored in an

identifier (ID) space. Responsibility for the ID space is partitioned among the nodes: each

node is given a random ID x and owns the set of IDs that are “closest” to x. To route to the

owner of any given ID in order to store or retrieve an object, the DHT maintains an overlay

network with routing tables typically of size O(log n) and route lengths of O(log n) nodes.

One central challenge in DHT design is how to balance load. Even if all nodes

have the same capacity, the random assignment of node IDs results in some nodes owning

O(log n) times their “fair share” of the ID space [114]. And since most DHTs treat all

participating nodes equally, the imbalance can significantly increase as the heterogeneity

of the system increases.

The technique of virtual servers is used in DHTs to improve load balance, and

had also been proposed (though not evaluated) to handle heterogeneity. Each physical

node simply instantiates multiple virtual servers with random IDs that act as peers in

the DHT. In the case of a homogeneous system, maintaining Θ(log n) virtual servers per

physical node reduces the load imbalance to a constant factor. To handle heterogeneity,

each node picks a number of virtual servers proportional to its capacity. Unfortunately,

virtual servers incur a significant cost: a node with k virtual servers must maintain k sets

of overlay links.

Our solution, a DHT called Y0, addresses the above drawbacks. Y0 is a modified

version of the Chord DHT [114] and uses virtual servers, but with a twist. Instead of

picking k virtual servers with random IDs, a node clusters those IDs in a random fraction

Θ(k/n) of the ID space. This allows the node to share a single set of overlay links among

all k virtual servers.

Two main benefits result from this technique. First, in both the homogeneous

and heterogeneous cases, we prove that our scheme avoids the factor k inflation in over-

head, yet still maintains a good load balance. Second, our technique allows higher-capacity

nodes to pick a denser set of links in a structured way—rather than the essentially random

6

set of links that result in the typical virtual server technique. This reduces route length,

and hence congestion, in the heterogeneous case.

To numerically evaluate the effect of heterogeneity, we simulate both Y0 and

Chord in several node capacity distributions. We find that both DHTs benefit from hetero-

geneity in load balance and route length, because we are able to discard very low-capacity

nodes, leaving behind a denser and more efficient “core” network. However, Y0’s topol-

ogy results in a larger improvement, with mean route lengths in a real-word distribution

of node capacities being 33% shorter than in a homogeneous environment.

1.3 Minimizing Churn in Distributed Systems

Chapter 4 addresses heterogeneity in reliability: distributed systems typically

have widely varying expected time-to-failure both across their components at any given

moment in time, and across time for individual components. Our goal is to take advan-

tage of heterogeneity to minimize churn—change in the set of participating nodes due to

joins, graceful leaves, and failures—in order to avoid the problems that churn causes, like

dropped messages, data inconsistency, increased user-experienced latency, or increased

bandwidth use.

We introduce the study by way of an example. Consider an overlay multicast sys-

tem in which a root node is broadcasting a stream of video to a set of interested users. The

nodes are arranged in a multicast tree built as follows: each node, upon arrival or when

one of its ancestors in the tree fails, queries m random nodes in the system, and picks as

its new parent the node through which it has the lowest latency to the root. Clearly, in-

creasing m better adapts the tree to the underlying topology, but it also has the nonobvious

result that the tree suffers from more churn as m increases, in the sense that nodes are more fre-

quently disconnected from the root, which has an impact on quality of service. Why does

this occur?

Our study will explain this effect. The core model we deal with, which can be

used to describe many systems, is as follows: out a set of n nodes, we desire to select k

nodes to be “in use”; when one of these fails, we select another available node to replace

it. The goal is to select nodes to minimize churn: the failure rate of in-use nodes. We sim-

ulate the churn of a set of node selection strategies, using traces of node availability in a

diverse set of distributed systems. Common strategies, like picking the longest-lived avail-

7

able node, perform well. However, two kinds of node selection strategy that are agnostic

to nodes’ history are particularly interesting. The Random Replacement (RR) strategy re-

places a failed node with a uniform-random available node. Preference List (PL) strategies

arise as a result of optimizing for a metric other than churn: rank the nodes according to

some fixed preference order, and when a replacement is necessary, pick the most preferred

available node. Examples include ranking nodes by latency or by distance between their

identifiers (as occurs in DHTs). Note that we use the term PL specifically in the case that

the preference order is not directly related to churn.

Since they pick nodes in a way unrelated to their stability, it is not surprising that

PL strategies result in churn rates on the in-use nodes that are similar to the mean failure

rate among all available nodes. One might expect that RR should perform similarly, since it

picks uniform-random replacements. However, it turns out that RR achieves much lower

churn, typically within a factor of less than 2 of strategies that intelligently pick reliable

nodes based on their history! We find that this result is quite robust, appearing in traces of

node availability in Skype, Gnutella, web sites, corporate desktop PCs, and the wide-area

testbed PlanetLab.

To explain the low churn achieved by RR, we analyze it in a stochastic model.

With an (unrealistic) exponential session time distribution, RR is no better than Preference

Lists, but RR’s churn rate decreases as the distributions become more heterogeneous; in

the language of Chapter 2, the price of heterogeneity of RR is 1. The intuition is that RR is

similar to picking a node at a random point in its history: it is biased towards landing in a

longer session of continuous uptime, since the node spends longer in a long session than

in a short one.

We can now explain the earlier overlay multicast example: As m increases, node

selection moves from being like RR to being like a PL strategy, where the preference list

is based on latency. We also demonstrate and explain RR or PL-like behavior in existing

designs for the topology of DHT overlay networks, replica placement in DHTs, and anycast

server selection. For example, we can reduce request failure rate in the Chord DHT by 29%

in a real-world pattern of failures, simply by adding some randomization to the selection

of neighbors.

Thus, our results explain subtle performance differences in existing systems, as

well as showing that randomization is a simple and general technique for minimizing

churn in heterogeneous environments.

8

1.4 Stabilizing Internet Routing

A number of studies [36,70,124] point to stability as a key problem for the Border

Gateway Protocol (BGP), the Internet’s interdomain routing protocol. Network failures

and recoveries, policy changes, and the BGP convergence process itself currently cause

routers to generate roughly 136 prefix update messages per minute; that is, each of the

316, 366 IP prefixes is updated on average once every 2.7 days (based on data from Hus-

ton [60] as of May 20, 2009, generated from a BGP peering with AS 131072).

This instability causes two main problems. First, in the control plane, route insta-

bility has the potential to stress routers’ resources. While current average-case update rates

do not cause significant CPU utilization [3], there is concern that extreme conditions like

bursts of updates from multiple neighbors or future update loads resulting from rapidly

increasing routing table size could overload routers, delay convergence, or necessitate

more expensive routers. These problems led the Internet Architecture Board to identify

update churn as one of the challenges for future scalability of the routing system [84]. A

second problem of more immediate impact is in the data plane: route changes cause tran-

sient routing anomalies such as forwarding loops. Studies indicate that route instability is

a major cause of unreliability in packet delivery—especially for bursts of multiple packet

losses, which are the hardest for applications to deal with [68, 124]. This problem is espe-

cially critical as real-time applications like video and voice become more prevalent.

In Chapter 5, we study how route selection schemes can avoid these changes in

routes. Similar to Chapter 4, our techniques function by taking advantage of heterogeneity

in the pattern of events. However, rather than considering primarily stability, we now

focus on the fundamental tradeoffs that arise from balancing stability with other objectives.

Specifically, we characterize the tradeoffs between interruption rate, our measure

of stability; availability of routes; and deviation from the network operator’s preferred

routes. We develop algorithms to bound the set of feasible points in the tradeoff spaces

between these three cost metrics. We also propose a new approach, Stable Route Selec-

tion (SRS), which uses flexibility in route selection to improve stability without sacrificing

availability, and with a controlled amount of deviation. Intuitively, SRS works by using

heterogeneity in two ways. First, it exploits heterogeneity across available routes, so that

when one route is in a period of instability, another is stable. Second, it exploits hetero-

geneity across time: most individual routes have a very skewed distribution of session

9

lengths, with some very long sessions and many short sessions (as we saw in Figure 1.1).

This heterogeneity across time enables SRS to avoid many short sessions, and thus many

route changes, while deviating from the most preferred route for only a small amount of

time.

Our large-scale simulation results show that SRS can significantly improve sta-

bility with limited deviation. We implement our protocol in a software router, Quagga,

and confirm in cluster deployment that SRS’s gains in route stability translate to improved

reliability in the data plane. Finally, we evaluate SRS under direct feeds of route update

traffic from Internet routers. In this case, we observe much less improvement, but SRS can

still improve stability when multiple disjoint paths are available.

1.5 Dissertation Plan

This dissertation proceeds as follows. Chapter 2 models the effect of heterogene-

ity in parallel and distributed systems. Chapter 3 describes our heterogeneity-aware dis-

tributed hash table, Y0. Chapter 4 studies general techniques for minimizing churn in

distributed systems whose components have heterogeneous reliability, with particular fo-

cus on the random replacement strategy. Chapter 5 studies how to avoid failures in the

context of Internet routing. Finally, we conclude with open problems in Chapter 6.

10

Chapter 2

Modeling the Effect of Heterogeneity

2.1 Introduction

Chapter 1 established that modern distributed systems—such as peer-to-peer sys-

tems and the Internet’s routing protocols—operate in highly heterogeneous environments:

link and node reliability, and capacity like bandwidth, disk space, and processing speed,

vary by orders of magnitude. Moreover, systems often have to cope with environments

that change over time or that are difficult for the designer to characterize in advance.

Given this diversity and uncertainty of environments, it is useful to understand

how characteristics of the participating components affect performance of the system. This

chapter addresses the following basic question: how does the performance of a system depend

on the amount of heterogeneity of its capacity distribution? As a more concrete special case,

suppose that in distributed system A, all nodes have the same capacity; system B has the

same total capacity but there is higher variance among the nodes’ capacities. Does A or B

perform better?

The answer, of course, is “yes”: either A or B performs better, depending on

the particular system, its workload, its environment, and its notion of performance. As a

simple example, consider two parallel systems: a homogeneous system A with ten 1000

MHz processors and a more heterogeneous system B with one 5.5 GHz and nine 500 MHz

processors. If the workload consists of ten jobs that take 1 second on a 1 GHz processor,

then system A can complete the workload in 1 second. But in system B we could either

put at least one job on a slow processor, or all jobs on the fast processor; in either case, the

completion time roughly doubles to about 2 seconds. So system A performs better even

11

though both systems have the same total capacity. On the other hand if the workload is

bottlenecked by one large job then system B might be more than 5 times faster.

It may seem, then, that the effect of heterogeneity is sensitive to the particulars of

the system and its environment. Is there any hope that one can characterize the macroscopic

effects of heterogeneity?

This chapter introduces a theoretical framework, the price of heterogeneity, that

measures the worst-case effect of increasing heterogeneity. Using this framework, we find

that although heterogeneity can be either beneficial or detrimental depending on the par-

ticular instance, it is nevertheless possible to broadly characterize the effect of heterogene-

ity in a way that can inform systems design and testing. Specifically:

• Our analysis of the price of heterogeneity for a number of scheduling and graph con-

struction problems shows that for a large class of models of parallel and distributed

systems, increasing heterogeneity cannot possibly be very detrimental—regardless

of the details of the workload and capacity distribution.

• This analysis also demonstrates that for many models of parallel systems, the homo-

geneous capacity distribution is provably close to the worst case, which is useful for

testing systems.

In summary, this chapter provides quantitiative justification for the view of het-

erogeneity as an asset, setting the stage for later chapters of this thesis which introduce

systems design techniques to take advantage of heterogeneity. Moreover, in Chapter 4, we

will build on the framework presented here to analyze the effect of heterogeneous failure

patterns.

Model. We focus in this chapter on parallel systems which can be modeled by associating a

capacity with each node: that is, a certain amount of a limited resource such as processing

speed, bandwidth, memory, or disk space.

After using majorization to quantify the “amount of heterogeneity” of a capacity

distribution, we study what we call the price of heterogeneity (PoH). Informally, a cost

function g(C, W) describing a system’s performance has price of heterogeneity α when for

any workload W and capacities C, cost cannot increase by more than a factor α if C becomes

arbitrarily more heterogeneous. In the job scheduling example above, W specifies the job

12

lengths, C specifies the processor speeds, and g(C, W) is the makespan: the minimum

completion time of any schedule of jobs W on processors C.

The price of heterogeneity provides characterizes the worst-case increase in cost

due to increasing heterogeneity. For example, if heterogeneity always helps, then the price

of heterogeneity of the cost function is 1. At a high level, we could hope to classify a

parallel system’s price of heterogeneity as being either constant, in which case increasing

heterogeneity can never be much of a disadvantage, or unbounded, indicating that increas-

ing heterogeneity can be quite detrimental. By classifying multiple systems in this way,

we may begin to gain insight about what characteristics of a problem determine whether

heterogeneity is generally good for it.

In addition to providing theoretical insight in these ways, if we have a cost func-

tion that is a good model of a real system, a practical application of the price of hetero-

geneity is to provide test cases that are provably close to the worst possible capacity distri-

bution. This is useful, for example, when testing a system which the designer wishes to be

deployable in a wide range of (possibly unknown) capacity distributions. In Section 2.9,

we will discuss one such case, load balancing in distributed hash tables.

Connection with parallelism. An important special case restricts capacities so there are

m nodes of capacity n/m and n − m of capacity 0. In this case, increasing heterogeneity

(according to the definition we will give in Section 2.2) corresponds to decreasing m, and

thus decreasing parallelism. As a consequence, the price of heterogeneity upper-bounds

the “value of parallelism”: the maximum benefit obtained by increasing parallelism at

the expense of decreasing processor speed. In queueing systems, it is well known that

parallelism can be highly valuable (see Section 2.10). In contrast, many of our results will

place limits on the value of parallelism in other scheduling models by upper-bounding the

price of heterogeneity.

Results. Our bounds on the price of heterogeneity are summarized in Table 2.1. In this

chapter we focus on scheduling problems, but we also give a network design example to

show the generality of the model. Most of the upper bounds are obtained via what we call

the Simulation Lemma, which shows how to “simulate” a set of capacities C using a more

heterogeneous set C′ by mapping each machine in C onto a single machine in C′. This

lemma may also be useful in contexts other than the price of heterogeneity; for example,

an easy corollary is that for any fixed set of capacities, as job lengths become arbitrarily

13

Problem Price of heterogeneity Reference

Minimum makespan scheduling = 2− 1/n Thm. 2
Scheduling on related machines O(1) Cor. 1, 2

Precedence constrained scheduling (PCS) O(log n) Cor. 3
PCS restricted to unit-length jobs ≤ 16 Cor. 5
Resource constrained scheduling ≤ PoH of PCS Thm. 5

Scheduling with release times, job lengths ∈ [1, k] Ω(k) Thm. 6
Minimum network diameter, bounded degree ≤ 2 Thm. 7

DHT load balancing ≤ 2 Cor. 7

Table 2.1: Bounds on the price of heterogeneity shown in this chapter.

more homogeneous, optimal makespan can increase by a factor of 2− o(1) and no more.

In addition, we show two lower bounds. First, in a model motivated by queueing

systems, we observe that if jobs have release times before which they cannot be executed

and we wish to minimize average or maximum job latency, the price of heterogeneity is

Ω(k) when job sizes are in [1, k]. Second, we show that the simulation method fails spec-

tacularly for precedence constrained scheduling (PCS): remapping the work of each C-

machine onto a single C′ machine can inflate the makespan by a factor n/4—nearly as bad

as simply putting all the jobs on the single fastest machine! Intuitively, with dependence

between jobs, lost parallelism is fatal. But our upper bound shows that a more intelli-

gent placement does exponentially better, leading to a O(log n) PoH. An interesting and

apparently nontrivial open question is whether PCS has Θ(1) price of heterogeneity.

In summary, the “batch” scheduling problems which we study, where all jobs

arrive at time 0, have low price of heterogeneity (and hence, little value of parallelism).

Even precedence and resource constrained scheduling—which provide a fairly rich set of

constraints that can model, for example, relative ordering of jobs and the requirement of

jobs to hold shared locks—have O(log n) PoH. On the other hand, the queueing-motivated

scheduling with release times problem has unbounded PoH, even for n = 2.

The rest of this chapter is as follows. Our model is specified in Section 2.2. We

introduce the Simulation Lemma in Section 2.3, and bound the price of heterogeneity of

various cost functions in Sections 2.4-2.8. In Section 2.9, we present a scenario in which

our results provide a worst case for testing. We discuss related work in Section 2.10 and

conclude in Section 2.11.

14

2.2 Model

To define what it means for one capacity distribution C′ to be more heterogeneous

than another distribution C, we use the majorization partial order. Given two nonnegative

vectors C = (c1, . . . , cn) and C′ = (c′1, . . . , c′n), we say that C′ majorizes C, written C′ � C,

when

∀k
k

∑
i=1

c′[i] ≥
k

∑
i=1

c[i] and
n

∑
i=1

c′i =
n

∑
i=1

ci,

where c[i] denotes the ith largest component of C. Note the implicit assumption that ele-

ments of the vector represent the same “type” of capacity, so two elements with the same

amount of capacity are equivalent.

Majorization is a standard way to compare the imbalance of distributions; see [82]

for a general reference. Some of its properties are as follows. Assuming ∑
n
i=1 ci = n,

majorization defines a partial order whose bottom ⊥ = (1, . . . , 1) is the homogeneous

distribution, and whose top ⊤ = (n, 0, . . . , 0) is the centralized distribution. Two other

measures of heterogeneity are variance var(C) = 1
||C|| ∑

n
i=1(ci − ||C||/n)2 and negative

entropy −H(C) = ∑
n
i=1 ci log2 ci. Although variance and negative entropy disagree on

the ordering of vectors in general, majorization is consistent with both, in the sense that

C′ � C implies var(C′) ≥ var(C) and −H(C′) ≥ −H(C).

For our purposes, a cost function is a function g : C ×W → R
+, where C ⊆ R

n is

the set of legal node capacity vectors andW is arbitrary additional problem-specific infor-

mation. Typically, g(C, W) will represent the cost of the optimal solution to some combina-

torial problem with node capacities C and workload W. However, one could also examine,

for example, the cost of approximate solutions produced by a particular algorithm. We can

now define our main metric.

Definition 1 The price of heterogeneity (PoH) of a cost function g : C ×W → R
+ is

sup
W,C,C′: C�C′

g(C′, W)

g(C, W)
,

where W ∈ W and C, C′ ∈ C.

A PoH of 5/4 would say that for any capacities C and C′ � C, distribution C′ can handle

any workload with cost at most 25% higher than C. That is, as heterogeneity increases,

performance cannot get much worse.

15

The price of heterogeneity can be viewed as a generalization of Schur concavity.

A function g is Schur concave when C′ � C implies g(C′) ≤ g(C). One could say that g

is α-approximately Schur concave when C′ � C implies g(C′) ≤ α · g(C). Then g(C, W) has

PoH α if and only if g(C, W) is α-approximately Schur concave in C for every W.

The price of heterogeneity naturally brings to mind the “price of homogeneity”:

the worst-case increase in cost as capacities become more homogeneous. It is easy to see

that, for the cost functions considered in this chapter, increasing homogeneity can be quite

harmful. In any of the scheduling problems, replacing machine speeds (n, 0, . . . , 0) with

the more homogeneous speeds (1, 1, . . . , 1) results in a factor n slowdown when processing

any single job. We therefore focus on the price of heterogeneity, but note that it would

be interesting to find natural situations in which the price of homogeneity yields useful

insight.

2.3 The Simulation Lemma

A natural way to show that the heterogeneous capacities C′ are as good as the

more homogeneous capacities C is to “simulate” C using C′. More specifically, we would

assign C-nodes to C′-nodes according to some f : {1, . . . , n} → {1, . . . , n}, and show that

each C′-node i can “simulate” the work previously performed by the subset of C-nodes

f−1(i). This is a fairly restrictive technique which cannot capture the structure important

to some cost functions (see especially Section 2.5). Nevertheless, we will see that the sim-

ulation technique is applicable to a number of important problems. To prepare for those

results, in this section we use the simulation technique to produce convenient sufficient

conditions to obtain a O(1) PoH (Theorem 1).

For most natural cases, a prerequisite for the simulation technique to succeed is

that the total capacity simulated by each C′-node i is not much more than its own capac-

ity c′i:

Definition 2 For capacity vectors C and C′ � C, an α-simulation of C by C′ is a function

f : {1, . . . , n} → {1, . . . , n} such that ∑j∈ f−1(i) cj ≤ αc′i, for all i.

It is NP-complete to decide whether a 1-simulation exists (see Appendix A.1). The main

result of this section is that a (2− 1/n)-simulation always exists.

16

...

...

...

...1

C′ =

C =

1

2
α

1
α

2
α

...

...

...
...

...

...1 1

C′ =

C =

1 1

n
α

1
α

1
α

Figure 2.1: Two families of examples showing the tightness of the Simulation Lemma. Here

α = 2− 1/n. In both examples, every assignment of C to C′ gives some element of C′ at

least α times its capacity.

Lemma 1 (Simulation Lemma) For any capacity distributions C and C′ � C, a (2 − 1/n)-

simulation exists and can be found in time O(n log n).

The bound is exactly tight, as exhibited in Figure 2.1. In the remainder of this section, we

prove the lemma, and then use it to provide sufficient conditions for a cost function to have

constant price of heterogeneity (Theorem 1). In later sections, we will see that a number of

optimization problems satisfy those conditions.

Proof: Let α = 2− 1
n . The following algorithm produces an α-simulation f : {1, . . . , n} →

{1, . . . , n}. Begin by sorting the two capacity vectors in decreasing order. Maintain a vector

of available capacities A = (a1, . . . , an). Initially, A = (0, . . . , 0). For each i = 1 to n, perform

the following steps:

1. Set ai ← c′i.

2. Let j ∈ {1, . . . , i} be such that aj ≥ ci/α.

3. Set f (i)← j and aj ← aj − ci/α.

The algorithm can be implemented in O(n log n) time by storing A in a heap and taking j

to be the maximum element. It remains to be shown that (1) in each iteration, a suitable j

satisfying aj ≥ ci/α can be found, and (2) the resulting f is an α-simulation.

We show (1) first. After Step 1 of the ith iteration, the total capacity that has been

added to A is ∑
i
k=1 c′k, and the total capacity that has been subtracted is ∑

i−1
k=1 ck/α. So the

17

total capacity remaining in A after Step 1 of the ith iteration is

i

∑
k=1

c′k −
i−1

∑
k=1

ck

α
=

ci

α
+

i

∑
k=1

c′k −
i

∑
k=1

ck

α

≥ ci

α
+

(

1− 1
α

) i

∑
k=1

ck (since C′ � C)

≥ ci

α
+ i ·

(

1− 1
α

)

ci (since c1 ≥ · · · ≥ ci)

= i ·
(

ci

iα
+

(

1− 1
α

)

ci

)

.

Moreover, at step i there are ≤ i positive entries of A, so some entry must be ≥ ci
iα +

(

1− 1
α

)

ci. Plugging in α = 2− 1/n and noting that i ≤ n shows that this expression is at

least ci/α. Thus, a suitable j can be found.

We now show (2), i.e., that ∑i∈ f−1(j) ci ≤ αc′j for each j. Note that aj first became

positive by setting aj = c′j. Each time we set f (i) ← j for some i, the capacity assigned to

entry j increased by ci, and aj decreased by ci/α. Since aj ≥ 0 always, the total capacity

assigned to j is ≤ αc′j.

Theorem 1 Suppose a cost function g satisfies the following properties:

1. g(C, W) is nonincreasing in each component of C;

2. g(C, W) is a symmetric function of the components of C;

3. g(1
2 · C, W) ≤ β · g(C, W) for all C and W; and

4. g(D, W) ≤ g(C, W), where D is formed from C by replacing components i and j with ci + cj

and 0, respectively, for any C, W, i, and j.

Then the price of heterogeneity of g is ≤ β.

Proof: Let C and C′ be capacity distributions such that C′ � C. We must show g(C′, W) ≤
β · g(C, W). Let f be a 2-simulation as given by the Simulation Lemma, in which, for each i,

2c′i ≥ ∑j∈ f−1(i) cj
de f
= ei. Let E = (e1, . . . , en). We have

g(C′, W) ≤ β · g(2C′, W) (Property 3)

≤ β · g(E, W) (Property 1 and 2C′ ≥ E)

≤ β · g(C, W) (repeated application of Properties 2 and 4).

18

2.4 Scheduling on Related Machines

We now apply the results of the previous section to the problem of scheduling on

related machines. We are given a set J of jobs, each with a length ℓ(j), and an n-vector C of

processor speeds. We must schedule the jobs on our n machines so that each machine is

executing at most one job at any time. Machine i completes each job j in time ℓ(j)/ci, so if

it is given jobs Ji, it can finish its jobs in time ti = ℓ(Ji)/ci, where ℓ(J) := ∑j∈J ℓ(j).

There are many variants of this problem since there are many possible objective

functions, i.e., measures of the cost of a schedule. The most common is the makespan: the

time until the last job (equivalently, processor) finishes. We begin by analyzing the price

of heterogeneity of this variant of the problem (Section 2.4.1). We then generalize the re-

sult for other objective functions (Sections 2.4.2 and 2.4.3) before noting a complementary

property of the distribution of job lengths (Section 2.4.4).

2.4.1 Minimum Makespan Scheduling

In this section we analyze the price of heterogeneity of the minimum makespan

scheduling problem. More formally, we find the PoH of the cost function g(C, J) defined

as the minimum makespan of any schedule of jobs J on processors C.

Theorem 2 The price of heterogeneity of minimum makespan scheduling is 2− 1/n.

Our proof illustrates the basic technique we will use in later bounds on the PoH.

For concreteness of exposition and to obtain a slightly tighter bound, we use the Simulation

Lemma directly, rather than Theorem 1. Unlike our later results, in this case we provide

matching lower and upper bounds. The lower bound transfers from that of the Simulation

Lemma (Figure 2.1) because both the lemma and the makespan consider the maximum

amount of work assigned to a machine.

The proof will use a simple but important fact:

Fact 1 For any schedule of jobs on processors of speeds c1, . . . , ck (“parallel schedule”), there is a

serial schedule of those jobs on a single processor of speed c1 + · · · + ck (“serial schedule”) such

that each job completes before or at the same time as it did in the parallel schedule.

Proof: Schedule jobs on the single processor in order of their completion time in the par-

allel schedule, with ties broken arbitrarily. Consider any job j and suppose its completion

19

time in the parallel schedule is t. In the parallel schedule, the total length of all jobs com-

pleted by time t must be ≤ ∑
k
i=1 t · ci. The serial schedule executes those jobs before any

others, so they complete by time ≤
(

∑
k
i=1 t · ci

)

/(c1 + · · ·+ ck) = t.

This fact is related to Weighted Fair Queueing’s simulation of General Processor

Sharing [31, 91]. WFQ guarantees that each packet approximately meets its deadline in the

idealized GPS model: it may be delayed only by the maximum time it takes to send a

single packet [91]. From Fact 1 it can be seen that in the special case that all packets are

queued at time 0, WFQ exactly meets its deadline or is sent early.

We are now ready prove the theorem.

Proof of Theorem 2: We begin with the upper bound. Given any machine speeds C and

C′ � C, and any schedule of jobs J on machines C with makespan M, it is sufficient to

produce a schedule of the jobs on the C′-machines with makespan 2M.

Suppose jobs Jk ⊆ J are scheduled on machine k in the C-schedule. Let f : C→ C′

be the mapping defined by the Simulation Lemma. For each k, schedule jobs Jk on C′-

machine f (k). Now let F(i) := f−1(i) be the set of C-machines mapped to C′-machine i,

and let s = ∑k∈F(i) ck be the total speed of these machines. By Fact 1, a machine of speed s

could complete the jobs assigned to C′-machine i in time ≤ M. By the Simulation Lemma,

c′i ≥ s/(2− 1/n), so each C′-machine i completes its jobs in time ≤ (2− 1/n)M.

To show the lower bound, we can use either pair of capacity vectors in Figure

2.1, in both cases with n jobs of length 1. The reader can verify that OPT(C, J) = 1, but

OPT(C′, J) ≥ 2− 1/n.

2.4.2 General Objective Functions of Job Completion Times

Fact 1 is actually much stronger than was necessary to bound the makespan: it

bounds the completion time of each individual job, not just the last. This property lets us

analyze a large class of objective functions.

Let h : R
m → R

+ be a function of the job completion times. We say h is β-bounded

when h(2t) ≤ β · h(t) for all t. Examples of 2-bounded objective functions sometimes used

to evaluate the quality of a schedule are the maximum and mean job completion time and

the Lp-norm of the job completion times, i.e., h(t) =
(

∑
m
i=1 t

p
i

)1/p
, for p ≥ 1. The squared

completion time, h(t) = ∑i t2
i , is 4-bounded. The objective function h may be asymmetric,

20

as is possible in the case of weighted mean job completion time, which for any weighting

of the jobs is 2-bounded.

Corollary 1 Suppose h : R
m → R

+ is a nondecreasing, β-bounded function of the job completion

times. Let g(C, J) be the minimal value of h over all schedules of jobs J on machines C. Then g has

PoH ≤ β.

Proof: We apply Theorem 1. Property 1 results from the fact that job completion times are

inversely proportional to processor speed and h is nondecreasing. Property 2 is true since

optimal job completion times do not depend on the order in which the machines are listed.

Property 3 follows from β-boundedness of h, and Property 4 follows from Fact 1 and the

fact that h is nondecreasing.

2.4.3 General Objective Functions of Machine Completion Times

We may similarly consider bounded functions h of the machine completion times.

Here, following Theorem 1, we require that h is a symmetric function of its arguments. In

any case, since the PoH compares instances with the same set of jobs but a different set

of machines, giving machines identities makes less sense than giving jobs identities as the

previous section’s asymmetry allowed.

Corollary 2 Suppose h : R
n → R

+ is a nondecreasing symmetric β-bounded function of the

machine completion times. Let g(C, J) be the minimal value of h over all schedules of jobs J on

machines C. Then g has PoH ≤ β.

Proof: Again applying Theorem 1, Property 1 is satisfied as in Corollary 1. Properties 2

and 3 follow from symmetry and β-boundedness, respectively, of h. Finally, Fact 1 shows

that when merging machines, the completion time of the last job does not increase, so the

merged machine’s completion time must be at most that of one of the machines it replaced.

This combined with the fact that h is nondecreasing satisfies Property 4.

An interesting open problem would be to obtain tighter bounds for the Lp-norm

of machine completion times as a function of p. For the L1-norm in particular, the PoH is

1 since the optimal assignment places all tasks on the fastest machine, and that machine is

always at least as fast in C′ as in C.

21

2.4.4 A Complementary Result

We observe that the Simulation Lemma can also be used to describe the effect

of heterogeneity of job length distributions, in a way closely analogous to the price of

heterogeneity. Theorem 2 showed that as capacities C become more heterogeneous, the

minimum makespan OPT(C, J) can’t become much worse, for any fixed job lengths J—

thus confirming, within a factor of 2, the intuition that more heterogeneous capacities are

better. Similarly, in this section we show that as the job lengths become more homogeneous,

the makespan can’t become much worse, for any fixed node capacities—thus confirming,

within a factor of 2, the intuition that more homogeneous job lengths are better.

Theorem 3 Let J and J′ be vectors of m job lengths with J′ � J. For any C, OPT(C, J) ≤
(2− 1/m) ·OPT(C, J′).

Proof: Let f : J → J′ be a (2− 1/m)-simulation, which exists by the Simulation Lemma.

Then if J′-job j is executed on machine i in the optimal schedule, we place the J-jobs f−1(j)

on machine i. Since f is a (2− 1/m)-simulation, this increases total length of jobs placed

on i, and hence the completion time of any machine, by at most a factor 2− 1/m.

Examples analogous to those of Figure 2.1 show a matching lower bound for the

above theorem: that is, there exist vectors of m jobs J and J′ � J and node capacities C for

which OPT(C, J) = (2− 1/m) ·OPT(C, J′).

2.5 Precedence Constrained Scheduling

In the precedence constrained scheduling (PCS) problem [43], we are given node

capacities C, a set J of jobs, a length ℓ(j) for each j ∈ J, and a partial order ≺J on J. We

must schedule the jobs on the nodes as before, with the added constraint that if j1 ≺J j2

then job j1 must complete by the time j2 begins. The cost is the minimum makespan of

such a schedule.

The key difficulty in transferring the simulation technique to PCS lies in adapting

Fact 1. When merging the work of two machines of capacities c1 and c2 into one machine

of capacity c1 + c2, it is no longer sufficient to show that the completion time of each job

does not increase. To satisfy precedence constraints without a global modification of the

22

schedule, one would have to devise a schedule for which the start time of each job does not

decrease.

In fact, we show that the direct application of the simulation technique cannot

possibly succeed: there are instances for which having each C′-machine perform the work

of some subset of the C-machines must result in at least a factor n/4 inflation of the

makespan (Theorem 4). This is perhaps surprisingly bad, since one can obtain a factor

n inflation by putting all the jobs on the single fastest machine, completely ignoring the

other n − 1 machines! Intuitively, the simulation technique performs poorly since map-

ping several C-machines onto one C′-machine reduces parallelism. The result is that long

jobs will occasionally interrupt a sequence of short jobs, which in turn causes idle time on

all machines whose jobs depended on those short jobs.

However, the simulation technique can be applied in an LP relaxation of PCS [24],

intuitively because that LP lets a single machine run multiple jobs in parallel. This pro-

duces an upper bound on PCS’s PoH of O(log n) in the general case (Corollary 3) and

O(1) when there are only a constant number of distinct machine speeds (Corollary 4). If

job lengths vary by at most a constant factor, then we can show an analog of Fact 1 and

obtain a O(1) PoH (Corollary 5). Finally, we show that the general case of PCS has a prop-

erty which is necessary, but not sufficient, for O(1) PoH: the homogeneous distribution is

within a constant factor of the worst case (Corollary 6).

2.5.1 A Lower Bound for the Simulation Technique

The following theorem shows that there are PCS workloads for which having

each C′-machine perform the work of some subset of the C-machines must result in a

factor n/4 inflation of the optimal makespan.

Theorem 4 There exist capacity vectors C and C′ � C and an instance (C, J, ℓ,≺J) of precedence

constrained scheduling with an optimal schedule of makespan OPT which maps jobs to machines

according to h : J → {1, . . . , n}, such that for any f : {1, . . . , n} → {1, . . . , n}, scheduling

instance (C′, J, ℓ,≺J) by placing job i on machine f (h(i)) has makespan ≥ 1−o(1)
4 · n ·OPT.

Proof: We take C = (1, . . . , 1) and C′ = (2, . . . 2, 0, . . . , 0), i.e. n/2 machines of speed 2. The

problem instance is as follows. We have n groups of jobs, indexed 1 through n. Group i

consists of kn−i jobs of length ki. We choose a convenient k later. The optimal C-schedule

23

Jobs

...

1

2

...

n

Nodes

k

k2

kn

Figure 2.2: An instance of PCS on which the simulation technique fails.

places group i on machine i, as shown in Figure 2.2. The set of precedence constraints

is the maximum set for which the above schedule is valid. That is, we have a constraint

j1 → j2 iff job j1 completes by the time job j2 starts. Note that the resulting makespan on

the C-machines is kn, and this is optimal since no machine is idle until all jobs are complete.

