
Communication-Avoiding QR Decomposition for

GPUs

Michael Anderson
Grey Ballard
James Demmel
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-131

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-131.html

October 8, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Communication-Avoiding QR Decomposition for GPUs

Michael Anderson, Grey Ballard, James Demmel and Kurt Keutzer
UC Berkeley: Department of Electrical Engineering and Computer Science

Berkeley, CA USA
{mjanders,ballard,demmel,keutzer}@cs.berkeley.edu

Abstract—We describe an implementation of the
Communication-Avoiding QR (CAQR) factorization that
runs entirely on a single graphics processor (GPU). We show
that the reduction in memory traffic provided by CAQR allows
us to outperform existing parallel GPU implementations of
QR for a large class of tall-skinny matrices. Other GPU
implementations of QR handle panel factorizations by either
sending the work to a general-purpose processor or using
entirely bandwidth-bound operations, incurring data transfer
overheads. In contrast, our QR is done entirely on the
GPU using compute-bound kernels, meaning performance is
good regardless of the width of the matrix. As a result, we
outperform CULA, a parallel linear algebra library for GPUs,
by up to 13x for tall-skinny matrices.

We also discuss stationary video background subtraction as a
motivating application. We apply a recent statistical approach,
which requires many iterations of computing the singular value
decomposition of a tall-skinny matrix. Using CAQR as a first
step to getting the singular value decomposition, we are able to
get the answer 3x faster than if we use a traditional bandwidth-
bound GPU QR factorization tuned specifically for that matrix
size, and 34x faster than if we use Intel’s Math Kernel Library
(MKL) QR factorization.

Keywords-GPGPU; Linear Algebra; QR Decomposition; Ro-
bust PCA;

I. INTRODUCTION

One of the fundamental problems in linear algebra is the
QR decomposition, in which a matrix A is factored into a
product of two matrices Q and R, where Q is orthogonal
and R is upper triangular. The QR decomposition is most
well known as a method for solving linear least squares
problems. It can additionally be used to find eigenvalues
and eigenvectors of matrices, and is used commonly across
all of dense linear algebra.

In terms of getting good performance, a particularly
challenging case of the QR decomposition is tall-skinny
matrices. These are matrices where the number of rows
is much larger than the number of columns. For example
the ratio of rows to columns can be 3 to 1, 1,000 to 1,
or even 100,000 to 1 in some cases. QR decompositions
of this shape matrix, more than any other, require a large
amount of communication between processors in a parallel
setting. This means that most libraries, when faced with this
problem, employ approaches that are bandwidth-bound and
cannot saturate the floating-point capabilities of processors.

Matrices with these extreme aspect ratios would seem
like a rare case, however they actually occur frequently in
applications of the QR decomposition. The most common
example is linear least squares, which is ubiquitous in nearly
all branches of science and engineering and can be solved
using QR. Least squares matrices may have thousands of
rows representing observations, and only a few tens or
hundreds of columns representing the number of parameters.
Another example is stationary video background subtraction.
This problem can be solved using many QR decompositions
of matrices on the order of 100,000 rows by 100 columns [1].
An even more extreme case of tall-skinny matrices are found
in s-step Krylov methods [2]. These are methods for solving
a linear equation Ax = b by generating an orthogonal
basis for the Krylov sequence {v,Av,A2v, ...Anv} for a
starting vector v. In s-step methods, multiple basis vectors
are generated at once and can be orthogonalized using a QR
factorization. The dimensions of this QR factorization can
be millions of rows by less than ten columns.

These applications demand a high-performance QR rou-
tine. Extracting the foreground from a 10-second surveil-
lance video, for example, requires over a teraflop of compu-
tation [1]. Unfortunately, existing GPU libraries do not pro-
vide good performance for these applications. While several
parallel implementations of QR factorization for GPUs are
currently available [3] [4] [5], they all use generally the same
approach, tuned for large square matrices, and thus have up
to an order of magnitude performace degredation for tall-
skinny problems. The loss in performance is largely due to
the communication demands of the tall-skinny case. We aim
to supplement the existing libraries with a QR solution that
performs well over all matrix sizes.

Communication-Avoiding QR (CAQR) is a recent algo-
rithm for solving QR decomposition which is optimal with
regard to the amount of communication performed [6]. This
means that the algorithm minimizes amount of data that
must be sent between processors in the parallel setting, or
alternatively the amount of data transmitted to and from
global memory. As a result, the CAQR algorithm is a natural
fit for the tall-skinny case where communication is usually
the bottleneck.

In this work we discuss the implementation and perfor-
mance of CAQR for a single graphics processor (GPU). It

is a distinguishing characteristic of our work that the entire
decomposition is performed on the GPU using compute-
bound kernels. Despite their increasing general-purpose ca-
pabilities, it is still a very challenging task to map the
entirety of this particular algorithm to the GPU. In doing
so, however, we are able to leverege the enormous compute
capibility of GPUs while avoiding potentially costly CPU-
GPU transfers in the inner loop of the algorithm. The bene-
fits can most clearly be seen for very skinny matrices where
communication demands are large relative to the amount of
floating-point work. As a result, we can outperform existing
libraries for a large class of tall-skinny matrices. In the more
extreme ratios of rows to columns, such as 110,592 by 100,
we saw speedups of up to 13x over CULA, a popular linear
algebra library parallelized for GPUs. It is important to note
that everything we compare to is parallel. The speedups
we show are a result of using the parallel hardware more
efficiently.

