Proceedings of the 1st Workshop on Quantitative
Analysis of Software (QA'09)

Sumit Gulwani, Ed.
Sanjit A. Seshia, Ed.

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-93
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-93.html

June 15, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

For each of the three contributed refereed papers included in these
proceedings, the copyright to the paper is held by the respective authors.

Proceedings of QA'09:
Workshop on Quantitative Analysis of Software

Co-located with the 21st International Conference on Caerpdiided Verification (CAV), 2009

Editors: Sumit Gulwani (Microsoft Research) and Sanijit As&ia (UC Berkeley)
June 15, 2009

This technical report serves as an informal proceedingthod st Workshop on Quantitative Analysis
of Software (QA09), held as a satellite workshop of the 20@@rational Conference on Computer-Aided
Verification (CAV), to be held in Grenoble, France.

The workshop program comprises a morning keynote talk, sime®f refereed contributed papers,
an afternoon session of invited talks and a final session e @iscussion on the workshop topic. These
proceedings include a brief statement of the goals of théstmp, the workshop program, the abstracts for
the invited talks, and full-length refereed papers.

Motivation and Goals of the Workshop

Formal verification of software has mostly been concerneti ®bolean properties of code, such as, are
assertions satisfied, are all buffer accesses within bouugs it always terminate, is there any undesirable
information flow, etc. However, it is often desirable to askrm quantitative questions about software,
such as, what is the expected number of bugs in the softwarevhat is the mean-time between failures
(to faciliate decisions about software releases), how mrasburces (e.g., time, memory, power) does it
consume (for performance analysis, and to provide guagarite embedded, real-time systems), how much
information does it leak or how well is it obfuscated (for gety related issues).

This workshop aims to explore novel techniques for quaitéaanalysis of software. It is particularly
focussed on code-level analysis rather than analysisypafehodels of software or systems. Papers on all
techniques have been welcomed, including static, dynaamitprobabilistic analyses. The aim of this work-
shop is bring together researchers from different areag{amming languages, software engineering, em-
bedded systems, performance analysis, computer sedorityal verification, randomized/approximation
algorithms, etc.) who are interested in any quantitatiygeasof software, thereby providing a platform to
investigate if there are common techniques that could bkegpi a range of quantitative analyses.

The scope of the workshop, includes, but is not restrictethtfollowing topics:

e Performance Analysis
e Reliability Evaluation
e Resource Bound Analysis

e Execution Time Analysis

Quantitative Information Flow
Probabilistic Analysis
Software Quality Metrics

SAT and SMT engines for quantitative analysis, e.g., modehting techniques

Workshop Program

8:45-9:00 Welcome and Introduction
9:00 - 10:00 Keynote Talk
Thomas A. Henzinger (EPFL and IST Austria)
From Boolean to Quantitative System Specifications
10:00 - 10:30 Break |
10:30 — 12:00 Contributed Papers
10:30 — 11:00 Francesco Logozzo (Microsoft Research), Corneliu Popeea (MPI-SWS),
and Vincent Laviron (ENS)
Towards a Quantitative Estimation of Abstract Interpiets
11:00 — 11:30 Jonathan Heusser and Pasguale Malacaria (Queen Mary, Univ. of London)
Quantifying Loop Leakage using a Lattice of Partitions
11:30 — 12:00 Michael Carl Tschantz (CMU) and Aditya V. Nori (Microsoft Research)
Measuring the Loss of Privacy from Statistics
12:00-2:00 Lunch
2:00-3:30 Invited Talks
2:00 —2:30 Elvira Albert (Complutense University of Madrid)
Upper Bounds on Memory Usage for Garbage-Collected Laregiag
2:30-3:00 Marta Kwiatkowska (Oxford University)
Software Verification for Ubiquitous Computing
3:00-3:30 Raimund Kirner (TU Vienna)
Timing Analysis of Real-Time Software
3:30-4:00 Break Il
4.00 - 5:00 Open Discussion

Abstracts of Invited Talks

From Boolean to Quantitative System Specifications
Thomas A. Henzinger (EPFL and IST Austria)

The boolean view holds that given a model and a specificati@nspecification is either true or false in
the model. State transition models have been extended toraodate certain numerical quantities, such
as time stamps and probabilities. However, the boolean efespecifications is still prevalent, for example,
in checking whether a timed model satisfies a formula of atiee logic, or whether a stochastic process
satisfies a formula of a probabilistic logic. We advocateftiily quantitative view, where a specification
can be satisfied to different degrees, that is, the value dfengspecification in a given model is a real
number rather than a boolean. We survey some initial reBulisis direction and present some potential
applications, not only in the timed and probabilistic donsaibut also for specifying and analyzing the
resource use, cost, and reliability of a system.

Upper Bounds on Memory Usage for Garbage-Collected Languass
Elvira Albert (Complutense University of Madrid)

The peak memory usage of a program is the maximum size of thige data on the memory during the
execution of the program, i.e., the minimum amount of menmm@gded to run the program without ex-
hausting the memory. It is well-known that garbage coltattnakes the problem of predicting the memory
required to run a program difficult. We will describdige heap space analysis for garbage-collected lan-
guages which infers accurate upper bounds on the peak hagp ofa program’s execution that are not
restricted to any complexity class, i.e., we can infer exgoial, logarithmic, polynomial, etc., bounds. Our
analysis is developed for an (sequential) object-oriebigdcode language withsaoped-memory manager
that reclaims unreachable memory when methods return. fEtegigality of our approach is experimentally
evaluated on COSTA, a COSt and Termination Analyzer for bgtecode.

(Joint work with Samir Genaim, Miguel Gbmez-Zamalloa, iIFArenas, German Puebla and Damiano
Zanardini).

Software verification for ubiquitous computing
Marta Kwiatkowska (Oxford University)

Ubiquitous computing systems are now widespread in e.@lligetnt buildings, environmental moni-
toring, healthcare monitoring and automotive softwaresoAdalled 'everyware’ by Adam Greenfield, they
continuously interact with the environment through sessord actuators. In view of the characteristic en-
vironmental uncertainty and resource limitations, quatitie techniques are needed to reason about their
behaviour. This talk will focus on how software verificatitgthnology, specifically model checkers for
languages such as C/NesC typically used to program 'eveeywantrollers, can be extended to provide
automated analysis for pertinent aspects of ubiquitouspoimg systems: context, communication failure,

resource constraints and performance.

Timing Analysis of Real-Time Software
Raimund Kirner (TU Vienna)

The analysis of the worst-case execution time (WCET) reguietailed knowledge of the program
behavior. In practice it is still not possible to obtain adleded information automatically. Within this talk
we present the current state of the art of WCET analysis aimtt pmthe main challenges to be solved.
Further, we show the potential of complementary approathstatic WCET analysis, ranging from richer
timing information to adequate methods for soft real-timstems.

Towards a Quantitative Estimation of Abstract Interpretations
(Extended abstract)

1 2 3

Francesco Logozzo® Corneliu Popeea® Vincent Laviron

1 Microsoft Research, Redmond, WA (USA)
logozzo@microsoft.com
2 Max Planck Institute for Software Systems, Saarbriicken (Germany)
cpopeeal@mpi-sws.mpg.de
3 Ecole Normale Supérieure, 45, rue d’Ulm, Paris (France)
Vincent.Laviron@ens.fr

Abstract. We aim to extend the notion of distance of sets to partially ordered sets (posets). We discuss several
possible definitions, and we propose a relaxed definition of distance between elements of a domain. We apply it in
the abstract interpretation theory, and we show in some preliminary examples how it seems well suited to formally
quantify the relative loss of precision induced by abstract domains.

1 Introduction

Abstract interpretation is a theory of semantic program approximation based on domain theory. It precisely
capture the qualitative relative loss of precision induced by static analyses: the more abstract the domain the
less the information it captures about program executions. However, the theory does not provide a quanti-
tative estimation of the precision loss induces by the abstraction. In this paper we report some preliminary
thoughts and results on providing a quantitative evaluation of the errors induced by abstractions.

We are interested in defining metric on the elements of a domain. Roughly, a metric allows to measure
the distance between the elements of a given set. When applied to domains (i.e. sets whose elements are
related by some order), we would like to have a distance d(-,-) which is somehow compatible with the
underlying order C. For instance, if © C y C z, then one expects that d(x,y) < d(z, z).

The classical definition of distance of measure theory do not work well with domain theory. Intuitively,
this is because in a metric space, one wants to compare any two elements, and it is hard to define a generic
distance which is also aware, e.g., that some elements are not comparable. In this paper we aim at relaxing
the classical notion of distance on sets, and to conjugate it with the underlying order on abstract elements. We
argue that some natural extensions are not satisfactory for our purposes, and we introduce a pseudo-metric
which seems to be satisfactory on some examples.

2 Background: Distance in unordered sets

The minimal requirements that one expect for a distance of two elements x and y of an unordered set are: (i)
that the distance between x and y is always not negative (negative distances make no sense) and it is equal
to zero iff x = y; (ii) the distance of x from y is the same as the distance of y from x; and (iii) the distance
of = from z is minimal, in that the indirect distance from z to some y and that from y to z is always larger
than the direct distance.

Definition 1 (Distance). Let S be a set. We say that d € [S x S — R] is a distance for s if it satisfies the
following axioms:

d(z,y) >0 (non-negativity)
dir,y) =0 z=y (iff-identity)

d(z,y) = d(y, z) (symmetry)

d(x,z) < d(x,y) + d(y, z) (triangle inequality)

We recall below the definition of the Hausdorff distance which is commonly used to measure the distance
of sets by taking the maximum distance of a set to the nearest point in the other set. Hausdorff distance will
be useful in the following (Sect. 5.2), as it may provide a way to measure the distance of convex polyhedra.

Lemma 1 (Hausdorff distance). Let X and Y be two subsets of a metric space that is endowed with a
distance d. Then the following defines a distance

da(X,Y) = Sup {;glf/{d(:r, Y+

We will also use two variations of dg, the minimum Hausdorff distance d g, and the maximum Hausdorff
distance dgmaz:

dimin(X,Y) = inf {inf {d(z,y)}} duma(X,Y) = sup{sup{d(z,y)}}
zeX yey zeX yey

3 Distance on a partial order

3.1 Pseudo distance

As briefly discussed in the introduction, in general the classical definition of distance for unordered sets
does not take advantage of the partial order between elements of a domain. The goal of this section is to
define a pseudo-distance between elements of a domain. Let us consider properties in Def.1 one by one, and
consider how we can extend them to match the distance in a domain.

