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The analysis of quantitative properties, such as timing and power, is central to the design of
reliable embedded software and systems. However, the verification of such properties on a program
is made difficult by their heavy dependence on the program’s environment, such as the processor it
runs on. Modeling the environment by hand can be tedious, error-prone and time consuming. In
this paper, we present a new, game-theoretic approach to analyzing quantitative properties that is
based on performing systematic measurements to automatically learn a model of the environment.
We model the problem as a game between our algorithm (player) and the environment of the
program (adversary), where the player seeks to accurately predict the property of interest while the
adversary sets environment states and parameters. To solve this problem, we employ a randomized
strategy that repeatedly tests the program along a linear-sized set of program paths called basis
paths, using the resulting measurements to infer a weighted-graph model of the environment,
from which quantitative properties can be predicted. Test cases are automatically generated
using satisfiability modulo theories (SMT) solving. We prove that our algorithm can, under
certain assumptions and with arbitrarily high probability, accurately predict properties such as
worst-case execution time or estimate the distribution of execution times. Experimental results for
execution time analysis demonstrate that our approach is efficient, accurate, and highly portable.

Categories and Subject Descriptors: C.3 [Real-time and Embedded Systems]: ; D.2.4 [Software/Program
Verification ]:

General Terms: Verification, Testing, Learning, Real-Time Systems

Additional Key Words and Phrases: Embedded software, formal verification, quantitative prop-
erties, execution time, game-theoretic online learning

1. INTRODUCTION

The main distinguishing characteristic of embedded computer systems is the tight inte-
gration of computation with the physical world. Consequently, the behavior of software
controllers of suchcyber-physicalsystems has a major effect on physical properties of
such systems. These properties are quantitative, including constraints on resources, such
as timing and power, and specifications involving physical parameters, such as position
and velocity. The verification of such physical properties of embedded software systems
requires modeling not only the software program but also therelevant aspects of the pro-
gram’s environment. However, only limited progress has been made on these verification
problems. One of the biggest obstacles is the difficulty in creating an accurate model of a
complex environment.

Consider, for example, the problem of estimating the execution time of a software task.
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2 · S. A. Seshia and A. Rakhlin

This problem plays a central role in the design of real-time embedded systems, for ex-
ample, to provide timing guarantees, for use in scheduling algorithms, and also for use
in co-simulating a software controller with a model of the continuous plant it controls.1

In particular, the problem of estimating the worst-case execution time (WCET), has been
the subject of significant research efforts over the last 20 years (e.g. [Li and Malik 1999;
Reinhard Wilhelm et al. 2008]). However, much work remains to be done to completely
solve this problem. The complexity arises from two dimensions of the problem: thepath
problem, which is to find the worst-case path through the task, and thestate problem,
which seeks to find the worst-case environment state to run the task from. The problem
is particularly challenging because these two dimensions interact closely: the choice of
path affects the state and vice-versa. Significant progresshas been made on this problem,
especially in the computation of bounds on loops in tasks, inmodeling the dependencies
amongst program fragments using (linear) constraints, andmodeling some aspects of pro-
cessor behavior. However, as pointed out in recent papers byLee [2007] and Kirner and
Puschner [2008], it is becoming increasingly difficult to precisely model the complexities
of the underlying hardware platform (e.g., out-of-order processors with deep pipelines,
branch prediction, caches, parallelism) as well as the software environment. This results
in timing estimates that are either too pessimistic (due to conservative platform modeling)
or too optimistic (due to unmodeled features of the platform). Industry practice typically
involves making random, unguided measurements to obtain timing estimates. As Kirner
and Puschner [2008] write, a major challenge for measurement-based techniques is the
automatic and systematic generation of test data.

In this paper, we present a newgame-theoreticapproach to verifying physical proper-
ties of embedded software that operates bysystematically testingthe software in its target
environment, andlearning an environment model. The following salient features of our
approach distinguish it from previous approaches in the literature:

• Game-theoretic formulation:We model the problem of estimating a physical quantity
(such as time) as a multi-round game between our estimation algorithm (player) and
the environment of the program (adversary). The physical quantity is modeled as the
length of the particular execution path the program takes. In the game, the player seeks
to estimate the length of any path through the program while the adversary sets envi-
ronment parameters to thwart the player. Each round of the game constitutes one test.
Over several rounds, our algorithm learns enough about the environment to be able to
accurately predict path lengths with high probability, where the probability increases
with the number of rounds (precise statement in Sec. 4). In particular, we show how
our algorithm can be used to predict the longest path and thuspredict properties such as
worst-case execution time (WCET).
• Learning an environment model:A key component of our approach is the use of sta-

tistical learning to generate an environment model that is used to estimate the physical
quantity of interest. The environment is viewed as an adversary that selects weights
on edges of the program’s control flow graph in a manner that can possibly depend on
the choice of the path being tested. This path-dependency ismodeled as a perturba-

1In “software-in-the-loop” simulation, the actual software implementation of a controller is simulated along with
a model of the continuous plant it controls. However, for scalability, such simulation must be performed on a
workstation, not on the embedded target. Consequently, thetiming behavior of different execution paths in the
program must be inferred a-priori on the target and then usedduring the workstation-based simulation.
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tion of weights by the adversary. Our algorithm seeks to estimate path lengths in spite
of such adversarial setting of weights. The weight-perturbation model can capture not
only adversarial choices made by the environment, but also to errors in measurement.
• Systematic and efficient testing and measurement:Another central idea is to perform

systematic measurementsof the physical quantity, by sampling only so-calledbasis
pathsof the program. The intuition is that the length of any program path can be ap-
proximated as a linear combination of the observed lengths of the basis paths plus a
perturbation. We use satisfiability modulo theories (SMT) solvers [Barrett et al. 2009]
and integer programing to generate feasible basis paths andto generate test inputs to
drive a program’s execution down a basis path. This approachis efficient because the
number of basis paths is linear in the size of the program. Additionally, the measure-
ments are madewithout instrumenting the program, thereby avoiding any resultant skew
in behavior.

A goal of this paper is to demonstrate that the above three concepts can be useful for
quantitative analysis of software-controlled embedded systems. Additionally, although
our focus is on software analysis, we believe that these concepts can also be useful for the
analysis of physical properties of cyber-physical systemsin general.

We present both theoretical and experimental results demonstrating the utility of our
approach. On the theoretical side, we prove that, for anyadversarially-chosen sequence
of environment states to run the program from and given anyδ > 0, if we run a number
of tests that is polynomialin the input size and ln1δ , our algorithm accurately estimates the
average length of any program path for that environment state sequence with probability
1− δ (formal statement in Section 4). Under certain assumptions, we can use this result
to accurately find the the longest path, which, for timing, amounts to finding the input that
yields the worst-case execution time (WCET). Moreover, foranyε, our algorithm can also
be used to find a set of paths of length withinε of the longest.

We demonstrate our approach for the problem of execution time analysis of embedded
software. Our approach is implemented in a tool called GAMETIME, which has the fol-
lowing features and applications:

• Portability and ease of use:GAMETIME is measurement-based and so can be more eas-
ily applied to complex, hard-to-model platforms, and during design space exploration;
• WCET estimation:GAMETIME generates test cases exhibiting lower bounds on the

true WCET, which are tight, under certain assumptions, witharbitrarily high probabil-
ity. We present experimental results comparing GAMETIME to existing state-of-the-art
WCET estimation tools aiT [AbsInt Angewandte Informatik ] and Chronos [Li et al.
2005]. Perhaps surprisingly, results indicate that GAMETIME can generateeven bigger
execution-time estimates than some of these tools;
• Predicting execution times of arbitrary paths:GAMETIME can be used to predict a set

of ε-longest paths as well as the distribution of execution times of a program. These
problems are relevant for soft real-time systems and for generating execution-time esti-
mates to guide combined simulation of a software controllerand its plant.

For concreteness, we focus the rest of the paper on executiontime analysis. However, the
theoretical formulation and results in Section 4 can apply to the estimation ofany physical
quantityof systems with graph-based models; we have therefore sought to present our
theoretical results in a general manner as relating to the lengths of paths in a graph.
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The outline of the paper is as follows. We begin with a survey of related work in Sec-
tion 2, mainly focussed on execution time analysis. The basic formulation and an overview
of our approach is given in Section 3. The algorithm and main theorems are given in Sec-
tion 4, and experimental results in Section 5. We conclude inSection 6.

A preliminary version of this work appeared in [Seshia and Rakhlin 2008]. This ex-
tended version substantially expands on both theoretical and experimental results, and de-
scribes the theoretical model in far greater detail.

2. BACKGROUND AND RELATED WORK

We briefly review literature on estimating physical parameters of software and relevant
results from learning theory and place our work in this context.

2.1 Estimating Execution Time and Other Physical Quantities

There is a vast literature on estimating execution time, especially WCET analysis, com-
prehensively surveyed by Li and Malik [Li and Malik 1999] andWilhelm et al. [Wilhelm
2005; Reinhard Wilhelm et al. 2008]. For lack of space, we only include here a brief dis-
cussion of current approaches and do not cover all tools. References to current techniques
can be found in a recent survey [Reinhard Wilhelm et al. 2008].

There are two parts to current WCET estimation methods:program path analysis(also
calledcontrol flow analysis) andprocessor behavior analysis. In program path analysis,
the tool tries to find the program path that exhibits worst-case execution time. In processor
behavior analysis (PBA), one models the details of the platform that the program will
execute on, so as to be able to predict environment behavior such as cache misses and
branch mis-predictions. PBA is an extremely time-consuming process, with several man-
months required to create a reliable timing model of even a simple processor design.

