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This technical report serves as an informal proceedings forthe 1st Workshop on Quantitative Analysis
of Software (QA’09), held as a satellite workshop of the 2009Interational Conference on Computer-Aided
Verification (CAV), to be held in Grenoble, France.

The workshop program comprises a morning keynote talk, a session of refereed contributed papers,
an afternoon session of invited talks and a final session of open discussion on the workshop topic. These
proceedings include a brief statement of the goals of the workshop, the workshop program, the abstracts for
the invited talks, and full-length refereed papers.

Motivation and Goals of the Workshop

Formal verification of software has mostly been concerned with Boolean properties of code, such as, are
assertions satisfied, are all buffer accesses within bounds, does it always terminate, is there any undesirable
information flow, etc. However, it is often desirable to ask more quantitative questions about software,
such as, what is the expected number of bugs in the software and what is the mean-time between failures
(to faciliate decisions about software releases), how muchresources (e.g., time, memory, power) does it
consume (for performance analysis, and to provide guarantees for embedded, real-time systems), how much
information does it leak or how well is it obfuscated (for security related issues).

This workshop aims to explore novel techniques for quantitative analysis of software. It is particularly
focussed on code-level analysis rather than analysis purely of models of software or systems. Papers on all
techniques have been welcomed, including static, dynamic,and probabilistic analyses. The aim of this work-
shop is bring together researchers from different areas (programming languages, software engineering, em-
bedded systems, performance analysis, computer security,formal verification, randomized/approximation
algorithms, etc.) who are interested in any quantitative aspect of software, thereby providing a platform to
investigate if there are common techniques that could be applied to a range of quantitative analyses.

The scope of the workshop, includes, but is not restricted to, the following topics:

• Performance Analysis

• Reliability Evaluation

• Resource Bound Analysis

• Execution Time Analysis
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• Quantitative Information Flow

• Probabilistic Analysis

• Software Quality Metrics

• SAT and SMT engines for quantitative analysis, e.g., model counting techniques

Workshop Program

8:45 – 9:00 Welcome and Introduction
9:00 – 10:00 Keynote Talk

Thomas A. Henzinger (EPFL and IST Austria)
From Boolean to Quantitative System Specifications

10:00 – 10:30 Break I
10:30 – 12:00 Contributed Papers
10:30 – 11:00 Francesco Logozzo (Microsoft Research), Corneliu Popeea (MPI-SWS),

and Vincent Laviron (ENS)
Towards a Quantitative Estimation of Abstract Interpretations

11:00 – 11:30 Jonathan Heusser and Pasquale Malacaria (Queen Mary, Univ. of London)
Quantifying Loop Leakage using a Lattice of Partitions

11:30 – 12:00 Michael Carl Tschantz (CMU) and Aditya V. Nori (Microsoft Research)
Measuring the Loss of Privacy from Statistics

12:00 – 2:00 Lunch
2:00 – 3:30 Invited Talks
2:00 – 2:30 Elvira Albert (Complutense University of Madrid)

Upper Bounds on Memory Usage for Garbage-Collected Languages
2:30 – 3:00 Marta Kwiatkowska (Oxford University)

Software Verification for Ubiquitous Computing
3:00 – 3:30 Raimund Kirner (TU Vienna)

Timing Analysis of Real-Time Software
3:30 – 4:00 Break II
4:00 – 5:00 Open Discussion



Abstracts of Invited Talks

From Boolean to Quantitative System Specifications
Thomas A. Henzinger (EPFL and IST Austria)

The boolean view holds that given a model and a specification,the specification is either true or false in
the model. State transition models have been extended to accommodate certain numerical quantities, such
as time stamps and probabilities. However, the boolean viewof specifications is still prevalent, for example,
in checking whether a timed model satisfies a formula of a real-time logic, or whether a stochastic process
satisfies a formula of a probabilistic logic. We advocate thefully quantitative view, where a specification
can be satisfied to different degrees, that is, the value of a given specification in a given model is a real
number rather than a boolean. We survey some initial resultsin this direction and present some potential
applications, not only in the timed and probabilistic domains, but also for specifying and analyzing the
resource use, cost, and reliability of a system.

Upper Bounds on Memory Usage for Garbage-Collected Languages
Elvira Albert (Complutense University of Madrid)

Thepeak memory usage of a program is the maximum size of thelive data on the memory during the
execution of the program, i.e., the minimum amount of memoryneeded to run the program without ex-
hausting the memory. It is well-known that garbage collection makes the problem of predicting the memory
required to run a program difficult. We will describe alive heap space analysis for garbage-collected lan-
guages which infers accurate upper bounds on the peak heap usage of a program’s execution that are not
restricted to any complexity class, i.e., we can infer exponential, logarithmic, polynomial, etc., bounds. Our
analysis is developed for an (sequential) object-orientedbytecode language with ascoped-memory manager
that reclaims unreachable memory when methods return. The practicality of our approach is experimentally
evaluated on COSTA, a COSt and Termination Analyzer for Javabytecode.

(Joint work with Samir Genaim, Miguel Gómez-Zamalloa, Puri Arenas, Germán Puebla and Damiano
Zanardini).

Software verification for ubiquitous computing
Marta Kwiatkowska (Oxford University)

Ubiquitous computing systems are now widespread in e.g. intelligent buildings, environmental moni-
toring, healthcare monitoring and automotive software. Also called ’everyware’ by Adam Greenfield, they
continuously interact with the environment through sensors and actuators. In view of the characteristic en-
vironmental uncertainty and resource limitations, quantitative techniques are needed to reason about their
behaviour. This talk will focus on how software verificationtechnology, specifically model checkers for
languages such as C/NesC typically used to program ’everyware’ controllers, can be extended to provide
automated analysis for pertinent aspects of ubiquitous computing systems: context, communication failure,



resource constraints and performance.

Timing Analysis of Real-Time Software
Raimund Kirner (TU Vienna)

The analysis of the worst-case execution time (WCET) requires detailed knowledge of the program
behavior. In practice it is still not possible to obtain all needed information automatically. Within this talk
we present the current state of the art of WCET analysis and point to the main challenges to be solved.
Further, we show the potential of complementary approachesto static WCET analysis, ranging from richer
timing information to adequate methods for soft real-time systems.



Towards a Quantitative Estimation of Abstract Interpretations

(Extended abstract)

Francesco Logozzo1 Corneliu Popeea2 Vincent Laviron3

1 Microsoft Research, Redmond, WA (USA)

logozzo@microsoft.com
2 Max Planck Institute for Software Systems, Saarbrücken (Germany)

cpopeea@mpi-sws.mpg.de
3 École Normale Supérieure, 45, rue d’Ulm, Paris (France)

Vincent.Laviron@ens.fr

Abstract. We aim to extend the notion of distance of sets to partially ordered sets (posets). We discuss several

possible definitions, and we propose a relaxed definition of distance between elements of a domain. We apply it in

the abstract interpretation theory, and we show in some preliminary examples how it seems well suited to formally

quantify the relative loss of precision induced by abstract domains.

1 Introduction

Abstract interpretation is a theory of semantic program approximation based on domain theory. It precisely

capture the qualitative relative loss of precision induced by static analyses: the more abstract the domain the

less the information it captures about program executions. However, the theory does not provide a quanti-

tative estimation of the precision loss induces by the abstraction. In this paper we report some preliminary

thoughts and results on providing a quantitative evaluation of the errors induced by abstractions.

We are interested in defining metric on the elements of a domain. Roughly, a metric allows to measure

the distance between the elements of a given set. When applied to domains (i.e. sets whose elements are

related by some order), we would like to have a distance d(·, ·) which is somehow compatible with the

underlying order ⊑. For instance, if x ⊑ y ⊑ z, then one expects that d(x, y) ≤ d(x, z).

The classical definition of distance of measure theory do not work well with domain theory. Intuitively,

this is because in a metric space, one wants to compare any two elements, and it is hard to define a generic

distance which is also aware, e.g., that some elements are not comparable. In this paper we aim at relaxing

the classical notion of distance on sets, and to conjugate it with the underlying order on abstract elements. We

argue that some natural extensions are not satisfactory for our purposes, and we introduce a pseudo-metric

which seems to be satisfactory on some examples.

2 Background: Distance in unordered sets

The minimal requirements that one expect for a distance of two elements x and y of an unordered set are: (i)

that the distance between x and y is always not negative (negative distances make no sense) and it is equal

to zero iff x = y; (ii) the distance of x from y is the same as the distance of y from x; and (iii) the distance

of x from z is minimal, in that the indirect distance from x to some y and that from y to z is always larger

than the direct distance.

Definition 1 (Distance). Let S be a set. We say that d ∈ [S × S −→ R] is a distance for s if it satisfies the

following axioms:



d(x, y) ≥ 0 (non-negativity)

d(x, y) = 0 ⇔ x = y (iff-identity)

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

We recall below the definition of the Hausdorff distance which is commonly used to measure the distance

of sets by taking the maximum distance of a set to the nearest point in the other set. Hausdorff distance will

be useful in the following (Sect. 5.2), as it may provide a way to measure the distance of convex polyhedra.

Lemma 1 (Hausdorff distance). Let X and Y be two subsets of a metric space that is endowed with a

distance d. Then the following defines a distance

dH(X,Y ) = sup
x∈X

{ inf
y∈Y

{d(x, y)}}.

We will also use two variations of dH , the minimum Hausdorff distance dHmin and the maximum Hausdorff

distance dHmax:

dHmin(X, Y ) = inf
x∈X

{ inf
y∈Y

{d(x, y)}} dHmax(X, Y ) = sup
x∈X

{sup
y∈Y

{d(x, y)}}

3 Distance on a partial order

3.1 Pseudo distance

As briefly discussed in the introduction, in general the classical definition of distance for unordered sets

does not take advantage of the partial order between elements of a domain. The goal of this section is to

define a pseudo-distance between elements of a domain. Let us consider properties in Def.1 one by one, and

consider how we can extend them to match the distance in a domain.

It seems obvious that the distance between two elements of a domain should always be non-negative, so

we leave (non-negativity).

