
Fast L1-Minimization Algorithms and An Application

in Robust Face Recognition: A Review

Allen Yang
Arvind Ganesh
Shankar Sastry
Yi Ma

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-13

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-13.html

February 5, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was partially supported by ARO MURI W911NF-06-1-0076 and
ARL MAST-CTA W911NF-08-2-0004. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute for Government
purposes notwithstanding any copyright notation hereon.

1

Fast `1-Minimization Algorithms and An
Application in Robust Face Recognition: A Review

Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Abstract—`1-minimization solves the minimum `1-norm so-
lution to an underdetermined linear system y = Ax. It has
recently received much attention, mainly motivated by the new
compressive sensing theory that shows that under certain condi-
tions an `1-minimization solution is also the sparsest solution to
that system. Although classical solutions to `1-minimization have
been well studied in the past, including primal-dual interior-point
methods and orthogonal matching pursuit, they suffer from either
expensive computational cost or insufficient estimation accuracy
in many real-world, large-scale applications. In the past five
years, many new algorithms have been proposed. We provide a
comprehensive review of five representative approaches, namely,
gradient projection, homotopy, iterative shrinkage-thresholding,
proximal gradient, and alternating direction. The repository is
intended to fill in a gap in the existing literature to systemat-
ically benchmark the performance of these algorithms using a
consistent experimental setting. In addition, the experiment will
be focused on the application of robust face recognition, where a
sparse representation framework has recently been developed to
recover human identities from facial images that may be affected
by illumination, occlusion, and facial disguise. The paper also
provides useful guidelines to practitioners working in similar
fields.

I. INTRODUCTION

`1-minimization (`1-min) has been one of the hot topics in
the signal processing and optimization communities in the last
five years or so. In compressive sensing (CS) theory [9], [16],
[8], it has been shown to be an efficient approach to recover
the sparsest solutions to certain underdetermined systems of
linear equations. More specifically, assuming there exists an
unknown signal x0 ∈ Rn, a measurement vector b ∈ Rd can
be generated by a linear projection b = Ax. If we assume the
sensing matrix A to be full-rank and overcomplete, i.e., d < n,
an `1-min program solves the following convex optimization
problem

(P1) : min ‖x‖1 subject to b = Ax. (1)

The formulation of (P1) constitutes a linear inverse problem,
as the number of measurements in b is smaller than the

This work was partially supported by ARO MURI W911NF-06-1-0076 and
ARL MAST-CTA W911NF-08-2-0004. The views and conclusions contained
in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute for Government purposes notwithstanding
any copyright notation hereon.

A. Yang and S. Sastry are with the Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, USA. A.
Ganesh, and Y. Ma are with the Coordinated Science Laboratory, Univer-
sity of Illinois, Urbana, USA. Y. Ma is also with the Visual Computing
Group, Microsoft Research Asia, Beijing, China. Corresponding author: Allen
Yang, Cory Hall, University of California, Berkeley, CA 94720. Email:
yang@eecs.berkeley.edu. Tel: 1-510-643-5798. Fax: 1-510-643-2356.

number of unknowns in x. However, CS theory shows that
if x0 is sufficiently sparse and the sensing matrix A is
incoherent with the basis under which x0 is sparse (i.e., the
identity matrix in its standard form (1)), x0 can be exactly
recovered. This sparsity-seeking property of (P1) has been
shown to have tremendous applications in geophysics, data
compression, image processing, sensor networks, and most
recently computer vision. The reader is referred to [9], [2],
[8] for a comprehensive review of these applications.

Traditionally, (P1) has been formulated as a linear pro-
gramming (LP) problem, such as in basis pursuit (BP) [11].
However, one can show that the computational complexity of
these general-purpose algorithms is often too high for many
real-world, large-scale applications. Alternatively, heuristic
greedy algorithms have been developed to approximate (P1),
which are also significantly faster than using LP. Orthogonal
matching pursuit (OMP) [14] and least angle regression
(LARS) [18] are two well-known algorithms in this category.
Empirically, these greedy algorithms often can find sufficiently
good solutions to approximate (P1). However, they may also
fail in some conditions (one negative example for OMP is
discussed in [38]).

In practice, the exact constraint b = Ax is often relaxed to
take into account the existence of measurement errors in the
sensing process:

b = Ax + e. (2)

Particularly, if the error term e is assumed to be white noise
such that ‖e‖2 ≤ ε, the ground truth signal x0 can be well
approximated by the so-called basis pursuit denoising (BPDN)
[11], [10]:

(P1,2) : min ‖x‖1 subject to ‖b−Ax‖2 ≤ ε. (3)

Based on the nature of the measurement noise, the `2-norm
used in the penalty term can be replaced by other `p-norms.
For example, the following (P1,1) program has been consid-
ered in [43], [42], [45]:

(P1,1) : min ‖x‖1 subject to ‖b−Ax‖1 ≤ ε. (4)

As we will discuss further in Section IV, the problem (P1,1)
assumes the measurement b may be corrupted by large and
impulsive noise e, which itself may also be sparse.

In light of the high interest in finding more efficient algo-
rithms to solve these problems, many new algorithms have
been recently proposed. Although it is impossible to summa-
rize all existing algorithms in the literature, in this paper, we
provide a comprehensive review of five representative meth-
ods, namely, gradient projection [19], [29], homotopy [37],

2

[31], [17], iterative shrinkage-thresholding [13], [12], [24],
[44], proximal gradient (also known as Nesterov’s method)
[34], [35], [5], [6], and alternating direction [45]. Unless
stated otherwise, all algorithms are formulated to recover the
approximate minimum `1-norm solution (P1,2). It is easy to
see that if ε→ 0 in (3), the solution becomes a good estimate
of the basic BP problem (P1).

The paper intends to fill in a gap in the existing literature to
systematically benchmark the performance of these algorithms
using a fair and consistent experimental setting. Due to the
attention given to compressive sensing and `1-minimization
in the community, there should be no surprise that other more
advanced solutions will be conceived and studied in the near
future, and we do not believe there exists an overall winner that
could achieve the best performance in speed and accuracy for
all applications. Therefore, in addition to extensive simulations
on synthetic data, the experiment will be focused on an
example application of robust face recognition [43], [42],
where a sparse representation framework has recently been
developed to recognize human identities from facial images,
which may be affected by illumination, occlusion, and facial
disguise. We have made the documentation of the `1-min
resources and benchmark scripts in MATLAB online at http:
//www.eecs.berkeley.edu/~yang/software/l1benchmark/, which
aims to provide useful references and guidelines to practition-
ers working in similar fields.

A. Notation
For a vector x ∈ Rn, we denote x+ and x− that collect

the positive and negative coefficients of x, respectively:

x = x+ − x−,x+ ≥ 0,x− ≥ 0. (5)

We also denote

X = diag(x1, x2, · · · , xn) ∈ Rn×n (6)

as a square matrix with the coefficients of x as its diago-
nal and zero otherwise. The concatenation of two (column)
vectors will be written following the MATLAB convention:
[x1; x2] .= [x1

x2]; [x1,x2] .= [x1 x2]. The notation 1 is a
vector whose coefficients are all one with dimension defined
within the context. In this paper, function ‖·‖ without subscript
represents the usual `2-norm.