Current tools are broadly classified into those based onstatic analysis(e.g., aiT, Bounds-
T, SWEET, Chronos) and those that aremeasurement-based(e.g., RapiTime, SymTA/P,
Vienna M./P.). Static tools rely on abstract interpretation and dataflow analysis to compute
facts at program points that identify dependencies betweencode fragments and generate
loop bounds. Even static techniques use measurement for estimating the time for small
program fragments, and measurement-based techniques relyon techniques such as model
checking to guide path exploration. Static techniques alsoperform implicit path enumer-
ation (termed “IPET”), usually based on integer linear programming. The state-of-the-art
measurement-based techniques [Wenzel et al. 2008] are based on generating test data by a
combination of program partitioning, random and heuristictest generation, and exhaustive
path enumeration by model checking.

Our technique ismeasurement-based, it suffers no over-estimation, and it is easy to port
to a new platform. It is distinct from existing measurement-based techniques due to the
novel game-theoretic formulation, basis path-based test generation, and the use of online
learning to infer an environment model. Our approach does rely on some static techniques,
in deriving loop bounds and using symbolic execution and satisfiability solvers to compute
inputs to drive the program down a specific path of interest. In particular, note that our
approach completely avoids the difficulties of processor behavior analysis, instead directly
executing the program on its target platform. Moreover our approach applies not just to
WCET estimation, but also to estimating the distribution ofexecution times of a program.

While there have been several papers about quantitative verification of formal models
of systems (e.g. [Chakrabarti et al. 2005]), these typically assume that the quantitative
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parameters of primitive elements (such as execution time ofsoftware tasks) are given as
input. There is relatively little work on directly verifying non-timing properties on soft-
ware, with the exception of estimating the power used by software-controlled embedded
systems [Tiwari et al. 1994].

Adversarial analysis has been employed for problems such assystem-level dynamic
power management [Irani et al. 2005], but to our knowledge, the adversarial model and
analysis used in this paper is the first for timing analysis and for estimating quantitative
parameters of software-based systems.

2.2 Learning Theory

Results of this paper build on thegame-theoretic predictionliterature in learning theory.
This field has witnessed an increasing interest in sequential (or online) learning, whereby
an agent discovers the world by repeatedly acting and receiving feedback. Of particular
interest is the problem of learning in the presence of an adversary with acomplete absence
of statistical assumptionson the nature of the observed data.

The problem of sequentially choosing paths to minimize theregret (the difference be-
tween cumulative lengths of the paths chosen by our algorithm and the total length of the
longest path afterT rounds) is known as an instance ofbandit online linear optimization.
The “bandit” part of the name is due to the connection with themulti-armed banditprob-
lem, where only the payoff of the chosen “arm” (path) is revealed. The basic “bandit”
problem was put forth by Robbins [1952] and has been well-understood since then. The
recent progress comes from the realization that well-performing algorithms can be found
(a) for large decision spaces, such as paths in a graph, and (b) under adversarial conditions
rather than the stochastic formulation of Robbins. We are the first to bring these results to
bear on the problem of quantitative analysis of embedded software. In addition to this novel
application, our results are of independent theoretical interest in the area of game-theoretic
learning. Briefly, with the results herein, we now know that the best achievable regret for
the stochastic multiarmed bandit problem isO(

√
T) without amargin assumption(As-

sumption 4.1 in Sec. 4.2) andO(logT) with the assumption. TheO(
√

T) regret has been
recently proven for the non-stochastic bandit without the margin assumption [Auer et al.
2003]. The new result of this paper is theO(logT) regret rate under the margin assumption
for the non-stochastic bandit setting, completing the picture (see Corollary 4.1).

We refer the reader to a recent book [Cesa-Bianchi and Lugosi2006] for a comprehen-
sive treatment of sequential prediction. Some relevant results can be found in [McMahan
and Blum 2004; György et al. 2007; Awerbuch and Kleinberg 2004].

2.3 Miscellaneous

Our algorithm uses the concept ofbasis pathsof a program, which has been explored
for computing thecyclomatic complexityof a program [McCabe 1976]; however, we give
theoretical results by extracting a special basis called abarycentric spanner[Awerbuch
and Kleinberg 2004]. For input test generation, our approach heavily relies on advances in
SMT solving; these techniques are surveyed in a recent book chapter [Barrett et al. 2009].

3. THEORETICAL FORMULATION AND OVERVIEW

We are concerned with estimating a physical property of a software task (program) execut-
ing in its target platform (environment). The property is a function of a physical quantity
of interest, denoted byq; e.g., it can be the maximum value thatq takes. In general,q is
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a function of three entities: the program code, the parameters of its environment, and the
input to the program. More concisely, we can expressq as the following function

q = fP(x,w)

wherex denotes the input to the programP (such as data read from sensors or received over
the network),w denotes the state of the environment (such as the initial hardware state
including, for example, the contents of the cache), andfP denotes the program-specific
function that mapsx andw to a value of the physical quantity.

In general,x, w, andq vary over time; we make the variation explicit with a subscript t:

qt = fP(xt ,wt )

Some sample problems of interest are listed below. In each problem, we are not only
interested in estimating a physical property, but also in computing an inputx that serves as
a witness or counterexample for that property.

(1) Global worst-case estimation:In this case, we want to estimate the largest value of
the quantityq for all values ofx andw, namely, maxx,w fP(x,w). Equivalently, given
anyinfinite sequence ofxt andwt values, we wish to estimate the following quantity:

max
t=1..∞

max
xt ,wt

fP(xt ,wt) (1)

The arbitrary infinite sequence ofxt andwt values represents an arbitrary sequence of
inputs and environment parameters encountered over the lifetime of programP.

(2) Worst-case estimation over a time horizonτ: In this case, the worst case is to be
computed over a finite time horizonτ, formally specified as follows:

max
t=1..τ

max
xt ,wt

fP(xt ,wt ) (2)

(3) Estimating sample average over time horizonτ against an adversarial environment:
In this case, we want to estimate, for a time horizonτ and foranysequence of envi-
ronment parametersw1,w2, . . . ,wτ, the following quantity:

max
xt

1
τ

τ

∑
t=1

fP(xt ,wt) (3)

(4) Can the system consume R resources at any point over a time horizon ofτ: The ques-
tion we ask here is whether there are valuesxt and wt , t = 1,2, . . . ,τ, such thatqt

exceedsR. For example, a concrete instance of this problem is to ask whether a soft-
ware task can take more thanRseconds to execute.

In this paper, the programP is assumed to have the following properties: (i)P is known
to terminate (so we are not attempting to solve the halting problem); (ii) there are statically-
known upper bounds on all loops and on the depth of all recursive function calls inP (we
are not solving the loop bound inference problem); and (iii)P is single-threaded and runs
uninterrupted.

Under these assumptions, we give a randomized algorithm to solve Problem 3 which,
under certain assumptions (formally stated in Sec. 4), can also be used to perform worst-
case estimation (Problems 1 and 2) as well as answer the resource-bound consumption
problem listed above (Problem 4). We note that previous workon WCET has sought to
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address the global WCET estimation problem (Problem 1), andtherefore our experimental
comparison is with these techniques for the global WCET estimation problem.

For concreteness, in the remainder of this section, we will focus on a single quantity,
execution time, and on a single representative problem, namely, theworst-case execution
time (WCET) estimation problem. As noted earlier, our theoretical formulation and al-
gorithms can carry over to estimating any physical quantityand to problems other than
worst-case analysis.

The rest of this section is organized as follows. We begin with a general discussion of
how the estimation problem can be formulated as a game (Section 3.1). Next, we formal-
ize our problem definition and introduce our theoretical model of the environment (Sec-
tion 3.2). Finally, we give an overview of our solution approach using a small example
(Section 3.3).

3.1 Intuition for the Game-Theoretic Formulation

Consider the finite-horizon WCET estimation problem (Problem 2). For brevity, in what
follows, we will refer to this problem as simply WCET estimation.
Game-theoretic formulation: We model the estimation problem as a game between the
estimation toolT and the environmentE of programP.

The game proceeds over multiple rounds,t = 1,2,3, . . .. In each round,T picks the
inputxt to P; the execution path taken throughP is determined byxt . E picks, in a possibly
adversarial fashion, environment parameters (state)wt . Note thatwt can dependon xt . P
is then run onxt for parameterswt .

At the end of each roundt, T receives as feedback (only) the execution timelt of P for
the chosen inputxt under the parameterswt selected byE . Note thatT does not observe
wt . Note also thatT only receives the overall execution timeof the taskP, not a more
fine-grained measurement of (say) each basic block in the task along the chosen path. This
enables us to minimize any skew from instrumentation inserted to measure time. Based on
the feedbacklt , T can modify its input-selection strategy.

After some number of roundsτ, we stop:T must output its predictionx∗τ of the input
x∗ that maximizes the quantity defined in Equation 2 above (for the choice ofwt ’s made
by E ). T wins the game if its prediction is correct (i.e.,x∗τ = x∗); otherwise,E wins. In
addition to generating the predictionx∗τ , T must also output an estimate of the quantity in
Equation 2.

The goal ofT is thus to select a sequence of inputsx1,x2, . . . ,xτ so that it can identify
(at least with high probability) the longest execution timeof P duringt = 1,2, . . . ,τ.

Note that this longest execution time need not be due to inputs that have been already
tried out byT .

By permittingE to select environment parameters based onT ’s choice of input, we can
model input-dependent perturbation in execution time of basic blocks as well as pertur-
bation in execution time on a single input due to variation inenvironmental conditions or
measurement error. However, in practice, such perturbation byE cannot be arbitrary, oth-
erwise, it will be impossible to accurately predict execution time and compute worst-case
inputs. Intuitively, the perturbation corresponds to the timing predictability of the platform.
If a platform has predictable timing, such as the PRET processor proposed by Edwards and
Lee [2007], it would mean that the perturbation is small.

