
Rain: A Workload Generation Toolkit for Cloud

Computing Applications

Aaron Beitch
Brandon Liu
Timothy Yung
Rean Griffith
Armando Fox
David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-14

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-14.html

February 10, 2010



Copyright © 2010, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Services,
Cisco Systems, Cloudera, eBay, Facebook, Fujitsu,
Hewlett-Packard, Intel, Network Appliance, SAP,
VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152,
07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-
013, 06-149, 06-150, and 07-008), the National Science
Foundation (grant CNS-0509559), and the University
of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240. Special



thanks to our undergraduate assistants - Aaron Beitch,
Timothy Yung, Brandon Liu.



Rain: A Workload Generation Toolkit for Cloud Computing Applications

Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, David Patterson
RAD Lab, EECS Department, UC Berkeley

Abstract

Existing workload generation tools are not flexible
enough to generate workloads that vary in three key di-
mensions relevant for making resource allocation deci-
sions for Cloud Computing applications – variations in
the amount of load, variations in the mix of operations
performed by clients (e.g. changes in reads vs. writes or
customer usage-patterns) and variations in the popularity
of the data accessed, i.e., data hotspots.

In this paper we present Rain, a workload generation
toolkit designed to address this lack of flexibility. Rain
allows for the use of probability distributions as first-
class elements that describe variations in the three key di-
mensions of workload Its architecture supports multiple
workload generation strategies (open-loop, closed loop
and partly-open loop), easy extensibility via user-defined
request generators targeting new systems/applications –
we demonstrate targeting the Olio Web 2.0 application.
Rain also supports trace generation, which allows it to be
used in conjunction with high-performance load-replay
systems, e.g., httperf.

1 Introduction

The advent of cloud computing has enabled easy access
to large-scale cluster computing at low costs. This ease
of adoption attracts a diverse set of users with varying ap-
plication profiles, resource demands and usage patterns.
A plethora of services, ranging from Web 2.0 portals to
big-data scientific or financial computations as well as
data-centric decision engines rely on cloud computing
infrastructure for scaling and system management.

A consequent challenge for application developers and
service providers is the need to anticipate changes in
workload patterns and adapt quickly to or at least account
for underlying system bottlenecks and behavior. For ex-
ample, a current event or new feature added to a website
can cause changes in usage patterns, which result in a

workload spike that affects data hot spots and cluster uti-
lization. It is therefore important for application devel-
opers and cloud providers to evaluate a system’s ability
to cope with variability and equip themselves to make ef-
fective resource allocation decisions in the presence of of
such variability.

There are three major types of variability we have ob-
served in modern applications running on cloud infras-
tructure:

• Cost-benefit analysis based load variations: The
primary constraints of the cloud computing user are
to a) use as few resources as necessary to meet de-
mand and b) use resources as efficiently as possible.
An advantage of using pay-as-you-go execution en-
vironments is that they scale transparently to the end
user and seamlessly adapt to varying amounts of
load. The application developer may decide to scale
up or scale down by adding or removing machines
to adjust for changes in the amount of load and re-
duce resource wastage. As the cloud infrastructure
provider, the decision to provision more machines
may be to prevent service level agreement (SLA)
violations. On the other hand, scaling down may
improve cluster utilization, reduce power consump-
tion and minimize cost.

• Externally imposed behavioral variations: A side
effect of the ease of deployment on cloud comput-
ing environments is that it enables a high churn rate
in the software stack. For example, the overhead
of adding features to a website are low, and thus
more common. Consequently, there is high vari-
ability in user behavior as users react to new fea-
tures and popular trends. Such behavioral variations
increase variability in the mix of operations per-
formed by the user, resulting in continually-revised
resources allocations to anticipate and react quickly
to the evolving workload. For example, transition-
ing from a workload dominated by write operations



to one dominated by read operations may result in
a larger subset of resources being dedicated to ser-
vicing reads via more data replicas. Such resource
provisioning decisions are in addition to and inde-
pendent of the fluctuations in the amount of work-
load. Furthermore, different cloud applications so-
licit different usage patterns, which pose more chal-
lenges to the cloud provider to make efficient trade-
offs across multiple services hosted on their cluster.

• Data popularity and hot spots: A consequence
of highly variable usage patterns is that data must
be stored in a manner that enables efficient access
based on application requirements. For example,
applications with sensitive data require stringent
privacy guarantees, real-time applications would
benefit from replication to minimize data access
times, and applications that allow multiple simul-
taneous writes (such as shared calendars) require
stringent consistency guarantees. Such application-
specific guarantees must be satisfied despite usage
and system load variations. Simultaneously, appli-
cations must have the option of relaxing their re-
quirements to reduce infrastructure cost.