Requiring that the distance between two elements is zero if and only if the two elements are the same

seems to be a too strong requirement. For instance, in abstract interpretations it is often the case that two

distinct abstract elements a1 and a2 represent the same concrete object. In particular, useful static analyses

relies on the fact that the abstract domain is simply a pre-ordered set whose order relation ⊑ does not

enjoy the the anti-symmetric property. Formally, it can be the case that both a1 ⊑ a2 and a2 ⊑ a1 hold

but a1 = a2 does not hold. In that case, we’d like to have the freedom to define a distance function such

that d(a1, a2) = 0 even if a1 6= a2 but γ(a1) = γ(a2). The axiom (iff-identity) does not allow us such a

definition. A turn-around is to change the abstract domain, and quotient it with respect to the concretization

function. However, such a turn-around goes against our goal which is the definition of a notion of distance

on arbitrary domains.

A first variation of the (iff-identity) would be to relax it, by replacing the equality with the ⊑ operator.

The consequent axiom

d(x, y) = 0 ⇔ x ⊑ y (iff-identity’)

it is not affected by the problem above. However, the axiom (iff-identity’) is not useful since it implies that all

elements in an ascending chain have distance 0, so that if x ⊑ y ⊑ z then d(x, y) = d(y, z) = d(x, z) = 0.

Even worse, when applied to the semantics of a program, usually defined as a fixpoint, (iff-identity’) implies

that all the semantics have distance zero from the bottom: d(⊥,⊔n<+∞fn(⊥)) = 0.
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Our choice is to simply relax the double implication of (iff-identity), and to require that each element has

distance 0 from itself, but allowing a zero-distance also for some distinct elements (Def. 1 with (if-identity)

is called a pseudo-metric [5]):

d(x, y) = 0 ⇐ x = y (if-identity)

The rationale behind is that: (i) a distance function gives a quantitative evaluation on how far are two el-

ements in a domain; and (ii) in some cases we want the freedom to say that the distance of two distinct

elements is negligible (for instance when they represent the same information up to some abstraction).

In an unordered set, the triangle inequality states that the distance between any two points is the shortest

path between those. It turns out that requiring the triangle property to hold for arbitrary elements of a domain,

without considering the order relation is too restrictive. We decided to use a weaker axiom, which requires

the triangle inequality to hold only for comparable elements:

if x ⊑ z ⊑ y then d(x, y) ≤ d(x, z) + d(z, y) (weak triangle inequality)

The axiom formalizes the intuition that the distance between elements of a chain should be compatible with

the order: If y is not an immediate successor of x, then the path between x and y should not be shorter than

any path passing through some element in between x and y.

The next definition sums up what said so far, and it introduces the notion of pseudo-distance compatible

with a domain D. When D is clear from the context, we will simply say pseudo-distance.

Definition 2 (Pseudo-distance D-compatible). Let 〈D,⊑〉 be a domain ordered according to the relation

⊑. Let δ ∈ [D × D → R ∪ {+∞}] . We say that δ is a pseudo-distance D-compatible iff it satisfies the

following axioms:

δ(x, y) ≥ 0 (non-negativity)

x = y ⇒ δ(x, y) = 0 (if-identity)

δ(x, y) = δ(y, x) (symmetry)

x ⊑ z ⊑ y ⇒ δ(x, z) ≤ δ(x, y) + δ(y, z) (weak triangle inequality)

It is also worth noting that, unlike the classical definition, we allow the distance between two elements to be

+∞.

3.2 Some simple properties of pseudo distances

The easiest example of a pseudo-distance is the zero function:

Lemma 1 (Zero) The function δ0(x, y) = 0 is a pseudo-distance.

Lemma 2 (Additivity) Let δ1, δ2 be pseudo-distances. Then δΣ defined as δΣ(x, y) = δ1(x, y) + δ2(x, y)
is pseudo-distance.

It is worth noting that: (i) δ0(x, y) is not a distance in the sense of Def. 1; and (ii) as a consequence of the

lemmas above, the set of all pseudo-distances over a domain D form an additive monoid (unlike classical

distances).

Lemma 3 (Multiplication by a scalar) Let δ by a pseudo-distance and k ∈ R ∪ {+∞}. Then δ∗ defined

as δ∗(x, y) = k · δ(x, y) is a pseudo-distance.

We call an operator ⊔ a gathering operator if it satisfies x ⊑ x⊔ y, y ⊑ x⊔ y, and x ⊑ y ⇒ x⊔ y = y.

A gathering operator is a weaker notion of least upper bound operator, and it is useful in static analyses as

e.g. [4, 6].
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Lemma 4 Let D a domain endowed with a gathering operator ⊔. If x ⊑ y, then δ(x ⊔ y, y) = 0 and

δ(x ⊔ y, x) = δ(x, y).

A similar result can be proven for an intersection operator ⊓ satisfying x⊓ y ⊑ x, x⊓ y ⊑ y, and x ⊑ y ⇒
x ⊓ y = x:

Lemma 5 Let D a domain endowed with an intersection operator ⊓. If x ⊑ y, then δ(x ⊓ y, y) = δ(x, y)
and δ(x ⊓ y, x) = 0.

4 Some pseudo-distances

4.1 Structure-based

A first thought for defining a more interesting pseudo-distance on a domain is to count the number of

intermediate elements between two elements:

Definition 1 (Path length (plen)) The path length for two elements x ⊑ y of a domain D is

plen(x, y) = min{n | {x0, x1, . . . xn} ∈ ℘(D), x0 = x, xn = y,∀0 ≤ i < n.xi ⊑ xi+1}.

If x and y are not comparable, we let plen(x, y) = +∞.

The function plen is not a pseudo-distance as it does not satisfy (symmetry). Fixing it requires little work:

Lemma 6 (δplen) The function δplen ∈ [D × D → R ∪ {+∞}] defined as

δplen(x, y) = x ⊑ y?plen(x, y) : (y ⊑ x?plen(x, y) : +∞)

is a pseudo-distance.

The pseudo-distance δplen is not very interesting, as it relates only elements that belong to the same chain.

One can think to refine it by taking the average distance between two elements and their least upper bound

(or the result of the gathering if the least upper bound is not defined):

Lemma 7 (δ⊔plen) The function δ⊔plen ∈ [D × D → R ∪ {+∞}] defined as

δ⊔plen(x, y) = 1/2 · (δplen(x, x ⊔ y) + δplen(y, x ⊔ y))

is a pseudo-distance.

It is immediate to check that if x and y are comparable, then δ⊔plen(x, y) = δplen(x, y).

Example 1. Let x0, y0, x1, y1 be elements of a domain such that δplen(x0, x0⊔y0) = δplen(y0, x0⊔y0) = 50,

δplen(x1, x1 ⊔ y1) = 1 and δplen(y1, x1 ⊔ y1) = 99. Then, δ⊔plen(x0, y0) = δ⊔plen(x1, y1) = 50. ⊓⊔

In the example above, from the view of an abstract interpretation one would have expected that δ(x0, y0) 6=
δ(x1, y1), because when approximating x1 and y1 with x1 ⊔ y1 one may perform a small or a large error, but

when approximating x0 and y0 with x0 ⊔ y0 one always performs a medium error. A way to overcome this

drawback is to consider the minimal distance to the gathering (instead of the average distance):

Lemma 8 (δ⊔,m
plen) The function δ⊔,m

plen ∈ [D × D → R ∪ {+∞}] defined as

δ⊔,m
plen(x, y) = min(δplen(x, x ⊔ y), δplen(y, x ⊔ y))

is a pseudo-distance.

The drawback of distances based on path length is that they do not work well for infinite height lattices.
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4.2 Affinity

An alternative pseudo-distance considers the affinity between abstract elements. The affinity distance was

originally used for bounded powerset construction of Polyhedra [11]. The intuition behind is to have an

percentage estimation of the simple constraints that are preserved at the gathering. Before stating it formally,

we need some auxiliary definitions. Let us assume that seq is a function which given an abstract element x
returns a minimal and finite set of terms equivalents to x. For instance, in the domain of convex Polyhedra

seq({−u ≤ 0, u + v ≤ 2, 2 · u + 2 · v ≤ 4}) = {−u ≤ 0, u + v ≤ 2}. The function seq can be defined for

most abstract domains, but not for all (think of seq({u = f(u)}), as it may appear in a domain for abstract

unification). We let | · | denote set cardinality, eg, |{−u ≤ 0, u + v ≤ 2}| = 2.

Lemma 9 (Affinity pseudo-distance) The affinity distance of two elements x and y wrt the operator ⊔
gives rise to the affinity distance defined as:

δ⊔aff (x, y) = 1 −
|seq(x ⊔ y)|

|seq(x) ∪ seq(y)|

Proof. The proof that the affinity satisfies the (weak triangle inequality) property is quite tricky. We

report it in the appendix. ⊓⊔

It is immediate to observe that when x ⊑ y, then δ⊔aff (x, y) = 1 − |seq(y)|
|seq(x)∪seq(y)| . One possibility to

lift the affinity distance from a base to a powerset domain is simply to ignore the powerset structure of the

domain. However, we did not yet proved it to satisfy Def. 2, so we leave it as an hypothesis:

Hypothesis 1 (Affinity for powerset domain) Given X = {x1, . . . xn} and Y = {y1, . . . ym} elements of

a powerset domain their affinity distance is:

δ⊔aff (X, Y ) = 1 −
|seq(X ⊔ Y )|

|(∪iseq(xi)) ∪ (∪jseq(yj))|

4.3 Examples

The notion of pseudo-distance on a domain is useful to quantify the relative precision of different inferred

invariants.

4.4 Nullness Domains

Let us consider the code in Fig. 1 to be analyzed with four different abstract domains: NN (nullness), TNN

(type+nullness), DNN (disjunctive nullness) and DTNN (disjunctive type+nullness).It is easy to prove that:

NN is the less precise domain, DTNN is the most precise, and TNN and DNN stand between the two but they

are not comparable. The notion of distance of abstract elements allow us to give a quantitative comparison

of the result of TNN and DNN.

