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Abstract

Probabilistic Models of Evolution and Language Change

by

Alexandre Bouchard-Côté

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Dan Klein, Co-chair

Both linguistics and biology face scientific questions that require reconstructing phylo-

genies and ancestral sequences from a collection of modern descendants. In linguistics,

these ancestral sequences are the words that appeared in the protolanguages from which

modern languages evolved. Linguists painstakingly reconstruct these words by hand using

knowledge of the relationships between languages and the plausibility of sound changes.

In biology, analogous questions concern the DNA, RNA, or protein sequences of ancestral

genes and genomes. By reconstructing ancestral sequences and the evolutionary paths

between them, biologists can make inferences about the evolution of gene function and

the nature of the environment in which they evolved.

In this work, we describe several probabilistic models designed to attack the main phylo-

genetic problems (tree inference, ancestral sequence reconstruction, and multiple sequence

alignment). For each model, we discussing the issues of representation, inference, analysis

and empirical evaluation.

Among the contributions, we propose the first computational approach to diachronic

phonology scalable to large scale phylogenies. Sound changes and markedness are taken

into account using a flexible feature-based unsupervised learning framework. Using this

model, we attacked a 50-year-old open problem in linguistics regarding the role of func-

tional load in language change. We also introduce three novel algorithms for inferring

multiple sequence alignments, and a stochastic process allowing joint, accurate and effi-

cient inference of phylogenetic trees and multiple sequence alignments.
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Finally, many of the tools developed to do inference over these models are applicable more

broadly, creating a transfer of idea from phylogenetics into machine learning as well. In

particular, the variational framework used for multiple sequence alignment extends to a

broad class of combinatorial inference problems.
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leur amour inconditionnel et pour m’avoir tant donné. Je vous aime, et vous remercie
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Chapter 1

Introduction

The goal of phylogenetics is to draw inferences about the past from the diversity of the

present. Although phylogenetics is best known from its application to the reconstruction

of biological histories (from biodiversity), phylogenetic also has ramifications for the prob-

lem of reconstructing linguistic histories (from the world’s linguistic diversity). This thesis

covers both applications, hypothesizing that the two problems have sufficient similarities

to justify a joint study, but also have sufficient differences to foster innovation.

The central challenge of phylogenetics is uncertainty, which is ingrained in the field: even

if evolution and language change were completely understood (which is not the case), the

sad reality is that part of our past is gone forever. Some changes are irreversible: species

go instinct, languages die. This introduces uncertainty in nearly all reconstructions.

The best tool we have for coping with uncertainty is probability theory. As a consequence,

biologists have adopted probabilistic modeling for studying evolution over the last few

decades. In computational linguistics, on the other hand, this transition is only starting

to take place.

1.1 Phylogenetic tasks

Phylogenetic inference can be further divided into several interrelated tasks:

Ancestral sequence reconstruction The problem of reconstructing the sequence cor-
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responding to the most recent common ancestor (MRCA) of a collection of extant

taxa.

Phylogenetic tree inference The problem of identifying the speciation order (tree

topology) above a collection of taxa, possibly with branch lengths estimates for

each branch in the tree (for example, to approximate the time between speciation

events).

Cognate alignment The problem of finding homologous word forms or gene from pro-

nunciation vocabularies or genomes.

Multiple sequence alignment The problem of identifying, for each cognate set, the

homologous nucleotides in the related sequences.

Note that we have made simplifications in the descriptions of these tasks. For example

evolution and language change do not strictly follow tree-shaped paths. In the next

chapter, we give a more complete picture of the phenomena involved, and at the same

time define the terminology used above to describe the tasks.

1.2 Contributions

The contributions of this thesis can be divided into three categories:

New models We have introduced three new model families for phylogenetic inference.

See next section.

New algorithms The price of using sophisticated probabilistic models is the intense

computational burden associated with them. The second contribution of this thesis

is a new set of techniques that reduce this burden. Developing these techniques

involves two steps: first, using probability theory, and stochastic process theory in

particular, for identifying computationally convenient representations of the models;

and second, developing efficient algorithms for computing conditional expectations

using these representations. These advances enabled state-of-the-art multiple se-

quence alignment results.
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A new approach to diachronic phonology The first automated system capable of

large-scale reconstruction of protolanguages. This system is inspired, but signifi-

cantly different from current phylogenetic models used in biology. It enabled us to

attack the functional load hypothesis, a fifty year old open question in diachronic

linguistics.

The first and second points made possible the third point. They were also partly motivated

by the diachronic phonology application, but more classical applications to biological data

also played a crucial role.

1.3 Organization of the thesis

In principle, one could define a single joint model over all the entities involved in phy-

logenetic analysis and use it to tackle all four tasks described in the previous section.

Using a joint model has pros and cons. On one hand, there are questions that can only

be answered if a consistent answer to several or all of the inference problems is available.

We show an example in Section 3.4.6, where a quantity called functional load needs to

be estimated, which depends on the ancestral sequence reconstructions, the alignments,

and the phylogenetic tree. On the other hand, when the focus is on a single task, simpler

models may perform better for statistical and computational reasons (joint models gen-

erally have more parameters and involve a more complicated combinatorial space to sum

over).

We therefore present in this thesis a toolbox containing many related models. The models

covered are:

Phylogenetic Exponential Family (PEF) This is the richest model in the toolbox,

featuring contextual dependencies, branch-specific parameterization, and explicit

representation of alignments, trees and ancestral sequences. Using this model, we

achieved state-of-the-art automatic proto-language reconstruction. We also vali-

dated the model on biological sequences, measuring the accuracy of multiple protein

sequences alignments.

Multiple Alignment Random Field (MARF) This is a simpler model, focused on

the task of multiple sequence alignment. It is flat, in the sense that all pairwise

sequence alignments are considered instead of those along a hidden phylogenetic
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tree. This flat configuration enables inference using a novel variational inference

framework. This yields state-of-the-art multiple sequence alignment performances.

Poisson Sequence Change Process (PSCP) This model enables efficient phyloge-

netic tree inference, addressesing one important limitation of both of the previous

models. It is a promising trade-off between the richness of PEFs and the modeling

limitations of MARFs. Using this model, we obtained state-of-the-art results in

phylogenetic tree inference.

We give a more detailed account of the trade-offs between the different models in the

conclusion of this thesis.

We start by giving some background in the next chapter. Then we devote one chapter

for each model, except for PEF, on which we devote an extra chapter to explore in detail

the problem of computing conditional expectations in this model.



5

Chapter 2

Background

2.1 Summarizing taxa with sequences

In this thesis, sequences over a finite alphabet will be used to summarize both languages

(roughly, a maximal group of mutually intelligible dialects) and species (roughly, a max-

imal group of organisms capable of interbreeding and producing fertile offspring). In

biology, although morphological characters such as height have traditionally dominated

the field, the sequence representation has taken over and is now standard. Biological

sequences can be made out of an alphabet of amino acids (in the case of protein), or

nucleotides (DNA and RNA).

In computational approaches to diachronic linguistics, sequential summaries are not yet

mainstream: coarser, finite-dimensional representations (described in Section 3.2.1) are

still prevalent. These coarser representations contrast not only with the representations

used in computational biology, but also those used in traditional (non-computational)

diachronic phonology, where word forms are generally modeled by sequences of sound

units called phoneme. In the linguistic component of this thesis, we depart from finite-

dimensional representations, and take an approach inspired by traditional diachronic

phonology: languages are encoded by the pronunciation of their words. The alphabet

used to represent these sequences is the International Phonetic Alphabet (IPA), a stan-

dard encoding for the sounds of the world’s languages.