Now suppose that we map the C-machines to C′-machines according to some

f : {1, . . . , n} → {1, . . . , n}, and we restrict ourselves to executing the group-i jobs on C′-

machine f (i) as in the theorem statement. We seek to lower-bound the makespan of any

such schedule.

Define a group as obstructing if it is assigned by f to a machine which is also

assigned a group of smaller jobs. Let g1, . . . , gm be the indexes of the obstructing groups,

with g1 ≤ · · · ≤ gm. Note m ≥ n/2 since there are n groups and only n/2 machines with

positive capacity. Let t(gi) be the time spent executing group gi during which no job from

any larger obstructing group is being executed. Note that the makespan of the schedule is

≥ ∑
m
i=1 t(gi). We now lower-bound each t(gi). First we need a key fact:

Fact 2 While any job from an obstructing group gi is executing, at most 2kgi−j−1 jobs in any

smaller-indexed group j < gi can execute on any other machine.

Proof: Let x be a gi job, and let D be the set of group-j jobs executed on any machine during

x. We wish to upper-bound |D|.
Since gi is obstructing, there is some smaller group on the same machine. Let

Y be the set of those smaller jobs. To handle boundary cases cleanly, augment Y with

two “marker jobs” γ1 and γ2, both of zero length, with γ1 at the beginning of the chain

of dependencies in Y and γ2 at the end. We may assume w.l.o.g. that γ1 is the first job

executed on its machine and γ2 is the last.

24

Since a machine can only execute one job at a time, there exist two jobs y1, y2 ∈ Y

such that y1’s immediate successor is y2, y1 is executed before x, and x is executed before

y2. Thus, since y1 has completed when x starts, D cannot include any jobs on which y1 de-

pends. Similarly, since y2 has not yet completed, D cannot include any jobs which depend

on y2. Thus, D includes only group-j jobs that, according to the precedence constraints,

can execute concurrently with y1 or y2. The total length of such jobs is at most the length

of y1 plus the length of y2, which is ≤ 2kgi−1. Since each group-j job has length kj, we have

|D| ≤ 2kgi−1/kj = 2kgi−j−1, as desired.

Now consider some obstructing group gj. By Fact 2, the number of gj-jobs exe-

cuted during a job of length kgi is ≤ 2kgi−gj−1. Since there are kn−gi jobs of length kgi , the

total number of gj-jobs executed during longer obstructing jobs is

m

∑
i=j+1

kn−gi · 2kgi−gj−1 ≤ 2
n

∑
i=j+1

kn−gj−1 ≤ 2n · kn−gj−1.

Since there are kn−gj group-gj jobs to begin with, the number of group-gj jobs not executed

during longer obstructing jobs is ≥ kn−gj − 2n · kn−gj−1 = (1− o(1))kn−gj for k = n2 (recall

k is arbitrary). The time per job is kgj /2 since all C′-machines have speed 2. Thus, we have

that t(gj) ≥ (1− o(1))kn−gj · kgj /2 = 1
2 (1− o(1))kn = 1

2 (1− o(1)) ·OPT.

Since this is true for all obstructing groups, we have that the makespan of the

C′-schedule is at least ∑
m
j=1 t(gj) ≥ m · 1

2(1− o(1)) ·OPT. As noted above, m ≥ n/2, which

proves the theorem.

2.5.2 Upper Bounds

We begin with an upper bound for the general case of PCS.

Corollary 3 The PoH of precedence constrained scheduling is O(log n).

Proof sketch: Chudak and Shmoys [24] gave a linear programming relaxation of PCS

which formed the basis of their O(log n)-approximation algorithm, which is the best known.

This LP relaxation does not include the constraint that a machine executes at most one job

at a time. It is thus easy for one fast machine to simulate the work of several slow machines,

so we can apply the Simulation Lemma to show that the optimal solutions to the LP have

O(1) PoH. By the main result of [24], the optimal solution to PCS is at most O(log n) times

the LP’s solution.

25

The full proof appears in Appendix A.2. We also obtain a second corollary based

on the results of [24]:

Corollary 4 Restricted to instances with a constant number of distinct machine speeds, PCS has

PoH O(1).

Proof: Follows from the result of [24] that the optimal values of the LP relaxation are within

O(1) of the true optimum when there are O(1) distinct machine speeds.

The following corollary obtains a constant PoH for a special case of PCS.

Corollary 5 The PoH of precedence constrained scheduling with unit-size jobs is ≤ 16.

Proof: Consider any capacities C, C′ � C, and jobs J, and suppose the best schedule on the

C-machines executes job j on machine m(j) during [t(j), t(j) + 1/cm(j)). It is sufficient to

show a C′ schedule such that each job is executed within [16 · t(j), 16 · (t(j) + 1/cm(j))]. We

first modify the schedule to make it more convenient: round the C-machine speeds down

to the nearest power of 2, and execute each job j at a time which is a multiple of 1/cm(j).

Each of these modifications at most doubles the length of the schedule. Let C∗ and t∗(·) be

the resulting capacities and execution times.

Now let f be given by the Simulation Lemma. Consider the machines f−1(i) for

some i. First, we merge each pair of machines m1, m2 ∈ f−1(i) for which c∗m1
= c∗m2

by

replacing them with a machine of capacity 2c∗m1
. We revise the execution time of each job

j as t∗(j) = t∗(j) if m(j) = m1, and t∗(j) = t∗(j) + 1
2 · 1/c∗

m(1) if m(j) = m2. Completion

times do not increase since the machine capacity has doubled, and jobs do not overlap

since each t∗(j) was a multiple of 1/cm(j). Iterating this merging of the machines in f−1(i),

we are left with k machines m1, . . . , mk of unique power-of-two capacities 21, . . . , 2k (some

may be missing).

We can now schedule these machines’ jobs on a single machine m of capacity 2k+1

without changing the range of time in which each job is executed, as follows. Break time

into slots of length 1/2k+1, the length necessary to process one job on machine m. For each

job j1 on machine mk, there are two available slots within its scheduled time [t∗(j1), t∗(j1) +

1/2k]. Place each job in one of these slots arbitrarily. For each job j2 on machine mk−1, there

still remain two available slots within the larger time [t∗(j2), t∗(j2) + 1/2k−1], so we can

recursively schedule the jobs on machines m1, . . . , mk−1 in the same manner.

26

The Simulation Lemma guarantees c′i ≥ 1
2 ∑ℓ∈ f−1(i) cmℓ

≥ 1
2 · 2k. We used a ma-

chine of speed 2k+1, so this increases the makespan by a factor of 4. Combining this with

our earlier modification of the schedule, the corollary follows.

Our final upper bound for PCS shows that the homogeneous distribution is within

a constant factor of the worst case.

Corollary 6 Let OPT(C′, W) be the optimal makespan of an instance W of PCS with capacities

C′. Then OPT(C′, W) ≤ 4 ·OPT(⊥, W) for any C′, where ⊥ = (1, . . . , 1).

Proof: Produce distribution D from C′ by setting to 0 any element i with c′i ≤ 1
2 . We

will show OPT(C′, W) ≤ OPT(D, W) ≤ 4 · OPT(⊥, W). The first inequality is trivial

since c′i ≥ di∀i. For the second inequality, schedule the jobs on D using Graham’s classic

list scheduling algorithm [49] as follows: at time 0, we iteratively place any job whose

precedence constraints have been satisfied onto any idle machine of positive capacity, until

no such jobs remain or all machines are busy. Whenever any job finishes, we repeat that

greedy placement procedure. Let S be the resulting schedule.

To bound the length of S, we need only slightly adapt the standard bounds used

for Graham’s algorithm. Note that there exists a precedence-constrained chain of jobs

j1 → · · · → jk such that at any time during S, either (1) all machines are busy, or (2) some

job ji in the chain is executing. Let L1 and L2, respectively, be the total length of time

spent in each of these states. To bound L1, we use the fact that the amount of time that all

machines can be busy is at most the total length of all jobs divided by the total machine

speed, which for D is ≥ n
2 ; so L1 ≤ 2

n · ∑j∈J ℓ(j). But OPT(⊥, W) ≥ 1
n ∑j∈J ℓ(j) since

the total capacity in ⊥ is n, and thus L1 ≤ 2 ·OPT(⊥, W). To bound L2, note that every

job in the chain j1 → · · · → jk is executed at speed ≥ 1
2 , while OPT(⊥, W) must also

execute this chain serially using machines of speed 1. Thus, L2 ≤ 2 · OPT(⊥, W) and

OPT(D, W) ≤ L1 + L2 ≤ 4 ·OPT(⊥, W).

2.6 Resource Constrained Scheduling

Resource constrained scheduling [43] (RCS) generalizes minimum makespan schedul-

ing by adding some number k of resources specified by the problem instance, each of which

is shared across all the processors. Each job j is then associated with not only a length but

27

also a resource requirement ri(j) ∈ [0, 1] for each resource i ∈ {1, . . . , k}. We require that

∑j∈Et
ri(j) ≤ 1 for all times t and each resource i, where Et denotes the set of jobs executing

at time t. A resource requirement could represent, for example, a required fraction of the

available bandwidth on a shared network interface, exclusive write access to a particular

lock (ri(j) = 1), or read access to the lock (ri(j) = 1/|J|, where |J| is the number of jobs).

We next upper-bound the PoH of RCS by that of PCS. In fact, we prove a some-

what stronger claim:

Theorem 5 The PoH of scheduling with both resource and precedence constraints is at most the

PoH of PCS.

Proof: Suppose the PoH of PCS is α = α(n). Consider any C, C′ � C, and workload

instance W1 which may include both precedence and resource constraints. Let S be an

optimal schedule of W1 on the C-machines. Construct workload W2 from W1 by removing

all resource constraints, and adding every possible precedence constraint which maintains

feasibility of S: that is, we add a precedence constraint j1 → j2 for any jobs j1, j2 such that

j1 completes by the time j2 begins in S.

To prove the theorem we will show that OPT(C′, W1) ≤ OPT(C′, W2) ≤ α ·
OPT(C, W2) ≤ α · OPT(C, W1), where OPT(C, W) denotes the minimum makespan of

a schedule with workload W on machines C. The second inequality follows from the fact

that the PoH of PCS is α. The third follows from the fact that S, an optimal schedule for

W1, is also feasible for W2.

For the first inequality, it is sufficient that any feasible schedule of W2 is also fea-

sible for W1: that is, the added precedence constraints are at least as restrictive as the

removed resource constraints. For any feasible schedule of W2, let Et be the set of jobs

running at any time t. We will show ∑j∈Et
ri(j) ≤ 1, so that the resource constraints of W1

are satisfied at all times. It is sufficient to show that the jobs Et are executed concurrently

at some time during schedule S. Suppose j1 is the job in Et which begins last in S, at time

t1; and j2 is the job in Et which finishes first in S, at time t2. Clearly, t1 < t2 or else there

would be a precedence constraint j2 → j1 in W2, which there cannot be since all jobs in Et

are run concurrently. So at time (t1 + t2)/2 in S, all jobs in Et have started, and none have

finished, so all are running.

28

2.7 Scheduling With Release Times

The last scheduling problem we consider is scheduling with release times. We must

produce an offline schedule of jobs J on machines C as in scheduling on related machines,

except that we are also given for each job j ∈ J a release time r(j) before which j may not be

executed. Our cost function g(C, (J, r)) is the minimal total response time of any schedule of

jobs J with release times r on machines C. We define total response time as the sum over

all jobs j of the time j spends in the system normalized by its length: t(j)+ℓ(j)/c−r(j)
ℓ(j) , where

t(j) is the start time of job j and c is the capacity of the machine on which it is run.

Similar release time constraints appear in Garey and Johnson [43], but we borrow

the response time objective from queuing systems such as [128], in which it is known that

decreasing parallelism—i.e., increasing heterogeneity—can significantly increase response

time (see discussion in Section 2.10).

It is easy to observe that even moving from two machines to one can be quite

disadvantageous. As in PCS, reduced parallelism causes short jobs to be held up by long

jobs.

Theorem 6 The price of heterogeneity of scheduling with release times with job sizes in [1, k] is

Ω(k).

Proof sketch: Let C = (1, 1) and C′ = (2, 0). Suppose J consists of mk jobs of size 1 arriving

at times 0, 1, . . . , mk− 1 and m jobs of size k arriving at times 0, k, 2k, . . . , mk− k. These can

be scheduled as they arrive on the C-machines, for a total response time of Θ(mk). Now

consider scheduling these jobs on the single C′-machine of nonzero capacity. Either Θ(m)

long jobs are delayed for time Θ(km) until all short jobs are complete, or each of Θ(m) long

jobs delays Θ(k) short jobs for time Θ(k) each. Picking m = k2, in either case total response

time is Ω(k4), compared with Θ(k3) for the C-machines.

The full proof appears in Appendix A.3.

2.8 Network Construction

In designing a communication network, a typical goal is to minimize the num-

ber of hops between any two nodes, subject to bounds on the maximum number of links

29

incident to each node. For example, in placing physical links between nodes of a super-

computer or cluster, each node may have a limited number of network ports. In an overlay

multicast network, each link may involve forwarding a stream of multicast data, so the de-

gree of a node would be limited by its available bandwidth. Constructing such networks

with low maximum latency between nodes involves a classic tradeoff [26] between degree

and diameter.

In this section we will study how the optimal diameter changes as the degree

bounds become more heterogeneous. Note that in the following formulation, we do not

make use of the “workload” parameter of the cost function. Also, in the proof, we do not

apply the Simulation Lemma because the capacities specify hard constraints which cannot

be violated (Condition 3 of Theorem 1 would not be satisfied).

Definition 3 (Minimum Graph Diameter) Given positive integer degree bounds C = (c1, . . . , cn),

MinDiam(C) is the minimum diameter of a graph G in which deg(i) ≤ ci for all nodes i.

Theorem 7 The price of heterogeneity of MinDiam is ≤ 2.

Proof: We will show MinDiam(C′) ≤ 2 · TREE(C′) ≤ 2 · TREE(C) ≤ 2 · MinDiam(C),

where TREE(·) is the minimal height of a rooted tree with given degree bounds. The first

inequality follows from the fact that a tree’s diameter is at most twice its height, and the

third follows from the fact that the shortest-path tree rooted at any node of a graph has

height at most the graph’s diameter.

For the second inequality, we will exhibit a sequence of trees T1, . . . , Tk and a

corresponding sequence of degree bounds C = C1, C2, . . . , Ck = C′ such that each tree Ti

satisfies degree bounds Ci and the height of the trees do not increase as we proceed through

the sequence. Moreover, we let T1 be the optimal tree for degree bounds C, allowing us to

conclude that TREE(C′) ≤ TREE(C).

In each step, we produce Ci+1 from Ci by transferring one unit of capacity (a unit

bound on the degree) from some node j to ℓ, where ci
ℓ
≥ ci

j; a standard fact is that such

a sequence of transfers always exists when C′ � C [82]. To produce tree Ti+1 from tree

Ti, we first test whether level(ℓ) ≤ level(j), where level(·) denotes distance from the root.

If this is not true, we transfer ci
ℓ
− ci

j child subtrees from node ℓ to node j (or as many as

exist if ℓ has fewer subtrees) and swap the labeling of the nodes, so that we may assume

w.l.o.g. that level(ℓ) ≤ level(j). Finally, we transfer one child subtree from node j to node

30

ℓ to match the degree bounds Ci+1 (if j has a subtree). Since these operations all involve

moving subtrees closer to the root, the height can only decrease.

2.9 A Worst Case for Testing

In this section, we discuss how the price of heterogeneity can provide a worst

case for testing, using load balancers for distributed hash tables (DHTs) as an example.

Most DHTs have been designed without knowledge of their eventual deploy-

ment environment, which might be a homogeneous cluster, a worldwide managed system

like PlanetLab [93] (whose nodes vary in memory, disk space, and processor speed by fac-

tors of 4 to 141), or a peer-to-peer system like Gnutella (whose nodes vary in bottleneck

bandwidth by at least three orders of magnitude [107]). With such a wide range of target

deployments, it may be valuable to test under a capacity distribution which would bound

the system’s performance in any deployment scenario. If we have a cost function g(C, W)

which models the system well, and if g has PoH α, then the system’s cost under homo-

geneous capacities is within a factor α of the worst case regardless of the workload W,

assuming n and the total capacity are fixed. We next argue that in the case of DHT load

balancing, it is possible to produce such a cost function g which is a reasonable model of

the system.

Several proposed DHT load balancers [44,71] as well as Amazon’s Dynamo stor-

age system [30] assign ownership of objects stored in the system by first partitioning the

objects among virtual nodes, and then placing virtual nodes on physical nodes. Each virtual

node has an associated load, such as the rate of incoming requests for objects stored on it.

The goal is to assign virtual nodes to physical nodes in a load-balanced way.

More specifically, suppose we desire to minimize the mean latency experienced

by users of the system. Further assume that the latency experienced by a user connected to

physical node i is ui/ci, where ui is the total number of users connected to i among all of its

virtual servers. If virtual server j has ℓ(j) users, and the set of virtual servers Ji is assigned

to physical node i, we can write the users’ total latency by summing over physical nodes as

g(C, J) = ∑i ℓ(Ji)
2/ci, where ℓ(Ji) = ∑j∈Ji

ℓ(j) = ui. The following corollary implies that

1As of February 16, 2005, CoMon [92] reported memory between 0.49 and 1.98 GB and disk size between
32.7 and 264.7 GB among PlanetLab nodes. By September 29, 2006, these ranges had increased, with 0.49-3.78
GB of memory, 25.5-363 GB of disk, and CPU speeds ranging from 0.7 to 3.6 GHz. Data was unavailable for
some nodes.

31

if the DHT load balancer finds assignments of virtual to physical nodes that are within a

factor α of optimal, then mean latency will be within a factor 2α of the mean latency under

homogeneous capacities, for any pattern of load on the virtual servers.

Corollary 7 The price of heterogeneity of g(C, J) is ≤ 2.

Proof: Applying Theorem 1, Properties 1, 2, and 3 with β = 2 are immediate. Property 4

follows since for any x, y, c1, c2 > 0,

(x + y)2

c1 + c2
≤ x2

c1
+

y2

c2
,

which can be shown by several lines of algebra.

2.10 Related Work

To the best of our knowledge, the price of heterogeneity is the first proposed

model which can broadly characterize the effect of heterogeneity. However, some particu-

lar systems have been studied, which we describe next.

In many systems, it has been recognized that a heterogeneous capacity distribu-

tion is significantly preferable to a homogeneous one. For example, heterogeneity in the

participating nodes’ bandwidth constraints can reduce route lengths in distributed hash

tables (DHTs) [48, 96] and in unstructured peer-to-peer file sharing systems [23], and can

improve load balance in DHTs [44]. In supercomputing, designs using a few fast proces-

sors and many slower processors have been evaluated against homogeneous systems [5,6].

These studies generally look at specific capacity and workload distributions. The price of

heterogeneity is complementary since we examine the worst case over all capacity distri-

butions and workloads.

Closer to our model, Yang and de Veciana [131] studied a branching process

model of a BitTorrent-like content distribution system in its transient phase, such as during

the arrival of a flash crowd. The analysis showed that expected service capacity increases

as the distribution of node bandwidth becomes more heterogeneous, in the sense of in-

creasing convex orderings (which generalize majorization to random variables).

As mentioned in the introduction, an important special case of our model is when

capacities are restricted so that there are m nodes of capacity n/m and n−m of capacity 0.

32

The price of heterogeneity upper-bounds the increase in cost as m decreases. In queueing

theory, a well known result is that among M/M/m queues (m servers of speed n/m with

exponential job service times), m = 1 is optimal [112]. However, for various other job

service time distributions, mean response time may be minimized when m > 1 (see [128]

and the references therein). Intuitively, this is because parallelism keeps many small jobs

from being held up by one big job. This fact corresponds to the super-constant price of

heterogeneity of scheduling with release times (Section 2.7).

2.11 Summary

In this chapter we introduced the price of heterogeneity, which quanitifies the

worst-case increase in cost as heterogeneity increases. We gave constant or logarithmic

bounds on the price of heterogeneity of several well-known job scheduling and graph

construction problems, indicating that in many cases, increasing heterogeneity can never

be much of a disadvantage. These results provide the quantitatively justified intuition and

theoretical framework that will inform subsequent chapters of this thesis.

We have left a number of directions for future research. First, our bounds could

be tightened; resolving the question of whether precedence constrained scheduling has

constant price of heterogeneity is of particular interest.

Second, one could analyze other cost functions, such as scheduling with ran-

dom (rather than adversarial) workloads, schedules obtained by heuristics (rather than

the optimal schedules), or the Nash equilibria of network congestion and load balancing

games [66, 119]. Note that our results, which bound the PoH of optima, can yield bounds

for the latter two items. For example, if a game has price of anarchy α and its social optima

have price of heterogeneity β, then the Nash equilibria have price of heterogeneity ≤ αβ.

However, it may be interesting to analyze the PoH of common heuristics which do not

give good approximation ratios. Relatedly, Suri et al. [119] have asked whether the price

of anarchy itself decreases when machine speeds in their load balancing game become

heterogeneous. Our framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the notion of heterogeneity

to allow nodes to have multiple kinds of capacity, or in general more than one attribute,

may broaden its applicability.

33

Chapter 3

Heterogeneity and Load Balance in

Distributed Hash Tables

The first two chapters of this thesis demonstrated that significant heterogeneity

is prevalent in modern distributed systems, and that heterogeneity provably cannot be a

significant disadvantage in broad classes of systems. But this analysis assumed systems

which adapt to their heterogeneous environments; designing such a system can be non-

trivial. It is typically easier to assume that all participants have equal roles, rather than

automatically adapting to arbitrary heterogeneous environments. The remaining chapters

of this thesis will develop techniques for adapting to and taking advantage of heterogene-

ity.

We begin with the design of hetergeneity-aware distributed hash tables (DHTs),

which are highly scalable distributed storage systems. Early DHTs were designed primar-

ily for nodes with equal capabilities and had not been evaluated in heterogeneous scenar-

ios. Additionally, in both the homogeneous and heterogeneous cases, previous methods

of balancing load in DHTs incurred a high overhead either in terms of routing state or in

terms of load movement generated by nodes arriving or departing the system.

This chapter introduces a new protocol, called Y0, which applies to the Chord

DHT a general technique that we develop called Low Cost Virtual Server Selection. Y0 bal-

ances load with minimal overhead under the typical assumption that the load is uniformly

distributed in the identifier space. In particular, we prove that Y0 can achieve near-optimal

load balancing, while moving little load to maintain the balance and increasing the size of

34

the routing tables by at most a constant factor. Simulations based on real-world and syn-

thetic capacity distributions indicate that Y0 reduces the ratio of the maximum load to the

mean load on a node from Chord’s O(log n) to less than 3.6 without increasing the number

of links that a node needs to maintain.

In addition, we study the effect of heterogeneity on both DHTs, demonstrating

significantly reduced average route length as node capacities become increasingly hetero-

geneous. However, Y0 better adapts the topology of its overlay network to hetergeneous

environments. For a real-word distribution of node capacities with n = 32, 768 nodes,

Chord’s mean route length is 22% shorter than in a homogeneous system, while Y0’s is

33% shorter. The asymptotic improvements (i.e., as n → ∞) are empirically 23% and 55%

for Chord and Y0, respectively.

3.1 Introduction

The distributed hash table (DHT) is a flexible and general infrastructure that can

support a large variety of applications including file sharing [27, 83], storage systems [67],

query processing [57], name services [123], and communication services [20, 113, 134]. A

DHT manages a global identifier (ID) space that is partitioned among n nodes organized

in an overlay network. To partition the space, each node is given a unique ID x and owns

the set of IDs that are “closest” to x. Each object is given an ID, and the DHT stores an

object at the node which owns the object’s ID. To locate the owner of a given ID, a DHT

typically implements a greedy lookup protocol that contacts O(log n) other nodes, and

requires each node to maintain a routing table of size O(log n).

One central challenge in DHT design is how to balance load across the nodes in

the system. Even in the case of a homogeneous system where all nodes have the same ca-

pacity, DHTs can exhibit an O(log n) imbalance factor [114], meaning that some nodes own

O(log n) times the average share of the ID space. Since most DHTs treat all participating

nodes equally, the imbalance can significantly increase as the heterogeneity of the system

increases.

Two classes of solutions have been proposed so far to address this challenge. So-

lutions in the first class use the concept of virtual servers [27, 63]. Each physical node

instantiates one or more virtual servers with random IDs that act as peers in the DHT. In

the case of a homogeneous system, maintaining Θ(log n) virtual servers per physical node

35

reduces the load imbalance to a constant factor. To handle heterogeneity, each node picks

a number of virtual servers proportional to its capacity. Unfortunately, virtual servers in-

cur a significant cost: a node with k virtual servers must maintain k sets of overlay links.

Typically k = Θ(log n), which leads to an asymptotic increase in overhead.

The second class of solutions uses just a single ID per node [65, 77, 87]. However,

all such solutions must reassign IDs to maintain the load balance as nodes arrive and de-

part the system [87]. This can result in a high overhead because it involves transferring

objects and updating overlay links. In addition, none of these solutions handles hetero-

geneity directly, although they could be combined with the virtual server technique.

In this chapter, we present a simple DHT protocol, called Y0, that addresses the

above drawbacks. Y0 is based on the concept of virtual servers, but with a twist: instead of

picking k virtual servers with random IDs, a node clusters those IDs in a random fraction

Θ(k/n) of the ID space. This allows the node to share a single set of overlay links among

all k virtual servers. As a result, we can show that the number of links per physical node

is still Θ(log n), even with Θ(log n) virtual servers per physical node.

In addition, we show that heterogeneity, rather than being an issue, can be an

asset. Higher-capacity nodes have a denser set of overlay links and lower-capacity nodes

are less involved in routing, which results in reduced route length compared to the homo-

geneous case. While both Chord and Y0 see improvement, Y0’s is more significant because

its placement of virtual servers provides more control over the topology.

Like most previous DHT work, we operate under the uniform load assumption:

the load of each node is proportional to the size of the ID space it owns. This is reason-

able when all objects generate similar load (e.g., have the same size), the object IDs are

randomly chosen (e.g., are computed as a hash of the object’s content), and the number

of objects is large compared to the number of nodes (e.g., Ω(n log n)). Alternately, we can

unconditionally balance the expected load over uniform-random choices of object IDs.

Our main contributions are the following:

• We introduce a heterogeneity-aware ID selection algorithm for ring-based DHTs,

Low-Cost Virtual Server Selection (LC-VSS). We prove that LC-VSS can balance the

ID space partitioning within a factor (1 + ε) of optimal for any ε > 0, and that while

the system size and average capacity remain relatively stable, the amount of load

movement to maintain that balance is nearly optimal.

36

• We prove that LC-VSS can be used with arbitrary overlay topologies while increasing

route length by at most an additive constant and outdegree by at most a constant

factor, even with Θ(log n) virtual servers. Furthermore, our construction provides

some flexibility in neighbor selection, even if the underlying topology lacks it.

• We apply LC-VSS to Chord and extensively evaluate the resulting protocol, called Y0.

Simulations in various capacity distributions indicate that Y0 ensures that all nodes

have less than 3.6 times their fair share of the ID space with no more overlay links

than in Chord with a single virtual server. Furthermore, we show that heterogeneity

decreases route length in Chord and more significantly in Y0, with Y0’s route lengths

roughly 33% shorter in a real-world distribution than in the homogeneous case for

n = 32, 768, or 55% shorter asymptotically.

The rest of this chapter is organized as follows. Section 3.2 discusses our model,

the ID selection problem, and the technique of virtual servers. Section 3.3 introduces LC-

VSS and its application to Chord to produce the Y0 DHT. Section 3.4 gives theoretical guar-

antees on Y0’s performance when it is generalized to arbitrary overlay topologies. Sec-

tion 3.5 evaluates Y0 and Chord through simulation. Section 3.6 discusses related work

and Section 3.7 concludes.

3.2 Preliminaries

3.2.1 Model and Assumptions

We assume a system with n physical nodes. Node v has a fixed capacity cv. Ca-

pacities are normalized so that the average capacity is 1; that is, ∑v cv = n. Our use of

a scalar capacity assumes that there is a single important resource on which nodes are

constrained, such as storage space, processing speed, or last-mile bandwidth.

We say that an event happens with high probability (w.h.p.) when it occurs with

probability 1−O(n−1).

We assume that, with high probability, every node v can estimate n and its own

capacity cv fairly accurately. Specifically, with high probability, for all v node v produces

an estimate ñv of n such that 1
γn

n ≤ ñv ≤ γnn. (Thus, the probability that any node has

a poor estimate is O(n−1).) Similarly, with high probability, for all v node v produces an

37

estimate c̃v such that 1
γc

cv ≤ c̃v ≤ γccv. We further assume these estimates are unbiased.

Estimation of n is discussed in [77]. Since capacities are normalized, to estimate cv, a node

will need an estimate of the average capacity. One may obtain a crude estimate through

random sampling of other nodes, such as the successors in the ID space. While this esti-

mate is unbiased, it can have high variance depending on the capacity distribution. The

techniques of [88] could be applied to DHTs to estimate both n and the average capacity

and would provide guarantees on the quality of the estimate for any capacity distribution.

We assume a DHT that manages a unit-size circular ID space, i.e., [0, 1) ⊆ R with

arithmetic modulo 1. We assume the DHT uses consisting hashing [63] to partition the ID

space among the nodes as in Chord. Each node v picks an ID id(v) ∈ [0, 1) and is assigned

ownership of the region (id(w), id(v)] where id(w) is the nearest preceding node’s ID.

A node may pick multiple IDs (virtual servers) in which case it owns the union of the

associated regions.

3.2.2 The ID Selection Problem

Under the uniform load assumption, the load on a node will be proportional to

the size of the ID space it owns. Thus, picking a load-balanced partitioning amounts to

selecting appropriate IDs for the nodes, which we call the ID selection problem. A good

solution has the following properties.

Low maximum share Let the share of node v be the fraction fv of the ID space assigned

to it, divided by its “fair share” of the ID space:

share(v) =
fv

cv/n
.

To achieve a good load balance, the maximum share of any node in the system should

be as low as possible—ideally 1, in which case the load on each node would be ex-

actly proportional to its capacity.

Low load movement To maintain load balance, nodes may need to select different IDs

when other nodes arrive or depart. This can be costly because reassigning owner-

ship of the ID space implies data movement and changes to the overlay connections.

Thus, we desire little change in the ID space partitioning upon node arrivals and

departures.

38

Low normalized degree The normalized degree of a node v is deg(v)/cv, where deg(v)

is the number of distinct nodes to which v maintains connections or which maintain

connections to v in the overlay network used for routing. We wish to minimize the

average and maximum normalized degree. ID selection directly impacts node degree

since the overlay topology is defined in terms of the partitioning of the ID space.

The main reason for the last objective is not to reduce the memory footprint of the

routing table, but to reduce the overhead of the control traffic required to keep the routing

table entries up to date. For example, as we will see, a Chord node may easily have 50

neighbors. Assuming it sends each neighbor a minimum-length UDP message of 28 bytes

every 1 second to verify liveness, this results in 1.4 KB/sec of traffic. That rate may already

be significant if our goal is for the DHT to be very low-overhead infrastructure—and using

10 basic virtual servers per node, the traffic incrases to an undesirable 14 KB/sec. Traffic

can be reduced by pinging less frequently but this proportionally increases the time to

detect a failure.

3.2.3 Basic Virtual Server Selection (Basic-VSS) Scheme

As discussed in the introduction, the virtual server technique can be used to bal-

ance load not only in a homogeneous system, but also in a heterogeneous system [27].

However, the precise way in which the technique is applied to highly heterogeneous sys-

tems has not been specified. In the reminder of this section we present a simple strategy

that we later adapt in Y0.

Let α = α(n) be the number of virtual servers per unit capacity. When α = 1,

nodes of average capacity have a single virtual server, but the maximum share is Θ(log n).

When α = Θ(log n), we can achieve Θ(1) maximum share but the degree of a node in-

creases by a factor α = Θ(log n).

The main issue we address in this section is how to handle low capacity nodes.

Since the total system capacity is n, there are roughly αn virtual servers. Thus, the expected

fraction of ID space associated with a single virtual server is 1/(αn). There is a tradeoff

in the choice of α: if α is small, very low capacity nodes will be overloaded even if they

maintain only a single virtual server. On the other hand, a large α leads to high degree, as

even nodes of average capacity must maintain α virtual servers and the associated overlay

connections for each. In particular, to ensure that the nodes of minimum capacity cmin

39

1. ñ, c̃v ← estimates of n and cv, respectively

2. m← if c̃v < γd then 0 else ⌊0.5 + c̃vα(ñ)⌋

3. Choose m virtual servers with IDs r1, . . . , rm where each ri is uniform-random ∈ [0, 1)

4. Reselect IDs as above when c̃v changes by a factor ≥ γu or ñ changes by a factor ≥ 2

Figure 3.1: The Basic Virtual Server Selection Scheme (Basic-VSS), run at each node v.

Parameter Description

γc, γn ≥ 1 Bound the maximum factor error (w.h.p.) in each node’s estimate of its
capacity and of n, respectively; see Section 3.2.1.

γd < 1 Capacity threshold below which a node is discarded.
γu > 1 Each node updates its IDs when its estimate of its capacity changes by a

factor γu. (must have γu > γc to avoid instability)
α(n) Number of virtual servers per unit capacity (Section 3.2.3).

Figure 3.2: Parameters of both Basic-VSS and Y0’s LC-VSS.

have close to their fair share cmin/n of the ID space, we must have 1/(αn) = O(cmin/n),

i.e., α = Ω(1/cmin). But since cmin may be arbitrarily small, α may be arbitrarily large,

implying very high overhead. Moreover, cmin may be unstable and hard to estimate.

We avoid this tradeoff by simply discarding nodes whose capacity is lower than

some discard threshold γd. If cv < γd, then node v does not instantiate any virtual server,

and does not participate in the standard DHT routing protocol. The remaining nodes v

with capacity cv ≥ γd pick cv · α virtual servers. We call this algorithm the Basic Virtual

Server Selection (Basic-VSS) Scheme and show the pseudocode in Figure 3.1. Figure 3.2

shows the main parameters of the algorithm.

A natural concern with this algorithm is that it might discard too much capacity,

overburdening the remaining nodes. But it is easy to see that in the worst case, at most a

fraction γd of the total capacity is discarded—ignoring estimation error and lazy update to

avoid instability and excessive load movement as (normalized) capacity changes. Remov-

ing those simplifications, we have:

Claim 1 In the Basic-VSS scheme, the fraction of the total capacity remaining in the ring is at least

1− γcγuγd w.h.p.

40

Proof: See Appendix B.

An optimization deserving of further study is to fix α and find the γd which min-

imizes the maximum share. However, we expect that γd = 1
2 will be acceptable for most

applications. With this choice, the capacity of any node remaining in the ring is at least

half the average capacity, so we do not need to significantly increase α to handle the low-

capacity nodes. Although in the worst case 50% of the total capacity is discarded, in our

simulations of Section 3.5, less than 20% is discarded in a range of power law capacity

distributions and less than 10% in a real-world distribution. If the discarded capacity were

excessive in some distribution, we could use a smaller γd at the cost of increasing α to

maintain the same load balance.