A key aspect in responding to these variations in load
is the quality of the system’s reaction. This task requires
mechanisms that quickly detect different workload vari-
ations, decide whether the variation is transient or sus-
tained and respond to either minimize the negative ef-
fects of transients or adequately adapt to the new work-
load regime. While the above three factors affect one
another, the mechanisms to handle them can be indepen-
dently implemented. User behavioral variation can be
limited by setting thresholds on the number of concur-
rent users allowed and what fraction of them are exposed
to which features. Data hot spots can be alleviated by in-
creasing the number of redundant copies, and accounting
for data access locality.

In this paper, we propose a flexible, representative and
adaptable workload generation framework. We describe
specific design challenges and requirements posed by
cloud computing applications. We identify and address
the architectural limitations of existing workload genera-
tion tools that currently preclude their usage in more so-
phisticated workload generation scenarios and we argue
that statistical modeling and probability distributions are
an invaluable tool for driving workload generation tools
that can accommodate “what-if” scenario-based decision
making.

Our work makes three contributions:

1. First, we present the architecture of Rain and high-
light how its design departs from that of existing
workload generation tools and the flexibility this de-

parture offers us in enacting sophisticated workload
scenarios.

2. Second, we describe the implementation of Rain
and describe the creation of a workload generator
for a Web 2.0 application, Olio, which is used as the
target system in the Cloudstone Web 2.0 benchmark
[13].

3. Third, we provide an open source toolkit for re-
searchers and developers to use and extend and dis-
cuss how Rain can be used to target other Cloud
Computing applications or environments.

The remainder of this paper is organized as follows.
§2 presents related work. §3 provides an overview of
Rain, its architecture and the motivations behind our de-
sign choices. §4 discusses the creation of a workload
request generator for a typical cloud computing applica-
tion – the Olio a Web 2.0 application. §5 evaluates the
workload generation capabilities of Rain as it generates
load against the example target system. Finally §6 sum-
marizes our results and contributions and outlines future
work.

2 Related Work

Traditionally, workload generators are an after-thought
for systems researchers and application developers alike,
and the need for such a tool has been satiated with re-
gression tests, back of the envelope calculations, and
feature-specific stress tests. However, such methods do
not scale to the churn rate, load variations, system behav-
ioral patterns and changes in usage behavior that typify
applications deployed in the cloud. Contemporary work-
load generation tools are focused on evaluating peak-
workload performance, however, cloud computing ap-
plications, must exhibit good peak-performance and be
able to adapt to variations in workloads. Current work-
load generation tools fall short of allowing application
developers to explore how these workload variations af-
fect their systems and how they can improve their sys-
tem’s reactions. Furthermore, most existing workload
generation frameworks do not distinguish between work-
load request generation and request execution, making it
difficult to separate request generation from load delivery
as we explain further in Section 3.

There are several simple application-specific work-
load generators that allow users to generate workload
that conforms to a predetermined distribution. For ex-
ample, SURGE generates URL references based on file
size, request size, and file popularity distributions [10],
SLAMD allows users to generate workload for Java-
based networked applications, specifically LDAP di-
rectory servers [5], StreamGen allows users to gener-

2



ate distributed events and data streams [12], and Har-
poon mimics internet traffic and generates representa-
tive background traffic for application and protocol test-
ing [14]. All the above examples require the user to spec-
ify file/usage parameter distributions, which is infeasible
if the expected workload pattern does not fit into one of
a set of pre-defined distributions.

Although exceptions rather than the norm for testing
software, Optixia [3] and Hammer [1] are hardware-
based traffic generators that provide a dedicated hard-
ware device for creating and transmitting network traffic
patterns, including internet traffic, VoIP, and telephone
call generation. While such hardware-based generators
are excellent for load testing through maximizing request
volume, they tend to be very expensive to acquire, and
are not easily adaptable to new request types and usage
patterns.