Let us consider the method m written in C#-like syntax (the expression a as B casts a to B if a

is a subtype of B, otherwise it returns null). The abstract states at the exit point of m using different

abstract domains are in Fig. 2. The domain TNN is in general more precise than NN, but in the example it

does not provide a more precise abstract state. The domain DNN is not comparable with TNN, and in the

example it infers a more precise abstract state. Using the affinity distance we can give a quantitative formal

5



characterization of that (with an abuse of notation we confuse the abstract element with the name of abstract

domain used):

δ⊔aff (NN, TNN) = 1 − 1
1 = 0

δ⊔aff (NN, DNN) = 1 − 1
3 = 2

3

δ⊔aff (DNN, DTNN) = 1 − 3
7 = 4

7

δ⊔aff (NN, DTNN) = 1 − 1
7 = 6

7

The distance between NN and TNN is zero, meaning that no gain of information is obtained in the

example when refining the NN just with types. The refinement with explicit disjunction (also known as trace

partitioning [8]) produces an improvement of the 66%. The refinement of DNN with types improves the

result by a further 57%. Overall using disjunction and types one obtains a result which is 85% more precise

than the abstract domain of NN alone.

m(A a, out A x) {

requires a != null;

B b = a as B;

if (b != null)

x = new B(b);

else

x = null;

}

Fig. 1. An example for nullness analysis

Abstract Result

Domain

NN : 〈a → NN , x → ⊤〉
DNN : 〈a → NN , x → NN〉 ∨ 〈a → NN , x → N〉
TNN : 〈a → NN , x → ⊤〉

DTNN : 〈〈a → NN , x → NN〉, typeof(a) <: B, typeof(x) == B〉∨
〈〈a → NN , x → N〉, typeof(a) == A, typeof(x) == A〉

Fig. 2. The different results of the analysis using four different abstract domains.

NN denotes that the reference is not null, N that it is definitely null.

4.5 McCarthy function

int MC(int n) {

int t1, t2, r;

if (n>100)

r = n-10;

else {

t1 = n+11;

t2 = MC(t1);

r = MC(t2);}

return r;

}

Fig. 3. The McCarthy function

Abstract Result

Domain

Sign : {0 < r}
Intervals : {91 ≤ r}

Octagons : {91 ≤ r, n− 10 ≤ r}

Fig. 4. The different inferred postconditions for the McCarthy function using

different numerical abstract domains.

Pseudo-distances apply also when the underlying abstract domain has infinite height. Let us consider

the McCarthy function (recalled in Fig. 3). We can analyze it with three different abstract domains: Signs,

Intervals and Octagons. The inferred invariants are summarized in Fig. 4.5. The distances between those are

given below.

δ⊔aff (Signs, Intervals) = 1 − 1
2 = 1

2

δ⊔aff (Intervals, Octagons) = 1 − 1
2 = 1

2

δ⊔aff (Signs, Octagons) = 1 − 1
3 = 2

3
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Fig. 5. The lattice Parity ⊗ Signs

Using Octagons, one obtains a postcondition which is 66% more precise than using Signs.

We can also consider to lift Octagons to disjunction of Octagons (DOctagons). In this case the inferred

invariant is [10]:

{101 ≤ n, n− 10 ≥ r, n− 10 ≤ r} ∨ {n < 101, r ≥ 91, r ≤ 91}

and one can prove that the δ⊔aff (Octagons, DOctagons) = 1 − 2/6 = 2/3.

5 Towards measuring the precision of Abstract Interpretations

The notion of distance is useful to formally quantify the error induced by using abstract elements. Given a

concrete domain D and an abstract domains A, in the following we suppose that: (i) D and A are complete

lattices; and (ii) they are related by a Galois connection 〈α, γ〉.

5.1 Measuring abstract elements and domains

Definition 2 (δ-Error) We define the error of approximating a concrete element c in A according to pseudo-

distance δ as ǫδ(c) = δ(c, γ(α(c)).

It is immediate to observe that as in a Galois connection c ⊑ γ(α(c)), then ǫδ
⊔,m

plen
boils down to ǫδplen

.

Example 2. Let us consider the concrete domain to be the reduced product of Parity and Signs (Fig. 5) and

the abstract domain to be Signs. Then γ(α(〈even, > 0〉)) = γ(> 0) = 〈⊤, > 0〉 implies that ǫδplen
(c) =

δplen(〈even, > 0〉, 〈⊤, > 0〉) = 1. If, on the other hand we chose Parity as abstract domain, then γ(α(〈even, >
0〉)) = γ(even) = 〈even,⊤〉 which implies that ǫ(c)δplen

= δplen(〈even, > 0〉, 〈even,⊤〉) = 2, as 〈even, >
0〉 ⊑ 〈even,≥ 0〉 ⊑ 〈even,⊤〉 in Parity ⊗ Signs. ⊓⊔

The example above suggests that one may be able to lift the Def. 2 to abstract domains, so that one can

measure the loss of information induced by using an abstract domain.

Definition 3 (Error) Let C be an abstract domain with a finite set of elements, and let A denote the ab-

straction of C. Then the average error of using A for C according to pseudo-distance δ is

ǫA =
1

|C|
·
∑

c∈C

ǫδ(c).

7



i

Fig. 6. The element x and the sequence of elements

{y1, .., yi, ..}: dHmax(x, yi) grows arbitrary large with i,

while ǫ⊔(x, yi) remains constant for all i.

i i

Fig. 7. Two sequences of elements {x1, .., xi, ..} and

{y1, .., yi, ..}: dHmin(xi, yi) remains constant, while

ǫ⊔(xi, yi) grows arbitrary large with i.

Example 3. Let us consider two abstractions of Parity ⊗ Signs: Parity and SimpleSigns. Parity has four

elements: ⊥, ⊤, even and odd. The average error of using Parity as abstract domain is 18/17. SimpleSigns

has five elements: ⊥, ⊤, < 0, > 0 and 6= 0. The average error of using SimpleSigns is 15/17. ⊓⊔

As a consequence of the example, it turns out that even if from the point of the relative precision Parity

and SimpleSigns are not comparable, on average, one may expect to have a smaller error when it uses

SimpleSigns. It is worth noting that the quantitative errors we obtained are more relevant than those obtained

using simple cardinality arguments. In fact |5/17 − 4/17| = 1/17 < |18/17 − 15/17| = 3/17.

5.2 Measuring operators

It is known that performing operations in the abstract may introduce a loss of precision. We can lift the

previous results to formally evaluate the error induced by an abstract operator.

To estimate the error induced by the use of an abstract operator, we consider the average of the errors

induced by applying the operator to each pair of abstract elements:

Definition 4 (op-Error) Let op be the abstract counterpart for a concrete operator opc . Then the average

error of op with respect to δ is:

ǫop =
1

|A|2

∑

a1,a2∈A

δ(γ(a1 op a2), γ(a1) opc γ(a2)).

When ǫop = 0 we say that op is δ-complete. Intuitively, a δ-complete operator does not introduce any

error wrt the distance δ. A complete operator is one such that ∀a1, a2. γ(a1 op a2) = γ(a1) opc γ(a2). An

immediate consequence of Def. 4 is that if op is a complete operator, then op is δ-complete for each δ.

The next logical step is to apply the definitions of this section to the most critical operator in a static

analysis, that is the join. Our first approach was to use the Hausdorff distance, but it did not worked as one

can have (i) dHmax(x, y) arbitrary large, when err is constant (Fig. 6); or (ii) dHmin(x, y) can be constant,

when err can be arbitrary large (Fig. 7). Finding a good distance to evaluate the precision loss induced by

the join that works for infinite abstract domains is still an open question for us.

6 Related Work

van Breugel [12] exploits the structure of a metric space to define the operational and the denotational

semantics of a while language and he uses it to relate the two semantics, and to prove the existence of the

fixpoints. His approach is a way different dual to ours, as we start from the domain structure, and we build

a distance on the top of it.

Di Pierro and Wiklicky [2] propose a notion of probabilistic abstract interpretation, and they uses it to

measure the measure the incompleteness of the abstract domain. With respect to our work, they change the

8



underlying framework (from standard abstract interpretation to linear spaces). An interesting future direction

is to deepen the relation between our approach and theirs.

Distances and metric spaces have been object of wide investigation in other fields of computer science

as machine learning or computer graphics. De Raedt and Ramon [1] propose to derive a distance from a

partial order. They assume the existence of a weight function for the elements of the partial order, which

is not clear how it works in the abstract interpretation setting, where abstract elements may approximate

infinite elements. For instance we can use the affinity distance to also measure the distance between open

convex polyhedra. Markov and Marinchev [7] define a semi-distance for Horn clauses. Eiter and Mannila

[3] propose several distance measures for finite sets of points. Our affinity distance works also when the sets

are infinite.

Monniaux [9] applies abstract interpretation-based techniques to bound the worst-case probability for

some properties of interest. The affinity distance was originally used in [11] (where it was named “planar

affinity measure”) to construct a powerset extension of the polyhedron base domain. In general, such a

powerset extension can be either expensive (the number of elements is exponential when compared to the

base domain) or imprecise (when the number of disjuncts is syntactically bounded). In this context, the

affinity distance was used to identify pairs of elements that are likely to be joined (using the least upper

bound operator) with a small precision loss.

7 Conclusions

We presented the preliminary results on our investigations to quantify the loss of precision in static analyses.