B. Primal-Dual Interior-Point Methods
We first discuss a classical solution to the `1-min problem

(P1), called the primal-dual interior-point method, which is
usually attributed to the works of [20], [27], [32], [33], [30].
For the sake of simplicity, we assume here that the sparse
solution x is nonnegative.1 Under this assumption, it is easy
to see that (P1) can be converted to the standard primal and
dual forms in linear programming (LP):

Primal (P) Dual (D)
min cTx max bTy
s.t. Ax = b s.t. ATy + z = c

x ≥ 0 z ≥ 0,

(7)

1This constraint can be easily removed by considering the corresponding
solution for another linear system b = [A,−A][x+; x−], where [x+; x−]
is also nonnegative.

where for `1-min, c = 1. The algorithm simultaneously opti-
mizes the primal-dual pair of the linear programming problems
(P) and (D) in the domain: (x,y, z) ∈ Rn × Rd × Rn.

It was proposed in [20] that (P) can be converted to a family
of logarithmic barrier problems2:

(Pµ) min cTx− µ
∑n
i=1 log xi

s.t. Ax = b,x > 0 (8)

Clearly, a feasible solution x for (Pµ) cannot have zero
coefficients. Therefore, we define the interiors of the solution
domains for (P) and (D) as:

P++ = {x : Ax = b,x > 0},
D++ = {(y, z) : ATy + z = c, z > 0},
S++ = P++ ×D++,

(9)

and assume the sets are not empty.
Under these assumptions, one can show that problem (Pµ)

has a unique global optimal solution x(µ) for all µ > 0. As
µ→ 0, x(µ) and (y(µ), z(µ)) converge to optimal solutions
of problems (P) and (D) respectively [32], [33].

The primal-dual interior-point algorithm seek the domain
of the central trajectory for the problems (P) and (D) in
S++, where the central trajectory is defined as the set S =
{(x(µ),y(µ), z(µ)) : µ > 0} of solutions to the following
system of equations:

XZ1 = µ1, Ax = b, ATy+z = c,x ≥ 0, and z ≥ 0. (10)

The condition (10) is also known as the Karush-Kuhn-Tucker
(KKT) stationary condition for the convex function (Pµ)[33],
[30]

Hence, the update rule on the current value (x(k),y(k), z(k))
is defined by the Newton direction (∆x,∆y,∆z), which is
evaluated from the following equationsZ

(k)∆x +X(k)∆z = µ̂1−X(k)z(k)

A∆x = 0
AT∆y + ∆z = 0,

(11)

where µ̂ is a free penalty parameter that generally is different
from µ in (Pµ).

In addition to the update rule (11), an algorithm also needs
to specify the stopping criterion when the solution is close
to the optimum. For `1-min, some simple rules can be easily
evaluated:

1) The relative change of the sparse support set becomes
small;

2) The relative change (in the sense of the `2-norm) of the
update of the estimate becomes small;

3) The relative change of the objective function becomes
small.

A more detailed discussion about choosing good stopping
criteria in different applications is postponed to Section III.

Algorithm 1 summarizes the conceptual implementation of
the interior-point methods.3 For more details about how to
choose the initial values (x(0),y(0), z(0)) and the penalty
parameter µ̂, the reader is referred to [30], [33].

2In general, any smooth function Ψ that satisfies Ψ(0+) = −∞ is a valid
barrier function [25].

3A MATLAB implementation of the primal-dual interior-point solver can
be found in the SparseLab Toolbox at http://sparselab.stanford.edu/.

3

Algorithm 1 Primal-Dual Interior-Point Algorithm (PDIPA)
Input: A full rank matrix A ∈ Rd×n, d < n, a vector b ∈ Rd,
initial guess (x(0),y(0), z(0)). Iteration k ← 0. Initial penalty
µ and a decreasing factor 0 < δ <

√
n.

1: repeat
2: k ← k + 1, µ← µ(1− δ/

√
n).

3: Solve (11) for (∆x,∆y,∆z).
4: x(k) ← x(k−1) + ∆x,y(k) ← y(k−1) + ∆y, z(k) ←

z(k−1) + ∆z.
5: until stopping criterion is satisfied.

Output: x∗ ← x(k).

Algorithm 1 requires a total of O(
√
n) iterations, and each

iteration can be executed in O(n3) operations for solving the
linear system (11). In one simulation shown in Figure 1, the
computational complexity of Algorithm 1 w.r.t. the sensing
dimension d grows much faster than the other six algorithms
in comparison. For example, at d = 1900, the fastest algorithm
in this simulation, i.e., iterative thresholding, only takes about
0.2 sec to complete one trial, which is more than 4,000
times faster than PDIPA. Because of this reason, basic BP
algorithms should only be used with caution in solving real-
world applications.

Fig. 1. Average run time of PDIPA in comparison to six other fast
implementations under similar estimation accuracy. The simulation setup:
n = 2000, k = 200. The projection matrices are randomly generated based
on the standard normal distribution with the dimension varies from 300 to
1900. The support of the ground truth x0 is randomly selected at each trial,
and the nonzero coefficients are sampled from the normal distribution. At
each projection dimension, simulation repeats 50 trials.

Next, we will review the five fast `1-min algorithms shown
in Figure 1, namely, gradient projection in Section II-A,
homotopy in Section II-B, iterative shrinkage-thresholding in
Section II-C, proximal gradient in Section II-D, and alter-
nating direction in Section II-E. Implementations of all the
algorithms are available for download from their respective
authors.

II. FAST `1-MIN ALGORITHMS

A. Gradient Projection Methods
We first discuss gradient projection (GP) methods that

seek sparse representation x along certain gradient direction,

which induces much faster convergence speed. The approach
reformulates the `1-min as a quadratic programming (QP)
problem compared to the LP implementation in PDIPA.

We start with the `1-min problem (P1,2). It is equivalent to
the so-called LASSO objective function [40]:

(Pq) : min
x
‖b−Ax‖22 s.t. ‖x‖1 ≤ σ. (12)

Using the Lagrangian method, the two problems (P1,2) and
(Pq) can be both rewritten as an unconstrained optimization
problem:

x∗ = arg min
x
F (x) = arg min

x

1
2
‖b−Ax‖22 + λ‖x‖1, (13)

where λ is the Lagrangian multiplier.
In the literature, there exist two slightly different methods

to engage (13) as a quadratic programming problem, namely,
gradient projection sparse representation (GPSR) [19] and
truncated Newton interior-point method (TNIPM) [29].4

To formulate the GPSR algorithm, one can separate the
positive coefficients x+ and the negative coefficients x− in
x, and rewrite (13) as

min Q(x) = 1
2‖b− [A,−A][x+; x−]‖22 + λ1Tx+ + λ1Tx−

s.t. x+ ≥ 0,x− ≥ 0.
(14)

Problem (14) can be rewritten in the standard QP form as

min Q(z) .= cTz + 1
2zTBz

s.t. z ≥ 0, (15)

where z = [x+; x−], c = λ1 + [−AT b;AT b], and

B =
[
ATA −ATA
−ATA ATA

]
. (16)

Notice that the gradient of Q(z) is defined as

∇zQ(z) = c +Bz. (17)

It leads to a basic algorithm that searches from each iterate
z(k) along the negative gradient −∇Q(z):

z(k+1) = z(k) − α(k)∇Q(z(k)), (18)

where α(k) is the step size that remains undefined. This can be
solved by the standard line-search process [26]. For example,
in [19], a direction vector g(k) is defined as

g
(k)
i =

{
(∇Q(z(k)))i, if z(k)

i > 0 or (∇Q(z(k)))i < 0
0, otherwise.