Furthermore, if we cannot afford to discard any capacity, we can use discarded

nodes for data storage (but not routing) by having each discarded node pick a “parent” in

the ring which would assign it data to store.

Discarded nodes may still perform lookup operations in the DHT although they

are not part of the ring structure and do not route messages. We connect discarded nodes

to the system through k links to nodes owning the IDs r + 1
k , . . . , r + k

k , where r ∈ [0, 1)

is chosen randomly. In our simulations of Section 3.5, we use k = ⌈3cv log2 n⌉ for node v

since with α = 1, Chord nodes in the ring have roughly 3cv log2 n outlinks as well (≈ log n

fingers and ≈ 2 log n successors for each of the ≈ cv virtual servers).

This raises another natural question: whether the congestion on the nodes in the

ring will increase due to lookup operations. However, Claim 1 implies that the increase

cannot be too great. Indeed, in Section 3.5.1, we will see a slight drop in congestion when

moving from homogeneous to heterogeneous capacities.

3.3 The Y0 DHT

In this section we present the Y0 DHT, which is composed of a Low Cost Vir-

tual Server Selection (LC-VSS) Scheme and simple changes to Chord’s successor lists,

finger tables, and routing. Later, in Section 3.4.3, we present formal guarantees for LC-VSS

applied to any overlay topology, not just Chord.

41

Node v’s IDs
Other nodes’ IDs

(a) Basic-VSS gives a node of capacity cv ownership

of Θ(cv log n) disjoint segments of the ID space. The

DHT must maintain a set of overlay links for each.

Simulated

Real

1/n1/n1/n

Θ(
cv log(n)

n)

pv

(b) Y0’s LC-VSS scheme results in Θ(cv log n) dis-

joint segments clustered in a Θ(
cv log n

n) fraction of

the ID space. When Y0 builds the overlay, it simulates

ownership of one contiguous interval. The nodes’

simulated intervals overlap.

Figure 3.3: ID selection illustrated.

3.3.1 Low Cost Virtual Server Selection (LC-VSS) Scheme

The LC-VSS scheme which selects IDs for Y0’s virtual servers is shown in the

illustration of Figure 3.3 and in pseudocode in Figure 3.4. As in the Basic-VSS scheme

of Section 3.2.3, nodes of capacity less than γd are discarded and each remaining node v

chooses Θ(cvα) IDs, where α = Θ(log n). However, these IDs are not selected randomly

from the entire ID space. Instead, we pick a random starting point pv and then select

one random ID within each of Θ(log n) consecutive intervals of size Θ(1/n). When n or

cv changes by a constant factor, the ID locations are updated. The algorithm inherits the

parameters shown in Figure 3.2.

It has been proposed to compute a node’s ID as a hash of its IP address, which

makes it more difficult for a node to hijack arbitrary regions of the ID space [114]. To

support this, we could easily replace the randomness in the description of the algorithm

with such hashes.

3.3.2 Successor Lists

In Chord, each virtual server keeps links to its 2 log2 n successors in the ring [114].

The purpose is fault tolerance: when each node fails with probability 1
2 , a remaining virtual

server will still have a link to its immediate successor with probability 1−
(1

2

)2 log2 n
= 1−

O(1/n2), so all remaining virtual servers will have their successor links with probability

42

Initialization:

1. pv ← random ID ∈ [0, 1)

2. ñ, c̃v ← estimates of n and cv

ID selection:

1. spacing← 2−⌊0.5+log2 ñ⌋ (i.e., roughly 1/ñ)

2. start← ⌊pv/spacing⌋ · spacing

3. m← if c̃v < γd then 0 else ⌊0.5 + c̃vα(ñ)⌋

4. Choose m IDs at start − (i + ri) · spacing for each i ∈ {0, . . . , m − 1} and each ri chosen

uniform-randomly ∈ [0, 1)

Periodic update:

1. Obtain new estimates c̃′v, ñ′

2. If c̃′v is at least a factor γu from c̃v, set c̃v ← c̃′v

3. If spacing 6∈ [1
2ñ′ ,

2
ñ′], set ñ← ñ′

4. If either ñ or c̃v changed, reselect IDs as above

Figure 3.4: Y0’s LC-VSS scheme run at each node v.

≥ 1−O(1/n). Thus, the ring structure is preserved w.h.p. To obtain the same bound in

Y0, each node must keep links to the 2 log n distinct nodes succeeding each of its virtual

servers.

In more detail, Chord constructs its successor list as follows. Each virtual server

vs belonging to node v obtains its successor list from its immediate successor succ(vs) and

adds succ(vs) to the list. If the list is of length > 2 log n, it drops the clockwise-farthest

entry. In Y0, we drop any virtual server belonging to v before considering dropping the

clockwise-farthest entry. Beginning with an empty list at each node, periodic repetition of

this algorithm builds a list of 2 log2 n distinct successors.

Will a node’s Θ(cv log n) virtual servers involve Θ(cv log2 n) successor links, as

in Basic-VSS? We show in Section 3.4.3 that since Y0’s IDs are clustered, these Θ(cv log2 n)

logical successors fortunately involve only Θ(cv log n) distinct nodes, so only Θ(cv log n)

network connections need to be maintained. For routing purposes Y0 remembers all the

43

logical IDs, so memory use does increase by a logarithmic factor. But this is not likely

to be detrimental: even when n = 230, a node with log n virtual servers would maintain

2 log2 n = 1800 logical successors, which at a generous 1 KB each uses less than 2 MB of

RAM.

3.3.3 Finger Tables

For each virtual server with ID x, Chord keeps a finger table of links to the nodes

owning the “target IDs” (x + b−i) mod 1 for i = 1, 2, Typically b = 2.

In Y0, for the purposes of overlay construction, each node v simulates ownership

of a contiguous interval Iv of size Θ(cv log n
n) enclosing its virtual servers, building one set

of overlay links as if it actually owned all of Iv. This is depicted in Figure 3.3b. Specifically,

v simply keeps one finger table emanating from the clockwise end of Iv (see Section 3.3.1).

An important property is that although a node’s virtual server IDs may change, pv is fixed.

Thus, the finger table changes only when a target ID changes ownership.

This construction allows us to choose a better overlay topology than Chord in the

heterogeneous case. The size of Iv scales with the node’s capacity, but this does not affect

the size of the finger table. Since we allow each node a number of outlinks proportional to

its capacity, we have some unused capacity on high-capacity nodes. We use this to reduce

route length by choosing a “denser” set of overlay links on high-capacity nodes: node v

chooses fingers at integer powers of b1/cv , where b is a parameter which we take to be 2 by

default as in Chord. This results in O(logb1/cv n) = O(cv logb n) fingers w.h.p. Note that,

unlike the rest of Y0, this technique does not generalize to arbitrary overlay topologies.

3.3.4 Routing

To find the owner of some ID x, Chord routes greedily on the finger table, at each

step selecting the neighbor whose ID is clockwise-closest to x. In Y0, we employ the same

algorithm except that the successor list is also considered in finding the closest neighbor,

rather than just the finger table.

The result of using this algorithm in Y0 will be that within O(log n) steps, due to

the presence of the finger table, the message is routed to a node v for which x ∈ Iv. At

this point, v may not truly own x, and we have no fingers which are closer to the true

destination. However, due to the clustering of v’s IDs, the real owner is not far from one

44

Figure 3.5: Routing in Y0. A close-up of part of the ID space is shown.

of v’s virtual servers. Specifically, they are separated by O(log n) nodes along the ring, so

the true owner will be reached using successor lists within Θ(1) additional hops w.h.p., as

shown in Figure 3.5. We will prove these results in Section 3.4.4.

3.4 Analysis

In this section we analyze the performance of Y0 with respect to the metrics de-

scribed in Section 3.2.2. The results apply Y0’s techniques to any ring-based DHT, e.g [62,

78, 87, 104, 114]. We prove the following:

• Y0 can achieve a near-optimal maximum share of 1 + ε for any ε > 0 (Section 3.4.1).

• As long as the number of nodes n and the average capacity remain relatively stable,

the amount of load movement that Y0 incurs to maintain a good balance is close to

optimal (Section 3.4.2).

• Compared to the case of a single virtual server, Y0 with α = Θ(log n) increases the

number of distinct links that a node maintains by at most a constant factor, while

providing flexibility in neighbor selection for any topology (Section 3.4.3).

• Compared to the case of a single virtual server, Y0 with α = Θ(log n) increases route

length by at most an additive constant (Section 3.4.4).

We defer all proofs to Appendix B.

3.4.1 Load Balance Bounds

Our first theorem says that the maximum share can be made arbitrarily close to 1,

even in the heterogeneous case. Throughout the analysis we assume that all nodes have

performed their periodic update step since the last event in the system.

45

Theorem 2 For any ε > 0, if α ≥ 8γnγcγu

(1−γcγuγd)γdε2 · ln n, then the maximum share of a node is at

most
(γcγu)2

(1−ε)2(1−γcγuγd)
+ o(1) w.h.p.

Proof idea: When α = Θ(log n), we have Θ(log n) IDs in each region of the ID space of

size Θ(1/n) w.h.p. regardless of the capacity distribution. With this balanced distribution

of IDs, the share associated with each ID is approximately a geometric random variable.

Applying a Chernoff bound to their sum yields the result.

Despite the frightening plethora of constants in the bound, our simulations of

Section 3.5 show that we get a maximum share of less than 3.6 with a modest α = 2 log2 n

in various capacity distributions. Furthermore, most of the complexity in the above guar-

antee is due to varying node capacities. Hard-coding c̃v = 1 into LC-VSS and a straight-

forward modification of our analysis yields the following bound:

Theorem 3 For any ε > 0, if node capacities are homogeneous and α ≥ 8γn

ε2 ln n, the maximum

share of a node is at most (1− ε)−2 + o(1) w.h.p.

3.4.2 Load Movement Bounds

To maintain load balance as nodes join and leave, nodes occasionally update their

IDs. Each move of a virtual server is equivalent to a leave followed by a join under a new

ID. Thus, load balancing effectively increases the churn rate of the system, which involves

costly object movement and overlay link changes. In this section we bound this overhead

in terms of the amount of churn in the population of nodes in the system.

Given a sequence of node join and leave events, we say that the underlying churn

is the sum over all events of the fraction change in system capacity due to the event. Specif-

ically, if the system currently has total capacity C and a node of capacity c joins, the under-

lying churn increases by c/(C + c); if the same node subsequently leaves, churn increases

by the same amount again. Similarly, the effective churn is the sum over all events of the

fraction change in ID space ownership due to the event, which depends on the policy of the

partitioning scheme.

Definition 1 The churn ratio for a sequence of events is the DHT’s expected effective churn di-

vided by its underlying churn over those events.

This is equivalent to a metric used in [15].

46

We are interested the churn ratio after t events for which the underlying churn is

Ω(t) (to avoid degenerate cases such as zero-capacity nodes joining and leaving forever).

We also assume the system always has positive capacity. Finally, for simplicity we assume

LC-VSS’s estimation error bounds γc, γn hold with probability 1.

Since every part of the ID space has to be assigned to some node, it is easy to see

that the churn ratio is≥ 1 in the worst case for any scheme—that is, the effective churn is at

least the underlying churn. Basic-VSS in a homogeneous environment with α = 1 (i.e., the

standard Chord protocol) achieves this lower bound, since in expectation the change in ID

space due to a join or leave is exactly the change in total system capacity, and once joined,

a node never changes its ID.

Our bound on LC-VSS’s churn ratio will apply to event sequences during which

the total number of nodes and average capacity don’t vary greatly (but the underlying

churn rate may be arbitrarily high).

Definition 2 The system is (β, δ)-stable over a sequence of events when the minimum and max-

imum values of n differ by less than a factor β, and the minimum and maximum values of the

average capacity differ by less than a factor δ.

Theorem 4 If the system is (2
γn

, γu

γc
)-stable, the churn ratio of LC-VSS is 1

1−γcγuγd
+ o(1).

This reduces to 1 + o(1) in the homogeneous case. Thus, during periods wherein

n and the average capacity are relatively stable—which is likely the common case—the

overhead of LC-VSS’s load balancing operations is small. The result follows from the fact

that in this case very few nodes need to reselect IDs.

3.4.3 Overlay Construction and Degree Bounds

In this section we describe how to use LC-VSS with any overlay topology without

significantly increasing outdegree, while providing some flexibility in neighbor selection,

even if the original topology had none.

Sequential Neighbors. We deal first with what [54] terms sequential neighbors. In ring-

based DHTs, each node v keeps links to nodes whose IDs are close to each of v’s IDs —

either the k = Θ(log n) successors in the ring [114] or the k successors and k predeces-

sors [104]. As discussed in Section 3.3.2, in Y0, each node keeps links to the k distinct nodes

closest to each of its IDs.

47

In our overlay construction we assume k = Θ(log n). Since α = Θ(log n), this

implies that nodes have Θ(cv log2 n) logical sequential neighbors. The following theorem

shows that due to the clustering of IDs, the number of distinct neighbors is low.

Theorem 5 Each Y0 node has Θ(cvα) = Θ(cv log n) distinct sequential neighbors w.h.p.

Long-Distance Neighbors. There is a significant amount of variation in the structure of

“long-distance” overlay links in DHTs. To analyze the construction of arbitrary topologies

on top of Y0’s partitioning of the ID space, we extend and formalize Naor and Wieder’s

Continuous-Discrete Approach [87]. We model the overlay topology in continuous form,

as a neighborhood function E which maps a contiguous interval (p1, p2] ⊆ [0, 1) to a

subset of [0, 1). E specifies that the owner of (p1, p2] should be connected to the region

E(p1, p2) of the ID space. For example, Chord’s finger table would be specified as follows,

with all values modulo 1:

E(p1, p2) =

{

p2 +
1
2

, p2 +
1
4

, p2 +
1
8

, . . .
}

.

Chord does not depend on p1, but general topologies may. The Distance Halving overlay

of [87] has

E(p1, p2) =
(p1

2
,

p2

2

]

∪
(

p1 +
1
2

, p2 +
1
2

]

.

But in a real system, rather than connecting portions of the ID space with other portions

of the ID space, we connect physical nodes with other physical nodes. We translate the

continuous graph E to a graph on nodes thusly:

Definition 3 A discretization of E is a simulated interval Iv ⊆ [0, 1) for each node v and a

graph G on the nodes in the system such that

∀v ∀p ∈ E(Iv) (∃(v, w) ∈ G p ∈ Iw).

That is, if Iv is connected to a point p ∈ E(Iv) in the continuous graph, then v is connected to some

node w ∈ G simulating ownership of p.

Thus, a discretization guarantees that each edge in the continuous graph can be

simulated by the discrete graph. The set Iv defines what part of the continuous graph node

v simulates. Note that the Ivs may overlap.

48

The simplest example is what we call the Standard Discretization. For each v we

simply let Iv be the subset of the ID space which v owns. The edges of G are the minimal

set which satisfies the above definition: v has a link to each node which owns part of

E(Iv). This edge set is unique because ownership of the ID space is a partitioning: for each

ℓ ∈ E(Iv), there is exactly one node w with ℓ ∈ Iw. This discretization is equivalent to the

operation of Chord and the Distance Halving DHT.

To adapt to our multiple-virtual server setting with low degree, we use the fol-

lowing Shared Discretization. For each v we let Iv be the smallest contiguous interval

which contains the (disjoint) set of IDs that v owns as well as pv (recall the definition of

pv from Figure 3.4). Since the Ivs overlap, we have a fair amount of choice in selecting the

edge set in a way that satisfies Definition 3. We use a simple greedy algorithm for each

node v. Initially, label all of E(Iv) uncovered. Iterate by picking the uncovered point p

which is the first from pv in the clockwise direction. Contact p’s owner, get its successor

list, its furthest successor’s successor list, etc. until we find a node w for which Iw covers

all of [p, p + Θ(log n
n)] ∩ E(Iv). Add an edge from v to w. Terminate when all of E(Iv) is

covered.

The above procedure clearly satisfies Definition 3, assuming eventual termination

and success at finding the ws. The number of overlay links it creates depends on E. Let

f (n) be a nondecreasing function such that if |I| ≤ 1
n , then E(I) can be covered by ≤ f (n)

segments of length 1
n . Taking f (n) to be as small as possible intuitively provides a lower

bound on node degree: even in a homogeneous system with a perfect partitioning of the ID

space, the Standard Discretization must give some nodes ≥ f (n) outlinks. The following

theorem says that in LC-VSS, nodes’ outdegrees are inflated by at most a constant factor.

Theorem 6 Using LC-VSS with α = Θ(log n), the Shared Discretization algorithm terminates

successfully, and each node v has at most O(cv f (n)) outlinks w.h.p. for any capacity distribution.

Flexibility in neighbor selection. The ability to adapt the DHT topology dynamically,

rather than having the topology be a deterministic function of node IDs, has several ben-

efits. The DHT can perform proximity-aware neighbor selection, which can significantly

reduce the latency of DHT lookups [54], and can select neighbors based on their stability,

which can improve reliability (as we will see in Chapter 4). Whether the overlay topol-

ogy accommodates this flexibility is an important difference between different topologies;

although Chord has a great deal of flexibility, some DHT topologies do not. [54].

49

One benefit of our Shared Discretization is that it provides flexibility in the choice

of each of a node’s neighbors, even if there was no such choice in the original topology. More

specifically, as noted in the proof of Theorem 6 (see Appendix B), there will be Θ(log n)

choices for each neighbor. Intuitively, this occurs because the simulated intervals over-

lap at a depth of Θ(log n) (under the safe assumption that node capacities are at most

O(n/ log n)). Even this fairly limited choice is likely to provide a significant benefit. Sim-

ulations suggest that for proximity-aware neighbor selection, 16 choices for each neighbor

provide nearly all the benefit that an unbounded number of choices would provide [28].

3.4.4 Route Length

To complete our adaptation of the overlay, we show that we can simulate the

overlay’s routing function while increasing route length by at most an additive constant.

The continuous overlay is accompanied by a routing function r(I, t) which, given

a current location I ⊆ [0, 1) and a target destination t, returns an ID in E(I) representing the

next hop. At each step, we apply the routing function to the current location I and move

to a neighbor w for which r(I, t) ∈ Iw. Since r(I, t) ∈ E(I), by definition, any discretization

must have an edge to some such w. We set I ← Iw and iterate. If after f (m) such steps the

distance from some ℓ ∈ I to t in the ID space is ≤ 1/m for any starting location and any t,

we say that E has path length f (m).

Thus, in f (m) hops, any discretization can arrive at a node v such that some

ID in Iv is at distance ≤ 1/m from the destination t. Completion of the discrete routing

then depends on the relation between Iv and what v actually owns in the ID space, which

depends on the discretization.

In the Standard Discretization, Iv is exactly the ID space owned by v, so we are at a

node which owns a part of the ID space at distance 1/m from our destination. Thus, we can

pick m large enough that 1/m is less than the minimum distance between two nodes’ IDs.

With such a choice, the continuous phase must finish at the successor or predecessor of the

owner of t, or the owner itself, at which point we can reach the destination in≤ 1 hop. For

example, in Chord with a single virtual server per node, nodes are separated by distance

≥ 1/n3 w.h.p. (Claim 8 in Appendix B) so route lengths are ≤ 1 + f (n3) = 1 + 3 log2 n

w.h.p. We can improve the bound by using the successor list, as follows. A standard balls-

and-bins result shows that Chord picks at most O(log n) IDs in each interval 1/n of the ID

50

space w.h.p. Thus, we can route in log2 n hops to within distance 1/n of t, and continue

with greedy routing on the successor list of length Θ(log n) to route through the remaining

distance in O(1) hops.

In the Shared Discretization, unlike the Standard Discretization, v does not own

all of Iv. However, due to LC-VSS’s placement of IDs at intervals of O(1/n) in the ID space,

v will always have a virtual server whose ID is at distance O(1/n) from t. A Chernoff

bound shows that when α = O(log n), the owner of t is O(log n) successors away, and

we route to our destination in O(1) hops using the successor lists which we keep for each

chosen ID. Thus, we arrive at the following result.

Theorem 7 Using LC-VSS and the Shared Discretization of any overlay topology with path length

f (n), any message can be routed in f (n) + O(1) hops w.h.p.

3.5 Simulation

We compare Y0 and Chord using a simple simulator which constructs the ID

space partitioning and overlay topology of the two DHTs in a static setting. To provide

heterogeneity-aware load balance in Chord, we use the Basic-VSS scheme of Section 3.2.3.

We assume that each node is given its capacity and n; i.e., there is no estimation

error. We use γd = 1
2 . Each data point represents an average over 15 independent trials.

We show 95% confidence intervals. We show results for n equal to powers of 2. For inter-

mediate n, there is some variation in the load balance/degree tradeoff space for Y0 because

its spacing between virtual servers is rounded to the nearest power of 2. Specifically, simu-

lations show maximum share increases by up to ≈ 10% when degree decreases up to 10%,

or maximum share decreases up to 10% while degree increases up to 25%.

We study three types of node capacity distributions: (1) homogeneous, (2) power

law with various exponents, and (3) samples from the uplink bottleneck bandwidths of

actual Gnutella hosts measured by Saroiu et al [107], which we call the SGG distribution.

Thus, for this simulation, we consider the capacity of a node to be the bandwidth of its

connection to the Internet. We have discarded points in their raw data set which show

bandwidth higher than 1 Gbps, since the authors of [107] believe those to be artifacts of

faulty measurement and discard them in their study as well [105].

Our simulation results are as follows.

51

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 64 128 256 512 1024
M

ax
im

um
 s

ha
re

Average normalized degree

Chord, homogeneous
Chord, SGG

Y0, homogeneous
Y0, SGG

Figure 3.6: Tradeoff between maximum share and average normalized degree, achieved

through varying α, for n = 2048. For Chord, α ∈ {1, 2, 4, 8, 16}, and for Y0, α ∈
{1, 2, 4, . . . , 128}.

• Y0 achieves a maximum share of less than 3.6 with α = 2 log n, where α is the number

of virtual servers per unit capacity. This is roughly as well-balanced as Chord with

α = log n (Section 3.5.1).

• The degree of nodes in Y0 with α = 2 log n is as low as Chord with α = 1 and even

lower in some heterogeneous distributions (Section 3.5.2).

• In both DHTs, route lengths decrease as heterogeneity increases, but Y0 has a clear

asymptotic advantage (Section 3.5.3).

3.5.1 Load Balance

Figure 3.6 summarizes the tradeoff between quality of load balance and degree.

We obtain various points on the tradeoff curve for each protocol by selecting different

α. Y0 provides a substantially better set of achievable points. Both algorithms perform

significantly better in the SGG distribution, although we will see (Figures 3.7b and 3.9b)

that not all capacity distributions are better than the homogeneous case.

Figure 3.7a shows that with α = 2 log n, the maximum share of any node in Y0 is

less than 2.7 in a homogeneous environment — nearly as good as Chord with α = log n

but (as we will see) at much lower cost. A larger α provides a slightly better balance.

Figure 3.7b shows that in a range of power law capacity distributions with varying expo-

nent, the balance can be slightly worse or better than in the homogeneous case, at all times

52

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 10 100 1000 10000 100000

M
ax

im
um

 s
ha

re

Number of nodes

Chord, alpha = log(n)
Y_0, alpha = 2 log n
Y_0, alpha = 3 log n

(a) Maximum share vs. n with homogeneous ca-

pacities. Chord with α = 1 (not shown) increases

to a maximum share of ≈ 13.7.

 1

 2

 3

 4

 5

 6

 7

 8

 1.5 2 2.5 3 3.5

M
ax

im
um

 s
ha

re

Exponent of power law capacity distribution

Chord, alpha = log n
Y_0, alpha = log n

Y_0, alpha = 2 log n
Y_0, alpha = 3 log n

(b) Maximum share vs. capacity distribution in a

16,384-node system.

Figure 3.7: Maximum share

staying below 3.6.

Once the ID space is balanced, balance of overlay connections and routing load

follow closely. We measure maximum degree as defined in Section 3.2.2. To measure bal-

ance of routing load, we have each node route a message to a random ID. The congestion

at a node is the number of messages that flow through it, divided by its capacity. Both

metrics are Θ(log2 n) in Chord with α = 1: essentially, Θ(n log n) messages and Θ(n log n)

fingers are distributed uniformly in the ID space, and some nodes own a fraction Θ(log n
n)

of the space. Y0’s constant-factor load balance thus implies Θ(log n) maximum degree and

maximum congestion. This is illustrated in Figure 3.8. Note that the reduced congestion in

the heterogeneous case results from reduced route length, which we cover in Section 3.5.3.

3.5.2 Normalized Degree

In this section we evaluate the effectiveness of our technique at maintaining low

average normalized degree, defined in Section 3.2.2. We average over all nodes that were

not discarded. Figure 3.9a shows this metric as a function of α with homogeneous capac-

ities and n = 2048. We see essentially no increase in degree in Y0 until α > 2 log n ≈ 22.

This is because when α ≤ 2 log n, the additional links associated with the virtual servers

are to essentially the same set of nodes with which we are already linked due to the 2 log n

53

 0

 50

 100

 150

 200

 250

 300

 10 100 1000 10000

M
ax

im
um

 n
or

m
al

iz
ed

 d
eg

re
e

Number of nodes

Chord, SGG
Chord, homogeneous

Y_0, SGG
Y_0, homogeneous

(a) Maximum normalized degree vs. n, with α = 1

in Chord and α = 2 log n in Y0.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000 10000

M
ax

im
um

 c
on

ge
st

io
n

Number of nodes

Chord, homogeneous
Chord, SGG

Y_0, homogeneous
Y_0, SGG

(b) Maximum congestion vs. n, with α = 1 in

Chord and α = 2 log n in Y0.

Figure 3.8: Load balance of overlay links and routing load

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

A
ve

ra
ge

 n
or

m
al

iz
ed

 d
eg

re
e

Number of virtual servers (alpha)

Chord
Y_0

(a) Average normalized degree vs. number of vir-

tual servers in a homogeneous 2048-node system.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1.5 2 2.5 3 3.5

A
ve

ra
ge

 n
or

m
al

iz
ed

 d
eg

re
e

Degree of power law distribution

Chord, alpha = 1
Y_0, alpha = log n

Y_0, alpha = 2 log n
Y_0, alpha = 3 log n

(b) Average normalized degree vs. capacity distri-

bution in a 16,384-node system.

Figure 3.9: Average normalized degree

54

 1

 2

 3

 4

 5

 6

 7

 1.5 2 2.5 3 3.5

A
ve

ra
ge

 r
ou

te
 le

ng
th

Degree of power law capacity distribution

Chord, alpha = 1
Y_0, alpha = 2 log n

(a) Route length vs. capacity distribution in a

16,384-node system.

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000 10000

A
ve

ra
ge

 r
ou

te
 le

ng
th

Number of nodes

Y_0, homogeneous
Chord, homogeneous

Chord, SGG
Y_0, SGG

(b) Route length vs. n. In Chord, α = 1 and in Y0,

α = 2 log n.

Figure 3.10: Route length

incoming successor links. Even when α > 2 log n, Theorems 5 and 6 imply that Y0’s degree

is O(α) rather than O(α log n) as in Chord.

Due to the normalization by capacity in our degree metric, Y0’s improved load

balance gives it a lower average normalized degree than Chord in the heterogeneous case.

This is depicted in Figure 3.9b.

3.5.3 Route Length

To measure route length, we have each node route to a random ID, and average

over the n resulting hop counts. Figure 3.10a shows decreasing route lengths in the power

law distribution as the power law exponent decreases, with slightly greater benefit in Y0

than in Chord. Note that large power law exponents approach a homogeneous system.

Figure 3.10b examines the asymptotics of route length. In a homogeneous system,

Y0 has very slightly higher route length than Chord, but as we showed in Theorem 7 this is

only an additive constant. In the SGG distribution, both DHTs see significantly decreased

route length. Chord’s benefit is primarily due to the fact that there are fewer nodes in the

ring: roughly 75% of the nodes in this distribution had capacity less than γd = 1
2 and were

discarded. This can only decrease route length by an additive constant, but it is significant

in small- to medium-sized systems. At n = 32, 768 nodes, Chord and Y0 have 22% and

33% smaller mean route length, respectively, than Chord in the homogeneous case.

55

In Y0, our technique of increasing the number of fingers at high-capacity nodes

provides a constant-factor decrease in route length (note the lower slope). A least-squares

fit of our data for networks with 1024 or more nodes yields the following estimated asymp-

totic route lengths (i.e., we ignore additive terms):

DHT Capacities Route length Normalized

Chord Homogeneous 0.450 log2 n 100%
SGG 0.348 log2 n 77%

Y0 Homogeneous 0.472 log2 n 105%
SGG 0.203 log2 n 45%

3.6 Related Work

ID space balance for homogeneous DHTs. The simplest way to balance load, under the

uniform load assumption, is to obtain a O(1) maximum share. The simplest way to do

that is for each node to maintain Θ(log n) virtual servers [63, 114]. Since this increases

node degree by a factor of Θ(log n), multiple proposals followed which give each node

just one ID, but need to select and update that ID intelligently. All the proposals of this

type are similar in that they consider Θ(log n) locations for a node and select the one which

gives the best load balance. They differ in which locations they check and when.

In Naor and Weider [87], a node checks Θ(log n) random IDs when joining, and

joins at the one which gives it the largest share. They show that this produces a maxi-

mum share of 2 if there are no node deletions. Handling node deletions requires an ad-

ditional protocol, not precisely specified or analyzed in [87], whereby nodes are divided

into groups of Θ(log n) nodes and periodically reposition themselves within each group.

In Adler et al. [2], a joining node contacts a random node v already in the DHT, and splits

in half the largest interval owned by one of v’s O(log n) overlay neighbors. This results in

an O(1) maximum share. A simple deletion protocol was given but not analyzed.

Manku’s algorithm [77] has a joining node pick a random node v and split in

half the largest interval owned by one of the Θ(log n) nodes adjacent to v in the ID space.

This achieves a maximum share of 2 while moving at most a single extra node’s ID for

each node arrival or departure. It extends to balancing within a factor 1 + ε but moves

Θ(1/ε) IDs. In contrast, the results of Section 3.4.2 imply that Y0 moves no extra IDs,

even while achieving a maximum share of 1 + ε, as long as n and the average capacity

are relatively stable. The algorithm is more complicated than Y0 and requires assignment

56

of IDs to arbitrary locations in the ID space, so we cannot use the security mechanism of

requiring a node’s ID to be one of several hashes of its IP address [27].

In one simple algorithm of Karger and Ruhl [65], each node has a fixed set of

O(log n) possible IDs (so the security technique can be employed) and periodically rese-

lects among them. This has maximum share 2+ ε, but it requires reassignment of O(log log n)

IDs per arrival or departure in expectation. Bienkowski et al [12] later gave a similar algo-

rithm which reduces the number of reassignments to a constant, but they show only O(1)

maximum share. A second algorithm of [65] adapts to uneven distributions of objects in

the ID space (which Y0 and the previously mentioned algorithms cannot), but requires

unrestricted ID selection and a special overlay topology if the object distribution is very

skewed, and its maximum share is 64.

ID space balance for heterogeneous DHTs. Comparatively few schemes handle node

heterogeneity. Dabek et al. [27] suggested that each physical node have a number of vir-

tual servers proportional to its capacity, which we have developed into Basic-VSS in Sec-

tion 3.2.3. Surana et al [44, 118] balance load dynamically by transferring virtual servers

between physical nodes. This approach can handle node heterogeneity and load which is

not distributed uniformly in the ID space, and was shown through simulation to produce

a very good balance. But it is more complicated than Y0, cannot employ the aforemen-

tioned security mechanism, cannot take advantage of heterogeneity to reduce route length

as much as Y0, and has higher degree due to its use of multiple virtual servers per node.

In a DHT-related work, Brinkmann et al. [15] develop two schemes which divide

an ID space fairly among a set of nodes of heterogeneous capacities, providing efficient ID

lookup and node join and leave algorithms. Their SHARE strategy is very similar to our

LC-VSS: in both, each node selects an interval of the ID space of size Θ(log n
n), and own-

ership of a segment is “shared” among the nodes whose intervals overlap that segment.

However, there are several differences. First, they assume a centralized system with no

overlay network. As a consequence, their technique is required only to handle the nodes

of very low capacity; if they were willing to discard low-capacity nodes as we do, the triv-

ial Basic-VSS scheme of Section 3.2.3 would be acceptable. In contrast, we cluster a node’s

IDs in order to share overlay links. Moreover, the way in which the ID space sharing is

performed in [15] is more complicated than in our scheme; notably, nodes need Θ(log2 n)

IDs, rather than Θ(log n).

57

Load balance by object reassignment. The above strategies balance load by changing

the assignment of IDs to nodes. Another approach is redirection: store a pointer from an

object’s ID to the arbitrary node currently storing it. This can balance the load of storing

and serving data, but not load due to routing or maintenance of the overlay — and if

objects are small, routing dominates the bandwidth and latency of storing and finding an

object. It also requires maintenance of the pointers and adds one hop to each lookup.

Karger and Ruhl [64] can handle heterogeneous capacities and obtain a constant-

factor load balance. Each node periodically contacts another, and they exchange objects if

one node’s load is significantly more than the other’s. But their bound on movement cost

depends on the ratio of the maximum and minimum node capacities. Byers et al. [17, 18]

use a “power of two choices” approach, hashing an object to d ≥ 2 IDs and storing it on the

corresponding node with least load, which results in a maximum load of log log n/ log d +

O(1). Swart [120] places object replicas on a lightly-loaded subset of nodes in Chord’s

successor list. Neither [17], [18], nor [120] provide results for the heterogeneous case.

Exploiting heterogeneity in P2P systems. Ratnasamy et al. [96] posed the question of

whether heterogeneity could be leveraged to improve routing performance in DHTs. Nearly

all the DHTs which have followed up on this suggestion use a two-level hierarchy, dividing

nodes into a set of high-capacity “superpeers” and low-capacity peers. Mizrak et al. [86]

build a clique of
√

n superpeers, each with
√

n low-capacity peers attached. This pro-

duces a graph of constant diameter but requires that superpeers have polynomially many

neighbors. Its scalability, particularly with respect to maintenance traffic, was not demon-

strated for a wide range of capacity distributions. Zhao et al. [133] and Garces-Erice et

al. [42] organize peers into groups based on network locality. Each group chooses a super-

peer based on reliability, bandwidth, or latency, and the superpeers across all groups form

a DHT. We argue that these two-level techniques cannot adapt to or take full advantage

of arbitrary node capacity distributions, because peers within each of the two classes are

treated equally. In fact these schemes are complementary to ours: peers at each level of the

hierarchy are likely to have nonuniform capacities, so our techniques could be applied to

the DHTs used at each level to further improve performance.

To the best of our knowledge, the only heterogeneity-aware DHT designs not

employing a two-level hierarchy, other than Y0, are SmartBoa [56] and Xu et al. [130]. In

SmartBoa, nodes are divided into up to 128 levels based on capacity, and a node at level

58

k maintains roughly n/2k neighbors. A heterogeneity-aware multicast algorithm allows

efficient dissemination of node join or leave events, so nodes need not continually ping

their neighbors, enabling much larger routing tables and thus lower route length than

traditional DHTs. However, SmartBoa does not adapt the ID space partitioning (i.e., object

storage load) to nodes’ capacities, nor was it evaluated experimentally or theoretically. Xu

et al [130] adapt the DHT topology to fit the underlying network connectivity, which may

be heterogeneous, thus obtaining low stretch. But the ID space is again not adapted to

node capacity.