It seems obvious that the distance between two elements of a domain should always be non-negative, so
we leave (non-negativity).

Requiring that the distance between two elements is zero if and only if the two elements are the same
seems to be a too strong requirement. For instance, in abstract interpretations it is often the case that two
distinct abstract elements a; and ag represent the same concrete object. In particular, useful static analyses
relies on the fact that the abstract domain is simply a pre-ordered set whose order relation C does not
enjoy the the anti-symmetric property. Formally, it can be the case that both a; T a2 and as C a; hold
but a; = ay does not hold. In that case, we’d like to have the freedom to define a distance function such
that d(a1,a2) = 0 even if a; # ag but y(a1) = 7(az). The axiom (iff-identity) does not allow us such a
definition. A turn-around is to change the abstract domain, and quotient it with respect to the concretization
function. However, such a turn-around goes against our goal which is the definition of a notion of distance
on arbitrary domains.

A first variation of the (iff-identity) would be to relax it, by replacing the equality with the C operator.
The consequent axiom

d(z,y) = 0 < x C y (iff-identity’)
it is not affected by the problem above. However, the axiom (iff-identity’) is not useful since it implies that all
elements in an ascending chain have distance 0, so thatif z C y C z then d(z,y) = d(y, 2) = d(x, z) = 0.

Even worse, when applied to the semantics of a program, usually defined as a fixpoint, (iff-identity’) implies
that all the semantics have distance zero from the bottom: d(L, L, <40 (L)) = 0.

Our choice is to simply relax the double implication of (iff-identity), and to require that each element has
distance O from itself, but allowing a zero-distance also for some distinct elements (Def. 1 with (if-identity)
is called a pseudo-metric [5]):

d(z,y) = 0 < x = y (if-identity)

The rationale behind is that: (i) a distance function gives a quantitative evaluation on how far are two el-
ements in a domain; and (ii) in some cases we want the freedom to say that the distance of two distinct
elements is negligible (for instance when they represent the same information up to some abstraction).

In an unordered set, the triangle inequality states that the distance between any two points is the shortest
path between those. It turns out that requiring the triangle property to hold for arbitrary elements of a domain,
without considering the order relation is too restrictive. We decided to use a weaker axiom, which requires
the triangle inequality to hold only for comparable elements:

ifx C 2z C ythend(z,y) < d(z,z) + d(z,y) (weak triangle inequality)

The axiom formalizes the intuition that the distance between elements of a chain should be compatible with
the order: If ¢ is not an immediate successor of x, then the path between = and y should not be shorter than
any path passing through some element in between z and y.

The next definition sums up what said so far, and it introduces the notion of pseudo-distance compatible

with a domain D. When D is clear from the context, we will simply say pseudo-distance.

Definition 2 (Pseudo-distance D-compatible). Let (D, C) be a domain ordered according to the relation
C.Letd € [Dx D — RU{+o0}]|. We say that ¢ is a pseudo-distance D-compatible iff it satisfies the
following axioms:

d(x,y) >0 (non-negativity)
r=y=90(x,y)=0 (if-identity)
6(z,y) =d(y,) (symmetry)

rC2zCy=0(x,z2) <d(x,y) + Iy, 2) (weak triangle inequality)

It is also worth noting that, unlike the classical definition, we allow the distance between two elements to be
—+o00.

3.2 Some simple properties of pseudo distances
The easiest example of a pseudo-distance is the zero function:

Lemma 1 (Zero) The function 5°(z,y) = 0 is a pseudo-distance.

Lemma 2 (Additivity) Let 6y, 0 be pseudo-distances. Then 6% defined as 6% (z,y) = 01(x,y) + d2(z, y)
is pseudo-distance.

It is worth noting that: (i) 6°(z, y) is not a distance in the sense of Def. 1; and (ii) as a consequence of the
lemmas above, the set of all pseudo-distances over a domain D form an additive monoid (unlike classical
distances).

Lemma 3 (Multiplication by a scalar) Let 0 by a pseudo-distance and k € R U {4+00}. Then §* defined
as 6*(z,y) = k - §(x,y) is a pseudo-distance.

We call an operator LI a gathering operator if it satisfiesz Tz Uy, y CxUy,andx Cy =z Uy = y.
A gathering operator is a weaker notion of least upper bound operator, and it is useful in static analyses as
e.g. [4,6].

Lemma 4 Let D a domain endowed with a gathering operator L. If x T y, then §(z U y,y) = 0 and
6(xUy,x) = d(z,y).
A similar result can be proven for an intersection operator M satisfyingz My C z,z My Cy,andz C y =

Ty =z

Lemma 5 Let D a domain endowed with an intersection operator M. If x T vy, then §(x My, y) = 0(x,y)
and §(z My,x) = 0.

4 Some pseudo-distances

4.1 Structure-based

A first thought for defining a more interesting pseudo-distance on a domain is to count the number of
intermediate elements between two elements:

Definition 1 (Path length (plen)) The path length for two elements x T y of a domain D is
plen(z,y) = min{n | {zg,z1,...2n} € p(D),z0 = x, 2, = y,¥0 < i < n.z; C xi41}.
If x and y are not comparable, we let plen(x,y) = +oc.

The function plen is not a pseudo-distance as it does not satisfy (symmetry). Fixing it requires little work:
Lemma 6 (Op1en) The function dpjen € [D x D — R U {400}] defined as

dplen (2, y) = x C y7plen(z,y) : (y C x?plen(x,y) : +00)
is a pseudo-distance.

The pseudo-distance dpe, is not very interesting, as it relates only elements that belong to the same chain.
One can think to refine it by taking the average distance between two elements and their least upper bound
(or the result of the gathering if the least upper bound is not defined):

Lemma 7 (65,) The function 65 € [D x D — R U {+o00}]| defined as
plen plen

5;L)llen(x7 y) = 1/2 ' (5plen($a x U y) + 5plen(y> x U y))
is a pseudo-distance.

It is immediate to check that if x and y are comparable, then 5§len(x, Y) = dplen (T,).

Example 1. Let xo,yo, 1, y1 be elements of a domain such that dpien (20, ZoUyo) = dplen (Y0, ZoLyo) = 50,
dplen (21,1 L y1) = 1 and dplen(y1, #1 U y1) = 99. Then, 05, (20, Y0) = e, (1, 91) = 50. O

In the example above, from the view of an abstract interpretation one would have expected that (xo, yo) #
d(x1,y1), because when approximating 1 and y; with x1 Ly, one may perform a small or a large error, but
when approximating o and yg with g LI yo one always performs a medium error. A way to overcome this
drawback is to consider the minimal distance to the gathering (instead of the average distance):

Lemma 8 (5;1’;?) The function 5;'1& € [D x D — R U {+o0}] defined as

5512::(1'7 y) = min((splen (537 x U y), 5plen (y, x U Z/))
is a pseudo-distance.

The drawback of distances based on path length is that they do not work well for infinite height lattices.

4

4.2 Affinity

An alternative pseudo-distance considers the affinity between abstract elements. The affinity distance was
originally used for bounded powerset construction of Polyhedra [11]. The intuition behind is to have an
percentage estimation of the simple constraints that are preserved at the gathering. Before stating it formally,
we need some auxiliary definitions. Let us assume that seq is a function which given an abstract element z
returns a minimal and finite set of terms equivalents to x. For instance, in the domain of convex Polyhedra
seq({—u<0,u+v<22-u+2-v<4})={-u<0,u+v < 2}. The function seq can be defined for
most abstract domains, but not for all (think of seq({u = f(u)}), as it may appear in a domain for abstract
unification). We let | - | denote set cardinality, eg, |[{—u < 0,u +v < 2}| = 2.

Lemma 9 (Affinity pseudo-distance) The affinity distance of two elements x and y wrt the operator |
gives rise to the affinity distance defined as:

__ Iseq(zUy)]
|seq(x) U seq(y)|

55}5‘(:(;71/) =1

Proof. The proof that the affinity satisfies the (weak triangle inequality) property is quite tricky. We
report it in the appendix. a
It is immediate to observe that when = T y, then 5auﬁ(x, y) =1-— %. One possibility to
lift the affinity distance from a base to a powerset domain is simply to ignore the powerset structure of the

domain. However, we did not yet proved it to satisfy Def. 2, so we leave it as an hypothesis:

Hypothesis 1 (Affinity for powerset domain) Given X = {z1,...z,} andY = {y1,...ym} elements of
a powerset domain their affinity distance is:

[seq(X UY)|
|(Uiseq(zi)) U (Ujseq(y;))|

o (X, Y) =1—

4.3 Examples

The notion of pseudo-distance on a domain is useful to quantify the relative precision of different inferred
invariants.

4.4 Nullness Domains

Let us consider the code in Fig. 1 to be analyzed with four different abstract domains: NN (nullness), TNN
(type+nullness), DNN (disjunctive nullness) and DTNN (disjunctive type+nullness).It is easy to prove that:
NN is the less precise domain, DTNN is the most precise, and TNN and DNN stand between the two but they
are not comparable. The notion of distance of abstract elements allow us to give a quantitative comparison
of the result of TNN and DNN.

Let us consider the method m written in C#-like syntax (the expression a as B casts a to B if a
is a subtype of B, otherwise it returns null). The abstract states at the exit point of m using different
abstract domains are in Fig. 2. The domain TNN is in general more precise than NN, but in the example it
does not provide a more precise abstract state. The domain DNN is not comparable with TNN, and in the
example it infers a more precise abstract state. Using the affinity distance we can give a quantitative formal

characterization of that (with an abuse of notation we confuse the abstract element with the name of abstract
domain used):

(NN, TNN) =11 =0
(NNDNN =1-1=2
(DNNDTNN)_I—%:%
_ 1 6

55 (NN,DINN) =1-1=¢

The distance between NN and TNN is zero, meaning that no gain of information is obtained in the
example when refining the NN just with types. The refinement with explicit disjunction (also known as trace
partitioning [8]) produces an improvement of the 66%. The refinement of DNN with types improves the
result by a further 57%. Overall using disjunction and types one obtains a result which is 85% more precise
than the abstract domain of NN alone.

m(A a, out A x) { Abstract Result
requires a != null; Domain
B b =a as B; NN:{(a— ANN,x—T)
if (b != null) DNN: (a — ANV, x — AMN) V (a — ANV, x — N)
x = new B(b); TNN: (a — AN, x — T)
else DTINN : ((a — AN, x — NN), typeof(a) <: B, typeof(x) == B)V
x = mull; {{a — AN x —), typeof (a) =— A, typeof(x) — A}

Fig. 2. The different results of the analysis using four different abstract domains.
Fig. 1. An example for nullness analysis A/ denotes that the reference is not null, AV that it is definitely null.