A single sequence is not always sufficient to give a reasonable summary of a language

or species (the term taxon will be used throughout this thesis to describe languages or
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A A G A C C G G G T C
A A G A C A G G A C C
A A G T C C G G A C C
A A G T C C G G A C T

H. Sapiens
Hylobates

M. Fuscata
M. Sylvanus

i ʔ a
i ʔ a
i k a
i k a  

Hawaiian
Samoan
Tongan
Maori

sites

Figure 2.1. Toy examples of comparative phonological and genomic data. A site is a
collection of nucleotides or phonemes all descending from the same ancestral character.

species collectively). For example, there are many words in a language’s vocabulary, and

there are many chromosomes in a species’ genome. The insufficiency of using a single

sequence is especially acute in the case of language representation, since any single word

is very short, but the number of words is large. Fortunately, models assuming a single-

sequence representation can be extended to collection-of-sequences representations. This

is discussed in more details in Section 2.5, but for simplicity, let us assume for now that

there is a single string per taxon.

2.2 Shared ancestry

Now that a representation has been fixed, let us consider some examples of comparative

phonological and genomic data (see Figure 2.1).

Note that in the data shown, all the sequences have the same length. This is an atypical

case since insertions and deletions (indels) usually change the length of both biological

and phonological sequences. We will discuss indels in more details in Section 2.4, but

this toy example will simplify the discussion by allowing us to easily define the notion of

a site, a collection of nucleotides or phonemes (we will refer to generic elements of the

alphabet using the term character) all descending from the same ancestral character. In

this example, the characters in site i are just those at position i in each sequence.

All the characters that come from a common ancestor are called homologous . Homologous

characters tokens are not necessarily of the same type, because of a kind of point mutation
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called substitution, defined as the mutations that do not change the length of the sequence,

and act on a single character of this sequence.

Looking at the data, it is clear that the sequences share many similarities. The main

explanations for these similarities are:

Chance These sequences might in fact be unrelated. Since the alphabet and the se-

quence length is finite, there is a positive probability for this event, but it decays

exponentially in the length of the sequences.

Shared ancestry The taxa observed descend from a common ancestral taxon, conse-

quently their sequence representations are similar. In the case of basic biological

structures such as ribosomes, shared ancestry explains similarities among all living

organisms. In linguistics, on the other hand, it is not known for all pairs of languages

if there are word forms with a shared ancestry.

Convergent evolution This happens when evolution is optimizing an heavily con-

strained fitness landscape, and where there are only a few viable solutions. For

example, parents tend to associate the first word-like sounds emitted by babies

to “mother” and “father.” The easily produced bilabial stops are hence over-

represented in the phoneme distributions of these words, leading to similarities such

as Chinese baba, French papa that are not believed to be caused by a shared ancestry

[37].

In this work, we focus on similarities arising from shared ancestry, which often leave a

distinctive trace: a phylogenetic tree.

2.3 Phylogenetic trees

Further inspection at the data in Figure 2.1 reveals that the sequences are not only related,

but also related at different degrees. Notice for example that if the H. Sapiens sequence

in Figure 2.1 shares a mutation with exactly one other sequence x, then x = Hylobates in

the majority of the cases. This structure can be explained by a phylogenetic tree.

Phylogenetic trees are models representing the evolutionary relationships between taxa.

In the most basic form, ultrametric trees , these models are specified by a rooted directed

tree with leaves in correspondence with the set of taxa under study (see Figure 2.2.
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H. Sapiens

Hylobates

M. Fuscata

M. Sylvanus

root / MRCA

time branch
length

Figure 2.2. An example of an ultrametric tree.

Each internal node n in this tree represents a speciation event corresponding to the Most

Recent Common Ancestor (MRCA) of all taxa under n. There is also a positive real

number associated with each edge, called a branch length, which is proportional to the

time that separates two speciation events. Note that when the leaves all correspond to

modern organisms (as it is usually the case—fossil DNA is rare), the sum of branch lengths

along a path from the root to any leaf is constant.

Since time elapsed between speciation events cannot be measured directly, the expected

number of change per site is used as a proxy to estimate branch lengths. Ultrametric trees

thus make the assumption that evolution operates at the same rate in all branches of the

tree. In most case, this is not realistic, since several factors such as effective population

size and environmental pressure can have drastic effects on evolutionary rates.

Non-clock trees generalize ultrametric ones, relaxing the assumption of a constant evolu-

tion rate across branches (see Figure 2.3). This means that each branch has an arbitrary

positive number associated with it, and that the sum of branch lengths along a path from

the root to the leaves under it is not required to be constant.

Phylogenetic trees exist both in the rooted version described above, and in the unrooted

version, where directed trees are replaced by undirected ones. Going from unrooted to
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H. Sapiens

Hylobates

M. Fuscata

M. Sylvanus

root / MRCA

Figure 2.3. An example of a nonclock tree.

rooted in ultrametric trees is trivial (the root is the unique point of constant distance to

the leaves), but can require an outgroup in the non-clock case (an extra taxon related to

the taxa under study, but less closely than the ingroup relationships).

Even non-clock trees do not capture all the relationship that exist between taxa in evo-

lution and language change. There are several sources of deviation:

Borrowing and lateral transfer In diachronic linguistics, the tree assumption is vio-

lated by borrowing, for example English’s acquisition of French vocabulary after the

Norman conquest. In biology, this type of violation is known as lateral transfer, and

it occurs when a nucleotide sequence from one species is incorporated into another

one by a mechanism other than clonal descent, e.g. via transposon, virus, or plasmid

exchange.

Population structure and recombination Another type the tree structure deviation

comes from population genetics and dialectology considerations. Consider Fig-

ure 2.4, where the red diamond and blue circles represent two alleles present in

a population (e.g. two versions of a gene or two versions of the pronunciation of a

word form). While in the main population, the frequency of the blue allele becomes

dominant and eventually fixed in the population (i.e. all the individual share the

same allele in the population), the first and second taxa to branch out arise from a

small subpopulation (dialect) where the red allele is predominant, so the red allele
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time

main
population

Figure 2.4. An example of the confounding effect of dialects and population structure on
phylogenetic inference.

becomes fixed in these two new taxa. The outcome of the process suggests the

wrong phylogenetic tree topology. In asexual inheritance processes, the population

variations tend to quickly collapse, but sexual reproduction and recombination re-

verses this trend. Since language is generally acquired from more than one source,

dialect structure is also an important aspect of diachronic linguistics.

Hybridization and creoles In the extreme case, a new taxon can be created from two

parent taxa. This is known as hybridization in biology and creolization in linguistics.

This truly non-tree process is not as frequent as the previous two processes.

2.4 Insertions, deletions and multiple sequence align-

ments

Let us now look at the effect of insertions and deletions on sequence analysis. Consider

the following sequences:

C A T A C
C A G
A T C C

a:
b:
c:

While the sequences still have apparent similarities, insertion and deletions (indel) made

their lengths vary, shifting these similarities. We show an example of indel history in

Figure 2.5 that yields these sequences.

A convenient way of revealing the similarities between sequences is to determine their sets
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AC Gb :AC T A Ca :

AC T Cd :

TA C Cc :

TA CMRCA :time

Figure 2.5. Example of an indel history.

AC T A Ca :

AC Gb :

TA C Cc : -
- - -

-

-

Figure 2.6. Example of a linearized MSA.

of homologous characters. When we restrict our attention to three types of mutations

(substitution, insertions, deletions), these sets of homologous classes are called Multiple

Sequence Alignments (MSAs). MSAs are at the core of most phylogenetic models (with

a few exceptions, for example [10]).

The restriction to these three types of mutation allows us to visualize MSAs using a

linearized alignment matrix . For example, the indel history shown in Figure 2.5 can

rendered as in Figure 2.6.

In this figure, the sequences have been padded with a gap character ‘-’ so that two

nucleotides are in the same column iff they are homologous. Note that there can be

several ways of producing this visualization, these are considered equivalent, and can be

formalized as different linearization of a partial order [80].

When defining MSAs, only the characters in the sequences at the leaves of the phylogenetic
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tree are usually included. When the characters of the internal sequences are included as

well, we call the more informative structure a derivation.

Insertions, deletions and substitutions do not exhaust all types of change found in biology

and linguistics. Other types include:

Duplication In linguistics, this process is called reduplication (as in ‘bye-bye’, for exam-

ple), and it is a well-studied mechanism to derived morphological and lexical forms.