Several workload generators have been coupled with
applications to form benchmarks, predominantly for web
services. SPECweb generates http requests to static con-
tent based on request distributions, but such simplistic
workload does not befit Web 2.0 applicaions [6]. TPC-
W is an attempt to represent more complex web service
requests, and comprises an online bookstore that allows
web serving, browsing and shopping cart facilities [8].
However, the content is static and the requests are gen-
erated based on a predetermined mix matrix of request
transition probabilities. Furthermore, the TPC-W work-
load generator requires a significant amount of state to
be maintained per simulated user, and thus its scalabil-
ity is limited by the backend database. RUBiS [4] pro-
vides an eBay-like auction portal, which introduces more
request complexity than TPC-W, but suffers from the
same limitations as TPC-W with respect to mix matrix-
based request generation and poor scalability. Cloud-
stone [13] is an attempt to adapt these kinds of bench-
marks to Web 2.0 applications. Cloudstone consists of
Olio a social event calendar web application and Faban,
an open source workload generator. Faban can emulate
thousands of concurrent Olio users interacting with the
application. Like TPC-W and RUBiS, user behavior is
described by a markov mix matrix, however, whereas Fa-
ban supports variable load during a benchmark run, the
user behavior remains fixed.

While all the above workload generation tools are
widely used in their specific application domains, they
do not perform well in the presence of a black-box sys-
tem. They require a certain degree of prior knowledge of
the system, for which the workload generator is custom-
configured.

3 Rain: Olio Workload Generator
Rain is a statistics-based workload generation toolkit
that provides a thin, reusable, configuration and load-
scheduling wrapper around application-specific work-
load request-generators, which can easily use parameter-
ized or empirical probability distributions to mimic dif-
ferent classes of load variations.

The load scheduling harness takes care of managing
variations in the amount of load and the mix of oper-
ations, while application-specific request generators are
responsible for adapting to changes in the mix of opera-
tions and simulating data hotspots (if required).

Our architecture differs from that of existing workload
generation tools in two significant ways.

First, we decouple request generation from request ex-
ecution. To our knowledge, this a departure from ex-
isting workload generation tools, e.g., the load genera-
tors used in TPC-W [8], Rubis [4], Cloudstone (Faban)
[13], which couple request generation and request exe-
cution together. Separating request generation and re-
quest execution allows us to produce traces that may be
consumed by third-party high-performance load-delivery
clients such as httperf [2]. The separation affords us the
flexibility of evolving the request generators indepen-
dently of the load delivery harness and it opens up the
possibility of using more computationally intensive re-
quest generators (e.g., where generating the next request
involves a series of simulation steps) without skewing
the runtime measurements of the target system since re-
quests can be generated, saved and (re)played at a later
time.

Second, we remove the thread-affinity between re-
quests and their execution by parameterizing requests
with all the state they need for execution when they are
generated. In existing workload generation tools, the
thread that causes a new request to be generated is also
the thread that executes it. This unnecessarily restricts
the workload generation tool to a closed-loop workload
strategy (a thread creates a new request, executes it and
waits on its completion before creating the next request).
In Rain, the requests (Operations) produced by a Gen-
erator are implemented according to the Command pat-
tern [11]. This design choice allows an Operation to be
executed by any thread, provided it can be suitably pa-
rameterized by the Generator that creates it. As a result,
the thread that generates an Operation does not necessar-
ily have to execute it, which enables us to cover the full
spectrum of workload generation strategies (closed-loop,
open-loop or partly-open loop).

3.1 Architecture
Figure 1 shows the architecture of Rain. There are five
major components:

3



Figure 1: Rain Architecture Diagram

• A Benchmark orchestrates an entire workload ex-
periment. It loads the Scenario, initializes the
Scoreboard where results are collected and summa-
rized, the shared threadpool and the dedicated load
threads that run the request Generators – Generators
produce the Operations to be executed. At the end
of the experiment, the Benchmark terminates all the
components and presents the results collected on the
Scoreboard.

• A concrete Scenario contains all the configuration
parameters for an experiment, including but not lim-
ited to, the maximum number of users to emulate,
the duration of an experiment, the ramp up and ramp
down interval and the sequence of LoadProfiles to
enact during a run.

At a bare minimum, a LoadProfile contains an in-
terval (in seconds), the number of users active and
the name of a mix matrix describing the behavior of
each user. LoadProfiles are consumed by the ded-
icated load threads and there are MaxUsers dedi-
cated load threads spawned at the start of an exper-
iment and assigned ids (1, ...,MaxUsers).

The LoadProfile [100, 500, default] would be in-
terpreted as: for the next 100 seconds, run 500 ac-
tive users (dedicated load threads with ids < 500
remain active, while all others sleep) and each user
follows the behavior codified in the mix matrix la-
beled “default”. During an experiment sequences of
LoadProfiles allow us to vary the number of users
and their behavior over time.

• A concrete Generator creates requests for a single
active user. It is initialized with a Scenario and
determines the next request (a concrete Operation)

based on data about the previous request (if neces-
sary) and any other internal criteria.