4.5 McCarthy function

int MC(int n) { Abstract Result

int tl1, t2, r; Domain

if (n>100) Sign: {0 < r}
r = n-10; Intervals : {91 <r}

else { Octagons : {91 <r,n—10<r}
tl = n+l11;
t2 = MC(tl);
r = MC(t2);}

return r;

Fig. 4. The different inferred postconditions for the McCarthy function using

Fig. 3. The McCarthy function different numerical abstract domains.

Pseudo-distances apply also when the underlying abstract domain has infinite height. Let us consider
the McCarthy function (recalled in Fig. 3). We can analyze it with three different abstract domains: Signs,
Intervals and Octagons. The inferred invariants are summarized in Fig. 4.5. The distances between those are
given below.

J, (Signs, Intervals) =1 —
5a“ﬁ(lntervals, Octagons) = 1 —

d, (Signs, Octagons) =1 —

W= NI D=
WIN NI~ N~

(odd, T)

{odd, < 0) (odd, > 0)
-

Fig. 5. The lattice Parity ® Signs

Using Octagons, one obtains a postcondition which is 66% more precise than using Signs.
We can also consider to lift Octagons to disjunction of Octagons (DOctagons). In this case the inferred
invariant is [10]:

{101<n,n—-10>r,n—10<r}V{n<10l,r >91,r <91}

and one can prove that the 5a|_|ﬁ (Octagons, DOctagons) = 1 —2/6 = 2/3.

5 Towards measuring the precision of Abstract Interpretations

The notion of distance is useful to formally quantify the error induced by using abstract elements. Given a
concrete domain D and an abstract domains A, in the following we suppose that: (i) D and A are complete
lattices; and (ii) they are related by a Galois connection {(cv,).

5.1 Measuring abstract elements and domains

Definition 2 (5-Error) We define the error of approximating a concrete element c in A according to pseudo-
distance 6 as €s5(c) = 0(c,y(a(c)).

It is immediate to observe that as in a Galois connection ¢ E (a(c)), then esu.m boils down to €5, -
plen

Example 2. Let us consider the concrete domain to be the reduced product of Parity and Signs (Fig. 5) and
the abstract domain to be Signs. Then y(((even, > 0))) = v(> 0) = (T, > 0) implies that 5, (c) =
dplen((even, > 0), (T, > 0)) = 1.1If, on the other hand we chose Parity as abstract domain, then v (c((even, >
0))) = ~(even) = (even, T) which implies that €(c)s,,,, = Jplen((even,> 0), (even, T)) = 2, as (even, >
0) C (even, > 0) C (even, T) in Parity ® Signs. O

The example above suggests that one may be able to lift the Def. 2 to abstract domains, so that one can
measure the loss of information induced by using an abstract domain.

Definition 3 (Error) Let C' be an abstract domain with a finite set of elements, and let A denote the ab-
straction of C. Then the average error of using A for C according to pseudo-distance 9§ is

€A = ’(17| . 265(6).

ceC

Fig.6. The element x and the sequence of elements Fig.7. Two sequences of elements' {z1, .20, .} afld
{y1,-,Yi, - }: dimaz(x, yi) grows arbitrary large with 4, {y1, 96, 1 de.in(CUhyi) remains constant, while
while € (x, y;) remains constant for all i. eu(@i, yi) grows arbitrary large with 1.

Example 3. Let us consider two abstractions of Parity ® Signs: Parity and SimpleSigns. Parity has four
elements: |, T, even and odd. The average error of using Parity as abstract domain is 18/17. SimpleSigns
has five elements: 1, T, < 0, > 0 and # 0. The average error of using SimpleSigns is 15/17. a

As a consequence of the example, it turns out that even if from the point of the relative precision Parity
and SimpleSigns are not comparable, on average, one may expect to have a smaller error when it uses
SimpleSigns. It is worth noting that the quantitative errors we obtained are more relevant than those obtained
using simple cardinality arguments. In fact |5/17 — 4/17| = 1/17 < |18/17 — 15/17| = 3/17.

5.2 Measuring operators

It is known that performing operations in the abstract may introduce a loss of precision. We can lift the
previous results to formally evaluate the error induced by an abstract operator.

To estimate the error induced by the use of an abstract operator, we consider the average of the errors
induced by applying the operator to each pair of abstract elements:

Definition 4 (op-Error) Let op be the abstract counterpart for a concrete operator op.. Then the average
error of op with respect to 0 is:

=,Al‘2 > (v(ar 0p az), V(@) op. Y(az)).

a1,a2€A

When €,, = 0 we say that op is -complete. Intuitively, a 6-complete operator does not introduce any
error wrt the distance 0. A complete operator is one such that Vay, as. y(a1 op az) = vy(a1) op. v(az2). An
immediate consequence of Def. 4 is that if op is a complete operator, then op is §-complete for each 4.

The next logical step is to apply the definitions of this section to the most critical operator in a static
analysis, that is the join. Our first approach was to use the Hausdorff distance, but it did not worked as one
can have (i) dfmaz(x, y) arbitrary large, when err is constant (Fig. 6); or (ii) dgmin (, y) can be constant,
when err can be arbitrary large (Fig. 7). Finding a good distance to evaluate the precision loss induced by
the join that works for infinite abstract domains is still an open question for us.

6 Related Work

van Breugel [12] exploits the structure of a metric space to define the operational and the denotational
semantics of a while language and he uses it to relate the two semantics, and to prove the existence of the
fixpoints. His approach is a way different dual to ours, as we start from the domain structure, and we build
a distance on the top of it.

Di Pierro and Wiklicky [2] propose a notion of probabilistic abstract interpretation, and they uses it to
measure the measure the incompleteness of the abstract domain. With respect to our work, they change the

underlying framework (from standard abstract interpretation to linear spaces). An interesting future direction
is to deepen the relation between our approach and theirs.

Distances and metric spaces have been object of wide investigation in other fields of computer science
as machine learning or computer graphics. De Raedt and Ramon [1] propose to derive a distance from a
partial order. They assume the existence of a weight function for the elements of the partial order, which
is not clear how it works in the abstract interpretation setting, where abstract elements may approximate
infinite elements. For instance we can use the affinity distance to also measure the distance between open
convex polyhedra. Markov and Marinchev [7] define a semi-distance for Horn clauses. Eiter and Mannila
[3] propose several distance measures for finite sets of points. Our affinity distance works also when the sets
are infinite.

Monniaux [9] applies abstract interpretation-based techniques to bound the worst-case probability for
some properties of interest. The affinity distance was originally used in [11] (where it was named “planar
affinity measure”) to construct a powerset extension of the polyhedron base domain. In general, such a
powerset extension can be either expensive (the number of elements is exponential when compared to the
base domain) or imprecise (when the number of disjuncts is syntactically bounded). In this context, the
affinity distance was used to identify pairs of elements that are likely to be joined (using the least upper
bound operator) with a small precision loss.

7 Conclusions

We presented the preliminary results on our investigations to guantify the loss of precision in static analyses.
We show how the classical notion of distance on metric spaces is too strict, and we proposed a weaker
notion, the pseudo-distance. We defined some pseudo-distances and we apply them to measure the relative
precision of invariants inferred with (possibly non-comparable) abstract domains. We lifted the notion of
pseudo-distance to the elements of the abstract domains (so to estimate the relative precision loss) and to
operators on abstract domain. There are still some open issues, both technical and conceptual. For instance it
is not clear if the affinity distance lifted to powerset is a pseudo-metric and we aim at extending the distance
on abstract domain to cope with infinite abstract domains, which are often of more interest for static analyses.

References

1. L. De Raedt and J. Ramon. Deriving distance metrics from generality relations. Pattern Recognition Letters, 30(3):187-191,
2009.

2. A. Di Pierro and H. Wiklicky. Measuring the precision of abstract interpretations. In LOPSTR (LNCS 2042: Selected Papers),
pages 147-164, 2000.

3. T. Eiter and H. Mannila. Distance measures for point sets and their computation. Acta Inf., 34(2):109-133, 1997.

J. Feret. The arithmetic-geometric progression abstract domain. In VM CAI, pages 42-58, 2005.

5. P. Giannopoulos and R. C. Veltkamp. A pseudo-metric for weighted point sets. In Proceedings of the European Conference
on Computer Vision, 2002.

6. V.Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer linear inequalities. In VM CAI, pages 229-244,
2009.

7. Z.Markov and I. Marinchev. Coverage-based semi-distance between horn clauses. In AIMSA, pages 331-339, 2000.

8. L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers. In ESOP, 2005.

9. D. Monniaux. Abstract interpretation of programs as markov decision processes. In SAS, pages 237-254, 2003.

0. C. Popeea. Disjunctive Invariants for Modular Static Analysis. PhD thesis, School of Computing, National University of
Singapore, 2008.

11. C.Popeea and W.N. Chin. Inferring disjunctive postconditions. In ASIAN CS Conference, 2006.

12. F. van Breugel. An introduction to metric semantics: operational and denotational models for programming and specification

languages. Theor. Comput. Sci., 258(1-2):1-98, 2001.