(19)
Then the step size for the update is chosen to be

α(k) = arg min
α
Q(z(k) − αg(k)), (20)

which has a closed-form solution

α(k) =
(g(k))Tg(k)

(g(k))TBg(k)
. (21)

In terms of the computational complexity, the authors re-
ported that the computational complexity and convergence of

4A MATLAB implementation of GPSR is available at http://www.lx.it.pt/
~mtf/GPSR. A MATLAB Toolbox for TNIPM called L1LS is available at
http://www.stanford.edu/~boyd/l1_ls/.

4

GPSR is difficult to estimate exactly. Another issue is that the
formulation of (15) doubles the dimension of the equations
from (13). Therefore, the matrix operations involving B must
take into account its special structure w.r.t. A and AT .

The second GP algorithm, which our benchmark will be
based on, is truncated Newton interior-point method (TNIPM)
[29]. It transforms the same objective function (13) to a
quadratic program but with inequality constraints:

min 1
2‖Ax− b‖22 + λ

∑n
i=1 ui

s.t. −ui ≤ xi ≤ ui, i = 1, · · · , n. (22)

Then a logarithmic barrier for the constraints −ui ≤ xi ≤ ui
can be constructed [20]:

Φ(x,u) = −
∑
i

log(ui + xi)−
∑
i

log(ui − xi). (23)

Over the domain of (x,u), the central path consists of the
unique minimizer (x∗(t),u∗(t)) of the convex function

Ft(x,u) = t(‖Ax− b‖22 + λ

n∑
i=1

ui) + Φ(x,u), (24)

where the parameter t ∈ [0,∞).
Using the primal barrier method that we discussed in Sec-

tion I-B, the optimal search direction using Newton’s method
is computed by

∇2Ft(x,u) ·
[
∆x
∆u

]
= −∇Ft(x,u) ∈ R2n. (25)

Again, for large-scale problems, directly solving (25) is not
computationally practical. Then in [29], the authors argued that
it can be replaced by an approximate solution using the pre-
conditioned conjugate gradients (PCG) algorithm. The reader
is referred to [28], [36] for more details of the technique.

B. Homotopy Methods

Both PDIPA and GP require the solution sequence to be
close to a “central path”, which is often difficult to satisfy
and computationally expensive in practice. A natural question
arises: Are there any fast algorithms that are suitable for large-
scale applications and yet can recover the sparsest solutions
in similar conditions as `1-min?

In this section, we overview one such approach called
homotopy methods [37], [31], [17]. The algorithm has intimate
connection with two other greedy `1-min approximations,
namely, least angle regression (LARS) [18] and polytope
faces pursuit (PFP) [38]. For instance, if a k-sparse signal
is sufficiently sparse, all three algorithms can find it in k
iterations. On the other hand, LARS would never remove
indices from the current sparse support set, while the general
homotopy and PFP include mechanisms to remove coefficients
from the sparse support during the iteration. More importantly,
the homotopy algorithm provably solves `1-min (P1), while
LARS and PFP are only approximate solutions. A more
detailed discussion about homotopy, LARS, and PFP can be
found in [17].

Recall that (P1,2) can be written as an unconstrained
optimization problem:

x∗ = arg minx F (x) = arg minx
1
2‖b−Ax‖22 + λ‖x‖1,.= arg minx f(x) + λg(x)

(26)
where λ is the Lagrangian multiplier. On one hand, w.r.t. a
fixed λ, the optimal solution is achieved when 0 ∈ ∂F (x).
On the other hand, similar to the interior-point algorithm, if
we define

X .= {x∗λ : λ ∈ [0,∞)}, (27)

X identifies a solution path that follows the change in λ: when
λ → ∞, x∗λ = 0; when λ → 0, x∗λ converges to the solution
of (P1).

The homotopy methods exploit the fact that the objective
function F (x) undergoes a homotopy from the `2 constraint
to the `1 objective in (26) as λ decreases. One can further
show that the solution path X is piece-wise constant as a
function of λ [37], [18], [17].5 Therefore, in constructing a
decreasing sequence of λ, it is only necessary to identify those
“breakpoints” that lead to changes of the support set of x∗λ,
namely, either a new nonzero coefficient added or a previous
nonzero coefficient removed.

The major obstacle in computing ∂F (x) is that the `1-norm
term is not globally differentiable. Instead, one can consider
the subdifferential of a convex function g, defined as [26]:

∂g(x) = {η ∈ Rn : g(x̄)− g(x) ≥ ηT (x̄− x),∀x̄ ∈ Rn}.
(28)

If a line passes through x and its gradient is within ∂g(x),
then all the points on the line are either touching or below the
convex function g.

The first summand f in (26) is differentiable: ∇f =
AT (Ax − b) .= −c(x). The subdifferential of g(x) = ‖x‖1
is the following set:

u(x) .= ∂‖x‖1 =
{

u ∈ Rn :
ui = sgn(xi), xi 6= 0
ui ∈ [−1, 1], xi = 0

}
. (29)

So the unconventional part of u(x) is that when a coordinate
xi = 0, ui in its subdifferential is not a scalar but a set.

The algorithm operates in an iterative fashion with an initial
value x(0) = 0. In each iteration w.r.t. a nonzero λ, once we
assign ∂F (x) = 0:

c(x) = AT b−ATAx = λu(x). (30)

Hence, by the definition (29), we maintain a sparse support
set:

I .= {i : |c(l)
i | = λ}. (31)

The algorithm computes the update for x(k) in terms of
the positive/negative directions for its coefficients and the
magnitude. Specifically, the update direction d(k) on the sparse
support is the solution to the following system:

ATIAId
(k)(I) = sgn(c(k)(I)), (32)

and the direction is manually set to zero on the coordinates
not in I. Along the direction indicated by d(k), an update

5The reader who is familiar with LARS should see that LARS shares the
similar property.

5

on x may lead to a breakpoint where the condition (30) is
violated. The first scenario occurs when an element of c not
in the support set would increase in magnitude beyond λ:

γ+ = min
i6∈I
{ λ− ci

1− aTi AId
(k)(I)

,
λ+ ci

1 + aTi AId
(k)(I)

}. (33)

The index that achieves γ+ is denoted as i+. The second
scenario occurs when an element of c in the support set I
crosses zero, violating the sign agreement:

γ− = min
i∈I
{−xi/di}. (34)

The index that achieves γ− is denoted as i−. Hence, the
homotopy algorithm marches to the next breakpoint, and
updates the sparse support set by either appending I with i+

or removing i−:

x(k+1) = x(k) + min{γ+, γ−}d(k). (35)

The algorithm shall terminate when the update approaches
to zero. Algorithm 2 summarizes the implementation of the
homotopy methods.6

Algorithm 2 Homotopy
Input: A full rank matrix A = [v1, · · · ,vn] ∈ Rd×n,
d < n, a vector b ∈ Rd, initial Lagrangian parameter
λ = 2‖AT b‖∞.