We do not directly use available Basic Linear Algebra
Subroutine (BLAS) libraries as a building block. The al-
gorithm requires many hundreds or thousands of small QR
decompositions and other small BLAS and LAPACK [7]
operations to be performed in parallel. This is not currently
supported in the vendor’s BLAS library [8]. Consequently,
we had to do significant low-level tuning of these very
small operations to achieve sufficient performance. We will
discuss and quantify the effect of specific low-level opti-
mizations that were critical to improving performance. We
also highlight new tradeoffs the GPU introduces, which
differ from previous CAQR work on clusters and multi-core
architectures [9] [10].

Finally, we discuss the application of CAQR to stationary
video background subtraction, which was a motivating ap-
plication for this work. Recent work in statistics has focused
on sparsity, and specifically the use of `1 minimization as a
means of exploiting sparsity to solve certain problems. One
of these problems is stationary video background subtrac-
tion, which can be solved using Robust Principal Component
Analysis (PCA) [1], which in turn uses `1 minimization to
exploit the sparsity present in the foreground of these videos.
In the Robust PCA algorithm, the video is transformed into
a tall-skinny matrix where each column contains all pixels
in a frame, and the number of columns is equal to the
number of frames. In an iterative process, we update the
matrix by taking its singular value decomposition (SVD)
and thresholding its singular values. The SVD can use the
QR decomposition as a first step. We will show our CAQR
implementation gives us a significant runtime improvement
for this problem.

Several implementations CAQR have been done, as well
as Tall-Skinny QR (TSQR), a building block of CAQR
that deals only with extremely tall-skinny matrices. TSQR
has been applied in distributed memory machines [9] [11]
and grid environments [12] where communication is excep-

tionally expensive. However, previous work in large-scale
distrbuted environments focuses on different scales and types
of problems than ours. More recently, CAQR has also been
applied to multi-core machines [10], resulting in speeups
of up to 10x over Intel’s Math Kernel Library (MKL).
Unfortunatley, this code is not available for us to compare
to. Note, however, that implementing CAQR on GPUs is a
much different problem than on multi-core and it is likely
that both will be needed in future libraries and applications.

The paper is organized as follows. In Section I we
survey previous algorithms and implementations of the QR
decomposition. Next we discuss the high-level problem of
mapping CAQR to heterogenous systems in Section III. Sec-
tion IV describes the specifics of our GPU implementation
and tuning process. Section V contains our performance
compared to currently available software. In Section VI we
outline our motivating video processing application and the
performance benefits of using CAQR. Section VII draws
conclusions.

II. BACKGROUND ON QR APPROACHES

There are several algorithms to find the QR decomposition
of a matrix. For example, one can use Cholesky QR, the
Gram-Schmidt process, Givens rotations, or Householder
reflectors [13]. It is well-known however that Cholesky QR
and the Gram-Schmidt process are not as numerically stable,
so most general-purpose software for QR uses either Givens
rotations or Householder reflectors. CAQR is a form of the
Householder approach, where the Householder vectors are
broken up in such a way that communication is minimized.

A. Householder QR

Most existing implementations of QR for GPUs have used
the Householder approach, as does LAPACK. One favorable
property of the Householder algorithm is that it can be
organized in such a way that it makes use of BLAS3 (matrix-
matrix) operations. Specifically, the trailing matrix updates
for several Householder vectors can be delayed and done
all at once using matrix-multiply. This allows for higher
arithmetic intensity on machines with a memory hierarchy.
Higher arithmetic intensity then leads to better performance.
This is called blocked Householder QR, because it allows the
updates to the trailing matrix to be blocked in cache. Several
implementations of the blocked Householder approach for
GPUs are currently available [5] [4], or will soon become
available [14]. These are generally all very fast due to the
heavy use of well-optimized matrix-multiply routines [15]
[3].

Figure 1 shows a sketch of one step in the blocked House-
holder algorithm. Here, a panel of some width less than the
total number of columns is factored using the Householder
algorithm with BLAS2 (matrix-vector) operations. Next, a
triangular matrix T is formed from the inner products of
the columns in the panel. Finally, the trailing submatrix

B
LA

S2 Panel Factorization

BLAS3 Trailing

M
atrix Update

Figure 1: Blocked Householder QR

is updated using a matrix-matrix multiply of the panel’s
Householder vectors, T, and the trailing matrix itself. After
the update, the next panel is factored, and so on.

From Figure 1 we can intuitively understand a short-
coming of the blocked Householder algorithm. For very
wide matrices, a significant portion of the runtime is spent
doing matrix-matrix multiply, which is a very efficient use
of hardware given the available high-performance dense
matrix-multiply routines for GPUs [16]. However, if the
matrix is skinny, a greater portion of the runtime is being
spent in the BLAS2 panel factorization, which is not an
efficent use of the hardware because matrix-vector routines
are generally bandwidth-bound. Clever implementations of
blocked Householder for heterogeneus CPU+GPU envoron-
ments can hide this cost by sending the panel factorization
to the CPU and overlapping it with the previous trailing
matrix update, which is performed on the GPU [3]. While
this greatly improves the performance for wide matrices, it
does not eliminate the latency problem for the skinny case.