&

A Proof of Lemma 9

Proof: It is trivial to show that 5auﬁc satisfies the non-negativity, identity and symmetry properties. We then
need to prove that d satisfies also the weak triangle inequality: J, (2, y) < 8o (7, 2) + 0o (2, y). Using
the hypothesis x C z C y, the inequality reduces to:

C Jseq(y) C Iseq(2)] L lsea)
[seq(@) Useq)] ~ — Jseq(@) Useq(z)] T Jsealy) U seq(z)]

Subsequently:

[seq(x) Useq(y)| — |seq(y)] _ [seq(z) U seq(2)| — |seq(z)] | |seq(y) U seq(2)] — |seq(y)]
|seq(x) U seq(y)] B |seq(w) U seq(2)] |seq(y) U seq(2)]

We use Py to P; to represent cardinalities of sets where the subscript indicates the membership of edges to
X,Y,Z:

z|lyl|lx
PO]0|1] |seq(x)\seq(y)\seq(2)]
P 0]1]0] |seq(y)\seq(z)\seq(z)]
P30 1] 1] |seq(z) N seq(y)\seq(?)|
Py 110]0] |seq(2)\seq(x)\seq(y)|
ps|1]0] 1] [seq(x) N seq(z)\seq(y)]
Ps|1]1]0] [seq(y) N seq(z)\seq()]
P;l1|1]1]]|seq(z) N seq(y) N seq(z)]

From = C z C y, we obtain that seq(x) N seq(y) C seq(z). Subsequently, we have that P; = 0. We use the
notation N = X' F;. The inequality to prove can then be simplified to:

P1+P5< P +P4+P5
N—-PL N-P N-P

This inequality can be proven as follows:

(Pl + P5)(N — Pg)(N — Pl) < Pl(N — P4)(N — Pl) + <P4 + P5)(N — P4)<N — P2)

N2P1 + N2P5 +P12P2 + PPy Ps —|—NP12 + NPP,+ NP,Py + NP, Ps + NP42 + NPy P5; <
NP} + NP\Py+ NP\ Ps+ NP, Ps + N?Py + PPy + N?P, + N?Ps + PP} + P,P,Ps

PPy + PiP,Ps + NP Py + NPyPy+ NP? + NPy P5 <
NP Py + NP Ps+ P?Py + N%2Py + PyP? + PyPyP;

Since NP, Py + NPy Py + NP? + NP, P5; < N?Pj, the inequality reduces to:
PiPy+ PiPyPs < NPy Py + NP\ Ps + P2Py + P2 P} + PyP,Ps

Since P12P2 < NP Py and P, P, P; < N P P, the inequality is proven and thuséfﬁ
satisfies the weak triangle inequality. O

10

Quantifying Loop Leakage using a Lattice of Partitions

Jonathan Heusser Pasquale Malacaria

Department of Computer Science
Queen Mary, University of London
{jonathan, pm}@dcs.gmul.ac.uk

Abstract. We investigate the relationship between Landauer and Redmond Lattice of Information (Lol) and recent
work in quantitative information flow. Elements of Lol can be seen as partitions where their blocks are observably
indistinguishable states. We show how leakage of looping programs can be naturally described using a sequence of
partitions that is a chain in this lattice. This interpretation is significant in light of recent work aimed at automatically
quantify leakage of programs by computing their interpretation in Lol.

We also show that the measure (in a lattice theoretical sense) of this chain is Shannon’s entropy and that it coincides
with previous information theoretical formulas characterizing leakage of loops.

1 Introduction

Landauer and Redmond [13] showed how information over a system can be represented as a lattice. The idea
is that a particular view (or observation) over the system can be associated with a partition whose blocks are
the set of states that that view or observation cannot distinguish.

Observations can be ordered by refinement: x < y if and only if y makes more distinctions than z. It
turns out that this structure is a complete lattice: the Lattice of Information.

The interaction between equivalence relations, partitions and quantitative information flow has been
shown in [6], the idea being that the basic bricks of a quantitative analysis, i.e. random variables, seen as
maps from states to real numbers, can be identified with their kernel, i.e. a partition of states.

In this work, we develop these ideas further. In particular we show how the most challenging quantitative
analysis of commands, i.e. loops, can be simplified and conceptually clarified by the use of algebraic tools.
Leakage of looping programs turns out to be describable by chains in this lattice. The n—th element in
the chain corresponds to the leakage of the program up to the n—th iteration. This correspondence between
iterations and partitions may have relevance for implementation, in light of recent work by Backes, K&pf and
Rybalchenko [1] who use model-checking techniques like counter-example guided refinement to compute
the interpretation of programs as partitions in the Lattice of Information.

For example, our approach makes it simple and clear what it means to refine a loop up the n—th iteration
and how to provide a safe bound for the remaining iterations.

Hence, we argue that this algebraic interpretation improves order, elegance and abstraction of quantita-
tive reasoning techniques of looping programs.

1.1 Related Work

On the information flow side, Landauer and Redmond’s paper describes the lattice of information [13] which
builds the basis of our paper and proved to be a good model for information flow in a series of work in related
fields [5, 8, 23]. Yatsuka Nakamura described already in 1970 the lattice-theoretic basis of the information
theoretical notion of entropy [20].

Quantitative Information Flow can be traced back to the work by Denning [10], Millen [19] and McLean
[18]. An early attempt to combine quantitative ideas in the framework of Lol was by Weber [23] where a

partition blocks counting technique is used in the context of state machines. There have been a number of
recent works relevant to the present paper e.g. [5, 6, 14,8, 1].

2 Lattice of Information

Landauer and Redmond [13] showed how information can be represented as a lattice. Let X' be the set of all
states in a system. They described two ways as how elements of X' can be seen as a lattice. First, as the set of
equivalence relations on the set X' where the equivalence classes express the set of states whose information
is indistinguishable. The second way is where Y is the domain of some function f to some other set X,
where X describes the information extracted for some state.

Let us define the set Z(X') which stands for the set of all possible equivalence relations on the set X.
The ordering of Z(X') is now defined as

~LC ~« Voi,09 (01 ~ 09 = 01 = 03) (D)

where ~,~ € 7 and 01,09 € 2. Furthermore, the join LI and meet 1 lattice operations stand for the
intersection of relations and the transitive closure union of relations respectively. Thus, higher elements
in the lattice can distinguish more while lower elements in the lattice can distinguish less states. It easily
follows from (1) that Z(X) is a complete lattice.

In this paper we will assume this lattice to be finite; this is motivated by considering information storable
in programs variables: such information is < 2¥ where % is the number of bits of the secret variable.

We give a typical example of how these equivalence relations can be used in an information flow setting.
Let us assume the set of states 3 consists of a tuple ([, h) where [is a low variable and h is a confidential
variable. One possible observer can be described by the equivalence relation

(li,h1) = (la, ho) < 11 = 1o

That is the observer can only distinguish two states whenever they agree on the low variable part. Clearly, a
more powerful attacker is the one who can distinguish any two states from one another, or

(li,h1) ~ (la,ha) < L1 =la ANhy = ha

The ~-observer gains more information than the ~-observer by comparing states, therefore ~ C ~.
Finally a useful equivalent description of the Lattice of Information is as the lattice of partitions of set
of states. This is justified by considering the trivial bijection between partitions and equivalence relations.

2.1 Lattice of Random Variables

A random variable can be seen as map X : D — R(X), where D is a finite set with a probability distribution
and R(X), a measurable set, is the range of X. For each element d € D, the probability of it is denoted
p(d). For every element x € R(X) we write p(z) to mean the probability that X takes on the value z, i.e.
p(x) def >_dex—1(z) P(d). In other words, what we observe by X = x is that the input to X in D belongs to
the set X ~!(z). From that perspective, X partitions the space D into sets which are indistinguishable to an
observer who sees the value that X takes on. This can be stated relationally by taking the kernel of X which
defines the following equivalence relation ker(X):

dker(X) d'iff X (d) = X (d'))

The entropy of a random variable X is denoted H(X), defined as follows
Z p(x)log p(x

As seen from the definition of p(x), the entropy of X only depends on its set of inverse images X ~!(z).
Thus, if two random variables X and Y have the same inverse images they will necessarily have the same
entropy. More formally, we write X ~ Y whenever the following holds

X ~Yiff (X o)z e RX)Y={Y Hy): y e R(Y)}

and thus if X ~ Y then H(X) = H(Y).

This shows that each element of the lattice Z(X') can be seen as a random variable. We can hence identify
Lol with a lattice of random variables ordered by (1).

Our lattice has a top element ~ which is the identity relation, distinguishing all states from one another.
If the lattice is built from two random variables X and Y then top will be the joint random variable (X,Y).
The bottom element ~ relates every state to every other and represents the least information of the system.

The join and meet operations on this lattice are the same as for the lattice of information: the join L is
the intersection of relations, making the equivalence classes finer; the meet I conversely is the transitive
closure of the union of two relations. Notice that the U of two random variables is the classic notion of joint
random variable, i.e. X 1Y = (X,Y).

Notice that in general, Z(X) is not distributive.

2.2 Join Semivaluation
A join semivaluation [2] on Z (X)) is a real valued map v : Z(X') — R, that satisfies the following properties:
v(XNY)+rv(XUY) <v(X)+vY) 3)
X CY implies v(X) < v(Y) 4)
for every element X and Y in a lattice Z(X') [20]. The property (4) is order-preserving: a higher element in

the lattice has a larger valuation than elements below itself. The first property (3) is a weakened inclusion-
exclusion principle.

Proposition 1. The map
(X UY) = H(X,Y))

is a join semivaluation.

3 Information Leakage - Algebraic View

3.1 Leakage of Deterministic Programs

Programs are naturally interpreted as equivalence relations on states [14] and hence as random variables in
the Lattice of Information. The random variable associated to a program P is the equivalence relation on the
states defined by:

o~d = P(0)=cs P(d)

in this paper we will consider =5 to be the relation “to have the same output”. However, a more general
view of observational equivalences in this context has been presented in [15].
Example. A simple example demonstrates these relationships

if h=0 then access else deny

We associate a random variable for the confidential program variable h, ranging over {0, . .., 3}. The output
random variable O associated to the program contains the two outcomes {access, deny }, mapping all inputs
to these two outcome classes. The equivalence relation (i.e. partition) associated to the above program is
hence

O:{i()/}/{l,Q,?)}}

access deny

The outcome access is observed for O whenever £ is 0; all other values of & are captured by deny.
Compare the above program with the following one

if h=0 then access
else { if h=1 then maybe else deny }

This program releases more information about the secret than the previous one because of the additional
output maybe. Formally this is reflected by its associated random variable

SR

access maybe deny

clearly, it is the case that O C O'.
Based on this interpretation of programs Clark, Hunt and Malacaria [5] defined the leakage of a program
O depending on a secret input h and public input [by

t(O; h|l) = I(O; hl)

i.e the conditional mutual information between the program and the secret given the low input.
If the program is deterministic, i.e. O = f(h,[) then we have

W(f(h, D), b1 = v(f(h, D]T) = v(f(h, D)]h,1)

H(O[l) — 0= H(O|l)

For normal programs, i.e. deterministic programs depending only on the high input, H(O|l) = H(O)
reduces the leakage to the semivaluation of its output random variable.
We can relate order in Lol and amount of leakage by the following result

Proposition 2. Let P, P’ be two normal programs. Then P T P’ in Lol iff for all probability distributions
on states in Lol, H(P) < H(P").

Proof. The (=) direction follows from the definition of semivaluation. For the other direction suppose
P [Z P’; this means we can find a block in P’ that is not a subset of any block in P, for example we have
{{a},{b,c}} in P and {{a,b,c}} in P’. Choose then a distribution 0 everywhere apart from a, b, c: for such
a distribution we then have H(P) > H(P’)

3.2 Loops

The idea is to interpret looping programs in the lattice of information as least upper bounds of increasing
sequences; for some loops (those with collisions) this is not immediately true: we will show however that
all loops can be interpreted as the meet of the L.u.b. of an increasing sequence and a point in the lattice
representing the collisions.

