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A Methodology for Understanding MapReduce
Performance Under Diverse Workloads

ABSTRACT
MapReduce is a popular, but still insufficiently understood
paradigm for large-scale, distributed, data-intensive compu-
tation. The variety of MapReduce applications and deploy-
ment environments makes it difficult to model MapReduce
performance and generalize design improvements. In this
paper, we present a methodology to understand performance
tradeoffs for MapReduce workloads. Using production work-
load traces from Facebook and Yahoo, we develop an empir-
ical workload model and use it to generate and replay syn-
thetic workloads. We demonstrate how to use this methodol-
ogy to answer “what-if” questions pertaining to system size,
data intensity and hardware/software configuration.

1. INTRODUCTION
The MapReduce programming paradigm is becoming in-
creasingly popular for parallelizing large-scale data process-
ing for many applications, including web search, financial
modeling, facial recognition, and data analytics [7]. Due to
its popularity, much recent work seeks to extend the func-
tionality of MapReduce or optimize its performance [20, 4,
19, 2, 9, 15, 11]. However, the diversity of MapReduce ap-
plications makes it difficult to develop performance improve-
ments that are portable across different use cases. Optimiza-
tions for one environment may not be relevant for another.
What is needed is a systematic way to evaluate whether the
proposed improvements are specific to a particular workload
on a given configuration, or more generally applicable.

In this paper, we propose a general performance measure-
ment methodology for MapReduce that is workload indepen-
dent. Figure 1 provides a graphical summary of our method-
ology. First, we collect traces from a production cluster, and
extract an empirical description of workload features. Then,
we generate synthetic workloads that capture representative
behavior. We replay these synthetic workloads on small scale
test clusters and measure the resulting performance. Finally,
based on these measurements, we decide whether we can de-
ploy the proposed improvements on a larger system config-

uration. Our key contributions are: (1) the identification
of the performance-relevant workload features, (2) the de-
velopment of an algorithm to generate synthetic workloads
that scale up in data size and execution time, and (3) an ex-
trapolation procedure that translates observed performance
on a small scale test system to performance on a larger scale
production system.

This methodology allows us to explore various “what-if”
questions. For example, MapReduce developers can mea-
sure the performance improvements of tuning the cluster
configurations, upgrading the cluster hardware, increasing
the cluster size, or porting the cluster to newer versions of
the MapReduce software. Likewise, MapReduce develop-
ers can anticipate the performance implications of workload
changes, such as projected growth in job number and data
size, or the multiplexing of different workloads on the same
cluster. We can further assess the generality of proposed
MapReduce optimizations by running different workloads
using the improved system.

Developing such a methodology is difficult. Even if we have
access to production clusters and workloads, the relevant
workload features are not obvious. If we wrongly include
some deployment specific characteristics as features, such as
misconfigurations that lead to pathologically long running
times, we may replicate system defects across our experi-
ments. Also, it is not obvious how to scale the workload in
size and in time, or how to replay the workload when the
exact production data and production code is changing or
unavailable. Without good knowledge about workload fea-
tures, synthesis methods, and replay mechanisms, we would
not know which subset of observed behavior is generalizeable
across systems or across workloads.

Fortunately, MapReduce has a well-defined processing pat-
tern. The input consists of key-value pairs, each passing
through a map function, which generates intermediate key-
value pairs. Each intermediate pair then passes through a
reduce function, which outputs the final key-value pairs.

The map and reduce functions execute in parallel across the
MapReduce cluster, with each node operating on a partition
of the input and intermediate data. The intermediate data
is often generated at one node but consumed at another,
requiring a data shuffle across the network. We draw inspi-
ration from past successes of developing a similar workload-
independent measurement methodologies for Internet traffic
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Figure 1: Workload model-synthesis-replay pipeline.

[13] and dynamic web content [16, 17, 3], two application
domains with similarly well-defined processing patterns.

The roadmap for the rest of the paper is as follows. In Sec-
tion 2, we compare two production MapReduce traces, one
from Facebook, another from Yahoo. This analysis allows
us to understand key workload features, such as data sizes
and ratios, job arrival intensities and sequences, and the ac-
tual map and reduce functions. These workload features
provide a logical description of “what processing is being
done.” We then outline our workload synthesis and replay
methodology in Section 3. We identify and evaluate ways
of scaling different workload dimensions, e.g., cluster size,
hardware, data size, or workload duration. We further in-
vestigate the effects of replaying the same workload across
different deployments when the desired production cluster,
data, or code is unavailable. These experiements allow us to
identify how to translate performance measurements across
different MapReduce deployments and to evaluate what we
lose by scaling or excluding specific features.

We further demonstrate how to apply this methodology for
an example use case, in which the operator of a large scale
MapReduce cluster measures the performance improvement
of running the same workload on newer MapReduce versions
(Section 4). The workload-level methodology leads to sur-
prising performance metrics, such as job failure rate (we had
assumed that all jobs would finish). We also observe un-
expected results from some MapReduce schedulers, which
perform far more effectively than previously reported [19].

Lastly, we discuss some related work on MapReduce per-
formance optimizations (Section 5). Most of this work mea-
sures performance either using micro-benchmarks or through
deployments on production clusters. We identify some ways
that a workload-level methodology could yield new insights
for these studies.

We hope the readers take away an understanding of why
workload-level measurement methodology is necessary, what
such a methodology involves, and how to implement and
apply this methodology for their particular workloads.

2. WORKLOAD FEATURES
The goal of this section is to identify key workload features.
We accomplish this goal by analyzing two traces from pro-
duction MapReduce clusters at Facebook (FB) and Yahoo
(YH). The FB trace comes from a 600-machine cluster, spans
6 months from May 2009 to October 2009, and contains
roughly 1 million jobs. The YH trace comes from a cluster
of approximately 2000 machines, covers three weeks in late
February 2009 and early March 2009, and contains around
30,000 jobs. Both traces contain job sequences and hashed
job names, job submission and completion times, data sizes
for the input, shuffle and output stages, and the running
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Figure 2: Workload data statistics.

time of map and reduce functions.

We begin by comparing features that describe MapReduce
data characteristics (Section 2.1). These characteristics dif-
fer greatly between workloads, and thus should be parame-
terized for each workload. We then examine the time vary-
ing pattern of job arrival rates and data intensities (Section
2.2). Even within the same workload, there is high peak-to-
average ratio for these dimensions, requiring empirical mod-
els to capture such behavior. We further identify common
jobs within each workload (Section 2.3). Both workloads
contain many small jobs and few large jobs. However, the
large jobs represent vastly different computations. Hence,
our workload model should also capture the right propor-
tion of different job types, and for each job type, the right
dependency between various data dimensions. At the end of
the section, we combine our key insights into an empirical
workload model (Section 2.4), which forms the input to our
synthetic workload generator.

2.1 Data characteristics
The MapReduce processing patterns operate on key-value
pairs at input, shuffle (intermediate), and output stages.
Hence, our first instinct is to compare data characteristics
across FB and YH traces. Figure 2 shows aggregate data
sizes and data ratios for each trace.