B. Tall-Skinny QR (TSQR)

The TSQR algorithm reorganizes the factorization of a
tall-skinny matrix (such as a column panel) to minimize
memory accesses [6]. Instead of computing one Householder
vector for each column directly, we divide the tall-skinny
matrix vertically into small blocks, as shown in Figure 2(a).
Next, we factor each block independently using Householder
reflectors. This creates a small Householder representation
of Q, which we call U, and an upper-triangular R for each
block. This is shown in Figure 2(b). We would like to
eliminate all the Rs below the top-most diagonal, so we can
group sets together in a stack and apply the Householder
algorithm to each (possibly exploiting the sparsity pattern),
which is done in Figure 2(c). We can continue to reduce the
Rs with another level as in Figure 2(d). This leaves us with
our final upper triangular matrix R, and a series of small
Us which, if needed, can be used to generate the explicit
orthogonal matrix Q of the factorization.

(a)! (b)! (c)! (d)!

U1!

U2!

U3!

U4!

R2!

R1!

R3!

R4!

U12!

R12!

U34!

R34!

U1234!

R1234!

Figure 2: Stages of Tall-Skinny QR

The TSQR algorithm exposes parallelism. Each block in
the panel can be processed independently by a different
processor. TSQR also allows us to divide the problem into
chunks with a more managable size. If we choose block
sizes that fit in cache, we can achieve significant bandwidth
savings.

In the figure, the Rs were eliminated in a binary tree.
However, this can be done using any tree shape. The optimal
shape can differ depending on the characteristics of the
architecture. For example, on multi-core machines a binary
tree reduction was used [10], whereas our GPU approach
employs a quad-tree reduction. The motivation behind this
choice will be expanded in Section IV.

C. Communication-Avoiding QR (CAQR)

CAQR is an extension of TSQR for arbitrarily sized
matrices [6]. This time we divide the matrix into a grid
of small blocks. Like blocked Householder, CAQR involves
a panel factorization and a trailing matrix update. The
panel factorization is done using TSQR, shown in Figure
3(a). We must then do the trailing matrix update, which
means applying the QT of the panel to the trailing matrix.
Note that because TSQR works on blocks in the column
panel, the trailing matrix update can begin before the entire
panel is factored. This removes the synchronization in the
standard blocked Householder approach and exposes more
parallelism. Unfortunately, we cannot just use a large matrix-
matrix multiply as we did in blocked Householder. This is
due to the distributed format in which TSQR produces its

(a)! (b)!

(c)!

U1!

U2!

U3!

U4!

U12!

R1234!

U1234!

U34!

U1!

U2!

U3!

U4!

U12!

R1234!

U1234!

U34!

U1!

U2!

U3!

U4!

U12!

R1234!

U1234!

U34!

(d)!

U1!

U2!

U3!

U4!

U12!

R1234!

U1234!

U34!

Figure 3: Communication-Avoiding QR

Q. Instead, we carry out small updates in each small block
of the trailing submatrix.

There are two types of trailing matrix updates: horizontal
updates and tree updates. Horizontal updates are the easier
case. Here we take the Householder vectors generated from
the first stage of TSQR and apply them horizontally across
the matrix, shown in Figure 3(b). This operation is very
uniform, and the update of each block in the trailing matrix is
independent. The more challenging update is the tree update.
Here we take the Householder vectors generated during each
level of TSQR’s tree reduction and apply them across the
matrix. This involves mixing small pieces of the trailing
matrix, as shown in Figure 3(c) and (d). The rows of the
trailing matrix that get updated vary with each level of the
reduction tree. This can be challenging on the GPU because
the accesses to the matrix are more irregular and somewhat
sparse.

After the trailing matrix is updated we can move to the
next panel. We must take care to redraw the grid lower by a
number of rows equal to the panel width, reflecting the fact
that the trailing matrix becomes both shorter and narrower
after each step.

III. MAPPING CAQR TO HETEROGENOUS (CPU+GPU)
SYSTEMS

Here we briefly discuss two different options for mapping
CAQR to current heterogeneous systems. We consider a
heterogeneous system containing one or more multi-core
host CPUs with DRAM, a GPU with DRAM, and a physical
link between the two memories. The GPU has more compute
and bandwidth capability generally than the CPUs, whereas
CPUs generally have a more cache, more ability to exploit
instruction-level parallelism, and are better equipped to
handle irregular computation and data accesses.

The two questions we want to answer with regard to
CAQR are: where we should do each step of the compu-
tation? Where should we store the data?

A. First option: CPU panel factorization and GPU trailing
matrix update

With this approach, the algorithm proceeds as follows.
A thin panel is sent to the CPU, if necessary, and the CPU
factors the panel using TSQR. The result of the factorization
is sent back to the GPU and used for the trailing matrix
update. Potentially, the CPU could begin factoring the next
panel while the GPU is still busy applying the previous panel
to the trailing matrix.

The main advantage of this approach is that offloading
work to the CPU makes it possible to overlap GPU and
CPU work. This allows you to use the entire system. The
TSQR panel factorization can be a good fit for the CPU
because of the irregular nature of the reduction tree. The
trailing matrix update is regular and can be done efficiently
on the GPU.

One disadvantage of this approach is that in order to
offload work to the CPU we must transfer the data between
CPU and GPU memories. On current systems, this involves
latency that can hurt performance for skinny problems.
Unless we successfully overlap CPU and GPU computation,
sending the panel factorization to the CPU means we cannot
use the superior compute and bandwidth capabilities of the
GPU for these parts of the computation.