We also show that the semivaluation of this interpretation of loops is the information theoretical for-
mula presented in [14]. The main result of the cited work is summarised in the next paragraph, to support
understanding.

Leakage of Loops Let us consider a loop of the form while e M, where e is representing the Boolean
guard and M is making up the random variables associated with the commands in the body of the loop. Such
a loop can be seen as a family of functions fo @® --- @ f, @ ..., where f; is the function corresponding to
the loop ending in exactly ¢ iterations. For a deterministic program this family has disjoint domains because
given an input there exists a unique ¢ such that the loop terminates in ¢ iterations. However, in the case
of collisions, the codomains of all (f;)o<; are not necessarily disjoint. Two or more functions f; and f;
could share a common point in their images. We can define a loop as collision free if all iterations generate
different output observations, i.e.

Vo,o',i,j #1i, fi(o) # fi(0)

The domain of f; is given by all states o such that f;(c)(e) is true from 0 < j < ¢ and always false
from i + 1 on. We denote this set of states also the event e<*>: this event can be seen as the evaluation of the
guard e. The body M is just a random variable as described in [14], representing the commands in the body.
We denote M’ as the ith iteration of the body M.

Now, the entropy of such a loop is given by the entropy of the probabilities of the events e<0>, ..., e<">
plus the entropy of M’ given the knowledge of e<*>. This is a consequence of the partition property in [14].

Let’s denote by W (e, M) the leakage of a loop while e M

Theorem 1.

(i) If the loop is collision-free then W (e, M) is the limit (for n — oo) of the formula W (e, M),, where

W(e, M)n = H(u(e="), -, p(e=")) +

guard
Z Iu(e<i>)H(Mz'|6<i>)
1<i<n
body

(ii) If the loop is not collision-free, the leakage is W' (e, M) defined as
: o
W (G,M) = W(B,M) - Z [U]H([O_i]aai)
oeC

where C' is the set of collisions of f, [o] is the (probability of the) inverse images of the collision o
under f, the probability of its elements intersected with f; are denoted as 17, ...,77 and W (e, M) is
the leakage of the disambiguation of while e M

Example. Consider the loop 1=0; while (1 < h) 1++ with 3 bit variables. There are only two
events possible: the one where the loop exits, i.e. where 1 >= h and the one where h is already 0 and no
iterations take place. This is represented by the events e<"> and e<%>. Notice that the body can’t leak any-
thing because there are no confidential variables referenced in it. Thus, the leakage of the guard and therefore
the whole loop is, assuming uniform input distribution of h, H(u(e<%>), -+, u(e<">)) = H(%, -+ ,3) =
log,(8) = 3. As was expected, all 3 bits of the secret h leaked into 1 in this program.

Algebraic Interpretation of collision free loops Given a loop W, let W, be the program W up to the n-th
iteration. The random variable associated to W), is hence a partition where only the outputs of W up to the
n—th iteration are distinguished. Hence, W,, ;.1 will refine W, by introducing additional blocks.
As a simple example of a collision free program consider the “linear search” program P below
1=0;
while (1l<h) do
1=1+1;

We get the following corresponding family of partitions P,;:

P = {0}, {1} ... {n — 1}, {a| 2 > n}}

The following proposition establishes the relation between collision free loops and the chain W, being
increasing:

Proposition 3. For all n, W,, & Wy, 1 iff the loop W is collision-free.

Proof. The direction = follows immediately from the definition of collision. For the < suppose W,, £
W41, then at least a block in W,,1; is not a refinement of a block in W,,, e.g. {{a},{b,c}} in W,, and
{{a, b, c}} in W, and by definition of W, either {{a} or {b, c}} (w.l.g. we can say is {a}) corresponds to
an output o after < n iterations. Then {{a, b, c}} in W, corresponds to a collision, namely the collision
which send a, b, c to the same output o in a different number of iterations.

Also note that in this case the chain Wy C W; C ... satisfies the ascending chain condition. There
exists an integer n such that W,,, = W, for all m > n, because W; 1 destructively refines (“splits”) a finite
block of W; into smaller equivalence classes.

Proposition 4. The random variable W of a collision-free loop is the Kleene fixpoint U,>oW,, of the chain
Um%)nEO

Proof. The result follows from Proposition 3 and the fact that the number of states is finite.

In our “linear search” example above, the inverse image of f; produces the block {i} in partition FP,.
Since we have shown that entropy is a semivaluation it follows that W (e, M),, is the semivaluation of the
partition P,, above. The least upper bound of that partition is the partition where every state is in a singleton
class, i.e. distinguishable; given k-bit variables

W = UnsoWi = ({0}, {1} ... {25 = 1}}

which is the same as the partition produced by fo @ -+ @ for_;, thus v, (W) = lim,—oc W (e, M),,. This
is a true in general as stated in the following:

Theorem 2. Given a collision-free loop while e VM, the leakage lim,, .-, W (e, M),, as shown in Theo-
rem 1 (i) is equal to the semivaluation v ,(Un>oWy,).

Proof. This follows from Proposition 4.

Fig. 1. Two iterations with one collision at b’

3.3 Loops with Collisions

Let us look at the colliding program shown in Figure 1. It consists of two iterations, represented by functions

J1and fa.
The exact partition for this program is

P ={{a,d'}, {z,2",y}, {c}}

The chain of partitions associated to the program is the following:

Wy = {{CL, a,}v {x, .1’/}, {ya C}}
W = {{a,d'}, {z,2, y},{c}}

We see that W5 extends the block containing x, 2’ with y because all three of them have the same image
b'. This reflects the idea of collisions, namely that two (or more) elements of the codomain of two different
iteration functions, here f; and fs coincide. The result is that their inverse images are indistinguishable
from one another and therefore end up being in the same block, here {z,2’, y}. Then, W is equal to P.
However, because W, extends a block in W this is not an ascending chain anymore; actually by choosing
a distribution assigning probability O to ¢, we can see that v,(W;) > v,(W2) and therefore Theorem 2 is
false in case of collisions.

This conflict can be solved by applying the same technique as in [14]; i.e. by extending the codomain
of the responsible functions by new elements until all collisions are resolved. In the case of this example,
for fo : X — Y we extend Y to Y’ with one new element to avoid the collision. This will result in a new
function f} with 5 '(Y") producing a new distinguishable block {y}; now input y can be kept apart from
inputs x, 2’ and the collision is resolved. The new chain is now

W{ = Wi, W2, = {{a7a,}v {xvx/}v {y}v {C}}

W3 will turn the W, sequence of partitions into an ascending chain again. Since W has a larger semi-
valuation than W5 some elements have to be subtracted to achieve the correct semivaluation (entropy). In
[14] this problems is solved by creating a set of collisions and subtracting the weighted sum of the entropies
of these collisions from the newly created, collision-free entropy. For this example, assuming uniform dis-
tribution Theorem 1(ii) produces the computation

2/6 1/6

§E,g—%)=14591 (6)

H(W) ~ 2 (

7

Algebraically, this is handled by creating a collision partition C' whose blocks are sets of colliding
points; for this example we have

C={{a} {a'}, {z, 2", y}, {c}}
It is easy to see that to recover W5 from W, and C the meet operation can be applied
vu(We) = vy (W51 0)
notice now that we recover the same result as in equation (6) by this algebraic mean, i.e.

231

Vu(Wé M C) = Vu(WQ) = H(g, 6, 6) = 1.4591

To generalize this construction, first define the disambiguation of a sequence of partitions (1V;);>o of a loop
W by (W/)i>o where:
Wi =U;<iW;

It is clear that (TW/);>0 is an increasing chain and it is easy to see that it achieve the same chain defined
above by adding new distinguishable blocks.

Define now the collision equivalence of a loop W by o ~¢ o’ iff o, 0’ generate the same output from
different iterations, formally

o~co < Ji#£j fi(o)=fi0)
We denote by C' the partition generated by taking the reflexive transitive closure of ~-. We are now ready
to relate the leakage of arbitrary loops with semivaluations on Lol.

Theorem 3. The leakage of an arbitrary loop W (e, M) as of Theorem 1(ii) is equivalent to semivaluating
the meet of the least upper bound of its increasing chain W, and its collision partition C, i.e.

W(e, M) = v,(Up>oW,, M C)
Proof. Notice first that increasing chains with a maximal element in a lattice do distribute, i.e.:
(Un>02n) My = Un>o(zn My)
Assuming distributivity the argument is then easy to show:
(Un>oWy, M C) = Un>o(Wn N C)

Notice now that (W, M C'),>0 is a chain cofinal to the sequence (W,,),>0 and so we can conclude that
Up>0(Wy, M C) is the partition whose semivalutation corresponds to W (e, M).

4 Applicability of Lol for Automation of Quantifying Information Flow

Tools to automatically quantify precise or approximative information flows are gaining a lot of momentum
[17] [16] [1] [11]. We argue that while the material introduced in this paper is more of theoretical nature,
there is still a surprisingly large applicability of these algebraic foundations. In this section we review a few
recent developments and touch upon future work.

Most recently, Backes, Kopf, and Rybalchenko described their push-button verification tool DisQuant
[1] which automatically calculates the Lol element given a program. It does so by iteratively generating a
logical formula by counterexample-guided refinement using Model Checking and SAT solving. Once the
partition has been exhaustively refined it enumerates its equivalence classes using constraint solving.

The authors of this paper also developed a dynamic analysis to precisely quantify information flows of
loops [11]. The limitating factor of that tool is the size of the secret. If a user does not want to exhaustively
run the program an all secrets an upper bound is calculated, using the formula from Theorem 1. If the leakage
up to now (i.e. the current iteration) is described by L’:

S
L’:H(ml,...,ms,q)—i—ZmiVi
i=1

where L' signifies the lower bound, then the upper bound is just min(k, L + q(k — L’)); a conservative
upper bound based on the principle of maximum entropy. Where L
t—s
q q -
L:H(pmla"'apmsai S)—’_Z;mz‘/;
‘7:

PompCEREE I

is the leakage where the remaining probability ¢ = 1 —p, and p = >, ., ., m; is distributed uniformly over
the remaining ¢ — s events, where ¢ is the loop bound. o

In our new algebraic framework, this upper bound can be represented as widening operator which ter-
minates in one iteration: At step n in the iteration sequence (W,,),>¢ the remaining, unhandled inputs get
distributed in singleton blocks in the widened partition.