The input, shuffle, and output data sizes range from KBs
to TBs. Within the same trace, the data size at differ-
ent MapReduce stages follows vastly different distributions.
Across the FB and YH traces, the same MapReduce stage
has different distributions. We can thus surmise that the two
MapReduce systems were performing very different compu-
tations on very different data sets. Additionally, many jobs
in the FB trace have no shuffle stage - the map outputs
are directly written to HDFS. Consequently the CDF of the
shuffle data sizes have a high density at 0.
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The data ratio between the output/input, shuffle/input, and
output/shuffle stages also span several orders of magnitude,
offering further evidence that the two MapReduce systems
were performing very different types of work. Interestingly,
there is very little density around 1 for the FB trace, indicat-
ing that most jobs are data expansions (ratio >> 1) or data
compressions (ratio << 1). The YH trace shows relatively
more data transformations (ratio ≈ 1).

Implications for workload model: Data sizes at each of
the input-shuffle-output stages need to be represented as a
workload parameter. We further need to capture the appro-
priate data ratio between the different stages. The statisti-
cal distribution for each data size and data ratio is different
across workloads, suggesting that we either fit a different an-
alytical distribution for each workload, or parameterize the
model using the empirical distributions.

2.2 Time varying characteristics
In addition to data characteristics, it is also important to
look at job arrival patterns and data intensities, since they
indicate “how much work” there is within a workload. We
focus on the FB trace only for this analysis, because it offers
insights over a longer time period.

Figure 3 shows weekly aggregates of job counts and the sum
of input, shuffle, and output data sizes over the entire trace.
There is no evident long term growth trend in the number of
jobs or the sum of data size. Also, there is high variation in
the sum data size but not in the number of jobs. We also see
a discrete jump in the number of jobs in Week 11, which our
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Facebook collaborators clarified was due to a reorganization
in cluster operations.

Figure 4 shows hourly aggregates of job counts and sum data
sizes over a randomly selected week. We do not aggregate
at scales below an hour as many jobs complete in tens of
minutes to several hours. There is extremely high variation
in both the number of jobs and the sum data size.

Also, the number of jobs show some diurnal patterns, peak-
ing at mid-day and dropping at mid-night. We performed
Fourier analysis on the hourly job counts to detect the ex-
istence of cycles in FB’s job arrival rate. There are visible
but weak signals at the 12 hour, daily, and weekly frequen-
cies, mixed in with a high amount of noise. The YH trace
is not long enough to enable similar analysis. Thus, we can-
not conclude whether these diurnal patterns are generally
applicable beyond the FB trace.

We also investigated whether a simple generative process
could fit the job arrival patterns. We randomly sample the
distribution of job inter-arrival times, computed over the en-
tire trace, and generate a week-long job sequence. Figure 5
compares the hourly aggregate of this sequence with an em-
pirical sequence. Clearly, this simple process cannot capture
the full range of peak to average behavior.

Implications for workload model: Our workload pa-
rameter set must include time varying job arrival rate and
data intensity. We need to capture any diurnal patterns,
or at least the correct proportion of high, medium, and low
activity periods. A simple random sampling of job arrival
rates cannot capture peak to average behavior, suggesting
that any synthetic workload generation processes need to be
parameterized using the empirical job and data arrival rates.

2.3 Common jobs
Thus far, we have examined data characteristics (how large
is each piece of work) and temporal characteristics (how
much work there is at any point in time). A description
of the MapReduce processing pattern also needs to capture
what the work actually is. Our goal in this section is to in-
vestigate whether we can capture “most of the work done”
using a small set of “common jobs”, and if yes, characterize
these jobs. We use k-means, a well-known data clustering al-
gorithm, to extract such information. We input each job as
a data point to k-means, trust the algorithm to find natural
clusters, and expect that jobs in a cluster can be described
as belonging to a single equivalence class and thus be repre-
sented by a single “common job”.
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Figure 6: Cluster quality - residual sum of squared dis-

tances as the number of clusters increase. The marker

indicates the cluster number used for labeling.

Given data points in an n-dimensional space, k-means ran-
domly picks k points as initial cluster centers, assigns data
points to their nearest cluster centers, and recomputes new
cluster centers via arithmetic means across points in the
cluster. K-means iterates the assignment-recompute process
until the cluster centers become stationary [1].

The data points are 6-dimensional. Each dimension presents
a descriptive characteristic in the original trace - a job’s in-
put, shuffle, output data sizes in bytes, its running time in
seconds, and its map and reduce time in task-seconds (i.e.,
2 parallel map tasks of 10 seconds each is 20 task-seconds).
We use Euclidean distance, and linearly normalize all data
dimensions to a range between 0 and 1. For each k, we
take the best result from 100 random initializations of clus-
ter centers. We pick 100 because we want enough random
initializations to cover all 6 data dimensions. Because 100 >
26, each of the 6 data dimensions would have been initialized
with at least one “high” and one “low” value. We could have
used even more random initializations, but for our data sets,
we see only marginal improvements.

We increment k until the cluster quality shows diminishing
return. We use the “variance explained” clustering quality
metric, computed by the total variance in all data points
minus the residual within-cluster variance. This metric is
useful as it ranges between 0 and 1 when expressed as a
fraction of total variance, with 1 being the ideal value.

Figure 6 shows the fraction of variance explained as we in-
crement the number of clusters. Even at small k, we start
seeing diminishing returns. We believe a good place to stop
is k = 10 for the FB trace, and k = 8 for the YH trace,
indicated by the markers in Figure 6. At these points, the
clustering structure explains 70% (FB) and 80% (YH) of the
total variance, suggesting that a small set of “common jobs”
can indeed cover a large range of behavior.

We can identify the characteristics of these common jobs
by looking at the numerical values of the cluster centers.
Table 2 shows the cluster size and our manaully applied
labels. We defer to Appendix A a more detailed table of
the numerical cluster center values and why we selected the
cluster labels. We see from Table 2 that both traces have
a large cluster of small jobs, and several small clusters of
various large jobs. Small jobs dominate the total number of
jobs, while large jobs dominate all other dimensions. Thus,

Table 1: Cluster sizes and labels for FB (top) and YH

(below). See Appendix A for the numeric values of the

cluster centers, and an explanation of how we assigned

the cluster labels.

# Jobs Label

1081918 Small jobs
37038 Load data, fast
2070 Load data, slow
602 Load data, large
180 Load data, huge

6035 Aggregate, fast
379 Aggregate and expand
159 Expand and aggregate
793 Data transform
19 Data summary

21981 Small jobs
838 Aggregate, fast
91 Expand and aggregate
7 Transform and expand

35 Data summary
5 Data summary, large

1303 Data transform
2 Data transform, large

for performance metrics that place equal weights on all jobs,
the small jobs should be an optimization priority. However,
large jobs should be the priority for performance metrics
that weigh each job according to its “size” either in data,
running time, or map and reduce task time.