B. Second Option: Entire factorization the GPU

With this approach, the entire factorization is done on the
GPU. This includes the TSQR panel factorization and the
trailing matrix updates.

Assuming the matrix is entirely in GPU memory, this
approach eliminates transfer latency. This means that we can
get good performance even on skinny problems. We also can
benefit from the higher compute and bandwidth capability
of the GPU for the panel factorizations.

Unfortunately, this approach is much more difficult to
program. This is first because we cannot reuse existing
tuned CPU libraries. Also, certain parts of the QR algorithm
involve more irregular computations and are therefore more
challenging and less efficient to carry out in the GPU’s

programming and execution models. The pseudocode in
Figure 4, described in the next section, illustrates some of
the irregular operations necessary for a GPU-only approach.

In this work we choose the second option, performing the
entire factorization on the GPU, for the following reason.
Our motivating application is Robust PCA for stationary
video background subtraction. The dimensions of the video
matrices we deal with in this application are on the order of
100,000 tall by 100 wide. For this size problem, the latency
of transferring data to the CPU will have high adverse impact
on performance. During the course of the application, we are
doing many QR decompositions and the video matrix is able
to stay on the GPU. So the cost of initially transferring the
video matrix to GPU memory is easily amortized.

IV. GPU IMPLEMENTATION

In this section we describe implementation details of
our QR decomposition for the GPU. We start with an
overview of the hardware, then give a high-level description
of how the computation is organized. This is followed by
an examination of the key individual kernels and low-level
tradeoffs. Everything here is done using single-precision,
which is adequate for our video application.

A. Hardware Overview

Our target is an NVIDIA C2050 GPU, which is the
version of NVIDIA’s recent Fermi architecture intended for
high-performance computing. This choice of architecture is
motivated by GPUs track record for good performance on
high-throughput numerical computing [17] [16]. Though we
use the C2050, our code can be run on any CUDA-capable
GPU.

The 1.15 GHz C2050 has 14 multiprocessors, each of
which has 32 floating-point units capable of executing one
single-precision FLOP per cycle. In total, the chip is capable
of 1.3 single precision TFLOPs.

Tasks are scheduled on the multiprocessors in units called
thread blocks. Each thread block contains up to 512 threads,
which can synchronize and share data among one another
through a small shared memory. Thread blocks, however, are
assumed to be independent and do not generally synchronize
or communicate during a single parallel task. As an example,
in our application each small block QR decomposition is
done by a different thread block. Within the thread block
there are 64 threads that work together to compute the QR.

There is one large global memory (DRAM) shared by
all multiprocessors. The peak bandwidth to and from global
memory for the C2050 with ECC enabled is 144 GB/sec.
There is a small 768 KB L2 cache shared by all multipro-
cessors. Each multiprocessor has access to 48 KB of shared
memory and 16 KB of L1 cache, which can alternatively
be configured as 48 KB of L1 and 16 KB of shared
memory. The register file is the largest and fastest local
memory available to the processing units. It is 128 KB per

Foreach panel!
!Do small QRs in panel
!(factor)

!Foreach level in tree!
! !Do small QRs in tree!
! !(factor_tree)

!Apply QT horizontally!
!across trailing matrix!
!(apply_qt_h)

!Foreach level in tree!
! !Apply QT from the tree
! !across trailing matrix!
! !(apply_qt_tree)

Figure 4: Host pseudocode for CAQR with a binary reduc-
tion tree

multiprocessor, can be accessed in one or two cycles, and
generally provide enough bandwidth to saturate the floating
point units. Registers are not shared. Any time threads need
to communicate, in a parallel reduction for example, either
shared memory or DRAM must be used.

B. Top-Level Pseudocode

Figure 4 shows pseudocode for our CAQR. Each function
represents a GPU kernel, which is a subroutine that is
performed in parallel over different parts of the matrix. Next
to each kernel call there is a graphic of our matrix showing
how it is divided among thread blocks and which portions
of the matrix are being processed by that kernel. So for
example, the TSQR panel factorization is done in the first
two kernel calls to factor. Once that has completed, the trail-
ing matrix is updated using apply qt h and apply qt tree.
This pseudocode is executed on the host CPU. The CPU
coordinates the GPU’s actions and updates pointers so that
GPU thread blocks know where to look in the matrix.

C. Reduction Tree

The shape of our reduction tree is a function of the block
sizes. For example, if the block size is 64× 16, each block
produces an R which fits in an 16× 16 space. When these
Rs are stacked for the next level of the reduction tree, we
can fit 64

16 = 4 of them in each 64 × 16 block. This means
we reduce the height of the panel by a factor of 4 at each
level and the reduction is a quad-tree. The tree reduction

ends when the panel height becomes less than 64, meaning
it can be processed completely in a single thread block. This
leads to an interesting tradeoff between block width and the
depth of the reduction tree, which we explore later.

D. Overview of Kernels

The following four kernels are the building blocks of our
CAQR. The parts of the matrix affected by each kernel is
shown in Figure 4.

1) factor: Perform a QR decomposition of a small block
in fast memory using customized BLAS2 routines. Over-
write the Householder vectors and upper triangular R on
top of the original small input matrix.