In practice, as in any technique involving game-solving (e.g., [Chakrabarti et al. 2005]),
it is necessary to suitably explore the choices ofwt ’s by E during the estimation process.
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For example, to estimate the global worst-case execution time (Problem 1), we require that
E selects the worst-case environment state at some point during t = 1,2, . . . ,τ. If there
are a finite number of environment states, one would need to exhaustively enumerate these
duringt = 1,2, . . . ,τ in order to perform worst-case analysis. The power of the approach
we present in this paper is that we do not require to exhaustively explore the space of inputs
xt for each choice ofwt .

Formulation as a graph problem:An additional aspect of our model is that the game can
be viewed to operate on the control-flow graphGP of the taskP, with T selecting inputs
that driveP’s execution down selected paths, whileE selects environment parametersw
that determine path lengths. We elaborate below.

3.2 Theoretical Formulation

Consider a directed acyclic graphG = (V,E) derived from the control-flow graph of the
task with all loops unrolled to a safe upper bound and all function calls inlined. We will
assume that there is a single source nodeu and single sink nodev in G; if not, then dummy
source and sink nodes can be added without loss of generality.

Let P denote the set of all paths inG from sourceu to sinkv. We can associate each of
the paths with a binary vector withm= |E| components, depending on whether the edge
is present or not. In other words, each source-sink path is a vectorx in {0,1}m, where the
ith entry of the vector for a pathx corresponds to edgei of G, and is 1 if edgei is in x and
0 otherwise. The setP is thus a subset of{0,1}m.

The path prediction interaction is modeled as a repeated game between our algorithm
(T ) and the program environment (E ). On each roundt, T chooses a pathxt ∈ P between
u andv. Also, the adversaryE picks a table of non-negative path lengths given by the
functionL t : P → R

≥0. Then, the total lengthlt of the chosen pathxt is revealed, where
lt = L t(xt). The game proceeds for some number of roundst = 1,2, . . . ,τ.

At the end of roundτ, T wins iff it correctly estimates a pathx∗ that generates the worst-
case execution time due to environment states in roundst = 1,2, . . . ,τ. T must also output
an estimate of the corresponding WCET, which is expressed asthe following quantity:

Lmax = max
x∈P

max
t=1,2,...,τ

L t(x) (4)

The worst-case path is an element ofP at whichLmax is attained:

x∗ = argmaxx∈P max
t=1,2,...,τ

L t(x) (5)

We make a few remarks on the above theoretical model.
First, we stress that, in the above formulation, the goal is to find the WCETdue to

environment states in rounds t= 1,2, . . . ,τ. In order to find the true WCET, for all possible
environment states, we need to assume (or ensure, through systematic exploration) that
the worst-case state occurs at some time betweent = 1 andt = τ. We contend that this
formulation is useful in spite of this assumption. For wholeprogram WCET analysis,
the starting environment state is typically assumed to be known. Even if one needs to
enumerate all possible starting environment states, it is computationally very expensive
to also enumerate all possible paths for each such state. With our formulation, we seek
to demonstrate that one can accurately estimate the WCET even if we do not sample the
worst-case path when the worst-case state occurred.
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Second, the definition of our estimation targetLmax assumes that the timing of a program
depends only on the control flow through that program. In general, the timing can also
depend on characteristics of input data that do not influencecontrol flow. We believe that
the basic game framework we describe can also apply to the case of data-dependent timing,
and leave an exploration of this aspect to future work.

Overall, we believe that decoupling the path problem from the state problem in a man-
ner that can be applied easily to any platform is in itself a significant challenge. This
paper mainly focuses on addressing this challenge. In future work, we plan to address the
limitations of the model as identified above.

The third and final remark we make is about the “size” of the theoretical model. Since a
DAG can have exponentially-many paths in the number of nodesand edges, the domain of
the functionL t is potentially exponential, and can change at each roundt. In the worst case,
the strategy sets of bothT andE in this model are exponential-sized, and it is impossible
to exactly learnL t for everyt without sampling all paths. Hence, we need to approximate
the above model with another model that, while being more compact, is equally expressive
and generates useful results in practice.

Below, we present a more compact model, which our algorithm is then based upon. We
first present our general model, and then describe a simplified model that will be used in
Sec. 4 to introduce more easily some key ideas of our algorithm.

3.2.1 Modeling with Weights and Perturbation.We model the selection of the table of
lengthsL t by the environmentE as a two-step procedure.

(i) First, concurrent with the choice ofxt by T , E chooses a vector of non-negativeedge
weights, wt ∈ R

m, for G. These weights representpath-independentdelays of basic
blocks in the program.
For generality, we deliberately leave the exact specification of wt unspecified, but we
give a few possibilities here. For example, one could viewwt as the delay of a basic
block if it were executed in the starting hardware state. As another example, one could
associated with every basic block a default path, and consider wt to be the delay of
that basic block when the default path is executed.

(ii) Then, after observing the pathxt selected byT , E picks a distribution from which it
draws a perturbation vectorπt(xt). The functional notation indicates that the distribu-
tion is a function ofxt .
The vectorπt(xt) models the path-specific changes thatE applies to its original choice
wt . For example, whenwt(e) represents the delay of basic blocke in the starting
hardware state, the perturbationπt(xt)(e) is the change in delay due to changes in
hardware state along the pathxt . We will abbreviate bothπt(xt) andπt(x) by πx

t when
it is unnecessary to draw a distinction between those terms;otherwise, forx that could
be different fromxt , we will explicitly write πx

t(x) or πt(x).
The only restriction we place onπt(x), for any x, is that‖πt(x)‖1 ≤ N, for some
finite N. The parameterN is arbitrary, but places the (realistic) constraint that the
perturbation of any path length cannot be unbounded.

Thus, the overall path length observed byT is

lt = xt · (wt + πx
t) = xt

T(wt + πx
t)

Now let us consider how this model relates to the original formulation we started with.
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First, note that, in the original model,E picks the functionL t that defines the lengths of
all paths. To relate to that model, here we can assume, without loss of generality, thatE
draws a-priori the perturbation vectorsπx

t(x) for all x∈ P , but onlyπx
t(xt) plays a role in

determininglt .
Second, equating the observed lengths, we see that

L t(xt) = xT

t (wt + πx
t)

The main constraint on this equation is the requirement that‖πx
t‖1 ≤ N, which implies

that|xT

t πx
t | ≤ N. In effect, by using this model we require thatE pick L t by first selecting

path-independent weightswt and then, for each source-sink path, modifying its length by
a bounded perturbation (of at most±N). Note, however, that the model places absolutely
no restrictions on the value ofwt or how it changes witht (from round to round).

The goal forT in this model is to estimate the following quantity

Lmax = max
x∈P

max
t=1,2,...,τ

xT(wt + πx
t(x)) (6)

Moreover, we would also likeT to identify the worst-case path given by

x∗ = argmaxx∈P max
t=1,2,...,τ

xT(wt + πx
t(x)) (7)

3.2.2 Simplified Model without Perturbation.To more easily introduce the key con-
cepts in our algorithm, we will initially assume that the perturbation vectors at all time
points are identically 0, viz.,πx

t(x) = 0 for all t andx.
Clearly, this is an unrealistic idealization in practice, since in this model the length of an

edge is independent of the path it lies on. We stress that our main theoretical results, stated
in Sec. 4.3, are for the more realistic model defined above in Section 3.2.1.

We next give an overview of our approach in the context of a small example.

3.3 Overview of Our Approach

1

2

5

6

3

4

7

8

9

10

x1 = (1,1,1,0,0,1,1,0,0,1)

x2 = (1,0,0,1,1,0,0,1,1,1)

x3 = (1,1,1,0,0,0,0,1,1,1)

x4 = (1,0,0,1,1,1,1,0,0,1)

x4 = x1 + x2 − x3

Fig. 1. Illustration of Basis Paths.
An edge label indicates the position for that

edge in the vector representation of a path.

We describe the working of our approach using
a small program from an actual real-time embed-
ded system, the Paparazzi unmanned aerial vehi-
cle (UAV) [Nemer et al. 2006]. Figure 2 shows the
C source code for thealtitude control task

in the Paparazzi code, which is publicly available
open source.

Starting with the source code for a task, and
all the libraries and other definitions it relies on,
we run the task through a C pre-processor and the
CIL front-end [George Necula et al. ] and ex-
tract the control-flow graph (CFG). In this graph,
each node corresponds to the start of a basic block
and edges are labeled with the basic block code
or conditional statements that govern control flow
(conditionals are replicated along both if and else
branches). Note that we assume that code termi-
nates, and bounds are known on all loops. Thus, we start with code with all loops (if any)
unrolled, and the CFG is thus a directed acyclic graph (DAG).We also pre-process the
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Skip

(pprz_mode  !=  2)

(pprz_mode  ==  2)

(pprz_mode  ==  3)

(vertical_mode  ==  3)

(desired_climb  >  1.)

(Return(0);)

(desired_climb = 1.;)

FunctionCall()

(desired_climb  <=  1.)

(desired_climb  <  −(1.))

(desired_climb  >=  −(1.))

(desired_climb = −(1.);)

desired_climb = pre_climb  +  altitude_pgain  * err;)
(err = estimator_z  − desired_altitude;

(vertical_mode  !=  3)

(pprz_mode  !=  3)

#define PPRZ_MODE_AUTO2 2
#define PPRZ_MODE_HOME  3
#define VERTICAL_MODE_AUTO_ALT 3
#define CLIMB_MAX 1.0
. . .
void altitude_control_task() {
  if (pprz_mode == PPRZ_MODE_AUTO2
    || pprz_mode == PPRZ_MODE_HOME) {
    if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
    /* inlined below: altitude_pid_run() */
      float err = estimator_z − desired_altitude;

        desired_climb = −CLIMB_MAX;
      if (desired_climb > CLIMB_MAX)

      if (desired_climb < −CLIMB_MAX)
      desired_climb = pre_climb + altitude_pgain * err;  

        desired_climb = CLIMB_MAX;
}}}

1

2

3

4

7

5

6

8

10

12

11

9

Fig. 2. Control-flow graph and code for altitude control task

CFG so that it has exactly one source and one sink. Each execution through the program is
a source-to-sink path in the CFG.