We also see that the FB and YH workloads contain different
job types. Small jobs are common. However, the FB trace
contains many data loading jobs, characterized by large out-
put data size >> input data size, with minimal shuffle data.
The YH trace does not contain this job type. Both traces
contain some mixture of jobs performing data aggregation
(input > output), expansion (input < output), transforma-
tion (input ≈ output), and summary (input >> output),
with each job type in varying proportions.

Implications for workload model: A small group of
“common jobs” can cover a majority of variance in job char-
acteristics within a workload. A good workload model must
capture the characteristics and proportions of these jobs.
We can run a data clustering algorithm to identify the em-
pirical proportions and multi-dimensional characteristics of
each job type in a particular workload,

2.4 An empirical workload model
Combining the insights from previous subsections, we be-
lieve the following is a good workload model. The model
consists of cluster traces that contain a list of jobs, their
submission times, a description of their input data set, and
a description of the map and reduce functions of each job.
This model has several noteworthy properties.

Completely empirical model: The cluster trace is the
model. This is a very simplistic approach. It avoids the dif-
ficulties of fitting different analytical distributions for data
characteristic of different workloads (Section 2.1), or param-
eterizing analytical job arrival models with empirically ob-
served arrival rates (Section 2.2). If the traces cover diurnal
cycles (Section 2.2), then the model automatically captures



the diurnal patterns. The model also caputures the correct
mix of job types, and for each job type, the input data prop-
erties and properties of the map and reduce functions (Sec-
tion 2.3). The model relies on good monitoring capabilities
to obtain traces of representative behavior, and workload
synthesis tools that can operate on purely empirical models.
We assume the former, and describe the latter in the next
section of the paper.

Can utilize partial information: Even if we have access
to production data and code, it would be difficult to get
accurate “descriptions of input data set” and “descriptions
of map and reduce functions”, because both could contin-
uously change. Thus, we must make do with lists of jobs
with their corresponding job type, proxy data set, and proxy
map/reduce functions for each job type. Sometimes, we have
even less information, and our monitoring system records
only the data size at the input, shuffle, and output stages.
We are then compelled to use generic test data, and proxy
map/reduce functions that preserve the data ratios but per-
form no other computation. Since our model is completely
empirical, having partial information only means that less
information is passed into the workload synthesis and replay
stages. We show later in the paper that using proxy data
sets and map/reduce functions can alter performance behav-
ior considerably, but a careful interpretation of the workload
replay results would still yield useful insights.

Independent of system characteristics and behavior:
Our model specifies the workload without invoking descrip-
tions of system characteristics or behavior. This approach
gives us system-independent workloads that allow MapRe-
duce developers to optimize hardware, configurations, sched-
ulers, and other features using different workloads. Our
model also leaves as potential optimization targets all be-
havior characteristics, such as running time, CPU consump-
tion, or data locality. If we include system characteristics in
the workload description, we would restrict the workload to
only systems with identical characteristics. We also believe
that system behavior should not be a part of the workload
description at all - running time, CPU consumption, data
locality etc. would change from system to system. A work-
load model that describes system behavior would need to be
recalibrated upon any change in the input data, map/reduce
function code, or the underlying hardware/software system.

This empirical model of traces of jobs, submission times,
proxy data set, and proxy map/reduce functions forms the
input to our synthetic workload generator, described next.

3. WORKLOAD SYNTHESIS AND REPLAY
The goal of this section is to present our synthesis and re-
play pipeline and identify what can be reproduced when we
replay a synthetic workload.

We will first provide a brief overview of our goals for mod-
eling, synthesizing and replaying workload (Section 3.1).
Next we describe the synthesis and replay pipeline (Sec-
tion 3.2). We use this pipeline to create synthetic equiva-
lents of a known workload (the Gridmix2 microbenchmark),
and replay the synthetic workload in different environments.
We explore how performance changes as we selectively vary
workload dimensions, such as data size, proxy data sets, and
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Figure 7: Workload model and replay goals - to drive
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have performance improvements across test systems

translate back to corresponding production systems.

proxy map/reduce functions. We also vary system parame-
ters such as hardware, cluster size, and MapReduce versions.
These experiments provide an understanding of what behav-
ior can be reproduced when using synthetic workloads in-
stead of real workload, how much we gain by having map and
reduce source code and/or original data, and how to trans-
late observed behavior on one system configuration/workload
to other configurations/workloads. (Section 3.3).

3.1 Goals of workload modeling
The goal of modeling, synthesizing, and replaying workload
is to quantify how changes to the production environment
or workload affect performance. Figure 7 summarizes a
common situation. We have a production system P , which
runs some workload, and we need to know how performance
changes in a modified production system P ′ which will run
the same workload. However, building P ′ directly represents
an expensive commitment with no guaranteed performance
improvements. We build test systems T and T ′, with the
same modifications, drive them with the same workload, and
observe any performance differences. Ideally, the workload
and the test system are constructed in a way such that the
performance differences between T and T ′ will be preserved
between P and P ′.

3.2 Model-synthesis-replay pipeline
We use the model-synthesis-replay pipeline in Figure 1. As
described in Section 2, we use a completely empirical model,
in which the system traces are the model. The traces should
contain at least a list of jobs, their submit times, some de-
scription of the data set, and some description of the map
and reduce functions.

We input these traces and a desirable synthetic workload
length L into a synthetic workload generator. We take sam-
ples of the trace, each sample covering a continuous time
window of W . The contatenation of L/W = N samples
creates our synthetic workload. The synthetic workload is
also a list of jobs, their submit times, some description of
the data set, and some description of the map and reduce
functions. We emphasize that this list is generated a-priori
and not while the synthetic workload runs in real time. We
replay this workload by submiting the list of jobs at their
corresponding submit times, operating on their correspond-
ing data set, performing the corresponding map and reduce
functions. It is feasible to read in the job list and submit
jobs in real time because the job launch rate is at most one
job every few seconds or so (Figure 4). We measure sys-
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tem performance during the synthetic workload replay, then
decide whether the deployment/workload changes are ap-
propriate for the production cluster. We elaborate several
subtle considerations below.

The choice of L and W involve some tradeoffs. We want
a short L to faciliate a rapid design-measurement-redesign
cycle. We also want a large W to capture job sequences and
bursts. However, when L is fixed, large W means small N
and few samples, and consequently less representative be-
havior in the synthetic workload. Fortunately, the deviation
from “representative behavior” is statistically bounded, as
we demonstrate below.

We use F (x) to denote the statistical distribution of some
job characteristic, e.g. one of the CDFs in Figure 2. F (x)
is the “representative” system behavior. We use FN (x) to
denote the same distribution computed over our synthetic
workload of N samples, i.e., the “sampled” system behavior.
As N increases towards infinity, FN (x) converges to F (x).
However, for finite N , the variance in FN (x) is

FN (x) =
F (x)(1− F (x))

N

As N increases, the confidence interval around FN (x) con-

verges at O(1/
√

(N)) [18]. Thus, if we increase N four times
by decreasing W four times, we will halve the deviation of
sampled behavior FN (x) from representative behavior F (x).
We empirically verified these bounds. Figure 8 shows 10 re-
peated samples of FN (x) for consecutive four-fold increases
in N . The maximum and minimum FN (x) converges to F (x)
very quickly. For brevity, Figure 8 shows only the conver-
gence for two CDFs. However, we verified the same behavior
for other dimensions as well.