In the world of unstructured P2P systems, Freenet’s Next Generation Routing [25]

employs heuristics to route messages to nodes with observed faster responses. Chawathe

et al [23] propose an unstructured Gnutella-like system which adapts topology, flow con-

trol, and data replication to nodes’ capacities, and found that their system performed sig-

nificantly better in a heterogeneous environment. The techniques used in these systems,

and the services they provide, are quite different than those of Y0.

3.7 Conclusion

This chapter proposed a scheme to assign IDs to virtual servers, called Low Cost

Virtual Server Selection (LC-VSS), that yields a simple DHT protocol, called Y0, for which

node degree does not increase significantly with the number of virtual servers. Y0 adapts

to heterogeneous node capacities, can achieve an arbitrarily good load balance, moves lit-

tle load, and can compute a node’s IDs as O(log n) hashes of its IP address for security

purposes. The techniques behind Y0 generalize to arbitrary overlay topologies while pro-

viding some flexibility in neighbor selection, even if the underlying topology did not. We

demonstrated the effectiveness of our techniques through simulation, showing a maxi-

mum share less than 3.6 in a range of capacity distributions with no greater degree than in

Chord with a single virtual server.

Y0 has several drawbacks. It uses Θ(log2 n) memory per node, but we expect this

will be acceptable in nearly all circumstances. If a particularly good balance is desired, the

number of links needed to maintain the ring structure of the DHT increases by a constant

factor. Node join and leave operations will be slowed somewhat by the fact that a node

owns Θ(log n) virtual servers, although the overlay links need to be constructed only once.

Perhaps most significantly, Y0 requires good estimates of n and the average capacity, and a

59

good balance is guaranteed only under the uniform load assumption.

We also illustrated the potential of taking heterogeneity into account, with route

lengths in our DHT in a real-world capacity distribution less than half those of a homoge-

neous distribution due to our adaptation of the Chord overlay topology to a heterogeneous

environment. An interesting open problem is to study the effect of heterogeneity in other

DHT topologies, such as de Bruijn graphs [62, 87].

60

Chapter 4

Minimizing Churn in Distributed

Systems

This chapter is the second to develop techniques for taking advantage of hetero-

geneity. Unlike Chapter 3, which dealt with heterogeneity in capacity like bandwidth or

processor speed, we now address heterogeneity in reliability: distributed systems typically

have widely varying time-to-failure across their components, and across time for one par-

ticular component.

A pervasive requirement of distributed systems is to handle churn: change in the

set of participating nodes due to joins, graceful leaves, and failures. A high churn rate can

increase costs or decrease service quality. This chapter studies how to reduce churn by

selecting which subset of a set of available nodes to use.

First, we provide a comparison of the performance of a range of different node

selection strategies in five real-world traces. One of our key findings is that the simple

strategy of picking a uniform-random replacement whenever a node fails performs sur-

prisingly well, a result which is consistent across the wide range of traces we examine. We

explain this effect through analysis in a stochastic model, showing that random replace-

ment performs better as failure patterns become more heterogeneous.

Second, we show that a class of strategies, which we call “Preference List” strate-

gies, arise commonly as a result of optimizing for a metric other than churn, and produce

high churn relative to more randomized strategies under realistic node failure patterns.

Using this insight, we demonstrate and explain differences in performance for designs that

61

incorporate varying degrees of randomization. We give examples from a variety of proto-

cols, including anycast, overlay multicast, and distributed hash tables. In many cases, due

to the widespread heterogeneity of failure patterns, simply adding some randomization

can go a long way towards reducing churn.

4.1 Introduction

Almost every distributed system has to deal with churn: change in the set of par-

ticipating nodes due to joins, graceful leaves, and failures. There is a price to churn which

may manifest itself as dropped messages, data inconsistency, increased user-experienced

latency, or increased bandwidth use [75,100]. Even in peer-to-peer systems which were de-

signed from the outset to handle churn, these costs limit the scenarios in which the system

is deployable [13]. And even in a reasonably stable managed infrastructure like Planet-

Lab [10], there can be a significant rate of effective node failure due to nodes becoming

extremely slow suddenly and unpredictably [99].

In this chapter, we study how to reduce the churn rate by intelligently selecting

nodes. Specifically, we consider a scenario in which we wish to use k nodes out of n ≥ k

available. How should we select which k to use in order to minimize churn among the

chosen nodes over time? This question arises in many cases, such as the following:

• Running a service on PlanetLab in which n = 500 nodes are available and we would

like k ≈ 20 to run the service in order to have sufficient capacity to serve requests.

• Selecting a reliable pool of k ≈ 1000 super-peers from among n ≈ 100, 000 end-hosts

participating in a peer-to-peer system.

• Choosing k nodes to be nearest the root of an overlay multicast tree, where failures

are most costly.

• In a storage system of n nodes, choosing k nodes on which to place replicas of a file.

To better understand the impact of node selection on churn, we study a set of strategies

that we believe are both relevant in practice, and provide a good coverage of the design

space.

At the high level, we classify the selection strategies along two axes: (1) whether

they use information about nodes to attempt to predict which nodes will be stable, and (2)

62

whether they replace a failed node with a new one. We refer to strategies that base their

selection on individual node characteristics (e.g., past uptime or availability) as predictive

strategies, and ones that ignore such information as agnostic. On the second axis, we use

the term fixed for strategies that never replace a failed node from the original selected set,

and replacement for strategies that replace a node as soon as it fails, if another is available.

Predictive fixed strategies are often used in the deployment of services on Plan-

etLab, where typically developers pick a set of machines with acceptable past availabil-

ity, and then run their system exclusively on those machines for days or months. Pre-

dictive replacement strategies appear in many protocols that try to dynamically minimize

churn. The most common heuristic is to select the nodes which have the longest current

uptime [42, 72, 110].

Agnostic strategies can frequently describe systems which do not explicitly try

to minimize churn. The simplest form of Agnostic Replacement strategy is Random Re-

placement (RR): replace a failed node with a uniform-random available node. Another

important form of agnostic replacement strategy is what we call a Preference List (PL)

strategy, which arises as a result of optimizing for a metric other than churn: rank the

nodes according to some preference order, and pick the top k available nodes. Note that

we use the term PL specifically in the case that the preference order is not directly related to

churn (e.g., latency), and is essentially static. Such PL strategies turn out to describe many

systems well. One example of a PL strategy is anycast, where one client aims to select the

closest available server(s).

Results

Basic evaluation of strategies. The first part of the chapter performs an extensive evalua-

tion of churn resulting from a number of node selection strategies in five real-world traces.

Among our conclusions is that replacement strategies yield a 1.3-5× reduction in churn

over the best fixed strategy in the longer traces, intuitively because of their ability to dy-

namically adapt. This indicates that for some systems, dynamic node reselection strategies

may be worthwhile even if they are more difficult to implement.

A more surprising finding is that there is a significant difference in churn among

agnostic strategies. One might expect that selecting nodes using a metric unrelated to

churn should perform similar to RR, since neither strategy uses node-specific stability in-

63

formation. However, it turns out that while PL strategies perform poorly, RR is quite good,

typically within a factor of less than 2 of the best predictive strategy.

To explain the low churn achieved by RR, we analyze it in a stochastic model.

While with an exponential session time distribution, RR is no better than Preference Lists,

RR’s churn rate decreases as the distributions become more heterogeneous—and session

time distributions tend to be heterogeneous in realistic scenarios.

Applications to systems design. In the second part of this chapter, we explore systems in

which different designs or parameter choices “accidentally” induce a PL or RR-like strat-

egy. Consider constructing a multicast tree as follows: each node, upon arrival or when

one of its ancestors in the tree fails, queries m random nodes in the system, and connects

to the node through which it has the lowest latency to the root. Clearly, increasing m better

adapts the tree to the underlying topology, but it also has the nonobvious result that the

tree can suffer from more churn as m increases, as node selection moves from being like RR to

being like a PL strategy.

Of course, there will always be a tradeoff between churn and other metrics. What

we aim to illuminate is the nonobvious way in which that tradeoff arises. Although this

is a simple phenomenon at heart, to the best of our knowledge it has not been studied

in the context of distributed systems. This framework can explain previously observed

performance differences in new ways, and provide guidance for systems design.

Contributions

In summary, the main contributions of this chapter are as follows:

• We provide a quantitative guide to the churn resulting from various node selection

strategies in real-world traces.

• We demonstrate and analytically characterize the performance of Random Replace-

ment, showing that it is better than Preference List strategies and in many cases rea-

sonably close to the best strategy. Its simplicity and acceptable performance may

make RR an appropriate choice for certain systems.

• Using the difference between RR and PL, we demonstrate and explain performance

differences in existing designs for the topology of DHT overlay networks, replica

placement in DHTs, anycast server selection, and overlay multicast tree construction.

64

In many protocols, simply adding some randomization is an easy way to reduce

churn.

This chapter proceeds as follows. Section 4.2 evaluates churn under various selection

strategies. In Section 4.3, we give intuition for and analysis of RR and PL strategies. Sec-

tion 4.4 explores how the difference between RR and PL affects system design. We discuss

why one would intentionally use RR in Section 4.5 and related work in Section 4.6.1, and

conclude in Section 4.7.

4.2 Churn Simulations

The goal of this section is to understand the basic effects of various selection

strategies in a wide variety of systems and node availability environments. To this end,

we use a simple model of churn which will serve as a useful rule of thumb for metrics

of interest in real systems. We show one such metric later in this section—the fraction of

failed route operations in a simulation of the Chord DHT [114]—and we will see others in

more depth in Section 4.4.

In Section 4.2.1 we give our model of churn. We list the node selection strategies

in Section 4.2.2 and the traces of node availability in Section 4.2.3. Section 4.2.4 presents

our simulation methodology. Our results appear in Section 4.2.5.

4.2.1 Model

In this section we define churn essentially as the rate of turnover of nodes in the

system. Intuitively, this is proportional to the bandwidth used to maintain data in a load-

balanced storage system.

System model. At any time, each of n nodes in the system is either up or down, and nodes

that are up are either in use or available. Nodes fail and recover according to some unknown

process. We call a contiguous period of being up a session of a node. At any time, the node

selector may choose to add or remove a node from use, transitioning it from available to in

use or back. There is a target number of nodes to be in use, k = αn for some 0 < α ≤ 1,

which the replacement strategies we consider will match exactly unless there are fewer

than k nodes up. The fixed strategies will pick some static set of k nodes, so they will have

fewer than k in use whenever any picked node is down.

65

Definition of churn. Given a sequence of changes in the set of in-use nodes, let Ui be the

set of in-use nodes after the ith change, with U0 the initial set. Then churn is the sum over

each event of the fraction of the system that has changed state in that event, normalized by run

time T:

C =
1
T
· ∑

events i

|Ui−1⊖Ui|
max{|Ui−1|, |Ui|}

,

where ⊖ is the symmetric set difference. We count a failure, and the selector’s response to

that failure, as separate events. So in a run of length T, if we begin with k nodes in use, two

nodes fail simultaneously, and the selector responds by adding two available nodes, churn

is 1
T

(2
k + 2

k

)

. If each of the k in-use nodes fails, one by one with no reselections, churn is
1
T

(1
k + 1

k−1 + · · ·+ 1
1

)

≈ 1
T ln k.

An important assumption in this definition is that a node which fails and then

recovers is of no more use to us than a fresh node. This is reasonable for systems with

state that is short-lived relative to the typical period of node downtime, such as in overlay

multicast or i3 [113]. We study the case of storage systems, which have long-term state, in

Section 4.4.4.

4.2.2 Selection Strategies

Predictive Fixed strategies. When deploying a service on a reasonably static infrastructure

such as PlanetLab, one could observe nodes for some time before running the system, and

then use any of the following heuristics for selecting a “good” fixed set of nodes to use for

the lifetime of the system, whenever they are up:

• Fixed Decent: Discard the 50% of nodes that were up least during the observation

period. Pick k random remaining nodes. (If k > n
2 , then pick all the remaining nodes

and k− n
2 random discarded nodes.)

• Fixed Most Available: Pick the k nodes that spent the most time up.

• Fixed Longest Lived: Pick the k nodes which had greatest average session time.

It would be natural to try picking the k nodes that result in minimal churn during the

observation period, but unfortunately this problem is NP-complete (see Appendix C.4).

66

The complexity arises from the property that the cost of a failure depends on the number

of nodes in use at the time.

Agnostic Fixed strategies. We look at only a single strategy in this class, which will turn

out to be interesting because its performance is similar to Preference List strategies:

• Fixed Random: Pick k uniform-random nodes.

Predictive Replacement strategies. The following strategies select a random initial set

of k nodes, and pick a replacement only after an in-use node fails. They differ in which

replacement they choose:

• Max Expectation: Select the node with greatest expected remaining uptime, condi-

tioned on its current uptime. Estimate this by examining the node’s historical session

times.

• Longest Uptime: Select the node with longest current uptime. This is the same as Max

Expectation when the underlying session time distribution has decreasing failure

rate.

• Optimal: Select the node with longest time until next failure. This requires future

knowledge, but provides a useful comparison. It is the optimal replacement strategy

(see Appendix C.3).

Agnostic Replacement strategies.

• Random Replacement (RR): Pick k random initial nodes. After one fails, replace it with

a uniform-random available node.

• Passive Preference List: Given a ranking of the nodes, after an in-use node fails, replace

it with the most preferable available node.

• Active Preference List: Given a ranking of the nodes, after an in-use node fails, replace

it with the most preferable available node. When a node becomes available that’s

preferable to one we’re using, switch to it, discarding the least preferable in-use node.

In this section, we will assume a randomly ordered preference list chosen and fixed at the

beginning of each trial.

67

4.2.3 Traces

The traces we use are summarized in Table 4.1 and described here.

Synthetic traces: We use session times with PDF f (x) = aba/(x + b)a+1 with

exponent a = 1.5 and b fixed so that the distribution has mean 30 minutes unless oth-

erwise stated. This is a standard Pareto distribution, shifted b units (without the shift, a

node would be guaranteed to be up for at least b minutes). Between each session we use

exponentially-distributed downtimes with mean 2 minutes.

PlanetLab All Pairs Ping [115]: this data set consists of pings sent every 15 min-

utes between all pairs of 200-400 PlanetLab nodes from January, 2004, to June, 2005. We

consider a node to be up in one 15-minute interval when at least half of the pings sent to it

in that interval succeeded. In a number of periods, all or nearly all PlanetLab nodes were

down, most likely due to planned system upgrades or measurement errors. To exclude

these cases, we “cleaned” the trace as follows: for each period of downtime at a particular

node, we remove that period (i.e. we consider the node up during that interval) when the

average number of nodes up during that period is less than half the average number of

nodes up over all time. We obtained similar results without the cleaning procedure.

Web Sites [8]: This trace is based on HTTP requests sent from a single machine at

Carnegie Mellon to 129 web sites every 10 minutes from September, 2001, to April, 2002.

Since there is only a single source, network connectivity problems near the source result in

periods when nearly all nodes are unreachable. We attempt to remove such effects using

the same heuristic with which we cleaned the PlanetLab data.

Microsoft PCs [14]: 51,662 desktop PCs within Microsoft Corporation were pinged

every hour for 35 days beginning July 6, 1999.

Skype superpeers [52]: A set of 4000 nodes participating in the Skype superpeer

network were sent an application-level ping every 30 minutes for about 25 days beginning

September 12, 2005. As in the web sites trace, there are a number of short periods when

many nodes appear to fail, due to network problems near the measurement site.

Gnutella peers [106]: Each of a set of 17,125 IP addresses participating in the

Gnutella peer-to-peer file sharing network was sent a TCP connection request every 7 min-

utes for about 60 hours in May, 2001. A host was marked as up when it responded with a

SYN/ACK within 20 seconds, indicating that the Gnutella application was running. The

majority of those hosts were usually down (see Table 4.1).

68

Trace Length Mean # Median node’s
(days) nodes up mean session time

PlanetLab 527 303 3.9 days
Web Sites 210 113 29 hours

Microsoft PCs 35 41970 5.8 days
Skype 25 710 11.5 hours

Gnutella 2.5 1846 1.8 hours

Table 4.1: The real-world traces used in this chapter. The last column says that 50% of

PlanetLab nodes had a mean time to failure of ≥ 3.9 days.

4.2.4 Simulation Setup

We compute churn in an event-based simulator which processes transitions in

state (down, available, and in use) for each node. We allow the selection algorithm to react

immediately after each change in node state. This is a reasonable simplification for appli-

cations which react within about 7 minutes, since the time between pings used to produce

the traces is at least this much.

We also feed the sequence of events (transitions to or from the in use state) into

a simple simulator of the Chord protocol included with the i3 [113] codebase. Events

are node joins and failures and datagrams being sent and received. Datagram delivery

is exponentially distributed with mean 50 ms between all node pairs with no loss (unless

the recipient fails while the datagram is in flight). Once per simulated second we request

that two random DHT nodes v1, v2 each route a message to the owner of a single random

key k. The trial has failed unless both messages arrive at the same destination. Failure

due to message loss was about an order of magnitude more common than failure due to

inconsistency (the messages being delivered to two different nodes).

In all cases, we split each trace in half, train the fixed strategies on the first half,

simulate the strategies on the whole trace, and report statistics on the second half only. All

plots use at least 10 trials and show 95% confidence intervals unless otherwise stated. For

the traces with more than 1000 nodes, we sample 1000 random nodes in each trial.

In the real-world traces, the parameter k does not directly control system size

for the fixed strategies, since some nodes have extended downtimes. To provide a fairer

comparison, we plot performance as a function of the average number of nodes in use over

time, controlled behind the scenes by varying k. Replacement strategies have an advantage

69

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

alpha

Any fixed strategy
RR

Max Expectation
Optimal

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
fa

ile
d

alpha

Any fixed strategy
RR

Max Expectation
Optimal

Figure 4.1: Churn (left) and fraction of requests failed in Chord (right) for varying α, with

fixed k = 50 nodes in use and the synthetic Pareto lifetimes.

that this metric doesn’t capture: the number of nodes in use is exactly k as long as ≥ k

nodes are up.

4.2.5 Results

The results of this section are shown in Figures 4.1-4.5. Note that for clarity in the

plots, we have shown the Preference List strategies separately (Figure 4.5).

Some basic properties

Figure 4.1 shows churn in the synthetic Pareto session times as a function of α

with fixed k, so that n = k/α varies. Here all fixed strategies are equivalent: since all

nodes have the same mean session time, it is not possible to pick out a set of nodes that is

consistently good. We can also see that Random Replacement is close to Max Expectation

when α is large. As one would expect, performance is best when α ≪ 1. In this case, Max

Expectation does much better than RR intuitively because it finds the few nodes with very

long time to failure.

By comparing the two plots in Figure 4.1, we can see that churn is proportional

to the fraction of requests failed in Chord. This demonstrates that our churn metric can

predict performance in at least one real system; we will study other systems in Section 4.4.

Figure 4.2 shows a difference in performance for the PlanetLab trace, rather than

the synthetic Pareto trace of Figure 4.1. In Figure 4.2, we vary k (the number of nodes in

70

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0 20 40 60 80 100 120 140 160
F

ra
ct

io
n

fa
ile

d

Average number of nodes in use

Fixed Most Available
RR

Figure 4.2: Chord in the PlanetLab trace (one trial per data point).

use) rather than n, which results in more failures as k grows since route lengths increase

as O(log k). Not shown is that RR results in 3.3% lower mean message latency in Chord in

the PlanetLab trace. We will see how churn affects other systems in Section 4.4.

Benefit of Replacement over Fixed strategies

Figure 4.3 shows that in the two peer-to-peer traces, the best fixed strategies

match the performance of the best replacement strategies, perhaps since these traces are

shorter than the others (Table 4.1). In any case, fixed strategies are less applicable in a

peer-to-peer setting due to the dynamic population.

In the other traces, the best replacement strategies offer a 1.3-5× improvement

over the best fixed strategy, depending on k and the trace. This suggests that dynamically

selecting nodes for a long-running distributed application would be worthwhile when

churn has a sufficient impact on cost or service quality.

In the PlanetLab trace, the fixed strategies are particularly poor. This is primarily

due to a period of uncharacteristically high churn from late October until early December,

2004, coinciding with the PlanetLab V3 rollout. During this period, fixed strategies had an

order of magnitude higher churn than at other periods, while the replacement strategies

increased by only about 50%. While this is impressive on the part of the replacement strate-

gies, the rollout period may not be representative of PlanetLab as a whole. Restricting the

simulation to the 6-month period after the rollout (Figure 4.3(b)), the smart fixed strategies

offer some benefit, and there is less separation between strategies in general. However, all

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

(a) PlanetLab (January 2004 - June 2005)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300 350 400

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

(b) PlanetLab after the V3 rollout (Dec. 2004 - Jul. 2005)

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

(c) Web Sites

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

(d) Microsoft PCs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

(e) Skype

 0

 5

 10

 15

 20

 0 50 100 150 200 250

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

Fixed Random
Fixed Decent

Fixed Longest Lived
Fixed Most Available

RR
Longest Uptime

Max Expectation
Optimal

(f) Gnutella

Figure 4.3: Churn with varying average number of nodes in use traces. The key at lower

right applies to all six plots.

72

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1 4 16 64 256 1024

R
el

at
iv

e
C

hu
rn

Average number of nodes in use

(a) RR divided by Max Expectation

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 16 64 256 1024

R
el

at
iv

e
C

hu
rn

Average number of nodes in use

(b) Passive PL divided by RR

 0

 2

 4

 6

 8

 10

 12

 1 4 16 64 256 1024

R
el

at
iv

e
C

hu
rn

Average number of nodes in use

PlanetLab
Web Sites

Microsoft PCs
Skype

Gnutella

(c) Active PL divided by RR

Figure 4.4: Churn of Random Replacement relative to other strategies. The key at right

applies to all three plots.

of the replacement strategies are still more effective than the best fixed strategy.

Agnostic strategies

Figure 4.4(a) shows the churn of Random Replacement divided by the churn of

Max Expectation, the overall best strategy (other than Optimal, which requires knowledge

of the future). As in the synthetic distributions, RR’s relative performance is worse for

small k, but is usually within a factor of 2 of Max Expectation.

Figure 4.5 illustrates the general behavior of the Preference List strategies via the

PlanetLab trace. Active PL is similar to, and worse than, Fixed Random. Intuitively, this

is because both strategies pay for every failure that occurs on a fixed set of k nodes. Ad-

ditionally, according to our definition of churn, Active PL pays to add preferred nodes as

soon as they recover. Passive PL becomes more similar to Fixed Random as k increases.

While it doesn’t pay for every failure on the top k nodes, it is usually using those nodes

and pays for most of the failures.

Figures 4.4(b) and (c) show churn under the Passive and Active PL strategies,

respectively, divided by the churn of RR. RR is generally 1.2-3× better than Passive and

2.5-10× better than Active PL.

In the next section, we give more precise intuition for—and analysis of—the dif-

fering performance of RR and Preference List strategies. In Section 4.4 we will show how

that difference affects system design.

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

C
hu

rn
 (

tu
rn

ov
er

 p
er

 d
ay

)

Average number of nodes in use

Active PL
Fixed Random

Passive PL
RR

Max Exp

Figure 4.5: Preference List strategies in the PlanetLab trace. Note the log-scale x axis.

4.3 Analysis

Why does picking a random replacement for each failed node produce much

lower churn than using a fixed random set of nodes, or the top k nodes on a preference

list? We answer that question within a stochastic model defined in Section 4.3.1. We give

intuition for why Preference List strategies are as bad as Fixed Random in Section 4.3.2,

and why RR does better in Section 4.3.3.

Our main analytical results are in Section 4.3.4. We derive RR’s expected churn

rate, show that its churn decreases as the session time distributions become more hetero-

geneous, and show that if all nodes have equal mean session time, RR has no worse than

twice the churn of any fixed or Preference List strategy. However, if there are very few

nodes with high mean session time, RR can be much worse.

4.3.1 Stochastic Model

We use the following renewal process. For each node vi, there is a distribution

of session times with given PDF fi and mean µi. To simplify the exposition, we will assume

all nodes have equal mean µ unless otherwise specified. At time 0 all nodes are up. Each node

draws a session time ℓ1 from its distribution independently of all other nodes, fails at time

ℓ1, recovers instantaneously, draws another session time ℓ2, fails at time ℓ1 + ℓ2 , and so on

until the end of the run at some given time T. We will be interested in the expected churn

as T → ∞. (If instantaneous recovery seems unrealistic, we note that the analysis of RR

is identical in the model that each node has only a single session, and the total number of

74

nodes is held constant by introducing a fresh node after each failure.)

4.3.2 Fixed and Preference List Strategies

Fixed strategies are very easy to analyze in this model. Since nodes recover in-

stantaneously, our definition of churn reduces to 2
kT times the number of failures (1

k for

each failure and 1
k for each recovery, normalized by time T). As T → ∞, the number of

failures on any node approaches its expected value T/µ, so the total number of failures

on the k selected nodes approaches Tk
µ . Thus all fixed strategies result in expected churn

2
kT · Tk

µ = 2/µ.

Now consider Passive PL and suppose S is the set of k most preferred nodes. Like

fixed strategies, each failure of some node v ∈ S causes us to pay 2
kT for the failure and

replacement. Since recovery is instantaneous, the next time some other node fails, v must

be its replacement (at any time there will be at most one node in S not in use). As k grows,

the rate of failures of in-use nodes grows, so we switch back to v more and more quickly.

In particular, the probability that we switch back to v before its next failure approaches

1. Thus, for large k, Passive PL pays for nearly every failure on {v1, . . . , vk} and its churn

approaches 2/µ also.

Finally, consider Active PL. Like the fixed strategies, it pays for every failure and

recovery on its k most preferred nodes, for churn 2/µ. But in addition, it pays to switch to

a replacement node while one of its most preferred nodes has failed, yielding total churn

3/µ.

In summary, fixed strategies, Passive PL, and Active PL have in common the

property that they are always or nearly always using a fixed set of k nodes, and hence

have failure rate similar to the mean failure rate of those nodes.

4.3.3 Intuition for Random Replacement

RR’s good performance is an example of the classic inspection paradox. When RR

picks a node vi after a failure, the replacement’s time to failure (TTF) is not simply drawn

from the session time distribution fi. Rather, RR is (roughly) selecting the current session of

a random node. (As we will see in the next section, there is some mathematical complexity

hidden in the word “roughly”.) This is biased towards longer sessions since a node spends

longer in a long session than in a short one.

75

Alternately, consider some node in the system. As it proceeds through a session,

the probability that it has been picked by RR increases, simply because there have been

more times that it was considered as a potential replacement. Thus, nodes with longer

uptimes are more likely to have been picked. And for realistic distributions, nodes with

longer uptimes are less likely to fail soon.

But RR does very badly when stable nodes are rare. Suppose k = 1 and all nodes

have exponential session times, one with mean r ≫ 1 and n− 1 with mean 1. When RR

selects a node, its expected time to failure is 1
n (r) + n−1

n (1) ≈ 1 when n ≫ r, so its churn is

2. But the best fixed strategy has mean TTF r and churn 2/r.

A rigorous and general analysis of RR takes some more work and is the subject

of the next section.

4.3.4 Analysis of Random Replacement

We now derive RR’s churn rate in terms of the session time distributions and

α, assuming large n and T but not assuming equal means (Theorem 8), and show that

the analysis matches simulations even for n = 20 (Figure 4.6). From this we show that

the churn of RR decreases as the distributions become more heterogeneous (Corollary 8).

We will define this rigorously, but as an example, the Pareto distribution becomes more

heterogeneous as the exponent parameter a decreases [7]. Finally, we show that for any

session distributions that have equal mean, RR has at most twice the expected churn of

any fixed or Preference List strategy (Corollary 9).

To simplify the analysis, we assume nodes belong to an arbitrarily large constant

number d of groups of n/d nodes, such that the nodes within each group i have the same

session time distribution fi. Additionally, our analysis assumes that the session time dis-

tributions have the property that the system converges to a steady state, in the following

sense.

Definition 4 In a run of length T, let random variable Li be the length of a uniform-random session

of node i, and let Ri be the number of reselections (of any nodes) during that session. The session

time distributions f1, . . . , fd are convergent if they have finite mean and variance and there exists

a constant c > 0 such that

Pr[(1− ε)cLi ≤ Ri ≤ (1 + ε)cLi] ≥ 1− ε

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

C
hu

rn
 (

tu
rn

ov
er

 p
er

 u
ni

t t
im

e)

Pareto session time distribution degree parameter (a)

Any fixed strategy
RR

Analysis of RR
Max Expectation

Optimal

Figure 4.6: Simulation and analysis of churn with varying session time distribution, n =

20, and α = 1
2 .

∀i, ∀ε > 0, α ∈ (0, 1), and sufficiently large n and T.

In other words, perhaps after some period of time, there is a roughly constant rate

of c reselections per unit time. This property is trivially true in the (uninteresting) case that

all nodes have exponentially distributed session times with common mean. We conjecture

that in fact it is true quite generally. Our main analytical result is the following.

Theorem 8 Let C be the churn in a trial of length T using Random Replacement. If the node

session time distributions (fi) are convergent and α ∈ (0, 1), then as n, T → ∞, E[C] is given by

the unique solution to

E[C] =
2

αd

d

∑
i=1

1
µi

(

1− E

[

exp
{

− α

2(1− α)
E[C] · Li

}])

,

where random variable Li has PDF fi.

Proof: See Appendix C.1.

Figure 4.6 shows agreement of this analysis with a simulation for n = 20 and

Pareto-distributed session times with PDF f (x) = aba/(x + b)a+1, as in Figure 4.1. We

vary a and pick b so that µ = 1. Even though the analysis assumes large n, it differs

from the simulation by ≤ 1.5% for a ≥ 1.5. As a approached 1, convergence time in the

simulation became impractical. For a ≤ 1, f (x) has infinite variance and does not satisfy

the conditions of Theorem 8.

77

We next characterize the churn of RR in terms of heterogeneous or “skewed” the

session time distributions are, in the sense of the Lorenz partial order. Note that this is a

generalization to a probabilistic setting of the majorization partial order which we used in

Chapter 2.

Definition 5 Given two random variables X, X′ ≥ 0 with CDFs F and F′, respectively, we say

X′ � X (“X′ is more heterogeneous than X”) when E[X′] = E[X] < ∞, the PDFs of X and X′

exist, and for all y ∈ [0, 1],

E
[

X′ |X′ ≥ x′
]

≥ E [X |X ≥ x] ,

where x′ = F
′−1(y) and x = F−1(y).

Note that x′ and x are the yth percentile values of X′ and X, so intuitively this definition

compares the tails of the two distributions. The Lorenz partial order is consistent with

variance, in the sense that X′ � X implies var(X′) ≥ var(X).

Our first corollary states that RR’s expected churn decreases as the session time

distributions become more heterogeneous. In the framework of Chapter 2 extended to the

probabilistic setting, this corollary states that the price of heterogeneity of RR is 1.

Corollary 8 Let C and C′ be the expected churn of RR as given by Theorem 8 under session time

distributions (fi) and (f ′i), respectively, and fixed α. If f ′i � fi for all i ∈ {1, . . . , d}, then

E[C′] ≤ E[C].

Thus, for fixed mean session times, the least heterogeneous distribution—when

session times are deterministically equal to their mean—is the worst case for RR. In the

special case that all mean session times are equal (but may have different distributions),

we have the following:

Corollary 9 If the session time distributions are convergent and have equal mean, RR’s expected

churn is at most twice the expected churn of any fixed or Preference List strategy.

The proofs appear in Appendix C.2.

4.4 Applications

We have seen that Random Replacement consistently outperforms Preference List

strategies (Section 4.2.5) by taking advantage of heterogeneous session time distributions

78

(Section 4.3). In this section, we study how these two classes of strategies come up in real

systems.

We begin in Section 4.4.1 with a simple example, anycast server selection, in

which there are natural analogies for strategies on the spectrum between RR and PL,

and doing less work (in terms of optimizing latency) decreases churn. We also study how

quickly RR converges to its steady-state churn rate.

In Section 4.4.2 we discuss how two classes of proposed DHT topologies behave

like Active PL and RR, and show that randomizing the Chord topology decreases the frac-

tion of failed lookups by 29% in the Gnutella trace.

In Section 4.4.3, we show how strategies similar to RR and PL occur in overlay

multicast tree construction. Our results provide further insight into an initially surprising

effect observed by [110], that a random parent selection algorithm was better than a certain

longest-uptime heuristic.

Finally, Section 4.4.4 explores two strategies for placing replicas in DHTs. Al-

though a difference in their associated maintenance bandwidth had been previously ob-

served, we show that part of the performance difference is due to behavior close to RR in

one, and PL in the other.

4.4.1 Anycast

To give a simple instantiation of preference list and RR strategies, consider an

endhost which desires to communicate with any of a set of n acceptable servers. The

endhost begins by connecting to a random server. Whenever its current server fails, it

obtains a list of the m servers to which it has lowest latency, perhaps by utilizing an anycast

service such as [9, 40, 129], and connects to a random one of these m. Additionally, the

endhost periodically probes for a closer server that may have newly joined, switching to

such a server after some random delay in [0, t] following the join.

We simulated the resulting number of failures in a simple simulator with events

at the level of node joins and failures, as in Section 4.2. We do not count a switch as a

failure. Latencies were obtained from a synthetic edge network delay space generator of

Zhang et al. [132], which is modeled on measurements of latency between DNS servers.

The large availability traces were sampled down to 2000 nodes.

Figure 4.7(a) depicts the tradeoff between server failure rate and latency that re-

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45

F
ai

lu
re

s
pe

r
da

y

Mean latency (ms)

Active PL (t = 1 min)
t = 2 hours

t = 1 day

t = 32 days
Passive PL

m = 4 m = 32

Uptime-Latency hybrid

(a) Stability-latency tradeoff in Skype trace

 0.01

 0.1

 1

 10

1 year4 w1 w1 d6 hr1 hr10 min1 min

F
ai

lu
re

s
pe

r
da

y

Endhost session length

Gnutella
Skype

Web Sites
Microsoft PCs

PlanetLab

(b) Convergence of RR

Figure 4.7: Anycast simulation results.

sults from various choices of the parameters m and t in the Skype trace. The upper-left

point has t = 1 minute and m = 1, and corresponds to an Active PL strategy. As t → ∞,

we move to a Passive PL strategy, and failure rate decreases by roughly 56% (46-72% in the

other traces). Increasing m results in an RR strategy and decreases failure rate by a further

13% (13-21% in the other traces). This latter decrease is modest since we are only selecting

one node at a time (compare with Figure 4.4(b) with k = 1 nodes in use). However, this

may be useful if, for example, a mean latency of 40 ms were acceptable to the application in

question. We also simulated a hybrid strategy which used t = ∞ and selected the replace-

ment server which minimized w · latency − (1− w) · uptime. As w decreases from 1 to 0,

the strategy moves from Passive PL to Longest Uptime. In the Skype trace, this additional

uptime information reduces failure rate by about 24% below the randomized strategy with

m = 32.

Of course, the right point in the tradeoff space depends on the particular appli-

cation, but these results show that we should expect stability to suffer as latency is better

optimized, and conversely that doing a little less work is an easy way to reduce the failure

rate.