An exhaustive approach to program path analysis will need toenumerate all paths in this
DAG. However, it is possible for a DAG to have exponentially many paths (in the number
of vertices/edges). Thus, a brute-force enumeration of paths is not efficient.

Our approach is to sample a set ofbasis paths. Recall that each source-sink path can be
viewed as a vector in{0,1}m, wherem is the number of edges in the unrolled CFG. The
set of all source-sink paths thus forms a subsetP of {0,1}m. We compute the basis forP
in which each element of the basis is also a source-sink path.

Figure 1 illustrates the ideas using a simple “2-diamond” example of a CFG. In this
example, pathsx1, x2 andx3 form a basis andx4 can be expressed as the linear combination
x1 +x2−x3.

Our algorithm, described in detail in Section 4, randomly samples basis paths of the CFG
and drives program execution down those paths by generatingtests using SMT solving.
From the observed lengths of those paths, we estimate edge weights on the entire graph.
This estimate, accumulated over several rounds of the game,is then used to predict the
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longest source-sink path in the CFG. Theoretical guarantees on performance are proved in
Section 4 and experimental evidence for its utility is givenin Section 5.

4. ALGORITHM AND THEORETICAL RESULTS

Recall that, in the model introduced in the previous section, the path prediction interaction
is modeled as a repeated game between our algorithm (Player)and the program environ-
ment (Adversary) on the unrolled control-flow graphG = (V,E). On each roundt, we
choose a source-sink pathxt ∈ P ⊆ {0,1}m, wherem = |E|. The adversary chooses the
lengths of paths in the graph. We assume that this choice is made by the following two
stage process: first, the adversary chooses the worst-caseweights, wt ∈ R

m, on the edges
of G independently of our choicext , and then skews these weights by adding a random
perturbationπx

t , whose distribution depends onxt . (We will also refer to edge weights and
path lengths as “delays”, to make concrete the link to timinganalysis.)

In the simplified model, which we consider first, we suppose that the perturbation is
zero; thus, we observe the overall path lengthlt = xT

t wt . In the general model, onlylt =
xT

t (wt +πx
t) is observed. No other information is provided to us; not onlydo we not know

the lengths of the paths not chosen, we do not even know the contributions of particular
edges on the chosen path. It is important to emphasize that inthe general model we assume
that the adversary isadaptivein thatwt andπx

t can depend on the past history of choices
by the player and the adversary.

Suppose that there is a single fixed pathx∗ which is the longest path on each round.
One possible objective is to findx∗. In the following, we exhibit an efficient randomized
algorithm which allows us to find it correctly with high probability. In fact, our results are
more general: if no single longest path exists, we can provably find a batch of longest paths.
We describe later how our theoretical approach paves the wayfor quantitative (timing)
analysis given a range of assumptions at hand.

Before diving into the details of the algorithm, let us sketch how it works:

• First, compute a representative set of basis paths, called abarycentric spanner;
• For a specified number of iterationsτ, do the following:

⋆ pick a path from the representative set;
⋆ observe its length;
⋆ construct an estimate of edge weights on the whole graph fromthe observed length;
• Find the longest path or a set of longest paths based on the estimates overτ iterations.

It might seem mysterious that we can re-construct edge weights (delays, for the case of
timing analysis) on the whole graph based a single number, which is the total length of
the path we chose. To achieve this, our method exploits the power of randomization and a
careful choice of a representative set of paths. The latter choice is discussed next.

4.1 Focusing on a Barycentric Spanner

It is well-known in the game-theoretic study of path prediction that any deterministic strat-
egy against an adaptive adversary will fail [Cesa-Bianchi and Lugosi 2006]. Therefore, the
algorithm we present below is randomized. As we only observethe entire length of the
path we choose, we must select a set of pathscoveringall (reachable) edges of the graph or
else we risk missing a highly time-consuming edge. However,simply covering the graph
– which corresponds to statement coverage in a program – is not enough, since timing, in
general, is apath propertyrequiring covering all ways of reaching a statement. Indeed, a
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Algorithm 1 Finding a 2-Barycentric Spanner

1: (b1, . . . ,bm)← (e1, . . . ,em).
2: for i = 1 tom do {{Compute a basis ofP }}
3: bi ← argmaxx∈P |det(Bx,i)|
4: end for
5: while ∃x∈ P , i ∈ {1, . . . ,m} satisfying
|det(Bx,i)|> 2|det(B)| do {{TransformB into a 2-barycentric spanner}}

6: bi ← x
7: end while

key feature of the algorithm we propose is the ability to exploit correlations between paths
to guarantee that we find the longest. Hence, we need abarycentric spanner(introduced
by Awerbuch and Kleinberg [2004]), a set of up tom paths with two valuable properties:
(i) any path in the graph can be written as a linear combination of the paths in the spanner,
and (ii) the coefficients in this linear combination are bounded in absolute value. The first
requirement says that the spanner is a good representation for the exponentially-large set
of possible paths; the second says that lengths of some of thepaths in the spanner will be
of the same order of magnitude as the length of the longest path. These properties enable
us to repeatedly sample from the barycentric spanner and reconstruct delays on the whole
graph. We then employ concentration inequalities2 to prove that these reconstructions, on
average, converge to the true path lengths. Once we have a good statistical estimate of the
true weights on all the edges, it only remains to run a longest-path algorithm for weighted
directed acyclic graphs (LONGEST-PATH), subject to path feasibility constraints.

A set of b paths{b1, . . . ,bb} ⊆ P is called 2-barycentric if any pathx ∈ P can be
written asx = ∑b

i=1 αibi with |αi | ≤ 2. Awerbuch and Kleinberg [2004] provide a pro-
cedure to find a 2-barycentric spanner set whenever the set ofpathsP spansm dimen-
sions (see also [McMahan and Blum 2004]). We exhibit the algorithm (see Algorithm 1)
for completeness, as this is a necessary pre-processing step for our main algorithm. It is
shown [Awerbuch and Kleinberg 2004] that the running time ofAlgorithm 1 is quadratic
in m.

In Algorithm 1, B = [b1, . . . ,bm]T andBx,i = [b1, . . . ,bi−1,x,bi+1, . . . ,bm]T. B is initial-
ized so that itsith row is ei , the standard basis vector with 1 in theith position and 0s
elsewhere. The output of the algorithm is the final value ofB, a 2-barycentric spanner. The
ith iteration of the for-loop in lines 2-4 attempts to replacethe ith element of the standard
basis with a path that is linearly independent of the previous i− 1 paths identified so far
and with all remaining standard basis vectors.3 Line 3 of the algorithm corresponds to
maximizing a linear function over the setP , and can be solved usingLONGEST-PATH.4 At
the end of the for-loop, we are left with a basis ofP that is not necessarily a 2-barycentric

2Concentration inequalities are sharp probabilistic guarantees on the deviation of a function of random variables
from its mean.
3Linear independence is maintained because we maximize the determinant, and because the determinant starts
out non-zero.
4TheLONGEST-PATH algorithm is the standard longest-path algorithm on a weighted DAG, which runs in linear
time. In practice, to compute feasible basis paths one must add constraints that rule out infeasible paths, as is
standard in integer programming formulations for timing analysis [Li and Malik 1999]; in this case, the longest-
path computation is solved as an integer linear program and SMT solving is used to check feasibility of each
generated basis path.
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spanner. Lines 5-7 of the algorithm refine this basis into a 2-barycentric spanner using the
sameLONGEST-PATH optimization oracle that is used in the for-loop. One can intuitively
view the determinant computation as computing the volume ofthe corresponding poly-
tope. Maximizing the determinant amounts to spreading the vertices of the polytope as far
as possible in order to obtain a “diverse” set of basis paths.

In general, the number of basis pathsb is less thanm. Gyorgy et al. [2007] extend the
above procedure to the case where the set of paths spans only ab-dimensional subspace
of R

m. It is also possible to use a slightly different path representation where instead of
introducing a 0-1 variable to represent each edge, one only introduces variables to encode
branch points; in this case, it is possible to use Algorithm 1directly on this representation,
replacingmeverywhere in the algorithm description withb. In this case, the finalB is ab×
m binary matrix. We define the Moore-Penrose pseudo-inverse of B asB+ = BT(BBT)−1.
It holds thatBB+ = Ib.

We also introduce some useful notation. For theoretical analysis, let M be any up-
per bound on the length of any basis path. (Note thatM can be a very loose upper
bound.) Since we have assumed an adaptive adversary that produceswt based on our
previous choicesx1 . . .xt−1 as well as the random factorsπx

1 . . .πx
t−1, we should take care

in dealing with expectations. To this end, we denote asEt [A] the conditional expectation
E[A|i1, . . . , it−1,πx

1, . . . ,πx
t−1], keeping in mind that randomness at timet in the general

model stems from our random choiceit of the basis pathandthe adversary’s random choice
πx

t givenit . In the simplified model, all randomness is due to our choice of the basis path,
and this makes the analysis easier to present. In the generalmodel, the adversary can vary
the distribution ofπx

t according to the path chosen by the Player.

4.2 Analysis under the Simplified Model

We now present the GAMETIME algorithm and analyze its effectiveness under the simpli-
fied model presented in Section 3.2.2. Recall that in this model the perturbation vectors
at all time points are identically 0, viz.,πx

t(x) = 0 for all t andx. The practical interpre-
tation of this model is that the execution times of each basicblock (edge) is completely
determined by the starting environment (hardware) state.

Consider Algorithm 2. Lines 4-6 describe the game interaction that we outlined earlier
in this section, so we focus on the remainder of the algorithm. Line 7 involves assembling
a vector of path lengths from a single path length, where theit th element of ˜vt is bℓt ,
representing the length of pathbit , while all other basis path lengths are approximated as 0
(since they were not executed). Line 8 then uses ˜vt to estimate edge weights that could have
generated the path lengthℓt . In Line 10, we provide a procedure to predict the longest path
from the measurements taken overτ rounds; our theoretical guarantees in Theorem 4.2 are
for this procedure.