Future work will include work on quantitative declassification policies and enforcement systems using
the metric induced by the semivaluation on Lol. Also, a very interesting direction for an application of this
theory are exploiting recent advantages in SAT solvers, specifically in model counting.

5 Conclusions

Information theory, and in general probability theory, is based on underlying lattice structures. We investi-
gated how this lattice-theoretic perspective fits in our recent framework of quantifying information flow [5,
14]. We showed that we can use join semivaluations on the lattice of information for quantitative information
flow analysis of programs.

References

1. Michael Backes and Boris Kopf and Andrey Rybalchenko: Automatic Discovery and Quantification of Information Leaks.
Proc. 30th IEEE Symposium on Security and Privacy (S& P ’09), to appear

2. Birkhoff, G., Lattice theory. Amer. Math. Soc. Collog. Publ. 25 (1948).

3. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD thesis, Swiss Federal Institute of Technology
(1997)

4. Han Chen, Pasquale Malacaria: Quantifying Maximal Loss of Anonymity in Protocols. In Proceedings ACM Symposium on
Information, Computer and Communication Security 2009.

5. David Clark, Sebastian Hunt, Pasquale Malacaria: A static analysis for quantifying information flow in a simple imperative
language. Journal of Computer Security, Volume 15, Number 3 / 2007.

6. David Clark, Sebastian Hunt, and Pasquale Malacaria: Quantitative information flow, relations and polymorphic types. Journal
of Logic and Computation, Special Issue on Lambda-calculus, type theory and natural language, 18(2):181-199, 2005.

15.
16.
17.
18.
19.
20.
21.

22.

23.

Cortesi, A: Widening Operators for Abstract Interpretation. In Proceedings of the 2008 Sixth IEEE international Conference
on Software Engineering and Formal Methods.

Boris Kopf and David Basin: An information-theoretic model for adaptive side-channel attacks. CCS *07: Proceedings of the
14th ACM conference on Computer and communications security, 2007, 286-296

T.Cover, J. Thomas. Elements of Information Theory. Wiley

Denning, Dorothy E. A lattice model of secure information flow. Commun. ACM, 19, 5, 1976, 236-243 ACM, New York,
NY, USA

. Jonathan Heusser, and Pasquale Malacaria: Measuring Insecurity of Programs, Draft, Queen Mary University of London

2007. http://www.dcs.qmul.ac.uk/“jonathan/publications.html

. J A Goguen, J Meseguer: Security policies and security models In Proceedings of the 1982 IEEE Computer Society Sympo-

sium on Security and Privacy

. Landauer, J., and Redmond, T.: A Lattice of Information. In Proc. of the IEEE Computer Security Foundations Workshop.

IEEE Computer Society Press, 1993.

. Pasquale Malacaria: Assessing security threats of looping constructs. Proc. ACM Symposium on Principles of Programming

Language, 2007.

Pasquale Malacaria, Han Chen: Lagrange Multipliers and Maximum Information Leakage in Different Observational Models.
ACM SIGPLAN Third Workshop on Programming Languages and Analysis for Security. June, 2008.

Stephen McCamant and Michael D. Ernst: Quantitative information flow as network flow capacity. PLDI 2008, Proceedings
of the ACM SIGPLAN 2008, Conference on Programming Language Design and Implementation, Tucson, AZ, USA, 2008
Stephen McCamant and Michael D. Ernst: A simulation-based proof technique for dynamic information flow. PLAS 2007:
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, San Diego, CA, USA, 2007

John Mclean: Security Models and Information Flow. In Proc. IEEE Symposium on Security and Privacy, 1990, 180-187
IEEE Computer Society Press

Jonathan K. Millen: Covert Channel Capacity. IEEE Symposium on Security and Privacy, 0, 1987, 1540-7993, 60 IEEE
Computer Society, Los Alamitos, CA, USA

Y. Nakamura. Entropy and Semivaluations on Semilattices. Kodai Math. Sem. Rep 22 (1970), 443 468

Dan Simovici,: Metric-Entropy Pairs on Lattices. Journal of Universal Computer Science, vol. 13, no. 11 (2007), 1767-1778
Geoffrey Smith: On the Foundations of Quantitative Information Flow. In Proc. FOSSACS 2009: Twelfth International Con-
ference on Foundations of Software Science and Computation Structures LNCS 5504, pp. 288-302, York, UK, March 2009
D.G. Weber: Quantitative Hook-Up Security for Covert Channel Analysis In Proc. IEEE Computer Security Foundations
Workshop 1988.

10

Measuring the Loss of Privacy from Statistics

Michael Carl Tschantz Aditya V. Nori
Computer Science Department Rigorous Software Engineering
Carnegie Mellon University Microsoft Research India
nt schant @s. cnu. edu adi t yan@n crosoft.com
Abstract

We present a specialization of quantitative informatiowfto programs that compute statistics. We
provide an approach for estimating the information flowspre in such programs based on Monte Carlo
simulation and argue that it is more accurate than previppsaaches in this domain.

1 Introduction

Organizations often collect sensitive information abawtvey respondents. To protect the privacy of the
respondents, they only publish aggregate statistics dheuesponses rather than the responses themselves.
These statistics are designed to provide information abmitresponses as a whole without providing a
detailed view of any one response. However, under somerstances, these statistics may reveal sensitive
information about a particular respondent. We would likgoantify how much information about a single
respondent can be learned from a given statistic.

For example, a trivially unsafe program might just repod tesponses themselves including the name
of the person who provided each response. Likewise, altsivdafe program might always report “access
denied” providing no information.

For a less trivial example, consider a program that takesrtarenegative integer salaries and returns
their sum:

return (salaryl + sal ary?2)

Such a program provides an upper bound on each respondalat’g since neither can be greater than twice
the average. Furthermore, if the sum is zero, the sum alsoda® the exact salary of each respondent. If,
on the other hand, the sum is one, then two possibilitiesdoheespondent’s salary remain: zero and one.
As the sum goes up, the number of possibilities goes up. Tunlke the trivial cases above in which the
program could be analyzed independently of the responsedupes, in this case, the value of the produced
statistic influences the amount of privacy maintained.

Our goal is to provide an automated method for determinireg amount of information that flows
through a program that computes a statistic. We furtherelésat our analysis is accurate enough to provide
reasonable results for common statistics. For examplek@faal. provide an analysis for measuring the
mutual information flow from sensitive inputs to public outp [1]. While their approach produces results
accurate enough for their problem domain, confidentialitys not accurate enough for use on statistics.

*This work was primarily done while the first author was aniintat Microsoft Research India.

For example, it cannot distinguish between a program timaplsi lists the responses and a program that
provides the sum of all the responses.

To meet this goal, we use Monte Carlo simulation. This singgproach has many advantages. By
treating the program as a black box, it can work on any progvaitten in any language and is fully
automated. We need not create any models or ensure thatdhepr obeys a typing discipline. Running
the actual implementation rather than analyzing a spetititaf what a statistic should calculate catches
the effects of bugs. Despite not having a soundness guarawtth enough samples, our approach will
approach the exact values, whereas sound analyses oftadepuery loose bounds.

Rather than simply provide one number that measures thss Ve provide both the probability distri-
bution over the sensitive attribute for a respondent bedme after learning the value of the statistic. From
these distributions, many measures of information flonwgmy loss) used in other works can be easily
calculated including mutual information [1] and the chamgdistribution accuracy [2].

First, we present an formal model of programs that produagssics from a list of survey responses.
Second, we formalize the problem and discuss a related garobihat is more practical in many settings.
Third, we discuss our analysis. Fourth, evaluate our aisatys simple statistics. Lastly, we discuss related
work and conclude. While an intuitive understanding of @ioibty suffices for understanding this work,
the appendix formalizes our models with measure theory.

2 Model

We model a program that computes a statistic as a fungtitimt accepts as input a finite list of survey
responses and produces as output the value of the statisticeach survey response be an element of
the countable sef?” and let the value of the statistic range over the countalileé/seThus, the program

is treated as a functioii from 27* to #'. While the restriction to countable sef&” and % might seem
unnatural given a survey of continuous values such as wemttieights, this is not a limitation in practice
since respondents only ever provide this information to ediaccuracy (such as to the nearest kilogram for
weight). Also, we can model probabilistic programs by hgvinaccept a second argument that determines
the probabilistic choices. In our implementation, it'sigvant since it treats programs as black boxes.

The program operates in an environment from which its inpmes. Let the se® represent the set of
possible worlds and be a probability measure over these worlds. The survey idwtad and program
ran in one of these worlds, the actual world.

Let X be a random variable frof2 to 2™ that provides the inputs to the program. This models the
process of conducting the survey, which provides the pragsame information about the actual wodd
We usex = (x4, ..., z,) to denote the actual survey responses provided to the prodghat is,x = X(w).

The programf computes the value of a statistic of the provided surveyaesps. This defines a new
random variabl&” = f o X from 2 to /. We usey to denote the actual value of the statistjc= f(x) =
f(X(w)).

For example,X; could be random variable that relates the weight of dhesurveyed person. That
is, X;(w) represents the weight of théh surveyed person in the possible woeld Sincew is the actual
world, z;, = X;(w) is the actual weight of théth surveyed person. The prografncould accept a list of
such weights and compute their mean. Thémould be a random variable that provides the mean of the
respondents given a possible world with the actual mearghgeia f(z,...,z,).

We model an adversary as attempting to determine the vake® tay some random variablé where
Z ranges overZ. That is, the adversary, would like to determine- Z(w). For exampleZ might beThe
weight of Bob or Bob has AIDS. The surveyor must determine for which random varialifethe adversary

should not be able to determine the value taken. These randdables will vary from survey to survey
depending on the information collected by the survey anehpyi expectations of the respondents.

The adversary has some prior beliefs abgutWe assume that the adversary knows what worlds are
possible, how the survey was conducted, and what statisticoemputed (that is, he knos X, and f).
However, we assume that the adversary does not know thd aaitd w or the actual responses= X (w).
Rather than knowing the actual probability measBrevhich is impossible to know exactly in many realistic
environments, the adversary has beliefs about the worigsepted as a probability measiye

3 Problem Formalization

Before formalizing the problem, we provide some notationve@ a random variableZ and probability
measurgy), we useQ) to denote the distributiod over 2 such thatD(z) = Q[Z = z] for all z in Z.
Similarly, (Q|Y = y), represents the distributioP such thatD(z) = Q[Z = z|Y = y| fory € # such
thatQ[Y = y] # 0.