We show how the classical notion of distance on metric spaces is too strict, and we proposed a weaker

notion, the pseudo-distance. We defined some pseudo-distances and we apply them to measure the relative

precision of invariants inferred with (possibly non-comparable) abstract domains. We lifted the notion of

pseudo-distance to the elements of the abstract domains (so to estimate the relative precision loss) and to

operators on abstract domain. There are still some open issues, both technical and conceptual. For instance it

is not clear if the affinity distance lifted to powerset is a pseudo-metric and we aim at extending the distance

on abstract domain to cope with infinite abstract domains, which are often of more interest for static analyses.
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A Proof of Lemma 9

Proof: It is trivial to show that δ⊔aff satisfies the non-negativity, identity and symmetry properties. We then

need to prove that δ⊔aff satisfies also the weak triangle inequality: δ⊔aff (x, y) ≤ δ⊔aff (x, z) + δ⊔aff (z, y). Using

the hypothesis x ⊑ z ⊑ y, the inequality reduces to:

1 −
|seq(y)|

|seq(x) ∪ seq(y)|
≤ 1 −

|seq(z)|

|seq(x) ∪ seq(z)|
+ 1 −

|seq(y)|

|seq(y) ∪ seq(z)|

Subsequently:

|seq(x) ∪ seq(y)| − |seq(y)|

|seq(x) ∪ seq(y)|
≤

|seq(x) ∪ seq(z)| − |seq(z)|

|seq(x) ∪ seq(z)|
+

|seq(y) ∪ seq(z)| − |seq(y)|

|seq(y) ∪ seq(z)|

We use P0 to P7 to represent cardinalities of sets where the subscript indicates the membership of edges to

x,y,z:

z y x

P1 0 0 1 |seq(x)\seq(y)\seq(z)|

P2 0 1 0 |seq(y)\seq(x)\seq(z)|

P3 0 1 1 |seq(x) ∩ seq(y)\seq(z)|

P4 1 0 0 |seq(z)\seq(x)\seq(y)|

p5 1 0 1 |seq(x) ∩ seq(z)\seq(y)|

P6 1 1 0 |seq(y) ∩ seq(z)\seq(x)|

P7 1 1 1 |seq(x) ∩ seq(y) ∩ seq(z)|

From x ⊑ z ⊑ y, we obtain that seq(x)∩ seq(y) ⊆ seq(z). Subsequently, we have that P3 = 0. We use the

notation N = ΣPi. The inequality to prove can then be simplified to:

P1 + P5

N − P4
≤

P1

N − P2
+

P4 + P5

N − P1

This inequality can be proven as follows:

(P1 + P5)(N − P2)(N − P1) ≤ P1(N − P4)(N − P1) + (P4 + P5)(N − P4)(N − P2)

N2P1 + N2P5 + P 2
1 P2 + P1P2P5 + NP 2

1 + NP1P4 + NP2P4 + NP2P5 + NP 2
4 + NP4P5 ≤

NP 2
1 + NP1P2 + NP1P5 + NP2P5 + N2P1 + P 2

1 P4 + N2P4 + N2P5 + P2P
2
4 + P2P4P5

P 2
1 P2 + P1P2P5 + NP1P4 + NP2P4 + NP 2

4 + NP4P5 ≤
NP1P2 + NP1P5 + P 2

1 P4 + N2P4 + P2P
2
4 + P2P4P5

Since NP1P4 + NP2P4 + NP 2
4 + NP4P5 ≤ N2P4, the inequality reduces to:

P 2
1 P2 + P1P2P5 ≤ NP1P2 + NP1P5 + P 2

1 P4 + P2P
2
4 + P2P4P5

Since P 2
1 P2 ≤ NP1P2 and P1P2P5 ≤ NP1P5, the inequality is proven and thusδ⊔aff

satisfies the weak triangle inequality. ⊓⊔
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Abstract. We investigate the relationship between Landauer and Redmond Lattice of Information (LoI) and recent

work in quantitative information flow. Elements of LoI can be seen as partitions where their blocks are observably

indistinguishable states. We show how leakage of looping programs can be naturally described using a sequence of

partitions that is a chain in this lattice. This interpretation is significant in light of recent work aimed at automatically

quantify leakage of programs by computing their interpretation in LoI.

We also show that the measure (in a lattice theoretical sense) of this chain is Shannon’s entropy and that it coincides

with previous information theoretical formulas characterizing leakage of loops.

1 Introduction

Landauer and Redmond [13] showed how information over a system can be represented as a lattice. The idea

is that a particular view (or observation) over the system can be associated with a partition whose blocks are

the set of states that that view or observation cannot distinguish.

Observations can be ordered by refinement: x ≤ y if and only if y makes more distinctions than x. It

turns out that this structure is a complete lattice: the Lattice of Information.

The interaction between equivalence relations, partitions and quantitative information flow has been

shown in [6], the idea being that the basic bricks of a quantitative analysis, i.e. random variables, seen as

maps from states to real numbers, can be identified with their kernel, i.e. a partition of states.

In this work, we develop these ideas further. In particular we show how the most challenging quantitative

analysis of commands, i.e. loops, can be simplified and conceptually clarified by the use of algebraic tools.

Leakage of looping programs turns out to be describable by chains in this lattice. The n−th element in

the chain corresponds to the leakage of the program up to the n−th iteration. This correspondence between

iterations and partitions may have relevance for implementation, in light of recent work by Backes, Köpf and

Rybalchenko [1] who use model-checking techniques like counter-example guided refinement to compute

the interpretation of programs as partitions in the Lattice of Information.

For example, our approach makes it simple and clear what it means to refine a loop up the n−th iteration

and how to provide a safe bound for the remaining iterations.

Hence, we argue that this algebraic interpretation improves order, elegance and abstraction of quantita-

tive reasoning techniques of looping programs.

1.1 Related Work

On the information flow side, Landauer and Redmond’s paper describes the lattice of information [13] which

builds the basis of our paper and proved to be a good model for information flow in a series of work in related

fields [5, 8, 23]. Yatsuka Nakamura described already in 1970 the lattice-theoretic basis of the information

theoretical notion of entropy [20].

Quantitative Information Flow can be traced back to the work by Denning [10], Millen [19] and McLean

[18]. An early attempt to combine quantitative ideas in the framework of LoI was by Weber [23] where a



partition blocks counting technique is used in the context of state machines. There have been a number of

recent works relevant to the present paper e.g. [5, 6, 14, 8, 1].

2 Lattice of Information

Landauer and Redmond [13] showed how information can be represented as a lattice. Let Σ be the set of all

states in a system. They described two ways as how elements of Σ can be seen as a lattice. First, as the set of

equivalence relations on the set Σ where the equivalence classes express the set of states whose information

is indistinguishable. The second way is where Σ is the domain of some function f to some other set X ,

where X describes the information extracted for some state.

Let us define the set I(Σ) which stands for the set of all possible equivalence relations on the set Σ.

The ordering of I(Σ) is now defined as

≈ ⊑ ∼↔ ∀σ1, σ2 (σ1 ∼ σ2 ⇒ σ1 ≈ σ2) (1)

where ≈,∼ ∈ I and σ1, σ2 ∈ Σ. Furthermore, the join ⊔ and meet ⊓ lattice operations stand for the

intersection of relations and the transitive closure union of relations respectively. Thus, higher elements

in the lattice can distinguish more while lower elements in the lattice can distinguish less states. It easily

follows from (1) that I(Σ) is a complete lattice.

In this paper we will assume this lattice to be finite; this is motivated by considering information storable

in programs variables: such information is ≤ 2k where k is the number of bits of the secret variable.

We give a typical example of how these equivalence relations can be used in an information flow setting.

Let us assume the set of states Σ consists of a tuple 〈l, h〉 where l is a low variable and h is a confidential

variable. One possible observer can be described by the equivalence relation

〈l1, h1〉 ≈ 〈l2, h2〉 ↔ l1 = l2

That is the observer can only distinguish two states whenever they agree on the low variable part. Clearly, a

more powerful attacker is the one who can distinguish any two states from one another, or

〈l1, h1〉 ∼ 〈l2, h2〉 ↔ l1 = l2 ∧ h1 = h2

The ∼-observer gains more information than the ≈-observer by comparing states, therefore ≈ ⊑ ∼.

Finally a useful equivalent description of the Lattice of Information is as the lattice of partitions of set

of states. This is justified by considering the trivial bijection between partitions and equivalence relations.

2.1 Lattice of Random Variables

A random variable can be seen as map X : D → R(X), where D is a finite set with a probability distribution

and R(X), a measurable set, is the range of X . For each element d ∈ D, the probability of it is denoted

p(d). For every element x ∈ R(X) we write p(x) to mean the probability that X takes on the value x, i.e.

p(x)
def
=

∑

d∈X−1(x) p(d). In other words, what we observe by X = x is that the input to X in D belongs to

the set X−1(x). From that perspective, X partitions the space D into sets which are indistinguishable to an

observer who sees the value that X takes on. This can be stated relationally by taking the kernel of X which

defines the following equivalence relation ker(X):

d ker(X) d′ iff X(d) = X(d′) (2)

2



The entropy of a random variable X is denoted H(X), defined as follows

H(X) = −
∑

x

p(x) log p(x)

As seen from the definition of p(x), the entropy of X only depends on its set of inverse images X−1(x).
Thus, if two random variables X and Y have the same inverse images they will necessarily have the same

entropy. More formally, we write X ≃ Y whenever the following holds

X ≃ Y iff {X−1(x) : x ∈ R(X)} = {Y −1(y) : y ∈ R(Y )}

and thus if X ≃ Y then H(X) = H(Y ).
This shows that each element of the lattice I(Σ) can be seen as a random variable. We can hence identify

LoI with a lattice of random variables ordered by (1).

Our lattice has a top element ≈⊤ which is the identity relation, distinguishing all states from one another.

If the lattice is built from two random variables X and Y then top will be the joint random variable (X, Y ).
The bottom element ≈⊥ relates every state to every other and represents the least information of the system.

The join and meet operations on this lattice are the same as for the lattice of information: the join ⊔ is

the intersection of relations, making the equivalence classes finer; the meet ⊓ conversely is the transitive

closure of the union of two relations. Notice that the ⊔ of two random variables is the classic notion of joint

random variable, i.e. X ⊔ Y = (X, Y ).
Notice that in general, I(Σ) is not distributive.

2.2 Join Semivaluation

A join semivaluation [2] on I(Σ) is a real valued map ν : I(Σ) → R, that satisfies the following properties:

ν(X ⊓ Y ) + ν(X ⊔ Y ) ≤ ν(X) + ν(Y ) (3)

X ⊑ Y implies ν(X) ≤ ν(Y ) (4)

for every element X and Y in a lattice I(Σ) [20]. The property (4) is order-preserving: a higher element in

the lattice has a larger valuation than elements below itself. The first property (3) is a weakened inclusion-

exclusion principle.

Proposition 1. The map

ν⊔(X ⊔ Y ) = H(X, Y ) (5)

is a join semivaluation.