EXAMPLE 4.1. We illustrate the inner loop of Algorithm 2 with an example. Consider
the graph in Fig. 1. Algorithm 2 will sample uniformly at random from the set{x1,x2,x3}.
Suppose, for simplicity, that the environment picks the same wt at each round t. Thus,
suppose that when we sample x1, we observe lengthℓ1 = 15, for x2 we getℓ2 = 5 and for
x3 we getℓ3 = 10. Then, in Line 10 of the algorithm, the cumulative estimatedweight
vector is generated such thatw̃avg= 1

τ ∑τ
t=1 w̃t wherew̃avg(i) = 2.5 for i ∈ {1,6,7,10} and

w̃avg(i) = 0 for other edge indices i. Using this estimated weight vector, we compute the
weight of path x4 to be10. This is as expected, since x4 = x1 +x2−x3 and wt is constant,
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Algorithm 2 GAMETIME with simplified environment model
1: Inputτ ∈ N

2: Compute a 2-barycentric spanner{b1, . . . ,bb}
3: for t = 1 to τ do
4: Environment chooseswt .
5: We chooseit ∈ {1, . . . ,b} uniformly at random.
6: We predict the pathxt = bit and observe the path lengthℓt = bT

it wt

7: Estimate ˜vt ∈ R
b asṽt = bℓt ·eit , where{ei} denotes the standard basis (ei has 1 in

the ith position and 0s elsewhere).
8: Compute estimated weights ˜wt = B+ṽt

9: end for
10: Use the obtained sequence ˜w1 . . . w̃τ to find a longest path(s). For example, for Theo-

rem 4.2, we computex∗τ := argmaxx∈P xT ∑τ
t=1 w̃t .

yielding xT4wt = ℓ1 + ℓ2− ℓ3.

We begin by proving some key properties of the algorithm.

Preliminaries

The following Lemma is key to proving that Algorithm 2 performs well. It quantifies
the deviations of our estimates of the delays on the whole graph, w̃t , from the true delays
wt , which we cannot observe.

LEMMA 4.1. For anyδ > 0, with probability at least1− δ, for all x ∈ P ,
∣

∣

∣

∣

∣

1
τ

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ τ−1/2c
√

2b+2ln(2δ−1), (8)

where c= 4bM.

PROOF. We will show thatEtw̃tx = wtx for anyx∈ P , i.e. the estimates are unbiased5

on the subspace spanned by{b1, . . . ,bb}. By working directly in the subspace, we obtain
the required probabilistic statement and will have the dimensionality of the subspaceb, not
m, entering the bounds.

Definevt = Bwt just asṽt = Bw̃t . Taking expectations with respect toit , conditioned on
i1, . . . , it−1,

Et ṽt = Et
[

b(bT

it wt) ·eit

]

=
1
b

b

∑
i=1

b(bT

i wt) ·ei = Bwt = vt .

Fix anyα ∈ {−2,2}b. We claim that the sequenceZ1, . . . ,Zτ, whereZt = αT(ṽt −vt) is
a bounded martingale difference sequence. Indeed,EtZt = 0 by the previous argument. A
bound on the range of the random variablesZt can be computed by observing

|αTṽt |= |αT[b(bT

it wt)eit ]| ≤ 2b|bT

it wt | ≤ 2bM and |αTvt | ≤ 2bM,

implying |Zt | ≤ 4bM
.
= c. An application of Azuma-Hoeffding inequality (see Appendix)

5For random variablesX andX̃, X̃ is said to be an unbiased estimate ofX if E[X− X̃] = 0.
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for a martingale difference sequence yields, for the fixedα,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Zt

∣

∣

∣

∣

∣

> c
√

2τ ln(2(2b)δ−1)

)

≤ δ/2b.

Having proved a statement for a fixedα, we would like to apply the union bound6 to
arrive at the corresponding statement for anyα ∈ [−2,2]b. This is implausible as the set is
uncountable. However, applying a union bound over theverticesof the hypercube{−2,2}b
is enough. Indeed, if|∑τ

t=1 Zt | = |αT ∑τ
t=1(ṽt −vt)| ≤ ξ for all vertices of{−2,2}b, then

immediately|∑τ
t=1 Zt | ≤ ξ for anyα ∈ [−2,2]b by linearity. Thus, by union bound,

Pr

(

∀α ∈ [−2,2]b,

∣

∣

∣

∣

∣

τ

∑
t=1

αT(ṽt −vt)

∣

∣

∣

∣

∣

≤ c
√

2τb+2τ ln(2δ−1)

)

≥ 1− δ.

Any pathx can be written asxT = αTB for someα ∈ [−2,2]b. Furthermore, ˜wt = B+ṽt

implies thatxTw̃t = αTBB+ṽt = αTṽt andxTwt = αTvt . We conclude that

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ c
√

2τb+2τ ln(2δ−1)

)

≥ 1− δ

and the statement follows by dividing byτ.

Estimating the Set of Longest Paths

Consider the quantity1τ ∑τ
t=1 wt which is a vector of weights for edges in the graph,

averaged over the true weight vectors selected by the environment in roundst = 1,2, . . . ,τ.
The quantity1

τ ∑τ
t=1 w̃t represents the average estimated weight vector over roundst =

1,2, . . . ,τ.
With the help of Lemma 4.1, we can now analyze how the longest (or almost-longest)

paths with respect to the averaged estimated weights ( ˜wt ’s), compare to the true averaged
longest paths.

Note that in this discussion we are performing worst-case analysis with respect to paths,
while considering the sample average for an arbitrary sequence of environment choices.
We will later discuss how to extend this result to worst-caseanalysis over both paths and
environment choices.

DEFINITION 4.1. Define the set ofε-longest paths with respect to the actual delays

S
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

wT

t x≥max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε

}

and with respect to the estimated delays

S̃
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

w̃T

t x≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε

}

.

In particular, S 0
τ is the set of longest paths.

6Also known as Boole’s inequality, the union bound says that the probability that at least one of the countable set
of events happens is at most the sum of the probabilities of the events, e.g. Pr(A∪B)≤ Pr(A)+Pr(B).
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Fig. 3. Illustration of the second inclusion in Lemma 4.2. The top curve represents the true path length
distribution, while the bottom curve represents the GAMET IME estimate of the distribution. The figure indicates
that the true set ofε-longest paths is contained in the set of(ε+2ξ)-longest paths w.r.t. to the sequence ˜w1, . . . ,w̃τ.
Under a margin assumption, equality between the two sets canbe shown, as exhibited by Theorem 4.2.

The following Lemma makes our intuition precise: with enough trials τ, the set of
longest paths, which we can calculate after running Algorithm 2, becomes almost iden-
tical to the true set of longest paths. We illustrate this point graphically in Figure 3: In a
histogram of average path lengths, the set of longest paths (the right “bump”) is somewhat
smoothed when considering the path lengths under the estimated w̃t ’s. In other words,
paths might have a slightly different average path length under the estimated and actual
weights. However, we can still guarantee that this smoothing becomes negligible for large
enoughτ, enabling us to locate the longest paths.

LEMMA 4.2. For anyε≥ 0 andδ > 0, and forξ = τ−1/24bM
√

2b+2ln(2δ−1),

S̃
ε
τ ⊆ S

ε+2ξ
τ and S ε

τ ⊆ S̃
ε+2ξ
τ

with probability at least1− δ.

PROOF. Let x∈ S̃ ε
τ andy∈ S 0

τ . Suppose that we are in the(1− δ)-probability event of
Lemma 4.1. Then

1
τ

τ

∑
t=1

wT

t x≥ 1
τ

τ

∑
t=1

w̃T

t x− ξ≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε− ξ

≥ 1
τ

τ

∑
t=1

w̃T

t y− ε− ξ≥ 1
τ

τ

∑
t=1

wT

t y− ε−2ξ

= max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε−2ξ,

where the first and fourth inequalities follow by Lemma 4.1, the third inequality is by
definition of maximum, and the second and fifth are by definitions of S̃ ε

τ and S 0
τ , resp.

Since the sequence of inequalities holds for anyx∈ S̃ ε
τ , we conclude that̃S ε

τ ⊆ S
ε+2ξ
τ . The

other direction of inclusion is proved analogously.

Note thatξ→ 0 asτ→ ∞. To compute the setS 0
τ , we can instead compute the setS̃ 2ξ

τ

that contains it. If|S̃ 2ξ
τ | ≤ k, for some parameterk, then we can use an algorithm that
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computes thek longest paths (see, e.g., [Eppstein 1998]) to find this set.

The Unique Longest Path Assumption: Worst-Case Analysis For Environment Choices

While Lemma 4.2 is very general, it holds for average-case analysis over environment
choices. In order to perform worst-case analysis for environment choices, we consider the
implication for finding a longest path under the following assumption.

ASSUMPTION 4.1. There exists a single path x∗ that is the longest path on any round
with a certain (known) marginρ:

∀x∈ P, x 6= x∗, ∀t, (x∗−x)Twt > ρ

Note that if there is a unique longest path (for any marginρ≥ 0), then we can see that

x∗ = argmax
x∈P

1
τ

τ

∑
t=1

wT

t x = argmax
x∈P

max
t=1..τ

wT

t x

In other words, the longest path with respect to averaged environment choices coincides
with that with respect to the worst-case environment choice.

Under the above margin assumption, we can, in fact, recover the longest path, as shown
in the next Theorem.

Theorem 4.2. Suppose Assumption 4.1 holds withρ > 0, and we run Algorithm 2 for
τ = (8bM)2ρ−2(2b+2ln(2δ−1)) iterations. Then the output

x∗τ := argmax
x∈P

xT

τ

∑
t=1

w̃t

of Algorithm 2 is equal to x∗ with probability at least1− δ.