So far we have assumed an endhost which continually selected a server over the

entire trace. Suppose now that the endhost arrives at a random time, uses RR server selec-

tion, and departs after a given session length ℓ. Figure 4.7(b) shows that when ℓ is small,

80

the endhost experiences the mean server failure rate, as in Active PL. Intuitively, the end-

host departs before it makes full use of the session of the server it selected. The failure rate

converges as ℓ approaches the mean session length of a RR-selected server, decreasing by

2.3×-5.1× depending on the trace.

As an example, some Skype peers which are behind NATs select superpeers through

which to relay voice calls. Since 90% of relayed Skype calls last less than 36 minutes [52],

if the peers select relays randomly, these calls would see roughly the mean superpeer fail-

ure rate (one failure every 16 hours). However, one could imagine designing the super-

peer network to maintain a set of randomly selected “super-superpeers” through which

interruption-sensitive voice calls are routed when possible. Such a design would result in

a failure rate similar to that of a persistent endhost session (one failure every 42 hours).

4.4.2 DHT Neighbor Selection

In a distributed hash table, each node v is assigned an identifier id(v) in the DHT’s

keyspace. Ownership of the keys is partitioned among the nodes. Each node in a DHT

maintains links to certain other nodes as a function of the IDs of the nodes. Generally

these come in two types: sequential neighbors, such as the successor list in Chord: each

node v maintains links to about log n nodes whose IDs are closest to v’s. These are used

to maintain consistency of the partitioning of the keyspace among nodes. Second, nodes

have long-distance neighbors, such as the finger table in Chord, to provide short routes

between any pair of nodes. We will compare two different ways of selecting long-distance

neighbors.

Deterministic and randomized topologies

In the first class of topologies, used in Chord [114], CAN [95], and others [62, 87],

each node v maintains links to the owners of certain other IDs which are a determinis-

tic function of v’s ID. For example, Chord’s keyspace is {0, . . . , N − 1}, where N = 2160,

and node v maintains links called fingers to the owners of id(v) + 2i(mod N) for each

i ∈ {0, . . . , (log2 N) − 1}. This results in links to Θ(log n) distinct nodes, where n is the

number of nodes in the system. Each node periodically performs lookup operations to

find the current owner of the appropriate key for each of its fingers, updating its links as

ownership changes due to node arrivals and departures. In Chord, a key x is owned by

81

 0

 0.005

 0.01

 0.015

 32 64 128 256 512 1024
F

ra
ct

io
n

of
 r

eq
ue

st
s

fa
ile

d

Average number of nodes up

Unmodified Chord topology
Randomized Chord topology

Figure 4.8: DHT neighbor selection simulation in Gnutella trace.

the node whose ID most closely follows x in the (modular) keyspace. Thus the choice of

each finger i for a node v can be described as an Active Preference List strategy with k = 1

nodes in use, where the preference ordering ranks a node w according to the distance from

id(v) + 2i to id(w).

In the second class of topologies, links are chosen randomly. Symphony [78] was

the first design to explicitly choose random neighbors, but some other topologies have

enough underlying flexibility [54] that trivial modifications of the original design allow

them to choose from many potential long-distance neighbors. For example, a natural way

to randomize Chord1 is to select the ith finger as the owner of a random key in {id(v) +

2i, . . . , id(v) + 2i+1}. When that link fails, we can choose a new random neighbor in the

same range. Unsurprisingly, this strategy is essentially RR.

Results

We simulated these two variants of Chord using the simulator and methodology

described in Section 4.2.4. In each trial we sampled n random nodes from the Gnutella

trace and simulated a run of Chord over those n nodes, with deterministic and random

neighbor selection. Since most of the nodes are usually down, we plot results as a function

of ñ, the average number of nodes up. Figure 4.8 shows that with ñ ≈ 850, the randomized

topology has 29% fewer failed requests due to the lower finger failure rate. The random-

ized topology also had negligibly longer routes (7.6% longer for ñ ≈ 27 but decreasing to

1This topology was studied in [79] in the context of route length.

82

just 0.8% longer for ñ ≈ 850; and in fact, additional techniques can reduce route length in

the randomized Chord topology below that of the deterministic topology [79]).

Implications

The key conclusion we wish to highlight here is that randomized topologies are in-

herently more stable than deterministic ones, even without explicitly picking neighbors based on

their expected stability. This fact may be useful in designing systems, as well as teasing out

subtle properties of systems design.

For example, Leonard et al. [73] analyzed the resilience of several P2P systems

including Chord in a stochastic model, deriving the expected time until a node is discon-

nected from the network. The analysis assumed that the selection of a neighbor at any

point in time is independent of its age—essentially an RR strategy. This might initially

seem reasonable since finger selection is based on pseudorandom node IDs. However, we

have now seen that deterministic DHTs in fact follow a PL strategy with a pseudorandom

preference list. Since time-until-disconnection depends superlinearly on finger failure rate,

the assumption of [73] would result in a significant overestimate of the resilience of the

standard Chord protocol and the other deterministic DHTs.

We note that other work has dealt with flexible, non-deterministic topologies in

DHTs. One advantage of these topologies is the ability to use proximity neighbor selection

to reduce latency [54]—which, depending on the implementation, may result in a latency-

based PL strategy. In the work most similar to this section, Ledlie et al. [72] used Longest

Uptime for finger selection. In the same Gnutella trace, their simulations showed a 42%

reduction in maintenance bandwidth when compared to a proximity-optimizing neighbor

selection strategy, albeit at the cost of increasing latency by 50%.

4.4.3 Multicast

In this section we simulate how preference list strategies can affect the stability of

overlay multicast trees.

Simulation setup

We closely follow the simulation scenario of Sripanidkulchai et al. [110]. We deal

with a single-source multicast tree, whose root is always present without failure. When

83

a node v joins, it contacts m random suitable nodes. A node is suitable for v when it is

connected to the tree and has available bandwidth for another child. The node then picks

one of those m nodes as its parent in the tree, according to one of several strategies we

will describe momentarily. Whenever a node fails, each of its descendants experiences an

interruption in the hypothetical multicast stream, and repeats the join procedure. Thus a

failure near the root may disrupt the structure of a large subtree.

We use three strategies for selecting the parent among the m suitable nodes: (1)

the node with Longest Uptime; (2) the node at Minimum Depth from the root; or (3) the node

which would result in the Minimum Latency along v’s path through the tree to the root. The

first two strategies with m = 100 were also simulated in [110], in traces which had peak

sizes of 1, 000-80, 000 nodes up.

Unfortunately, we could not test under the traces and node bandwidth bounds

used in [110] since their data is not publicly available. Instead, we use the traces of Sec-

tion 4.2.3, latencies from Zhang et al. [132] as in Section 4.4.1, and uniform node capacities:

each node accepts at most d = 4 children unless otherwise stated. In [110], after a node

fails, its descendants which are contributing more resources are allowed to rejoin before

freeriders. Since we use homogeneous capacities, we have nodes rejoin in random order.

Finally, a minor difference is that we have a node query m suitable parents and pick the

best, rather than querying m nodes, filtering out the unsuitable ones, and picking the best.

We report the total number of interruptions. Additionally, we periodically sam-

ple the mean node depth (number of hops from each node to the root) and mean latency

through the tree to the root. We take the mean of these metrics over all samples within

each trial, and then over all trials.

Results

We begin by discussing the Min Latency strategy. We will then confirm and of-

fer additional interpretation of two results of [110] regarding the Min Depth and Longest

Uptime strategies.

Figures 4.9(a) and 4.9(b) show that optimizing latency both helps and hurts the

number of interruptions. The case m = 1 is random parent selection. As we begin increas-

ing m, latency to the root decreases (Figure 4.9(d)) but there is a side effect of reducing tree

height (Figure 4.9(c)), which reduces the interruption rate (22% in Gnutella, 19% in Skype)

84

 0

 10

 20

 30

 40

 50

 60

 1 4 16 64 256 1024

In
te

rr
up

tio
ns

 p
er

 n
od

e
pe

r
da

y

Nodes considered when picking parent (m)

Longest Uptime
Min Latency

Min Depth

(a) Interruption rate in Gnutella trace

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 16 64 256

In
te

rr
up

tio
ns

 p
er

 n
od

e
pe

r
da

y

Nodes considered when picking parent (m)

Longest Uptime
Min Latency

Min Depth

(b) Interruption rate in Skype trace

 0

 5

 10

 15

 20

 25

 1 4 16 64 256

M
ea

n
de

pt
h

Nodes considered when picking parent (m)

Longest Uptime
Min Latency

Min Depth

(c) Mean node depth in Skype trace

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 16 64 256

M
ea

n
la

te
nc

y
to

 r
oo

t (
se

c)

Nodes considered when picking parent (m)

Longest Uptime
Min Latency

Min Depth

(d) Mean latency in Skype trace

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

F
ai

lu
re

s
pe

r
da

y

Depth in tree

Longest Uptime, m = n
Min Latency, m = n

Min Depth, m = n
Random selection (m = 1)

(e) Node failure rate by depth in Skype trace

 0

 10

 20

 30

 40

 50

 60

 70

 1 4 16 64 256

In
te

rr
up

tio
ns

 p
er

 n
od

e
pe

r
da

y

Nodes considered when picking parent (m)

Min Latency
Min Depth

(f) Interruption rate in a bad case for RR

Figure 4.9: Multicast simulation results.

85

because there are fewer opportunities for failure along a node’s path to the root. But for

m ≥ 4 the mean node depth is essentially constant and the trees become less stable, with

interruptions increasing 22% in Gnutella and 86% in Skype.

The interior structure of the trees reveals the proximate cause of this instability.

Figure 4.9(e) shows that smaller m actually results in more stable nodes closest to the root,

where failures affect the most descendants, while m = n does a poorer job of getting the

best nodes near the root.

We claim that the ultimate cause of this increase in failure rate for the Min Latency

strategy is due to the RR/PL effect. The case is not as clear as in the previous examples:

even with m = n the trees produced are not deterministic since the nodes re-join in random

order after an ancestor fails. However, consider the≤ d children of some node v in the tree.

After one of the children fails, eventually a new child will join. With m = n the new child

is likely to be a nearby node, while with m = 1 the new child is selected more like RR.

Then with m = 1 we should expect the children of v to be more stable, and hence v’s

grandchildren will experience fewer interruptions.

To test this hypothesis, if the nodes had session time distributions in which RR

performed worse than PL strategies, performance should improve as m→ n. By Corollary 8,

such an (unrealistic) bad case is when session times are essentially constant, e.g. uniform

in [9, 11]. Figure 4.9(f) shows that in this case, interruption rate is indeed a monotonically

decreasing function of m.

We now compare our results to two results of Sripanidkulchai et al [110]. First,

in tests using a fixed m, they found that Min Depth best optimized stability among the

strategies they tested, which is true in most cases we tested (e.g. all of Figure 4.9(a)).

Interestingly, we find that even Min Depth can benefit from some randomization as well,

with less than half the interruption rate at m = 4 than m = n in Skype. This effect also

appeared in the Microsoft PCs trace and to a lesser extent in PlanetLab, but not in Gnutella

or Web Sites.

Second, Sripanidkulchai et al. [110] found it surprising that the Longest Uptime

parent selection performed more poorly than random selection (m = 1) in many cases, and

they determined the cause was that it built much taller trees. We obtained similar results in

Figure 4.9(a,b) for sufficiently large m. However, we also find that using Longest Uptime,

the nodes near the root are less stable than in the m = 1 case (Figure 4.9(e)).

In fact, neither Min Depth nor LU optimizes exactly the right metric. Min Depth

86

ignores the stability of nodes on the path from the parent to the root, and LU ignores the

length of that path and the stability of all ancestors except the parent. Thus, given the

results of this chapter, it should not be surprising that random selection (which, rather

than being agnostic, does a decent job optimizing for the right metric) can be better than

the other heuristics.

4.4.4 DHT Replica Placement

In this section we compare two common strategies, Root Set and Random, for man-

aging file replicas in distributed hash table-based storage systems. The metric we study is

the rate at which new replicas are created, which directly affects maintenance bandwidth.

Replica management strategies

In DHT-based storage systems, nodes are assigned identifiers (IDs) in a keyspace.

Each stored file or object o is also assigned a key key(o). The node whose identifier most

closely follows key(o) serves as the object’s coordinator or root r(o). For redundancy, some

number k of replicas of o are stored on some set of nodes.

The Root Set strategy for placing those replicas is used in slightly varying forms

by DHash [27], PAST [103], Bamboo [100], and Total Recall [11], among others: put replicas

on the k nodes whose IDs most closely follow key(o), or the “root set”. Specifically, when a

node in the root set fails, we add the next closest to the set, causing one replication; when a

node joins with an ID that places it in the root set, a replica of o is sent to it. In both cases a

file transfer is not necessary if the node in question already has the file. This occurs when a

node returns after a transient failure, such as a network outage, which does not affect files

stored on disk.

The Random strategy is used by Pond [98], Total Recall [11], and Weatherspoon

et al [127]. The root r(o) stores a directory of all available replicas of o, which may be

on any node in the system. (The directory is assumed to be small relative to the size of

an object replica, so the cost of replicating it — with, for example, the Root Set strategy

— is negligible.) Random has two parameters, k and f ∈ (0, 1]. Repair is only initiated

when the number of available replicas falls below ⌈ f · k⌉, at which point new replicas are

created until k are available. This “lazy replication” provides a buffer so the system reacts

to transient failures less frequently.

87

Simulation setup

It has been previously observed [11, 127] that Random significantly outperforms

Root Set, and this has been attributed to a number of disadvantages of Root Set. Root Set

might “forget” about replicas that end up outside the root set; it replicates when nodes

arrive, rather than only in response to failures; and in some implementations it lacks the

lazy replication threshold f .

Our goal is to quantify the impact of another difference: the choice of node on

which to place a replica once it is created. To compare the strategies on equal footing,

we modify the Root Set strategy so that it monitors all replicas in the system, does not

replicate in response to node joins, and uses the lazy replication threshold f . The remaining

difference is that Root Set places each new replica on the first node available node in the

root set (i.e., Passive PL) while Random follows RR node selection.

As before we use a simulator with events at the level of node joins, node failures,

and file replications. Since our traces do not include information about data loss associated

with failures, we assume no data loss, which provides a lower bound on the permanent

failure rate. We assume files are written to the system at the beginning of each trial. We

measure the mean number of replications used to maintain each file after the initial write.

Results

Figure 4.10 compares the two strategies with f ∈ {1, 3
4 , 1

2} in two representative

traces, PlanetLab and Gnutella, for k ∈ {2, . . . , 20}. (Note that each “replica” may be an

erasure-coded fragment of the file, so k = 20 is reasonable; in fact, Pond uses k = 32.) At

f = 1 and k = 20 in Gnutella, Random requires 30% fewer replications than Root Set, and

in fact Random with f = 1 is as good as Root Set with f = 3
4 . However, this difference

diminishes as f is decreased, and the strategies differ little in PlanetLab.

Several limitations of the traces likely underestimate the long-term benefit of Ran-

dom over Root Set. Once transient failures are largely masked, the strategies compete at

the level of permanent failures. However, none of the traces is long relative to the perma-

nent failure rate. For example, among Gnutella nodes that were up at some point in the

first half of the trace, only 33% were absent in the second half, and that fraction was smaller

in the other traces. Additionally, we have underestimated the permanent failure rate by

assuming no data loss. As a consequence, it is likely that Random has not yet converged

88

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16 18 20

R
ep

lic
at

io
ns

Number of replicas (k)

Root set, f = 1
Root set, f = 3/4
Root set, f = 1/2

Random, f = 1
Random, f = 3/4
Random, f = 1/2

(a) Maintenance cost in Gnutella trace

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20

R
ep

lic
at

io
ns

Number of replicas (k)

Root set, f = 1
Root set, f = 3/4
Root set, f = 1/2

Random, f = 1
Random, f = 3/4
Random, f = 1/2

(b) Maintenance cost in PlanetLab trace

Figure 4.10: Replica placement simulation results.

in these simulations (see Section 4.4.1).

Tati and Voelker [121] observed an effect of the Random strategy: nodes with

higher average availability will be selected to receive objects more frequently, and will

also likely have higher average availability in the future. This effect is closely related to RR

(compare with the intuition in Section 4.3.3) and undoubtedly contributes to the difference

between strategies that we have observed. Separating these effects, as well as obtaining

better data on permanent failures, remains an interesting area of future research.

4.5 Discussion

When would one use Random Replacement?

As we have seen in Section 4.4, RR appears in a variety of real systems, in sometimes subtle

ways. Our results are thus useful in better describing the performance of those systems.

However, if a system designer were intentionally implementing node selection

to minimize churn, the results of Section 4.2 show that Longest Uptime offers somewhat

better performance. Is there any case in which one would intentionally pick RR?

There are several cases in which RR would be easier to implement and may offer

a better tradeoff between churn and system complexity. For example, when failures are

due to the network, it may be hard for a node v to determine when it has “failed” and thus

report its uptime. If v notices a dropped connection to some other node w, this may be due

89

to the departure of w or a problem on the network path between v and w.

Even when it is easy to determine the uptime of a node, there may be incentive

for nodes to lie about their uptime to obtain better service, such as faster file transfer in a

P2P file distribution system or placement closer to the root in an overlay multicast tree. In

such cases, RR would be more robust to misbehavior than LU.

Finally, if we are dealing with a protocol that has already been standardized, there

may be no support for querying a node’s uptime. A client could potentially implement RR

node selection—to pick DNS servers, for example—without support from the protocol and

without active probing, and still obtain reasonable stability.

What about load balance?

In all effective node selection strategies, including RR, stable nodes are used more

on average. What performance can we expect when the most stable nodes are sought after

simultaneously by multiple agents, such as peers in a P2P system or users in a shared

infrastructure like PlanetLab?

The parameter α, the fraction of nodes needed, gives a way to analyze the total

churn experienced by all users: we can take α to be the utilization of the distributed system

as a whole. However, our results do not address fairness between users, which we leave

to future work.

4.6 Related Work

4.6.1 Page Replacement

In the special case of instantaneous recovery times, there is a precise correspon-

dence between our model of churn (Section 4.2.1) and page replacement in a two-level

memory system: each page is a machine; the pages that are not in cache are the set of in-

use machines; and a page access corresponds to a node failure and instantaneous recovery.

Churn is thus twice the number of page faults. What we call Longest Uptime is then ex-

actly the pervasive Least Recently Used (LRU) policy, and Random Replacement is known

by the same name. It is well known that in practice, LRU typically results in fewer page

faults than RR, although RR performs better in the special case that memory references

cycle through an array which does not fit in cache. RR has been implemented in a limited

90

number of systems, such as the i860 processor [101].

There has been a substantial amount of work on analysis of page replacement

algorithms including LRU and RR; see e.g. [29,38,39] and the discussion in [38]. Stochastic

analysis of page replacement algorithms has generally been limited to the “independent

reference model” in which one page Pt is accessed in each timestep t, where the (Pt) are

i.i.d. This corresponds to the special case of our model in which node session times are

exponentially distributed (with possibly unequal means). Thus a major difference is that

our model analyzed in Section 4.3 is not limited to memoryless session times.

4.6.2 Heuristics for Distributed Systems

Longest Uptime is a common heuristic which has been studied in contexts in-

cluding DHT neighbor selection [72], selecting superpeers [42], and selecting parents in

an overlay multicast tree [110]. The Accordion DHT [74] selects neighbors by computing

the conditional probability that a node is currently up given when it was last contacted

and how long it was up before that, assuming session times fit a Pareto distribution with

learned parameters. Mickens [85] used sophisticated statistical techniques to predict fu-

ture node uptime, and experimented with placing file replicas in Chord on successors with

greatest predicted time to live.

Leonard et al. [73] analyzed the resilience of DHTs in a stochastic model, un-

der the assumption that selection of a neighbor at any point in time is independent of

its age. This is essentially the RR strategy for very small α (see also discussion of [73] in

Section 4.4.2).

4.7 Conclusion

This chapter provided a guide to performance of a range of node selection strate-

gies in real-world traces. We highlighted and explained analytically the good performance

of Random Replacement relative to smart predictive strategies, and relative to Preference

List strategies. Through the difference in churn between RR and PL strategies, we have ex-

plained the performance implications of a variety of existing distributed systems designs.

These results also show that some dynamic randomization is an easy way to reduce churn

in many protocols.

91

Chapter 5

Stabilizing Internet Routing

Route instability is an important contributor to data plane unreliability on the

Internet, and also incurs load on the control plane of routers. In this chapter, we study

how route selection schemes can avoid these changes in routes. Similar to Chapter 4,

our techniques function by taking advantage of heterogeneity in the pattern of events.

However, rather than considering primarily stability, we now focus on the fundamental

tradeoffs that arise from balancing stability with other objectives.

Specifically, we characterize the tradeoffs between interruption rate, our measure

of stability; availability of routes; and deviation from the network operator’s preferred routes.

We develop algorithms to lower bound the feasible points in the tradeoff spaces between

these three cost metrics. We also propose a new approach, Stable Route Selection (SRS),

which uses flexibility in route selection to improve stability without sacrificing availabil-

ity, and with a controlled amount of deviation.

Our large-scale simulation results show that SRS can significantly improve stabil-

ity while deviating only a small amount from preferred routes. We implement our protocol

in a software router, Quagga, and confirm in cluster deployment that SRS’s gains in route

stability translate to improved reliability in the data plane. Finally, we evaluate SRS under

direct feeds of route update traffic from Internet routers. In this case, we observe much less

improvement, but SRS can still improve stability when multiple disjoint paths are avail-

able.

92

5.1 Introduction

A number of studies [36,70,124] point to stability as a key problem for the Border

Gateway Protocol (BGP), the interdomain routing protocol which knits the fabric of today’s

Internet. Network failures, policy changes, and the BGP convergence process itself can

generate huge numbers of routing updates, causing problems in both the data and control

planes.

In the data plane, it is well known that end-to-end path quality is degraded by

BGP route updates (see [126] and references therein). According to a recent study, the

majority of packet loss bursts are caused by inter-domain route convergence problems

such as transient forwarding loops, rather than by congestion [124]. These problems are

increasingly important as the Internet is becoming an ubiquitous platform for voice and

video applications. A measurement of VoIP calls between clients on PlanetLab showed

that almost half of problems in these calls were highly correlated with BGP updates, and

BGP events were estimated to cause 90% of VoIP call drops [68]. Internet games such as

Counter-Strike have similar demands for interactivity, commonly sending periodic delay-

sensitive bursts of packets [37].

In the control plane, a storm of route updates can overload routers. While cur-

rent average-case updates do not incur significant CPU utilization [3], there is concern

that a burst of updates from multiple neighbors [35] or future update loads resulting from

rapidly increasing routing table size [58] could lead to processing and convergence de-

lays [35, 76] or further instability [35], or could necessitate more expensive routers [76].

These problems led the Internet Architecture Board Workshop on Routing and Address-

ing to recently identify update churn as one of the challenges for future scalability of the

routing system [84].

The main mechanism for improving stability in BGP is route flap damping [122],

which filters routes that have a short-term update rate above some threshold. Unfortu-

nately this seemingly simple strategy is fraught with problems. In 2002, Mao et al. [80]

demonstrated that flap damping creates pathological conditions that slow convergence.

Flap damping also worsens availability—the fraction of time that a router has a route to

a destination—by occasionally shutting off all available routes. The operator community

has become aware of these problems, with the RIPE Route Working Group advising in

2006 that “the application of flap damping in ISP networks is NOT recommended. ... With

93

current vendor implementations, BGP flap damping is harmful to the reachability of pre-

fixes across the Internet.” [108] Other approaches to improving stability require protocol

modifications [22, 80] or address narrow cases [4, 41, 51].

Thus, despite the fact that the problem was recognized more than a decade ago,

there is still no compelling mechanism for stabilizing BGP routes, and key questions re-

main unanswered. For example, notwithstanding the fact that it can delay convergence,

does flap damping provide an overall improvement in stability or not? Within the frame-

work of the BGP route selection process, how much is it possible to improve stability, and

at what cost?

With concerns about the scalability and reliability of the routing system prompt-

ing a renewed interest in stability, we believe it is time for a more principled method to

stabilizing Internet routing. Our high-level method is as follows:

1. We identify general approaches to stabilizing path-vector routing protocols such as

BGP, and their inherent tradeoffs with other objectives.

2. We characterize how well each approach can perform by sandwiching the set of fea-

sible points in the tradeoff spaces between upper and lower bounds.

This evaluation makes possible a more informed choice of a method to combat

instability.

Characterizing the tradeoff spaces

This chapter studies three general approaches to stabilizing routing: (1) reduc-

ing route convergence overhead; (2) avoiding churn by preferring stable routes; and (3)

avoiding churn by occasionally shutting off all routes between a particular source and

destination. The latter two approaches imply tradeoffs with availability and deviation from

preferred routes, respectively.

Our characterization of what can be accomplished with each of these approaches

proceeds in two parts. First, we give algorithms which lower-bound the performance

of theoretically optimal strategies, which allow us to constrain which points in the tradeoff

spaces are achievable, for any given network topology and pattern of failures. To obtain

numerical results, we apply these algorithms to a measured topology of around 20,000

94

autonomous systems (ASes) with inferred customer/provider/peer relationships and one

year of link failure data from Route Views [102].

Second, we evaluate the performance of implementable strategies including flap

damping and new Stable Route Selection (SRS) strategies that we develop. SRS has the goal

of safely stabilizing routing. Unlike flap damping, SRS does not reduce availability; unlike

BGP’s MRAI timer and Path Exploration Damping [59], SRS does not cause inconsistency

by delaying updates. Instead, SRS uses flexibility in route selection to prefer more stable

paths. Our evaluation of these strategies uses simulations of the BGP protocol in the same

environment as our lower bounds, and experiments using a cluster-based deployment of

software routers.

Results

Our lower bound techniques provide the following key impossibility results within

our simulation environment:

• Reducing convergence overhead can only decrease instability by 5-20% in our simulated

environment. This conclusion is robust to the presence or absence of flap damping

and the degree of heterogeneity of message propagation delay. However, conver-

gence overhead can be higher due to withdrawals by the origin AS and if AS policies

do not conform to standard customer-provider-peer relationships.

• By allowing deviation from the operator’s desired paths but preserving optimal avail-

ability, standard BGP’s stability cannot be improved by more than 8.1×.

• By also trading off availability, stability might be improved by an additional 2− 3×
to a total of ≈ 20× with some downtime, but bigger improvements are not possible

without substantial downtime.

In addition to these lower bounds, we evaluate the performance of implementable

strategies, with the following main conclusions:

• Flap damping does improve stability, but at the significant cost of about two “nines”

of lost availability with Cisco default parameters.

• Our SRS strategies preserve the high availability of BGP without flap damping, while

obtaining up to 5× better stability—slightly better than BGP with flap damping, and

95

coming within 1.6× of the theoretical optimum. Alternately, SRS can provide a 2×
improvement over standard BGP while deviating from preferred routes for less than

8 minutes per day, on average. Experiments with a software router deployment show

that SRS’s benefits translate to improved data plane reliability.

We also evaluate the version of SRS which ensures limited deviation under direct

feeds of route update traffic from Internet routers recorded by Route Views [102]. In this

case, we find a only a 12% reduction in interruption rate compared with BGP. One reason

is that this evaluation is for deployment at a single router, rather than at all routers in the

network. But we also provide evidence that the smallness of this improvement is due in

part to the fact that for most prefixes, all available routes share the same final AS-to-AS

link. For prefixes with multiple disjoint paths, we find an a 24% reduction in interruption

rate.

The rest of this chapter proceeds as follows. In Section 5.2, we define our model

of BGP, metrics, and classification of approaches to stabilizing BGP. Section 5.3 describes

our algorithms for obtaining lower bounds in the tradeoff spaces, and Section 5.4 describes

the upper bounds: in particular, our proposed SRS strategies. Our simulation and experi-

mental results appear in Sections 5.5 and 5.6. Our results with Route Views feeds appear

in Section 5.7. We discuss related work in Section 5.8 and conclude in Section 5.9.

5.2 Preliminaries

This section introduces a simple model of BGP (Sec. 5.2.1) and the main metrics

that we study (Sec. 5.2.2). We then set the stage for the rest of the chapter by classifying

approaches to stabilizing BGP and their inherent tradeoffs (Sec. 5.2.3).

5.2.1 Model of BGP

In this section we describe a simplified model of BGP which forms the basis of

our analytical results.

At a high level, the operation of a BGP router is simple: for each destination (an

IP prefix), it learns advertised routes from its neighbors; it selects one neighbor’s route to

use, according to some route selection policy; and according to some export policy, it may

96

subsequently advertise this selected route, as well as its own local destinations, to other

neighbors.

Our model adopts those general rules: We are given some fixed destination D. A

route is specified as a sequence of nodes along a path to D. Each router R at any given time

has selected either one route to D, or no route; and may be advertising this selected route its

neighbors.

Additionally, our model includes two important constraints. First, we assume

that message propagation and routing decisions take a negligible amount of time. This

condition, which we refer to as batching, effectively partitions time into epochs during

which all routes are fixed, punctuated by instantaneous “batches” of convergence events.

Typically, these events are triggered by link state changes in the underlying topology,

but they may also occur if routers decide to change their selected paths after some non-

negligible period of time, as in flap damping and some versions of our SRS strategy. Batch-

ing enables us to obtain bounds on the optimal policies. Although batching does affect the

system, we will observe similar performance with and without batching in our simulations

of Section 5.5.

The second condition we impose is path consistency. We say paths are consistent

at a given moment if for each router v1 that has currently selected some path v1, . . . , vk, the

following are true: (1) all links (vi, vi+1) are up, (2) v2 selected the path v2, . . . , vk and is

advertising this path to v1, and (3) the ultimate node vk is the destination D. We require

that path consistency holds at any time, except during instantaneous convergence batches.

Modulo timing differences, any classic path vector routing protocol, BGP included, at-

tempts to satisfy path consistency. However, in Section 5.2.3 we discuss several strategies

which result in inconsistency.

Subject to the conditions of path consistency and batching, routers may follow

any route selection and export policies. Our numerical results will use a range of route

selection strategies and export policies based on inferred real-world business relationships.

5.2.2 Metrics

In this section we define our three main metrics: interruption rate, availability,

and deviation.

An interruption is the event that the path selected by some AS changes or is

97

withdrawn entirely (i.e., a transition to the disconnected state). We do not count recovery

events as an interruption. We use interruption rate, which measures stability, as a proxy

for data plane performance and control plane CPU utilization due to its computational and

analytical tractability. Our experimental results in Section 5.6 will correlate interruption

rate with packet loss.

We define availability for a particular source-destination pair as the fraction of

time that the source has a route to the destination. We will typically study the mean avail-

ability over all source-destination pairs.

Finally, deviation compares a sequence S of selected paths against a benchmark

sequence of paths S∗, and is defined as the fraction of time that the route in S “matches”

the route in S∗. Deviation is intended to capture how closely a particular route selection

strategy (S) follows the network operators’ preferred paths (S∗). Since measurements show

that ASes’ routing preferences are based on next-hops for 98% of IP prefixes [125], we say

that two routes from a particular source “match” when their next-hops are equal. Our

simulations will take S∗ as the paths selected by the standard BGP decision process; thus,

our numerical results measure how much various strategies differ from the status quo. As

with availability, we study the mean deviation over all source-destination pairs.

5.2.3 Approaches to Stabilizing BGP

Within our model, it is possible to give a complete classification of approaches to

reducing interruption rate relative to standard BGP.

At a high level, we have a simple choice: pick the same sequence of paths as stan-

dard BGP—except during the instantaneous convergence events—or pick paths which dif-

fer. These two cases respectively imply that we must either (1) mitigate the impact of topol-

ogy or policy changes by improving the reconvergence process, or (2) avoid reconvergence

events altogether. Within the avoidance approach, there are two pure approaches: (2a)

select paths that fail less often, and (2b) select no path, disconnecting the source from the

destination.

98

Improving stability

(1) Mitigation:
improve convergence

(2) Avoidance

(2a) Prefer stable routes (2b) Disconnect nodes

These three approaches require qualitatively different sacrifices ranging from free

to severe. Approach (1) is the most attractive because it improves stability without com-

promising other objectives. The two remaining approaches directly imply tradeoffs: (2a)

results in nonzero deviation, and (2b) is an extreme approach which sacrifices availability.

In the limit, a network where all nodes are disconnected has no interruptions, but also has

zero availability!

Note that (2b) is not equivalent to RFD’s strategy of shutting off (damping) un-

stable routes. Damping a route causes BGP to select another route, as long as an alternate

un-damped route is available. Thus, RFD mixes approaches (2a) and (2b).

Our characterization of the tradeoff spaces places limits on what can and can’t be

accomplished with these three approaches. We begin the characterization in Sec. 5.3 with

our lower bounds algorithms. Our upper bounds, i.e., implementable strategies, include

our new SRS strategies described in Sec. 5.4 in addition to Standard BGP and RFD. The

numerical results of these lower and upper bounds appear in Sec. 5.5.

Strategies outside this classification. Note that policies which allow path inconsistency

(defined in Sec. 5.2.1) are implementable in today’s BGP but fall outside our model. Such

strategies are beyond the scope of this work, and may be useful; however, we note that

as a result of their path inconsistency, they must be handled with care, since there is the

possibility that routing loops or disconnectivity can persist for non-negligible periods of

time.

To the extent that a 30-second time period is considered non-negligible, an exam-

ple of a path-inconsistent strategy is the commonly-used Minimum Route Advertisement

Interval (MRAI) timer. The MRAI rate-limits update messages to each neighbor of a router

to one per 30 sec. Recently, Huston [59] proposed delaying updates for just longer than an

MRAI interval, 35 sec, when they match a pattern likely to indicate BGP path exploration.

99

Consecutive matches could delay updates for minutes or more.

5.3 Lower Bounds

In this section we describe how we numerically compute bounds on the maxi-

mum possible improvement that can be obtained from the above approaches to improving

stability in BGP. In Section 5.5, we will apply these lower-bounds procedures to the mea-

sured topologies and traces used in our simulator, allowing us to compare how close our

proposed strategies are to the best possible policies.

The procedures take as input an AS-level topology annotated with customer-

provider-peer business relationships between ISPs, which they honor; a trace of AS ad-

jacency (“link”) failures; and a sequence of preferred route selections over time for each

source/destination pair.

Given this input, we will find the following:

• Approach (1): Convergence. We find the minimum number of interruptions re-

quired to adhere to the given preferred routes almost always, i.e., at all times except

for negligible periods of time during convergence events (formally, a set of times of

zero measure).

• Approaches (1)+(2a): Stability-Deviation tradeoff. We compute a set of undominated

points (xi, yi) such that for each i, in the given topology and traces, it is impossible to

select routes that achieve both a mean interruption rate of < xi and a mean deviation

of < yi, while preserving the highest possible availability. Means are over all sources

for a given set of destinations (which will be a random set when we generate results

in Section 5.5).

• Approaches (1)+(2a)+(2b): Stability-Availability tradeoff. Similarly, we compute a

set of undominated points (xi, yi) such that for each i, it is impossible to select routes

that achieve both a mean interruption rate of < xi and a mean unavailability of < yi,

with no constraint on deviation.