In reality, it may be logistically infeasible to reproduce all
the map and reduce functions, as well as the input data
set, even for organizations that operate their own produc-
tion clusters. Ideally, there would be enough information
to identify common data types and common jobs. Based
on such information, we can construct proxy data sets and

proxy map and reduce functions for each job type, e.g. a
load function, an aggregate function, etc. running on natu-
ral text, image files, web indices, etc. Often, we lack even
that level of visibility if we only use Hadoop’s built-in trac-
ing tools. We can resort to using random bytes as input
data, and using data-ratio preserving pipes as proxy map
and reduce functions. We show later that for IO intensive
jobs, data-ratio preserving proxy functions approximate task
running times reasonably well.

3.3 Replay known workload
We describe several experiments to quantify how our work-
load modeling, synthesis and replay methodology reproduces
behavior across changes to the underlying MapReduce sys-
tem or the workload. We replay a known workload across
changes in workload data size, cluster hardware, MapRe-
duce version, and proxy functions for map and reduce. Our
“known workload” is Gridmix 2, a microbenchmark included
with recent Hadoop distributions. See Appendix B for a list
of jobs in Gridmix 2. For our following discussion, we ob-
serve overall patterns across different jobs.

Reference system: For a comparison baseline, we run
Gridmix 2 on a local 20-machine cluster testbed, Local-
cluster-A. The machines are 3GHz dual-core Intel Xeons,
with 2GB memory and 1Gbps network connection. Gridmix
2 repeats different jobs for a different number of times. We
take the arithmetic average of the repeats. We run Gridmix
2 using Hadoop 0.20.2 under default configurations.

Cluster and data scaling: We study the impact of halv-
ing the size of the cluster and the data. This experiment
preserves the data intensity per machine, essentially creat-
ing the same “workload” at a different scale. We expect that
as we scale the cluster and data sizes, the map and reduce
times scale by the same factor. Figure 9 compares the replay
and reference map and reduce times in task-seconds (2 tasks
of 10 seconds each is 20 task seconds). The horizontal axis
represents map/reduce time on the reference system, and
the vertical axis represents the corresponding map/reduce
time for the replay. Different markers represent different job
types in Gridmix 2. The top diagonal represents the 1-to-1
diagonal. The lower diagonal represents the 2-to-1 diagonal,
i.e., replay takes half as long. We expect the markers to lie
on the lower, 2-to-1 diagonal. This expectation holds true
for map times. However, reduce times mostly fall between
the 1-to-1 diagonal and 2-to-1 diagonal. Reduce time did
not scale down with data size because Gridmix 2 configures
reduce task counts for a larger, 2TB input data set. This
results in a tiny amount of data assigned per reduce task,
with reduce time dominated by launch and completion over-
head. Key observation: Under good configurations,
map and reduce times should scale with data size,
i.e., half the data requires half the work.

Different hardware: We run the half-data-size Gridmix 2
workload in a second local cluster (Local-cluster-B). These
machines are 2.2GHz quad-core Opterons, with 4GB mem-
ory and 1Gbps network. We expect that the map and reduce
times will scale with data size with no distortion. Figure 10
shows the replay results. All markers fall on the 2-to-1 di-
agonal - map and reduce times scale with data size. Key
observation: If there are no hardware bottlenecks,
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Figure 9: Map time (left) and reduce time (right) com-

parisons for replaying Gridmix 2 with halved cluster and

data size. Different markers represent different job types

in Gridmix 2.
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Figure 10: Map time (left) and reduce time (right) com-

parisons for replaying Gridmix 2 with halved cluster and

data size and on different hardware. Different markers

represent different job types in Gridmix 2.

map and reduce times should scale with data size.

Different Hadoop version: We now change the Hadoop
version. We run the half-data-size Gridmix 2 on Local-
cluster-B with Hadoop 0.18.2, an earlier Hadoop version.
Hadoop 0.20.2 in the reference system has many improve-
ments, bug fixes, and new features. Figure 11 shows the
replay results. Interestingly, for map times, all markers are
below the 2-to-1 diagonal. Changes from Hadoop 0.18.2 to
Hadoop 0.20.2 actually increased map times for jobs in Grid-
mix 2 under default configurations. One possible reason is
that the new features create additional overhead. Key ob-
servation: New Hadoop versions may not improve
performance for all workloads and all deployments.

Proxy map and reduce functions: Lastly, we quantify
the effects of using “proxy” map and reduce functions that
use random bytes for input, preserve data ratios, but per-
forming no additional computation. These proxy functions
are necessary when we do not have enough information from
workload traces to develop representative functions for each
common job type. Gridmix 2 uses similar load generators.
We wrote our own data sampler and pipes to see the ef-
fects of running a different piece of code for performing sim-
ilar computations on the same data set. These experiments
use Hadoop 0.18.2 on Local-cluster-B. We expect that the
general performance trend/ordering with respect to per-job
map and reduce times is preserved. Figure 12 shows the
replay results. The markers are no longer on a tight di-
agonal line, but in a loose, roughly diagonal region. For
some job types, the markers for three different job sizes do
not even form an diagonally increasing line. The statistical
correspondance is much more loose, but still present. Key
observation: Even without access to the production
code and data, we can replay some workloads using
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Figure 11: Map time (left) and reduce time (right) com-

parisons for replaying half-data-size Gridmix 2 with a

new Hadoop version. Different markers represent differ-

ent job types in Gridmix 2.
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Figure 12: Map time (left) and reduce time (right)

comparisons for replaying half-data-size Gridmix 2 us-

ing proxy map and reduce functions that only pipe the

data according to specified data ratios. Different mark-

ers represent different job types in Gridmix 2.

proxy map and reduce functions and perserve the
overall performance ordering, i.e. longer jobs still
take longer overall.

3.4 Summary of replay effectiveness
Our replay experiments in Section 3.3 represent a system-
atic way to explore MapReduce performance across various
dimensions of workload and system characteristics. If we
take the reference system to be a “production system”, then
we see incrementally larger performance differences as we
abstract away data size and cluster scale, hardware, soft-
ware, and “production” code. However, even when we use
proxy map and reduce functions, the performance ordering
between jobs is still roughly preserved. The underlying as-
sumption is that the various systems are all replaying the
same Gridmix 2 “workload”.

