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The analysis of quantitative properties, such as timing and power, is central to the design of
reliable embedded software and systems. However, the verification of such properties on a program
is made difficult by their heavy dependence on the program’s environment, such as the processor it
runs on. Modeling the environment by hand can be tedious, error-prone and time consuming. In
this paper, we present a new, game-theoretic approach to analyzing quantitative properties that is
based on performing systematic measurements to automatically learn a model of the environment.
We model the problem as a game between our algorithm (player) and the environment of the
program (adversary), where the player seeks to accurately predict the property of interest while the
adversary sets environment states and parameters. To solve this problem, we employ a randomized
strategy that repeatedly tests the program along a linear-sized set of program paths called basis
paths, using the resulting measurements to infer a weighted-graph model of the environment,
from which quantitative properties can be predicted. Test cases are automatically generated
using satisfiability modulo theories (SMT) solving. We prove that our algorithm can, under
certain assumptions and with arbitrarily high probability, accurately predict properties such as
worst-case execution time or estimate the distribution of execution times. Experimental results for
execution time analysis demonstrate that our approach is efficient, accurate, and highly portable.

Categories and Subject Descriptors: OReél-time and Embedded Systenis ; D.2.4 [Software/Program
Verification]:
General Terms: Verification, Testing, Learning, Real-Time Systems

Additional Key Words and Phrases: Embedded software, formal verification, quantitative prop-
erties, execution time, game-theoretic online learning

1. INTRODUCTION

The main distinguishing characteristic of embedded coempsystems is the tight inte-
gration of computation with the physical world. Conseqlgrithe behavior of software
controllers of sucttyber-physicakystems has a major effect on physical properties of
such systems. These properties are quantitative, ingumbnstraints on resources, such
as timing and power, and specifications involving physicabmeters, such as position
and velocity. The verification of such physical propertiégmbedded software systems
requires modeling not only the software program but alsa¢levant aspects of the pro-
gram’s environment. However, only limited progress hasibeade on these verification
problems. One of the biggest obstacles is the difficulty @ating an accurate model of a
complex environment.

Consider, for example, the problem of estimating the exenuime of a software task.

ACM Transactions in Embedded Computing Systems, Vol. v,iNaam 20yy, Pages 120.



2 . S. A. Seshia and A. Rakhlin

This problem plays a central role in the design of real-timéedded systems, for ex-
ample, to provide timing guarantees, for use in schedullggrdhms, and also for use
in co-simulating a software controller with a model of thentiouous plant it control8.
In particular, the problem of estimating the worst-casecaken time (WCET), has been
the subject of significant research efforts over the last@@ry (e.g. [Li and Malik 1999;
Reinhard Wilhelm et al. 2008]). However, much work remam&¢ done to completely
solve this problem. The complexity arises from two dimensiof the problem: thpath
problem which is to find the worst-case path through the task, andsth& problem
which seeks to find the worst-case environment state to reiask from. The problem
is particularly challenging because these two dimensiotezact closely: the choice of
path affects the state and vice-versa. Significant prodr@s$een made on this problem,
especially in the computation of bounds on loops in taskspadeling the dependencies
amongst program fragments using (linear) constraintspaoaieling some aspects of pro-
cessor behavior. However, as pointed out in recent papete®y2007] and Kirner and
Puschner [2008], it is becoming increasingly difficult tepisely model the complexities
of the underlying hardware platform (e.g., out-of-ordengassors with deep pipelines,
branch prediction, caches, parallelism) as well as theveo& environment. This results
in timing estimates that are either too pessimistic (duettservative platform modeling)
or too optimistic (due to unmodeled features of the platiormdustry practice typically
involves making random, unguided measurements to obtaingi estimates. As Kirner
and Puschner [2008] write, a major challenge for measureivesed techniques is the
automatic and systematic generation of test data.

In this paper, we present a neyame-theoreti@pproach to verifying physical proper-
ties of embedded software that operatesystematically testinthe software in its target
environment, andearning an environment modelThe following salient features of our
approach distinguish it from previous approaches in tleedture:

e Game-theoretic formulationWe model the problem of estimating a physical quantity
(such as time) as a multi-round game between our estimakimritam (player) and
the environment of the program (adversary). The physicahtjty is modeled as the
length of the particular execution path the program takeshé game, the player seeks
to estimate the length of any path through the program whieaidversary sets envi-
ronment parameters to thwart the player. Each round of theegaonstitutes one test.
Over several rounds, our algorithm learns enough aboutrthiecmment to be able to
accurately predict path lengths with high probability, wénéhe probability increases
with the number of rounds (precise statement in Sec. 4). tticpéar, we show how
our algorithm can be used to predict the longest path andaitadict properties such as
worst-case execution time (WCET).

e Learning an environment modeR key component of our approach is the use of sta-
tistical learning to generate an environment model thaseluto estimate the physical
guantity of interest. The environment is viewed as an adwgrthat selects weights
on edges of the program’s control flow graph in a manner thapossibly depend on
the choice of the path being tested. This path-dependenmpéeled as a perturba-

1In “software-in-the-loop” simulation, the actual softeamplementation of a controller is simulated along with
a model of the continuous plant it controls. However, foragiity, such simulation must be performed on a
workstation, not on the embedded target. Consequentlytirtiieg behavior of different execution paths in the
program must be inferred a-priori on the target and then dseidg the workstation-based simulation.
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tion of weights by the adversary. Our algorithm seeks tarest path lengths in spite
of such adversarial setting of weights. The weight-pe#tidm model can capture not
only adversarial choices made by the environment, but alsorbrs in measurement.

e Systematic and efficient testing and measuremAnbther central idea is to perform
systematic measuremerds the physical quantity, by sampling only so-callbdsis
pathsof the program. The intuition is that the length of any pragnaath can be ap-
proximated as a linear combination of the observed lengthkeobasis paths plus a
perturbation. We use satisfiability modulo theories (SMdlyers [Barrett et al. 2009]
and integer programing to generate feasible basis pathsoagenerate test inputs to
drive a program’s execution down a basis path. This apprizaefiicient because the
number of basis paths is linear in the size of the program.ithudlly, the measure-
ments are madeithout instrumenting the prograrthereby avoiding any resultant skew
in behavior.

A goal of this paper is to demonstrate that the above threeemia can be useful for
guantitative analysis of software-controlled embeddestesys. Additionally, although
our focus is on software analysis, we believe that theseaqiacan also be useful for the
analysis of physical properties of cyber-physical systangeneral.

We present both theoretical and experimental results detraiimg the utility of our
approach. On the theoretical side, we prove that, forahyersarially-chosen sequence
of environment states to run the program from and givenam0, if we run a number
of tests that is polynomiah the input size and I%, our algorithm accurately estimates the
average length of any program path for that environmen¢ statjuence with probability
1 -9 (formal statement in Section 4). Under certain assumptisescan use this result
to accurately find the the longest path, which, for timingpamts to finding the input that
yields the worst-case execution time (WCET). Moreovergfuoye, our algorithm can also
be used to find a set of paths of length witkiaf the longest.

We demonstrate our approach for the problem of executioa &nalysis of embedded
software. Our approach is implemented in a tool calledw&TIME, which has the fol-
lowing features and applications:

e Portability and ease of us€5AME TIME is measurement-based and so can be more eas-
ily applied to complex, hard-to-model platforms, and dgrifesign space exploration;

e WCET estimation:GAMETIME generates test cases exhibiting lower bounds on the
true WCET, which are tight, under certain assumptions, aithitrarily high probabil-
ity. We present experimental results comparingvg TIME to existing state-of-the-art
WCET estimation tools aiT [AbsInt Angewandte InformatikijdaChronos [Li et al.
2005]. Perhaps surprisingly, results indicate thaM& TIME can generateven bigger
execution-time estimates than some of these tools;

e Predicting execution times of arbitrary path&GAMETIME can be used to predict a set
of e-longest paths as well as the distribution of execution $simka program. These
problems are relevant for soft real-time systems and foegsing execution-time esti-
mates to guide combined simulation of a software contralhet its plant.

For concreteness, we focus the rest of the paper on exectutieanalysis. However, the
theoretical formulation and results in Section 4 can applyré estimation o&ny physical
quantity of systems with graph-based models; we have therefore saagiresent our
theoretical results in a general manner as relating to tigthes of paths in a graph.
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The outline of the paper is as follows. We begin with a surviesetated work in Sec-
tion 2, mainly focussed on execution time analysis. Thedfasmulation and an overview
of our approach is given in Section 3. The algorithm and magotems are given in Sec-
tion 4, and experimental results in Section 5. We concludgeiction 6.

A preliminary version of this work appeared in [Seshia andtta 2008]. This ex-
tended version substantially expands on both theoreticheaperimental results, and de-
scribes the theoretical model in far greater detail.

2. BACKGROUND AND RELATED WORK

We briefly review literature on estimating physical paraenetof software and relevant
results from learning theory and place our work in this cente

2.1 Estimating Execution Time and Other Physical Quantities

There is a vast literature on estimating execution timeeeisly WCET analysis, com-
prehensively surveyed by Li and Malik [Li and Malik 1999] avdlhelm et al. [Wilhelm
2005; Reinhard Wilhelm et al. 2008]. For lack of space, weyamtlude here a brief dis-
cussion of current approaches and do not cover all toolserBeées to current techniques
can be found in a recent survey [Reinhard Wilhelm et al. 2008]

There are two parts to current WCET estimation methpdsgram path analysigalso
calledcontrol flow analysisandprocessor behavior analysisn program path analysis,
the tool tries to find the program path that exhibits worstecaxecution time. In processor
behavior analysis (PBA), one models the details of the piatfthat the program will
execute on, so as to be able to predict environment behawatr @s cache misses and
branch mis-predictions. PBA is an extremely time-consgnpirocess, with several man-
months required to create a reliable timing model of evemgks processor design.