PROOF. Letx∗τ = argmaxx∈P xT ∑τ
t=1 w̃t . We claim that, with probability 1−δ it is equal

to x∗. Indeed, supposex∗τ 6= x∗. By Lemma 4.2,x∗τ ∈ S̃ 0
τ ⊆ S

2ξ
τ with probability at least

1− δ. Thus,

1
τ

τ

∑
t=1

wT

t x∗τ ≥
1
τ

τ

∑
t=1

wT

t x∗−2ξ.

Assumption 4.1, however, implies that

1
τ

τ

∑
t=1

wT

t x∗τ <
1
τ

τ

∑
t=1

wT

t x∗−ρ

leading to a contradiction wheneverρ ≥ 2ξ = τ−1/28bM
√

2b+2ln(2δ−1)). Rearranging
the terms, we arrive atτ ≥ (8bM)2ρ−2(2b+ 2ln(2δ−1)), as assumed. We conclude that

with probability at least 1− δ, x∗τ = x∗ and{x∗}= S̃ 0
τ = S

2ξ
τ .

The following weaker assumption also has interesting implications.

ASSUMPTION 4.2. There exists a path x∗ ∈ P such that it is the longest path on any
round

∀x∈ P, ∀t, (x∗−x)Twt ≥ 0
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If, after running Algorithm 2 for enough iterations, we find all 2ξ-longest paths (the set

S̃
2ξ
τ ), Lemma 4.2 guarantees that, under Assumption 4.2, the longest pathx∗, which lies

in S 0
τ , is one of them with high probability. As discussed earlier,we can use an efficient

k-longest paths computation to find a set containingS 0
τ . We can then use this information

to repeatedly test the candidate paths in this set to find the worst-case pathx∗ and estimate
its length.

Even if Assumption 4.2 does not hold, one can still find the longest pathx∗ with respect
to worst-case environment choices overt = 1,2, . . . ,τ, as long asx∗ lies in S ε

τ for someε,
and the size ofS ε

τ is a small numberk (e.g. linear in the size of the program); the approach
discussed above of computing thek-longest paths will work with high probability. In
other words, if the longest pathx∗ with respect to the worst-case environment choice is
alsoamongst the longest paths with respect to averaged environment choices, then we can
efficiently findx∗. Preliminary experimental evidence suggests that this situation does hold
often in practice.

4.3 Analysis under General Weights-Perturbation Model

We now present an analysis of GAMETIME under the general weight-perturbation model
given in Sec. 3. For easy reference, we give the GAMETIME algorithm again below as
Algorithm 3 with the new environment model.

As before, letM be any upper bound on the length of any basis path (where now the
length includes the perturbation).

In the general model, the environmentE picks a distribution with meanµx
t ∈R

m, which
depends on the algorithm’s chosen pathx. From this distribution,E draws a vector of
perturbationsπx

t ∈ R
m. The vectorπx

t satisfies the following assumptions:

—Bounded perturbation:
‖πx

t‖1≤ N, whereN is a parameter.

—Bounded mean perturbation of path length:
For any pathx∈ P , |xTµx

t | ≤ µmax

Note thatµx
t is a function of the chosen path, and thatπx

t depends onµx
t .

Algorithm 3 GAMETIME with general environment model
1: Inputτ ∈ N

2: Compute a 2-barycentric spanner{b1, . . . ,bb}
3: for t = 1 to τ do
4: Environment chooseswt .
5: We chooseit ∈ {1, . . . ,b} uniformly at random.
6: Environment chooses a distribution from which to drawπx

t , where the meanµx
t and

support of the distribution satisfies the assumptions givenabove.
7: We predict the pathxt = bit and observe the path lengthℓt = bT

it (wt + πx
t)

8: Estimate ˜vt ∈R
b asṽt = bℓt ·eit , where{ei} denotes the standard basis.

9: Compute estimated weights ˜wt = B+ṽt

10: end for
11: Use the obtained sequence ˜w1 . . . w̃τ to find a longest path(s). For example, for Theo-

rem 4.4, we computex∗τ := argmaxx∈P xT ∑τ
t=1 w̃t .
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We now state the main lemma for our general model. In this case, we calculate ˜wt as an
estimate of the sumwt + πx

t .

LEMMA 4.3. For anyδ > 0, with probability at least1− δ, for all x ∈ P ,
∣

∣

∣

∣

∣

1
τ

τ

∑
t=1

(w̃t −wt −πx
t)

Tx

∣

∣

∣

∣

∣

≤ (2b+1)µmax+
1√
τ

[

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

]

(9)

where c= 2b(2M +µmax) and d= N+µmax.

PROOF. The proof is similar to that of Lemma 4.1, so we only highlight the differences
here.

Et ṽt = Eit

{

Eπxt

[

b(bT

it wt +bT

it π
x
t(xt)) ·eit |it

]}

=
1
b

b

∑
i=1

b(bT

i wt) ·ei +
1
b

b

∑
i=1

b(bT

i µbi
t )ei

= Bwt +µbasis
t

whereµbasis
t denotes theb×1 vector of means in which theith element isbT

i µbi
t and each

entry is bounded in absolute value byµmax.
Fix anyα∈ {−2,2}b. As before, the sequenceZ1, . . . ,Zτ, whereZt = αT(ṽt−vt−µbasis

t )
is a bounded martingale difference sequence. A bound on the range of the random variables
can be computed by observing

|αTṽt |= |αT[b(bT

it (wt + πx
t))eit ]| ≤ 2b|bT

it (wt + πx
t)| ≤ 2bM

and

|αTµbasis
t | ≤ 2bµmax, |αTvt | ≤ 2bM

implying

|Zt | ≤ 2b(2M +µmax)
.
= c.

Thus, using Azuma-Hoeffding inequality, we can conclude that for anyδ1 > 0, and for
fixed α,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Zt

∣

∣

∣

∣

∣

> c
√

2τ ln(2(2b)δ−1
1 )

)

≤ δ1/2b

and (skipping a few intermediate steps involving the union bound as before), we finally get

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ 2bτµmax+c
√

2τb+2τ ln(2δ−1
1 )

)

≥ 1− δ1. (10)

Now consider any fixedx ∈ P . We claim that the sequenceY1, . . . ,Yτ, whereYt =
xTπx

t(x)−xTµx
t is also a bounded martingale difference sequence. Clearly,sinceEt [πx

t(x)] =
µx

t , Et [Yt ] = 0. Further, a bound on the range of the random variables can becomputed by
observing

|xTπx
t(x)| ≤ N and |xTµx

t | ≤ µmax.
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Thus,

|Yt | ≤ N+µmax=: d.

An application of Azuma-Hoeffding inequality for the fixedx and for anyδ2 > 0 yields,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Yt

∣

∣

∣

∣

∣

> d
√

2τ ln(2(2m)δ−1
2 )

)

≤ δ2/2m.

Taking the union bound over allx∈ P ,

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

xT(πx
t(x)−µx

t)

∣

∣

∣

∣

∣

≤ d
√

2τm+2τ ln(2δ−1
2 )

)

≥ 1− δ2 .

Thus, we get

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

τ

∑
t=1

xTµx
t

∣

∣

∣

∣

∣

+d
√

2τm+2τ ln(2δ−1
2 )

)

≥ 1− δ2

and finally

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

≤ τµmax+d
√

2τm+2τ ln(2δ−1
2 )

)

≥ 1− δ2 . (11)

Settingδ1 = δ2 = δ
2 in Relations 10 and 11 above and dividing them throughout byτ,

we get that, for allx∈ P , each of the following two inequalities hold with probability at
most δ

2:

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xT(w̃t −wt)

∣

∣

∣

∣

∣

> 2bµmax+ τ−1/2c
√

2b+2ln(4δ−1)

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

> µmax+ τ−1/2d
√

2m+2ln(4δ−1)

From the above relations, we can conclude that, for allx ∈ P , the following inequality
holds with probability at least 1− δ

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xT(w̃t −wt −πx
t(x))

∣

∣

∣

∣

∣

≤ (2b+1)µmax+

τ−1/2
(

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

)

(12)

which yields the desired lemma.

Estimating Longest Paths for Sample Average over Environment Choices

From Lemma 4.3, we can derive results on estimating theε-longest paths and the longest
path in a manner similar to that employed in Section 4.2. The main difference is that now
we view 1

τ ∑τ
t=1 w̃t as an estimate of1τ ∑τ

t=1(wt + πx
t) rather than of simply1τ ∑τ

t=1 wt .
Thus, we now define the setS ε

τ as follows:
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DEFINITION 4.3. The set ofε-longest paths with respect to the actual delays is

S
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

(wt + πx
t)

Tx≥max
x′∈P

1
τ

τ

∑
t=1

(wt + πx
t(x
′))Tx′− ε

}

The definition of the set̃S ε
τ stays unchanged. The lemma on approximating the setsS by

S̃ now becomes the following:

LEMMA 4.4. For anyε≥ 0, δ > 0, and for

ξ = (2b+1)µmax+ τ−1/2
[

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

]

,

with probability at least1− δ it holds thatS̃ ε
τ ⊆ S

ε+2ξ
τ andS ε

τ ⊆ S̃
ε+2ξ
τ .

Worst-Case Analysis for Environment Choices

Consider the longest pathx∗ with respect to worst-case environment choices

x∗ = argmax
x∈P

max
t=1..τ

(wt + πx
t(x))

Tx

Under the margin assumption (Assumption 4.1), we can recover the longest path in the
general weight-perturbation model with respect to worst-case environment choices, using
an identical reasoning as before.

Theorem 4.4. Suppose Assumption 4.1 holds withρ > (4b+2)µmax, and we run Algo-
rithm 3 for τ = 8(ρ− (4b+ 2)µmax)

−2
(

c2(b+ ln(4δ−1))+d2(m+ ln(4δ−1))
)

iterations.
Then the output

x∗τ := argmax
x∈P

xT

τ

∑
t=1

w̃t

of Algorithm 3 is equal to x∗ with probability at least1− δ.