2) factor tree: Gather a stack of upper triangular Rs
generated by factor and store them in fast memory. Then
perform a QR decomposition on that small block, as was
done in factor. The shape of the resulting Householder
vectors and R is also a stack of upper triangular matrices,
and thus can be exactly overwrite the Rs that were read in.

3) apply qt h: Apply QT from the Householder vectors
generated in factor horizontally to small blocks across the
trailing matrix. Write back the updated trailing matrix blocks
to the locations from which they were read.

4) apply qt tree: Apply QT from the Householder vec-
tors generated by factor tree during the TSQR reduction
tree to the correct locations in the trailing matrix. To do so,
collect the distributed components of the trailing matrix to
be updated as well as the distributed Householder vectors.
Perform the application of QT , and write back the updated
trailing matrix blocks to the same distributed locations from
which they were read.

Inserting these kernels into the pseudocode in Figure 4
should complete a high-level understanding of our CAQR.

E. Kernel Tuning

Now we examine an individual kernel so as to understand
the specifics of the data layout and thread-level execution.
Fortunately, all four kernels do the same two core compu-
tations: matrix-vector multiply and rank-1 update. We will
analyze only the simplest of these which is apply qt h.

Suppose we have a set of Householder vectors in shared
memory and a small block A to which we’d like to apply the
vectors. This is equivalent to applying QT , represented by
the Householder vectors, i.e. Q =

∏n
i=1(I − τiuiu

T
i); τi =

2
||ui||22

, to the block A. For each Householder vector u we
first compute the matrix-vector product AT ∗u. This is shown
in Figure 5(a). Then we update each element of A with the
scaled outer product of AT ∗ u and u, Figure 5 (b). So the
computation here consists of a reduction sum of each column
of A during the matrix-vector product, and a data-parallel
rank-1 update of A. This is repeated for each Householder
vector.

Two important questions must be answered in our design.
How should we assign threads to computation, and how

A!

ATu!

u! A!

ATu!

u!

(a)! (b)!

Figure 5: Matrix-vector multiply and rank-1 update. These
two operations make up the core computations in each kernel

do we store the matrix in our fast memories such that it
can be accessed most quickly? During the course of tuning
we tried several different approaches. The main difference
between these lies in how the reductions in the matrix-
vector product are carried out. The following is a description
of each approach to the matrix-vector product, with its
corresponding performance for 128× 8 blocks.

1) Shared Memory Parallel Reductions (85 GFLOPS):
The most obvious approach is to store the matrix in the
register file assigning each thread one row. Then reduce each
column one at a time using parallel reductions in shared
memory. This approach is inefficient because many of the
threads sit idle during the consecutive parallel reductions.

2) Register File Serial Reduction (168 GFLOPS): Store
the matrix entirely in the register file. Instead of distributing
the data to each thread by row, distribute it cyclically
among the threads, as shown in Figure 6. Notice that each
thread’s data is located in a single column. This means that
each thread can do a serial reduction over its part of the
matrix and write only the result into shared memory for
parallel reduction. This minimizes traffic in and out of shared
memory, which helps performance.

3) Shared Memory Combined Reduction (244 GFLOPS):
We apply a trick to more efficiently reduce all the columns
of the matrix simultaneously. Since our 128 × 8 matrix is
stored in column major order, we put it into shared memory
in transposed form. Next, we reduce the matrix as though it
were a 128 ∗ 8 = 1024 element vector, stopping when the
reduction reaches 8 elements. These remaining 8 elements
are the same values we would have gotten by independently
summing the columns. The advantage of this approach is that
it gives us near optimal thread utilization for the reduction.

A!

0 1 2
9 10 11

9 10 11 . . .

. . .

3 4 5 6 7

0 1 2 3 4 5 6 7

. . .

Figure 6: In approaches 2 and 4, the matrix is stored in the
register file and distributed among threads in this manner.
All data owned by a thread belongs to the same column.

4) Register File Serial Reduction + Transpose (248
GFLOPS): The register file serial reduction (Approach 2)
can be improved if the block is already stored in transposed
form. Instead of doing a small transpose in each thread
block, this transpose can be done as a preprocessing step.
This is beneficial because these kernels are called many
times on the same block of the matrix. This is not a transpose
of the entire matrix. We only need to transpose each panel
from column major to row major.

F. Tuning Block Width

In the previous section we showed how changing the
data layout and reduction technique could greatly improve
performance. Here we show how choosing the right block
size can give us additional benefit.

Our block size is fundamentally limited by our shared
memory size and/or register file size. We must however de-
cide what the shape of the block should be. The apply qt h
kernel gets better performance when the block width is
wider. This is for several reasons. First, since the number of
FLOPS performed in the Householder algorithm is O(mn2),
we get far higher arithmetic intensity, i.e. FLOPS/byte, by
increasing the width n, than we do by increasing the height
m. Secondly, the wider the block is the more parallelism
there is in each matrix-vector product. If the block width
were equal to the number of threads, for example, then the
matrix-vector product could be done entirely using efficient
serial reductions.

Unfortunately, as we make the block wider we must also
make it shorter in order to maintain the same cache footprint.
As was mentioned earlier, the depth of the reduction tree
is a function of both block width and height. As the ratio
of height to width decreases, more time is being spent in
the reduction tree. Figure 7 shows the performance of the
two QT application kernels, horizontal and tree. The tree
application gets worse performance in terms of FLOPs than

0
50

100
150
200
250
300
350
400

apply_qt_h apply_qt_tree

G
FL

O
PS

/S
ec

.