1: Initialization: k ← 0. Find the first support index: i =
arg maxnj=1 ‖vTj b‖, I = {i}.

2: repeat
3: k ← k + 1.
4: Solve for the update direction d(k) in (32).
5: Compute the sparse support updates (33) and (34):

γ∗ ← min{γ+, γ−}.
6: Update x(k), I, and λ← λ− γ∗.
7: until stopping criterion is satisfied.

Output: x∗ ← x(k).

Overall, solving (32) using a Cholesky factorization and
the addition/removal of the sparse support elements dominate
the computation. Since one can keep track of the rank-1
update of ATIAI in solving (32) using O(d2) operations in
each iteration, the computational complexity of the homotopy
algorithm is O(kd2 + kdn).

C. Iterative Shrinkage-Thresholding Methods

The homotopy algorithm employs a more efficient iterative
update rule that only involves operations on those submatrices
of A corresponding to the nonzero support of the current
vector x. However, it may lose its computational competi-
tiveness when the sparsity of x grows proportionally with the
observation dimension d. In such scenarios, the complexity
may still approach the worst-case upper-bound O(n3). In
this section, we discuss iterative shrinkage-thresholding (IST)
methods [13], [12], [24], [44], whose implementation mainly

6A MATLAB implementation [1] can be found at http://users.ece.gatech.
edu/~sasif/homotopy/.

involves lightweight operations such as vector operations and
matrix-vector multiplications. This is in contrast to most past
methods that all involve expensive operations such as matrix
factorization and solving linear least squares (LLE).

In a nutshell, IST considers solving (P1,2) as a special case
of the following composite objective function:

min
x
F (x) .= f(x) + λg(x), (36)

where f : Rn → R is a smooth and convex function, and g :
Rn → R as the regularization term is bounded from below but
not necessarily smooth nor convex. For `1-min in particular,
g is also separable, that is,

g(x) =
n∑
i=1

gi(xi). (37)

Clearly, let f(x) = 1
2‖b − Ax‖22 and g(x) = ‖x‖1, and

the objective function (36) becomes the unconstrained BPDN
problem.

The update rule to minimize (36) is computed using the
linearized function of f [44], [5]:

x(k+1) = arg minx{f(x(k)) + (x− x(k))T∇f(x(k))
+ 1

2‖x− x(k)‖22 · ∇2f(x(k)) + λg(x)}
≈ arg minx{(x− x(k))T∇f(x(k))

+α(k)

2 ‖x− x(k)‖22 + λg(x)}
= arg minx{ 1

2‖x− u(k)‖22 + λ
α(k) g(x)},

.= Gα(k)(x(k)),
(38)

where
u(k) = x(k) − 1

α(k)
∇f(x(k)). (39)

In (38), the hessian ∇2f(x(k)) is approximated by a diagonal
matrix α(k)I .

Now if we replace g(x) in (38) by the `1-norm ‖x‖1, which
is a separable function, then G(x(k), α(k)) has a closed-form
solution w.r.t. each scalar coefficient:

x
(k+1)
i = arg min

xi
{ (xi − u(k)

i)2

2
+
λ|xi|
α(k)

} = soft(u(k)
i ,

λ

α(k)
),

(40)
where

soft(u, a) .= sgn(u) max{|u| − a, 0}

=
{

sgn(u)(|u| − a) if |u|>a
0 otherwise

(41)

is the so-called soft-thresholding function [15].
There are two parameters remained to be determined in

(38), that is, the regularizing coefficient λ and the coefficient
α(k) that approximates the hessian matrix ∇2f . Several IST
algorithms differ in the strategies to pick the parameters in
the iteration. For α, since it is chosen such that αI mimics
the Hessian ∇2f , we require that α(k)(x(k) − x(k−1)) ≈
∇f(x(k))−∇f(x(k−1)) in the least-square sense. Hence,

α(k+1) = arg minα ‖α(x(k) − x(k−1))
−
(
∇f(x(k))−∇f(x(k−1))

)
‖22

= (x(k)−x(k−1))T (∇f(x(k))−∇f(x(k−1))
(x(k)−x(k−1))T (x(k)−x(k−1))

.
(42)

This is the so-called Barzilai-Borwein equation [3], [39], [44].

6

For choosing λ, instead of using a fixed value, several works
have proposed a continuation procedure [24], [19], in which
(38) is solved for a decreasing sequence of λ. Remember, as
we mentioned in Section II-B, (38) recovers the optimal `1-
min solution when λ→ 0. However, it has been observed that
the practical performance degrades by directly solving (38) for
small values of λ, which has been dubbed as a “cold” starting
point. Instead, continuation employs a warm-starting strategy
by first solving (38) for a larger value of λ, then decreasing
λ in steps towards its desired value.

The iterative shrinkage-thresholding algorithm (ISTA) is
summarized in Algorithm 3.7

Algorithm 3 Iterative Shrinkage-Thresholding Algorithm
(ISTA)
Input: A full rank matrix A ∈ Rd×n, d < n, a vector
b ∈ Rd, Lagrangian λ0, initial values for x(0) and α0,
k ← 0.

1: Generate a reducing sequence λ0 > λ1 > · · · > λN → 0.
2: for i = 0, 1, · · · , N do
3: λ← λi
4: repeat
5: k ← k + 1.
6: x(k) ← G(x(k−1)).
7: Update α(k) using (42).
8: until The objective function F (x(k)) decreases.
9: end for

Output: x∗ ← x(k).

D. Proximal Gradient Methods

Proximal gradient algorithms represent another class of
algorithms that solve convex optimization problems in (36).
Assume that f is a smooth convex function with Lipschitz
continuous gradient, and g is a continuous convex function.
The principle behind proximal gradient algorithms is to itera-
tively form quadratic approximations Q(x,y) to F around a
carefully chosen point y, and to minimize Q(x,y) rather than
the original cost function F .

Again, we define g(x) = ‖x‖1 and f(x) = 1
2‖Ax − b‖22.

We note that ∇f(x) = AT (Ax − b) is Lipschitz continuous
with Lipschitz constant Lf

.= ‖A‖2.8 Define Q(x,y) as:

Q(x,y) .= f(y) + 〈∇f(y),x− y〉+ Lf
2
‖x− y‖2 + λ g(x).

(43)
Thus, we have a slightly different problem whose solution gets
closer to the solution set of (1) as λ→ 0.

One can show that F (x) ≤ Q(x,y) for all y, and

arg min
x

Q(x,y) = arg min
x
{λg(x) +

Lf
2
‖x− u‖2}, (44)

where u = y− 1
Lf
∇f(y) by the same trick used in (38). For

the `1-min problem, (44) has a closed-form solution given by

7A MATLAB implementation called Sparse Reconstruction by Separa-
ble Approximation (SpaRSA) [44] is available at http://www.lx.it.pt/~mtf/
SpaRSA/.