Currenttools are broadly classified into those basestatic analysige.g., aiT, Bounds-
T, SWEET, Chronos) and those that aneasurement-basdd.g., RapiTime, SymTA/P,
Vienna M./P.). Static tools rely on abstract interpretatiod dataflow analysis to compute
facts at program points that identify dependencies betwede fragments and generate
loop bounds. Even static techniques use measurement foragisty the time for small
program fragments, and measurement-based techniquemrédghniques such as model
checking to guide path exploration. Static techniques pé&form implicit path enumer-
ation (termed “IPET"), usually based on integer linear pemgming. The state-of-the-art
measurement-based techniques [Wenzel et al. 2008] ard baggenerating test data by a
combination of program partitioning, random and heuris#t generation, and exhaustive
path enumeration by model checking.

Our technique isneasurement-basgit suffers no over-estimation, and it is easy to port
to a new platform. It is distinct from existing measurembased techniques due to the
novel game-theoretic formulation, basis path-based &séigtion, and the use of online
learning to infer an environment model. Our approach ddgoresome static techniques,
in deriving loop bounds and using symbolic execution angfalbility solvers to compute
inputs to drive the program down a specific path of interestpdrticular, note that our
approach completely avoids the difficulties of processhab@r analysis, instead directly
executing the program on its target platform. Moreover qapraach applies not just to
WCET estimation, but also to estimating the distributiomedécution times of a program.

While there have been several papers about quantitativécedipn of formal models
of systems (e.g. [Chakrabarti et al. 2005]), these typicaisume that the quantitative
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parameters of primitive elements (such as execution timrsofifvare tasks) are given as
input. There is relatively little work on directly verifygnnon-timing properties on soft-
ware, with the exception of estimating the power used bynsoft-controlled embedded
systems [Tiwari et al. 1994].

Adversarial analysis has been employed for problems sudystem-level dynamic
power management [Irani et al. 2005], but to our knowledige,adversarial model and
analysis used in this paper is the first for timing analysid fom estimating quantitative
parameters of software-based systems.

2.2 Learning Theory

Results of this paper build on tlgame-theoretic predictioliterature in learning theory.
This field has withessed an increasing interest in sequéatianline) learning, whereby
an agent discovers the world by repeatedly acting and riecefeedback. Of particular
interest is the problem of learning in the presence of anadve with acomplete absence
of statistical assumptioran the nature of the observed data.

The problem of sequentially choosing paths to minimizerdgget (the difference be-
tween cumulative lengths of the paths chosen by our algoréhd the total length of the
longest path aftef rounds) is known as an instanceliEndit online linear optimization
The “bandit” part of the name is due to the connection withrthéti-armed bandiprob-
lem, where only the payoff of the chosen “arm” (path) is réeda The basic “bandit”
problem was put forth by Robbins [1952] and has been welkwstdod since then. The
recent progress comes from the realization that well-parifeg algorithms can be found
(a) for large decision spaces, such as paths in a graph, poddbr adversarial conditions
rather than the stochastic formulation of Robbins. We aeditkt to bring these results to
bear on the problem of quantitative analysis of embeddedaoé. In addition to this novel
application, our results are of independent theoretitcal@st in the area of game-theoretic
learning. Briefly, with the results herein, we now know tHa best achievable regret for
the stochastic multiarmed bandit problemQ$,/T) without amargin assumptiorfAs-
sumption 4.1 in Sec. 4.2) ar@(logT) with the assumption. Th@®(/T) regret has been
recently proven for the non-stochastic bandit without thegim assumption [Auer et al.
2003]. The new result of this paper is B€log T ) regret rate under the margin assumption
for the non-stochastic bandit setting, completing theype{see Corollary 4.1).

We refer the reader to a recent book [Cesa-Bianchi and Li&fii¥§] for a comprehen-
sive treatment of sequential prediction. Some relevantltsesan be found in [McMahan
and Blum 2004; Gyorgy et al. 2007; Awerbuch and Kleinber§40

2.3 Miscellaneous

Our algorithm uses the concept bésis pathsof a program, which has been explored
for computing thecyclomatic complexitgf a program [McCabe 1976]; however, we give
theoretical results by extracting a special basis call&g@rgcentric spannefAwerbuch
and Kleinberg 2004]. For input test generation, our apgidesavily relies on advances in
SMT solving; these techniques are surveyed in a recent boater [Barrett et al. 2009].

3. THEORETICAL FORMULATION AND OVERVIEW

We are concerned with estimating a physical property of awsoé task (program) execut-
ing in its target platform (environment). The property isuadtion of a physical quantity
of interest, denoted bg; e.g., it can be the maximum value tltptakes. In generalj is
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a function of three entities: the program code, the parammefdts environment, and the
input to the program. More concisely, we can expigeas the following function

q= fP(Xa W)

wherex denotes the input to the prograhfsuch as data read from sensors or received over
the network),w denotes the state of the environment (such as the initi@were state
including, for example, the contents of the cache), & denotes the program-specific
function that maps andw to a value of the physical quantity.

In generalx, w, andq vary over time; we make the variation explicit with a subgtiri

o = (X, W)

Some sample problems of interest are listed below. In eachlgan, we are not only
interested in estimating a physical property, but also mjgoting an inpuk that serves as
a witness or counterexample for that property.

(1) Global worst-case estimatiorin this case, we want to estimate the largest value of
the quantityq for all values ofx andw, namely, maxw fp(X,w). Equivalently, given
anyinfinite sequence of andw; values, we wish to estimate the following quantity:

f 1
R g felewt) )

The arbitrary infinite sequence rfandw; values represents an arbitrary sequence of
inputs and environment parameters encountered over #iirlg of prograni.

(2) Worst-case estimation over a time horizon In this case, the worst case is to be
computed over a finite time horizanformally specified as follows:

max max fia(x, ) (2)

(3) Estimating sample average over time horizoagainst an adversarial environment:
In this case, we want to estimate, for a time horizaand forany sequence of envi-
ronment parameters;, Wo, . .., Wy, the following quantity:

1 T
max t; fp (X, W) )

(4) Can the system consume R resources at any point over a tirmhaft: The ques-
tion we ask here is whether there are valdeandw;, t = 1,2,...,1, such thatg
exceedR. For example, a concrete instance of this problem is to asiiven a soft-
ware task can take more th&seconds to execute.

In this paper, the prografis assumed to have the following propertiesRis known
to terminate (so we are not attempting to solve the haltinglem); (ii) there are statically-
known upper bounds on all loops and on the depth of all reeaifsinction calls inP (we
are not solving the loop bound inference problem); andRiii$ single-threaded and runs
uninterrupted.

Under these assumptions, we give a randomized algorithralte #roblem 3 which,
under certain assumptions (formally stated in Sec. 4), smtee used to perform worst-
case estimation (Problems 1 and 2) as well as answer therecesbaund consumption
problem listed above (Problem 4). We note that previous veorkWCET has sought to
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address the global WCET estimation problem (Problem 1) tlagcfore our experimental
comparison is with these techniques for the global WCETreton problem.

For concreteness, in the remainder of this section, we wil$ on a single quantity,
execution timeand on a single representative problem, namelywbest-case execution
time (WCET) estimation problem. As noted earlier, our theosdtiormulation and al-
gorithms can carry over to estimating any physical quaraitg to problems other than
worst-case analysis.

The rest of this section is organized as follows. We begiaigeneral discussion of
how the estimation problem can be formulated as a game (®egtl). Next, we formal-
ize our problem definition and introduce our theoretical elaaf the environment (Sec-
tion 3.2). Finally, we give an overview of our solution apach using a small example
(Section 3.3).

3.1 Intuition for the Game-Theoretic Formulation

Consider the finite-horizon WCET estimation problem (PeobR). For brevity, in what
follows, we will refer to this problem as simply WCET estiriat.

Game-theoretic formulation: We model the estimation problem as a game between the
estimation toolr and the environmert of programP.

The game proceeds over multiple rountls; 1,2.3,.... In each roundZ picks the
inputx; to P; the execution path taken throuBlis determined by;. Z picks, in a possibly
adversarial fashion, environment parameters (stateNote thatw; can depenan x;. P
is then run ong for parametersy.

At the end of each round 7 receives as feedback (only) the execution tinef P for
the chosen input; under the parametevg selected bye. Note thatz does not observe
w;. Note also thatr only receives the overall execution tirnéthe taskP, not a more
fine-grained measurement of (say) each basic block in theatasg the chosen path. This
enables us to minimize any skew from instrumentation ileskid measure time. Based on
the feedback, 7 can modify its input-selection strategy.

After some number of rounds we stop:7 must output its predictior; of the input
x* that maximizes the quantity defined in Equation 2 above (ferahoice ofw’s made
by £). 7 wins the game if its prediction is correct (i.&;, = x*); otherwise,£ wins. In
addition to generating the predictic$, 7 must also output an estimate of the quantity in
Equation 2.