3 Information Leakage - Algebraic View

3.1 Leakage of Deterministic Programs

Programs are naturally interpreted as equivalence relations on states [14] and hence as random variables in

the Lattice of Information. The random variable associated to a program P is the equivalence relation on the

states defined by:

σ ≃ σ′ ⇐⇒ P (σ) =obs P (σ′)

in this paper we will consider =obs to be the relation “to have the same output”. However, a more general

view of observational equivalences in this context has been presented in [15].

Example. A simple example demonstrates these relationships
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if h=0 then access else deny

We associate a random variable for the confidential program variable h, ranging over {0, . . . , 3}. The output

random variable O associated to the program contains the two outcomes {access, deny}, mapping all inputs

to these two outcome classes. The equivalence relation (i.e. partition) associated to the above program is

hence

O = { {0}
︸︷︷︸

access

{1, 2, 3}
︸ ︷︷ ︸

deny

}

The outcome access is observed for O whenever h is 0; all other values of h are captured by deny.

Compare the above program with the following one

if h=0 then access

else { if h=1 then maybe else deny }

This program releases more information about the secret than the previous one because of the additional

output maybe. Formally this is reflected by its associated random variable

O′ = { {0}
︸︷︷︸

access

{1}
︸︷︷︸

maybe

{2, 3}
︸ ︷︷ ︸

deny

}

clearly, it is the case that O ⊑ O′.

Based on this interpretation of programs Clark, Hunt and Malacaria [5] defined the leakage of a program

O depending on a secret input h and public input l by

ι(O;h|l) = I(O;h|l)

i.e the conditional mutual information between the program and the secret given the low input.

If the program is deterministic, i.e. O = f(h, l) then we have

ι(f(h, l), h|l) = ν(f(h, l)|l) − ν(f(h, l)|h, l)

= H(O|l) − 0 = H(O|l)

For normal programs, i.e. deterministic programs depending only on the high input, H(O|l) = H(O)
reduces the leakage to the semivaluation of its output random variable.

We can relate order in LoI and amount of leakage by the following result

Proposition 2. Let P, P ′ be two normal programs. Then P ⊑ P ′ in LoI iff for all probability distributions

on states in LoI, H(P ) ≤ H(P ′).

Proof. The (⇒) direction follows from the definition of semivaluation. For the other direction suppose

P 6⊑ P ′; this means we can find a block in P ′ that is not a subset of any block in P , for example we have

{{a}, {b, c}} in P and {{a, b, c}} in P ′. Choose then a distribution 0 everywhere apart from a, b, c: for such

a distribution we then have H(P ) > H(P ′)
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3.2 Loops

The idea is to interpret looping programs in the lattice of information as least upper bounds of increasing

sequences; for some loops (those with collisions) this is not immediately true: we will show however that

all loops can be interpreted as the meet of the l.u.b. of an increasing sequence and a point in the lattice

representing the collisions.

We also show that the semivaluation of this interpretation of loops is the information theoretical for-

mula presented in [14]. The main result of the cited work is summarised in the next paragraph, to support

understanding.

Leakage of Loops Let us consider a loop of the form while e M, where e is representing the Boolean

guard and M is making up the random variables associated with the commands in the body of the loop. Such

a loop can be seen as a family of functions f0 ⊕ · · · ⊕ fn ⊕ . . . , where fi is the function corresponding to

the loop ending in exactly i iterations. For a deterministic program this family has disjoint domains because

given an input there exists a unique i such that the loop terminates in i iterations. However, in the case

of collisions, the codomains of all (fi)0≤i are not necessarily disjoint. Two or more functions fi and fj

could share a common point in their images. We can define a loop as collision free if all iterations generate

different output observations, i.e.

∀σ, σ′, i, j 6= i, fi(σ) 6= fj(σ
′)

The domain of fi is given by all states σ such that fj(σ)(e) is true from 0 ≤ j ≤ i and always false

from i+1 on. We denote this set of states also the event e<i>; this event can be seen as the evaluation of the

guard e. The body M is just a random variable as described in [14], representing the commands in the body.

We denote Mi as the ith iteration of the body M.

Now, the entropy of such a loop is given by the entropy of the probabilities of the events e<0>, . . . , e<n>

plus the entropy of Mi given the knowledge of e<i>. This is a consequence of the partition property in [14].

Let’s denote by W (e,M) the leakage of a loop while e M

Theorem 1.

(i) If the loop is collision-free then W (e,M) is the limit (for n → ∞) of the formula W (e,M)n where

W (e,M)n = H(µ(e<0>), · · · , µ(e<n>))
︸ ︷︷ ︸

guard

+

∑

1≤i≤n

µ(e<i>)H(M i|e<i>)

︸ ︷︷ ︸

body

(ii) If the loop is not collision-free, the leakage is W ′(e,M) defined as

W ′(e,M) = W (e,M) −
∑

σ∈C

[σ]H(
τσ
1

[σ]
, . . . ,

τσ
n

[σ]
)

where C is the set of collisions of f , [σ] is the (probability of the) inverse images of the collision σ
under f , the probability of its elements intersected with fi are denoted as τσ

1 , . . . , τσ
n and W (e,M) is

the leakage of the disambiguation of while e M

5



Example. Consider the loop l=0; while(l < h) l++ with 3 bit variables. There are only two

events possible: the one where the loop exits, i.e. where l >= h and the one where h is already 0 and no

iterations take place. This is represented by the events e<n> and e<0>. Notice that the body can’t leak any-

thing because there are no confidential variables referenced in it. Thus, the leakage of the guard and therefore

the whole loop is, assuming uniform input distribution of h, H(µ(e<0>), · · · , µ(e<n>)) = H(1
8 , · · · , 1

8) =
log2(8) = 3. As was expected, all 3 bits of the secret h leaked into l in this program.

Algebraic Interpretation of collision free loops Given a loop W , let Wn be the program W up to the n-th

iteration. The random variable associated to Wn is hence a partition where only the outputs of W up to the

n−th iteration are distinguished. Hence, Wn+1 will refine Wn by introducing additional blocks.

As a simple example of a collision free program consider the “linear search” program P below

l=0;

while (l<h) do

l=l+1;

We get the following corresponding family of partitions Pn:

Pn = {{0}, {1} . . . , {n − 1}, {x| x ≥ n}}

The following proposition establishes the relation between collision free loops and the chain Wn being

increasing:

Proposition 3. For all n, Wn ⊑ Wn+1 iff the loop W is collision-free.

Proof. The direction ⇒ follows immediately from the definition of collision. For the ⇐ suppose Wn 6⊑
Wn+1, then at least a block in Wn+1 is not a refinement of a block in Wn, e.g. {{a}, {b, c}} in Wn and

{{a, b, c}} in Wn+1 and by definition of Wn either {{a} or {b, c}} (w.l.g. we can say is {a}) corresponds to

an output o after ≤ n iterations. Then {{a, b, c}} in Wn+1 corresponds to a collision, namely the collision

which send a, b, c to the same output o in a different number of iterations.

Also note that in this case the chain W0 ⊑ W1 ⊑ . . . satisfies the ascending chain condition. There

exists an integer n such that Wm = Wn for all m > n, because Wi+1 destructively refines (“splits”) a finite

block of Wi into smaller equivalence classes.

Proposition 4. The random variable W of a collision-free loop is the Kleene fixpoint ⊔n≥0Wn of the chain

(Wn)n≥0.

Proof. The result follows from Proposition 3 and the fact that the number of states is finite.

In our “linear search” example above, the inverse image of fi produces the block {i} in partition Pn.

Since we have shown that entropy is a semivaluation it follows that W (e,M)n is the semivaluation of the

partition Pn above. The least upper bound of that partition is the partition where every state is in a singleton

class, i.e. distinguishable; given k-bit variables

W = ⊔n≥0Wn = {{0}, {1} . . . , {2k − 1}}

which is the same as the partition produced by f0 ⊕ · · · ⊕ f2k−1, thus ν⊔(W ) = limn→∞ W (e,M)n. This

is a true in general as stated in the following:

Theorem 2. Given a collision-free loop while e M, the leakage limn→∞ W (e,M)n as shown in Theo-

rem 1 (i) is equal to the semivaluation ν⊔(⊔n≥0Wn).

Proof. This follows from Proposition 4.
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Fig. 1. Two iterations with one collision at b
′

3.3 Loops with Collisions

Let us look at the colliding program shown in Figure 1. It consists of two iterations, represented by functions

f1 and f2.

The exact partition for this program is

P = {{a, a′}, {x, x′, y}, {c}}

The chain of partitions associated to the program is the following:

W1 = {{a, a′}, {x, x′}, {y, c}}

W2 = {{a, a′}, {x, x′, y}, {c}}

We see that W2 extends the block containing x, x′ with y because all three of them have the same image

b′. This reflects the idea of collisions, namely that two (or more) elements of the codomain of two different

iteration functions, here f1 and f2 coincide. The result is that their inverse images are indistinguishable

from one another and therefore end up being in the same block, here {x, x′, y}. Then, W2 is equal to P .

However, because W2 extends a block in W1 this is not an ascending chain anymore; actually by choosing

a distribution assigning probability 0 to c, we can see that ν⊔(W1) > ν⊔(W2) and therefore Theorem 2 is

false in case of collisions.

This conflict can be solved by applying the same technique as in [14]; i.e. by extending the codomain

of the responsible functions by new elements until all collisions are resolved. In the case of this example,

for f2 : X → Y we extend Y to Y ′ with one new element to avoid the collision. This will result in a new

function f ′
2 with f ′−1

2 (Y ′) producing a new distinguishable block {y}; now input y can be kept apart from

inputs x, x′ and the collision is resolved. The new chain is now

W ′
1 = W1, W ′

2 = {{a, a′}, {x, x′}, {y}, {c}}

W ′
2 will turn the Wn sequence of partitions into an ascending chain again. Since W ′

2 has a larger semi-

valuation than W2 some elements have to be subtracted to achieve the correct semivaluation (entropy). In

[14] this problems is solved by creating a set of collisions and subtracting the weighted sum of the entropies

of these collisions from the newly created, collision-free entropy. For this example, assuming uniform dis-

tribution Theorem 1(ii) produces the computation

H(W ′
2) −

3

6
H(

2/6

3/6
,
1/6

3/6
) = 1.4591 (6)
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Algebraically, this is handled by creating a collision partition C whose blocks are sets of colliding

points; for this example we have

C = {{a}, {a′}, {x, x′, y}, {c}}

It is easy to see that to recover W2 from W ′
2 and C the meet operation can be applied

ν⊔(W2) = ν⊔(W ′
2 ⊓ C)

notice now that we recover the same result as in equation (6) by this algebraic mean, i.e.