Kernel

Efficiency of Trailing Matrix Update

Figure 7: The tree reduction runs slower per FLOP. We’d like
to minimize the amount of time spent in the tree reduction.

the horizontal application because it is a more complicated
kernel. It is working on the R matrices that are upper tri-
angular, and it is difficult to take advantage of this structure
completely due to the SIMD nature of the GPU. Also, the
memory reads and writes from this kernel are less regular
because the data is distributed throughout the matrix.

Clearly, we want to minimize the time spent in the
reduction tree because the tree application kernel is less
efficient than the horizontal application kernel. The tuning
process then becomes widening the blocks until the cost of
the reduction tree begins to hurt performance.

Our best overall performance comes from using 64× 16
blocks. For the apply qt h kernel we are able to get 337
GFLOPS. For this block size, 39% of total runtime is spent
in the reduction tree.

G. Tuning Summary

Through our tuning process we were able to improve
the performance of apply qt h, our main kernel, from 85
GFLOPS to 337 GFLOPS using low-level tuning. The main
focus was optimizing the matrix-vector product and rank-1
update that is at the core of the Householder QR algorithm.
The most important tuning optimization was to avoid shared
memory and L1 cache in favor of the register file. Also,
choosing a wide block size was critical in providing enough
arithmetic intensity for good performance.

V. PERFORMANCE

We compare our performance against common commer-
cially available and open source software for both GPU
and multicore. Below we describe the software to which
we compare and the details of the hardware platforms. Our
code is optimized for tall-skinny matrices, so we will focus
mostly on this case. All FLOPs are single precision.

A. Software

1) Intel Math Kernel Library (MKL): MKL contains
BLAS, LAPACK, and various other common functions
tuned specifically for Intel’s processors. In our comparison
we use version 10.2.2.025, and link to the multithreaded
library.

2) CULA: CULA is a library of LAPACK routines for
GPUs [5]. It is a commercial library, made by EM Photonics.
Since CULA source is not available, we do not know exactly
how they implement their QR. However, the performance
of the QR routine across different square matrix sizes is
very similar to the performance of a previous blocked
Householder approach by Volkov et al.[3]. For this reason,
we will not separately report the performance of CULA and
Volkov.

3) BLAS2 QR: We wrote this QR, which is done entirely
on the GPU and is built using BLAS2 routines. The code was
specifically designed and tuned for tall-skinny matrices. For
example, the matrix-vector multiply routine was rewritten
because the SGEMV routine provided by the vendor’s BLAS
library [8] performed very poorly in the tall-skinny case.

B. Hardware

Our test platform is the Dirac GPU cluster at the National
Energy Research Scientific Computing Center (NERSC)
[18]. One node consists of dual-socket Intel 5530 (Nehalem)
processors running at 2.4 GHz connected over PCI-express
to an NVIDIA C2050 (Fermi) GPU. The GPU has ECC
enabled, so its effective bandwidth is reduced to 144 GB/s.

C. Performance vs. Matrix Width

We would like to highlight the tall-skinny case where
our CAQR performs best. Figure 8 shows performance for
single-precision QR factorizations of matrices with a fixed
height of 8192 and varying width. We are considering the
combined operations of Householder QR (SGEQRF) and the
explicit recovery of Q from the Householder representation
(SORGQR). All preprocessing (e.g. transpose) done for
CAQR is included in these runtimes. The initial transfer of
the matrix from the CPU to GPU is not counted for any of
the GPU implementations being compared.

Near the left side of the graph we are dealing with very
skinny matrices. Examples of these types of matrices are
those found in the video processing application or in linear
least squares problems where the number of samples is much
larger than the number of variables. As is shown on the
graph, neither MKL or CULA are able to efficiently factor
these matrices. As we move to the right side of the graph,
our CAQR loses some of its competitive advantage since
other approaches are able to use efficient matrix-multiply
routines for both the GPU and CPU. There is a crossover
point around 3000 columns where CULA becomes more
efficient than our CAQR. This reflects the fact that SGEMM
is faster than our CAQR kernels. We envision combining

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192

G
FL

O
PS

/S
ec

.

Number of Columns

Performance vs. Matrix Width

MKL (8 cores)
BLAS2 (C2050)
CULA 2.1 (C2050)
CAQR (C2050)

Figure 8: Performance on matrices with 8192 rows and
varying numbers of columns. For the tall-skinny case CAQR
performs best

the traditional approach with our CAQR in an autotuning
framework, so that depending on the matrix size a different
algorithm may be chosen.

It is important to mention that the curve produced by
CULA 2.1 is actually not smooth across all matrix sizes.
The SGEMM used by CULA runs much more slowly at
certain dimensions, likely when the matrix is not a multiple
of the underlying block size. The points we’ve chosen for
this graph, however, are all powers of two and the CULA
library seems to handle these sizes relatively well.

D. Very Skinny Matrices

In the case of extremely tall-skinny matrices we see an
order of magnitude speedup, such as those found in our
video processing application. Figure 9 gives two examples
of extremely tall-skinny matrices where we get significant
speedups. Another application where matrices like these ap-
pear is communication-avoiding linear solvers, when vectors
must be orthoganalized periodically [2].