The goal ofT is thus to select a sequence of inpxitsxo, ..., % so that it can identify
(at least with high probability) the longest execution tiofd® duringt = 1,2,... 1.

Note that this longest execution time need not be due to aiatt have been already
tried out by7 .

By permittingz to select environment parameters based @choice of input, we can
model input-dependent perturbation in execution time didalocks as well as pertur-
bation in execution time on a single input due to variatioetwironmental conditions or
measurement error. However, in practice, such pertunbatice cannot be arbitrary, oth-
erwise, it will be impossible to accurately predict exeonttime and compute worst-case
inputs. Intuitively, the perturbation corresponds to th@rg predictability of the platform.

If a platform has predictable timing, such as the PRET premgsroposed by Edwards and
Lee [2007], it would mean that the perturbation is small.

In practice, as in any technique involving game-solving.(dChakrabarti et al. 2005]),

it is necessary to suitably explore the choicesvg$ by £ during the estimation process.
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For example, to estimate the global worst-case executioa Problem 1), we require that
Z selects the worst-case environment state at some poimtgust 1,2,...,1. If there
are a finite number of environment states, one would needhausstively enumerate these
duringt = 1,2,... 1 in order to perform worst-case analysis. The power of theagh
we present in this paper is that we do not require to exhalgtaxplore the space of inputs
% for each choice otfv.

Formulation as a graph problemAn additional aspect of our model is that the game can
be viewed to operate on the control-flow grapp of the taskP, with 7 selecting inputs
that driveP’s execution down selected paths, whiteselects environment parameters
that determine path lengths. We elaborate below.

3.2 Theoretical Formulation

Consider a directed acyclic gra@h= (V,E) derived from the control-flow graph of the
task with all loops unrolled to a safe upper bound and all fienccalls inlined. We will
assume that there is a single source nodad single sink nodein G; if not, then dummy
source and sink nodes can be added without loss of generality

Let 2 denote the set of all paths & from sourceu to sinkv. We can associate each of
the paths with a binary vector witin = |E| components, depending on whether the edge
is present or not. In other words, each source-sink path éctwx in {0,1}™, where the
ith entry of the vector for a pathcorresponds to edgeof G, and is 1 if edge is in x and
0 otherwise. The sett is thus a subset dfo, 1}™.

The path prediction interaction is modeled as a repeated dmtween our algorithm
(7) and the program environmeret]. On each rountl, 7 chooses a path € # between
u andv. Also, the adversarg picks a table of non-negative path lengths given by the
function z : # — RZ0. Then, the total length of the chosen patk is revealed, where
lt = £t(x%). The game proceeds for some number of roundd, 2, ... 1.

Atthe end of round, 7 wins iff it correctly estimates a patti that generates the worst-
case execution time due to environment states in rouads 2, ..., 1. 7 must also output
an estimate of the corresponding WCET, which is expresséteasllowing quantity:

Lmax=Mmax_ max Lt(X) (4)
xer t=12,..1

The worst-case path is an elementroéit which £max is attained:

.
X' =argmaXc, I:Tg?(.,r Lt(X) (5)

We make a few remarks on the above theoretical model.

First, we stress that, in the above formulation, the goabifirntd the WCETdue to
environment states in roundst1,2,.... 1. In order to find the true WCET, for all possible
environment states, we need to assume (or ensure, throstgnstic exploration) that
the worst-case state occurs at some time betweed andt = 1. We contend that this
formulation is useful in spite of this assumption. For whplegram WCET analysis,
the starting environment state is typically assumed to lmwvkn Even if one needs to
enumerate all possible starting environment states, ibmsputationally very expensive
to also enumerate all possible paths for each such statd dwfitformulation, we seek
to demonstrate that one can accurately estimate the WCETitwe do not sample the
worst-case path when the worst-case state occurred.

ACM Transactions in Embedded Computing Systems, Vol. v,iNeam 20yy.
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Second, the definition of our estimation targetx assumes that the timing of a program
depends only on the control flow through that program. In gapéhe timing can also
depend on characteristics of input data that do not influenaérol flow. We believe that
the basic game framework we describe can also apply to tleotasita-dependent timing,
and leave an exploration of this aspect to future work.

Overall, we believe that decoupling the path problem froedtate problem in a man-
ner that can be applied easily to any platform is in itselfgnsicant challenge. This
paper mainly focuses on addressing this challenge. Indwtiark, we plan to address the
limitations of the model as identified above.

The third and final remark we make is about the “size” of thethgcal model. Since a
DAG can have exponentially-many paths in the number of naddsdges, the domain of
the functionz; is potentially exponential, and can change at each rbuimthe worst case,
the strategy sets of both andz in this model are exponential-sized, and it is impossible
to exactly learnz; for everyt without sampling all paths. Hence, we need to approximate
the above model with another model that, while being morepamt is equally expressive
and generates useful results in practice.

Below, we present a more compact model, which our algoriththeén based upon. We
first present our general model, and then describe a sintplifiedel that will be used in
Sec. 4 to introduce more easily some key ideas of our algorith

3.2.1 Modeling with Weights and PerturbatioW/e model the selection of the table of
lengthsz; by the environment as a two-step procedure.

(i) First, concurrent with the choice &f by 7, £ chooses a vector of non-negategge
weights w; € R™, for G. These weights represepath-independerdelays of basic
blocks in the program.

For generality, we deliberately leave the exact specifioatif w; unspecified, but we

give a few possibilities here. For example, one could wgvas the delay of a basic
block if it were executed in the starting hardware state. istlaer example, one could
associated with every basic block a default path, and cengidto be the delay of

that basic block when the default path is executed.

(i) Then, after observing the path selected byr, £ picks a distribution from which it
draws a perturbation vectog(x ). The functional notation indicates that the distribu-
tion is a function ofx;.

The vectorg (% ) models the path-specific changes thaipplies to its original choice
w. For example, whenv (e) represents the delay of basic bloekn the starting
hardware state, the perturbatioy(x;)(e) is the change in delay due to changes in
hardware state along the path We will abbreviate bothr (x ) andTg () by 1% when
itis unnecessary to draw a distinction between those testherwise, fox that could

be different fromx;, we will explicitly write 12 (x) or 1% (X).

The only restriction we place ort(x), for any x, is that||Tg(x)||1 < N, for some
finite N. The parameteN is arbitrary, but places the (realistic) constraint that th
perturbation of any path length cannot be unbounded.

Thus, the overall path length observedbys
e =X - (W +TT%) = %' (W + TT%)

Now let us consider how this model relates to the originaifolation we started with.
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10 . S. A. Seshia and A. Rakhlin

First, note that, in the original modeit, picks the functiorz; that defines the lengths of
all paths. To relate to that model, here we can assume, withssl of generality, that
draws a-priori the perturbation vectar§ (x) for all x € 2, but onlyT;(x) plays a role in
determining;.

Second, equating the observed lengths, we see that

L1(%) = X (W +T0%)

The main constraint on this equation is the requirement tigf|s < N, which implies
that X/ 7¢| < N. In effect, by using this model we require thapick ; by first selecting
path-independent weightg and then, for each source-sink path, modifying its length by
a bounded perturbation (of at masN). Note, however, that the model places absolutely
no restrictions on the value @f or how it changes witl (from round to round).

The goal forT in this model is to estimate the following quantity

Lmax=Max max X (w +1%(x)) (6)
XeP 12,..1

t=
Moreover, we would also like" to identify the worst-case path given by

X" = argmax., _max_ X" (W + T (X)) (7)

3.2.2 Simplified Model without Perturbatiorifo more easily introduce the key con-
cepts in our algorithm, we will initially assume that the fpebation vectors at all time
points are identically 0, vizi¥;(x) = 0 for allt andx.

Clearly, this is an unrealistic idealization in practicece in this model the length of an
edge is independent of the path it lies on. We stress that airr theoretical results, stated
in Sec. 4.3, are for the more realistic model defined aboveatié& 3.2.1.

We next give an overview of our approach in the context of allsexample.

3.3 Overview of Our Approach

We describe the working of our approach using
a small program from an actual real-time embed-
ded system, the Paparazzi unmanned aerial vehi-
cle (UAV) [Nemer et al. 2006]. Figure 2 shows the
C source code for theltitude_control_task

x1=(1,1,1,0,0,1,1,0,0,

X2 =(1,0,0,1,1,0,0,1,1,

N
>®<Lo
»

in the Paparazzi code, which is publicly available%\ f x3=(1110000.11,
open source. 3 5 x4 =(1,0,0,1,1,1,1,0,0,
Starting with the source code for a task, and 6 8
all the libraries and other definitions it relies on, B
x4 = x1 +x2 - x3
we run the task through a C pre-processor and the ,}9>

CIL front-end [George Necula et al. ] and ex-
tract the control-flow graph (CFG). In this graph, 10
each node corresponds to the start of a basic block ©
and edges are labeled with the basic block coge . .
or conditional statements that govern control flow'¥" 1. IIIust.rat.|on of BaS|s”Paths.
(conditionals are replicated along both if and el que label indicates the _pos't'o” for that
branches). Note that we assume that code terfj9e in the vector representation of a path.
nates, and bounds are known on all loops. Thus, we start with with all loops (if any)
unrolled, and the CFG is thus a directed acyclic graph (DA®.also pre-process the
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#define PPRZ_MODE_AUTO2 2
#define PPRZ_ MODE_HOME 3
#define VERTICAL_MODE_AUTO_ALT 3

FunctionCall() !
#define CLIMB_MAX 1.0

void altitude_control_task() {
if (pprz_mode == PPRZ_MODE_AUTO2
|| pprz_mode == PPRZ_MODE_HOME) {
It (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
/* inlined below: altitude_pid_run() */
float err = estimator_z — desired_altitude;

2) desired_climb = pre_climb + altitude_pgain * err;
if (desired_climb < —-CLIMB_MAX)
(pprz_mode == 2) esired_climb = ~CLIMB_MAX;

if (desired_climb > CLIMB_MAX)
desired_climb = CLIMB_MAX;

m

grtical_mode == 3)

(pprz_mode !=

(vertici

Fig. 2. Control-flow graph and code for altitude_control_task

CFG so that it has exactly one source and one sink. Each éxedtlitough the program is
a source-to-sink path in the CFG.