The first item, bounding convergence overhead, appears in Section 5.3.1 and is

straightforward. In contrast, it is nontrivial to obtain good lower bounds in the trade-

100

off spaces. We explain why (Section 5.3.2) before describing the procedure (Section 5.3.3)

which is similar for the two tradeoff spaces.

5.3.1 Convergence

Batching, described in Section 5.2.1, allows us to easily lower-bound the mini-

mum number of interruptions needed to match the preferred routes almost always, i.e.,

with no convergence overhead. Given a fixed setting of each router’s converged state be-

fore and after each batch, there must be at least 1 interruption for each batch in which the

route changed or was withdrawn, and at least 0 if the path stayed the same. We simply

sum these over all batches to produce the desired lower bound for each source-destination

pair.

5.3.2 Hardness of Minimizing Interruptions

Provably providing a good bound in the tradeoff spaces is nontrivial in large

part because of dependencies between nodes when routing to some particular destination.

We illustrate this with an example for one particular point in the tradeoff spaces: that of

minimizing interruption rate under the constraint of maximum availability. Consider the

following topology:

Group 1

AS1

R3

Group 2

R4 Destination
R1

R2

Groups 1 and 2 consist of n and m ASes, respectively, which depend on routing through

AS1 to the destination. Suppose the routes R1 and R3 are available during the time interval

[0, 10], while R2 and R4 are available during [5, 15]. Sometime during [5, 10], AS1 must

switch from R1 to R2. But this affects Groups 1 and 2: if AS1 switches at time 5, it triggers

an interruption at each of the n nodes in Group 1; if it switches at time 10, it interrupts

the m nodes in Group 2. The optimal routes for AS1, in terms of the cost to the network

as a whole, therefore hinge upon whether n < m. We thus have nonlocal dependencies

between nodes’ route selections.

In fact, it is possible to show that the problem of minimizing the number of in-

terruptions is NP-complete, using a gadget similar to the above as one step of a reduction

101

from SAT. The proof appears in Appendix D.

5.3.3 Tradeoff Procedure

To avoid the dependency problem we allow each node to independently select

its own route, thus possibly picking a route which was not chosen by the downstream

ASes along the path. This relaxation of path consistency will allow us to compute opti-

mal tradeoff values for each (source, destination) pair separately; we then assemble these

pieces together to produce an undominated point in the tradeoff spaces.

We first describe two important subroutines which we then use in our final pro-

cedure.

Optimal Path Sequence (OPS) subroutine

This core “inner loop” used by our tradeoff calculations computes the optimal

sequence of path selections for a single node over time. Specifically, OPS is given a set of

route options. Each option is of the form (r, t1, t2, c), meaning route r is available during

[t1, t2] and incurs cost c per unit time that it is selected. The cost of causing an interruption

(see Sec. 5.2.2) is fixed at 1. OPS computes the minimum cost sequence of route selections

over time for the given options.

This computation is equivalent to a shortest paths problem on an appropriately

constructed abstract graph whose nodes and edges represent route choices and legal tran-

sitions between them, respectively. Our implementation uses a somewhat more efficient

dynamic programming algorithm which iterates through time, storing the least-cost way

to reach each currently available path choice; we omit the details.

Most Stable Paths subroutine

This subroutine computes a set of potential routes that will later be fed into the

OPS subroutine. Specifically, it calculates, for each source s, destination d, and time t, the

available s → d path which will be available starting at t and continuing farthest into the future.

Given knowledge of the future availability of any given route, this can be computed en

masse for all sources and a particular destination using a BGP-like algorithm whose path

selection prefers routes that will be available longer.

102

Computing the future availability of any route involves examining future link

failure times, which are easily obtained from the trace provided to the lower bounds pro-

cedure. However, it also involves a complication: the future failure time of a route is

dependent on future changes in the business class of the route selected by each AS on the

path. For example, if a downstream AS switches from a customer route to a peer route,

it will no longer export the route to other peers or providers. We calculate business class

switch times by running the route selection simulation twice, recording the business class

switch times on the first trial, and using them to compute paths’ future failure times in

the second. It can be shown, along the lines of the proof of convergence in [41], that the

business class switch times will be identical in both trials.

Putting it all together

We now describe how we compute a set of undominated points (i.e, a Pareto

set) in the tradeoff spaces, utilizing the above subroutines. We begin with the stability-

availability tradeoff.

Let R = {rsd} be a sequence of route selections for each source-destination pair

(s, d), and let intr(·) and down(·) represent the number of interruptions and the amount of

downtime, respectively, in R. Our goal is to produce R’s for which the point

(intr(R), down(R))

is undominated. To do this, we we begin with the well-known weighted sum method of

multiobjective optimization, as follows. We introduce a parameter λ which intuitively sets

the cost of being disconnected per unit time. We next describe how to produce a single

undominated point given λ; we vary λ to produce multiple points.

A straightforward application of the weighted sum method would then find the

optimal feasible value R∗ of R which minimized intr(R) + λ · down(R). However, as we

showed in Sec. 5.3.2, computing R∗ is hard. We instead optimize each source-destination

pair separately. Specifically, for each source s and destination d we find (using a procedure

to be described below) the valid route assignment ℓ∗sd which minimizes

intr(ℓ∗sd) + λ · down(ℓ∗sd). (5.1)

We then construct the network-wide route assignment L∗ = {ℓ∗sd} and finally return the

undominated (though potentially infeasible) point p = (intr(L∗), down(L∗)). We must

103

show that p is in fact not dominated by any feasible point. To see why this is true, assume

for the sake of contradiction that there existed some feasible route assignment X = {xsd}
for which both intr(X) < intr(L∗) and down(X) < down(L∗). This implies

intr(X) + λ · down(X) < intr(L∗) + λ · down(L∗)

and hence that for some source-destination pair (s, d),

intr(xsd) + λ · down(xsd) < intr(ℓ∗sd) + λ · down(ℓ∗sd).

But then ℓ∗sd must not have minimized (5.1)—a contradiction. Hence, the point p returned

by the procedure is undominated.

We have thus reduced the problem to that of minimizing (5.1) for an individual

source-destination pair (s, d). We note that whenever a path is selected at time t, an optimal

choice is the path which will be available for longest time into the future beginning at time t

(see Fact 5 in Appendix C.3). Thus, the Most Stable Paths subroutine provides (a superset

of) the set of routes which might be involved in the optimal sequence, ℓ∗sd. We add to this

set a persistently available “null route” with cost λ per unit time, and feed all these choices

to the OPS subroutine, whose output must be an optimal set of route selections, ℓ∗sd.

That concludes our procedure for lower-bounding the stability-availability trade-

off. Our bound in the stability-deviation space is quite similar. The main difference is that

since route preferences are based on next-hops (see Sec. 5.2.2), the set of routes in ℓ∗sd might

include the route through any neighbor which will be available longest into the future. We

modified the Most Stable Paths subroutine to obtain these routes. We label them with costs

per unit time—zero while they are preferred, or λ otherwise—and then feed them into OPS

to produce ℓ∗sd.

5.4 Stable Route Selection

We next describe our proposed class of Stable Route Selection strategies. SRS

avoids instability by using flexibility in route selection to select more stable paths (ap-

proach (2a) in the classification of Section 5.2.3). SRS offers a tunable tradeoff between

stability and amount of deviation from preferred paths. In this section, we describe where

SRS fits in the context of the BGP decision process (Section 5.4.1), and then how our SRS

strategy selects paths (Section 5.4.2).

104

5.4.1 Fitting SRS into BGP

BGP affords a high degree of flexibility through the use of a decision process [111],

which allows operators to customize route selection to conform to goals such as traffic en-

gineering or economic relationships. The BGP decision process consists of the sequence

of steps shown in Table 5.1, which select a route based on attributes contained in the BGP

route announcements. The output of each step is a set of routes that are equally good accord-

ing to that and every previous step. By adding, modifying, or filtering attributes in update

messages, operators can control the specific route selected to reach a particular destination.

Step Action

1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED
5. eBGP over iBGP-learned
6. Lowest IGP cost
7. Lowest router ID

Table 5.1: BGP Decision Process

We insert the SRS heuristic as an additional step between Steps 1 and 2 of the BGP

decision process. (Alternately, SRS could be implemented by appropriately modifying

route attributes using an import filter before routes reach the decision process.) SRS selects

the best route based on a combination of Steps 2-7 and a heuristic for predicting route

stability. We present the details of SRS in the next section.

An alternate design would have placed SRS before the first step, like flap damp-

ing. We chose to place SRS after the Local Preference step to ensure that the highest-level

routing preferences, such as preferring customer routes over provider routes, are always

maintained, even during SRS’s delay period (see below). This has at least two benefits.

First, it provides a useful guarantee to operators. Second, we note that it is possible for

a violation of the Local Preference step to reduce availability for other ASes. In partic-

ular, ASes typically have neighbors who are providers, customers, or peers; a route whose

next-hop is a provider or peer is exported only to customers [41]. If an AS were to select

a provider route over a customer route, it would block the export of the route to other

providers and peers, potentially disconnecting those neighbors from the destination. Al-

105

though this case may be uncommon, it is our primary concern to ensure high availability.

Despite the restrictions imposed on SRS by being subordinate to Local Prefer-

ences, in our simulations, sufficient flexibility remains to significantly improve stability.

5.4.2 The SRS Heuristic

The SRS heuristic is inserted after Step 2 of the BGP decision process (Table 5.1).

The heuristic has one main parameter, a delay δ. We will write SRS(δ) to indicate the value;

SRS with the parameter omitted refers to SRS(∞). SRS uses a procedure, pre f (r1 , r2),

that implements Steps 2-7 in Table 5.1. pre f (r1 , r2) returns “first” if r1 is more preferred

according to Steps 2-7, “second” if r2 is more preferred, or “equal” if they are equally

preferred. SRS then decides which of two routes r1, r2 should be selected as follows:

1. If r1 has been up for time ≥ δ and pre f (r1 , r2) = “first”, then select r1.

2. Otherwise, if r2 has been up for time ≥ δ and pre f (r1 , r2) = “second”, then select r2.

3. Otherwise, if one of r1 and r2 is currently selected, keep that route.

4. Otherwise, if one of r1 and r2 has lower AS path length, select that route.

5. Otherwise, select the route that has been up for the longest time.

The single winning route is selected by iterating this pairwise comparison over

all available routes.

The intuition behind this choice of steps is as follows. Steps 1 and 2 select pre-

ferred routes, as long as they are not recent advertisements. This step assumes that recently

advertised routes are more likely to be withdrawn soon, and provides a tradeoff in the pa-

rameter δ. SRS(0) is equivalent to the decision procedure pre f (·, ·), while SRS(∞) gives

no consideration to preferred routes, reserving maximum flexibility for stability.

The strategy of sticking with the current choice (Step 3) and then using a “longest

uptime” strategy if that choice fails (Step 5) has been used in many contexts from page

replacement to peer-to-peer systems, and is a good heuristic for stability since past behav-

ior is frequently correlated with future behavior (see Chapter 4). In simulations, we found

that inserting the shortest-path step (Step 4) often somewhat improved stability while si-

multaneously providing a significant reduction in mean path length.

106

5.5 Analytical and Simulation Evaluation

In this section we describe results from a simulation-based evaluation, as well

as the results of our lower bounds algorithms applied to the same environment as the

simulator. We first describe the structure and setup of our simulator in Section 5.5.1 and

present results in Section 5.5.2.

5.5.1 Methodology

Data sets. We infer the inter-domain AS-level topology by culling AS adjacencies from

Route Views [102] feeds. Since policies on the Internet are not widely disclosed, we lever-

age [116] to infer and assign local preferences associated with business relationships as

done in [70, 80, 117], characterizing links as either provider-customer or peer-peer. We as-

sume ASes distribute routes according to the common-case import and export policies as

discussed in [116]: ASes prefer customer over peer and peer over provider routes, and

don’t advertise routes from peers/providers to other peers/providers.

To infer the pattern of failures, we record the appearances and departures of links

from the Route Views feeds. Specifically, we consider a link to be available at time t if some

route which uses the link is currently advertised to a Route Views peer at time t. In this

manner, we infer a trace of link state changes from Route Views from January 1, 2006, to

December 30, 2006, which we replay against our simulator.

Simulator. To evaluate the performance of various route selection strategies, we use an

event-driven BGP simulator extended from the simulator used in [33]. The simulator’s

events are at the level of link state changes and BGP update messages. Each AS is repre-

sented by a single node running a BGP instance, as in some past studies [21,117]. Inter-AS

packet propagation delay is selected randomly for each packet, uniformly distributed be-

tween 5 and 15 ms.

The simulator runs a simplified version of the BGP protocol described in RFC

1771 [97]. Since our simulator models each AS as a single router, Steps 3-6 of the decision

process (see Table 5.1) are not executed. For Step 7, we assign each AS a uniform random

router ID.

We implement batching (see Sec. 5.2.1) in the simulator to compare with our lower

bounds. We do this in such a way that the BGP update messages are processed in the same

107

order that they would have been with link delays and MRAI timers turned on and with

subsequent topology changes delayed until after the convergence process completed.

Each plot incorporates measurements of at least 100 trials. In each trial we se-

lect a single random destination to which all nodes route over a random month of our

year-long data. We gather measurements only after the first 24 hours of simulated time,

to eliminate initial convergence effects. Since some data is missing from our topology

causing a minority of nodes to be always disconnected, when collecting measurements we

ignore source-destination pairs whose availability in the Standard BGP strategy (without

flap damping) is < 0.99. Other than excluding ASes which were usually disconnected, this

did not substantially affect our results.

Route selection strategies. Our simulations will compare the basic BGP decision process,

which we call Standard BGP, with SRS and with Route Flap Damping (RFD) as in RFC

2439 [122].

RFD maintains a numeric penalty value pP,N associated with every (prefix P,

neighbor N) pair. Upon receipt of an advertisement or withdrawal, the router increases

pP,N . When pP,N increases beyond a cut-off threshold, the route is excluded from considera-

tion when selecting routes. The penalty decays exponentially, and the route is reconsidered

for use when its value falls below a reuse threshold. In our tests, unless otherwise stated,

the strategy “RFD” refers to flap damping with Cisco’s default parameters, which increase

pP,N by 500 after attribute changes and by 1000 for withdrawals, and specify a reuse thresh-

old of 750, a cut-off threshold of 2000, and a decay half-life of 15 minutes [80]. We also test

with flap damping parameters used by Juniper [80], SprintLink [109], and three sets of

parameters recommended by RIPE [90].

5.5.2 Results

This section presents the results of our simulation and our lower-bounds analysis

applied to the environment described above. Our main conclusions are as follows:

• Batching, which allows us to obtain bounds on the optimal policies, preserves the

qualitative performance of various strategies (Section 5.5.2).

• Improvements to convergence cannot obtain a large improvement in our environ-

ment. This conclusion is surprisingly robust under various message propagation

108

delay distributions, but convergence overhead can be larger due to policy misconfig-

uration and withdrawals by origin ASes (Section 5.5.2).

• SRS(∞) can obtain a dramatic improvement in stability compared with Standard

BGP and greater than that of RFD, without sacrificing availability and closely ap-

proaching our lower bound (Section 5.5.2).

• By adjusting the delay parameter appropriately, SRS can reduce interruption rate by

68% while deviating from preferred paths less than 0.6% of the time (Section 5.5.2).

• SRS only slightly increases mean path length (Section 5.5.2), and stability-aware rout-

ing can obtain significant improvements in stability even under limited deployment

scenarios (Section 5.5.2).

Effect of batching

Figure 5.1 shows performance of various strategies both without and with batch-

ing. Recall from Section 5.2.1 that batching makes link delays and MRAI timers negligible,

allowing us to lower-bound the interruption rate of optimal policies. We see a substantially

similar relationship between the strategies with batching on and off, which suggests that

batching is a reasonable approximation under which to compare strategies. The main dif-

ference is inflated interruption rates, which can be explained by the fact that in Fig. 5.1(a)

some link state changes may be effectively skipped as a result of link delays and MRAI

timers, while in the batched environment the system finishes reconverging after every

topological change.

Convergence overhead

Figure 5.1(b) shows the interruption rate of Standard BGP and SRS along with

their hypothetical counterparts with optimal convergence—which transition from the ini-

tial to the final path in each batch without any path exploration process. This shows that in

our environment, convergence has only a minor contribution to interruption rate. But on

what aspects of the environment does this conclusion depend? We investigated how origin

events, policy misbehavior, and heterogeneity of link delays affect convergence overhead.

Origin events. ISPs may withdraw and announce prefixes either intentionally or due to

configuration error, triggering long sequences of path hunting which are triggered rela-

109

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25

U
nv

ai
la

bi
lit

y

Interruptions per src/dst pair per month

SRS Std. BGP

RFD & SRS

RFD (Cisco)

RFD (RIPE, Sprint, Juniper)

(a) Batching off

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40

U
na

va
ila

bi
lit

y

Interruptions per src/dst pair per month

SRS

SRS, opt. conv.

Std. BGP
Std. BGP, opt. conv.

Low
er B

ound

RFD & SRS

RFD

(b) Batching on

Figure 5.1: Performance of various strategies in the stability-availability space, with batch-

ing off and on. SRS’s delay parameter is fixed at ∞. Unless otherwise specified RFD refers

to flap damping with Cisco standard parameters.

tively rarely by our Route Views traces of link state changes. Here, we consider the effect

of an origin AS announcing or withdrawing a single prefix. To do this, we constructed a

trace consisting of announcements/withdrawals separated by long periods of time. This

allowed us to measure the convergence overhead for each change in isolation, and allowed

us to compare against the BGP Beacons measurement study by Mao et al. [81]. Like [81], we

found that prefix advertisements generate roughly 3-5× fewer updates than withdrawals.

For example, with our default configuration, we found routing advertisements incurred

an overhead of 1.14 while withdrawals incurred an overhead of 6.00 on average. In ad-

dition, we found that failing a single link adjacent to the destination incurred an average

overhead of 3.90, while repairing the single link incurred an average overhead of 1.03.

Policy misconfiguration. Misconfigured ISPs may introduce oscillations and instability

which can lengthen convergence periods. We randomly selected a small fraction of ASes to

“misbehave” by selecting routes based on a uniform-random preference ordering among

next-hops, rather than our default configuration based on the Gao-Rexford policies [41].

We found that having a fraction of ASes misbehave in this manner can increase conver-

gence overhead; for example, convergence overhead is 2.68 with 2% of ASes misbehaving,

or 2.70 with 5% misbehaving.

Link delay. Increasing the delay of links, or the heterogeneity of delays across links, has

110

been associated with worsening of routing convergence times [69]. To measure this, we

varied the distribution of delays of inter-AS links in our simulator. We assigned each link

a delay sampled from a Pareto distribution with shape parameter α, which controls the

variance of the distribution, and varying mean. Results are shown in Table 5.2. Like pre-

vious work, we found that increasing link delays increases convergence time. However,

varying the variance of links, and varying the mean delay of links, only changed con-

vergence overhead slightly. Like previous work [50], we also found that enabling MRAI

increases convergence time, but reduces control overhead.

α Convergence overhead

mean = 4 ms mean = 100 ms
2.000001 1.154 1.159
2.0001 1.166 1.151

2.01 1.168 1.167
2.1 1.167 1.165
2.4 1.163 1.165
4 1.165 1.166
15 1.169 1.170

2000 1.172 1.172

Table 5.2: Effect of varying link delay.

Stability-availability tradeoff

Figure 5.1 shows performance of various strategies in the stability-availability

space. Comparing the points in Figure 5.1(a), where batching is disabled, Standard BGP

maintains a high availability of 99.98%, but suffers from a high rate of 20.8 interruptions

per month. Route Flap Damping (RFD) with Cisco’s default parameters reduces the mean

rate of interruptions by a factor of 2.9, but sacrifices two “nines” of availability, and the

other parameter values used by Sprint and Juniper and recommended by RIPE have sub-

stantially similar performance. One might expect the tradeoff between availability and

stability to be fundamental. However, by preferring more stable paths, SRS is able to

achieve the high availability of standard BGP with even fewer interruptions than RFD.

Although we do not advocate the use of RFD, we note that using RFD and SRS in conjunc-

tion results in an additional 3.1-fold decrease in interruption rate over RFD and slightly

111

improves availability over RFD alone. This is to be expected, since by picking more stable

paths, RFD is triggered less often.

Figure 5.2 explores the pattern of interruptions in more detail with a complemen-

tary CDF over all measured end-to-end paths. That is, the y axis shows the fraction of

(source, destination) pairs that have at least the interruption rate on the x axis. Standard

BGP’s long tail shows what other studies [36] have observed: a small number of Internet

routes suffer from high instability. Both SRS and RFD drastically reduce the size of this

tail. SRS is able to achieve roughly the same benefit in the tail as RFD without incurring

RFD’s reduction in availability. Interestingly, and unlike RFD, SRS improves the stability

for the upper part of the curve, i.e., for routes that have only moderate instability. Finally,

when we combine SRS with RFD, we note that the instability of the most unstable routes

is reduced by about an order of magnitude compared with RFD in isolation.

Figure 5.1(b) also compares performance with lower bounds on the optimal poli-

cies. SRS performs surprisingly close to optimal among strategies which achieve the high-

est availability, with an interruption rate just 55% higher than our lower bound, which uses

knowledge of the future. Factoring out SRS’s convergence overhead, it would be just 27%

worse than optimal. These results indicate that the SRS heuristic does a very effective job of

predicting the relative stability of paths in this environment. It also shows that BGP’s sta-

bility cannot be improved by more than about 8.1× without sacrificing availability, given

our assumptions such as the preservation of common business relationship-based routing

policies and path consistency (see Sec. 5.2.1).

Finally, the “Lower Bound” curve in Figure 5.1(b) demonstrates limits on how

much improvement can be gained by occasionally disconnecting nodes. This lower bound

admits the possibility that stability can be improved to about 2 interruptions per month

with small availability loss, but any further improvements come at the cost of significantly

more downtime. For example, reaching 1 interruption per month requires reducing avail-

ability from 99.96% to below 99.8%, i.e., over 4× as much downtime.

Stability-deviation tradeoff

The above results, which set SRS’s delay parameter to ∞, assume SRS is permitted

to use a large amount of flexibility in the choice of paths. In this section, we explore the

tradeoff between stability and the fraction of time that routes deviate from the next-hops

112

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

Interruptions per month

2x
10x

Std BGP
RFD
SRS

RFD & SRS

Figure 5.2: Complementary CDF of interruptions per month over all measured source-

destination pairs. SRS’s delay parameter is fixed at ∞.

chosen by Standard BGP.

Figure 5.3(a) shows the stability-deviation tradeoff that results from varying SRS’s

delay parameter, in the batched environment. With a delay of δ = 100 sec, SRS cuts inter-

ruption rate by about 38% compared with Standard BGP and has a mean deviation of

0.021%, with 99.5% of ASes having deviation < 1%. At the knee of the tradeoff curve, with

δ = 167 minutes, interruption rate is 69% lower than Standard BGP; mean deviation is

0.54% and 86% of ASes have deviation < 1%. Figure 5.3(b) shows that even with batching

off (MRAI and link delays on), SRS with δ = 167 minutes still reduces interruption rate

by 68%. These results are promising: many ISPs base bandwidth utilization payments on

the 95th percentile of the traffic load for each month [89], so a deviation of less than one

percent may be acceptable.

We also note there may be cases where it is useful to move beyond the knee to

obtain greater stability. For example, if an ISP has the ability to route multiple classes

of traffic along different routes, it would be possible to send the most stability-sensitive

flows (e.g., real-time voice traffic) along SRS paths, and other flows along whichever paths

minimize maximum link utilization. This would allow the ISP to achieve critical traffic

engineering objectives while still providing greater stability where it matters.

Figure 5.3(a) also plots our lower bound to the optimal achievable points in the

stability-deviation space (without sacrificing availability). In contrast with the stability-

113

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30 35 40

D
ev

ia
tio

n

Interruptions per src/dst pair per month

Low
er B

ound

S
R

S

Std. BGP

(a) The stability-deviation tradeoff space with batch-

ing on.

 0

 5

 10

 15

 20

 25

 1 10 100 1000 10000 100000 1e+06

In
te

rr
up

tio
ns

 p
er

 m
on

th

SRS delay parameter (minutes)

Std. BGP

SRS

(b) SRS’s interruption rate as a function of its delay

parameter, with batching off.

Figure 5.3: Deviation and interruption rate of SRS(δ) for various δ. SRS’s delay parameter

δ varies from 100 sec to effectively ∞ (a value longer than the one-month trace).

availability lower bound, this is quite far from the upper bound, SRS. We believe the true

optimal is actually much closer to the upper bound. Our basic lower-bounds technique

in both tradeoff spaces relies on computing the optimal sequence of paths for each node

independently, allowing nodes to take inconsistent paths. In particular, a node can adhere

to its preferred next hop, while choosing the remainder of the path to be maximally stable.

But this has implications on the amount of deviation of the nodes along the path, which

our algorithm does not take into account. Providing a substantially better lower bound

would likely be possible by using an alternate definition of deviation which requires that

the entire path matches the preferred path, rather than just the next hop.

Path length

The previous section dealt with adherence to general routing objectives, in the

form of next-hop preferences. In this section, we study one objective which is not reducible

to next-hops: path length.

Figure 5.4 shows the CDF of mean path length over source-destination pairs. SRS

has a mean path length of 4.14 AS-level hops, or just 4.2% greater than Standard BGP’s

3.97 hops. We note that BGP itself empirically incurs an AS-level path inflation of 49.8%

due to policies [19]. Hence an additional inflation of 5% (resulting in a combined inflation

of roughly 56.4%) may be tolerable to some ISPs, while others may tune SRS to reduce this

114

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9F
ra

ct
io

n
of

 s
rc

-d
st

 p
ai

rs

Mean path length

Std BGP
RFD
SRS

Figure 5.4: CDF of mean path length over all measured source-destination pairs.

inflation at the expense of a somewhat lower stability.

This low inflation may be expected since part of the SRS heuristic prefers shorter

paths (Sec. 5.4). In addition, path lengths in this environment are constrained by the hier-

archical nature of the AS graph when business relationships are satisfied: we found that a

hypothetical strategy which always preferred longest paths would have mean path length

just 32% longer than Standard BGP.

Partial Deployment

Since Internet path selection is a collaborative process, SRS’s benefit to one au-

tonomous system would depend on whether other ASes have also deployed it. But for

reasons of deployment incentive, it would be helpful if a single AS can unilaterally deploy

SRS and achieve at least some improvement.

The following evaluation of partial deployment scenarios uses a Random Re-

placement strategy (following Chapter 4), rather than SRS. Specifically, instead of Steps 4

and 5 of the SRS heuristic described in Section 5.4.2, we select a random available route

from the set of routes most preferred by the previous steps. These results use RR only for

historical reasons, and the performance is very similar to SRS with delay δ = ∞.

Figure 5.5 shows the performance of this RR strategy with the extent of deploy-

ment ranging from 1% to 100% of ASes. The set of ASes running RR is selected randomly

in each trial, and the others use standard BGP. We measure the interruption rate on those

nodes running RR separately from those not running RR. The leftmost points in the plot

show that the first ASes deploying RR would see a significant drop in their own interrup-

tion rate of roughly 1.8×. As more ASes deploy stability-optimized route selection, the

interruption rates decrease further, so that when all ASes implement RR, we achieve a 5×

115

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

In
te

rr
up

tio
ns

 p
er

 m
on

th

Fraction of ASs running RR

ASs running standard BGP
ASs running RR

Figure 5.5: Interruption rate under partial deployment of a stability-aware routing strat-

egy, with delay parameter δ = ∞ and batching off.

reduction in the interruption rates (similar to the improvement with a full deployment of

SRS(∞) as shown in previous plots). This is due to the distributed nature of BGP path

selection: each AS that prefers more stable routes effectively stabilizes routes on behalf of

other ASes that route through it (including those running standard BGP!).

The factor of 1.8× improvement, however, is for the average AS; certain ASes ob-

tain a somewhat bigger improvement. In particular, we found that individual Tier-1 ASes

(as classified by [116]), which have more flexibility in path choice, had a median reduction

in interruption rate of 2.7×, with 4 of the 28 Tier-1s seeing more than a 4× improvement.

5.6 Experimental Results

Our experimental results use a network of software routers. Although we have

scaled it only to tens of nodes, this deployment allows us to (1) measure performance in

a realistic implementation, and (2) validate our simulations by correlating them with ob-

served data plane performance. (We note that another major deficiency of our simulator is

that the patterns of failure may not match real-world route update patterns; that deficiency

is addressed in Section 5.7.)

116

5.6.1 Methodology

Our experimental evaluation is based on the BGP implementation in the Quagga

software router [94]. We modified Quagga in two main ways: we implemented new route

selection policies in the decision process, and we built a custom forwarding plane to en-

able more flexible experimentation. We then evaluated the resulting software router by

deploying it on a cluster and emulating failures. These steps are described in more detail

below, and the overall arrangement of components is depicted in Figure 5.6.

Route selection policies. We altered Quagga’s decision process to (optionally) run SRS

with delay δ = ∞ or δ = 10 min. We also tested several strategies already implemented in

Quagga: what we have referred to as Standard BGP; Quagga’s default strategy, which em-

ploys a longest-uptime step directly before the final router-ID step of the decision process;

and Route Flap Damping, again with Cisco-default parameters.

Forwarding plane. We built a custom data plane to enable more complete instrumenta-

tion and to conveniently run on a shared cluster. In effect, this data plane allows us to

use Quagga as a router for an overlay network. As depicted in Fig. 5.6, we instrumented

Quagga so that it sends route updates, in the form of (destination, next hop) pairs, to our

forwarding plane, rather than to the kernel. The forwarding plane generates, receives,

and forwards UDP packets to remote forwarding plane processes, as directed by Quagga’s

route updates. Data packet generation occurs every 5 seconds, with 10% random jitter, for

every (source, destination) pair. That is, the time between packets for a (source, destina-

tion) pair is uniform random in [4.5, 5.5].

Emulating failures. We emulate link failures by leveraging Linux’s iptables facility, with

which we can block or unblock UDP and TCP traffic between pairs of software routers at

appointed times. This allows us to emulate a trace of link failures and recoveries over our

chosen network topology.

We configured our software routers using two small-scale network topologies.

First, we employ IS-IS link-state updates and topology traces from the Abilene backbone

network [1]. Although our primary target is interdomain rather intradomain routing, this

gives us a realistic environment of scale appropriate for our testbed. The topology contains

11 nodes and 14 edges. We use a portion of this trace from 10 August 2004 to 13 Oct

2004. We “compressed” this trace by reducing to 2 minutes every interval of greater than

117

Quagga
bgpd

Forwarding
plane

route
updates

Linux

Network

Machine 1

Link state
emulator

iptables

Quagga
bgpd

Forwarding
plane

route
updates

Linux

Machine 2

Link state
emulator

iptables

Data flow (UDP)

BGP session (TCP)

Figure 5.6: A diagram of our software router, showing two nodes with a flow of data from

Machine 1 to Machine 2.

2 minutes in which no events occurred. This reduced the length of the one-month trace

to 7.3 hours. The compression step preserves the ordering of events, while allowing us to

run tests in a shorter time period and to stress-test the route selection policies in a more

challenging environment. This does change the pattern of failures and can have an effect

on the performance of the strategies we test. However, the main goal of this section is

not to test a realistic pattern of failures, but rather to observe the effects of moving from a

simulation environment with only a control plane, to an implementation with a data plane.

The second environment we use is a synthetic Erdös-Rényi G(n, m) random graph,

i.e., n nodes with m edges connected uniformly at random. We used n = 25 and m = 50,

so that the average node degree is 4. We generated a bimodal pattern of failures among

the m edges: a random set of 40 are stable, never failing; the other 10 are unstable, with

a heavy-tailed uptime distribution of mean 2 minutes, and constant 1-minute downtimes.

The trace lasts 2 hours.

We exclude results near the beginning and end of the trace to avoid measuring

startup and shutdown effects. We show results from single trials, but we have found re-

peated trials produce very similar results.

5.6.2 Results

In this section we show that SRS can substantially improve data plane perfor-

mance over other strategies; interestingly, a delay of δ = 10 minutes performs better than

118

δ = ∞, potentially due to faster convergence as a result of slightly shorter paths. We then

correlate our simulator’s interruption rate metric with packet loss in the software router.

Software router performance

Table 5.3 classifies packets by their fate. The columns respectively indicate pack-

ets that were received, dropped because there was no route to the destination, sent along

a virtual link which was down (i.e., dropped by iptables), dropped after exceeding the

maximum hopcount, or dropped for unknown reasons (presumably, dropped by the un-

derlying physical network).

Figure 5.7 depicts data-plane performance in the form of the distribution of “gap

lengths”. We say that a generated packet lies in a gap of length 0 if it was received by the

destination, and it lies in a gap of length k if it is one of a run of k dropped packets. Gap

lengths are significant since brief outages can often be masked by retransmission. Note

that a gap length of k corresponds to an outage of ≈ 5k seconds.

Strategy Sent Recv Dropped

No route Link down > 30 hops Unknown
Abilene Environment

SRS(10 min) 515900 513103 161 2636 0 0
SRS(∞) 515900 512714 475 2696 5 10

Std Quagga 515900 509885 88 5918 1 8
Std BGP 515900 509441 123 6336 0 0

RFD 515900 496464 14277 5159 0 0
Random Graph Environment

SRS(∞) 810000 809981 0 0 0 19
Std Quagga 810000 782888 178 26532 43 359

RFD 810000 780812 14001 15186 1 0

Table 5.3: The fates of packets in the software router experiments.

In both environments SRS(∞) substantially decreases packet loss. In the Random

Graph, it is able to avoid all unstable links within the 250-second period before measure-

ments begin, resulting in zero measured packet loss. Although this is an artificial envi-

ronment, it demonstrates that SRS successfully finds the stable paths. Flap damping, in

contrast, fails to find them in a reasonable amount of time; this is somewhat surprising,

given the simplicity of the bimodal failure pattern.

119

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1 10 100 1000

F
ra

ct
io

n
of

 p
ac

ke
ts

 in
 g

ap
 o

f l
en

gt
h

<
=

 x

Gap length (in packets)

SRS(10 min)
SRS(infinity)
Std. Quagga

Std. BGP
Flap damping

(a) Abilene environment

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1 10 100 1000

F
ra

ct
io

n
of

 p
ac

ke
ts

 in
 g

ap
 o

f l
en

gt
h

<
=

 x

Gap length (in packets)

Standard Quagga
Flap Damping

(b) Random graph environment

Figure 5.7: Gap lengths in the software router experiments under the two environments.

Packets are spaced at ≈ 5-second intervals.

Despite its lower overall drop rate, SRS(∞) has a slightly longer tail in the gap

length distribution (see Fig. 5.8), and more of its dropped packets are due to lacking a

route provided by the control plane. This may represent increased convergence time as a

result of longer paths. Surprisingly, even though it is given less flexibility, SRS(10 min)

is a win over SRS(∞) in every type of dropped packet, as well as in the tail of the gap

length distribution. SRS(10 min) still has a longer tail than Standard BGP, but only after

the 99.98th percentile. Given its factor 2.3× reduction in packet loss, SRS(10 min) presents

a promising alternative.