ν⊔(W ′
2 ⊓ C) = ν⊔(W2) = H(

2

6
,
3

6
,
1

6
) = 1.4591

To generalize this construction, first define the disambiguation of a sequence of partitions (Wi)i≥0 of a loop

W by (W ′
i )i≥0 where:

W ′
i = ⊔j≤iWj

It is clear that (W ′
i )i≥0 is an increasing chain and it is easy to see that it achieve the same chain defined

above by adding new distinguishable blocks.

Define now the collision equivalence of a loop W by σ ≃C σ′ iff σ, σ′ generate the same output from

different iterations, formally

σ ≃C σ′ ⇐⇒ ∃i 6= j fi(σ) = fj(σ
′)

We denote by C the partition generated by taking the reflexive transitive closure of ≃C . We are now ready

to relate the leakage of arbitrary loops with semivaluations on LoI.

Theorem 3. The leakage of an arbitrary loop W (e,M) as of Theorem 1(ii) is equivalent to semivaluating

the meet of the least upper bound of its increasing chain W ′
n and its collision partition C, i.e.

W (e,M) = ν⊔(⊔n≥0W
′
n ⊓ C)

Proof. Notice first that increasing chains with a maximal element in a lattice do distribute, i.e.:

(⊔n≥0xn) ⊓ y = ⊔n≥0(xn ⊓ y)

Assuming distributivity the argument is then easy to show:

(⊔n≥0W
′
n ⊓ C) = ⊔n≥0(Wn ⊓ C)

Notice now that (Wn ⊓ C)n≥0 is a chain cofinal to the sequence (Wn)n≥0 and so we can conclude that

⊔n≥0(Wn ⊓ C) is the partition whose semivalutation corresponds to W (e,M).

4 Applicability of LoI for Automation of Quantifying Information Flow

Tools to automatically quantify precise or approximative information flows are gaining a lot of momentum

[17] [16] [1] [11]. We argue that while the material introduced in this paper is more of theoretical nature,

there is still a surprisingly large applicability of these algebraic foundations. In this section we review a few

recent developments and touch upon future work.

8



Most recently, Backes, Köpf, and Rybalchenko described their push-button verification tool DisQuant

[1] which automatically calculates the LoI element given a program. It does so by iteratively generating a

logical formula by counterexample-guided refinement using Model Checking and SAT solving. Once the

partition has been exhaustively refined it enumerates its equivalence classes using constraint solving.

The authors of this paper also developed a dynamic analysis to precisely quantify information flows of

loops [11]. The limitating factor of that tool is the size of the secret. If a user does not want to exhaustively

run the program an all secrets an upper bound is calculated, using the formula from Theorem 1. If the leakage

up to now (i.e. the current iteration) is described by L′:

L′ = H(m1, . . . ,ms, q) +

s∑

i=1

miVi

where L′ signifies the lower bound, then the upper bound is just min(k, L + q(k − L′)); a conservative

upper bound based on the principle of maximum entropy. Where L

L = H(p m1, . . . , p ms,

t−s
︷ ︸︸ ︷

q

t − s
, . . . ,

q

t − s
) +

s∑

j=1

miVi

is the leakage where the remaining probability q = 1− p, and p =
∑

1≤i≤s mi is distributed uniformly over

the remaining t − s events, where t is the loop bound.

In our new algebraic framework, this upper bound can be represented as widening operator which ter-

minates in one iteration: At step n in the iteration sequence (Wn)n≥0 the remaining, unhandled inputs get

distributed in singleton blocks in the widened partition.

Future work will include work on quantitative declassification policies and enforcement systems using

the metric induced by the semivaluation on LoI. Also, a very interesting direction for an application of this

theory are exploiting recent advantages in SAT solvers, specifically in model counting.

5 Conclusions

Information theory, and in general probability theory, is based on underlying lattice structures. We investi-

gated how this lattice-theoretic perspective fits in our recent framework of quantifying information flow [5,

14]. We showed that we can use join semivaluations on the lattice of information for quantitative information

flow analysis of programs.
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Abstract

We present a specialization of quantitative information flow to programs that compute statistics. We
provide an approach for estimating the information flows present in such programs based on Monte Carlo
simulation and argue that it is more accurate than previous approaches in this domain.

1 Introduction

Organizations often collect sensitive information about survey respondents. To protect the privacy of the
respondents, they only publish aggregate statistics aboutthe responses rather than the responses themselves.
These statistics are designed to provide information aboutthe responses as a whole without providing a
detailed view of any one response. However, under some circumstances, these statistics may reveal sensitive
information about a particular respondent. We would like toquantify how much information about a single
respondent can be learned from a given statistic.

For example, a trivially unsafe program might just report the responses themselves including the name
of the person who provided each response. Likewise, a trivially safe program might always report “access
denied” providing no information.

For a less trivial example, consider a program that takes twonon-negative integer salaries and returns
their sum:

return (salary1 + salary2)

Such a program provides an upper bound on each respondent’s salary since neither can be greater than twice
the average. Furthermore, if the sum is zero, the sum also provides the exact salary of each respondent. If,
on the other hand, the sum is one, then two possibilities for each respondent’s salary remain: zero and one.
As the sum goes up, the number of possibilities goes up. Thus,unlike the trivial cases above in which the
program could be analyzed independently of the response it produces, in this case, the value of the produced
statistic influences the amount of privacy maintained.

Our goal is to provide an automated method for determining the amount of information that flows
through a program that computes a statistic. We further desire that our analysis is accurate enough to provide
reasonable results for common statistics. For example, Clark et al. provide an analysis for measuring the
mutual information flow from sensitive inputs to public outputs [1]. While their approach produces results
accurate enough for their problem domain, confidentiality,it is not accurate enough for use on statistics.

∗This work was primarily done while the first author was an intern at Microsoft Research India.



For example, it cannot distinguish between a program that simply lists the responses and a program that
provides the sum of all the responses.

To meet this goal, we use Monte Carlo simulation. This simpleapproach has many advantages. By
treating the program as a black box, it can work on any programwritten in any language and is fully
automated. We need not create any models or ensure that the program obeys a typing discipline. Running
the actual implementation rather than analyzing a specification of what a statistic should calculate catches
the effects of bugs. Despite not having a soundness guarantee, with enough samples, our approach will
approach the exact values, whereas sound analyses often provide very loose bounds.

Rather than simply provide one number that measures this loss, we provide both the probability distri-
bution over the sensitive attribute for a respondent beforeand after learning the value of the statistic. From
these distributions, many measures of information flow (privacy loss) used in other works can be easily
calculated including mutual information [1] and the changein distribution accuracy [2].

First, we present an formal model of programs that produce statistics from a list of survey responses.
Second, we formalize the problem and discuss a related problem that is more practical in many settings.
Third, we discuss our analysis. Fourth, evaluate our analysis on simple statistics. Lastly, we discuss related
work and conclude. While an intuitive understanding of probability suffices for understanding this work,
the appendix formalizes our models with measure theory.

2 Model

We model a program that computes a statistic as a functionf that accepts as input a finite list of survey
responses and produces as output the value of the statistic.Let each survey response be an element of
the countable setX and let the value of the statistic range over the countable set Y . Thus, the program
is treated as a functionf from X ∗ to Y . While the restriction to countable setsX andY might seem
unnatural given a survey of continuous values such as weights or heights, this is not a limitation in practice
since respondents only ever provide this information to a fixed accuracy (such as to the nearest kilogram for
weight). Also, we can model probabilistic programs by having f accept a second argument that determines
the probabilistic choices. In our implementation, it’s irrelevant since it treats programs as black boxes.

The program operates in an environment from which its input comes. Let the setΩ represent the set of
possible worlds andP be a probability measure over these worlds. The survey is conducted and program
ran in one of these worldsω, the actual world.

Let X be a random variable fromΩ to X ∗ that provides the inputs to the program. This models the
process of conducting the survey, which provides the program some information about the actual worldω.
We usex = 〈x

1
, . . . , xn〉 to denote the actual survey responses provided to the program: that is,x = X(ω).

The programf computes the value of a statistic of the provided survey responses. This defines a new
random variableY = f ◦ X from Ω to Y . We usey to denote the actual value of the statistic:y = f(x) =
f(X(ω)).

For example,Xi could be random variable that relates the weight of theith surveyed person. That
is, Xi(ω) represents the weight of theith surveyed person in the possible worldω. Sinceω is the actual
world, xi = Xi(ω) is the actual weight of theith surveyed person. The programf could accept a list of
such weights and compute their mean. ThenY would be a random variable that provides the mean of the
respondents given a possible world with the actual mean being y = f(x1, . . . , xn).

We model an adversary as attempting to determine the value taken by some random variableZ where
Z ranges overZ . That is, the adversary, would like to determinez = Z(ω). For example,Z might beThe
weight of Bob or Bob has AIDS. The surveyor must determine for which random variablesZ the adversary



should not be able to determine the value taken. These randomvariables will vary from survey to survey
depending on the information collected by the survey and privacy expectations of the respondents.

The adversary has some prior beliefs aboutz. We assume that the adversary knows what worlds are
possible, how the survey was conducted, and what statistic was computed (that is, he knowsΩ, X, andf ).
However, we assume that the adversary does not know the actual world ω or the actual responsesx = X(ω).
Rather than knowing the actual probability measureP , which is impossible to know exactly in many realistic
environments, the adversary has beliefs about the world represented as a probability measureQ.