We believe that workload replay should not try to repro-
duce the exact resource utilization, running time, and other
system behavior. Section 3.3 demonstrated that exact repli-
cation is difficult when we change system characteristics and
use proxy map/reduce functions and data sets. Moreover,
many proposed MapReduce improvements seek to optimize
system behavior. Fortunately, the methodology in Figure
7 does not require exact behavior replication. It requires
only that the workload replay preserve the ordering of per-
formance metrics computed across all jobs in the workload.
Ideally, we would also preserve the approximate magnitude
of performance differences. In the next section, we investi-
gate whether both these properties are achievable using a
synthetic workload based on the FB trace.

4. WORKLOAD-LEVEL MEASUREMENT



In this section, we apply the model-synthesis-replay method-
ology to an example use case. The goal is to demonstrate
that the methodology leads to surprising insights, and to
provide a reference point to extend the method to other
workloads and use cases. We describe the example use case,
which involves operators of large scale EC2 MapReduce clus-
ters quantifying performance improvements for a“Facebook-
like” workload (Section 4.1). We describe the workload, the
systems measured, and the performance metrics. We then
present the performance measurements (Section 4.2). We
show that system behavior and performance ordering trans-
late across test and production clusters, i.e., the system set-
ting that performs better on the test cluster also performs
better on the production cluster. Two surprises are 1. job
failure rate is an important metric, 2. MapReduce sched-
ulers have a bigger than expected impact. Finally, we de-
scribe how MapReduce developers can extend the method-
ology to their own workloads and use cases (Section 4.3).
We give concrete examples of how to answer “what-if” ques-
tions regarding the choice of hardware and configurations,
or changes in the workload scale and composition.

4.1 Use case description
We are operators of a large scale EC2 cluster running a
“Facebook-like”MapReduce workload. We are running Hadoop
0.18.2 with default configurations on a cluster of 200 m1.large
instances. We want to find out what would be the perfor-
mance improvement if we upgrade to Hadoop 0.20.2 with
tuned, non-default configurations. We do not want to do a
fork-lift upgrade of the large cluster until we are sure that
there are significant performance improvements. We have
financial resources to do short-term performance testing on
a small scale cluster, but not enough resources to do test-
ing on a mirror large scale cluster, nor conduct long-term
measurements and comparisons.

This use case captures common performance testing chal-
lenges for MapReduce cluster operators. Successfully ad-
dressing the use case requires exercising all aspects of our
MapReduce workload performance methodology. Below are
some more details of the use case.

4.1.1 “Facebook-like” workload
Our workload model is the FB trace from Section 2. This
trace describes only the data sizes at each input, shuffle,
and output stages. We do not have access to the orig-
inal map/reduce functions or the production data set at
Facebook. Hence our “Facebook-like” workload operates
on input data of random bytes, using data ratio preserving
proxy map/reduce functions. We emphasize this synthetic
workload is not a Facebook workload - essential information
about map/reduce functions and the input production data
set is missing. It is a “Facebook-like” workload that has the
same job submission sequences, arrival intensities, data size,
and data patterns as the original Facebook workload. In our
use case, our large scale EC2 cluster runs the“Facebook-like”
workload.

To make sure the workload fits on a small scale test cluster,
we scale the data size by the scaling factor of cluster size.
As explained in Section 3.2, this scaling preserves the work-
load compute intensity - a fraction of the workers (cluster
size) is doing the corresponding fraction of work (data size).

Similarly, the continuous time-window sampling method al-
lows us to capture representative workload properties with
short synthetic workloads and statistically bounded devia-
tions. We want rapid experimentation. Thus, we produce
a day-long synthetic workload using hour-long continuous
samples of the workload trace.

4.1.2 Production and test systems
We follow the performance comparison illustrated in Fig-
ure 7. The production system P runs Hadoop 0.18.2 with
default configurations on 200 m1.large EC2 instances. The
test system T has identical characteristics, except the clus-
ter size is decreased to 10 instances. Each EC2 instance has
7.5GB memory, equivalent CPU capacity of 4×1.0-1.2GHz
Opteron processors, and “High” IO performance.

We want to know the performance of production system
P ′ that runs Hadoop 0.20.2, also on 200 m1.large EC2 in-
stances. However, the Hadoop configurations would be tuned.
Appendix C lists the tuned configuration values, and the
reasons for changing them from the default. Our small scale
test cluster T ′ has identical characteristics, except the clus-
ter size is decreased to 10 instances.

We know from Hadoop change logs that there have been
many improvements and new features going from Hadoop
0.18.2 to Hadoop 0.20.2. Our measurement results show that
the most important change for our “Facebook-like” work-
load is the switch from the FIFO scheduler that assigns all
available cluster resources to jobs in FIFO order, to the fair
scheduler that seeks to give each active job a concurrent fair
share of the cluster resources.

4.1.3 Performance metrics
We use three performance metrics. The first metric is an
efficiency metric - the map times and reduce times summed
across all jobs. The less task-time the same workload takes,
the more work can fit onto the same cluster.

The second metric is a latency metric - the per-job running
time, computed from job submission to job finish. This met-
ric represents the wait time for MapReduce results. The la-
tency metric is more complicated than the efficiency metric.
We may be willing to sacrifice an increase in average latency
for a decrease in worst-case latency. These trade-offs are es-
pecially relevant since the “Facebook-like” workload has a
few very large jobs mixed in with many small jobs. A la-
tency increase from, say, 20 to 30 seconds may be tolerable
in exchange for latency decrease elsewhere from 3 hours to
2 hours.

It turns out that a third metric takes complete precedence
- the percentage of failed jobs. We had assumed that all
system settings can complete all jobs. However, the FIFO
scheduler in Hadoop 0.18.2 led to many small jobs after large
jobs failing, while the fair scheduler in Hadoop 0.20.2 allowed
the same jobs to complete. While we were not surprised that
the fair scheduler was superior, we were very surprised that
the job failure rate metric was so essential.

4.2 Measurement results
We can visually verify that the observed performance differ-
ences on test clusters T and T ′ translate to production clus-



Figure 13: Map time and reduce time comparisons be-

tween test clusters T vs. T ′ (bottom), and between pro-

duction clusters P vs. P ′ (top). In each column, the

similar shapes and locations of the darkest bins show

that the performance differences between test clusters

translates to production clusters. See the beginning of

Section 4.2 for detailed discussion.

ters P and P ′. Figure 13 shows the map and reduce time
comparisons between test clusters T vs. T ′, and production
clusters P vs. P ′. Each graph compares the map/reduce
time in Hadoop 0.18.2 (horizontal axis) vs. Hadoop 0.20.2
(vertical axis). The graphs show log10 values in hexgonal
bins, with darker colors meaning more data points in the
bin. We also include the reference 1-to-1 diagonal. Dark
bins below the diagonal indicates a performance improve-
ment for many jobs going from Hadoop 0.18.2 to 0.20.2. If
performance differences translate from test to production
clusters, then graphs in each column should show similar
shape of distribution for all bins, with roughly matching lo-
cations for the densest bins. This is indeed the case. In the
left column comparing map times, both the top and bot-
tom graphs show all bins group around the diagonal, with
the densest bins also located around the diagonal. In the
right column comparing reduce times, both top and bottom
graphs also show all bins group around the diagonal, with
the densest bins located below the diagonal.