• The Scoreboard is a thread-safe, singleton object,
where all Operations write (drop off) their execu-
tion results. These results are processed and sum-
marized by a background worker thread and pre-
sented at the end of an experiment. The Scoreboard
also arranges for Operation traces to be written out
to persistent storage.

• The Shared threadpool and dedicated load threads
are available for executing the Operations produced
by request Generators (if required). A Generator
is owned by a single dedicated load thread, how-
ever, the Operations it produces may be executed
by some other thread (e.g. a thread in the shared
threadpool).

Model of Operation Concrete Generators – one for
each emulated user – are initialized using the Scenario. A
dedicated thread is associated with each generator. This
dedicated thread requests the next operation from the
generator and either waits synchronously on the opera-
tion to execute or hands the operation off to the shared
threadpool for execution and immediately requests a
new operation from the generator, to simulate an asyn-
chronous request.

Operations, once they finish executing, write their exe-
cution results (success/failure, performance metrics, etc.)
on the scoreboard and are then are discarded. Figure 2
shows the relationship and APIs of the major actors in
the Rain toolkit.

Figure 2: Rain Core APIs

4



HomePage 0.00 0.11 0.52 0.36 0.00 0.01 0.00
Login 0.00 0.00 0.60 0.20 0.00 0.00 0.20
Tag Search 0.21 0.06 0.41 0.31 0.00 0.01 0.00
Event Detail 0.72 0.21 0.00 0.00 0.06 0.01 0.00
Person Detail 0.52 0.06 0.00 0.31 0.11 0.00 0.00
Add Person 0.00 0.00 0.00 0.00 1.00 0.00 0.00
Add Event 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Figure 3: Default Olio Mix Matrix

4 Case Study

4.1 Creating the Olio Workload Request
Generator

Olio [7] is the target application of the Cloudstone Web
2.0 benchmark developed jointly by Sun and members
of the RAD Lab at UC Berkeley. The Olio application
implements a social-event calendar web application (in
PHP and Ruby) that provides functionality representa-
tive of Web 2.0 applications – user-generated metadata,
social networking functions and a rich AJAX-based GUI
[13].

Olio users can perform a number of workflows (oper-
ations) including: adding events, viewing event details,
attending events, adding new users, viewing user pro-
file details, searching for user-generated metadata (tag
search), logging into of the application, and browsing the
homepage.

The Olio distribution includes a UIDriver that is used
by the Faban workload generator to generate and execute
requests against an Olio deployment. The UIDriver uses
a markov mix matrix to govern the behavior of simulated
Olio users and the series of operations they perform.

To create the Olio workload request generator for
Rain, we refactored the monolithic UIDriver into a hier-
archy of seven concrete parameterizable Olio operations
(HomePage, Login, TagSearch, EventDetail, PersonDe-
tail, AddEvent, AddPerson), which extend the base Op-
eration class in Rain (Figure 4). We also create an Oli-
oGenerator class that creates instances of these opera-
tions, based on the transition probabilities specified in
markov mix matrix (Figure 3) and knowledge of the pre-
vious type of operation.

5 Evaluation

5.1 Olio

Our Rain prototype is implemented in 1813 lines of Java
code. To evaluate our prototype we ported the workload
driver (UIDriver) for the Apache Olio application, found
in the Faban workload generator [13].

We create an Olio request-generator (OlioGenerator)

Figure 4: Olio Workload Class Diagram for Rain

by porting Faban’s UIDriver, and then drive load against
a small cluster running Olio and deployed on EC2. Our
goal is to identify the performance bottleneck of the clus-
ter using Rain and our OlioGenerator. Creating the Olio-
Generator and porting the seven Olio operations required
2841 lines of Java code.

Since we are interested in identifying the performance
limit/bottleneck of the cluster we eliminate the think
times between individual user requests. This choice al-
lows us to use a smaller set of concurrent users since the
absence of think times increases the effective load deliv-
ered.

Our experimental setup uses 4 EC2 instances. 1
m1.small running Nginx and HAProxy, 1 c1.xlarge run-
ning Rails, 1 c1.xlarge running MySQL v5.0.28. We
emulate 1 to 150 concurrent users performing Olio op-
erations as fast as they can (no think time between oper-
ations).

Figures 5 and 6 show the cluster performance in Olio
operations per second and HTTP requests per second for
1 to 150 concurrent users. The peak performance of our

5



simple cluster is∼ 34±3.06 Olio operations per second,
which is equivalent to∼ 740± 65.86 HTTP requests per
second (we conducted 5 repetitions and include the 95%
confidence intervals for our measurements).