In biology, gene duplication plays a major role in evolution, but operates at a larger

scale than linguistics in terms of the number of characters duplicated.

Swaps In linguistics, this process is called metathesis (e.g. Old English frist > English

first), in biology, it is called transposition.

In this work, we have ignored these phenomena, mainly for computational and inter-

pretability reasons (the linearized alignment matrix is not possible in general in the pres-

ence of either of these changes). Note that theses changes are also generally not regular

in linguistics, and therefore less informative.

2.5 Collections of strings

So far, we have talked about taxa being summarized by a single string. In diachronic

phonology, this is problematic since individual words are short, and one would like to

exploit as many words as possible to get more accurate phylogenetic inferences. In biology

it might also be desirable to use information from several genes jointly.

One solution to this is to simply concatenate the genes or the words to form a single

string. The difficulty is that there is no canonical ordering of neither words nor genes.

To address this, one can align the word forms and genes, deeming two words or genes

homologous iff they contain homologous characters. In linguistics, a group of word forms

that are homologous is called a cognate set , we will use the same terminology in biology for

simplicity. Both insertions and deletions can be found in the ancestral history of cognate

alignments (in linguistics, these cognate indels are caused by semantic changes).

Once a cognate alignment has been found, it is then possible to give an ordering of the gene

or word forms that is consistent across all taxa, and therefore treat the data as a single

string, introducing a string boundary character ‘#’ between words. Conceptually, this is a

valid reduction, but in practice algorithms would be slowed down by such representation.
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Language ‘coral’ ‘branch’ ‘drown’ ‘voice’

Hawaiian puna mana lemo leo
Samoan puNa maNa lemo leo
Maori puNa maNa remo reo

Table 2.1. Example of sound changes in action.

2.6 Homogeneity and branch specificity

In the basic phylogenetic trees introduced earlier, mutations are more frequent on longer

branches, but in reality, the rates of change vary in other ways. This is especially true in

diachronic phonology, where regular sound changes play a key role.

To understand the concept of regular sound changes, consider the dataset shown in Ta-

ble 2.1.

It is apparent from this data that the ancestral phoneme *N (the star means that it is a

reconstructed, unattested form) was substituted to n along the branch leading to Hawaiian

not only in the history of the word form for ‘coral’, but also in the case of ‘branch’. In

fact,this substitution occurred in all ancestral words having the proto-phoneme *N. On

the other hand, this substitution did not affect any word forms in the branch going to

Maori or Samoan. At the same time, the other sound change apparent in the data, l > r

affected only word forms going to Maori, showing that a simple proportionality between

branch length and amount of change is insufficient in the analysis of phonological data.

In biology, other factors make the distribution of mutations non-homogenous. For example

the parts of a sequence critical to its mission (for example, active sites in proteins) are

generally more conserved since most organisms with a mutation on these sites does not

survive.

2.7 Change tendencies

The non-homogeneities described in the previous section makes phylogenetic inference

harder (in statistical terms, by increasing the number of parameters to estimate). For-

tunately, other types of regularities have the opposite effect: certain types of change are

universally more frequent than others, which will be used in the next chapters to give
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lower probability to a large, unrealistic portion of the search space. In linguistics, the

field investigating these tendencies is called typology .

The most basic tendency is that some mutations are more frequent than others. It is well

known for instance that transitions (DNA point mutations that change a purine nucleotide

to another purine or a pyrimidine nucleotide to another pyrimidine) are more frequent

than transversion (the other nucleotide point mutations). More generally, the transition

matrices estimated from protein, phoneme, DNA and RNA data all significantly deviate

from the uniform transition matrix. In biology, these non-uniformity can be interpreted

using organic chemistry. In linguistics, some of the non-uniformities can be explained

using phonetics.

Tendencies exist not only in the distribution of substitutions: in both linguistics and bi-

ology, insertions and deletions can alter large subsequences atomically. As a consequence,

indel length distributions differ significantly from the geometric distribution one would

expect from independent point indels.

Further regularities can be detected by looking not only at the mutations themselves,

but also at the context in which they occur (meaning, the flanking characters in the

sequence where the mutation occurs). For example, when analyzing exonic nucleotide

data, a single nucleotide substitutions will have drastically different effects depending on

whether the transcribed amino acid is changed or not (respectively missense and silent

mutations). Determining the type of mutation requires looking at a triplet of nucleotides.

Since the transcription mapping from nucleotide triplets to amino acid is not injective,

some point mutations make the coding triplet transcribe to the same amino acid, and

therefore decrease the likelihood of introducing a detrimental mutation.

Again, these contextual regularities are not limited to substitutions, but are also found in

indels. For example, large insertions are less frequent in the hydrophobic core of globular

proteins, since these stretches often correspond to the folded core.

Change tendencies are especially important in diachronic phonology, where the inventory

of possible changes is much larger. There can be easily over one hundred phonemes

involved in analyses involving even a moderate number of languages, contrasting with the

22 standard amino acids. Diachronic linguists have developed a formalism to express some

of these regularities. This formalism is based on distinctive features defined on phonemes,

which describe basic units of change, for example voicing, manner of articulation, and

palatalization, among others. Changes involving only a few features in this representation

are generally considered more frequent cross-linguistically.
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2.8 Main approaches to phylogenetic modeling

Traditionally, phylogenetic inference has been done using parsimony-based model. In

this framework, the preferred explanations for the data are those involving the minimum

amount of changes. Parsimony has since been largely superseded by statistical approaches.

The fundamental motivation for this transition is that changes in phylogenetics should

not be considered unusual events to be minimized. Instead, they should be expected, be

part of the model, and their regularities should be estimated and exploited.

Generative modeling is an important type of approach to phylogenetic inference. There

is no standard definition for the concept of generative models, but in this thesis we will

define them as models where joint distribution computations (e.g. sampling) are tractable

(i.e. in the complexity class P). Generative models are useful in phylogenetics, because

for many tasks (tree inference, ancestral sequence reconstruction), it is hard or impossible

to perform held-out validation tests (because of a lack of supervised data). An important

example is the class of models derived from a directed graphical model. Note that a

tractable sampling algorithm for the joint does not imply a tractable sampling algorithm

for the posterior. Generating data from the joint distribution is one of the solution

used in practice to work around this problem. Given a rooted tree, it is natural to

consider a directed graphical model with the graph topology given by the topology of the

phylogenetic tree.

The standard technique to specify the transition probability for a node n in the graph-

ical model given its parent n′ is to use a stochastic process , i.e. a collection of random

variables indexed by an uncountable set S, {Xt : t ∈ S}. In phylogenetics, this set S is

uncountable it models time (i.e. a large number of successive generations is approximated

by a continuum). The type of stochastic process involved is usually a Continuous Time

Markov Chain (CTMC), where S = [0, T ], and the individual variables Xt are assumed

to have a countable domain. Using the phylogenetic tree, the length of the interval T is

obtained from the branch length corresponding to (n, n′) in the phylogenetic tree. Then,

to get P(XT ∈ A|X0) (marginalizing all the Xt’s in between), one can use standard tools

from stochastic process theory.

For example, if Xt has a finite domain, and the sequence (Xt) is assumed to be Markovian,

this is done as follows. First, define the matrices (PT )i,j = P(XT = j|X0 = i). By

the Markov assumption, we get that the matrices PT must satisfy PT+S = PTPS. We

also have P0 = I as a boundary condition. If these equation were scalar-valued, i.e.
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f(t+ s) = f(t)f(s), f(0) = 1, this would imply that f(t) = exp(tq) for some q ∈ R, using

basic real analysis. In the matrix-value case, the equations also imply that PT = exp(TQ),

where this time Q is a matrix (called the rate matrix ), and exp is the matrix exponential ,

which can be defined using the same series as the standard exponential, but generalized

to matrices:

exp(M) = I +M +
M2

2!
+
M3

3!
+ . . .