Standard Quagga offers a marginal improvement over Standard BGP in the Abi-

lene environment. RFD also reduces the fraction of packets sent along dead links, which

is the largest cause of packet loss in Standard BGP and Standard Quagga. However, RFD

pays for this with a large number of packets dropped due to having no route, and we can

see from Figure 5.7 that these cause exceedingly long periods of outage in both environ-

ments.

Correlation with simulation

The goal of this section is to determine how well our simulator’s interruption

rate metric predicts data plane performance. We match the interruption rate, measured in

simulation with batching on, with the packet loss rate of our software router experiments,

120

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 2 4 6 8 10 12 14 16 18

F
ra

ct
io

n
of

 p
ac

ke
ts

 in
 g

ap
 o

f l
en

gt
h

<
=

 x

Gap length (in packets)

SRS(10 min)
SRS(infinity)
Std. Quagga

Std. BGP

Figure 5.8: Fig. 5.7(a), zoomed in.

both run under the same environments.

We begin with the larger of the two environments, the random graph, using the

Standard Quagga strategy. Figure 5.9(a) plots packet loss rate vs. number of interruptions

for the 600 source-destination pairs (note that many overlap at (0, 0)). Although some

variation is to be expected due to implementation details or timing such as the random

intervals between packet generation, we see a strong correlation; the data has a correlation

coefficient of 0.985896. A least-squares fit of f (x) = a · x yields a ≈ 1.7067, which means

that the average interruption in this environment causes a loss of ≈ 1.7 packets or ≈ 8.5

sec of availability.

But this is an average which does not describe every individual interruption

event. Excluding drops due to the underlying network, packets can be lost in our soft-

ware router for three reasons: having no route to the destination, forwarding along a link

that is down, or exceeding the maximum hopcount (i.e., encountering a forwarding loop).

As long as a working path actually exists, each of these cases must result from transient

conditions involving an interruption. On the other hand, an interruption need not imply

packet loss: a router could simply switch between two working routes.

This intuition is borne out in the Abilene environment, depicted in Figure 5.9(b)

along with the best-fit line imported from the random graph environment. Abilene has

only 110 source-destination pairs, rather than 600; and the trace is more heterogeneous,

with a single highly unstable link and several which occasionally fail, compared with 10

persistently stable links. It is then not surprising that source-destination pairs’ perfor-

121

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200

N
um

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

Number of interruptions

Std. Quagga
Best fit

(a) Random graph environment

 1

 10

 100

 1000

 1 10 100 1000

N
um

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

Number of interruptions

Std. Quagga
 1

 10

 100

 1000
SRS

 1 10 100 1000

Std. BGP

RFD

(b) Abilene environment

Figure 5.9: Correlation between number of interruptions in simulations, and packet loss

in experiments, for the two environments.

mance is more highly variable in the Abilene environment. In particular, in all four strate-

gies, a number of points lie near the best fit line; and many points also lie below this line,

corresponding to the fact that an interruption does not necessarily cause a packet loss. In

the SRS, Standard Quagga, and Standard BGP strategies, fewer points lie far above the

best fit line, corresponding to the fact that packet loss within the software router network

does not occur without instability. Finally, in RFD, a large fraction of points have many

more packet losses than the interruption rate alone would predict. This can be attributed

to the fact the simulator counts instability separately from unavailability, the latter being

the likely cause of these losses.

5.7 Evaluation with Route Views Update Feeds

In this section we evaluate the performance of SRS using feeds of BGP updates

from actual Internet routers, as collected by Route Views [102]. Note that while the simu-

lations of Section 5.5 used traces of AS-level link state availability that were derived from

Route Views, in this case we use unmodified streams of updates, providing a much more

realistic evaluation. However, the deployment scenarios are more limited: only a single

node runs SRS, whereas Section 5.5 was able to explore effects of all or a subset of nodes

running SRS.

In this evaluation, SRS provides very little benefit for the average IP prefix. We

122

find that one reason is correlation in paths: for most prefixes, although multiple paths are

available, they have a common last link. For prefixes that have path diversity, SRS provides

greater improvement.

5.7.1 Methodology

Our evaluation is based on a log of update messages and periodic snapshots of

the routing tables (RIBs) from about 42 Internet routers, called views, which peer with a

Route Views data collector. This data gives us a way to determine the control-plane effect

of running SRS at a single router which peers with some subset of these views.

Specifically, our emulator proceeds as follows. In each trial, we create a router

which has “virtual peerings” with a random subset of 5 of the Route Views views. This

router receives one month of data, beginning with a snapshot of the RIB and proceeding

with the update messages that it would receive from each of its virtual neighbors. We

emulate the BGP and SRS decision processes over this data, recording interruptions and

other measurements on a per-prefix basis. When collecting data we ignore the first 200, 000

seconds (2.3 days) to avoid startup effects.

The results we present are based on 40 trials for each of the two strategies: 10 trials

from each month between November 2008 and February 2009. We show 95% confidence

intervals.

5.7.2 Results

In our experiments, SRS with delay δ = 60 minutes decreases mean interruption

rate by 12%:

Strategy Mean interruptions per prefix per trial

BGP 20.67
SRS(60 min) 18.28

We next examine how this result behaves as a function of the prefix length and

diversity of available paths (to be defined below). These results are shown in Figure 5.10.

Prefix length. Figure 5.10(c) shows that SRS has similar performance on prefixes of length

≥ 16. For shorter prefixes, the variance in the results is quite high (Fig. 5.10(a)); note that

there are relatively few prefixes of length ≤ 16 (Fig. 5.10(e)).

123

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 8 10 12 14 16 18 20 22 24

M
ea

n
nu

m
be

r
of

 in
te

rr
up

tio
ns

Prefix length

Std. BGP
SRS(60 min)

(a) Interruption rate by prefix length

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

M
ea

n
nu

m
be

r
of

 in
te

rr
up

tio
ns

Path diversity

Std. BGP
SRS(60 min)

(b) Interruption rate by path diversity

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24

R
el

at
iv

e
in

te
rr

up
tio

n
ra

te

Prefix length

Std. BGP
SRS(60 min)

(c) Interruption rate by prefix length, relative to

BGP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

R
el

at
iv

e
in

te
rr

up
tio

n
ra

te

Path diversity

Std. BGP
SRS(60 min)

(d) Interruption rate by path diversity, relative to

BGP

 1

 10

 100

 1000

 10000

 100000

 1e+06

 8 10 12 14 16 18 20 22 24

N
um

be
r

of
 p

re
fix

es

Prefix length

(e) Number of prefixes by prefix length

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5

N
um

be
r

of
 p

re
fix

es

Path diversity

(f) Number of prefixes by path diversity

Figure 5.10: Results of Route Views update feed evaluation.

124

Path diversity. We define path diversity for each prefix as follows. At a given point in time,

the path diversity is the number of distinct penultimate ASes among the available paths at

that time. (This definition is essentially equivalent to the number of AS-disjoint routes.1)

We then take the mean of this value across all times that there is at least one available route

for the prefix. In plotting results, we group prefixes into bins by rounding their mean path

diversity to the nearest integer i; we will refer to these prefixes as having diversity ≈ i.

Figure 5.10(d) shows that for prefixes with diversity ≈ 1, SRS achieves only an

8.7% reduction in interruption rate compared with BGP. But performance improves sub-

stantially once there are multiple disjoint paths, with a 23% or 27% reduction when path

diversity is≈ 2 or≈ 4, respectively. It is unclear why the interruption rate is higher for path

diversity ≈ 5; however, note that the variance of the SRS measurements is much higher

here (Fig. 5.10(b)). Considering all prefixes with diversity ≥ 2 as a group, there is a 24%

reduction in interruption rate.

Conclusions. There are likely several reasons that SRS’s improvement over BGP is more

limited than our previous simulations suggested. First, as we have shown, SRS performs

better with higher path diversity; but about 62% of prefixes have path diversity ≈ 1

(Fig. 5.10(f)). Even if the destination AS has multiple providers, this can occur if the AS is

announcing the prefix to only one provider, which is a common way of performing traffic

engineering. Our simulator did not consider traffic engineering.

Second, in this section we have emulated a single router running SRS, while most

of our previous results dealt with the case that all routers run SRS. Performance may im-

prove as a function of the extent of deployment of SRS.

5.8 Related Work

Approaches for improving stability of Internet routing typically fall into two

classes: modifying the routing protocol, or modifying route selection.

Modifying the routing protocol. By appending information about the cause of a route up-

date, the convergence process can be shortened [22, 80]. Loop-free convergence [16] aims

to ensure certain correctness properties hold while routing updates are propagating. In-

1This is due to the fact that converged BGP routes for any given prefix form a tree; thus, if two routes differ
in the hop immediately before the destination, they must differ in all hops, except the destination. However,
there may be slight differences due to message timing and convergence.

125

stead of changing the network layer, data packets may be sent on overlay networks which

can route around failures [53]. In contrast to these studies, we refrain from modifying

BGP, and our SRS strategies focus on avoiding convergence entirely rather than reducing

convergence overhead.

Modifying route selection. Some work has studied what path selection policies lead to

guaranteed convergence. Griffin et al. [51] showed that a stable state exists if the ASes’

policies do not contain a dispute wheel, while [41] showed that by setting policies accord-

ing to certain locally-checkable guidelines (e.g., preferring customer routes), convergence

to a stable state is guaranteed. These studies deal only with guaranteeing convergence due

to properties of the policies, rather than link or node failures and recoveries.

By selecting among multihomed connections with low loss, performance and re-

silience can be improved [4]. We have overlapping goals, but address the problem in the

Internet at large, rather than at multihomed edge sites only, and additionally target control

plane load.

Perhaps most similar to our work, flap damping [122] suppresses the use of routes

which are repeatedly and quickly advertised and withdrawn. Flap damping is known

to have pathological behavior that can worsen convergence [80], and as we have seen,

can severely impact availability. Duan et al. [32] improve flap damping’s performance by

recognizing certain sequences of updates that are not indicative of route flaps, but requires

an AS to advertise information about its routing policy to neighboring ASes. Recently,

Huston [59] proposed delaying updates for short intervals when they match a pattern

likely to indicate BGP path exploration. This introduces inconsistent state that can result

in loops and outages during the period of delay. All these proposals trade availability for

stability, while SRS ensures that if a valid path to the destination exists, one will remain

advertised.

5.9 Conclusion

This chapter characterized the space of techniques for improving stability in BGP.

One of our main contributions was to develop algorithms to bound the best possible points

in the stability-availability and stability-deviation tradeoff spaces.

Our second main contribution was the design and evaluation of a Stable Route

126

Selection scheme. Experimental and large-scale simulation results show that SRS achieves

a significant improvement in control plane overhead and data plane reliability with only

a small deviation from preferred routes. However, an evaluation of deployment at a sin-

gle router using direct feeds of route update traffic from Internet routers indicates only a

small improvement. One important, and likely difficult, question for future research is to

determine how much improvement SRS could obtain using realisting route update traffic,

but with many routers running SRS.

127

Chapter 6

Conclusion

This dissertation developed practical methods for distributed systems to adapt to

and take advantage of heterogeneity. We introduced the Y0 distributed hash table, which

handles arbitrary node capacity distributions; the use of randomization in node selec-

tion, which reduces churn amid heterogeneous failure patterns; and Stable Route Selec-

tion, which can improve reliability of Internet routing while carefully managing tradeoffs

with network operators’ perferred routes, by exploiting heterogeneous patterns of route

availability.

We also placed these results in the broader context of characterizing the effect of

heterogeneity in distributed systems. In the individual systems we considered, we found

that route length, congestion, load balance, control overhead, and data plane reliability

can be improved in environments that are more heterogeneous in terms of capacity and

failure pattern, compared with homogeneous systems of equal total capacity or failure rate.

Complementing these examples, we introduced a framework, the price of heterogeneity, in

which we exhibited multiple classes of systems in which heterogeneity is provably never a

significant disadvantage, regardless of the details of workloads and capacity distributions.

In summary, we believe this dissertation makes a strong argument that hetero-

geneity in reliability and capacity can not only be handled, but rather should generally be

viewed as an asset.

128

6.1 Limitations and Future Work

Our techniques and results are not without limitations. We next discuss some of

these issues and future directions that they suggest.

Generalizing bounds on the price of heterogeneity. We bounded the price of hetero-

geneity of a variety of scheduling and load balancing problems, a low-diameter network

construction problem, and the Random Replacement node selection strategy (in a prob-

abilistic generalization of the model). Our results establish large classes of systems for

which heterogeneity cannot be detrimental. But a higher-level goal is to generalize across

systems: What fundamental characteristics of a system make it perform better as hetero-

geneity increases? Theorem 1 (p. 17) provides some of the flavor of this objective by pro-

viding sufficient conditions for bounding the PoH. Additionally, timing constraints may

provide a hint as to what characteristics make a problem sensitive to heterogeneity. In that

respect, a major open question is to resolve whether the PoH of precedence constrained

scheduling is Θ(1), Θ(log n), or somewhere in between.

Optimizing hierarchies. One of the most common techniques for dealing with hetero-

geneity is hierarchy. For example, Skype uses a network of high-capacity superpeers to

relay calls [52]. The Internet is split into a hierarchy with one protocol (BGP) to route

roughly at the level of autonomous systems, and separate intradomain routing protocols

to route within autonomous systems. And we used a hierarchy in our Y0 DHT of Chap-

ter 3, by discarding low-capacity nodes from the DHT’s ring, leaving only the nodes of

capacity ≥ 1
2 to perform routing.

But what is the optimal point at which to split the hierarchy? As a particular in-

stantiation of this question, in Y0, what fraction of nodes should we discard from the ring

to obtain the best possible performance? Discarding nodes has the negative effect of reduc-

ing total capacity that can be used for routing, as well as the positive effects of increasing

the mean capacity of remaining nodes and decreasing the mean route length. What is the

best tradeoff between these effects? A related question would take into account fairness:

What fraction of nodes should be discarded to minimize costs for the nodes remaining in

the ring?

Analysis of node selection strategies. In Chapter 4 we analyzed the Random Replacement

strategy in a renewal process model, giving a way to determine the churn rate for any

129

given node session time distributions, under certain assumptions such as a “convergence”

property of the distributions, and having a large number of nodes in the system. One area

of future work would be to remove these assumptions.

A second area is to analyze other strategies. Despite its importance, we are aware

of no comparable statistical analysis for the Longest Uptime strategy. Could it be shown,

for example, in what cases RR comes within a constant factor of LU’s churn? Can ei-

ther strategy provably approach the optimal strategy which has knowledge of the future?

Additionally, our analysis of the Passive Preference List is limited to the case that k, the

number of nodes in use, is large. Our simulations make it clear that Passive PL performs

better for small k, so it would be interesting to analytically determine the precise effect of k.

Realistic evaluation of Stable Route Selection with a multiple-router deployment. Our

evaluation of SRS using update feeds from Route Views (Section 5.7) showed that SRS pro-

vides only a small improvement when deployed at one router. But our simulation results

(Section 5.5.2) suggest that wider deployment brings greater overall stability. Quantifying

this improvement while using realisting update patterns as in Section 5.7 would be very

valuable in bringing SRS closer to real-world deployability.

It would also be helpful to apply our lower bounds algorithms to the direct feeds

from Route Views. This would show what points in the stability-deviation tradeoff space

are feasible using an environment that is more realistic than our simulation environment

(albeit representing deployment at only a single router).

Adaptive routing architectures. The lower bounds of Chapter 5 provide a motivation for

future work. Specifically, in our measured Internet-scale topology and inferred trace of

failures, it is not possible to improve interruption rate by more than 8.1× using any route

selection strategy, without sacrificing availability or violating policies. And this assumes

an unbounded amount of deviation from preferred paths! Thus, in order to improve relia-

bility by orders of magnitude, rather than working within the existing routing architecture

as SRS did, we likely need to re-think the architecture with a focus on dependability and

dynamic reaction to diverse operational environments.

To effectively react to failures and other events in the network, we require the

ability to obtain feedback from the environment; a flexible underlying infrastructure that per-

mits many possible actions; and adaptive algorithms which respond to the feedback within

the flexibility afforded by the infrastructure.

130

The current Internet is deficient in all three of these areas. Automatic routing

decisions are largely decoupled from data plane objectives like load balance, latency, and

end-to-end availability. To a large extent, the feedback loop goes through humans: as much

as Internet routing is automatic, it can also be said to be manual, with operators across the

globe tweaking inputs to the BGP decision process to achieve desired traffic engineering

or policy effects. This arrangement has a significant cost in human time, and neglects the

useful information available to the two endpoints in a connection.

The Internet’s routing infrastructure is also very inflexible. End-hosts have no

choice in the paths their packets travel, and routers choose among only a fraction of the

possible policy-compliant paths. What flexibility does exist is limited further since it may

interfere with manual configuration.

A solution to the problems of feedback and flexibility is source-controlled rout-

ing: giving end hosts (or their representatives, edge routers) some amount of control over

their packets’ routes. This gives flexibility to the entities that have access to feedback,

potentially yielding huge benefits in reliability and performance. But how close can we

come to exposing to end hosts the full diversity of available policy-compliant paths, while

still giving network providers sufficient control over their own networks, and allowing

the system to scale? This is a significant routing protocol design challenge, and it leads to

another question: source-controlled routing shifts the burden of failure detection and traf-

fic engineering onto the end-hosts or other edge devices, which then need smart adaptive

algorithms. It is possible that online learning algorithms could be leveraged to help select

good routes, potentially with the help of collaboration among end-hosts or routers to share

learned information.

6.2 A Final Remark

We leave the reader with one concluding remark.

Networking research has major challenges in providing seamless reliability, per-

formance, scalability, security, and usability. A next-generation Internet architecture would

be expected to support these and other objectives over decades of growth and for unex-

pected applications. In this context it is particularly important that architectural choices be

based on a solid foundation. Much of the work in this dissertation has strived towards that

goal by combining systems design with theoretical analysis, which can provide guarantees

131

of the behavior of a proposed design, as well as an understanding of what goals and trade-

offs are and are not achievable. We hope that a flow of ideas between the systems and

theory communities will flourish in order to meet the needs that arise as computer net-

works become an ever greater part of society.

132

Bibliography

[1] Abilene observatory data collections. http://abilene.internet2.edu/

observatory/.

[2] M. Adler, Eran Halperin, R. M. Karp, and V. Vazirani. A stochastic process on the

hypercube with applications to peer-to-peer networks. In Proc. STOC, June 2003.

[3] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot. Impact of BGP dynamics on

router CPU utilization. In Passive and Active Measurement Workshop, April 2004.

[4] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A comparison of overlay

routing and multihoming route control. In ACM SIGCOMM, 2004.

[5] V. A. F. Almeida, I. M. M. Vasconcelos, J. N. C. Árabe, and D. A. Menascé. Using

random task graphs to investigave the potential benefits of heterogeneity in parallel

systems. In Proc. ACM/IEEE conference on Supercomputing, 1992.

[6] Virgílio Almeida and Daniel Menascé. Cost-performance analysis of heterogeneity

in supercomputer architectures. In Proc. ACM/IEEE conference on Supercomputing,

1990.

[7] Barry C. Arnold. Majorization and the Lorenz order: A Brief Introduction, volume 43.

Lecture Notes in Statistics, Springer-Verlag, 1987.

[8] Mehmet Bakkaloglu, Jay J. Wylie, Chenxi Wang, and Gregory R. Ganger. On cor-

related failures in survivable storage systems. Technical Report CMU-CS-02-129,

Carnegie Mellon University, May 2002.

[9] Hitesh Ballani and Paul Francis. Towards a global IP anycast service. In Proc. ACM

SIGCOMM, 2005.

133

[10] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,

T. Spalink, and M. Wawrzoniak. Operating system support for planetary-scale net-

work services. In Proc. NSDI, 2004.

[11] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoffrey M.

Voelker. Total recall: System support for automated availability management. In

NSDI, 2004.

[12] Marcin Bienkowski, Miroslaw Korzeniowski, and Friedhelm Meyer auf der Heide.

Dynamic load balancing in distributed hash tables. Manuscript, 2004.

[13] C. Blake and R. Rodrigues. High availability, scalable storage, dynamic peer neet-

works: Pick two. In Proc. HOTOS, May 2003.

[14] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibility of

a serverless distributed file system deployed on an existing set of desktop PCs. In

Proc. SIGMETRICS, 2000.

[15] Andre Brinkmann, Kay Salzwedel, and Christian Scheideler. Compact, adaptive

placement strategies for non-uniform capacities. In Proc. ACM Symposium on Parallel

Algorithms and Architectures (SPAA), Winnipeg, Canada, 2002.

[16] S. Bryant and M. Shand. A framework for loop-free convergence. In IETF Internet

Draft, 2006. draft-bryant-shand-lf-conv-frmwk-03.

[17] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple Load Balancing

for Distributed Hash Tables. In Proc. IPTPS, February 2003.

[18] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Geometric generaliza-

tions of the power of two choices. In Proc. SPAA, 2004.

[19] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S. Shenker.

ROFL: routing on flat labels. In ACM SIGCOMM, 2006.

[20] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-

Stream: High-bandwidth content distribution in a cooperative environment. In Proc.

of IPTPS, February 2003.

134

[21] H. Chan, D. Dash, A. Perrig, and H. Zhang. Modeling adoptability of secure BGP

protocols. In ACM SIGCOMM, 2006.

[22] J. Chandrashekar, Z. Duan, J. Krasky, and Z. Zhang. Limiting path exploration in

BGP. In IEEE INFOCOM, 2005.

[23] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.

Making Gnutella-like P2P systems scalable. In Proceedings of ACM SIGCOMM, 2003.

[24] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-

constrained scheduling problems on parallel machines that run at different speeds.

In Proc. 8th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 581–590,

1997.

[25] Ian Clarke. Freenet’s next generation routing protocol, 2003. http://freenet.

sourceforge.net/index.php?page=ngrouting.

[26] Francesc Comellas and Charles Delorme. The (degree, diameter) problem for graphs.

http://www-mat.upc.es/grup_de_grafs/grafs/taula_delta_d.html.

[27] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-

area cooperative storage with CFS. In Proc. ACM SOSP, 2001.

[28] Frank Dabek, Jinyang Li, Emil Sit, Frans Kaashoek, Robert Morris, and Chuck Blake.

Designing a DHT for Low Latency and High Throughput. In Proc. NSDI, 2004.

[29] Asit Dan and Don Towsley. An approximate analysis of the LRU and FIFO buffer

replacement schemes. In Proc. ACM SIGMETRICS, pages 143–152, 1990.

[30] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Pro-

ceedings of the Twenty-First ACM SIGOPS Symposium on Operating Systems Principles

(SOSP), pages 205–220, 2007.

[31] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simluation of a

fair queueing algorithm. In Internetworking: Research and Experience, volume 1, pages

3–26, June 1990.

135

[32] Z. Duan, J. Chandrashekar, J. Krasky, K. Xu, and Z.-L. Zhang. Damping BGP route

flaps. In IEEE International Performance Computing and Communications Conference,

2004.

[33] C-T. Ee, V. Ramachandran, B-G. Chun, K. Lakshminarayanan, and S. Shenker. Re-

solving inter-domain policy disputes. In ACM SIGCOMM, 2007.

[34] Emulab. Hardware overview, Emulab classic, Accessed February 2008. https://

users.emulab.net/trac/emulab/wiki/UtahHardware.

[35] A. Feldmann, H. Kong, O. Maennel, and A. Tudor. Measuring BGP pass-through

times. In Passive and Active Measurement Workshop, April 2004.

[36] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs. Locating Internet rout-

ing instabilities. In ACM SIGCOMM, 2004.

[37] W. Feng, F. Chang, W. Feng, and J. Walpole. Provisioning on-line games: A traffic

analysis of a busy Counter-Strike server. In Internet Measurement Workshop, 2002.

[38] Philippe Flajolet, Daniele Gardy, and Loys Thimonier. Birthday paradox, coupon

collectors, caching algorithms and self-organizing search. In Discrete Applied Mathe-

matics, pages 207–229, 1992.

[39] P. A. Franaszek and T. J. Wagner. Some distribution-free aspects of paging algorithm

performance. In Journal of the ACM, pages 31–39, January 1974.

[40] Michael J. Freedman, Karthik Lakshminarayanan, and David Mazieres. Oasis: Any-

cast for any service. In NSDI, 2006.

[41] L. Gao and J. Rexford. Stable Internet routing without global coordination.

IEEE/ACM Transactions on Networking, 9(6):681–692, December 2001.

[42] Luis Garces-Erice, Ernst W. Biersack, Keith W. Ross, Pascal A. Felber, and Guillaume

Urvoy-Keller. Hierarchical P2P systems. In Proc. ACM/IFIP International Conference

on Parallel and Distributed Computing (Euro-Par), 2003.

[43] Michael R. Garey and David S. Johnson. Computers and Intractability: a guide to the

theory of NP-Completeness. W. H. Freeman and Company, 1979.

136

[44] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and

Ion Stoica. Load balancing in dynamic structured P2P systems. In Proc. IEEE INFO-

COM, Hong Kong, 2004.

[45] P. Brighten Godfrey, Matthew Caesar, Ian Haken, Yaron Singer, Scott Shenker, and

Ion Stoica. Stable internet route selection. In NANOG 40, June 2007.

[46] P. Brighten Godfrey and Richard M. Karp. On the price of heterogeneity in paral-

lel systems. In 18th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), July 2006.

[47] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in distributed

systems. In ACM SIGCOMM, 2006.

[48] P. Brighten Godfrey and Ion Stoica. Heterogeneity and load balance in distributed

hash tables. In Proc. IEEE INFOCOM, 2005.

[49] R. L. Graham. Bounds on multiprocessing timing anomalies. In Bell Sys. Technical

Journal, pages 1563–1581, 1966.

[50] T. Griffin and B. Premore. An experimental analysis of BGP convergence time. In

ICNP, 2001.

[51] T. Griffin, F. Shepherd, and G. Wilfong. The stable paths problem and interdomain

routing. IEEE/ACM Transactions on Networking, 10(2), April 2002.

[52] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study of the Skype

peer-to-peer VoIP system. In IPTPS, 2006.

[53] K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall. Improving the

reliability of Internet paths with one-hop source routing. In OSDI, 2004.

[54] Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Ratnasamy, Scott

Shenker, and Ion Stoica. The Impact of DHT Routing Geometry on Resilience and

Proximity. In Proc. ACM SIGCOMM, 2003.

[55] Francis B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, 2nd edition,

1976.

137

[56] Jingfeng Hu, Ming Li, Weimin Zheng, Dongsheng Wang, Ning Ning, and Haitao

Dong. SmartBoa: Constructing p2p overlay network in the heterogeneous internet

using irregular routing tables. In Proc. IPTPS, 2004.

[57] Ryan Huebsch, Joseph Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker,

and Ion Stoica. Querying the Internet with PIER. In Proc. of VLDB, September 2003.

[58] G. Huston. 2005—a BGP year in review. In 21st APNIC Open Policy Meeting, February

2006.

[59] G. Huston. Damping BGP, 2007. http://www.potaroo.net/presentations/

2007-12-02-dampbgp.pdf.

[60] Geoff Huston. The BGP instability report, Accessed May 20, 2009. http://

bgpupdates.potaroo.net/instability/bgpupd.html.

[61] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson. Lever-

aging BitTorrent for end host measurements. In 8th Passive and Active Measurement

Conference (PAM), Louvain-la-neuve, Belgium, April 2007.

[62] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal dis-

tributed hash table. In Proc. IPTPS, 2003.

[63] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and

Rina Panigrahy. Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In ACM Symposium on Theory of

Computing, pages 654–663, May 1997.

[64] David Karger and Matthias Ruhl. New Algorithms for Load Balancing in Peer-to-

Peer Systems. Technical Report MIT-LCS-TR-911, MIT LCS, July 2003.

[65] David Karger and Matthias Ruhl. Simple Efficient Load Balancing Algorithms for

Peer-to-Peer Systems. In Proc. SPAA, 2004.

[66] E. Koutsoupias. Coordination mechanisms for congestion games. In Sigact News,

December 2004.

[67] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley

138

Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-scale

Persistent Storage. In Proc. ASPLOS, Boston, MA, November 2000.

[68] N. Kushman, S. Kandula, and D. Katabi. Can you hear me now?! it must be BGP. In

Computer Communication Review, 2007.

[69] C. Labovitz and A. Ahuja. Experimental study of internet stability and wide-area

backbone failures. In Fault-Tolerant Computing Symposium (FTCS), 1999.

[70] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing conver-

gence. In ACM SIGCOMM, 2000.

[71] Jonathan Ledlie and Margo Seltzer. Distributed, secure load balancing with skew,

heterogeneity, and churn. In Proc. INFOCOM, 2005.

[72] Jonathan Ledlie, Jeff Shneidman, Matthew Amis, Michael Mitzenmacher, and Margo

Seltzer. Reliability- and capacity-based selection in distributed hash tables. Technical

report, Harvard University Computer Science, September 2003.

[73] D. Leonard, V. Rai, and D. Loguinov. On lifetime-based node failure and stochastic

resilience of decentralized peer-to-peer networks. In SIGMETRICS, 2005.

[74] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-

efficient management of DHT routing tables. In Proc. NSDI, 2005.

[75] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M.

Gil. A performance vs. cost framework for evaluating DHT design tradeoffs under

churn. In Proc. INFOCOM, 2005.

[76] T. Li. Router scalability and Moore’s law. In Workshop on Routing and Addressing,

Internet Architecture Board, October 2006.

[77] Gurmeet Manku. Balanced binary trees for ID management and load balance in

distributed hash tables. In Proc. PODC, 2004.

[78] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: dis-

tributed hashing in a small world. In USENIX Symposium on Internet Technologies and

Systems, 2003.

139

[79] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neighbor:

the power of lookahead in randomized P2P networks. In STOC, 2004.

[80] Z. Mao, R. Govindan, G. Varghese, and R. Katz. Route flap damping exacerbates

Internet routing convergence. In ACM SIGCOMM, 2002.

[81] Z. M. Mao, R. Bush, T. Griffin, and M. Roughan. BGP beacons. In IMC, 2003.

[82] Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and its

Applications. Academic Press, 1979.

[83] MetaMachine. eDonkey, Accessed July 2004. http://www.edonkey2000.com/.

[84] D. Meyer, L. Zhang, and K. Fall. Report from the IAB workshop on routing and

addressing. In Internet-Draft, April 2007.

[85] James Mickens and Brian Noble. Predicting node availability in peer-to-peer net-

works. In ACM SIGMETRICS poster, 2005.

[86] Alper Tugay Mizrak, Yuchung Cheng, Vineet Kumar, and Stefan Savage. Struc-

tured superpeers: Leveraging heterogeneity to provide constant-time lookup. In

Proc. IEEE Workshop on Internet Applications, 2003.

[87] Moni Naor and Udi Wieder. Novel architectures for P2P applications: the

continuous-discrete approach. In Proc. SPAA, 2003.

[88] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Syn-

opsis diffusion for robust aggregation in sensor networks. In ACM SenSys, 2004.

[89] A. Odlyzko. Internet pricing and the history of communications. In Internet Services,

L. McKnight and J. Wroclawski, eds., MIT Press, 2001.

[90] C. Panigl, J. Schmitz, P. Smith, and C. Vistoli. RIPE Routing-WG recommendations

for coordinated route-flap damping parameters. In Document ID ripe-229, October

2001.

[91] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach

to flow control in integrated services networks: The single-node case. In IEEE/ACM

Transactions on Networking, volume 1, pages 344–357, June 1993.

140

[92] KyoungSoo Park and Vivek Pai. Comon: A monitoring infrastructure for PlanetLab.

http://comon.cs.princeton.edu/.

[93] PlanetLab. http://www.planet-lab.org.

[94] Quagga software routing suite. http://quagga.net.

[95] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A

scalable content-addressable network. In Proc. ACM SIGCOMM, 2001.

[96] Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. Routing algorithms for DHTs:

Some open questions. In Proc. IPTPS, 2002.

[97] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). In RFC1771, March 1995.

[98] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: the

OceanStore prototype. In Proc. USENIX File and Storage Technologies (FAST), 2003.

[99] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fixing the em-

barrassing slowness of OpenDHT on PlanetLab. In Proc. WORLDS, 2005.

[100] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn

in a DHT. In Proc. USENIX Annual Technical Conference, June 2004.

[101] Michael W. Rhodehamel. The bus interface and paging units of the i860 micropro-

cessor. In Proc. IEEE International Conference on Computer Design, pages 380–384, 1989.

[102] Route Views project. http://routeviews.org.

[103] A. Rowstron and P. Druschel. Storage management and caching in apst, a large-scale,

persistent peer-to-peer storage utility. In SOSP, 2001.

[104] Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object Location

and Routing for Large-scale Peer-to-Peer Systems. In Proc. Middleware, 2001.

[105] Stefan Saroiu. Private communication, 2003.

[106] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study

of Peer-to-Peer File Sharing Systems. In Proc. MMCN, San Jose, CA, USA, January

2002.

141

[107] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study

of Peer-to-Peer File Sharing Systems. In Proc. MMCN, San Jose, CA, USA, January

2002.

[108] P. Smith and C. Panigl. RIPE routing working group recommendations on route-flap

damping. In Document ID ripe-378, May 2006.

[109] SprintLink BGP dampening policy. https://www.sprint.net/index.php?p=

policy_bgp_damp.

[110] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang. The

feasibility of supporting large-scale live streaming applications with dynamic appli-

cation end-points. In Proc. ACM SIGCOMM, 2004.

[111] J. Stewart. BGP4: inter-domain routing in the Internet. Addison-Wesley, New York,

1999.

[112] S. Stidham. On the optimality of single-server queueing systems. In Operations Re-

search, volume 18, pages 708–732, 1970.

[113] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Inter-

net indirection infrastructure. In Proc. SIGCOMM, 2002.

[114] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proc.

SIGCOMM, 2001.

[115] Jeremy Stribling. Planetlab all pairs ping. http://infospect.planet-lab.org/

pings.

[116] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the internet

hierarchy from multiple vantage points. In IEEE INFOCOM, 2002.

[117] L. Subramanian, M. Caesar, C. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica.

HLP: A next-generation interdomain routing protocol. In ACM SIGCOMM, 2005.

[118] Sonesh Surana, Brighten Godfrey, Karthik Lakshminarayanan, Richard Karp, and

Ion Stoica. Load balancing in dynamic structured P2P systems. In Performance Eval-

142

uation: Special Issue on Performance Modeling and Evaluation of Peer-to-Peer Computing

Systems, 2005.

[119] Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Selfish load balancing and atomic

congestion games. In Proc. SPAA, 2004.

[120] Garret Swart. Spreading the load using consistent hashing: A preliminary report. In

International Symposium on Parallel and Distributed Computing (ISPDC), 2004.

[121] K. Tati and G. M. Voelker. On object maintenance in peer-to-peer systems. In Proc.

IPTPS, 2006.

[122] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap damping. In RFC2439,

November 1998.

[123] Michael Walfish, Hari Balakrishnan, and Scott Shenker. Untangling the web from

DNS. In Proc. Symposium on Networked Systems Design and Implementation (NSDI),

2004.

[124] F. Wang, N. Feamster, and L. Gao. Quantifying the effects of routing dynamics

on end-to-end Internet path failures. Technical Report TR-05-CSE-03, University of

Massachusetts, 2003.

[125] F. Wang and L. Gao. On inferring and characterizing internet routing policies. In

IMC, 2003.