Figure 13 gives qualitative indication that observed behavior
translates. We outline below a more rigorous, quantitative
comparison of the job failure, efficiency, and latency metrics.

4.2.1 Job failure and efficiency
The job failure comparison was striking. On test cluster
T running Hadoop 0.18.2, 5.5% of jobs did not complete,
while only 0.1% of jobs failed on test cluster T ′ running
Hadoop 0.20.2. This ordering is preserved on production
clusters, with 8.4% of jobs failing on production cluster P
and 0.7% of jobs failing on production cluster P ′. While
we were not surprised that the ordering of failure rates is

preserved, we find it striking that using Hadoop 0.20.2 cuts
the failure rate by an order of magnitude. More detailed
examination allowed us to identify a failure mode explained
by the difference between the FIFO and fair scheduler.

The vast difference in job failure rates complicates a more
rigorous comparison of efficiency and latency. First, we can
meaningfully compare only those jobs that successfully com-
pleted in both T and T ′, or P and P ′. Second, more subtly,
job failures in fact lighten the load on the cluster. When
a job fails, the remainder of the work for that job is re-
moved from the workload and no longer loads the cluster.
Thus, successful jobs running immediately after job failures
would see lighter than expected cluster load. However, if the
all jobs had run to completion, then all jobs would see the
same cluster load. The precise performance ordering would
depend on the balance of better schedulers that improve effi-
ciency and latency, bad schedulers that “improve” efficiency
and latency by “removing” jobs from the workload through
job failures, and other differences between the two system
settings under comparison.

We include here the efficiency comparisons for jobs that are
successful in both Hadoop 0.18.2 and 0.20.2, with an empha-
sis that the comparison is less reliable for the reasons listed
above. Upgrading from Hadoop 0.18.2 on T to 0.20.2 on T ′

sees an average of 24% improvement in map times and 22%
improvement in reduce times. The corresponding upgrade
from P to P ′ sees an average of 3% improvement in map
time and 31% improvement in reduce time.

We take a more detailed look at the effect of the fair sched-
uler below.

4.2.2 Impact of schedulers
Briefly, MapReduce task schedulers work as follows. Each
job breaks down into many map and reduce tasks, operating
on a partition of the input, shuffle, and output data. These
tasks execute in parallel on different worker machines on the
cluster. Each machine has a fixed number of task slots, by
default 2 map tasks and 2 reduce tasks per machine. The
task scheduler sits on the Hadoop master, which receives job
submission requests and coordinates the worker machines.
The FIFO scheduler assigns all available task slots to jobs
in FIFO order, while the fair schedule seeks to give each
active job a concurrent fair share of the task slots. The
biggest performance difference occurs when the job stream
contains many small jobs following a big job. Under FIFO,
the big job would take up all the task slots, with the small
jobs enqueued until the big job completes. Under the fair
scheduler, the big and small jobs would share the task slots
equally, with the big jobs taking longer, but small jobs being
able to run immediately.

Figure 14 shows three illustrative job sequences and their
run times under FIFO and fair schedulers.

In the top graph, several bursts of large jobs cause many
jobs to fail for the FIFO scheduler, while the fair sched-
uler operates unaffected. Under FIFO, subsequent arrivals
of small jobs steadily lengthens the job queue. There are
several failure modes, and we have not yet pin-pointed the
cause of every one. In one common failure mode, jobs fail
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Figure 14: Three illustrative job sequences for com-

paring the FIFO scheduler (solid markers) and the fair

scheduler (hollow markers), showing job failures in the

FIFO scheduler (top), unnecessarily long latency in the

FIFO scheduler (middle), and slight latency increase for

small jobs in Hadoop 0.20.2 (bottom).

because the the entire cluster runs out of disk space. The
disk holds the working set of shuffle data of all active jobs.
Having a large job queue can increase this working set con-
siderably, with earlier jobs in the reduce phase operating on
old shuffle data, but subsequent jobs writing additional shuf-
fle data using free map slots. Full disks across the cluster
cause jobs to fail despite re-submission and recovery mech-
anisms, until enough jobs have failed to cause intermediate
data to be cleared and disk space to be freed.

Using very large disks can avoid this failure (the disks in
the experiment are already 400GB). However, switching to
the fair scheduler considerably lowers the disk space require-
ments, since all jobs have an equal chance to finish, allowing
the working set of completed jobs to be reclaimed. How-
ever, even for the fair scheduler, we still observe the failure
mode, just much more rarely. This illustates that running
the synthetic workload can test the correct system sizing un-
der realistic job sequences and data intensities, as we have
identified a disk space limitation here.

The top graph also shows that successful jobs see lighter
than expected cluster load when submitted immediately af-
ter strings of job failures. The running times for Jobs 4650
onwards all show that jobs using the FIFO scheduler com-
pleted faster. The reason is that preceding job failures re-
moved otherwise still active cluster loads! When the fail-
ure rates differ so greatly, we believe the failure rate metric
should take precedence over efficiency and latency metrics.

The middle graph shows the precise job arrival pattern that
the fair scheduler was designed to optimize. Several very big
jobs arrive in succession (the high markers around Job 4820
and another just beyond Job 4845). Each arrival brings a
large jump in the FIFO scheduler finishing time of subse-
quent jobs. This is again due to FIFO head-of-queue block-
ing. New jobs continue to lengthen the queue before old
jobs can drain. Once the head-of-queue large job completes,

all subsequent small jobs complete in rapid succession, lead-
ing to the horizontal row of markers. The fair scheduler,
in contrast, shows small jobs with unaffected running times,
sometimes orders of magnitude faster than their FIFO coun-
terpart. Such improvements is in agreement with the best-
case improvement reported in the original fair scheduler pa-
per [19], but far higher than the average improvement re-
ported there.

The lower graph shows the finishing time of small jobs dur-
ing times of low load (note the different vertical axis). In this
context, Hadoop 0.20.2 is slower than Hadoop 0.18.2, unsur-
prising given the many added features since 0.18.2. The fair
scheduler brings little benefit in these settings. However, in
this workload, low load periods occur more frequently than
high load periods, meaning that the vast improvements dur-
ing high load may averaged out into performance penalties.

Based on these observations, we decide for the use case that
we should upgrade to Hadoop 0.20.2. We further recom-
mend that the fair scheduler should be the default scheduler
for workloads with similar patterns of small jobs mixed with
large jobs. The order-of-magnitude latency benefit for all
jobs during load peaks far outweights latency increases of a
few tens of seconds for small jobs during common periods of
light load.

The original fair scheduler paper [19] could not perform this
analysis because the micro-benchmarks used there do not
sufficiently capture job arrival sequences. In contrast, our
continuous time-window trace sampling method does.