Our goal is to provide an analysis that computes a compadétire adversary’s knowledge before and
after seeing the statistig That is, a comparison of the distribution @f; and the distributiof@[Y" = y) .
Since many such comparisons exist, our analysis will p@\bdth@Q, and (Q|Y = Q)Z and allow the
analysis user to perform any selected comparison upon them.

While a comparison of), and (Q|Y = Q)Z is ideal, it seems unreasonable that the surveyor would
know the adversary’s prior belief. Furthermore, the surveyor cannot do a worse case analysisatl
possible values fof)~ since it could be arbitrarily bad as an adversary could b#rarlly ignorant before
seeing the program output. Thus, we must make some assusptiout the adversary to produce a problem
that the surveyor can practically solve given reasonabtgsgible information.

First, we assume that the adversary bases his prior digtib@ » on the actual probability measure
That is, we assume théiy is P;. This assumption, as pointed out by Clarkson et al. [2], ideneplicitly
by most works on quantitative information flow (e.g., the wof Clark et al. [1]). This first assumption
might appear to not help us since we have traded one unkn@wifor another unknownp. However,
unlike Q z, the surveyor can estimafe,; using the next three assumptions.

Second, we assume thdtis determined byX. That is, we assume that the surveyor can decomgose
using some functiom such thatZ = g o X. For example, iZ is the response of the first respondent, then
is a function that returns the first response from the sequehactual responses(w). This assumption is
reasonable since such random variables are the most vbladoeattack. (1£7 is not completely determined
by X, then the surveyor would have to also provide an estimatfdheother factors that determirie. It
would still be possible to use our approach, but we wish tadatios complication.)

Third, we assume that the adversary knows the number of meggoin the actual responsgs=
(x1,...,z,) = X(w). That is, he knows:. Since most surveys publish the number of responses ex-
amined, this assumption is not too limiting. Fixing we can trealX as consisting ofi random variables
X, to X, with each.X; producing one responss.

Fourth, we assume thaf; to X,, are independent and identically distributed. Statidiicatcurate sur-
veys will meet this assumption by design. Under this assiompt; to z,, aren samples from a single
distribution Px. Given then samplesx, the surveyor can approximatey. Let Py be one such approxima-
tion selected by surveyor. This estimatég asPx~ (i.e., the distribution resulting from independent and
identically distributed copies aoX).

These assumptions combine to allow the surveyor to esti@gtasﬁgoxn. The problem then becomes

to compute a comparison éfgoxn and(P|Y = E)goXn from the following inputs:

the programf whereY = f o X,

the actual value of the responses- X (w),

a functiong where adversary is attempting to ledfifiw) = ¢g(X(w)), and

an approximatior”y of the distributionPy that generated the responses and deternfihes

Note the problem depends not just on the statigtibut also on the actual value of the statistic, the in-
formation that the adversary would like to learn, and thénestion of the distributionPx. This requires
that the survivor solve this problem each time the statistim be applied to different responses or with a
different adversary. However, as argued in the introdugtthe amount of information flow is sensitive to
these changes.

4 Analysis

We now present a simple analysis for providing an approxénaaiswer to the practical version of the prob-
lem above. We also discuss our implementation of this aiglys

We use Monte Carlo simulation to estiméfe|y” = y),, as follows. We repetitively us€y to generate
a samplex’ from Px», we run f onx’ to producey’, and we rung onx’ to producez’. By keeping track
of the valuez’ takes on each timg is equal toy, we can construct estimations 8%, and(P|Y = y),, in

the usual way: we estimaﬂéz(z) as the number of samples that resultin= z divided by the number of
samples and we estimat®|Y = y) ,(z) as the number of samples that resulted in W6tk 2 andY = y
divided by the number of samples that resulted’ia= y.

An advantage of this method is it works for affiyandg that are functions. (The method also works for
randomized functions provided that the surveyor can mdust sources of randomness.) The method runs
on large, complex programs even without source code.

Since constructingP|Y =y), takes memory linear i’ (not counting any memory used yor g),
this approach will not work for largeZ. However, one may choose to focus on a subse¥’dhat indicate
sensitive outcomes to reduce memory usage to the size afthget. For example, one might focus only on
z, the actual value that takes on, and calculat®(Z = z|Y = y) for comparison taP(Z = z).

Several factors can slow down gaining an accurate estimaligf or g is a time intensive computation,
our dynamic analysis will be slow. A large size 8f or n, or a low value for]f’(Y = y) can each result in
needing a large number of samples for constructing an aestimation o(P\Y =y),. While surveys
that ask for exact answers can have a laffje many only ask multiple choice questions yielding a more
manageable?”.

In general a large: can be problematic, but in the following special case, weaggammize our analysis
to not depend upon. Some statistics strips sensitive information (such asa)dram eachX; and lists the
sanitized form. Such statistigs have the formf ([X1, X2, ..., X,]) = [f/(X1), f/(X2), ..., f(X,)] for
some functionf’. If Z is independent of alK; except one of them, say;, then

PlZ = 2|f([X1,. . Xiy oo X)) = 1 Yis e Unl]
P[Z: Z|f,(X1) :ybaf,(Xl) :yz,,f,(Xn) :yn]
P(Z = 2| f(X;) = yi]

P(Z =2y =vy)

where the last equality follows fromr being independent of alk’; other thanX;. Thus, we can ignore all
X other thanX;. This greatly speeds up the approximation.

5 Evaluation

To evaluate our approach, we fix a method of compaf-?@gand(P|Y = y) The method we choose uses
entropy, an information theoretic measure of the amount of un(mméassoaated with a distribution. The
entropy of the distributior; is

— Z P[Z = z]log, P[Z = 2
2€Z

and the entropy of the distributioi|y” = y) , is

H((PIY =y),)=— Y PlZ =2V =y]log, P|Z = 2|Y =y]
1S4

(One usually speaks of the entropy of a random variable vaghunderlying probability measur being
understood. Since we are dealing with two probability mess andP]Y = y, we choose to make them
explicit.)

The comparison of the distribution8; and (P|Y = y), we use is the difference of their entropies:
H(Pz) — H((P|Y =y),). Clark et al. [1] argues that this difference measures theuaof information
that flows fromY = y to the adversary about since it is the decrease in the uncertaintyZadfter learning
that Y is equal toy. Indeed, this difference is related to mutual informatiam, information theoretic
measure of how much information one random variable previglsout another. Ignoring that = v is

a condition and not a random variablg,(P;) — H((P|Y = y),) may be seen as providing the mutual
informationZ(Z;Y = y) betweenZ andY” = y for a deterministic program.

Using entropy, we computed the difference betwé@nand(ﬁw =y) ,, for various statistics. In all
cases we used the uniform distribution o0dp 99 for each.X;. We selected the uniform distribution since
by having a high variance, we expected it to be a challengisgiltltion for the analysis in the sense of
requiring a large number of samples. Eorwe used the value of the first inpa; .

The first statistic we consider is the parity &f. This is not a particularly interesting statistic, but we
can exactly calculaté{(Py) to belog,(100) and H((P|Y = y),) to belog,(50) allowing us to see the
accuracy of our analysis. To study convergence and shovothlainalySB can provide accurate estimations,
we show the estimations produced using various numbersngbles in Figure 1(a). The y-axis shows the
estimated values for the entropies and mutual informatibileanthe x-axis shows the number of samples
performed, which ranges froa? to 22°. This table shows that the estimations of the valuek 6P;) and
H((P|Y = y),,) approach their real values as the number of samples ingeddwus, the estimation of

H(Pz) —H((P|Y = y)) approaches its real value as well. BY¥ samples, the mutual information is less
then0.0000003 bits away from the exact value of

Note that the estimations 6f(P;) andH((P|Y = y),,) tend to approach from below. Indeed, our es-
timator is a biased one. While others have created less sgtbiestimators ([5] provides a recent overview),
we simply opt to use more samples instead.

The results for more realistic statistics (mean, mediad, rmode) are shown in Figure 1(b). Note that
the value of the estimations for all three statistics sizdml by 223 samples. The raise and fall of the
estimations is due to both the estimations}ofP,) and H((P[Y = y),) approaching their real values

from below withH(P) approaching it's real value more quickly thae((P[Y" =y),). This creates a
period wherel (P) is a reasonable estimation aft{(P|Y = y),,) is aradical underestimation resulting
in H(Pz) — H((P|Y = y),,) being a radical overestimation.

Bits.

H(Z|Y=y) o
i6g,(5
H@) - HEY=y) e

Bits.

H(Z) - H(Z|Y=y) for mean —&—
H(Z) - H(Z|Y=y) for median —-e-—
H(Z) - H(Z|Y=y) for mode -------

R o Aoiaa

! !
5 10 15

! ! 0
20 25

Exponent of the number of samples (log, scale)

(a) Parity

e Py "
10 15 20 25
Exponent of the number of samples (log, scale)

(b) Mean, Median, and Mode

Figure 1: Estimations for Various Statistics

Statistic

H(Pz) —H((PIY =y),)

Run Time (secs

Parity
Mean
Median
Mode

0.999999797131
0.0125233560025
0.00205987477602
0.0376910036281

639
684

1498
2444

Table 1: Summery of Analysis Results for Four Statistics

Table 1 summarizes the estimations #37 samples and shows the amount of time taken to com-
pute these results for running on32 GHz, 64-bit processor. Note that the estimations?e)(ﬁz) —
H((P|Y = y),,) for the mean, median, and mode are all lower than for parithiis Tonforms our sus-
picion that aggregate statistics tend to reveal little atibeir respondents. The time for estimating these
values grow linearly with the number of samples as expedibd.slowest was mode, which todk minutes
for 225 samples. However, an estimation that differs by less th@2il bits (0.32%) is available in under a

minute using2!”? samples.

To explore how the number samplesaffects the value ot (P;) — H((P|Y = y),) and the rate of
convergence to it, Figure 2(a) shows the estimatiori¥ @) — H((P|Y = y)) for the mean for varying
sizesn. Using more respondents decreased the difference beti¥éEp) andH ((P|Y = y),). However,

it increased the number of samples needed for convergemoe sbnvergence requires seeing many samples
such thaty” = y, which becomes a less common event.ascreases. Furthermore, it increased the amount
of time needed to compute the value of the statistic keepiegimber of samples constant since calculating
the mean over more respondents takes longer. In the worse tt@smean over024 respondents, it took
109 minutes for2?®> samples with convergence still not reached. Figure 2(djilese run times.