In practice, the matrix exponential is computed by diagonalization.

When Xt has a countably infinite domain, finding expressions for the marginal is more

complicated, and a closed-form solution is not guaranteed to exist in general. The count-

ably infinite case is of great relevance to this thesis, since Xt will generally be string-value

in the next chapters.

The most popular string-value CTMC is the TKF91 model [87]. Its main advantage is

that its marginals P(XT = s|X0) can be expressed as a string transducer with a set of

weights obtained from closed-form functions of T .

The approach presented in Chapter 3 is based on a generative model, but not a stochastic

process. The one presented in Chapter 5 focuses on MSA and is not based on a generative

model. Finally, Chapter 6 takes a generative, stochastic process approach.

2.9 Information lost in sequential phylogenetic sum-

maries

As the name suggests, sequential summaries involve a loss of information. At least three

sources of information loss can be identified:

Populations and dialects Two organisms belonging to the same species do not gen-

erally share the same genetic code. Similarly, two individuals speaking the same

language often pronounce many words differently. As a consequence, collapsing

species and languages to a single sequence eliminates the population and dialect

structures. We described in Section 2.3 one of the consequences of this loss of infor-

mation on phylogenetic tree inference. However the explanation of the variance in

the string summaries is generally dominated by variation across species rather than

variation across individuals.
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Geospatial information The location and spread of the taxa can be phylogenetically

informative. Very large distance generally means more time elapsed since the last

contact. Note that simple geodesic distance is not sufficient though: geography and

hydrography, migratory patterns, diffusion rates and other factors will also need to

be considered to exploit this information effectively.

Non-sequential inheritance systems There is evidence for non-sequential inheritance

both in linguistics and biology. Syntax is an example of a linguistic structure that is

not easily accommodated by a sequential framework, yet it is known to change over

time. In biology, structural inheritance systems such as those involved in fungal

prions similarly escape a sequential encoding approach. In the two examples, the

change mechanisms are currently poorly understood, so using them for phylogenetic

inference seems premature.

Sequential summaries are still dominant for the purpose of phylogenetic inference, so

the discussion in this thesis is centered around this type of summary. Note however

that alternatives types of summary exist: morphological character (discrete, continuous

and functional), cognate matrices, parameter space representations, population genetic

representations such as SNP frequencies, and geographic diffusion models. Note also that

different types of summary can be combined.
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Chapter 3

Phylogenetic Exponential Families

As described in Section 2.8, generative models of evolution have traditionally been ap-

proached from the point of view of stochastic process theory. When simple models suffice,

this approach has been very successful, but there exists many situations where simple

models do not suffice. An important example, and the focus of this chapter, is diachronic

phonology, where sound changes involving contextual and branch-specific dependencies

are predominant.

In these more complicated situations, the stochastic process approach becomes less at-

tractive. One reason for this is of computational nature (the differential equations from

which marginal are extracted are difficult to solve), but there are also more fundamen-

tal limitations of the stochastic process approach that make them poor candidates for

diachronic phonology. These failings are explained in more detail in 3.2.6.

In this chapter, we propose a new approach to phylogenetic modeling, called Phyloge-

netic Exponential Families (PEF), that efficiently handles contextual and branch-specific

dependencies as well as long indels. Instead of depending on stochastic processes, the

approach directly represents branch-specific marginal mutation distributions in the form

of the canonical parameters of an exponential family over string transducers. These pa-

rameters are estimated from the data. By restricting the type of transducers allowed, this

can be done efficiently using a stochastic EM algorithm. PEFs allow easily incorporating

context, branch specific phenomena, parameter tying, and expert knowledge.

For concreteness, we first describe the model in the context of protolanguage reconstruc-

tion. After showing new algorithms for efficient learning and inference, we then present
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a series of experiments on protolanguage reconstruction. These experiments do not only

validate the methods, they are themselves important contributions: previous work in di-

achronic phonology has been limited to non-computational approaches, small datasets,

or both. In contrast, we reconstruct using hundreds of modern languages, enabling us to

attack new scientific questions.

We then apply the model to the biological setup in Section 3.5, gaining additional empir-

ical validation of the method on a protein alignment task.

3.1 Motivation

Reconstruction of the protolanguages from which modern languages are descended is

a difficult problem, and has occupied historical linguists since the late 18th century. To

solve this problem, linguists have developed a labor-intensive manual procedure called the

comparative method [31], drawing on information about the sounds and words that appear

in several modern languages to hypothesize protolanguage reconstructions even when no

written records are available, opening one of the few possible windows to prehistoric

societies [78, 14]. Reconstructions can help understanding many aspects of our past, such

as the migration patterns [68], scripts [93], and technological level [78] of early societies.

Comparing reconstructions across many languages can also help reveal the nature of

language change itself, identifying which aspects of languages are most likely to change

over time, a long-standing question in historical linguistics [58, 41].

Several factors contribute to the complexity of protolanguage reconstruction. Consider

for example the development of the French word chambre, /SambK/ in the International

Phonetic Alphabet (IPA), translated as ‘chamber’. In this case, we know that the word

is descended from the Latin /kamera/ ‘vault, arched chamber’. First, note that not only

substitutions of sounds (acting on Latin /k/ here) are needed to explain the data, but

also insertions and deletions (acting respectively on bilabial /b/ and final vowel in the

example). Moreover, simple correspondences such as Latin /k/ : French /S/ are often

compounds of several changes, in this case going through intermediate Old French /Ù/.

In general, it is not uncommon to find half a dozen or more changes acting in the history

of a single word form: see Figure 3.1(a) for an example from the Austronesian language

family.

In many cases, unlike the simple example of French and Latin, direct protolanguage evi-
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cb Language ‘road/path’ ‘leg/foot’

Thao saran

Maori ara

Puluw. yela pe!e

PulA yana pasa

Mar. yiyyal

Bajo lalan

Kwamera suatuk

Ghari sautu

Language ‘road/path’ ‘leg/foot’

Thao 1 0 0

Maori 1 0 0

Puluw. 1 0 1

PulA 1 0 1

Mar. 1 0 0

Bajo 1 0 0

Kwamera 0 1 0

Ghari 0 1 0

a
PAn : zalan

POc : jalan

PMi : ala

PCh : yala

Puluw. : yela PulA : yana ...

Thao : saran

Maori : ara

Bajo : lalan

Mar. : yiyyal

...

...

...

Figure 3.1. (a) A subtree of the Austronesian family along which the International Pho-
netic Alphabet representation for the word ‘road/path’ mutates. Modern, documented
languages are shown in red (Puluw.: Puluwatese, PulA: Pulo-Anna dialect of Sonsorol,
Mar.: Marshallese), while unattested, reconstructed protolanguages are shown in blue
(PAn: Proto-Austronesian, POc: Proto-Oceanic, PMi: Proto-Micronesian, PCh: Proto-
Chuukic). (b) The cognate set corresponding to this subtree. (c) The translation of this
information into the kind of binary matrix used in previous work, where the emphasis was
on inferring linguistic phylogenies rather than reconstructing languages. This representa-
tion omits the structure of the words themselves, and thus discards a significant amount
of information.

dence is not available. Fortunately, owing to the world’s considerable linguistic diversity,

it is still possible to propose reconstructions when written records are unavailable. This

is done by leveraging a large collection of extant languages descending from a common

protolanguage. Words across these modern languages can be organized into cognate sets,

containing words suspected to have a shared ancestral form (Figure 3.1(b)). The key

observation that makes reconstruction from these data possible is that many diachronic

phenomena can be accounted for by a limited set of regular sound changes, each applied

to the entire vocabulary of a specific language at a specific stages of its history [31]. For

example, other Latin words were subjected to the /k/ > /Ù/ place of articulation change,

such as Latin /kambire/ ‘barter’ which eventually became French /SãZ/ ‘change’. Still,

several factors obscure these regularities. In particular, sound changes are often con-

text sensitive: Latin /kor/ ‘heart’ with French reflex /kœK/ illustrates that the place of

articulation change occurred only before the vowel /a/.