8‖A‖ represents the spectral norm of the matrix A.

the soft-thresholding function:

arg min
x

Q(x,y) = soft(u,
λ

Lf
). (45)

However, unlike the iterative thresholding algorithm de-
scribed earlier, we use a smoothed computation of the se-
quence yk. It has been shown that choosing

y(k) = x(k) +
tk−1 − 1

tk

(
x(k) − x(k−1)

)
, (46)

where {tk} is a positive real sequence satisfying t2k − tk ≤
t2k−1, achieves an accelerated non-asymptotic convergence rate
of O(k−2) [34], [35], [5]. To further accelerate the conver-
gence of the algorithm, one can make use of the continuation
technique: rather than applying the proximal gradient algo-
rithm directly to (36), we vary λ, starting from a large initial
value λ0 and decreasing it with each iteration. Although the
theoretical convergence rate is unchanged, it has been shown
that this greatly reduces the number of iterations in practice.

Finally, for large problems, it is often computationally
expensive to directly compute Lf = ‖A‖2.9 A backtracking
line-search strategy [5] can be used to generate a scalar
sequence {Lk} that approximates Lf . We define

QL(x,y) .= f(y) + (x− y)T∇f(y) +
L

2
‖x− y‖2 + λ g(x).

(47)
Suppose that η > 1 is a pre-defined constant. Then, given
y(k) at the kth iteration, we set Lk = ηj Lk−1, where j is the
smallest nonnegative integer such that the following inequality
holds:

F (GLk(y(k))) ≤ QLk(GLk(y(k)),y(k)), (48)

where GL(y) .= arg minx QL(x,y) = soft
(
u, λL

)
for u

.=
y − 1

L∇f(y).
The algorithm, dubbed FISTA in [5], is summarized as

Algorithm 4.10 The convergence behavior of FISTA is given
by

F (x(k))− F (x∗) ≤ 2Lf‖x(0) − x∗‖2

(k + 1)2
, ∀ k. (49)

The interested reader may refer to [35], [5], [6] for a proof of
the above result.

E. Alternating Direction Methods

After the proximal gradient theory, many investigators be-
lieve that most relevant convex-optimization techniques have
been exhausted in solving the `1-min problem. After all, in
the noiseless case, Homotopy provably solves (P1) in k steps
if the underlying sparse signal x0 has only k-nonzeros; in the
noisy case, proximal gradient algorithms provide a first-order
solution that converges in the order of O(k−2). Yet, as we are
writing this paper, we become aware of a new development,
called the alternating direction method (ADM) [45].

9This problem occurs in the IST algorithm as well.
10An implementation of FISTA can be download from the website of

the paper: http://www.eecs.berkeley.edu/~yang/software/l1benchmark/. An-
other Matlab toolbox called NESTA [6] is available at: http://www.acm.
caltech.edu/~nesta/.

7

Algorithm 4 Fast Iterative Shrinkage-Threshold Algorithm
(FISTA)
Input: b ∈ Rm, A ∈ Rm×n.

1: Set x(0) ← 0, x(1) ← 0, t0 ← 1, t1 ← 1, k ← 1.
2: Initialize L0, λ1, β ∈ (0, 1), λ̄ > 0.
3: while not converged do
4: y(k) ← x(k) + tk−1−1

tk

(
x(k) − x(k−1)

)
.

5: Update Lk using (48) with y(k).
6: u(k) ← y(k) − 1

Lk
AT (Ay(k) − b).

7: x(k+1) ← soft
(
u(k), λkLk

)
.

8: tk+1 ←
1+
√

4t2k+1

2 .
9: λk+1 ← max(β λk, λ̄).

10: k ← k + 1.
11: end while
Output: x∗ ← x(k).

ADM can be attributed to the early works of [22], [21]. Its
novelty is a procedure that alternates between optimizing the
sparse signal x and the residual term e:

min
x,e
‖x‖1 +

1
2µ
‖e‖2 subject to b = Ax + e. (50)

Using the Lagrangian method, (50) is converted to an uncon-
strained form with two additional variables y ∈ Rd and λ > 0:

min
x,y,e
{‖x‖1 +

1
2µ
‖e‖2 +

1
2λ
‖Ax+e−b‖2−yT (Ax+e−b)}.

(51)
We solve (51) using an alternating minimization prece-

dure w.r.t. e(k), x(k), and y(k), respectively. First, assume
(x(k),y(k)) fixed, it is easy to show that the update rule for
e in (51) is given by:

e(k+1) =
µ

λ+ µ
(λy(k) − (Ax(k) − b)). (52)

Next, for (e(k+1),y(k)) fixed, the minimization of (51) w.r.t
x is equivalent to

x(k+1) = arg min
x
{‖x‖1 + h(x)} , (53)

where h(x) .= 1
2λ‖Ax + e(k+1) − b − 1

λy(k)‖2. We already
know that (53) has a closed-form solution given by the soft-
thresholding function:

x(k+1) = soft(u(k),
1
αλ

), (54)

where u(k) = x(k) − 1
α∇h(x(k)) and the hessian ∇2h(x(k))

is approximated by a diagonal matrix αI .
Finally, fixing (x(k+1), e(k+1)), the update rule for the

multiplier y is

y(k+1) = y(k) − γ 1
λ

(Ax(k+1) + e(k+1) − b), (55)

where γ > 0 is a proper step size.
ADM appears to provide a versatile framework for solving

different `1-min variations. For starters, ADM easily applies
to the approximate `1-min problem (P1,2). To enforce the `2-
penalty ‖b − Ax‖ ≤ ε, we only need to change the update

rule of e such that in each iteration the solution is projected
onto the `2-ball Bε2 of radius ε:

e(k+1) = PBε2(λy(k) − (Ax(k) − b)), (56)

where P denotes the projection operator. Furthermore, ADM
can be also applied to the dual problems of `1-min, which we
briefly introduced in Section I-B (see [45] for more details).
An implementation of the algorithm, called YALL1, iterates
in both the primal and dual spaces to converge to the optimal
solutions (x∗, r∗,y∗).11

Finally, the experiments shown in [45] posed an interesting
question regarding choosing a proper lp-penalty in the BPDN
model. Recall in Section I that the common `2-penalty used
in (3) can be replaced by other `p-norms. In particular, the
(P1,1) program

(P1,1) : min ‖x‖1 subject to ‖b−Ax‖1 ≤ ε (57)

is a good criterion if the measurement error e = b−Ax is also
assumed to be sparse. The (P1,1) program can be reformulated
as a standard (P1) program:

min
x̂
‖x̂‖1 subject to b = Âx̂, (58)

where Â = [A, I] and x̂ = [λx; e], in addition to a normaliza-
tion step to balance the rows or columns of the new matrix Â
if necessary. Then all the previous `1-min techniques naturally
apply to simultaneously recover the underlying signal x0 and
the error e.