Our implementation may be downloaded fréwint p: / / www. c¢s. crmu. edu/ ~mt schant/ ncqi f/

Bits.

4096 -

1024

N

o

>
T

Seconds (log, scale)
o
Y
T

16

1 1 1 i 1 1
5 10 15 20 25
Exponent of the number of samples (log, scale) Exponent of the number of samples (log, scale)

(a) Estimations oH(Pz) — H((P[Y =y)) (b) Run Times for Analysis
Figure 2: Results for Mean with Various Numbers of Respotslen

6 Related Work

Quantitative Information Flow. Much work has been done on information flow analysis. We willyo
discuss those works that deal with quantifying the flow obinfation. These works concern themselves
with either confidentiality or integrity. In both cases, tto®l user partitions the inputs and outputs of the
program into high-level and low-level classes. Quantitainformation flow for confidentiality measures
how much the high-level inputs affect the low-level outpu@siantitative information flow for integrity, on
the other hand, measures how much the low-level inputstafiecigh-level outputs. The two problems are
dual and an analysis for one will apply to the other. Sincework fits under the confidentiality problem,
we will discuss all related works from this angle even if thvegre created with integrity in mind.

The work of Clark, Hunt, and Malacaria presents a formal nhadiggrograms for quantifying infor-
mation flows and a static analysis that provides lower anceuppunds on the amount of information
that flows [1]. They measure information flow as the mutuabiinfation between the high-level inputs
and low-level outputs given that the adversary has contret the low-level inputs. That is, they measure
T(Levt; H"|LI") whereL°'t is a random variable representing the low-level outpit, is one represent-
ing the high-level inputs, and™™ is one representing low-level inputs. Unlike our work thaasures the
information flow in a program given a particular input, thamalysis provides upper and lower bounds on
the size of the information flow in a given program regardlesthe actual inputs or the distributions that
generate them. Since the upper bound holds for all inputillistons, it is an upper bound on the channel
capacity of the program.

Their analysis, if implemented, could be used for our probley treating the inputX asH™, usingY’
asL°'t, and assuming thaf = X. (L'" is unused since we do not allow the adversary to control gmyt
to the statistic.) However, their analysis produces bouhdsare too loose for our purposes. For example,
no matter how many independent and identically distribig@ohples goes into a mean, their analysis will
state that all the information about the first sample is medias output despite the fact that it would be
hidden amongst other samples.

McCamant and Ernst provide a dynamic analysis for quam&anformation flow using the mutual
information formalization [6]. Their analysis provides apper bound on the flow of information of a single

path of execution in a program. Their analysis converts a paexecution into a flow network. They then
find the max cut of the network to bound the information flowlikinus, they provide a sound upper bound
for that path of execution instead of an estimate. Howeilar,the work of Clark et al., their analysis does
not account for information hiding in the calculations lizesum making the bound too loose to be useful
for our purposes.

Newsome and Song also provide a dynamic analysis for gatimitinformation flow using the mutual
information formalization [7]. Their analysis convertsiagle path of execution into a logical formula that
characterizes the path. Each solution to this formula spoads to a value that the outplitcan take
on while taking that path of execution. If all such solutiare found, this provides the channel capacity
betweenX andY provided only the analyzed path of execution is ever usegrdnatice, a theorem prover
can rarely find all such solutions, and thus, their analysily provides a lower bound on the channel
capacity. Whether or not this bound is tight enough for owesudepends on the theorem prover and the
formula.

Clarkson, Myers, and Schneider object to the mutual inféiendormulation of quantitative information
flow [2]. Instead they proposed a formulation using the elid the adversary. However, such a formulation
is often not practical since the surveyor often will not kntive adversary’s beliefs. After adjusting their
definitions for our uses, information flow is defined toB¢l) 2 — 2) — D((Q|Y = y), — £) whereQ is
the adversary’s beliefg; = Z(w) is the actual value of the random variable the adversarytésmgting to
learn,z is a distribution overZ that assigns to z and0 to every other element a¥’, andD(Q, — Pz) is
the relative entropy:

Py(2)
D — Py) = Pz(2)lo
(Qz Z) ;Z 7(2) & 02)
For deterministic programs, they prove thiatQ, — %) — D((Q|Y =y), — %) reduces to-log Qy (y).
We can calculate this given an approximatiortaf directly. We could also calculate this using our sampling
approach given an approximation @for @ x.

Preserving Privacy. Statistical disclosure limitation attempts to preseniggmy despite releasing statis-
tics. (For an overview see [4].) Most of the methods used i lthe of work are specialized for a single
class of statistics. Most often this is the class of freqyeiables, tables that record the number of re-
spondents with various combinations of attributes. Tabfesagnitudes and sanitized individual responses
(microdata) are also considered. While our approach is reffi@ent for some statistics than others, it can
work on any statistic provided it is calculated by a computer

Other works in statistical disclosure limitation use Mo@trlo simulation for purposes other than ours.
For example, Slavkovit uses it construct an estimationrobability distributions over outputs¥y in our
notation) [8].

Differential privacy is a formalization of what it means farstatistic to maintain the privacy of the
respondents about which it is calculated [3]. It requires the output that the program produces is probably
no different from the output it would have produced if onep@sdent were dropped from or added to the
survey. In particular, for a statisti¢ to havee-differential privacy, it must be the case that for all séts
and D, of responses that differ on at most one response and alltsubeé the range off

Pr[f(D;) € S] < e Pr[f(D2) € S]

This ensures that the probability of the statistic’s oufpliing in some sef5 changes only by a factef as a
single respondent’s information is either added or remdx@u the survey. Intuitively, if the statistic prob-
ably looks the same regardless of if a person is surveyedtpan@dversary cannot learn much information

about the person. While we could consideio be measure of information flow, it does not lend itself to
the analysis of many standard statistics since they do natddifferential privacy for any value of. For
example, the mean of respondent incomes would not satidifferential privacy for any since it would
surely change by at least a small amount with a responderdvesin (A version of the mean statistic that
adds random noise to the result could be constructed tdysatdifferential privacy for are that depends
upon the amount of noise added.)

7 Conclusions and Future Work

We have provided an analysis for determining the amount fofmation that an adversary learns from a
statistic given various assumptions. Future work coula ¢hsse assumptions. However, this work and all
works on quantitative information flow must make some asgigmmbout the adversary. In most works,
including our own, they assume that the adversary’s belietse in line with the actual wor@ and that
adversary has no additional background knowledge. Clarkdaal. instead assume they can model the
adversary. Both of these assumptions are troubling. Thjgests that methods that do not depend on the
adversary, such as differential privacy [3], might provalbetter solution to protecting privacy. However, it
considers every standard statistic (mean, median, mocl¢ egfually and completely unprivate.

Other future work could combine our method with static apgttes for information flow such as the
work of Clark et al. [1]. Such a hybrid approach, if possiligght scale to systems too large or slow for
our Monte Carlo approach while using our approach to closggmine key components of the program.

References

[1] CLARK, D., HUNT, S.,AND MALACARIA, P. A static analysis for quantifying information flow in a
simple imperative languagdournal of Computer Security 15 (2007), 321-371.

[2] CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. Belief in information flow. InNCSFW
"05: Proceedings of the 18th IEEE workshop on Computer Security Foundations (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 31-45.

[3] DwoRk, C. Differential privacy. In33rd International Colloquium on Automata, Languages and
Programming (ICALP 2006) (2006), vol. 2, pp. 1-12.

[4] FEDERAL COMMITTEE ON STATISTICAL METHODOLOGY. Statistical disclosure limitation method-
ology. Statistical Policy Working Paper 22, 2005.

[5] KENNEL, M. B., SHLENS, J., ABARBANEL, H. D. I., AND CHICHILNISKY, E. J. Estimating entropy
rates with bayesian confidence intervaieural Computation 17, 7 (jul 2005), 1531-1576.

[6] MCcCAMANT, S.,AND ERNST, M. D. A simulation-based proof technique for dynamic imf@tion
flow. In PLAS’07: Proceedings of the 2007 workshop on Programming languages and analysis for
security (New York, NY, USA, 2007), ACM, pp. 41-46.

[7] NEwWSOME, J., AND SONG, D. Influence: A quantitative approach for data integrityecii. Rep.
CMU-CyLab-08-005, CyLab, Carnegie Mellon University, 300

[8] SLAvKoVIC, A. B. Satistical Disclosure Limitation Beyond the Margins; Characterization of Joint
Distributions for Contingency Tables. PhD thesis, Carnegie Mellon University, 2004.

A The Model More Formally

In this section, we provide definitions that are more forrhaht the ones found in Sections 2 and 3.

Formally, we model the environment from which program irgpedme as a probability spa¢e, F, P)
with the sample space, eventsF, and probability measur® that models this environment.

Let 27* be the set of inputs that the modeled program can consume.s$eng that?” is countable,
implying that.2"* is countable. This ensures thia *,2# *) a measurable space. The random varidbje
which models program inputs, is from the probability sp&eeF, P) to the measurable spa¢g ™, 2%).

Let % be the set of outputs that the modeled program can produces®ene tha¥ is countable, and
thus, (#,27) is a measurable space. Lgt 2™* — % be a function that models the program. Lébe
foX, which models the output of the prograii.is from the probability spac&?, 7, P) to the measurable
space(?,2”). Y is a well-defined random variable since for asiy: 27, f~!(S) must be ie* "~ and the
state space dX is (27*,2% ") ensuring thal ~!(f~1(S)) = Y~1(S) isin F.

We model an adversary as attempting to determine the vahkedio by some random variablé from
(Q, F, P) to some measurable spac#’, 27, again, assuming tha is countable.

We model the adversary’s beliefs about the world as a préibatieasurel) on (€2, F).

Given a random variabl& from (€2, F, P) to (2", ¥), thedistribution Px is the pushforward measure
of Pby X. Thatis,Px(E) = P(X~'(E)) for E € X.

Given a probability spac&?, 7, P) and random variabl& from (Q2, F, P) to (2",), we write P|Y" =
y for the probability measure such th@P|Y = y)(E) = P(EnY~'({y}))/P(Y'({y})). Note that
(Q,F, P|Y = y) is a probability space with the same random variable$as, P).

Thus, given probability spacg?, F, P), random variabl&” from (Q, F, P) to (¢, %y), and random
variableZ from (Q, F, P) to (2,3), (P|Y = y), is the distributionD such thatD(z) = P(Z~({z})N
Y= ({y})/P(Y ' ({y})) fory € & such thatP(Y ' ({y})) # 0.