3.2 Model specification 21

3.2 Model specification

In this section, we introduce PEFs, a model family capturing all of the phenomena dis-

cussed in the previous section. We start by a survey of related previous work and an

overview of the new method we propose.

3.2.1 Overview and previous work

Several groups have recently explored how methods from computational biology can be

applied to problems in historical linguistics, but this work has focused on identifying

the relationships between languages (as might be expressed in a phylogeny) rather than

reconstructing the languages themselves [25, 75, 20, 24, 65]. Much of this work has been

based on binary cognate matrices, which discard all information about the form that words

take, simply indicating whether they are cognate. To illustrate the difference between the

representation of the data used by these models and ours, it is useful to compare in

Figure 3.1 the form of the input data leveraged by our algorithm (b) versus the much

coarser binary cognate matrix (c) used by phylogenetic approaches. The models used for

phylogenetics do not have the resolution required to infer ancestral phonetic sequences,

and thus cannot be used to reconstruct protolanguages.

The limited resolution of the representations used in previous computational approaches

to historical linguistics has meant that almost all existing protolanguage reconstructions

have been done manually. However, in order to go deeper into the past and to get more

accurate reconstructions, large numbers of modern languages need to be analyzed. The

Proto-Austronesian language, for instance, has over 1200 descendant languages widely

dispersed throughout the islands of Southeast Asia, the Pacific Ocean, Madagascar and

continental Asia [56]. All of these languages could potentially increase the quality of

the reconstructions, but the combinatorial increase in the space of possibilities as each

language is added makes it hard to manually analyze more than a few languages simulta-

neously. The few previous systems for automated reconstruction of protolanguages [70, 44]

were also unable to handle this combinatorial increase, since they relied on deterministic

models of sound change and exact but intractable algorithms for reconstruction.

Using a probabilistic model of sound change and an approximate algorithm for inverting

this model allows us to reconstruct the lexicon and phonology of protolanguages given a

large collection of cognate sets from modern languages. We make the simplifying assump-
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tion that each word evolves along a tree-shaped network of languages. All internal nodes

in the tree, particularly the root, are languages whose word forms are not observed, and

the modern languages are at the leaves (see Figure 3.2). The output of our system is a

posterior probability distribution over derivations, represented by a collection of samples

d1, . . . , dn. Each sampled derivation di contains, for each cognate set, a reconstructed

transcription of the ancestral forms (see Figure 3.1(a)), as well as a list of sound changes

used to go from each word form in the tree to its parent. This representation is rich

enough to answer a wide range of queries that would normally be answered by carrying

out the comparative method manually, such as which sound changes were most prominent

along each branch of the tree.

Following previous work on multiple sequence alignment in computational biology, we

model evolution of discrete sequences using a probabilistic string transducer formalism

[33]. Unlike simple molecular indel models such as the TKF91 model [87], the param-

eterization of our model is very expressive: Mutation probabilities are context-sensitive

and each branch has its own set of parameters. This branch-specific parameterization

plays a central role in our system, allowing explicit modeling of sound changes. For

instance, in the example presented earlier, we would like the probability of the muta-

tion /k/ > /Ù/ to be automatically learned to be close to one in the branch going from

Latin to Old French and close to zero in the branch between Old French and French.

The importance of context-sensitive modeling is illustrated in the same example (the

sound change occurred only before the vowel /a/). This flexibility comes with the cost

of having literally millions of parameters to set, creating challenges not found in most

computational approaches to phylogenetics. Our algorithm learns these parameters in

an unsupervised fashion. The method is based on established principles from machine

learning and statistics—maximization of a regularized likelihood objective function using

a Monte Carlo Expectation Maximization algorithm [11, 89, 38]. We tied the parameters

across branches to learn cross-linguistic trends and overcome data sparsity (see 3.2.5).

3.2.2 Problem formulation

In this section, we formalize the problem we are interested in, i.e. automatic reconstruction

of protolanguages given their modern descendants. We aim to reconstruct the words in

these protolanguages, where each word is represented as a string of phonemes. We assume

that the relationships between languages are known, and are expressed in a phylogenetic

tree where modern languages are at the leaves of the tree and internal nodes correspond
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Figure 3.2. (a) The Austronesian phylogenetic tree used in our analyses. The colors
encode the most prominent sound change along each branch, as inferred automatically
by our system. Refer to the IPA chart on the top right for the key to the coding of
these changes. Note that the standard organization of the IPA chart into columns and
rows according to place, manner, height and backness is only for visualization purposes:
this information was not encoded in the model in this experiment, showing that the
model can recover realistic cross-linguistic sound change trends. All of the arcs in this
figure correspond to sound changes frequently used by historical linguists: sonorizations
/p/ > /b/ (1) and /t/ > /d/ (2); voicing changes (3,4); debuccalizations /f/ > /h/ (5)
and /s/ > /h/ (6); spirantizations /b/ > /v/ (7) and /p/ > /f/ (8); changes of place
of articulation (9,10); vowel changes in height (11) and backness (12) [31]. While this
visualization depicts sound changes as undirected arcs, the sound changes are actually
represented with directionality in our system. (b) Zooming in a portion of the Oceanic
languages, where the Nuclear Polynesian family (i) and Polynesian family (ii) are visible.
Several attested sound changes such as debuccalization to Maori and place of articulation
change /t/ > /k/ to Hawaiian [57] are successfully localized by the system.

to protolanguages that are ancestors of those languages. We also assume that the words

in modern languages have been identified as belonging to cognate sets, where all words

in a cognate set are descended from a common ancestor. A given cognate set can contain

words from only a subset of modern languages. The goal is to reconstruct the word in

each protolanguage that corresponds to each cognate set.
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3.2.3 Generative process

We start this section by introducing some notation. Let τ be a phylogenetic tree of

languages, where each language is linked to the languages that descended from it. In

such a tree, the modern languages, whose word forms will be observed, are the leaves of

τ . The most recent common ancestor of these modern languages is the root of τ . All

internal nodes of the tree (including the root) are protolanguages whose word forms are

not observed. Let L denote all languages, modern and otherwise. All word forms are

assumed to be strings Σ∗ in the International Phonetic Alphabet (IPA).

We assume that word forms evolve along the branches of the tree τ . However, it is usually

not the case that a word belonging to each cognate set exists in each modern language—

words are lost or replaced over time, meaning that words that appear in the root languages

may not have cognate descendants in the languages at the leaves of the tree. Formally,

we assume there to be a known list of C cognate sets. For each c ∈ {1, . . . , C} let L(c)

denote the subset of modern languages that have a word form in the c-th cognate set.

For each set c ∈ {1, . . . , C} and each language ` ∈ L(c), we denote the modern word form

by wc`. For cognate set c, only the minimal subtree τ(c) containing L(c) and the root is

relevant to the reconstruction inference problem for that set.

Our model of sound change is based on a generative process defined on this tree. From

a high-level perspective, the generative process is quite simple. Let c be the index of

the current cognate set, with topology τ(c). First, a word is generated for the root of

τ(c) using an (initially unknown) root language model (i.e. a probability distribution over

strings). The words that appear at other nodes of the tree are generated incrementally,

using a branch-specific distribution over changes in strings to generate each word from

the word in the language that is its parent in τ(c). While this distribution differs across

branches of the tree, making it possible to estimate the pattern of changes involved in

the transition from one language to another, it remains the same for all cognate sets,

expressing changes that apply stochastically to all words. The central challenge in accu-

rately reconstructing protolanguages is obtaining good estimates of these branch-specific

distributions, a problem that we consider in the next section.

In the remainder of this section, we clarify the exact form of the conditional distributions

over string changes, the distribution over strings at the root, and the parameterization of

this process.
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3.2.4 Distributions

The conditional distributions over pairs of evolving strings are specified using a lexicalized

stochastic string transducer [92], as illustrated in Figure 3.3 (b-d). We call this process

the mutation Markov chain. We describe the model in the case where each operation is

conditioned on only short context (a single character on the parent string, a single previous

character on the descendent string), but it can be easily extended to richer contexts.