[126] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measurement study on the im-

pact of routing events on end-to-end Internet path performance. In ACM SIGCOMM,

2006.

[127] Hakim Weatherspoon, Byung-Gon Chun, Chiu Wah So, and John Kubiatow-

icz. Long-Term Data Maintenance: A Quantitative Approach. Technical Report

UCB/CSD-05-1404, EECS Department, University of California, Berkeley, July 2005.

[128] Adam Wierman, Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf.

How many servers are best in a dual-priority FCFS system? In Performance Evalua-

tion, volume 63, pages 1253–1272, 2006.

143

[129] Bernard Wong, Aleksanders Slivkins, and Emin Gun Sirer. Meridian: A lightweight

network location service without virtual coordinates. In Proc. ACM SIGCOMM, 2005.

[130] Zhichen Xu, Mallik Mahalingam, and Magnus Karlsson. Turning heterogenity into

an advantage in overlay routing. In Proc. IEEE INFOCOM, 2003.

[131] Xiangying Yang and Gustavo de Veciana. Service capacity of peer to peer networks.

In Proc. INFOCOM, 2004.

[132] Bo Zhang, T. S.Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Druschel, and Guo-

hui Wang. Measurement-based analysis, modeling, and synthesis of the Internet

delay space, 2006. http://www.cs.rice.edu/~bozhang/synthesizer.html.

[133] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz. Brocade: Landmark

routing on overlay networks, 2002.

[134] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D.

Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area data

dissemination. In Proceedings of NOSSDAV, June 2001.

144

Appendix A

Proofs for Chapter 2

A.1 NP-Completeness of SIMULATION

Define the problem SIMULATION as follows: given α ≥ 1, C, and C′ � C, is there

an α-simulation of C with C′?

Fact 3 SIMULATION is NP-complete.

Proof: Clearly the problem is in NP. To show NP-hardness we reduce from PARTITION [43].

In that problem, we are given a set S of n positive integers, and must decide whether there

exists an R ⊂ S for which ∑r∈R r = 1
2 ∑s∈S s.

Normalize the elements of S so that ∑s∈S s = n. Set α = 1, C = S and C′ =

(n
2 , n

2 , 0, . . . , 0). If C′ � C, then (α, C, C′) is a valid instance of SIMULATION, and it is easy

to verify that S can be partitioned in half iff there exists a 1-simulation.

If C′ 6� C, then ∑
k
i=1 c′[i] < ∑

k
i=1 c[i] for some k, where c[i] denotes the ith largest

component of C. Since C′ has only two positive elements, this must happen for k = 1,

which implies that c1 >
n
2 . In that case, there can be no perfect partition of S, so we can

map onto any “no” instance of SIMULATION.

A.2 Proof of Corollary 3

In the mixed-integer program of Chudak and Shmoys [24], machines are divided

into groups of equal speed, and jobs are assigned to machine groups. For our purposes, we

145

may assume w.l.o.g. that all machines have different speeds, in which case the program

becomes the following. Variable xkj ∈ {0, 1} represents the assignment of job j to machine

k, and t(j) represents the completion time of job j. We seek to minimize the makespan D

subject to

n

∑
k=1

xkj = 1 ∀j ∈ J (A.1)

1
ck

n

∑
j=1

ℓ(j)xkj ≤ D ∀k : ck > 0 (A.2)

xkj = 0 ∀k : ck = 0 (A.3)
n

∑
k=1

ℓ(j)xkj

ck
≤ t(j) ∀j (A.4)

n

∑
k=1

ℓ(j)xkj

ck
≤ t(j)− t(j′) ∀j′ ≺J j (A.5)

t(j) ≤ D ∀j, (A.6)

which can be interpreted as requiring that (1) each job is on some machine, (2) each ma-

chine finishes by time D, (3) zero-capacity machines aren’t used, (4) the completion time

of each job is at least its processing time, (5) precedence constraints are respected, and (6)

all jobs finish by time D.

Let LP be the relaxation of this program where xkj ∈ [0, 1], and let LP(C), LP(C′),

OPT(C), and OPT(C′) denote the optimal values of LP and of precedence constrained

scheduling, with some given capacities C and C′ � C and workload (J, ℓ,≺J). For any

C and C′ � C, we will show OPT(C′) ≤ O(log n) · LP(C′) ≤ 2 · O(log n) · LP(C) ≤
O(log n) ·OPT(C). The first inequality is due to [24]; the last is due to the fact that LP is a

relaxation of PCS. We show the second inequality by verifying the conditions of Theorem 1

for the optimal values of LP. Properties 1 through 3 follow directly, with β = 2. For

Property 4, let (xkj) be an optimal solution to LP(C), and suppose c′1 = c1 + c2, c′2 = 0, and

c′k = ck for k ∈ {3, . . . n}. We show (x′kj) is a feasible solution for LP(C′) with the same

makespan D and completion times t(j), where for all j, x′1j = x1j + x2j, x′2j = 0, and for

k ∈ {3, . . . , n}, x′kj = xkj. Constraints (A.1), (A.3), and (A.6) are obviously satisfied. To

verify (A.4) and (A.5), note that the time to process a job doesn’t increase:

∑
k

ℓ(j)x′kj

c′k
= ℓ(j)

(

x1j + x2j

c1 + c2
+ ∑

k≥3

xkj

ck

)

≤∑
k

ℓ(j)xkj

ck
.

146

Finally, (A.2) is satisfied since

1
c′1

n

∑
j=1

ℓ(j)x′1j =
1

c1 + c2

n

∑
j=1

ℓ(j)(x1j + x2j)

≤ max

(

1
c1

n

∑
j=1

ℓ(j)x1j ,
1
c2

n

∑
j=1

ℓ(j)x2j

)

≤ D.

A.3 Proof of Theorem 5

Let C = (1, 1) and C′ = (2, 0). Suppose J consists of mk jobs of size 1 arriving

at times 0, 1, . . . , mk − 1 and m jobs of size k arriving at times 0, k, 2k, . . . , mk − k. These

can be scheduled as they arrive on the C-machines, for a total response time of Θ(mk).

Now consider scheduling these jobs on the single C′-machine of nonzero capacity. For any

schedule, we have one of two cases:

In Case 1, fewer than 1/2 of the large jobs are scheduled during time [0, km].

Then ≥ m/2 large jobs wait, on average, at least time km/2 before they are executed.

After normalizing by job length, we have that the total response time of just these jobs is

≥ m
2 · km

2 · 1
k = Θ(m2).

In Case 2, at least 1/2 of the large jobs are scheduled during time [0, km]. Ignoring

all large jobs except these, we can produce an optimal such schedule by setting t(j1) = r(j1)

for each small job j1, and inserting each large job j2 at its specified time t(j2), delaying the

small jobs only as much as necessary. Since each large job takes time k/2 to execute on the

machine of capacity 2, we must delay starting Θ(k) small jobs by time Θ(k) each, so total

response time increases by Θ(k2). This occurs for each of ≥ m/2 large jobs that we insert,

for a total slowdown of ≥ Θ(mk2).

Finally, since m is arbitrary, take m = k2 so in either case total response time is

Ω(k4), compared with Θ(k3) for the C-machines.

147

Appendix B

Proofs for Chapter 3

Proof of Claim 1: A node is discarded only if its current lazily-updated estimate of its

capacity is < γd w.h.p. (where the probability is due to estimation error guarantee) which

implies that its real capacity is less than γcγuγd. Thus the total capacity discarded is at

most nγcγuγd, the fraction of the system’s capacity discarded is ≤ γcγuγd, and the claim

follows.

The next several lemmas are used to prove Theorem 2.

Lemma 2 If node v has at least one ID in the ring and α = Θ(log n), then (1) v has between

αcv/(γcγu) −O(1) and αcvγcγu + O(1) IDs w.h.p., and (2) v has at least γdα(n)−O(1) IDs

w.h.p.

Proof: (1) Note that, due to the estimation error parameters, the factor γc lazy update

of c̃v, and the factor 2 lazy update of ñ, we always have c̃v within a factor γcγu of cv

and ñ within a factor 2γn of n w.h.p. Thus, the number of IDs that v chooses is at most

⌊0.5 + c̃vα(ñ)⌋ ≤ c̃vα(ñ) + O(1) ≤ γcγucvα(2γnn) + O(1) ≤ γcγuα(n) + O(1), where the

last step follows since α(n) = Θ(log n). The lower bound follows similarly, noting that we

are not concerned with discarded nodes. (2) Similarly, if v has decided to stay in the ring,

we must have c̃v ≥ γd and the bound follows by the above technique.

We now break the ring into frames of length equal to the smallest spacing param-

eter smin used by any node.

Lemma 3 Each node’s spacing is between 1
2γnn and 2γn

n w.h.p., so smin = 1
2γnn w.h.p.

148

Proof: A node updates its spacing when it is more than a factor 2 from its current estimate

of 1/n, which is within a factor γn of the true value of 1/n w.h.p.

Lemma 4 Let β = (1−γcγuγd)/(γcγu). For any ε > 0, when α ≥ 8γn

βε2 ln n, each frame contains

at least (1− ε)βαnsmin −O(1) IDs w.h.p.

Proof: Assume that no node has more than one ID in any frame. If this is not the case,

we can break the high-capacity nodes for which it is false into multiple “virtual nodes”

without disturbing the rest of the proof.

Consider any particular frame f . Let Xv be the indicator variable for the event

that node v chooses an ID in f and let X = ∑v X. We wish to lower-bound X. Suppose v

chooses mv points. Since f covers a fraction smin of the ID space, we have E[Xv] = mvsmin.

By Lemma 2, mv ≥ αcv/(γcγu)−O(1) for nodes R in the ring. Thus,

E[X] = ∑
v∈R

E[Xv]

≥ ∑
v∈R

smin (αcv/(γcγu)−O(1)) (Lemma 2)

≥ −O(1) + ∑
v∈R

sminαcv

γcγu

= −O(1) +
sminα

γcγu
∑
v∈R

cv

≥ −O(1) +
sminα

γcγu
· (1− γcγuγd)n (Claim 1)

= βαnsmin −O(1),

with β defined as in the lemma statement. (Note that although Claim 1 was stated in the

context of Chord, it applies to our partitioning scheme without modification.) A Chernoff

bound1 tells us that

Pr[X < (1− ε)E[X]] < e−(βαnsmin−O(1))ε2/2

= O(e−βαnsminε2/2)

< O(e−βαε2/(4γn)) (Lemma 3)

= O(n−2)

when α ≥ 8γn

βε2 ln n. Again by Lemma 3, there are at ≤ 2γdn frames, so the lemma follows

from a union bound over them.
1Pr[X < (1− δ)µ)] < e−µδ2/2

149

Proof of Theorem 2: In the following, we will assume that each frame has at least r =

(1− ε)βsminnα(n)−O(1) IDs. By Lemma 4 this occurs w.h.p. for sufficiently large α.

Consider any node v. If v is discarded, its share is 0, so we can assume v is in the

ring. We will bound v’s share of the ring and then apply this result to all nodes.

We have already broken the ring into Θ(n log n) frames; we now divide each

frame into d very small buckets (we will later take d → ∞). Call a bucket occupied when

some node’s ID lands in it. Next we define a sequence of random variables X1, X2, . . . as

follows. Each Xi is 1 when some particular bucket is occupied, and is 0 otherwise. The

corresponding buckets are defined as follows:

• X0 corresponds to the bucket preceeding (i.e., counterclockwise from) node v’s clockwise-

most ID.

• For any i > 0, if Xi−1 is unoccupied, then Xi is the bucket preceeding Xi−1’s bucket.

Otherwise Xi−1 is occupied, and Xi corresponds to the bucket preceeding v’s ID that

most closely preceeds Xi−1.

In other words, the Xi’s begin at v’s clockwise-most ID, and walk along the ring counter-

clockwise. But whenever we hit an occupied bucket then we have found the end of the

interval of the ID space which is owned by that one of v’s IDs, and so we skip to the next

one of v’s IDs and continue walking counterclockwise from there.

We will use the Xis to analyze v’s share of the ID space, but we first have to

handle the dependence between the Xis. Define pi := Pr[Xi = 1|X1, . . . , Xi−1], and p :=

1−
(

1− 1
d

)r−2
, where r lower-bounds the number of IDs per frame from the assumption

at the beginning of this proof.

Lemma 5 pi ≥ p, for any outcome of X1, . . . , Xi−1.

Proof: Suppose Xi most closely preceeds node v’s ℓth ID. Suppose that S = Xj, . . . , Xi−1 is

the sequence of Xs located in the same frame as Xi (note all such Xs must be contiguous

in this manner). S must take the following form. First, the run of buckets preceeding node

v’s (ℓ− 1)th ID may have spilled over into this frame, and then terminated at some node’s

ID; this corresponds to a run of zeros terminated by a 1 in S. Second, there is a run of zero

or more empty buckets preceeding the ℓth ID, until we reach Xi itself. Thus, among S there

is at most one 1 and zero or more zeros.

150

By the assumption at the beginning of the proof of Theorem 2, there are≥ r IDs in

Xi’s frame. Any zeros in S correspond to empty buckets in the frame, thus constraining the

area in which those r IDs may occur, which can only increase pi; and any ones in S reduce

the number of those IDs which may land in Xi’s bucket, which reduces pi. In addition,

one ID is that of v itself. Taking the worst case, we have two IDs whose locations are

determined and r − 2 IDs uniform-randomly placed in the frame, so the probability that

Xi’s bucket is hit is ≥ 1−
(

1− 1
d

)r−2
, as desired.

If we see m ones in the first x Xis, then by the definition of the sequence, node

v’s share of the ring is x buckets, plus m partial buckets which contain v’s IDs, for a total

of ≤ x + m buckets. We now show that we see the required m successes w.h.p. when

x = m
p(1−δ)

. To do this, we will use a Chernoff bound on the Xis, which the above lemma

shows we can do even though the Xis are not independent. Let X = ∑
x
i=1 Xi. We have

E[X] = xp = m
1−δ , so

Pr[X < m] = Pr
[

X < (1− δ) · m
1−δ

]

≤ exp
{

− m
1−δ · δ2

2

}

(Chernoff bound)

≤ exp
{

− γdα−O(1)
1−δ · δ2

2

}

(Lemma 2 part (2))

= O(n−2),

where the last step holds as long as

α ≥ 4(1− δ)

γdδ2 ln n. (B.1)

Thus, with probability ≥ 1−O(n−2), node v owns at most x + m = m
p(1−δ)

+ m buckets,

each of size smin/d. Normalizing by v’s fair share cv/n, we have

share(v) ≤ 1
cv/n

·
(

msmin

dp(1− δ)
+

msmin

d

)

.

Since d is arbitrary, we can take the limit as d→ ∞. Note that dp → r− 2 and by Lemma 4

r− 2 ≥ (1− ε)βsminnα(n)−O(1) w.h.p., so

share(v) ≤ 1
cv/n ·

msmin

(1−δ)((1−ε)βsminnα(n)−O(1))

≤ 1
cv
· m

(1−δ)(1−ε)(1−ε′)βα(n)

≤ 1
cv
· α(n)cvγcγu+O(1)

(1−δ)(1−ε)(1−ε′)βα(n)
(Lemma 2 part (1))

≤ (1+ε′′)(γcγu)2

(1−δ)(1−ε)(1−γcγuγd)

151

with probability 1 − O(n−2) for any ε′, ε′′ > 0 and sufficiently large n. Taking a union

bound over all ≤ n nodes in the ring, this is true of all nodes with probability 1−O(n−1).

Finally, we require that α is the maximum of the requirement in Equation B.1 and that of

Lemma 4. Setting δ = ε for convenience of presentation, we have

max
{

4(1− ε) ln n

γdε2 ,
8γnγcγu ln n

(1− γcγuγd)ε2

}

≤ 8γnγcγu ln n

(1− γcγuγd)γdε2 ,

as required by the theorem.

Proof of Theorem 4: The bounds on the maximum variation in n and the average capacity

are such that each node which joined the system before the start of the period will update

its IDs at most once during the period, and new nodes which join will never update their

IDs. Since the cost of that movement is amortized over time, it can increase our adaptivity

by at most a factor (1 + ε) for any ε > 0 and a sufficiently long period. It therefore suffices

to analyze the load moved directly on or off joining and leaving nodes. Since a fraction

1−γcγuγd of the capacity is not discarded, the expected share of a node v is 1
1−γcγuγd

+ o(1)

(the o(1) term is due to rounding the number of chosen IDs to an integer). When v joins

or leaves, the perfect partitioner must reassign at least a fraction cv/n of the ID space, and

we move at most a fraction (1
1−γcγuγd

+ o(1))cv/n in expectation. Taking the ratio of these,

the result follows.

Proof of Theorem 5: Consider any node v. We have three cases. First, if cv = Ω(n/ log n),

then the theorem is true even if v is connected to all nodes. Second, if all nodes except for

O(cv log n) were discarded from the ring, then the theorem is true even if v is connected to

all nodes in the ring.

Otherwise, consider the region R of ID space within distance Θ(cv log n
n) of v’s

IDs.R has size Θ(cv log n
n) w.h.p. The expected number of nodes choosing IDs within R is

Θ(cv log n) (since we are not in the first or second cases above). A Chernoff bound shows

there are at least this many nodes in R w.h.p., so that v will need no sequential neighbors

outside of R; thus, the number of distinct nodes in R is an upper bound on the number of

distinct sequential neighbors that v has. Finally a second Chernoff bound shows that there

are at most O(cv log n) distinct nodes in R w.h.p.

Proof of Theorem 6: Assume for now that in each step, the algorithm for construction of

the Shared Discretization successfully finds a neighbor that covers at least distance k log n
n

of the ID space for some constant k to be picked later. Then since we are given that E(Iv)

152

can be covered by f (n
cv log n) contiguous segments of size cv log n

n , the algorithm will cover Iv

while creating at most
⌈

(cv log n)/n
(k log n)/n

⌉

· f (n
cv log n) = Θ(cv f (n

cv log n)) = O(cv f (n)) edges, where

in the last step we used the nondecreasing property of f (·).

It remains only to show that the algorithm does find a neighbor which covers

distance k log n
n in each step, and that it does so without contacting too many nodes. A tech-

nique similar to that of Lemma 4 shows that when k = γd
4γn

and α = Θ(log n) is sufficiently

large and assuming node capacities are O(n/ log n), the expected number of suitable nodes

is Θ(log n), and by a Chernoff bound there will be Θ(log n) suitable nodes w.h.p. Further-

more, there will be at most Θ(log n) node IDs between the owner of p and such a node, so

by searching through the successor lists we can find v by contacting Θ(1) other nodes.

Claim 8 If n random points are chosen on the circle of circumference 1, then the distance along the

circle between any two points is at least 1/n2+ε with probability at least 1− 1/nε for any ε > 0.

Proof: Let Xi be the event that the distance from point i to its clockwise successor is less

than 1/n2+ε. For any setting of the locations of the other n − 1 points, the area in which

point i can fall if Xi occurs is at most (n− 1)/n2+ε < 1/n1+ε. Thus, Pr[Xi] ≤ 1/n1+ε. By a

union bound, Pr[X1 ∨ . . . ∨ Xn] ≤ 1/nε.

153

Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 8

Lemma 6 The equation

x =
2

αd

d

∑
i=1

1
µi

(

1− E

[

exp
{

− α

2(1− α)
x · Li

}])

(C.1)

has at most one positive solution in terms of x, assuming α ∈ (0, 1) and E[Li] < ∞ for all i.

Proof: It is sufficient that the RHS is concave in x, since in this case the equation has at

most two solutions, one of which is always at x = 0. We can justify differentiating the RHS

w.r.t. x under the integral implied by the expectation, since E[Li] < ∞ (see [55], p. 365).

Thus, the second derivative is − α
2d(1−α)2 ∑

d
i=1

1
µi

(

∫ ∞

0 exp
{

− α
2(1−α)

x · ℓ
}

ℓ2 f (ℓ)dℓ

)

which

is clearly negative for all x since f (ℓ) ≥ 0.

Lemma 7 In the stochastic model of Section 4.3.1, churn is equal to 2
Tαn times the number of

failures of in-use nodes.

Proof: Since all recoveries are instantaneous, each failure of an in-use node increases churn

by 1
Tαn and each subsequent node reselection increases churn by the same amount.

Proof of Theorem 8: We will analyze the expected churn using the fact that the number

of failures is equal to the total number of times a node is selected. Let Li be a session time

of node i selected uniformly at random over all its sessions in the run of the system. We

will abuse notation and refer to Li as both a session and the length of that session. Let Ri

154

be the number of reselections during Li, and let β = 1− α. Finally, define

Si =







1 if i is selected in lifetime Li

0 otherwise.

Since each reselect picks one out of the βn available nodes u.a.r., if there are r selections

during a particular node’s session, the probability it is selected during that session is

Pr[node i picked after r reselects] = 1− Pr[none of r reselects picks node i]

= 1−
(

1− 1
βn

)r

,

≤ (1 + ε)
(

1− e−r/βn
)

, (C.2)

for any ε > 0 and sufficiently large n (since β > 0). Thus, letting c be the steady-state rate

of reselections as given by the convergence condition (Definition 4 on p. 75),

E[Si] = E
[

Si · 1(Ri≤(1+ε)cLi) + Si · 1(Ri>(1+ε)cLi)

]

≤ E
[

(1 + ε)
(

1− e−(1+ε)cLi/βn
)]

+ Pr[Ri > (1 + ε)cLi] (by Eq. C.2)

≤ (1 + ε)2E
[

1− e−cLi/βn
]

+ ε (since fi’s are convergent)

≤ (1 + ε)E
[

1− e−cLi/βn
]

+ ε, (C.3)

where in the last step we have reset ε appropriately for notational convenience. Now

letting Ni be the number of sessions that node i has in time [0, T], by Lemma 7, we have

E[C] =
2

αnT

n

∑
i=1

E [NiSi]

=
2

αnT

n

∑
i=1

E
[

NiSi · 1(Ni≤(1+ε)E[Ni]) + NiSi · 1(Ni>(1+ε)E[Ni])

]

≤ 2
αnT

n

∑
i=1

(

(1 + ε)E[Ni]E [Si] + E
[

Ni · 1(Ni>(1+ε)E[Ni])

])

≤ 2
αnT

n

∑
i=1

((1 + ε)E[Ni]E [Si] + εE [Ni]) ,

where the last step follows from the Central Limit Theorem, which we can apply since we

have assumed finite mean and variance of the distribution fi. Now by the Strong Law of

Large Numbers, E[Ni]/T → 1/µi as T → ∞, where µi is the mean session time of node i .

Thus,

E[C] ≤ 2
αnT

n

∑
i=1

(1 + ε)T

µi
(ε + E [Si])

155

≤ 2
αn

n

∑
i=1

(1 + ε)

µi

(

ε + (1 + ε)E
[

1− e−cLi/βn
]

+ ε
)

(by Eq. C.3)

≤ O(ε′) + (1 + ε′)
2

αn

n

∑
i=1

1
µi

(1− E [exp {−cLi/βn}]) ,

for any ε′ > 0 and sufficiently large n and T. Since we have assumed (Section 4.3.4) that

the nodes are divided into d groups of n/d equivalent nodes, for notational convenience

we can say w.l.o.g. that node i ∈ {1, . . . d} belongs to group i, so that the above bound

reduces to

E[C] ≤ O(ε′) + (1 + ε′)
2

αd

d

∑
i=1

1
µi

(1− E [exp {−cLi/βn}]) .

A similar technique gives the lower bound

E[C] ≥ (1− ε′)
2

αd

d

∑
i=1

1
µi

(1− E [exp {−cLi/βn}]) .

Since these bounds are true for any ε′ > 0, the result follows after substituting c = αn
2 · E[C]

as given in Definition 4 (see Section 4.3.4). The uniqueness of the solution for E[C] follows

from Lemma 6.

C.2 Worst-Case Analysis of Random Replacement

Definition 6 A function f (X) is Schur convex (resp. concave) in X when X′ � X implies

f (X′) ≥ f (X) (resp. f (X′) ≤ f (X)).

Theorem 9 (Theorem 3.2 in [7]) X′ � X if and only if E[X′] = E[X] and E[h(X)] is Schur

convex in X for every continuous convex function h : R
+ → R.

Proof of Corollary 8: Fixing some j, we must show that the positive solution for x

in Equation C.1 (given in the statement of Lemma 6) is Schur concave in Lj. It is suf-

ficient to show that the RHS is Schur concave in Lj for every x > 0, and hence that

E
[

exp
{

− α
2(1−α) · x · Lj

}]

is Schur convex. Rewriting that expression as E
[

h
(

Lj

)]

where

h(y) := exp
{

− α
2(1−α)

· x · y
}

, we see that h is continuous and convex, so by Theorem 9,

E
[

h
(

Lj

)]

is Schur convex.

Proof of Corollary 9: Let D be the degenerate random variable which is constantly 1. A

156

standard fact (see [7]) is that L � D · E[L] for any L. Thus, since E[C] is Schur concave in

each Li, the positive solution to Equation C.1 is maximized when Li is constantly µi for all

i. In this case, when µi = µ for all i, Equation C.1 reduces to

x =
2

αµ

(

1− exp
{

− α

2(1− α)
· x · µ

})

whose only positive solutions are ≤ 4/µ. Thus, E[C] ≤ 4/µ while any fixed or Preference

List strategy has churn ≥ 2/µ.

C.3 Facts Concerning Dynamic Strategies

We require a dynamic strategy to keep k nodes in use whenever ≥ k are up, and

as many as possible otherwise. So during any time period in which ≤ k nodes are up, all

dynamic strategies have the exact same behavior and the same churn. For the Facts that

follow, we may therefore restrict our attention to the case that there are always ≥ k nodes

up. In this case, each failure and reselect costs 1/k, and we can think about the strategy of

in-use nodes as k chains v1, . . . , vk where each vi = (vi
1, . . . , vi

mi
) is such that vi

j is selected in

response to the failure of vi
j−1.

A (graceful) leave is an event in which the selection algorithm decides to transition

a node from in use to available. By the definition of churn in Section 4.2.1, a failure costs as

much as a leave, which results in the following.

Fact 4 Fix the pattern of failures. Suppose some strategy of node selections (vi
j) leaves a machine

and has churn C. Then there is another strategy (wi
j) which never leaves and has churn ≤ C.

Proof: Let vi
j be a node which is left at some time t1 before its next failure at time t2.

Consider two cases: (1) node vi
j is not used during [t1, t2). Then let vi

ℓ
, ℓ > j, be the node

in use in chain i at time t2 by strategy v. Form strategy w by deleting all nodes in chain

i between j and ℓ, and continuing to use node vi
j during [t!, t2). The two strategies differ

only during [t1, t2), during which v incurs at least the cost of one leave, while w incurs

at most the cost of one failure. Case (2): node vi
j is used again during [t1, t2). If it is

used again by chain i, we need only delete any intervening nodes in the chain to form w.

Otherwise, if it is used by some other chain ℓ, we can swap the chains as follows: chain i

stays on node vi
j until it fails, and then continues following chain ℓ’s selections from time

157

t2 onward. Chain ℓ, rather than switching onto node vi
j, follows chain i’s former selections.

Clearly constructing strategy w in this way cannot increase the total number of failures

and reselections. Iterating this argument completes the proof.

Fact 5 With full knowledge of the future, the Optimal strategy of Section 4.2.2 is optimal.

Proof: We will show that any node selection strategy v1, . . . , vk can be modified iteratively

so that at each step churn does not increase, and the resulting strategy is Optimal.

If v is not equivalent to Optimal, then there exists some node vi
j which is selected

at time t1 and fails at some future time t2 > t1, and at the time it is selected, there is an

available node u which next fails at time t3 > t2. If u is never in use during [t1, t3) then

clearly we can use u instead of vi
j, and then return to chain vi at time t3. Otherwise, suppose

u is used during [t′1, t3) for some t′1 > t1 by some chain vℓ (note that Fact 4 allows us to

assume w.l.o.g. that u is used continuously by one chain until t3). Then we can modify

chain vi to use u from t1 until it fails at time t3, and thereafter follow the former chain vℓ;

and we can modify chain vℓ to follow the former chain vi beginning at time t′1. This does

not introduce any new failures.

Iterating the above steps results in a strategy identical to Optimal.

C.4 Facts Concerning Fixed Strategies

Definition 7 The decision problem BEST FIXED STRATEGY (BFS) is as follows:

• Instance: A set V of n nodes; for each node v ∈ V a sequence of failure and recovery times

f1 < r1 < f2 < r2 . . .; an integer k; and a rational c.

• Question: Does there exist a set S ⊆ V of ≥ k nodes such that, when using S under the

given pattern of failures, the churn incurred is ≤ c?

One might object that this definition is not realistic, since k does not directly control the

number of nodes in use: for example, the definition allows picking a set of k nodes that

are always down. But the proofs that follow do not make use of such pathological cases,

and transfer directly to the variant of the problem where |S| is unconstrained but we are

required to have an average of ≥ k nodes in use over time.

Fact 6 BEST FIXED STRATEGY is NP-complete.

158

Proof: Clearly the problem is in NP. To show NP-hardness, we reduce from MAX CLIQUE,

an instance of which consists of a graph G = (V, E) and a clique size s. First assume that

exactly k nodes are required by BFS. We reduce the MAX CLIQUE instance to an instance of

BFS as follows:

Set k = s. There are n = |V| nodes in the BFS instance identified with the n

nodes in G. All nodes are up all the time, except as we will specify. For each pair of nodes

v, w ∈ V, we set aside a period of time Pvw in the trace during which each node other than v

and w fails and recovers, all at independent times. Let [t1, t4] be some arbitrary subinterval

of Pvw during which there are no failures. Then if (v, w) ∈ E, we have v and w fail and

recover at independent times during [t1, t4]. Otherwise, they are down during overlapping

periods, according to the following sequence of events, where t1 < t2 < t3 < t4:

• t1: v fails;

• t2: w fails;

• t3: v recovers;

• t4: w recovers.

Now suppose we pick some set S ⊆ V of k nodes to use. Note that if both v and w

are in S and (v, w) ∈ E, or if one of v or w is not in S, then the churn during Pvw is

n · 2/k since each node fails and recovers at independent times (so each event costs 1/k).

However, if v, w ∈ S and (v, w) 6∈ E, then v and w have overlapping failures and the

churn is (n− 1) · 2
k + 2

k−1 > 2n/k. Summing over all n(n− 1) periods, we have that if S

corresponds to a k-clique in G, then the churn is n(n − 1)n 2
k , but otherwise the churn is

strictly greater. Thus, asking for a k-clique in G is equivalent to asking whether there exists

a fixed set of k nodes such that the churn incurred when using S is ≤ n(n− 1)n 2
k .

To handle the case that > k nodes are permissible, we can construct additional

failures such that the number of nodes chosen will dominate the churn, forcing |S| = k. To

do this, in a “fresh” time period with no other failures, we have all the nodes fail sequen-

tially, and then recover sequentially in the reverse order. Regardless of which nodes are

chosen, the same pattern arises among the chosen nodes, for a churn during this period of

Θ(log |S|). Repeating this pattern Θ(n(n− 1)n 2
k) times is sufficient to ensure that regard-

less of the pattern of failures representing the graph structure, a smaller S has lower churn,

so the optimal S has |S| = k.

159

Fact 7 Picking the k nodes with fewest failure and recovery events is a k-approximation for BEST

FIXED STRATEGY.

Proof: Each event costs ≤ 1, while the optimal strategy must pick a set of nodes with at

least as many events, each with cost ≥ 1
k .

160

Appendix D

Proofs for Chapter 5

Definition 8 The decision problem MIN INTERRUPTIONS is as follows:

• Instance: A directed graph G = (V, E); a destination node d ∈ V; for each edge, a set of

times that it is available; and an integer k.

• Question: Does there exist a set of routes to d for each node v such that some v d route is

in use whenever there is an available v d path, the routes are path-consistent (as defined

in Sec. 5.2.1), and the total number of interruptions is ≤ k?

Theorem 9 MIN INTERRUPTIONS is NP-complete.

Proof: Clearly the problem is in NP. To show NP-hardness, we reduce from SAT. Given an

instance of SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we construct an instance

of MIN INTERRUPTIONS as follows. We create:

• a destination d;

• a node for each variable xi;

• a node for each clause Cj;

• for each variable node xi, two pairs of edges: xi → a0
i → d and xi → a1

i → d, where

a0
i and a1

i are intermediate nodes introduced only so that we can have two xi d

routes without using two edges between the same pair of nodes;

• for each variable xi or x̄i which appears in clause Cj, an edge Cj → xi.

161

We now set the availability of these edges as follows:

• Edges xi → a0
i → d are available during the time interval [0, 10], and edges xi →

a1
i → d are available during [5, 15].

• If x̄i ∈ Cj, then the edge Cj → xi is available during [0, 10]. Otherwise, if xi ∈ Cj, then

Cj → xi is available during [5, 15].

Finally, letting ℓ be the number of clauses with both negative and positive literals,

we set k = m + ℓ + 4n.

Having constructed the instance, we now show that there is a set of legal routes

which results in ≤ k interruptions if and only if the SAT instance is satisfiable.

First, suppose C1, . . . , Cm can be satisfied. Set the xi’s equal to a satisfying as-

signment. We construct routes as follows. For the xi nodes, note that they must use both

xi → a0
i → d and xi → a0

i → d to cover the whole period of availability [0, 15]; the key is

when to switch from the former to the latter. If xi is false, we have the switch occur at time

10, so that xi is uninterrupted during [0, 10]; and if xi is true, we switch at time 5 so that it

is uninterrupted during [5, 15]. Now consider a clause variable Cj. We have two cases:

• If Cj has both positive and negative literals, it will have an available route during

[0, 15]. Since the clause is satisfied, it has some satisfied literal, xi or x̄i. By our choice

of routes for the xi nodes, xi will have no interruptions during either [0, 10] (if the

literal is x̄i) or [5, 15] (if the literal is xi). Note there is an edge Cj → xi, so we have

node Cj use the route through xi during this time period. During the remaining

interval (either [10, 15] or [0, 5]), it can use any of its other routes. Thus, the node Cj

has one interruption at time 15 and one at either 5 or 10, for a total of 2 interruptions.

• If Cj has only negative or positive literals, it will have an available route during

either [0, 10] or [5, 15], respectively. Following the above argument, it will have a

continuously available route during this period, thus experiencing 1 interruption.

The the clause-nodes therefore encounter m + ℓ interruptions. There are 2 interruptions on

each variable-node xi, plus one on each a0
i and a1

i . The grand total is therefore m + ℓ+ 4n =

k, as desired.

Next, we assume the instance can be routed with ≤ m + ℓ + 4n interruptions,

and show that the SAT instance is satisfiable. Since the xis and ais have a total of 4n

162

interruptions, the clause-nodes Cj must have ≤ m + ℓ interruptions. By our construction,

this can only occur if clauses with both positive and negative literals have 2 interruptions,

and other clauses have 1 interruption. Without loss of generality, we can assume that all

interruptions occur at time 5, 10, or 15 (since otherwise route changes can be delayed until

the following link state change without increasing the number of interruptions). It follows

that every Cj has a route through some xi which is available continuously for either [0, 10]

or [5, 15]. From this it follows that we can construct a satisfying truth assignment by setting

xi to be false if xi switches routes at time 10, or setting it to true if it switches at time 5.