An exhaustive approach to program path analysis will neethtonerate all paths in this
DAG. However, it is possible for a DAG to have exponentiallgmg paths (in the number
of vertices/edges). Thus, a brute-force enumeration dfgaatnot efficient.

Our approach is to sample a sethafsis pathsRecall that each source-sink path can be
viewed as a vector i§0,1}™, wherem is the number of edges in the unrolled CFG. The
set of all source-sink paths thus forms a sulrsef {0,1}™. We compute the basis far
in which each element of the basis is also a source-sink path.

Figure 1 illustrates the ideas using a simple “2-diamondinegle of a CFG. In this
example, pathsg;, X, andxs form a basis and, can be expressed as the linear combination
X1+ X2 — X3.

Our algorithm, described in detail in Section 4, randominpkes basis paths of the CFG
and drives program execution down those paths by genertastg using SMT solving.
From the observed lengths of those paths, we estimate edgate/en the entire graph.
This estimate, accumulated over several rounds of the gantieen used to predict the
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12 . S. A. Seshia and A. Rakhlin

longest source-sink path in the CFG. Theoretical guarameg@erformance are proved in
Section 4 and experimental evidence for its utility is giiesection 5.

4. ALGORITHM AND THEORETICAL RESULTS

Recall that, in the model introduced in the previous sectio@ path prediction interaction
is modeled as a repeated game between our algorithm (Plyéithe program environ-
ment (Adversary) on the unrolled control-flow gragh= (V,E). On each round, we
choose a source-sink pathe # C {0,1}™, wherem = |E|. The adversary chooses the
lengths of paths in the graph. We assume that this choice @ o the following two
stage process: first, the adversary chooses the worsteagbts w € R™, on the edges
of G independently of our choice, and then skews these weights by adding a random
perturbationt, whose distribution depends an (We will also refer to edge weights and
path lengths as “delays”, to make concrete the link to tinginglysis.)

In the simplified model, which we consider first, we supposd the perturbation is
zero; thus, we observe the overall path lenigts x'w;. In the general model, only =
X! (w; +T17%) is observed. No other information is provided to us; not aldywe not know
the lengths of the paths not chosen, we do not even know theilmations of particular
edges on the chosen path. Itis important to emphasize ttiz general model we assume
that the adversary iadaptivein thatw; andTt; can depend on the past history of choices
by the player and the adversary.

Suppose that there is a single fixed pathwhich is the longest path on each round.
One possible objective is to find. In the following, we exhibit an efficient randomized
algorithm which allows us to find it correctly with high prdiikity. In fact, our results are
more general: if no single longest path exists, we can pig¥eida a batch of longest paths.
We describe later how our theoretical approach paves thefaraguantitative (timing)
analysis given a range of assumptions at hand.

Before diving into the details of the algorithm, let us sketow it works:

e First, compute a representative set of basis paths, catbady@entric spanner
e For a specified number of iterationsdo the following:

* pick a path from the representative set;

* observe its length;

* construct an estimate of edge weights on the whole graphtinerobserved length;
e Find the longest path or a set of longest paths based on iheagss over iterations.

It might seem mysterious that we can re-construct edge uweiglelays, for the case of
timing analysis) on the whole graph based a single numbeghnik the total length of

the path we chose. To achieve this, our method exploits thepof randomization and a
careful choice of a representative set of paths. The lafi®ice is discussed next.

4.1 Focusing on a Barycentric Spanner

Itis well-known in the game-theoretic study of path preidicthat any deterministic strat-
egy against an adaptive adversary will fail [Cesa-Bianaokiilaugosi 2006]. Therefore, the
algorithm we present below is randomized. As we only obséreeentire length of the
path we choose, we must select a set of pativeringall (reachable) edges of the graph or
else we risk missing a highly time-consuming edge. Howesierply covering the graph
— which corresponds to statement coverage in a program -t sneaigh, since timing, in
general, is gath propertyrequiring covering all ways of reaching a statement. Ingdeed
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Algorithm 1 Finding a 2-Barycentric Spanner
L (bla"'vbm) — (elvaem)

: for i =1 tomdo {{Compute a basis af } }

bi — argmaxc, [de(By;)|

. end for

- while Ixe 2, i € {1,...,m} satisfying

|det(Bx;)| > 2|detB)| do {{TransformB into a 2-barycentric spanngr
b «— x

7: end while

a A W N

@

key feature of the algorithm we propose is the ability to eitporrelations between paths
to guarantee that we find the longest. Hence, we ndeatycentric spanne(introduced
by Awerbuch and Kleinberg [2004]), a set of uprtopaths with two valuable properties:
(i) any path in the graph can be written as a linear combinaifahe paths in the spanner,
and (i) the coefficients in this linear combination are bded in absolute value. The first
requirement says that the spanner is a good representatitimef exponentially-large set
of possible paths; the second says that lengths of some phths in the spanner will be
of the same order of magnitude as the length of the longelt féiese properties enable
us to repeatedly sample from the barycentric spanner amtsécict delays on the whole
graph. We then employ concentration inequalftiesprove that these reconstructions, on
average, converge to the true path lengths. Once we havedsstgicstical estimate of the
true weights on all the edges, it only remains to run a lonpast algorithm for weighted
directed acyclic graphs§ncesT-PATH), subject to path feasibility constraints.

A set of b paths{bs,...,bpy} C 2 is called 2-barycentric if any patk € # can be
written asx = S, ajb; with |aj| < 2. Awerbuch and Kleinberg [2004] provide a pro-
cedure to find a 2-barycentric spanner set whenever the qeith§? spansm dimen-
sions (see also [McMahan and Blum 2004]). We exhibit the ritlgm (see Algorithm 1)
for completeness, as this is a necessary pre-processmépsteur main algorithm. It is
shown [Awerbuch and Kleinberg 2004] that the running timé\fgforithm 1 is quadratic
in m.

In Algorithm 1,B = [bs,...,by|" andBy; = [by,...,bi—1,X,bi+1,...,by]". Bis initial-
ized so that itdth row is g, the standard basis vector with 1 in thk position and Os
elsewhere. The output of the algorithm is the final valuB,af 2-barycentric spanner. The
ith iteration of the for-loop in lines 2-4 attempts to repléceith element of the standard
basis with a path that is linearly independent of the previeul paths identified so far
and with all remaining standard basis vectériine 3 of the algorithm corresponds to
maximizing a linear function over the set and can be solved usingnGesT-PATH.* At
the end of the for-loop, we are left with a basismothat is not necessarily a 2-barycentric

2Concentration inequalities are sharp probabilistic guiaes on the deviation of a function of random variables
from its mean.

SLinear independence is maintained because we maximizeetieentinant, and because the determinant starts
out non-zero.

4The LONGEST-PATH algorithm is the standard longest-path algorithm on a weiyDAG, which runs in linear
time. In practice, to compute feasible basis paths one nuddstanstraints that rule out infeasible paths, as is
standard in integer programming formulations for timingugmis [Li and Malik 1999]; in this case, the longest-
path computation is solved as an integer linear program and $lving is used to check feasibility of each
generated basis path.
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spanner. Lines 5-7 of the algorithm refine this basis intab@B&centric spanner using the
SameLONGEST-PATH optimization oracle that is used in the for-loop. One canitiviely
view the determinant computation as computing the volumthefcorresponding poly-
tope. Maximizing the determinant amounts to spreading #éngoes of the polytope as far
as possible in order to obtain a “diverse” set of basis paths.

In general, the number of basis pathis less thamm. Gyorgy et al. [2007] extend the
above procedure to the case where the set of paths spans bidinegensional subspace
of R™. It is also possible to use a slightly different path repnéston where instead of
introducing a 0-1 variable to represent each edge, one ofrlyduces variables to encode
branch points; in this case, it is possible to use Algorithdir&ctly on this representation,
replacingmeverywhere in the algorithm description whihin this case, the find is ab x
m binary matrix. We define the Moore-Penrose pseudo-invergeasBt = BT(BB") L.