4.3 Extension to other use cases
Given our observations on a “Facebook-like” workload, it is
not surprising that the fair scheduler was initially developed
at Facebook [19]. Facebook and other MapReduce opera-
tors can employ the same methodology for other workloads.
They can generate synthetic test workloads based on their
own production traces, collected using built-in Hadoop trac-
ing tools. If necessary, MapReduce operators can perform
k-means clustering to identify common jobs. Access to pro-
duction code and production data set will facilitate better
proxy map/reduce functions and test data sets. MapRe-
duce operators can run these synthetic workloads on small
scale test systems, quickly identify any system sizing issues,
while doing performance comparisons under system changes
and optimizations. If the test systems show a significant
performance improvement, it may not guarantee the same
performance improvement on the production system, but it
will at least provide good reason to make capital and time
investment in testing with larger scale systems.

Furthermore, a straight forward extension of the methodol-
ogy would be to keep the system fixed, but scale up the work-
load by increasing the job intensity or data size for different
job types within the workload, or add new job types to the
workload. Such performance measurements allow MapRe-
duce operators to rapidly explore “what if” scenarios un-
der projected workload growth, or consolidation of multiple
workloads on a single cluster. Such capabilities provide in-
valuable assistance for cluster capacity planning and similar
activities.



Many MapReduce operators already do similar performance
measurements. Our contribution is the formulation of the
empirical model components, the systematic way to identify
common jobs and data types, the workload generation meth-
ods that create scalable, system-independent workloads, a
workload-level performance measurement and interpretation
method, and the broader conceptual framework that facili-
tates performance comparisons across different MapReduce
deployments and use cases.

5. RELATED WORK
5.1 MapReduce improvements
We have already done extensive comparisons with the Hadoop
fair scheduler [19]. We discussed in detail the significance
of using a workload-oriented measurement approach. In
our opinion, the evaluation method in the fair scheduler
work represents the closest approximation to a workload-
level performance evaluation. The authors did make an
effort to identify common jobs within a production trace,
and generated job sequences by sampling empirical CDFs
of job inter-arrival times and per-job task numbers. How-
ever, the authors used memoryless Poisson sampling of inter-
arrival times. While correctly capturing the overall distri-
bution, memoryless sampling fails to capture realistic work-
load bursts (Figure 5), nor realistic sequences of small jobs
behind big jobs (Figure 14), the exact job arrival pattern
that benefits most from the fair scheduler. Another ma-
jor shortcoming is using several microbenchmarks as proxy
map/reduce functions that may not match the data ratios in
the production trace. Further, there is no method to scale
down the workload, implying costly, large scale development
and testing experiments on EC2.

In Mantri [4], the authors evaluated their mechanisms on a
production Bing cluster for several months. The work brings
immediate and demonstratable improvement on production
systems. However, as explained in the paper introduction,
we also need small scale, rapid experiments isolated from
the production cluster, requiring smaller capital and time
investment, but with methodology robust enough that im-
provements on the test cluster is likely to translate to the
production cluster. Likewise, we need a general workload de-
scription framework so that we can understand which subset
of the observed improvements are limited to the particular
production cluster and workload, and which improvements
are more generalizable.

Recent work on energy proportional MapReduce clusters
proposed an “all-in strategy” that shuts down the cluster
when there are no active jobs, but leave the cluster fully
active otherwise [9]. Figure 4 suggests that energy propor-
tionality is indeed highly desirable, since the peak-to-average
ratios are quite high in all workload dimensions. However, a
simple calculation from average running times and average
job inter-arrival times suggest that the cluster will always
have several active jobs. In other words, the “all-in strategy”
would almost never shut down the cluster. The workload in-
sights suggest the need for more sophisticated mechanisms
to achieve cluster energy proprotionality.

There is also work on progress indicators for MapReduce
jobs [11]. The key idea is to estimate progress based on
subsets of key-value pairs that have already gone through

the MapReduce pipeline, either from a partially completed,
ongoing execution, or from already completed debug runs on
data sub-samples. This approach is effective for a workload
dominated by large jobs, a use case specifically targeted by
the authors. However, on workloads dominated by small
jobs, such as the FB and YH workloads, the small jobs may
be already complete by the time we have enough information
for a progress estimate. Thus, we either declare that small
jobs do not need progress indicators, or we need progress
estimate mechanisms targeted at small jobs.

Other works on MapReduce that use only a microbench-
marks suite (e.g., [2, 15]) can benefit similarly from workload-
level insights. Existing microbenchmarks such as Gridmix,
PigMix [14], and the Hive Benchmark [8] contain only a
handful of jobs. Our workload comparison earlier shows that
unless parameterized with the right empirical data size and
job proportions, a handful of jobs captures only a subset of
workload behavior.

5.2 General workload characterization
Our view on the distinction between workload and behavior
characteristics contrasts with the position in a recent work
that look at Google cluster workloads [10]. There, the au-
thors specifically want to build workload descriptions that
include behavior characteristics such as CPU and memory.
The approach is fine given that the authors have access to
production data and code. However, without such knowl-
edge, outside readers would have a hard time replicating
similar workloads - “high CPU” or “low memory” means
very little once the workload runs on different hardware,
software, data set, and functionally equivalent code. Even
within Google, behavior-based workload descriptions need
to be re-calibrated every time the system changes.

Another recent workload characterization effort is the Yahoo
Cloud Serving Benchmark [5]. The focus there is character-
izing the activity of database-like systems at the read/write
level. The main differences with our work include the choice
of several analytical distributions to describe data record se-
lection - the user still needs traces of his own workload to
decide which (or none) of distribution is appropriate. The
benchmark also has read/write ratios that need to be simi-
larly configured per workload. Additionally, the benchmark
runs the workloads with the same intensity over time, thus
capturing average behavior but not the sequence of busy and
idle periods.

Our workload modeling approach has much in common with
the approaches in Internet measurement and simulation lit-
erature. We focus on workload characteristics that are in-
dependent of system characteristics and system behavior.
In the Internet simulation literature, this approach gives
“source models” that describe the end points and data size of
any communication patterns. The contrasting approach is
“packet models” that describe how the data is actually sent.
The debate settled firmly in favor of source models [13],
because packet models capture system behavior that need
to be recalibrated across different systems, the same reason
that we exclude system and behavior characteristics from
our models. Additionally, the earliest traffic models are em-
pirical, like our MapReduce models here, with analytical
models being gradually developed as researchers gain more



insight into different Internet workloads [12, 6].

Dynamic web content benchmarks also focus on workload
characteristics independent of system characteristics and be-
havior [3, 17, 16]. There, the benchmarks describe web
workloads in terms of user sessions, web objects, request
and transaction patterns, database size, attributes, and rela-
tionships, and the like. More importantly, these benchmarks
specify a suite of common application workloads, including
banking, e-commerce, auction site, bulletin board, support,
and others. A MapReduce benchmark comparable to TPC-
W and SPECweb in scope and coverage would be a great
catalyst for innovations.