The authors in [45] claims that the `1-penalty improves
the estimation over the `2-penalty when the data may con-
tain large, impulsive data noise. In addition, even without
impulsive noise, enforcing the `1-penalty does not seem to
harm the solution quality as long as the data do not contain
a large amount of white noise (in which case the `2-penalty
is superior). The observations are intriguing partly because
in most practical, real-world applications, the measurement
error e rarely satisfies a white noise model, and some of
its coefficients contain large, impulsive values. In addition,
(P1,1) has a connection to a recent work about robust face
recognition [43], where the concept of sparse representation
is utilized to recognize human identities from facial images. In
Section IV, we will discuss and rank the performance of the
pervious `1-min algorithm based on the framework of robust
face recognition.

III. SIMULATION: RANDOM SPARSE SIGNALS

In this section, we present two sets of experiments to
benchmark the performance of the five fast `1-min algorithms
on random sparse signals, namely, TNIPM/L1LS, Homotopy,
SpaRSA, FISTA, and YALL1, together with the classical OMP
algorithm [14], [41], [17], [8] as the baseline. It is important
to note however that OMP as a greedy algorithm does not
solve the `1-min problem (P1). The benchmark of PDIPA is
not reported in the paper, as its performance markedly lags
behind the rest of the fast algorithms (as shown in Figure 1).

11A MATLAB package for YALL1 is available at http://www.caam.rice.
edu/~yzhang/YALL1/.

8

One factor that we should pay special attention to is the
stopping criteria used in benchmarking these algorithms. As
we first mentioned in Section I-B, choosing a good stopping
criterion is important to properly exit an iteration when the
estimate becomes close to a local or global optimum. On one
hand, in general, straightforward rules do exist, such as the
relative change of the objective function:

‖F (x(k+1))− F (x(k))‖
‖F (x(k))‖

, (59)

or the relative change of the estimate:

‖x(k+1) − x(k)‖
‖x(k)‖

. (60)

However, their efficacy depends on a proper step size of the
update rule: If the step size is poorly chosen, the algorithm
may terminate prematurely when the solution is still far away
from the optimum. On the other hand, certain special criteria
are more effective to some algorithms than the others. For
example, for PDIPA, it is natural to use the (relative) duality
gap between the primal and dual solutions; for Homotopy, it
is easy to measure the relative change of the sparse support as
the stopping criterion, as in each iteration a certain number of
coefficients will be added or removed from the sparse support
set.

In order to design a fair comparison for the six algorithms,
in this section, we will take advantage of the available
groundtruth sparse signal x0: if the `2-norm difference be-
tween the `1-min estimate x∗ and x0 is smaller than a thresh-
old, the iteration should exit.12 In addition, we set the maximal
iteration for all algorithms equal to 1,000. If an algorithm fails
to converge to the ground truth, it will quit after it reaches the
maximal iteration. All experiments are performed in MATLAB
on a Dell PowerEdge 1900 workstation with dual quad-core
2.66GHz Xeon processors and 8GB of memory.

A. ρ-δ Plot in the Noise-Free Case

The first experiment is designed to measure how accurate
the algorithms recover exact sparse signals in the noise-free
case (P1). A good performance metric is the so-called ρ-δ plot,
where the sparsity rate ρ = k/n ∈ (0, 1] and the sampling rate
δ = d/n ∈ (0, 1]. At each δ, the percentages of successes that
an `1-min algorithm finds the ground-truth solution x0 (with
a very small tolerance threshold) are measured over different
ρ’s. Then a fixed success rate, say of 95%, over all δ’s can be
interpolated as a curve in the ρ-δ plot. In general, the higher
the success rates, the better an algorithm can recover dense
signals in the (P1) problem.

Figure 2 shows the 95% success-rate curves for the six
algorithms. In the simulation, the ambient dimension d = 1000
is fixed. To generate the ground-truth signal, a random subset
of nonzero coefficients is chosen, and their values are drawn
from the standard normal distribution and normalized to have

12Note that the MATLAB Toolbox for YALL1 is copyright protected, which
by default uses (60) as the stopping criterion. Although we were not able to
modify the source code, we have tuned the stopping parameter for the rest of
the algorithms that roughly align with the average accuracy of YALL1, and
then compare the computational complexity after this normalization step.

unit length. The projection matrix A is a Gaussian dictionary,
whose coefficients are randomly generated from the standard
normal distribution. We sample the average success rates on
a grid of (ρ, δ) pairs for each of the `1-min algorithms, and
the coordinates of the 95% rate are interpolated from the grid
values.

Fig. 2. The ρ-δ plot (in color) that shows the 95% success-rate curves for
the six fast `1-min algorithms.

The observations of the experiment are summarized below:
1) On average, OMP achieves the highest success rates.

It shows OMP can be an excellent choice in the ideal
scenario where the data noise is low. However, OMP is
also one of the slowest algorithms, as we will show in
the next experiment.

2) The success rates of SpaRSA and YALL1 are compa-
rable over all sampling rates, and they also outperform
the rest of the algorithms.

3) The success rates of L1LS and Homotopy are compara-
ble over all sampling rates. In particular, their accuracy
approaches that of SpaRSA and YALL1 in the high
sampling-rate regime. In the low sampling-rate regime,
Homotopy is slightly better than L1LS.

4) The success rates of FISTA are only higher than L1LS
and Homotopy in the low sampling-rate regime. They
are the lowest among the six algorithms with the increase
of the sampling rate and the sparsity rate.

B. Performance with Moderate Data Noise

We are more interested in comparing the `1-min algorithms
when the measurement contains moderate amounts of data
noise. In the second experiment, we rank the six algorithms
under two scenarios: First, we measure the performance in the
low-sparsity regime, where the ambient dimension n = 2000
and the sparsity rate ρ = k/n = 0.1 are fixed, and the dimen-
sion of the Gaussian random projection varies d = 300−1900.
Second, we measure the performance when x becomes dense
w.r.t. a fixed sampling rate, where n = 2000 and d = 1500 are
fixed, and the sparsity ratio ρ = k/n varies from 0.1 to 0.5.
The results are shown in Figure 3 and 4. In both experiments,

9

Fig. 3. Comparison of the six fast `1-min algorithms w.r.t. a fixed sparsity ratio (n = 2000, k = 200), and varying projection dimensions d = 300− 1900.
Left: Average run time. Right: Average `2-norm error.

Fig. 4. Comparison of the six fast `1-min algorithms w.r.t. a fixed sampling ratio (n = 2000, d = 1500), and varying sparsity ratio k/n = 0.1− 0.5. Left:
Average run time. Right: Average `2-norm error.

we corrupt the measurement vector b with e, an additive white
noise term whose entries are i.i.d. distributed as N(0, 0.01).

From the results, we draw the following observations. First,
when a low sparsity ratio of ρ = 0.1 is fixed in Figure 3, `1-
min becomes better conditioned as the projection dimension
increase, and all algorithms converge to good approximate
solutions when d > 750 as indicated in Figure 3 Right. We
then compare the speed of the six algorithm in Figure 3 Left:

1) When the projection dimension is small (e.g., d < 750)
as `1-min fails to converge to the global optimum,
FISTA, L1LS and SpaRSA take a much longer time to
exit than Homotopy, OMP, and YALL1.