Consider a language `′ evolving to ` for cognate set c. Assume we have a word form

x = wcl′ . The generative process for producing y = wcl works as follows. First, we

consider x to be composed of characters x1x2 . . . xn, with the first and last being a special

boundary symbol x1 = # ∈ Σ which is never deleted, mutated, or created. The process

generates y = y1y2 . . . yn in n chunks yi ∈ Σ∗, i ∈ {1, . . . , n}, one for each xi. The yi’s

may be a single character, multiple characters, or even empty. In the example shown in

Figure 3.3, all three of these cases occur.

To generate yi, we define a mutation Markov chain that incrementally adds zero or more

characters to an initially empty yi. First, we decide whether the current phoneme in the

top word t = xi will be deleted, in which case yi = ε as in the example of /s/ being deleted

shown in Figure 3.3. If t is not deleted, we chose a single substitution character in the

bottom word. This is the case both when /a/ is unchanged and when /N/ substitutes

to /n/. We write S = Σ ∪ {ζ} for this set of outcomes, where ζ is the special outcome

indicating deletion. Importantly, the probabilities of this multinomial can depend on both

the previous character generated so far (i.e. the rightmost character p of yi−1) and the

current character in the previous generation string (t). This multinomial decision acts as

the initial distribution of the mutation Markov chain.

We consider insertions only if a deletion was not selected in the first step. Here, we draw

from a multinomial over S , where this time the special outcome ζ corresponds to stopping

insertions, and the other elements of S correspond to symbols that are appended to yi.

In this case, the conditioning environment is t = xi and the current rightmost symbol p in

yi. Insertions continue until ζ is selected. In the example shown in Figure 3.3, we follow

the substitution of /N/ to /n/ with an insertion of /g/, followed by a decision to stop

that yi. We will use θS,t,p,` and θI,t,p,` to denote the probabilities over the substitution and

insertion decisions in the current branch `′ → `.

A similar process generates the word at the root ` of a tree, treating this word as a single

string y1 generated from a dummy ancestor t = x1. In this case, only the insertion prob-
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t a

a

ŋ

n g

i

i

s#

#

#

#

a

ŋ

n g

/angi/

/aŋi/

/taŋi/

/angi/

/aŋi/

/taŋi/

θS θI

x1 x2 x3 x7

y1 y2 y3 y7

x4

y4 y5 y6

x5 x6

ŋ

n g
1[Insert]

1[Subst]

1[(n g)@Kw]

1[ŋ⟶g@Kw]
1[ŋ⟶g]

1[(n)@Kw]

1[(g)@Kw]

Language Word form
Proto Oceanic /taNis/

Lau /aNi/
Kwara’ae /angi/

Taiof /taNis/

Table 1: A cognate set from the Austronesian dataset. All
word forms mean to cry.

constrain these changes. We encode such patterns
using markedness features, characterizing the inter-
nal phonotactic structure of each language. Faith-
fulness and markedness play roles analogous to the
channel and language models of a noisy-channel
system. We show that markedness features greatly
improve reconstruction quality, and we show how to
work with them efficiently.

2 Related Work

Our focus in this section is on describing the prop-
erties of the two previous systems for reconstruct-
ing ancient word forms to which we compare our
method. Citations for other related work, such as
similar approaches to using faithfulness and marked-
ness features, appear in the body of the paper.

In Oakes (2000), the word forms in a given proto-
language are reconstructed using a Viterbi multi-
alignment between a small number of its descendant
languages. The alignment is computed using hand-
set parameters. Deterministic rules characterizing
changes between pairs of observed languages are ex-
tracted from the alignment when their frequency is
higher than a threshold, and a proto-phoneme inven-
tory is built using linguistically motivated rules and
parsimony. A reconstruction of each observed word
is first proposed independently for each language. If
at least two reconstructions agree, a majority vote
is taken, otherwise no reconstruction is proposed.
This approach has several limitations. First, it is
not tractable for larger trees since the complexity of
the multi-alignment algorithm grows exponentially
in the number of languages. Second, determinis-
tic rules, while elegant in theory, are not robust to
noise: even in experiments with only four daughter
languages, a large fraction of the words could not be
reconstructed.

In Bouchard-Côté et al. (2008), a stochastic model
of sound change is used and reconstructions are in-

ferred by performing probabilistic inference over an
evolutionary tree expressing the relationships be-
tween languages. Use of approximate inference and
stochastic rules addresses some of the limitations of
(Oakes, 2000), but the resulting method is computa-
tionally demanding and consequently does not scale
to large phylogenies. The high computational cost
of probabilistic inference also limits the features that
can be included in the model (omitting global fea-
tures supporting generalizations across languages,
and markedness features within languages). The
work we present here addresses both of these issues,
with faster inference and a richer model allowing in-
creased scale and improved reconstruction.

3 Model

We start this section by introducing some notation.
Let τ be a tree of languages, such as the examples in
Figure 4 (c-e). In such a tree, the modern languages,
whose word forms will be observed, are the leaves
"1 . . . "m. All internal nodes, particularly the root,
are languages " whose word forms are not observed.
Let L denote all languages, modern and otherwise.
All word forms are assumed to be strings Σ∗ in the
International Phonological Alphabet (IPA).1

As a first approximation, we assume that word
forms evolve along the branches of the tree τ . How-
ever, it is not the case that each cognate set exists
in each modern langugage. Formally, we assume
there to be a known list of C cognate sets. For each
c ∈ {1, . . . , C} let L(c) denote the subset of mod-
ern languages that have a word form in the c-th cog-
nate set. For each set c ∈ {1, . . . , C} and each lan-
guage " ∈ L(c), we denote the modern word form
by wc!. For cognate set c, only the minimal subtree
τ(c) containing L(c) and the root is relevant to the
reconstruction inference problem for that set.

From a high-level perspective, the generative pro-
cess is quite simple. Let c be the index of the cur-
rent cognate set, with topology τ(c). First, a word
is generated for the root of τ(c) using an (initially
unknown) root language model (distribution over
strings). The other nodes of the tree are drawn in-
crementally as follows: for each edge "→ "′ in τ(c)

1The choice of a phonemic representation is motivated by
the fact that most of the data available comes in this form. Dia-
critics are available in a smaller number of languages and may
vary across dialects, so we discarted them in this work.

a b

f

c

de
..?

Figure 3.3. (a) A cognate set from the Austronesian dataset. All word forms mean to
cry. (b-d) The mutation model used in this chapter. (b) The mutation of POc /taNis/
to Kw. /angi/. (c) Graphical model depicting the dependencies among variables in one
step of the mutation Markov chain. (d) Active features for one step in this process. (e-f)
Comparison of two inference procedures on trees: Single sequence resampling (e) draws
one sequence at a time, conditioned on its parent and children, while ancestry resampling
(f) draws an aligned slice from all words simultaneously. In large trees, the latter is more
efficient than the former.
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abilities matter, and we separately parameterize these probabilities with θR,t,p,`. There is

no actual dependence on t at the root, but this formulation allows us to unify the param-

eterization, with each θω,t,p,` ∈ R|Σ|+1 where ω ∈ {R,S, I}. The probability distributions

represented by θ are thus the full specification of our probabilistic generative model.

3.2.5 Parameterization

Instead of directly estimating the transition probabilities of the mutation Markov chain

(which could be done, in principle, by taking them to be the parameters of a collection

of multinomial distributions) we reparameterize them using a curved exponential family.

This model specifies a distribution over transition probabilities via natural parameters

defined on a set of features that describe properties of the sound changes involved. These

features provide a more coherent representation of the transition probabilities, capturing

regularities in sound changes that reflect the underlying linguistic structure.

We used the following feature templates:

OPERATION identifies whether an operation in the mutation Markov chain is an inser-

tion, a deletion, a substitution, a self-substitution (i.e. of the form x→ y, x = y), or the

end of an insertion event. Examples in Figure 3.3 (d): 1[Subst] and 1[Insert].