It holds thatBB* = Iy,

We also introduce some useful notation. For theoreticalyaisa letM be any up-
per bound on the length of any basis path. (Note tflatan be a very loose upper
bound.) Since we have assumed an adaptive adversary tldhigesw; based on our
previous choiceg; ... % 1 as well as the random factor®; ... 0% _1, we should take care
in dealing with expectations. To this end, we denot&gd4| the conditional expectation
E[Ali1,...,it—1,T¢1,..., 1], keeping in mind that randomness at titnie the general
model stems from our random choigef the basis pathndthe adversary’s random choice
™ giveni;. In the simplified model, all randomness is due to our chofde®basis path,
and this makes the analysis easier to present. In the ganeda, the adversary can vary
the distribution ofi®; according to the path chosen by the Player.

4.2  Analysis under the Simplified Model

We now present the BMETIME algorithm and analyze its effectiveness under the simpli-
fied model presented in Section 3.2.2. Recall that in thisehtite perturbation vectors
at all time points are identically 0, vizit (x) = O for all t andx. The practical interpre-
tation of this model is that the execution times of each bhkick (edge) is completely
determined by the starting environment (hardware) state.

Consider Algorithm 2. Lines 4-6 describe the game inteoactihat we outlined earlier
in this section, so we focus on the remainder of the algorithime 7 involves assembling
a vector of path lengths from a single path length, whereitiheelement ofv{ is b/,
representing the length of pabh, while all other basis path lengths are approximated as 0
(since they were not executed). Line 8 then ugés éstimate edge weights that could have
generated the path length In Line 10, we provide a procedure to predict the longedt pat
from the measurements taken oveounds; our theoretical guarantees in Theorem 4.2 are
for this procedure.

ExAMPLE 4.1. We illustrate the inner loop of Algorithm 2 with an examplenSider
the graph in Fig. 1. Algorithm 2 will sample uniformly at raoh from the sefxi, X2, X3}.
Suppose, for simplicity, that the environment picks theesapat each round t. Thus,
suppose that when we sample we observe length = 15, for xo we getl, = 5 and for
X3 we getlz = 10. Then, in Line 10 of the algorithm, the cumulative estimatedght
vector is generated such thét,g = %ZLl\TVt whereWayg(i) = 2.5fori € {1,6,7,10} and
Wavg(i) = O for other edge indices i. Using this estimated weight veetercompute the
weight of path xto bel10. This is as expected, sincgx x1 + X2 — X3 and w is constant,
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Algorithm 2 GAME TIME with simplified environment model
: Inputt e N
: Compute a 2-barycentric spanréy, ... ,bp}
:fort=1totdo
. Environment chooses:.
We choose; € {1,...,b} uniformly at random.
We predict the patk = b;, and observe the path length= b{wt

Estimatev; € RP asv; = b -&,, where{e} denotes the standard baséstfas 1 in
theith position and Os elsewhere).

8: Compute estimated weightg = B*#

9: end for
10: Use the obtained sequenag.”. Wi, to find a longest path(s). For example, for Theo-

rem 4.2, we COMpute := argmaXes X' y1_1 V.

=

yielding ;w; = {1+ {2 — (3.
We begin by proving some key properties of the algorithm.

Preliminaries

The following Lemma is key to proving that Algorithm 2 penfias well. It quantifies
the deviations of our estimates of the delays on the wholghyi®, from the true delays
W, which we cannot observe.

LEMMA 4.1. For anyd > 0, with probability at leastl — 6, for all x € 2,

<1 Y2c\/2b+2In(2571), (8)

T3 )

=

where c= 4bM.

PrROOF. We will show thatE{xx = w;x for anyx € 2, i.e. the estimates are unbia8ed
on the subspace spanned fiy,...,by}. By working directly in the subspace, we obtain
the required probabilistic statement and will have the disi@nality of the subspad® not
m, entering the bounds.

Definev; = Bw just asVi = BW;. Taking expectations with respectitpconditioned on
I1,...,0t—1,

o 12
Et% = Ex [b(bfwt) -, ] = b Z\b(biTWt) g =Bw = .
i=

Fix anya € {—2,2}P. We claim that the sequenge, ..., Z;, whereZ; = a™ (% — ) is
a bounded martingale difference sequence. Indéefl,= 0 by the previous argument. A
bound on the range of the random varialidesan be computed by observing

la™%| = [a" [b(biw )&, ]| < 2b|bfw| < 2bM and la"w| < 2bM,
implying |Z| < 4bM = c. An application of Azuma-Hoeffding inequality (see Appex)di

5For random variableX andX, X is said to be an unbiased estimateXaf E[X —X] = 0.
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for a martingale difference sequence yields, for the fixed

m<;z>mmmewmn>g&?

Having proved a statement for a fixeq we would like to apply the union boufido
arrive at the corresponding statement for any [—2, 2|°. This is implausible as the set is
uncountable. However, applying a union bound ovewtirgicesof the hypercubé—2, 2}°
is enough. Indeed, ifsT_;Z| = [aT S1_;(% —w)| < & for all vertices of{ 2,2}, then
immediately|yT_; Z| < & for anya € [—2,2]® by linearity. Thus, by union bound,

T

sz%—w)ScMmb+ﬁmuéﬂ)21—a
t=

Any pathx can be written ag™ = a"B for somea € [—2,2]P. Furthermorew{ = B+
implies thatx"#% = a"BB"# = a™% andx"w = a’v. We conclude that

<cy/2th+ 21In(261)) >1-9%

and the statement follows by dividing by O

Pr(Vu e[-2,2°,

T

Zl(\Tvt —w) "X

Pr(Vx ep,
t=

Estimating the Set of Longest Paths

Consider the quantit)% Yt_1W which is a vector of weights for edges in the graph,
averaged over the true weight vectors selected by the emvigatin rounds=1,2,..., 1.
The quantity% Si_1W represents the average estimated weight vector over rdurds
1,2,....T.

With the help of Lemma 4.1, we can now analyze how the longesalnost-longest)
paths with respect to the averaged estimated weights)( Compare to the true averaged
longest paths.

Note that in this discussion we are performing worst-caséyais with respect to paths,
while considering the sample average for an arbitrary secpief environment choices.
We will later discuss how to extend this result to worst-casalysis over both paths and
environment choices.

DerINITION 4.1. Define the set af-longest paths with respect to the actual delays

12 12
Sf=<xer: =Y wx>max=Fwx —¢
T& Xer T &

and with respect to the estimated delays

~ 12 13
SE=<{xer: =T Wx>max>y WX —¢€;.
T& Xer T &

In particular, s? is the set of longest paths.

6AIso known as Boole's inequality, the union bound says thatprobability that at least one of the countable set
of events happens is at most the sum of the probabilitieseoétients, e.g. PAUB) < Pr(A) + Pr(B).
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Fig. 3. lllustration of the second inclusion in Lemma 4.2. The top curve represents the true path length
distribution, while the bottom curve represents theMg TIME estimate of the distribution. The figure indicates
that the true set af-longest paths is contained in the setof- 28 )-longest paths w.r.t. to the sequenee.”. , Wiy
Under a margin assumption, equality between the two setbeahown, as exhibited by Theorem 4.2.

The following Lemma makes our intuition precise: with enbugals 1, the set of
longest paths, which we can calculate after running Alpami2, becomes almost iden-
tical to the true set of longest paths. We illustrate thimpgraphically in Figure 3: In a
histogram of average path lengths, the set of longest pitdsight “bump”) is somewhat
smoothed when considering the path lengths under the dstinigs. In other words,
paths might have a slightly different average path lengttienrthe estimated and actual
weights. However, we can still guarantee that this smogthgcomes negligible for large
enought, enabling us to locate the longest paths.

LEMMA 4.2. For anye > 0and3 > 0, and for = 1~%24bM,/2b + 2In(25-1),

e+28 ~e+28

SEC s and sfCs;

with probability at leastlL — .

PROOF. Letx e 5¢ andy € s0. Suppose that we are in tli& — 5)-probability event of
Lemma4.1. Then

12 12
Sy wix> =Y Wx— E>max— WX —e—¢
T4 T4 Xer T4

11’
>V Wy—e—&>Z= Ty —¢—
_Tt_E W y—¢ E_thzwty €—2¢

_max—zl WX —e— 28,

Xer T
where the first and fourth inequalities follow by Lemma 4He third inequality is by

definition of maximum, and the second and fifth are by defingiof 5¢ and s?, resp.

Since the sequence of inequalities holds formlsty5T , we conclude tha.tg C 5 “2 The
other direction of inclusion is proved analogouslyl

Note that§ — 0 ast — . To compute the set®, we can instead compute the §é§
that contains it. If|§TZE| <k, for some parametds, then we can use an algorithm that
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computes th& longest paths (see, e.g., [Eppstein 1998]) to find this set.

The Unique Longest Path Assumption: Worst-Case Analysi€ERgironment Choices

While Lemma 4.2 is very general, it holds for average-casdyais over environment
choices. In order to perform worst-case analysis for emvitent choices, we consider the
implication for finding a longest path under the followingamsption.

ASSUMPTION 4.1. There exists a single path ¥hat is the longest path on any round
with a certain (known) margip:

VX EP X#£X, W, (X" —X)"'w > p
Note that if there is a unique longest path (for any mapgin 0), then we can see that

1 T
= argmax- leth = argmaxmaxw; X
t=

*

X
xer T xer t=1.T

In other words, the longest path with respect to averagett@mment choices coincides
with that with respect to the worst-case environment choice

Under the above margin assumption, we can, in fact, recbedphgest path, as shown
in the next Theorem.