E. GTX480 vs. C2050

The C2050 is a realization of NVIDIA’s recent Fermi
architecture. The same design, however, is also sold as a
graphics chip. Variations in modern fabrication processes
lead to chips with different speeds and different numbers
of working cores. The GTX480 has 15 working multi-
processors and is clocked at 1.4 GHz, where the C2050 only
has 14 multiprocessors running at 1.15 GHz. The 480 also
disables ECC, resulting in a superior 177 GB/s in memory
bandwidth. As we show in Figure 10, this results in roughly
20% better performance for our CAQR code.

9.023
3.695

8.908
1.53

115.7

19.5

0

20

40

60

80

100

120

140

Video Matrix (110,592x100) (1m x 10)

G
FL

O
PS

/S
ec

.

Performance for Very Tall-Skinny Matrices

MKL (8 cores)
CULA (C2050)
CAQR (C2050)

13x

5x

Figure 9: CAQR can be better by an order of magnitude
when the matrices are extremely tall and skinny

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192

G
FL

O
PS

/S
ec

Number of Columns

Performance of GTX480 vs. C2050

CAQR (C2050)
CAQR (480)

Figure 10: There is a roughly 20% benefit from using the
GTX480 instead of the C2050

VI. APPLICATION: ROBUST PCA FOR SURVELLIANCE
VIDEO BACKGROUND SUBTRACTION

The motivating application for this work is stationary
video background subtraction using a recent statistical al-
gorithm for Robust Principal Component Analysis (PCA)
[1]. This section will present specifics of the application,
how it uses the QR decomposition, and the performance of
the application using ours and other QR implementations.

A. `1 Minimization and Robust PCA

Recent work in statistics has focused on sparsity, and
specifically the use of `1 minimization as a means of
exploiting sparsity to solve certain problems [19]. In these
problems, a convex minimization is formulated where there
is a penalty term equal to the `1 norm of a vector. This can
be useful when the underlying data has a certain sparsity
that can be assumed.

Figure 11: Sample output of Robust PCA for stationary
video background subtraction

Principal Component Analysis is a widely used method
for data analysis. The goal is to find the best low rank
approximation of a given matrix, as judged by minimization
of the difference between the original matrix and the low
rank approximation. However, the classical method is not
robust to large sparse errors. In Robust PCA, a matrix M is
decomposed as the sum of a low rank component L0 and a
sparse component S0. S0 is allowed to be large, as long as
it is sparse.

M = L0 + S0

An application of Robust PCA is stationary video back-
ground subtraction. A survellience video is transformed into
a tall-skinny matrix where each column contains all pixels in
a frame, and the number of columns is equal to the number
of frames. The low-rank component of this matrix is the
background and the sparse component is the people walking
in the foreground. To give a better idea of the problem being
solved, Figure 11 shows a sample of the output of the Robust
PCA code.

B. SVD using QR

The main computation in Robust PCA is a singular value
decomposition (SVD) of the tall-skinny video matrix. In the
SVD of the video matrix, the top singular values, those that
have a strong presence of every frame of the video, are
usually associated with the background.

Instead of trying to do a large SVD on the GPU, we use
the following well known technique for tall-skinny matrices
to reduce the bulk of the work to a QR decomposition. First
A is decomposed into Q ∗R. Then we find the SVD of R,
which is cheap because R is an n× n matrix and done on
the CPU using MKL. Next, we can multiply the orthogonal
matrices Q ∗ U to get the left singular vectors of A.

A = Q ∗R
= Q ∗

(
U ∗ Σ ∗ V T

)
= (Q ∗ U) ∗ Σ ∗ V T

= U ′ ∗ Σ ∗ V T

Q

U ! VT * **
!"

Threshold these singular values

Figure 12: Flowchart of the alternating-directions algorithm
for solving Robust PCA

C. Robust PCA Algorithm

The algorithm for Robust PCA tries to minimize the rank
of L0 and enforce sparsity on S0. It does so with an iterative
alternating-directions method [20]. The pseudocode for the
algorithm is shown in Figure 12. The algorithm thresholds
(sets to zero) the smallest singular values of L0 in order
to make it low rank. Next, a shrinkage operation (pushing
the values of the matrix towards zero) is done on S0 to
enforce sparsity. The vast majority of the runtime is spent
in the singular value threshold, specifically the SVD of the
L0 matrix.

D. Performance using CAQR

We have three different versions of Robust PCA for video
background subtraction. The first uses entirely a CPU (Intel
Core i7 2.6 GHz), and relies on multithreaded MKL for the
QR decomposition as well as other basic BLAS routines.
The second is done entirely on the GPU (GTX480) and
uses our BLAS2 QR decomposition that was specifically
designed and tuned for tall-skinny matrices. Finally, there is
a version which is also entirely on the GPU and uses our
CAQR.

Our benchmark video comes from the ViSOR surveillance
video database [21]. We extract 100 frames for processing.
Each frame is 288 pixels tall by 384 pixels wide, which is
a total of 110,592 pixels per frame. This means the matrix
dimensions are 110,592 by 100. The problem technically
takes over 500 iterations to converge, however the solution

begins to look good earlier than that. The quality of
solution, and therefore number of iterations required, seems
to depend on the application. We therefore report the
number of iterations per second that each implementation
is able to complete. All computation is done in single
precision.