MARKEDNESS consists of language-specific n-gram indicator functions for all symbols

in Σ. Only unigram and bigram features are used for computational reasons. Examples

in Figure 3.3 (d): the bigram indicator 1[(n g)@Kw] (Kw stands for Kwara’ae, a language

of the Solomon Islands), the unigram indicators 1[(n)@Kw] and 1[(g)@Kw].

FAITHFULNESS consists of indicators for mutation events of the form 1[x → y], where

x ∈ Σ, y ∈ S . Examples: 1[N → n], 1[N → n@Kw].

Feature templates similar to these can be found for instance in [16] and [8], in the context

of string-to-string transduction models used in computational linguistics. This approach

to specifying the transition probabilities produces an interesting connection to stochastic

optimality theory [23, 97], where a logistic regression model mediates markedness and

faithfulness of the production of an output form from an underlying input form.

Data sparsity is a significant challenge in protolanguage reconstruction. While the experi-

ments we present here use an order of magnitude more languages than previous computa-

tional approaches, the increase in observed data also brings with it additional unknowns
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in the form of intermediate protolanguages. Since there is one set of parameters for each

language, adding more data is not sufficient for increasing the quality of the reconstruc-

tion; it is important to share parameters across different branches in the tree in order to

benefit from having observations from more languages. We used the following technique

to address this problem: we augment the sufficient statistics to include the current lan-

guage (or language at the bottom of the current branch) and use a single, global natural

parameter vector instead of a set of branch-specific natural parameters. Generalization

across branches is then achieved by using features that ignore `, while branch-specific fea-

tures depend on `. For instance, in Figure 3.3 (d), 1[N → n] is an example of a universal

(global) feature shared across all branches while 1[N → n@Kw] is branch-specific. Simi-

larly, all of the features in operation, markedness and faithfulness have universal

and branch-specific versions.

Using these features and parameter sharing, the Phylogenetic Exponential Family (PEF)

defines the transition probabilities of the mutation process and root language model as

follows:

θω,t,p,` = θω,t,p,`(ξ;λ) =
exp{〈λ, f(ω, t, p, `, ξ)〉}

Z(ω, t, p, `, λ)
× µ(ω, t, ξ), (3.1)

where ξ ∈ S , f : {S, I, R} × Σ × Σ × L ×S → Rk is the sufficient statistics or feature

function, 〈·, ·〉 denotes inner product and λ ∈ Rk is the natural parameter vector. Here,

k is the dimensionality of the feature space of the PEF. Z and µ are the normalization

function and base measure respectively:

Z(ω, t, p, `, λ) =
∑
ξ′∈S

exp{〈λ, f(ω, t, p, `, ξ′)〉}

µ(ω, t, ξ) =


0 if ω = S, t = #, ξ 6= #

0 if ω = R, ξ = ζ

0 if ω 6= R, ξ = #

1 o.w.

Here, µ is used to handle boundary conditions.

3.2.6 Inadequacy of CTMC marginals for diachronic phonology

Before moving on to the experiments, we explain in this section the detailed motivations

for using PEF over the stochastic process approach of Section 2.8. The motivations can

be categorized as follows:
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Computational: While finding the marginals of a finite state space Continuous Time

Markov Chain (CTMC) is computationally easy (using the matrix exponential),

finding the marginals of a countably infinite state space CTMC (such as a CTMC

over strings) is more complicated. These marginals take the form of weighted trans-

ducers, but computing the weights of these transducers is difficult except in the

simplest cases. These weights are only expressed implicitly as the solution of a Par-

tial Differential Equation (PDE). Numerical methods have been used to solve them,

but with mixed empirical success [60].

Model limitations: Beyond these computational issues, models based on CTMCs are

inadequate to represent sound changes. This is because related sound changes often

occur in sequence within a short time. For example, in a single branch of a phyloge-

netic tree, both the change x > y and y > z might occur, but the change x > z may

or may not occur, depending on whether the sequence at hand is a push chain or a

drag chain (i.e. depending on the ordering of the two changes). Only the latter can

be modeled as the marginal of a (stationary) CTMC.1 We show in Chapter 6 that

non Markovian stochastic processes can represent sound changes, but PEFs have

the advantage of simplicity over these more complicated models.

3.3 Computational aspects

The generative model introduced in the previous section sets us up with two problems to

solve: estimating the values of the parameters characterizing the distribution on sound

changes on each branch of the tree, and inferring the optimal values of the strings repre-

senting words in the unobserved protolanguages. Section 3.3.1 introduces the full objective

function that we need to optimize in order to estimate these quantities. Section 4 describes

the Monte Carlo Expectation-Maximization algorithm we used for solving the learning

problem. We present the algorithm for inferring ancestral word forms in Section 3.3.4.

3.3.1 Full objective function

The generative model specified in Section 3.2 defines an objective function that we can

optimize in order to find good protolanguage reconstructions. This objective function

1Note also that push chains, the only variant that can be modeled by CTMC, are controversial [31].
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takes the form of a regularized log-likelihood, combining the probability of the observed

languages with additional constraints intended to deal with data sparsity. This objective

function can be written concisely if we let Pλ(·),Pλ(·|·) denote the root and branch prob-

ability models described in Section 3.2.4 (with transition probabilities given by the PEF),

I(c), the set of internal (non-leaf) nodes in τ(c), pa(`), the parent of language `, r(c), the

root of τ(c) and W (c) = (Σ∗)|I(c)|. The full objective function is then

Li(λ) =
C∑

c=1

log
∑

~w∈W (c)

Pλ(wc,r(c))
∏

`∈I(c)

Pλ(wc,`|wc,pa(`))−
||λ||22
2σ2

(3.2)

where the second term is a standard L2 regularization penalty intended to reduce over-

fitting due to data sparsity (we used σ2 = 1) [28]. The goal of learning is to find the value

of λ, the natural parameters of the PEF for the transition probabilities, that maximizes

this function.

3.3.2 A Monte Carlo Expectation-Maximization algorithm

Optimization of the objective function given in Equation 3.2 is done using a Monte Carlo

variant of the Expectation-Maximization (EM) algorithm [12]. This algorithm breaks

down into two steps, an E step in which the objective function is approximated and an M

step in which this approximate objective function is optimized. The M step is convex and

computed using L-BFGS [52] but the E step is intractable. See Chapter 4 for a detailed

discussion on the E step. The M step is described in the next section.

3.3.3 M step: Convex optimization of the approximate objec-

tive

In the M step, we update the natural parameters λ of the PEF defined in Equation 3.1. Let

C = (ω, t, p, `) denote local transducer contexts from the space C = {S, I, R}×Σ×Σ×L
of all such contexts. Let N(C, ξ) be the expected number of times the transition ξ was

used in context C in the preceding E-step. Given these sufficient statistics, the estimate of

λ is given by optimizing the expected complete (regularized) log-likelihood O(λ) derived

from the original objective function given in Equation 3.1,

O(λ) =
∑
C∈C

∑
ξ∈S

N(C, ξ)
[
〈λ, f(C, ξ)〉 − log

∑
ξ′

exp{〈λ, f(C, ξ′)〉}
]
− ||λ||2

2σ2
.
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We use L-BFGS [52] to optimize this convex objective function. L-BFGS requires the

partial derivatives

∂O(λ)

∂λj

=
∑
C∈C

∑
ξ∈S

N(C, ξ)
[
fj(C, ξ)−

∑
ξ′

θC(ξ′;λ)fj(C, ξ
′)
]
− λj

σ2

= F̂j −
∑
C∈C

∑
ξ∈S

N(C, ·)θC(ξ′;λ)fj(C, ξ
′)− λj

σ2
,

where F̂j =
∑

C∈C

∑
ξ∈S N(C, ξ)fj(C, ξ) is the empirical feature vector and N(C, ·) =∑

ξ N(C, ξ) is the number of times context C was used. F̂j and N(C, ·) do not depend

on λ and thus can be precomputed at the beginning of the M-step, thereby speeding up

each L-BFGS iteration.