Theorem 4.2. Suppose Assumption 4.1 holds wgth- 0, and we run Algorithm 2 for
T = (8bM)?p~2(2b+2In(2571)) iterations. Then the output
T

* . T X
X = argmax Wi
xer &

of Algorithm 2 is equal to xwith probability at leastl — .

PROOF Letxf =argmaxc, X' 31_; W. We claim that, with probability £ dit is equal

to x*. Indeed, supposg # x*. By Lemma 4.2x; € ETO C 532 with probability at least
1-9. Thus,

tiLWtTX* — 2¢.

|

1 - T ¥
- ) WX 2
P2

Assumption 4.1, however, implies that

1T NS 1T NN
= wth<—letx—p
thi he=

leading to a contradiction whenever> 2§ = 1-1/28bM,/2b+ 2In(25-1)). Rearranging
the terms, we arrive at > (8bM)2p—2(2b+2In(2571)), as assumed. We conclude that

with probability at least & 3, x* = x* and{x*} = 50 = s&. o
The following weaker assumption also has interesting icapions.

ASSUMPTION 4.2. There exists a path*x ¢ such that it is the longest path on any
round

VXeP W, (X' —x)"w >0
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If, after running Algorithm 2 for enough iterations, we finll 28 -longest paths (the set

ETZE), Lemma 4.2 guarantees that, under Assumption 4.2, theeBingathx*, which lies
in 52, is one of them with high probability. As discussed eariee, can use an efficient
k-longest paths computation to find a set containifigWe can then use this information
to repeatedly test the candidate paths in this set to find tistvease patk* and estimate
its length.

Even if Assumption 4.2 does not hold, one can still find theykst path¢ with respect
to worst-case environment choices over 1,2,...,1, as long ax* lies in s¢ for someg,
and the size of§ is a small numbek (e.g. linear in the size of the program); the approach
discussed above of computing tkdongest paths will work with high probability. In
other words, if the longest patti with respect to the worst-case environment choice is
alsoamongst the longest paths with respect to averaged env@oichoices, then we can
efficiently findx*. Preliminary experimental evidence suggests that thisadn does hold
often in practice.

4.3 Analysis under General Weights-Perturbation Model

We now present an analysis ofABE TIME under the general weight-perturbation model
given in Sec. 3. For easy reference, we give thew&TIME algorithm again below as
Algorithm 3 with the new environment model.

As before, letM be any upper bound on the length of any basis path (where rew th
length includes the perturbation).

In the general model, the environmenpicks a distribution with meap®; € R™, which
depends on the algorithm’s chosen pathFrom this distribution,z draws a vector of
perturbationst; € R™. The vectont; satisfies the following assumptions:

—Bounded perturbation:
[IT%t]|1 < N, whereN is a parameter.
—Bounded mean perturbation of path length:
For any pathx € 2, |X"1*| < Umax

Note thatt*; is a function of the chosen path, and titdepends opt;.

Algorithm 3 GAMETIME with general environment model
1: Inputt € N
2: Compute a 2-barycentric spanrés, ... by}
3: fort=1totdo
Environment chooses;.
We choose; € {1,...,b} uniformly at random.
Environment chooses a distribution from which to dmay where the meap®; and
support of the distribution satisfies the assumptions gakmve.
7. We predict the patk = b, and observe the path length= b{(wt +17%)
8. Estimatef € R asv; = bt - e,, where{g} denotes the standard basis.
9:  Compute estimated weightg = B™%
10: end for
11: Use the obtained sequenag.”. Wi, to find a longest path(s). For example, for Theo-
rem 4.4, we compute := argmaxec, X' 31_; .

[ A
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We now state the main lemma for our general model. In this,c@sealculater; as an
estimate of the sum + 1t%.

LEMMA 4.3. For anyd > 0, with probability at leastlL — 6, for all x € 2,

13 . .
‘;t;(wt—wt—n‘t) X

1
< (2D+L)pmaxt = [c\/ 2b+2In(451) +dy/2m+ 2 In(461)}
9)

where c= 2b(2M + pmax) and d= N+ pmax.

PROOF The proof is similar to that of Lemma 4.1, so we only hightigte differences
here.

Ett = Ei, {Erx, [b(bfw + b % (%)) - &, lit] }
71bbb.|. 1bbbTbi
= p2,Pbiwe)-a+g 5 blbiude
:BW+Hbasis

wherepPasisdenotes thé x 1 vector of means in which thiéh element iso/ . and each
entry is bounded in absolute value fayax.

Fix anya € {—2,2}P. As before, the sequenig, ..., Z;, whereZ; = a™ (% — v — 2519
is a bounded martingale difference sequence. A bound omtigerof the random variables
can be computed by observing

"% = o [b(b] (e + TE%))e ]| < 2b]b (wg + 12| < 2bM
and
0T < 2bpmax, | TW| < 20M
implying
|Z;| < 2D(2M + pma) = C.

Thus, using Azuma-Hoeffding inequality, we can concluda flor anyd; > 0, and for

fixeda,
Pr< iz[ > c\/ZTIn(Z(Zb)611)> <& /20
t=

and (skipping a few intermediate steps involving the uniouarid as before), we finally get

< 2DTpknax+ Cy/ 2Tb+ 21 In(2611)) >1-3. (10)

Now consider any fixeck € #. We claim that the sequends,...,Y;, whereY; =
X't (x) — X", is also a bounded martingale difference sequence. ClearbgE: [Tt (x)] =
I, Et Y] = 0. Further, a bound on the range of the random variables caarbputed by
observing

T

Pr(Vx €p, Zi(v”vt —w) "X
t=

X' ()] <N and [X"H| < pmax.
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Thus,
[Ye] <N+ pmax=:d.
An application of Azuma-Hoeffding inequality for the fixednd for anyd, > 0 yields,

Pr( ivt >d\/21In(2(2m)621)> < 8p/2™M.
t=

Taking the union bound over alle »#,

T

PRUGTERLY

Pr(VX eP,

< dy/2tm+ 2tin(25, )> >1-5,.

Thus, we get

T
Pr(Vxe P, Zl X" (X le gt +d\/2Tm+ 2t|n(2621)) >1-&
t
and finally
T
Pr(Vxe P, leTTB‘t(x) < THmax+ d\/2rm+ 21In(2621)) >1-5. (11)
t=

Settingd; = & = g in Relations 10 and 11 above and dividing them throughout, by
we get that, for alk € #, each of the following two inequalities hold with probatilat

d.
mosté.
> 2blmax+ 1 Y%cy/2b+ 2In(45-1)
1 T
: leTTtXt(x) > Pmax+ T Y2dy/2m+ 2In(45-1)
t=

From the above relations, we can conclude that, foxal®, the following inequality
holds with probability at least 4 &

Al

WH

X" (Vi — g )

t

T

: 2% (=W =T () < (20 Dhmact

12 <c\/2b+ 2In(451) +dy/2m+ 2 In(461)) (12)
which yields the desired lemma.

O

Estimating Longest Paths for Sample Average over Envirarii@hoices

From Lemma 4.3, we can derive results on estimatingomgest paths and the longest
path in a manner similar to that employed in Section 4.2. Thardifference is that now
we view 5T Vi as an estimate of 57_, (w + 1¢%) rather than of simplyt 57 w.

Thus, we now define the sef as follows:
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DEFINITION 4.3. The set of-longest paths with respect to the actual delays is
S¢ = xefP'l T( +Tf‘)Tx>max1 T( + 14 (X)X —¢
T 'Tt;Wt i _x’eprt;Wt !

The definition of the seff stays unchanged. The lemma on approximating thesséts
S now becomes the following:

LEMMA 4.4. Foranye >0, d > 0, and for

&= (204 D)pmax+ T 2 {c\/ 2b+2In(45-1) + d\/ 2m+2 In(461)} :
with probability at leastL — 3 it holds thatsé C STHZE andsE C ETHZE.

Worst-Case Analysis for Environment Choices
Consider the longest pa#i with respect to worst-case environment choices

X" = argmaxmax(w; + 1% (X)) 'x
xer t=1.1
Under the margin assumption (Assumption 4.1), we can redbedongest path in the
general weight-perturbation model with respect to woestecenvironment choices, using
an identical reasoning as before.

Theorem 4.4. Suppose Assumption 4.1 holds vgtly (4b+ 2)pmax, @and we run Algo-
rithm 3 for T = 8(p — (4b+ 2)lmax) 2 (C3(b+1In(45~1)) + d?(m+In(4371))) iterations.
Then the output

T

Xt =argmax’ } W
xer &

of Algorithm 3 is equal toxwith probability at leastl — .

The proofs of Lemma 4.4 and Theorem 4.4 are virtually idexhtic the corresponding
results in Section 4.2, so we omit them here. Also, as in thetian, we can also identify
the longest path under the weaker Assumption 4.2 by findi«ageehﬂ“b*z)leax containing
s9 and enumerating the paths in it.

Finally, as in the case of the simplified model, if the longeeghx* with respect to worst-
case environment choicesatso amongst the longest paths with respect to average-case

analysis of environment choices, then we can efficiently %ind

4.4  Logarithmic Regret under Margin Assumption

As a corollary of Theorem 4.2, we obtain a new result in thel figlgame-theoretic learn-
ing, which has to do with the notion oégret— the difference between cumulative length
of the longest path and that of the paths selected at eaElermally, theregret over T
rounds is defined &Rt = max¢c, S W X" — 51 ; W% wherex is the path selected at
roundt in a game that lasts far rounds [Cesa-Bianchi and Lugosi 2006].