6. SUMMARY AND CONCLUSIONS
The contributions of our work are multi-fold - (1) an em-
pirical model for characterizing MapReduce workloads, (2)
algorithms to generate short, scalable, and representative
synthetic workloads, and (3) replay mechanisms that enable
performance comparisons across various system and work-
load changes. The key take-aways for our readers are sum-
marized below:

Why is workload-level measurement methodology
necessary? MapReduce workload can differ greatly in many
dimensions (Section 2). Without per-workload performance
measurements, we cannot confidently quantify the perfor-
mance impacts of proposed system changes (Section 4).

What does such a methodology involve? Tracing a
production workload using several characteristics (Section
2.4), generating short synthetic workloads that captures rep-
resentative behavior (Section 3.2), and replaying the work-
load on small scale test clusters before trying the same work-
load at large scale (Section 4).

How can MapReduce developers implement and ap-
ply this methodology for a particular workload? Trace
a production workload and record at least job submission
times, and per-job data size for input, shuffle, and output.
If possible, also record job names, so that developers can
identify “common jobs” in the workload (Section 2.3), and
construct proxy data sets and map/reduce functions for each
job type. Synthetic workload replay should replicate, on the
test cluster, as many characteristics of the production cluster
as appropriate or feasible, except for the system/workload
change being tested and the behavior characteristics being
optimized. Improved performance on the test cluster is likely
to translate to the production cluster, even though the ex-
act magnitude of the improvement may not translate. The
workload-level methodology provides information to justify
capital and time investment in testing on a large scale cluster
(Section 4).

As MapReduce applications and deployment environments
continue to diversify, workload and system specific perfor-
mance improvements become more difficult to generalize.
Our contributions with regard to trace samples, scaled work-
loads, proxy functions and test data sets are a step towards
a TPC-W or SPECweb style MapReduce workload suite,
and can serve as both a generic and a application-specific
MapReduce benchmark. Furthermore, our methology allows
operators to publish MapReduce traces while protecting pro-

prietary information about the specific map and reduce com-
putations performed. We hope our analysis of two produc-
tion workloads inspires other production environments to
share traces and insights about their systems, including and
beyond MapReduce.
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APPENDIX
A. LABELS FOR COMMON JOBS
The numerical values for cluster centers are in Table 2. We rep-
resent cluster centers using medians instead of arithmetic means
because the data in each dimension is very long-tailed. For such
data, the median represents a “center” measurement that is more
robust against data outliers. The cluster labels, and reasons for
labeling, are as below.

FB trace:

• Small jobs: Small values for all dimensions.
• Load data, fast: Input << output, no shuffle, short dura-

tion.
• Load data, slow: Input << output, no shuffle, long duration.

• Load data, large: Small input, no shuffle, very large output.

• Load data, huge: Small input, no shuffle, huge output.
• Aggregate, fast: Input >> shuffle >> output, short dura-

tion.
• Aggregate and expand: Input >> shuffle << output.

• Expand and aggregate: Input << shuffle >> output.

• Data transform: Input ≈ shuffle ≈ output.
• Data summary: Huge input, very small output.

YH trace:

• Small jobs: Small values for all dimensions.

• Aggregate, fast: Input >> shuffle, shuffle >> output, short
duration.

• Expand and aggregate: Input << shuffle >> output.

• Transform and expand: Input ≈ shuffle << output.
• Data summary: Huge input, very small output.

• Data summary, large: Even bigger input, very small output.

• Data transform: Input ≈ shuffle ≈ output.
• Data transform, large: Input ≈ shuffle ≈ output, big data.

B. GRIDMIX JOBS
Table 3 list the jobs in Gridmix 2 with a brief description and the
input-shuffle-output data ratios for each job.

Table 3: Jobs in Gridmix 2, showing input-shuffle-
output (I-S-O) ratios.

Job name I-S-O ratio
Three-stages job, output of one 1.00-0.10-0.04, then
job is input to the next job 1.00-1.00-0.77, then

1.00-1.16-1.06
Web data sort with variable 1.00-1.00-1.00
sized keys and values.
Reference select, i.e. scan and 1.00-0.002-0.0001
select from a large data set
Text sort, using java, pipe, 1.00-1.00-1.00
and streaming APIs
Combiner/wordcount. Data dependent.
Added to Gridmix2. Small shuffle/output

C. TUNED CONFIG. FOR HADOOP 0.20.2
We list the non-default configuration values, and why we changed
them.

• mapred.jobtracker.taskScheduler: Default FIFO, changed to
fair scheduler to do performance comparison between the
two schedulers.

• mapred.job.tracker.handler.count: Default 10, changed to
20 to accomodate large scale clusters.

• tasktracker.http.threads: Default 40, changed to 50 to ac-
comodate large scale clusters - more threads responding to
more task trackers.

• mapred.child.java.opts: Default -Xmx200m, changed to -
Xmx1512m to increase JVM memory from 200MB to 1.5GB.

• dfs.block.size: Default 64MB, changed to 128MB to decrease
overhead for jobs operating on big data.

• io.file.buffer.size: Default 4KB, changed to 64KB to hope-
fully increase IO performance.

• io.sort.factor: Default 10, changed to 15 to allow more par-
allel shuffles during the implicit sort phase for reduce tasks.

• io.sort.mb: Default 100MB, changed to 200MB to hopefully
increase sort performance.



Table 2: Cluster sizes, medians, and labels for FB (top) and YH (below). Data sizes are in KBs, durations
are in seconds, and map/reduce times are in task-seconds, i.e. 2 tasks of 10 seconds each is 20 task-seconds.

# Jobs Input Shuffle Output Duration Map time Reduce time Label

1081918 21 0 871 32 20 0 Small jobs
37038 381 0 1,900,814 1288 6079 0 Load data, fast
2070 10 0 4,217,618 6194 26321 0 Load data, slow
602 405 0 447,303,306 4381 66657 0 Load data, large
180 446 0 1,100,929,790 18362 125662 0 Load data, huge

6035 230,903,926 8,776,400 491,141 906 104338 66760 Aggregate, fast
379 1,916,392,963 502,594 2,590,621 1916 348942 76736 Aggregate and expand
159 417,520,076 2,510,696,562 44,624,096 5024 1076089 974395 Expand and aggregate
793 254,860,808 788,155,641 1,594,722 2190 384562 338050 Data transform
19 7,579,267,317 51,840,780 104 3408 4843452 853911 Data summary

21981 174,249 73,142 6,346 63 412 740 Small jobs
838 568,193,339 75,630,299 3,985,889 2107 270376 589385 Aggregate, fast
91 206,254,306 1,540,406,112 132,942 2426 983998 1425941 Expand and aggregate
7 806,443,777 235,378,858 10,005,568,924 9412 257567 979181 Transform and expand

35 4,986,289,455 77,906,463 775,483 13585 4481926 1663358 Data summary
5 31,112,762,354 937,362,456 475,085 30890 33606055 31884004 Data summary, large

1303 35,804,623 14,970,878 4,049,293 3539 15021 13614 Data transform
2 5,487,309,879 10,347,599,865 2,461,853,150 16687 7729409 8305880 Data transform, large