2) When d > 750, the average run time of L1LS grows
superlinearly with the projection dimension, while the
run time of the rest algorithms largely remains constant.

3) The average run time of YALL1 is one of the lowest
over all projection dimensions, which makes it the best
algorithm in this comparison.

Second, when the projection dimension d = 1500 is fixed
in Figure 4, we compare both the average run time and the
average estimation error when the sparsity varies:

1) The average estimation error of OMP quickly blows up
when the sparsity ratio increases in Figure 4 Right. It
shows that OMP is not stable when the data are noisy.

2) In the high-sparsity regime, The average run time of
OMP, Homotopy, and FISTA is significantly higher than
the other algorithms. It shows that the algorithms are not
as effective when the signal becomes dense.

3) In the low-sparsity regime, L1LS is the slowest algo-
rithm. However, its computational cost only increases
modestly in the high-sparsity regime, and outperforms
other approximate algorithms such as SpaRSA and
FISTA.

4) YALL1 is among the fastest in both the low-sparsity
regime and high-sparsity regime, and its run time re-
mains almost constant while the sparsity ratio increases.
This makes YALL1 the best algorithm in this compari-
son.

IV. EXPERIMENT: ROBUST FACE RECOGNITION

In this section, we benchmark the performance of the six
algorithms in robust face recognition. The experiment is set

10

up to estimate sparse representation of real face images based
on a so-called cross-and-bouquet (CAB) model [42].

More specifically, It has been known in face recognition
that a well-aligned frotal face image b under different lighting
and expression lies close to a special low-dimensional linear
subspace spanned by the training samples from the same
subject, called a face subspace [7], [4]:

Ai = [vi,1,vi,2, · · · ,vi,ni] ∈ Rd×ni , (61)

where vi,j represents the j-th training image from the i-th
subject stacked in the vector form. Given C subjects and a new
test image b (also in the vector form), we seek the sparsest
linear representation of the sample with respect to all training
examples:

b = [A1, A2, · · · , AC][x1; x2; · · · ; xC] = Ax, (62)

where A ∈ Rd×n collects all the training images.
Clearly, if b is a valid test image, it must be associated with

one of the C subjects. Therefore, the corresponding representa-
tion in (62) has a sparse representation x = [· · · ; 0; xi; 0; · · ·]:
on average only a fraction of 1

C coefficients are nonzero, and
the dominant nonzero coefficients in sparse representation x
reveal the true subject class.

In addition, we consider the situation where the query image
b may be severely occluded or corrupted. The problem is
modeled by a corrupted set of linear equations b = Ax + e,
where e ∈ Rd is an unknown vector whose nonzero entries
correspond to the corrupted pixels. In [43], the authors pro-
posed to estimate w

.= [x; e] together as the sparsest solution
to the extended equation:

min ‖w‖1 subject to b = [A, I]w. (63)

The new dictionary [A, I] was dubbed a cross-and-bouquet
model in the following sense. The columns of A are highly
correlated, as the convex hull spanned by all face images
of all subjects occupies an extremely tiny portion of the
ambient space. These vectors are tightly bundled together as
a “bouquet,” whereas the vectors associated with the identity
matrix and its negative ±I form a standard “cross” in Rd, as
shown in Figure 5. Finally, a quite surprising result was shown
in [42] that accurate recover of sparse signals x is possible and
computationally feasible even when the nonzero corruption in
e approaches 100%.

Fig. 5. The cross-and-bouquet model for face recognition. The raw
images of human faces expressed as columns of A are clustered with
very small variance. (Courtesy of John Wright [42])

The performance of the six `1-min algorithms using the
CAB model is benchmarked on the CMU Multi-PIE face
database [23]. A subset of 249 subjects from the data set
(Session 1) are used, each of which is captured in 20 frontal
images under a fixed set of illumination settings. The images
are then manually aligned and cropped, and down-sampled to
40× 30 pixels. Out of the 20 images for each subject, images
{0, 1, 7, 13, 14, 16, 18} with extreme illumination conditions
are chosen as the training images, and the rest 13 images
are designated for testing. Finally, a certain number of image
pixels are randomly corrupted with the corruption percentage
from 0% to 80%, as shown in Figure 6.

Fig. 6. An aligned face image of Subject 1 in Multi-PIE, Session
1, under the ambient lighting condition (No. 0) is shown on the left.
On the right, 20%, 40%, 60% and 80% of image pixels are randomly
selected and corrupted with values ranges in [0, 255], respectively.

We measure the performance of the algorithms in terms
of the final recognition accuracy and the speed. In choosing a
proper stopping criterion, the stopping threshold is individually
tuned for each algorithm to achieve the highest recognition
rate. Our priority is to achieve the highest accuracy in face
recognition (e.g., must exceed 99% accuracy for any real-
world scenarios), and the computational cost is only a sec-
ondary metric. The results are shown in Tables I and II.

TABLE I
AVERAGE RECOGNITION ACCURACY (IN PERCENTAGE) ON THE

MULTI-PIE DATABASE.

Corruption 0% 20% 40% 60% 80%
OMP 99.91 90.41 43.42 11.16 2.10
L1LS 100 100 100 88.49 15.93

Homotopy 100 100 99.55 92.82 34.09
SpaRSA 99.79 99.82 98.8 63.63 9.42
FISTA 100 92.95 61.98 21.46 20.52
YALL1 99.82 90.94 62.03 19.37 2.32

TABLE II
AVERAGE RUN TIME (IN SECOND) ON THE MULTI-PIE DATABASE.

Corruption 0% 20% 40% 60% 80%
OMP 1.99 1.95 1.66 3.33 17.65
L1LS 28.75 27.77 25.08 14.55 8.13

Homotopy 3.56 8.40 15.44 28.23 23.81
SpaRSA 85.89 87.00 100.49 100.05 98.32
FISTA 151.3 17.06 16.47 18.20 3.48
YALL1 2.47 2.62 2.84 2.81 3.00

In Table I, clearly the Homotopy method achieves the best
overall performance in recognition accuracy. For instance, with
60% of the pixels randomly occluded, its recognition rate
based on the CAB model is about 93%. The worst performer
is OMP, which corroborates that OMP does not perform well
in the presence of practical data noise.

Among the three approximate `1-min solutions, namely,
SpaRSA, FISTA, and YALL1, the best performer is SpaRSA.

11

For instance, SpaRSA achieves 99% accuracy with 40% pixels
randomly corrupted, while the accuracy of the rest two algo-
rithms is only around 60%. However, note that the improved
accuracy of SpaRSA carries a heavy penalty that the speed
of SpaRSA is much slower than L1LS and Homotopy. For
YALL1, although its overall speed shown in Table II is the
fastest, its accuracy quickly drops with increase in the number
of corrupted pixels.

Finally, it is more interesting to compare the difference
in accuracy between L1LS and Homotopy, which provably
solve the (P1) problem, and SpaRSA, FISTA, and YALL1,
which essentially rely on the soft thresholding function and
approximation of the gradients of the objective function. In
robust face recognition, we observe that the exact solutions as
a whole significantly outperform the approximate solutions.