COROLLARY 4.1. Under the assumptions of Theorem 4.2 and for large enough T, i
we run Algorithm 2 wittd = TtlogT for 1(8) steps and then usé for prediction in the
remaining(T — T) rounds, the expected regret iglogT).
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PROOF Algorithm 2 makes a mistake afte(d) rounds with probability at mosi. In
this case, the regret is at modtM - T. With probability at least 1 3, the algorithm
produces the optimal path, resulting in at mibtt regret. Thus, the expected regret is
bounded byERT < ™™ + 2bM3T = O(logT). O

The significance of this result in learning theory, as note&eéc. 2, is the reduction of
regret in the adversarial “bandit” setting fro®(+/T) to O(logT) under the addition of
Assumption 4.1.

5. EXPERIMENTAL RESULTS

We have implemented and evaluated our approach for probfemsecution time analy-
sis. Our analysis tool, calledAMETIME, can generate an estimate of the execution time
profile of the program as well as a worst-case execution tstimate. This section details
our implementation and results.

5.1 Implementation

GAMETIME operates in four stages, as described below.

1. Extract CFG. GAMETIME begins by extracting the control-flow graph (CFG) of the
real-time task whose WCET must be estimated. This partzofiST IME is built on top of
the CIL front end for C [George Necula et al. ]. Our CFG pararse{numbers of nodes,
edges, etc.) is thus specific to the CFG representationsraotesd by CIL. The computed
CFG is slightly different from the standard representatiothat nodes correspond to the
start of basic blocks of the program and edges indicate flogonfrol, with edges labeled
by a conditional or basic block. In our experience, this ghasisually very fast, taking no
more than a minute for any of our benchmarks.

2. Compute basis paths.The next step for GMETIME is to compute the set of basis
paths and thé&™ matrix. The basis paths are generated as described in Sdcfio As
noted there, it is also possible to ensure the feasibilitasfis paths by the use of inte-
ger programming and SMT solving. This phase can be somewhatdtonsuming; in our
experiments, the basis computation for the largest bendh(statemate) took about 15
minutes. The implementation of this phase is currently asptimized Matlab implemen-
tation, and further performance tuning appears possible.

3. Generate program inputs.Given the set of basis paths for the grapiyWw& TIME then
has to generate inputs to the program that will drive the eds execution down that
path. It does this usingonstraint-based test generatidoy generating a constraint satis-
faction problem characterizing each basis path, and thieg asconstraint solver based on
Boolean satisfiability (SAT). This phase uses the UCLID SMiver [Bryant et al. 2007]
to generate inputs for each path and creates one copy of tigegon for each path, with
the different copies only differing in their initializaticfunctions. For lack of space, we are
unable to describe the test generation in detail; we onlytimehere that it is standard: the
code for each path is translatedgiatic single assignmef8SA) form, from which each
statement is transformed into a corresponding logical tdanfe.g., assignments become
equalities), and the resulting formula is handed off to arTSdlver. For our experiments,
this constraint-based test generation phase was verydistg less than a minute for each
benchmark.

4. Predict estimated weight vector or longest path.Finally, Algorithm 3 is run with
the set of basis paths and their corresponding programsg alith theB™ matrix. The
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number of iterations in the algorithm, depends on the mode of usage of the tool. In the
experiments reported below, we used a deterministic cycterate processor simulator
from a fixed initial hardware state, and hernceras set equal tb, since we perform one
simulation per basis path. In general, one can perform aatestive exploration of starting
hardware states (e.g., for hard real-time systems) or sastpiting hardware states from
a given distribution (e.g., for soft real-time systems)tHis situation, one can either pre-
computet, given ad, as described in Section 4 or it can be increased gradualiye wh
searching for convergence to a single longest path.

The run-time for this phase depends on the execution timeegbitogram, the speed of the
hardware simulator (if one is used), and the number of i@matf the loop in Algorithm 3.
For our experiments, this run-time was under a minute fdoetichmarks.

Given the estimated weights computed at each rouadis, ..., W, we can compute
the cumulative estimated weight vect%)gt‘:lv”vt, and use this to predict the length of any
path in the program. In particular, we can predict the lohgath, and its corresponding
length. Given the predicted longest pathwe check its feasibility with an SMT solver; if
it is feasible, we compute a test case for that path, but $f itdt feasible, we generate the
next longest path. The process is repeated until a feasiblgekt path is predicted. The
predicted longest path can be executed (or simulated)adiraes to calculate the desired
timing estimate.

5.2 Benchmarks

Our benchmarks were drawn from those used inWHeET Challenge 200pran 2006],
which were drawn from the Malardalen benchmark suite pviddlen WCET Research
Group ] and the PapaBench suite [Nemer et al. 2006]. In paaticwe used benchmarks
that came from real embedded software (as opposed to toygmsy, had non-trivial con-
trol flow, and did not require automatic estimation of loopibds. The latter criterion
ruled out, for example, benchmarks that compute a discatime transform or perform
data compression, because there is usually just one pathgihthose programs (going
through several iterations of a loop), and variability im+time usually only comes from
characteristics of the data. Most benchmarks in the Malardsuite are of this nature.
The main characteristics of the chosen benchmarks is showalile I. The first three
benchmarks, altitude, stabilisation, and climdntrol, are tasks in the open source Pa-
paBench software for an unmanned aerial vehicle (UAV) [Negteal. 2006]. The last
benchmark, statemate, is code generated fromaasSvATE Statecharts model for an au-
tomotive window control system. Note in particular, how thenber of basis pathsis
far less than the total number of source-sink paths in the.QA® are able to efficiently
count the number of paths as the CFG is a DAG.) We also indibataumber of lines of
code for each task; however, note that this is an impreciseaas it includes declarations,
comment lines, and blank lines — the CFG size is a more aecrtgptesentation of size.

5.3  Worst-Case Execution Time Analysis

We have compared @1ETIME with two leading tools for WCET analysis: Chronos [Li
et al. 2005] and aiT [AbsInt Angewandte Informatik ]. Thesels are based on mod-
els crafted for particular architectures, and are desidoggenerate conservative (over-
approximate) WCET bounds. Althougha®E TIME is not guaranteed to generate an up-
per bound on the WCET, we have found that it is possible fem&TIME to produce larger
estimates. We also show thah@E TIME does significantly better than simply testing the
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Name LOC | Size of CFG| Total Num. | Num. of basis
n m of paths pathsb
altitude 12 12 16 11 6
stabilisation 48 31 39 216 10
climb_control 43 40 56 657 18
statemate 916 | 290 | 471 7x 1018 183

25

Table I.Characteristics of Benchmarks.“LOC” indicates number of lines of C code for the task. The Coln
Flow Graph (CFG) is constructed using the CIL front ends the number of nodesp is the number of edges.

programs with inputs generated uniformly at random.

5.3.1 Comparison with Chronos and Random Testiige performed experiments to
compare @QMETIME against Chronos [Li et al. 2005] as well as against testiegptio-
grams on randomly-generated inputs. WCET estimates apaibintterms of the number
of CPU cycles taken by the task to complete in the worst case.

Chronos is built upon SimpleScalar [Todd Austin et al. ], dely-used tool for proces-
sor simulation and performance analysis. Chronos extea®BG from the binary of the
program (compiled for MIPS using modified SimpleScalar$pahnd uses a combination
of dataflow analysis, integer programming, and manuallystoisted processor behavior
models to estimate the WCET of the task.

To compare @METIME against Chronos, we used SimpleScalar to simulate, for each
task, each of the extracted basis paths. We used the samkSuoalar processor configu-

ration as was used with Chronos, viz., Chronos’ default $®galar configuration.
This configuration is given below:

-cache:il1 i11:16:32:2:1 -mem:lat 30 2 -bpred 2lev -bpred:2lev 1 128 2 1 -decode:width
1 -issue:width 1 -commit:width 1 -fetch:ifgsize 4 -ruu:size 8

The parameters listed above use SimpleScalar’s syntapéeifging processor parame-
ters. For examplesbpred 21lev correspondsto 2-level branch predictietigsue : width
1 corresponds to an instruction issue width of 1, afidtch:ifqsize 4 corresponds to
an instruction fetch queue of size 4. Further details ardabla in the SimpleScalar doc-
umentation.

Since SimpleScalar’s execution is deterministic for a figeacessor configuration, we
did not run Algorithm 3 in its entirety. Instead, we simulhtach of the basis paths exactly
once to obtain the execution time estimate for that pathlaewpredicted a feasible longest
path as described in Section 5.1. A test case was generattdetfpredicted longest path.
The predicted longest path was then simulated once andétsuéan time is reported as
GAMETIME’'s WCET estimate. Note that the availability of a test casplies that this is
an actual execution time that the program can exhibit onaiget platform.

Random testing was done by generating initial values foh g@ogram input variable
uniformly at random from its domain. For each benchmark, amagated 500 such random
initializations; note that GMETIME performs significantly fewer simulations (no more
than the number of basis paths, for a maximum of 183 for therstate benchmark).