The proofs of Lemma 4.4 and Theorem 4.4 are virtually identical to the corresponding
results in Section 4.2, so we omit them here. Also, as in that section, we can also identify

the longest path under the weaker Assumption 4.2 by finding the setS̃ (4b+2)µmax
τ containing

S 0
τ and enumerating the paths in it.
Finally, as in the case of the simplified model, if the longestpathx∗ with respect to worst-

case environment choices isalso amongst the longest paths with respect to average-case
analysis of environment choices, then we can efficiently findx∗.

4.4 Logarithmic Regret under Margin Assumption

As a corollary of Theorem 4.2, we obtain a new result in the field of game-theoretic learn-
ing, which has to do with the notion ofregret– the difference between cumulative length
of the longest path and that of the paths selected at eacht. Formally, theregret over T
rounds is defined asRT = maxx∗∈P ∑T

t=1 wT

t x∗−∑T
t=1 wT

t xt wherext is the path selected at
roundt in a game that lasts forT rounds [Cesa-Bianchi and Lugosi 2006].

COROLLARY 4.1. Under the assumptions of Theorem 4.2 and for large enough T, if
we run Algorithm 2 withδ = T−1 logT for τ(δ) steps and then use x∗τ for prediction in the
remaining(T− τ) rounds, the expected regret is O(logT).
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PROOF. Algorithm 2 makes a mistake afterτ(δ) rounds with probability at mostδ. In
this case, the regret is at most 2bM ·T. With probability at least 1− δ, the algorithm
produces the optimal path, resulting in at mostM · τ regret. Thus, the expected regret is
bounded byERT ≤ τM +2bMδT = O(logT).

The significance of this result in learning theory, as noted in Sec. 2, is the reduction of
regret in the adversarial “bandit” setting fromO(

√
T) to O(logT) under the addition of

Assumption 4.1.

5. EXPERIMENTAL RESULTS

We have implemented and evaluated our approach for problemsin execution time analy-
sis. Our analysis tool, called GAMETIME, can generate an estimate of the execution time
profile of the program as well as a worst-case execution time estimate. This section details
our implementation and results.

5.1 Implementation

GAMETIME operates in four stages, as described below.
1. Extract CFG. GAMETIME begins by extracting the control-flow graph (CFG) of the
real-time task whose WCET must be estimated. This part of GAMETIME is built on top of
the CIL front end for C [George Necula et al. ]. Our CFG parameters (numbers of nodes,
edges, etc.) is thus specific to the CFG representations constructed by CIL. The computed
CFG is slightly different from the standard representationin that nodes correspond to the
start of basic blocks of the program and edges indicate flow ofcontrol, with edges labeled
by a conditional or basic block. In our experience, this phase is usually very fast, taking no
more than a minute for any of our benchmarks.
2. Compute basis paths.The next step for GAMETIME is to compute the set of basis
paths and theB+ matrix. The basis paths are generated as described in Section 4.1. As
noted there, it is also possible to ensure the feasibility ofbasis paths by the use of inte-
ger programming and SMT solving. This phase can be somewhat time-consuming; in our
experiments, the basis computation for the largest benchmark (statemate) took about 15
minutes. The implementation of this phase is currently an unoptimized Matlab implemen-
tation, and further performance tuning appears possible.
3. Generate program inputs.Given the set of basis paths for the graph, GAMETIME then
has to generate inputs to the program that will drive the program’s execution down that
path. It does this usingconstraint-based test generation, by generating a constraint satis-
faction problem characterizing each basis path, and then using a constraint solver based on
Boolean satisfiability (SAT). This phase uses the UCLID SMT solver [Bryant et al. 2007]
to generate inputs for each path and creates one copy of the program for each path, with
the different copies only differing in their initialization functions. For lack of space, we are
unable to describe the test generation in detail; we only mention here that it is standard: the
code for each path is translated tostatic single assignment(SSA) form, from which each
statement is transformed into a corresponding logical formula (e.g., assignments become
equalities), and the resulting formula is handed off to an SMT solver. For our experiments,
this constraint-based test generation phase was very fast,taking less than a minute for each
benchmark.
4. Predict estimated weight vector or longest path.Finally, Algorithm 3 is run with
the set of basis paths and their corresponding programs, along with theB+ matrix. The
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number of iterations in the algorithm,τ, depends on the mode of usage of the tool. In the
experiments reported below, we used a deterministic cycle-accurate processor simulator
from a fixed initial hardware state, and henceτ was set equal tob, since we perform one
simulation per basis path. In general, one can perform an exhaustive exploration of starting
hardware states (e.g., for hard real-time systems) or sample starting hardware states from
a given distribution (e.g., for soft real-time systems). Inthis situation, one can either pre-
computeτ, given aδ, as described in Section 4 or it can be increased gradually while
searching for convergence to a single longest path.
The run-time for this phase depends on the execution time of the program, the speed of the
hardware simulator (if one is used), and the number of iterations of the loop in Algorithm 3.
For our experiments, this run-time was under a minute for allbenchmarks.

Given the estimated weights computed at each round, ˜w1,w̃2, . . . ,w̃τ, we can compute
the cumulative estimated weight vector1

τ ∑τ
t=1 w̃t , and use this to predict the length of any

path in the program. In particular, we can predict the longest path, and its corresponding
length. Given the predicted longest pathx∗τ , we check its feasibility with an SMT solver; if
it is feasible, we compute a test case for that path, but if it is not feasible, we generate the
next longest path. The process is repeated until a feasible longest path is predicted. The
predicted longest path can be executed (or simulated) several times to calculate the desired
timing estimate.

5.2 Benchmarks

Our benchmarks were drawn from those used in theWCET Challenge 2006[Tan 2006],
which were drawn from the Mälardalen benchmark suite [Mälardalen WCET Research
Group ] and the PapaBench suite [Nemer et al. 2006]. In particular, we used benchmarks
that came from real embedded software (as opposed to toy programs), had non-trivial con-
trol flow, and did not require automatic estimation of loop bounds. The latter criterion
ruled out, for example, benchmarks that compute a discrete cosine transform or perform
data compression, because there is usually just one path through those programs (going
through several iterations of a loop), and variability in run-time usually only comes from
characteristics of the data. Most benchmarks in the Mälardalen suite are of this nature.

The main characteristics of the chosen benchmarks is shown in Table I. The first three
benchmarks, altitude, stabilisation, and climbcontrol, are tasks in the open source Pa-
paBench software for an unmanned aerial vehicle (UAV) [Nemer et al. 2006]. The last
benchmark, statemate, is code generated from a STATEMATE Statecharts model for an au-
tomotive window control system. Note in particular, how thenumber of basis pathsb is
far less than the total number of source-sink paths in the CFG. (We are able to efficiently
count the number of paths as the CFG is a DAG.) We also indicatethe number of lines of
code for each task; however, note that this is an imprecise metric as it includes declarations,
comment lines, and blank lines – the CFG size is a more accurate representation of size.

5.3 Worst-Case Execution Time Analysis

We have compared GAMETIME with two leading tools for WCET analysis: Chronos [Li
et al. 2005] and aiT [AbsInt Angewandte Informatik ]. These tools are based on mod-
els crafted for particular architectures, and are designedto generate conservative (over-
approximate) WCET bounds. Although GAMETIME is not guaranteed to generate an up-
per bound on the WCET, we have found that it is possible for GAMETIME to produce larger
estimates. We also show that GAMETIME does significantly better than simply testing the
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Name LOC Size of CFG Total Num. Num. of basis
n m of paths pathsb

altitude 12 12 16 11 6
stabilisation 48 31 39 216 10

climb control 43 40 56 657 18
statemate 916 290 471 7×1016 183

Table I.Characteristics of Benchmarks.“LOC” indicates number of lines of C code for the task. The Control-
Flow Graph (CFG) is constructed using the CIL front end,n is the number of nodes,m is the number of edges.

programs with inputs generated uniformly at random.

5.3.1 Comparison with Chronos and Random Testing.We performed experiments to
compare GAMETIME against Chronos [Li et al. 2005] as well as against testing the pro-
grams on randomly-generated inputs. WCET estimates are output in terms of the number
of CPU cycles taken by the task to complete in the worst case.

Chronos is built upon SimpleScalar [Todd Austin et al. ], a widely-used tool for proces-
sor simulation and performance analysis. Chronos extractsa CFG from the binary of the
program (compiled for MIPS using modified SimpleScalar tools), and uses a combination
of dataflow analysis, integer programming, and manually constructed processor behavior
models to estimate the WCET of the task.

To compare GAMETIME against Chronos, we used SimpleScalar to simulate, for each
task, each of the extracted basis paths. We used the same SimpleScalar processor configu-
ration as was used with Chronos, viz., Chronos’ default SimpleScalar configuration.

This configuration is given below:

-cache:il1 il1:16:32:2:l -mem:lat 30 2 -bpred 2lev -bpred:2lev 1 128 2 1 -decode:width

1 -issue:width 1 -commit:width 1 -fetch:ifqsize 4 -ruu:size 8

The parameters listed above use SimpleScalar’s syntax for specifying processor parame-
ters. For example,-bpred 2lev corresponds to 2-level branch prediction,-issue:width

1 corresponds to an instruction issue width of 1, and-fetch:ifqsize 4 corresponds to
an instruction fetch queue of size 4. Further details are available in the SimpleScalar doc-
umentation.

Since SimpleScalar’s execution is deterministic for a fixedprocessor configuration, we
did not run Algorithm 3 in its entirety. Instead, we simulated each of the basis paths exactly
once to obtain the execution time estimate for that path and then predicted a feasible longest
path as described in Section 5.1. A test case was generated for the predicted longest path.
The predicted longest path was then simulated once and its execution time is reported as
GAMETIME ’s WCET estimate. Note that the availability of a test case implies that this is
an actual execution time that the program can exhibit on the target platform.