V. CONCLUSION AND DISCUSSION

The paper has provided a comprehensive review of the five
state-of-the-art fast `1-min methods, i.e., gradient projection,
homotopy, soft shrinkage-thresholding, proximal gradient, and
alternating direction. The extensive experiment has shown
that, under a wide range of data conditions, there is no clear
winner that always achieves the best performance. For perfect,
noise-free data, on average OMP is more effective than the rest
of the algorithms, albeit at a much lower speed. Under ran-
dom Gaussian dictionaries, approximate `1-min solutions (i.e.,
SpaRSA, FISTA, and YALL1) are efficient to estimate sparse
signals in both low-sparsity and high-sparsity regimes. In the
application of robust face recognition, a special CAB model
was constructed based on real training images representing
a large set of human subjects. Homotopy and L1LS in turn
achieve the highest recognition rate, and their computational
cost is comparable to that of the other fast `1-min algorithms.
To aid peer evalution, all the experimental scripts and data
have been made available on our website.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. John Wright at Mi-
crosoft Research Asia and Zihan Zhou at the University of
Illinois for their valuable comments. Yang also appreciates
the hospitality of the Visual Computing Group at Microsoft
Research Asia during his visit there in 2009.

REFERENCES

[1] M. Asif. Primal dual prusuit: A homotopy based algorithm for the
dantzig selector. M. S. Thesis, Georgia Institute of Technology, 2008.

[2] D. Baron, M. Wakin, M. Duarte, S. Sarvotham, and R. Baraniuk.
Distributed compressed sensing. preprint, 2005.

[3] J. Barzilai and J. Borwein. Two point step size gradient methods. IMA
Journal of Numerical Analysis, 8:141–148, 1988.

[4] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(2):218–233, 2003.

[5] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging
Sciences, 2(1):183–202, 2009.

[6] S. Becker, J. Bobin, and E. Candes. NESTA: a fast and accurate first-
order method for sparse recovery. preprint, 2009.

[7] P. Belhumeur, J. Hespanda, and D. Kriegman. Eigenfaces vs. Fisher-
faces: recognition using class specific linear projection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(7):711–720,
1997.

[8] A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of
systems of equations to sparse modeling of signals and images. (in
press) SIAM Review, 2007.

[9] E. Candès. Compressive sampling. In Proceedings of the International
Congress of Mathematicians, 2006.

[10] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and
Applied Math, 59(8):1207–1223, 2006.

[11] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis
pursuit. SIAM Review, 43(1):129–159, 2001.

[12] P. Combettes and V. Wajs. Signal recovery by proximal forward-
backward splitting. SIAM Multiscale Modeling and Simulation, 4:1168–
1200, 2005.

[13] I. Daubechies, M. Defrise, and C. Mol. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Com-
munications on Pure and Applied Math, 57:1413–1457, 2004.

[14] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approxima-
tions. Journal of Constructive Approximation, 13:57–98, 1997.

[15] D. Donoho. De-noising by soft-thresholding. IEEE Transactions on
Information Theory, 41:613–627, 1995.

[16] D. Donoho. For most large underdetermined systems of linear equations
the minimal `1-norm near solution approximates the sparest solution.
preprint, 2004.

[17] D. Donoho and Y. Tsaig. Fast solution of `1-norm mini-
mization problems when the solution may be sparse. preprint,
http://www.stanford.edu/ tsaig/research.html, 2006.

[18] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. The Annals of Statistics, 32(2):407–499, 2004.

[19] M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for
sparse reconstruction: Application to compressed sensing and other
inverse problems. IEEE Journal of Selected Topics in Signal Processing,
1(4):586–597, 2007.

[20] K. Frisch. The logarithmic potential method of convex programming.
Technical report, University Institute of Economics (Oslo, Norway),
1955.

[21] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite-element approximations. Computers and
Mathematics with Applications, 2:17–40, 1976.

[22] R. Glowinski and A. Marrocco. Sur l’approximation par él’ements finis
d’ordre un, et la r’esolution, par p’enalisation-dualit’e d’une classe de
probl‘emes de dirichlet nonlin’eaires. Revue Francaise d’Automatique,
Informatique, Recherche Opérationnelle, 9(2):41–76, 1975.

[23] R. Gross, I. Mathews, J. Cohn, T. Kanade, and S. Baker. Multi-
pie. In IEEE International Conference on Automatic Face and Gesture
Recognition, 2006.

[24] E. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for
`1-regularized minimization with applications to compressed sensing.
Technical Report CAAM Technical Report TR07-07, Rice University,
Houston, TX, 2007.

[25] D. Hertog, C. Roos, and T. Terlaky. On the classical logarithmic barrier
function method for a class of smooth convex programming problems.
Journal of Optimization Theory and Applications, 73(1):1–25, 1992.

[26] J. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization
algorithms. Springer-Verlag, 1996.

[27] N. Karmarkar. A new polynomial time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984.

[28] C. Kelley. Iterative methods for linear and nonlinear equations. SIAM,
Philadelphia, 1995.

[29] S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-
point method for large-scale `1-regularized least squares. IEEE Journal
of Selected Topics in Signal Processing, 1(4):606–617, 2007.

[30] M. Kojima, N. Megiddo, and S. Mizuno. Theoretical convergence of
large-step primal-dual interior point algorithms for linear programming.
Mathematical Programming, 59:1–21, 1993.

[31] D. Malioutov, M. Cetin, and A. Willsky. Homotopy continuation for
sparse signal representation. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005.

[32] N. Megiddo. Pathways to the optimal set in linear programming.
In Progress in Mathematical Programming: Interior-Point and Related
Methods, pages 131–158, 1989.

[33] R. Monteiro and I. Adler. Interior path following primal-dual algorithms.
Part I: Linear programming. Mathematical Programming, 44:27–41,
1989.

[34] Y. Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–
376, 1983.

[35] Y. Nesterov. Gradient methods for minimizing composite objective
function. ECORE Discussion Paper, 2007.

[36] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York,
2rd edition, 2006.

12

[37] M. Osborne, B. Presnell, and B. Turlach. A new approach to variable
selection in least squares problems. IMA Journal of Numerical Analysis,
20:389–404, 2000.

[38] M. Plumbley. Recovery of sparse representations by polytope faces
pursuit. In Proceedings of International Conference on Independent
Component Analysis and Blind Source Separation, pages 206–213, 2006.

[39] T. Serafini, G. Zanghirati, and L. Zanni. Gradient projection methods
for large quadratic programs and applications in training support vector
machines. Optimization Methods and Software, 20(2–3):353–378, 2004.

[40] R. Tibshirani. Regression shrinkage and selection via the LASSO.
Journal of the Royal Statistical Society B, 58(1):267–288, 1996.

[41] J. Tropp and A. Gilbert. Signal recovery from partial information by
orthogonal matching pursuit. Preprint, 2005.

[42] J. Wright and Y. Ma. Dense error correction via `1-minimization.
(accepted) IEEE Transactions on Information Theory, 2010.

[43] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(2):210 – 227, 2009.

[44] S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction
by separable approximation. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008.

[45] J. Yang and Y. Zhang. Alternating direction algorithms for `1-problems
in compressive sensing. (preprint) arXiv:0912.1185, 2009.