Figure 5: Rain fixed load results (Olio Operations/sec)

Figure 6: Rain fixed load results (HTTP requests/sec)

Figures 7 and 8 show the results an experiment where
the number of users is varied every 60 seconds. These
results are reconstructed from the traces from five runs,
collected at 10 second-intervals. As a result of the differ-
ences between the load increment-interval and the data
collection interval, we omit the error bars in this figure.

6 Conclusion

In this paper we highlight three key variations in cloud
computing application workloads (amount, mix and data
hotspots). We identify limitations of existing workload

Figure 7: Rain variable load results scaled from 1 to 150
concurrent users and then back down to 1 user (Olio Opera-
tions/sec)

generation tools that artificially restrict the choice of
workload generation strategy and the workload varia-
tions that can be reproduced – tight coupling between
request generation and request execution and an implicit
close-loop load generation restriction. We present archi-
tectural solutions to those limitations and implement a
toolkit Rain, designed specifically to address these limi-
tations.

We implement an example workload request genera-
tor for a typical cloud computing application (the Olio
Web 2.0 application) and show that our prototype work-
load generator (i.e., Rain + Olio request generator) can
capture the three aspects of load variations we describe.

For future work we are constructing additional work-
load request generators for two other cloud computing
applications – MapReduce batch processing applications
and SCADS (a Scalable Consistency-Adjustable Data
Storage system for interactive applications) [9]. We are
also working towards a release of the Rain toolkit, in-
cluding example workload request generators, under a
GPL license for researchers and application developers
to use.

Finally, we have added support in Rain for generat-
ing workloads for multiple tenants/applications in sin-
gle a experiment using the abstraction of multiple par-
allel tracks of load profiles. This feature raises method-
ological questions about generating representative multi-
tenant/application workloads that we are interested in ex-
ploring further.

6



Figure 8: Rain variable load results scaled from 1 to 150 con-
current users and then back down to 1 user (HTTP requests/sec)

7 Acknowledgments

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Ser-
vices, Cisco Systems, Cloudera, eBay, Facebook, Fu-
jitsu, Hewlett-Packard, Intel, Network Appliance, SAP,
VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152,
07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-
013, 06-149, 06-150, and 07-008), the National Science
Foundation (grant CNS-0509559), and the University
of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240. Special
thanks to our undergraduate assistants - Aaron Beitch,
Timothy Yung, Brandon Liu.

References
[1] Hammer. www.empirix.com.

[2] httperf Homepage. http://www.hpl.hp.com/research/linux/httperf/.

[3] Optixia. www.ixiacom.com/products/optixia.

[4] RUBiS: Rice University Bidding System.
http://rubis.ow2.org/index.html.

[5] Slamd. http://www.slamd.com.

[6] SPECweb. http://www.spec.org/web2005.

[7] The Apache Olio Project. http://incubator.apache.org/olio/.

[8] TPC-W. www.tpc.org/tpcw/default.asp.

[9] SCADS: Scale-independent storage for social computing appli-
cations (01/2009 2009).

[10] BARFORD, P., AND CROVELLA, M. E. Generating Representa-
tive Web Workloads for Network and Server Performance Evalu-
ation. In Proceedings of Performance ’98/SIGMETRICS ’98 (July
1998), pp. 151–160. Software for Surge is available from Mark
Crovella’s home page.

[11] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M.
Design Patterns: Elements of Reusable Object-Oriented Software
(Hardcover). Addison-Wesley Publishing Company, Reading,
Massachusetts, 1994.

[12] MANSOUR, M., WOLF, M., AND SCHWAN, K. Streamgen: A
workload generation tool for distributed information flow appli-
cations. In ICPP ’04: Proceedings of the 2004 International Con-
ference on Parallel Processing (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 55–62.

[13] SOBEL, W., SUBRAMANYAM, S., SUCHARITAKUL, A.,
NGUYEN, J., WONG, H., PATIL, S., FOX, A., AND PATTER-
SON, D. Cloudstone: Multi-platform, multi-language benchmark
and measurement tools for web 2.0. In CCA ’08: Proceedings of
cloud computing and its applications (2008).

[14] SOMMERS, J., KIM, H., AND BARFORD, P. Harpoon: a flow-
level traffic generator for router and network tests. SIGMETRICS
Perform. Eval. Rev. 32, 1 (2004), 392–392.

7