Random testing was done by generating initial values for each program input variable
uniformly at random from its domain. For each benchmark, we generated 500 such random
initializations; note that GAMETIME performs significantly fewer simulations (no more
than the number of basis paths, for a maximum of 183 for the statemate benchmark).

Our results are reported in Table II. We note that the estimate of GAMETIME Tg is lower
than the WCETTc reported by Chronos for three out of the four benchmarks. Interest-
ingly, Tg > Tc for the stabilisation benchmark; on closer inspection, we found that this
occurred mainly because the number of misses in the instruction cache was significantly
underestimated by Chronos. The over-estimation by Chronosfor statemate is very large,
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Name of Chronos Random GAMET IME Tc−Tg Basis path
Benchmark WCET testing estimate Tg times

Tc Tr Tg (%) Max Min

altitude 567 175 348 62.9 343 167
stabilisation 1379 1435 1513 −8.9 1513 1271

climb control 1254 646 952 31.7 945 167
statemate 8584 4249 4575 87.6 3735 3235

Table II. Comparison with Chronos and random testing. Execution time estimates are in number of cycles
reported by SimpleScalar. For random testing, the maximum cycle count over 500 runs is reported. The fifth
column indicates the percentage over-estimation by Chronos over GAMET IME, and the last two columns indicate
the maximum and minimum cycle counts for basis paths generated by GAMET IME.

Name of Benchmark aiT WCET bound GAMET IME estimate
altitude 251 126

stabilisation 926 583
statemate 4063 2555

Table III.Comparison with aiT. Execution time estimates are in number of cycles for the ARM7TDMI processor.

much larger than for altitude and climbcontrol. This appears to arise from the fact that the
number of branch mis-predictions estimated by Chronos is significantly larger than that ac-
tually occurring: 106 by Chronos versus 19 mis-predictionson the longest path simulated
by GAMETIME in SimpleScalar. In fact, the number of branches performed in a single
loop of the statemate code is bounded by approximately 40.

We also note that GAMETIME ’s estimates can be significantly higher than those gen-
erated by random testing. Moreover, GAMETIME ’s predicted WCET is higher than the
execution time of any of the basis paths, indicating that thebasis paths taken together
provide more longest path information than available from them individually.

5.3.2 Comparison with aiT.We have also run experiments with aiT [AbsInt Ange-
wandte Informatik ], one of the leading industrial tools forWCET analysis. Separate
versions are available for certain processors and compilers. Our experiments used the ver-
sion of aiT for the ARM7TDMI processor for use with binaries generated by both ARM
and GNU compilers. For the experiments reported in this section, we used the GNU C
compiler provided by the SimpleScalar toolset [Todd Austinet al. ] to generate ARM
binaries. Measurements for GAMETIME ’s analysis were generated using a version of the
SimpleScalar-ARM simulator configured for the ARM7TDMI. The results are shown in
Table III. Since the ARM7TDMI does not have a floating-point unit, we had to modify
the altitude and stabilisation programs to useint instead offloat types; such a modifi-
cation was not possible for the climbcontrol task without substantially changing the code,
so we omitted this benchmark from the comparison. We observethat aiT generates larger
bounds. Since aiT is a closed industrial tool, unlike in the case of Chronos, we do not have
a clear explanation of the results and an analysis of potential reasons for over-estimation.
We note also that the execution time measurements used in aiTand GAMETIME are made
using different methods, which could influence the relativecomparison. A more detailed
experimental comparison is left to future work.
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5.3.3 Discussion.As noted earlier, our theoretical guarantees are only for the finite-
horizon WCET problem. Moreover, they are probabilistic guarantees, rather than absolute
statements. Tools such as aiT and Chronos are designed to solve the global WCET problem
for specific platforms. Naturally, the reader might wonder about the suitability of GAME-
TIME versus tools that are designed to obtain a conservative upper bound for a specific
platform, and for hard real-time systems versus soft real-time systems.

Consider first the case of hard real-time systems. If a conservative upper bound is re-
quiredand an accurate model is available for the hardware platform, then tools that are
formally proved to generate such an upper bound for that model are the right tools for
the problem. However, it is often the case in the design of even hard real-time embed-
ded systems that there is no conservative tool that supportsexactly the hardware platform
that the designers want to use. In such a case, GAMETIME provides a suitable alterna-
tive, especially in early-stage design space exploration,and when designers have complete
knowledge of the environment states from which the program is to be executed. As we
have observed in our experiments, it is possible for GAMETIME to generate larger execu-
tion times in some cases than the bounds predicted by a conservative tool. Inaccuracies
or slight mismatches between the platform model and the actual platform are likely to be
the reason. Importantly, GAMETIME is easy to portto new platforms and seeks to avoid
modeling errors by directly executing on the target platform. Moreover, even when a con-
servative WCET tool is available for the platform, GAMETIME is useful for evaluating the
tightness of the generated bound.

For soft real-time systems, GAMETIME is very suitable, since it generates probabilistic
guarantees and (as we demonstrate in Section 5.4), can efficiently estimate the distribution
of execution times exhibited by a task. Additionally, GAMETIME ’s ability to generate test
cases for basis paths is a useful capability for both hard andsoft real-time systems.

A very interesting direction would be to combine the capabilities of GAMETIME with
that of a conservative WCET tool such as aiT, when an accurateplatform model is avail-
able, so as to reduce the over-estimation of WCET. GAMETIME could be used to generate
inputs corresponding to basis paths. These inputs can be used by a conservative tool to es-
timate the WCET for those specific program paths. GAMETIME can then use the resulting
estimates to predict the true longest path (or set of paths),from which the conservative tool
can generate a final WCET estimate. A further benefit of such estimation would also be to
extend GAMETIME ’s capabilities for reasoning about data-dependent timing.

5.4 Estimating the Full Timing Profile of a Program

One of the unique aspects of GAMETIME is the ability to predict theexecution time pro-
file of a program— the distribution of execution times over program paths — byonly
measuring times for a linear number of basis paths, as formalized in Lemma 4.3.

To experimentally validate this ability, we performed experiments with a complex pro-
cessor architecture – the StrongARM-1100 – which implements the ARM instruction set
with a complex pipeline and both data and instruction caches. The SimIt-ARM cycle-
accurate simulator [Qin and Malik ] was used in these experiments.

In our experiments, we first executed each basis path generated by GameTime on the
SimIt-ARM simulator and generated the averaged estimated weight vectorw̃avg= 1

b ∑b
t=1 w̃t .

Using this estimated weight vector as the weights on edges inthe CFG, we then efficiently
computed the estimated length of each pathx in the CFG asx · w̃avg using dynamic pro-
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gramming.7 We also exhaustively enumerated all program paths for the small programs
in our benchmark set, and simulated each of these paths to compute its execution time.

For the altitude program, the histogram of execution times generated by GAMETIME

perfectly matched the true histogram generated by exhaustively enumerating program paths.
For the climbcontrol task, the GAMETIME histogram is a close match to the true his-

togram, as can be seen in Figure 4. Out of a total of 657 paths, 129 were found to be
feasible; of these, GAMETIME ’s prediction differs from the true execution time on only
12 paths, but the prediction is never off by more than 40 cycles, and is always an over-
approximation.

Fig. 4. Estimating the distribution of execution times with GAMET IME. The true execution times are indicated
by white bars, the predicted execution times by gray bars, and the cases where the two coincide are colored black.

In summary, we have found GAMETIME to be an adequate technique to estimate not
just the WCET, but also the distribution of execution times of a program, for even com-
plex microprocessor platforms. A key aspect of GAMETIME ’s effectiveness has been the
generation of tests for basis paths. We have also experimented with other coverage metrics
such as statement or branch coverage, but these do not yield the same level of accuracy as
does basis path coverage. Full path coverage is very difficult to achieve for programs that
exhibit path explosion (e.g., statemate), whereas basis path coverage remains tractable.

6. CONCLUSIONS

We have presented a new, game-theoretic approach to estimating quantitative properties of
a software task, such as its execution time profile and worst-case execution time (WCET).

7The histogram of path lengths in a weighted DAG can be generated by traversing the DAG “bottom-up” from
the sink, to compute, for each node, the lengths of all paths from that node to the sink. Such computation can be
efficiently performed in practice using dynamic programming.
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Our tool, GAMETIME, is measurement-based, making it easy to use on many different
platforms without the need for tedious processor behavior analysis. We have presented
both theoretical and experimental evidence for the utilityof the GAMETIME approach for
quantitative analysis, in particular for timing estimation.

We note that our algorithm and results of Section 4 are general, in that they apply to
estimating longest paths in DAGs by learning an environmentmodel, not just to timing
estimation for embedded software. In particular, one couldapply the algorithms presented
in this paper to power estimation of software systems and to quantitative analysis of many
systems that can be modeled as a DAG, such as combinational circuits and distributed
embedded and control systems.
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A. AZUMA-HOEFFDING INEQUALITY

The Azuma-Hoeffding inequality is a very useful concentration inequality. A version of
this inequality with a slightly better constant is given as Lemma A.7 in [Cesa-Bianchi and
Lugosi 2006].

LEMMA A.1. Let Y1, . . . ,YT be a martingale difference sequence. Suppose that|Yt | ≤ c
almost surely for all t∈ {1, . . . ,τ}. Then for anyδ > 0,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Yt

∣

∣

∣

∣

∣

>
√

2τc2 ln(2/δ)

)

≤ δ

One-sided inequalities for∑τ
t=1Yt also hold by replacing 2/δ with 1/δ in the loga-

rithm. The inequality is an instance of the so-calledconcentration of measure inequalities.
Roughly speaking, it says that if each random variable fluctuates within the bounds[−c,c],
then the sum of these variables fluctuates, with high probability, within [−c

√
τ,c
√

τ].
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