QR type Number of Iterations/Sec.
MKL (4 cores) 0.8

BLAS2 (GTX480) 9.3
CAQR (GTX480) 27.5

Table I: Performance of various Robust PCA implementa-
tions

Table I shows moving from the CPU-only code to our
BLAS2 GPU code results in an 11x speedup. This mostly
reflects the fact that the GPU has much higher bandwidth
than our CPU. However, we see an additional speedup of
about 3x when using CAQR as compared to the BLAS2
QR. Even though the QR itself is sped up by much more
than a factor of 3, we only get 3x in the application overall
due to Ahmdal’s law. Overall our GPU solution gives us
a 34x speedup over the original CPU code using MKL,
reducing the time to solve the problem completely from over
ten minutes to 17 seconds, making this approach feasible for
latency-critical applications.

VII. CONCLUSION

In this paper we described a high-performance imple-
mentation of Communication-Avoiding QR Decomposition
entirely on a single GPU using compute-bound kernels. The
main advantage of our approach over the traditional blocked
Householder algorithm is that it can handle tall-skinny
matrices without relying on bandwidth-bound BLAS2 panel
factorizations or potentially high-latency GPU-CPU trans-
fers.

We showed low-level implementation choices that allowed
us to achieve good performance on the GPU. The best
performance for our kernels came from using the register
file as much as possible and arranging the data in transposed
form so as to minimize necessary communication between
threads. Our tuning improved the performance of the most
heavily-used kernel from 85 GFLOPS to 337 GFLOPS.

Our CAQR code outperformed leading parallel CPU and
GPU libraries for tall-skinny matrices up to roughly 3000
columns wide and 8192 rows tall. In more extreme ratios of
rows to columns, such as 110,592 by 100, we saw speedups
of up to 13x over the CULA linear algebra library for GPUs.
Note that these extreme cases were motivated by practical
applications.

Finally, we applied the CAQR code to Robust PCA for
stationary video background subtraction. We showed that

using CAQR we could achieve a 3x speedup over our best
BLAS2 QR tuned specifically for the tall-skinny case, and
a 34x speedup over MKL.

REFERENCES

[1] E. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal
component analysis,” preprint, 2009.

[2] J. Demmel and M. Hoemmen, “Communication-avoiding
Krylov subspace methods,” tech. rep., University of California
Berkeley, Department of Electrical Engineering and Computer
Science, in preparation, Tech. Rep.

[3] V. Volkov and J. Demmel, “LU, QR and Cholesky factoriza-
tions using vector capabilities of GPUs,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2008-49, May, pp. 2008–49, 2008.

[4] A. Kerr, D. Campbell, and M. Richards, “QR decomposition
on GPUs,” in Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units. ACM,
2009, pp. 71–78.

[5] J. Humphrey, D. Price, K. Spagnoli, A. Paolini, and
E. Kelmelis, “CULA: hybrid GPU accelerated linear algebra
routines (Proceedings Paper),” 2010.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and LU
factorizations,” LAPACK Working Note #204.

[7] E. Anderson, Z. Bai, and C. Bischof, LAPACK Users’ guide.
Society for Industrial Mathematics, 1999.

[8] C. NVIDIA, “CUBLAS Library,” NVIDIA Corporation, Santa
Clara, California, 2008.

[9] J. Demmel, L. Grigori, and M. Hoemmen, “Implementing
communication-optimal parallel and sequential qr
factorizations,” Arxiv preprint arXiv: . . . , Jan 2008. [Online].
Available: http://arxiv.org/pdf/0809.2407

[10] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Enhancing
parallelism of tile qr factorization for multicore architectures,”
Matrix. [Online]. Available: http://citeseerx.ist.psu.edu/

[11] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, “An overview of the trilinos project,” ACM Trans.
Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[12] E. Agullo, C. Coti, J. Dongarra, and T. Herault, “Qr
factorization of tall and skinny matrices in a grid computing
environment,” 24th IEEE International . . . , Jan 2010.
[Online]. Available: http://arxiv.org/pdf/0912.2572

[13] J. Demmel et al., Applied numerical linear algebra. Society
for Industrial and Applied Mathematics, Philadelphia, 1997.

[14] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical
linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” in Journal of Physics: Conference Series,
vol. 180. IOP Publishing, 2009, p. 012037.

[15] G. Quintana-Ortı́, F. Igual, E. Quintana-Ortı́, and R. van de
Geijn, “Solving dense linear systems on platforms with mul-
tiple hardware accelerators,” ACM SIGPLAN Notices, vol. 44,
no. 4, pp. 121–130, 2009.

[16] V. Volkov and J. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 2008, pp. 1–11.

[17] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures,” in High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. Interna-
tional Conference for. IEEE, 2009, pp. 1–12.

[18] NERSC, “Experimental gpu cluster: Dirac,”
http://www.nersc.gov/nusers/systems/dirac/.

[19] D. Donoho and M. Elad, “Maximal sparsity representation
via l1 minimization,” Proc. Nat. Aca. Sci, vol. 100, no. 5, pp.
2197–2202, 2003.

[20] X. Yuan and J. Yang, “Sparse and low-rank matrix decompo-
sition via alternating direction methods,” preprint, 2009.

[21] R. Vezzani and R. Cucchiara, “ViSOR: Video surveillance
on-line repository for annotation retrieval,” in Multimedia and
Expo, 2008 IEEE International Conference on. IEEE, 2008,
pp. 1281–1284.