3 Problem Formalization

Before formalizing the problem, we provide some notation. Given a random variableZ and probability
measureQ, we useQZ to denote the distributionD overZ such thatD(z) = Q[Z = z] for all z in Z .
Similarly, (Q|Y = y)Z represents the distributionD such thatD(z) = Q[Z = z|Y = y] for y ∈ Y such
thatQ[Y = y] 6= 0.

Our goal is to provide an analysis that computes a comparisonof the adversary’s knowledge before and
after seeing the statisticy. That is, a comparison of the distribution ofQZ and the distribution(Q|Y = y)

Z
.

Since many such comparisons exist, our analysis will provide bothQZ and (Q|Y = y)
Z

and allow the
analysis user to perform any selected comparison upon them.

While a comparison ofQZ and (Q|Y = y)
Z

is ideal, it seems unreasonable that the surveyor would
know the adversary’s prior beliefsQ. Furthermore, the surveyor cannot do a worse case analysis over all
possible values forQZ since it could be arbitrarily bad as an adversary could be arbitrarily ignorant before
seeing the program output. Thus, we must make some assumptions about the adversary to produce a problem
that the surveyor can practically solve given reasonably accessible information.

First, we assume that the adversary bases his prior distribution QZ on the actual probability measureP .
That is, we assume thatQZ is PZ . This assumption, as pointed out by Clarkson et al. [2], is made implicitly
by most works on quantitative information flow (e.g., the work of Clark et al. [1]). This first assumption
might appear to not help us since we have traded one unknown,Q, for another unknown,P . However,
unlike QZ , the surveyor can estimatePZ using the next three assumptions.

Second, we assume thatZ is determined byX. That is, we assume that the surveyor can decomposeZ
using some functiong such thatZ = g ◦X. For example, ifZ is the response of the first respondent, theng
is a function that returns the first response from the sequence of actual responsesX(ω). This assumption is
reasonable since such random variables are the most vulnerable to attack. (IfZ is not completely determined
by X, then the surveyor would have to also provide an estimation of the other factors that determineZ. It
would still be possible to use our approach, but we wish to avoid this complication.)

Third, we assume that the adversary knows the number of responses in the actual responsesx =
〈x1, . . . , xn〉 = X(ω). That is, he knowsn. Since most surveys publish the number of responses ex-
amined, this assumption is not too limiting. Fixingn, we can treatX as consisting ofn random variables
X1 to Xn with eachXi producing one responsexi.

Fourth, we assume thatX1 to Xn are independent and identically distributed. Statistically accurate sur-
veys will meet this assumption by design. Under this assumption, x1 to xn aren samples from a single
distributionPX . Given then samplesx, the surveyor can approximatePX . Let P̂X be one such approxima-
tion selected by surveyor. This estimatesPX asP̂Xn (i.e., the distribution resulting fromn independent and
identically distributed copies ofX).

These assumptions combine to allow the surveyor to estimateQZ asP̂g◦Xn . The problem then becomes
to compute a comparison of̂Pg◦Xn and(P̂ |Y = y)

g◦Xn
from the following inputs:



• the programf whereY = f ◦ X,

• the actual value of the responsesx = X(ω),

• a functiong where adversary is attempting to learnZ(ω) = g(X(ω)), and

• an approximation̂PX of the distributionPX that generated the responses and determinesZ.

Note the problem depends not just on the statisticf , but also on the actual value of the statistic, the in-
formation that the adversary would like to learn, and the estimation of the distributionPX . This requires
that the survivor solve this problem each time the statisticis to be applied to different responses or with a
different adversary. However, as argued in the introduction, the amount of information flow is sensitive to
these changes.

4 Analysis

We now present a simple analysis for providing an approximate answer to the practical version of the prob-
lem above. We also discuss our implementation of this analysis.

We use Monte Carlo simulation to estimate(P̂ |Y = y)Z as follows. We repetitively usêPX to generate
a samplex′ from P̂Xn , we runf on x

′ to producey′, and we rung on x
′ to producez′. By keeping track

of the valuez′ takes on each timey′ is equal toy, we can construct estimations ofP̂Z and(P̂ |Y = y)Z in

the usual way: we estimatêPZ(z) as the number of samples that result inZ = z divided by the number of
samples and we estimate(P̂ |Y = y)Z(z) as the number of samples that resulted in bothZ = z andY = y
divided by the number of samples that resulted inY = y.

An advantage of this method is it works for anyf andg that are functions. (The method also works for
randomized functions provided that the surveyor can model their sources of randomness.) The method runs
on large, complex programs even without source code.

Since constructing(P̂ |Y = y)Z takes memory linear inZ (not counting any memory used byf or g),
this approach will not work for largeZ . However, one may choose to focus on a subset ofZ that indicate
sensitive outcomes to reduce memory usage to the size of thissubset. For example, one might focus only on
z, the actual value thatZ takes on, and calculatêP (Z = z|Y = y) for comparison toP̂ (Z = z).

Several factors can slow down gaining an accurate estimation. If f or g is a time intensive computation,
our dynamic analysis will be slow. A large size ofX or n, or a low value forP̂ (Y = y) can each result in

needing a large number of samples for constructing an accurate estimation of(P̂ |Y = y)Z . While surveys
that ask for exact answers can have a largeX , many only ask multiple choice questions yielding a more
manageableX .

In general a largen can be problematic, but in the following special case, we canoptimize our analysis
to not depend uponn. Some statistics strips sensitive information (such as name) from eachXi and lists the
sanitized form. Such statisticsf have the formf([X1,X2, . . . ,Xn]) = [f ′(X1), f

′(X2), . . . , f
′(Xn)] for

some functionf ′. If Z is independent of allXi except one of them, sayXi, then

P̂ (Z = z|Y = y) = P̂ [Z = z|f([X1, . . . ,Xi, . . . ,Xn]) = [y1, . . . , yi, . . . , yn]]

= P̂ [Z = z|f ′(X1) = y1, . . . , f
′(Xi) = yi, . . . , f

′(Xn) = yn]

= P̂ [Z = z|f ′(Xi) = yi]

where the last equality follows fromZ being independent of allXj other thanXi. Thus, we can ignore all
Xj other thanXi. This greatly speeds up the approximation.



5 Evaluation

To evaluate our approach, we fix a method of comparingP̂Z and(P̂ |Y = y)
Z

. The method we choose uses
entropy, an information theoretic measure of the amount of uncertainty associated with a distribution. The
entropy of the distribution̂PZ is

H(P̂Z) = −
∑

z∈Z

P̂ [Z = z] log2 P̂ [Z = z]

and the entropy of the distribution(P̂ |Y = y)
Z

is

H((P̂ |Y = y)
Z
) = −

∑

z∈Z

P̂ [Z = z|Y = y] log2 P̂ [Z = z|Y = y]

(One usually speaks of the entropy of a random variable with the underlying probability measureP being
understood. Since we are dealing with two probability measures,P̂ andP̂ |Y = y, we choose to make them
explicit.)

The comparison of the distributionŝPZ and (P̂ |Y = y)
Z

we use is the difference of their entropies:

H(P̂Z) −H((P̂ |Y = y)
Z
). Clark et al. [1] argues that this difference measures the amount of information

that flows fromY = y to the adversary aboutZ since it is the decrease in the uncertainty ofZ after learning
that Y is equal toy. Indeed, this difference is related to mutual information,an information theoretic
measure of how much information one random variable provides about another. Ignoring thatY = y is

a condition and not a random variable,H(P̂Z) − H((P̂ |Y = y)
Z
) may be seen as providing the mutual

informationI(Z;Y = y) betweenZ andY = y for a deterministic program.

Using entropy, we computed the difference betweenP̂Z and(P̂ |Y = y)
Z

for various statistics. In all
cases we used the uniform distribution over0 to 99 for eachXi. We selected the uniform distribution since
by having a high variance, we expected it to be a challenging distribution for the analysis in the sense of
requiring a large number of samples. ForZ, we used the value of the first inputX1.

The first statistic we consider is the parity ofX1. This is not a particularly interesting statistic, but we
can exactly calculateH(P̂Z) to be log2(100) andH((P̂ |Y = y)

Z
) to be log2(50) allowing us to see the

accuracy of our analysis. To study convergence and show thatour analysis can provide accurate estimations,
we show the estimations produced using various numbers of samples in Figure 1(a). The y-axis shows the
estimated values for the entropies and mutual information while the x-axis shows the number of samples
performed, which ranges from21 to 225. This table shows that the estimations of the values ofH(P̂Z) and
H((P̂ |Y = y)

Z
) approach their real values as the number of samples increases. Thus, the estimation of

H(P̂Z)−H((P̂ |Y = y)
Z
) approaches its real value as well. By225 samples, the mutual information is less

then0.0000003 bits away from the exact value of1.
Note that the estimations ofH(P̂Z) andH((P̂ |Y = y)

Z
) tend to approach from below. Indeed, our es-

timator is a biased one. While others have created less unbiased estimators ([5] provides a recent overview),
we simply opt to use more samples instead.

The results for more realistic statistics (mean, median, and mode) are shown in Figure 1(b). Note that
the value of the estimations for all three statistics stabilized by 223 samples. The raise and fall of the
estimations is due to both the estimations ofH(P̂Z) andH((P̂ |Y = y)

Z
) approaching their real values

from below withH(P̂Z) approaching it’s real value more quickly thanH((P̂ |Y = y)
Z
). This creates a

period whereH(P̂Z) is a reasonable estimation andH((P̂ |Y = y)
Z
) is a radical underestimation resulting

in H(P̂Z) −H((P̂ |Y = y)
Z
) being a radical overestimation.
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Figure 1: Estimations for Various Statistics

Statistic H(P̂Z) −H((P̂ |Y = y)
Z
) Run Time (secs)

Parity 0.999999797131 639
Mean 0.0125233560025 684
Median 0.00205987477602 1498
Mode 0.0376910036281 2444

Table 1: Summery of Analysis Results for Four Statistics

Table 1 summarizes the estimations for225 samples and shows the amount of time taken to com-
pute these results for running on a3.2 GHz, 64-bit processor. Note that the estimations ofH(P̂Z) −
H((P̂ |Y = y)

Z
) for the mean, median, and mode are all lower than for parity. This conforms our sus-

picion that aggregate statistics tend to reveal little about their respondents. The time for estimating these
values grow linearly with the number of samples as expected.The slowest was mode, which took41 minutes
for 225 samples. However, an estimation that differs by less than0.021 bits (0.32%) is available in under a
minute using219 samples.