Our results are reported in Table Il. We note that the eséroBGAME TIME Ty is lower
than the WCETT, reported by Chronos for three out of the four benchmarkserdst-
ingly, Ty > T for the stabilisation benchmark; on closer inspection, wenfl that this
occurred mainly because the number of misses in the ingirucache was significantly
underestimated by Chronos. The over-estimation by Chréastatemate is very large,
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Name of Chronos Random GAMETIME| Tc—Ty Basis path

Benchmark| WCET| testing| estimate Tg times

Te T Ty (%) Max| Min

altitude 567 175 348 629 343| 167
stabilisation 1379 1435 1513 -8.9 1513 1271

climb_control| 1254 646 952 317 945| 167
statemate 8584 4249 4575 87.6 | 373% 3235

Table II. Comparison with Chronos and random testing. Execution time estimates are in number of cycles
reported by SimpleScalar. For random testing, the maximyeteaount over 500 runs is reported. The fifth
column indicates the percentage over-estimation by Clsromer GAME TIME, and the last two columns indicate
the maximum and minimum cycle counts for basis paths geztiat GAMETIME.

Name of Benchmark| aiT WCET bound | GAMETIME estimate
altitude 251 126
stabilisation 926 583
statemate 4063 2555

Table Ill. Comparison with aiT. Execution time estimates are in number of cycles for the ARDIVI processor.

much larger than for altitude and climdmntrol. This appears to arise from the fact that the
number of branch mis-predictions estimated by Chronogisfstantly larger than that ac-
tually occurring: 106 by Chronos versus 19 mis-predictiomshe longest path simulated
by GAMETIME in SimpleScalar. In fact, the number of branches performea single
loop of the statemate code is bounded by approximately 40.

We also note that GMETIME’s estimates can be significantly higher than those gen-
erated by random testing. MoreoveraABeTIME's predicted WCET is higher than the
execution time of any of the basis paths, indicating thathhsis paths taken together
provide more longest path information than available froemt individually.

5.3.2 Comparison with aiT.We have also run experiments with aiT [AbsInt Ange-
wandte Informatik ], one of the leading industrial tools fMCET analysis. Separate
versions are available for certain processors and corspi@ur experiments used the ver-
sion of aiT for the ARM7TDMI processor for use with binariesngrated by both ARM
and GNU compilers. For the experiments reported in this@ectve used the GNU C
compiler provided by the SimpleScalar toolset [Todd Augtiral. ] to generate ARM
binaries. Measurements forABIE TIME’s analysis were generated using a version of the
SimpleScalar-ARM simulator configured for the ARM7TDMI. & hesults are shown in
Table Ill. Since the ARM7TDMI does not have a floating-poinituwe had to modify
the altitude and stabilisation programs to use instead off1oat types; such a modifi-
cation was not possible for the climdmntrol task without substantially changing the code,
so we omitted this benchmark from the comparison. We obdbateiT generates larger
bounds. Since aiT is a closed industrial tool, unlike in thgecof Chronos, we do not have
a clear explanation of the results and an analysis of patenrgisons for over-estimation.
We note also that the execution time measurements used andiTAME TIME are made
using different methods, which could influence the relatiseparison. A more detailed
experimental comparison is left to future work.
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5.3.3 Discussion.As noted earlier, our theoretical guarantees are only fefitiite-
horizon WCET problem. Moreover, they are probabilisticigurees, rather than absolute
statements. Tools such as aiT and Chronos are designedédiselglobal WCET problem
for specific platforms. Naturally, the reader might wondeoat the suitability of QME-
TIME versus tools that are designed to obtain a conservativer Uggaend for a specific
platform, and for hard real-time systems versus soft riea-tystems.

Consider first the case of hard real-time systems. If a coatee upper bound is re-
quiredand an accurate model is available for the hardware platforen tiools that are
formally proved to generate such an upper bound for that aethe right tools for
the problem. However, it is often the case in the design ohéwad real-time embed-
ded systems that there is no conservative tool that supexatsly the hardware platform
that the designers want to use. In such a caseviEsI IME provides a suitable alterna-
tive, especially in early-stage design space explorasiod when designers have complete
knowledge of the environment states from which the prograno ibe executed. As we
have observed in our experiments, it is possible faM& TIME to generate larger execu-
tion times in some cases than the bounds predicted by a s@tisertool. Inaccuracies
or slight mismatches between the platform model and theabptatform are likely to be
the reason. Importantly, @1ETIME is easy to porto new platforms and seeks to avoid
modeling errors by directly executing on the target platfoMoreover, even when a con-
servative WCET tool is available for the platforma@e TIME is useful for evaluating the
tightness of the generated bound.

For soft real-time systems,AME TIME is very suitable, since it generates probabilistic
guarantees and (as we demonstrate in Section 5.4), caeeffjoestimate the distribution
of execution times exhibited by a task. Additionallyae TIME's ability to generate test
cases for basis paths is a useful capability for both hardsaftdeal-time systems.

A very interesting direction would be to combine the captibd of GAMETIME with
that of a conservative WCET tool such as aiT, when an accpfattorm model is avail-
able, so as to reduce the over-estimation of WCEAMET IME could be used to generate
inputs corresponding to basis paths. These inputs can bdyseconservative tool to es-
timate the WCET for those specific program pathaM& TIME can then use the resulting
estimates to predict the true longest path (or set of pditias)h, which the conservative tool
can generate a final WCET estimate. A further benefit of suttineson would also be to
extend QMETIME's capabilities for reasoning about data-dependent timing

5.4 Estimating the Full Timing Profile of a Program

One of the unique aspects ofaA@E TIME is the ability to predict thexecution time pro-
file of a program— the distribution of execution times over program paths —ohyy
measuring times for a linear number of basis paths, as fiwethin Lemma 4.3.

To experimentally validate this ability, we performed esipeents with a complex pro-
cessor architecture — the StrongARM-1100 — which implesi&ém ARM instruction set
with a complex pipeline and both data and instruction cachidse SimIt-ARM cycle-
accurate simulator [Qin and Malik ] was used in these expemis

In our experiments, we first executed each basis path gewkgt GameTime on the
Simlt-ARM simulator and generated the averaged estimateghtvectomayg = % S0, .
Using this estimated weight vector as the weights on edgé®iCFG, we then efficiently
computed the estimated length of each path the CFG a- Wayg using dynamic pro-

ACM Transactions in Embedded Computing Systems, Vol. v,iNeam 20yy.



28 . S. A. Seshia and A. Rakhlin

gramming.” We also exhaustively enumerated all program paths for thel gmograms
in our benchmark set, and simulated each of these paths tputerits execution time.
For the altitude program, the histogram of execution timesegated by GMETIME
perfectly matched the true histogram generated by exivalysénumerating program paths.
For the climhcontrol task, the GMETIME histogram is a close match to the true his-
togram, as can be seen in Figure 4. Out of a total of 657 patswere found to be
feasible; of these, @METIME’s prediction differs from the true execution time on only
12 paths, but the prediction is never off by more than 40 syd@ed is always an over-
approximation.

20 Path lengths for cctask (bin size = 20 cycles)
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Fig. 4. Estimating the distribution of execution times with GAME TIME. The true execution times are indicated
by white bars, the predicted execution times by gray basilzecases where the two coincide are colored black.

In summary, we have found AMETIME to be an adequate technique to estimate not
just the WCET, but also the distribution of execution timés@rogram, for even com-
plex microprocessor platforms. A key aspect Mg TIME’s effectiveness has been the
generation of tests for basis paths. We have also experau&ith other coverage metrics
such as statement or branch coverage, but these do notlygetéiine level of accuracy as
does basis path coverage. Full path coverage is very diffic@alchieve for programs that
exhibit path explosion (e.g., statemate), whereas batlisqoaerage remains tractable.

6. CONCLUSIONS

We have presented a new, game-theoretic approach to astjmagantitative properties of
a software task, such as its execution time profile and wearsé execution time (WCET).

"The histogram of path lengths in a weighted DAG can be geeetay traversing the DAG “bottom-up” from
the sink, to compute, for each node, the lengths of all patim that node to the sink. Such computation can be
efficiently performed in practice using dynamic programgnin
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Our tool, GAMETIME, is measurement-based, making it easy to use on many ditfere
platforms without the need for tedious processor behaviatysis. We have presented
both theoretical and experimental evidence for the utidftthe GAME TIME approach for
guantitative analysis, in particular for timing estimatio

We note that our algorithm and results of Section 4 are génerthat they apply to
estimating longest paths in DAGs by learning an environmneodlel, not just to timing
estimation for embedded software. In particular, one caplay the algorithms presented
in this paper to power estimation of software systems andiémtitative analysis of many
systems that can be modeled as a DAG, such as combinatigoaitgiand distributed
embedded and control systems.
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A. AZUMA-HOEFFDING INEQUALITY

The Azuma-Hoeffding inequality is a very useful concentrainequality. A version of
this inequality with a slightly better constant is given asima A.7 in [Cesa-Bianchi and
Lugosi 2006].

LEmMMA A.1l. LetV,...,Yr be a martingale difference sequence. SupposeYhat c
almost surely for all € {1,...,1}. Then for anyd > 0,

T
Pr Yi| >1/21¢%In(2/d) | <O
27V

One-sided inequalities fof;_,Y; also hold by replacing & with 1/3 in the loga-
rithm. The inequality is an instance of the so-caldethcentration of measure inequalities
Roughly speaking, it says that if each random variable fateiwithin the bounds-c, c],
then the sum of these variables fluctuates, with high prdibabiithin [—c\/T,c\/T].
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