To explore how the number samplesn affects the value ofH(P̂Z) − H((P̂ |Y = y)
Z
) and the rate of

convergence to it, Figure 2(a) shows the estimations ofH(P̂Z) −H((P̂ |Y = y)
Z
) for the mean for varying

sizesn. Using more respondents decreased the difference betweenH(P̂Z) andH((P̂ |Y = y)
Z
). However,

it increased the number of samples needed for convergence since convergence requires seeing many samples
such thatY = y, which becomes a less common event asn increases. Furthermore, it increased the amount
of time needed to compute the value of the statistic keeping the number of samples constant since calculating
the mean over more respondents takes longer. In the worse case, the mean over1024 respondents, it took
109 minutes for225 samples with convergence still not reached. Figure 2(b) plots these run times.

Our implementation may be downloaded fromhttp://www.cs.cmu.edu/∼mtschant/mcqif/
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Figure 2: Results for Mean with Various Numbers of Respondents

6 Related Work

Quantitative Information Flow. Much work has been done on information flow analysis. We will only
discuss those works that deal with quantifying the flow of information. These works concern themselves
with either confidentiality or integrity. In both cases, thetool user partitions the inputs and outputs of the
program into high-level and low-level classes. Quantitative information flow for confidentiality measures
how much the high-level inputs affect the low-level outputs. Quantitative information flow for integrity, on
the other hand, measures how much the low-level inputs affect the high-level outputs. The two problems are
dual and an analysis for one will apply to the other. Since ourwork fits under the confidentiality problem,
we will discuss all related works from this angle even if theywere created with integrity in mind.

The work of Clark, Hunt, and Malacaria presents a formal model of programs for quantifying infor-
mation flows and a static analysis that provides lower and upper bounds on the amount of information
that flows [1]. They measure information flow as the mutual information between the high-level inputs
and low-level outputs given that the adversary has control over the low-level inputs. That is, they measure
I(Lout;H in|Lin) whereLout is a random variable representing the low-level outputs,H in is one represent-
ing the high-level inputs, andLin is one representing low-level inputs. Unlike our work that measures the
information flow in a program given a particular input, theiranalysis provides upper and lower bounds on
the size of the information flow in a given program regardlessof the actual inputs or the distributions that
generate them. Since the upper bound holds for all input distributions, it is an upper bound on the channel
capacity of the program.

Their analysis, if implemented, could be used for our problem by treating the inputsX asH in, usingY
asLout, and assuming thatZ = X. (Lin is unused since we do not allow the adversary to control any inputs
to the statistic.) However, their analysis produces boundsthat are too loose for our purposes. For example,
no matter how many independent and identically distributedsamples goes into a mean, their analysis will
state that all the information about the first sample is provided as output despite the fact that it would be
hidden amongst other samples.

McCamant and Ernst provide a dynamic analysis for quantitative information flow using the mutual
information formalization [6]. Their analysis provides anupper bound on the flow of information of a single



path of execution in a program. Their analysis converts a path of execution into a flow network. They then
find the max cut of the network to bound the information flow. Unlike us, they provide a sound upper bound
for that path of execution instead of an estimate. However, like the work of Clark et al., their analysis does
not account for information hiding in the calculations likea sum making the bound too loose to be useful
for our purposes.

Newsome and Song also provide a dynamic analysis for quantitative information flow using the mutual
information formalization [7]. Their analysis converts a single path of execution into a logical formula that
characterizes the path. Each solution to this formula corresponds to a value that the outputY can take
on while taking that path of execution. If all such solutionsare found, this provides the channel capacity
betweenX andY provided only the analyzed path of execution is ever used. Inpractice, a theorem prover
can rarely find all such solutions, and thus, their analysis only provides a lower bound on the channel
capacity. Whether or not this bound is tight enough for our uses depends on the theorem prover and the
formula.

Clarkson, Myers, and Schneider object to the mutual information formulation of quantitative information
flow [2]. Instead they proposed a formulation using the beliefs of the adversary. However, such a formulation
is often not practical since the surveyor often will not knowthe adversary’s beliefs. After adjusting their
definitions for our uses, information flow is defined to beD(QZ → ż) −D((Q|Y = y)

Z
→ ż) whereQ is

the adversary’s beliefs,z = Z(ω) is the actual value of the random variable the adversary is attempting to
learn,ż is a distribution overZ that assigns1 to z and0 to every other element ofZ , andD(QZ → PZ) is
the relative entropy:

D(QZ → PZ) =
∑

z∈Z

PZ(z) log
PZ(z)

QZ(z)

For deterministic programs, they prove thatD(QZ → ż) − D((Q|Y = y)Z → ż) reduces to− log QY (y).
We can calculate this given an approximation ofQY directly. We could also calculate this using our sampling
approach given an approximation ofQ or QX .

Preserving Privacy. Statistical disclosure limitation attempts to preserve privacy despite releasing statis-
tics. (For an overview see [4].) Most of the methods used in this line of work are specialized for a single
class of statistics. Most often this is the class of frequency tables, tables that record the number of re-
spondents with various combinations of attributes. Tablesof magnitudes and sanitized individual responses
(microdata) are also considered. While our approach is moreefficient for some statistics than others, it can
work on any statistic provided it is calculated by a computer.

Other works in statistical disclosure limitation use MonteCarlo simulation for purposes other than ours.
For example, Slavković uses it construct an estimation of probability distributions over outputs (̂PX in our
notation) [8].

Differential privacy is a formalization of what it means fora statistic to maintain the privacy of the
respondents about which it is calculated [3]. It requires that the output that the program produces is probably
no different from the output it would have produced if one respondent were dropped from or added to the
survey. In particular, for a statisticf to haveǫ-differential privacy, it must be the case that for all setsD1

andD2 of responses that differ on at most one response and all subsets S of the range off

Pr[f(D1) ∈ S] ≤ eǫ Pr[f(D2) ∈ S]

This ensures that the probability of the statistic’s outputfalling in some setS changes only by a factoreǫ as a
single respondent’s information is either added or removedfrom the survey. Intuitively, if the statistic prob-
ably looks the same regardless of if a person is surveyed or not, an adversary cannot learn much information



about the person. While we could considerǫ to be measure of information flow, it does not lend itself to
the analysis of many standard statistics since they do not have ǫ-differential privacy for any value ofǫ. For
example, the mean of respondent incomes would not satisfyǫ-differential privacy for anyǫ since it would
surely change by at least a small amount with a respondent removed. (A version of the mean statistic that
adds random noise to the result could be constructed to satisfy ǫ-differential privacy for anǫ that depends
upon the amount of noise added.)

7 Conclusions and Future Work

We have provided an analysis for determining the amount of information that an adversary learns from a
statistic given various assumptions. Future work could ease these assumptions. However, this work and all
works on quantitative information flow must make some assumption about the adversary. In most works,
including our own, they assume that the adversary’s beliefsQ are in line with the actual wordP and that
adversary has no additional background knowledge. Clarkson et al. instead assume they can model the
adversary. Both of these assumptions are troubling. This suggests that methods that do not depend on the
adversary, such as differential privacy [3], might providea better solution to protecting privacy. However, it
considers every standard statistic (mean, median, mode, etc.) equally and completely unprivate.

Other future work could combine our method with static approaches for information flow such as the
work of Clark et al. [1]. Such a hybrid approach, if possible,might scale to systems too large or slow for
our Monte Carlo approach while using our approach to closelyexamine key components of the program.
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A The Model More Formally

In this section, we provide definitions that are more formal then the ones found in Sections 2 and 3.
Formally, we model the environment from which program inputs come as a probability space〈Ω,F , P 〉

with the sample spaceΩ, eventsF , and probability measureP that models this environment.
Let X ∗ be the set of inputs that the modeled program can consume. We assume thatX is countable,

implying thatX ∗ is countable. This ensures that〈X ∗, 2X ∗

〉 a measurable space. The random variableX,
which models program inputs, is from the probability space〈Ω,F , P 〉 to the measurable space〈X ∗, 2X ∗

〉.
Let Y be the set of outputs that the modeled program can produce. Weassume thatY is countable, and

thus,〈Y , 2Y 〉 is a measurable space. Letf : X ∗ → Y be a function that models the program. LetY be
f ◦X, which models the output of the program.Y is from the probability space〈Ω,F , P 〉 to the measurable
space〈Y , 2Y 〉. Y is a well-defined random variable since for anyS ∈ 2Y , f−1(S) must be in2X ∗

and the
state space ofX is 〈X ∗, 2X ∗

〉 ensuring thatX−1(f−1(S)) = Y −1(S) is inF .
We model an adversary as attempting to determine the value took on by some random variableZ from

〈Ω,F , P 〉 to some measurable space〈Z , 2Z 〉, again, assuming thatZ is countable.
We model the adversary’s beliefs about the world as a probability measureQ on 〈Ω,F〉.
Given a random variableX from 〈Ω,F , P 〉 to 〈X ,Σ〉, thedistribution PX is the pushforward measure

of P by X. That is,PX(E) = P (X−1(E)) for E ∈ Σ.
Given a probability space〈Ω,F , P 〉 and random variableX from 〈Ω,F , P 〉 to 〈X ,Σ〉, we writeP |Y =

y for the probability measure such that(P |Y = y)(E) = P (E ∩ Y −1({y}))/P (Y −1({y})). Note that
〈Ω,F , P |Y = y〉 is a probability space with the same random variables as〈Ω,F , P 〉.

Thus, given probability space〈Ω,F , P 〉, random variableY from 〈Ω,F , P 〉 to 〈Y ,ΣY 〉, and random
variableZ from 〈Ω,F , P 〉 to 〈Z ,ΣZ〉, (P |Y = y)Z is the distributionD such thatD(z) = P (Z−1({z})∩
Y −1({y}))/P (Y −1({y})) for y ∈ Y such thatP (Y −1({y})) 6= 0.