3.3.4 Ancestral word form reconstruction

In the E step described in the preceding section, a posterior distribution π over ancestral

sequences given observed forms is approximated by a collection of samples X1, X2, . . . XS.

In this section, we describe how this distribution is summarized to produce a single output

string for each cognate set.

This algorithm is based on a fundamental Bayesian decision theoretic concept: Bayes

estimators. Given a loss function over strings Loss : Σ∗ × Σ∗ → [0,∞), an estimator is a

Bayes estimator if it belongs to the set:

argmin
x∈Σ∗

Eπ Loss(x,X) = argmin
x∈Σ∗

∑
y∈Σ∗

Loss(x, y)π(y).

Bayes estimators are not only optimal within the Bayesian decision framework, but also

satisfy frequentist optimality criteria such as minimaxity and admissibility [77]. In our

case, the loss we used is the Levenshtein [47] distance, denoted Loss(x, y) = Lev(x, y) (we

discuss this choice in more detail in Section 3.4.2).

Since we do not have access to π, but rather to an approximation based on samples, the

objective function we use for reconstruction rewrites as follows:

argmin
x∈Σ∗

∑
y∈Σ∗

Lev(x, y)π(y) ≈ argmin
x∈Σ∗

1

S

S∑
s=1

Lev(x,Xs)

= argmin
x∈Σ∗

S∑
s=1

Lev(x,Xs).
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The raw samples contain both derivations and strings for all protolanguages, whereas we

are only interested in reconstructing words in a single protolanguage. This is addressed

by marginalization, which is done in sampling representations by simply discarding the

irrelevant information. Hence, the random variables Xs in the above equation can be

viewed as being string-valued random variables.

Note that the optimum is not changed if we restrict the minimization to be taken on

x ∈ Σ∗ such that m ≤ |x| ≤ M where m = mins |Xs|,M = maxs |Xs|. However, even

with this simplification, optimization is intractable. As an approximation, we consid-

ered only strings built by at most k contiguous substrings taken from the word forms in

X1, X2, . . . , XS. If k = 1, then it is equivalent to taking the min over {Xs : 1 ≤ s ≤ S}.
At the other end of the spectrum, if k = S, it is exact. This scheme is exponential in k,

but since words are relatively short, we found that k = 2 often finds the same solution as

higher values of k.

3.4 Experiments in diachronic phonology

3.4.1 Overview

To test our system, we applied it to a large scale database containing information about

cognate sets for 637 Austronesian languages (135,845 lexical items) [26]. We show in

Figure 3.2 that the system can learn a large variety of realistic sound changes across

the Austronesian family. The Austronesian database can also be used to quantitatively

evaluate the performance of our system. Compared to phylogeny estimation systems,

which can generally be evaluated only using generated data, the performance of sequence

reconstruction tools can be quantitatively assessed on naturally occurring data by hold-

ing information about some modern languages in reserve and attempting to reconstruct

the words in those languages. The Levenshtein distance [47] between the held-out forms

and the reconstructed forms then provides a measure of the number of errors in these

reconstructions. We used this strategy to establish the superiority of our method over

previous reconstruction algorithms [70, 44], to show that using more languages helped re-

construction (see Figure 3(a)), and to demonstrate the stability of our learning procedure

(see Section 3.4.3).

To demonstrate the utility of this kind of large-scale reconstruction of protolanguages, we

used the output of our system to investigate an open question in historical linguistics. This
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Figure 3.4. Consequences of large-scale reconstruction of protolanguages. (a) Reconstruc-
tion error is a quantitative way of measuring the increase in resolution obtained by adding
more languages. Here we show the averaged protolanguage reconstruction error (as mea-
sured by the Levenshtein distance [47] to the manual reconstruction of Proto-Oceanic [1])
as a function of the number of daughter languages used by the model. Languages are
added in decreasing order of cognate overlap. All improvements are statistically signifi-
cant except for going from 32 to 64 languages. (b-c) Increasing the number of languages
we can reconstruct also allows us to answer questions in historical linguistics, such as the
effect of functional load on the probability of merging two sounds. The plots shown are
heat maps where the color encodes the log of the number of sound changes that fall into
a given 2-dimensional bin. Each sound change x > y is encoded as pair of numbers in
the unit interval, (l,m), where l is the estimated functional load of the pair and m is the
posterior fraction of the phoneme x that undergo a change to y (so that m = 1 means
unconditional merger, m = 0 means no merger occur for that pair x, y, and numbers
in between show conditional mergers). (b) Shows the data obtained from analyzing just
four languages, as in previous linguistic analyses [41]. (c) Shows the results of using 637
languages. In both cases the sound changes are identified by our automated system.

is the question of whether the amount of information provided by a sound is related to

the probability that sound will change over time. The hypothesis that these two variables

are related was put forward by André Martinet in 1955 [58], based purely on theoretical

considerations. Later, Robert King formalized Martinet’s conjecture and evaluated its

empirical support based on four languages [41]. He concluded that the “hypothesis [. . . ]

seems to be not much use [. . . ]”. This conclusion was criticized by several authors [32, 83]

on the basis of the small number of languages and sound changes considered. However,

no positive counter-evidence was provided by his critics. To produce such evidence, we

collected sound change statistics from the hundreds of languages in the Austronesian

database.

The main statistic that Martinet identified as potentially affecting sound change is called
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functional load [58]. This statistic formalizes the amount of information lost when a

language undergoes a certain sound change. Intuitively, the functional load of a pair of

phonemes reflects the proportion of words that are discriminated by those phonemes (see

Section 3.4.6 for a formal definition). If two phonemes only appear in words that are

differentiated from one another by at least one other sound, then one can argue that no

information is lost if those phonemes merge together, because no new ambiguous forms

can be created by the merger. The functional load of the phonemes increases as the

number of ambiguous words that would be created by merging them increases. Figure 3.4

shows the relationship between functional load and the probability of a merger in our

reconstruction of the changes in the Austronesian database. To convey the amount of

noise one could expect from a study with the number of language that King previously

used, we first show in Figure 3.4(a) the heat map visualization for four languages. Next,

we show the same plot for 637 languages in (b). Only in this latter setup is structure

clearly visible: most of the points with high merger posterior probability can be seen to

have comparatively low functional load.

This demonstration illustrates the strength of our system: automatic, en masse recon-

struction of accurate protolanguage word forms and sound change histories. The large-

scale analysis of the properties of ancient languages that this system produces goes far

beyond the capabilities of any previous automated system, and would require significant

amounts of manual effort by linguists. Furthermore, the system is in no way restricted

to applications like assessing the effects of functional load: It can be used as a tool to

investigate a wide range of questions about the structure and dynamics of languages, and

about the lives of our ancestors.

3.4.2 Evaluation metric

Evaluation of all methods was done by computing the Levenshtein distance [47] (uniform-

cost edit distance) between the reconstruction produced by each method and the re-

construction produced by linguists. The Levenshtein distance is the minimum number

of substitutions, insertions, or deletions of a phoneme required to transform one word

to another. While the Levenshtein distance misses important aspects of phonology (all

phoneme substitutions are not equal, for instance), it is parameter-free and still correlates

to a large extent with linguistic quality of reconstruction. It is also superior to held-out

log-likelihood, which fails to penalize errors in the modeling assumptions, and to measur-

ing the percentage of perfect reconstructions, which ignores the degree of correctness of
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each reconstructed word. We averaged this distance across reconstructed words to report

a single number for each method. We show in Table 3.2 the average word length in each

corpus. The statistical significance of all performance differences are assessed using a

paired t-test with significance level of 0.05.

3.4.3 Evaluating system performance

We used the Austronesian Basic Vocabulary Database [26] as the basis for a series of

experiments used to evaluate the performance of our system and the factors relevant to

its success. The database includes partial cognacy judgments and IPA transcriptions, as

well as a few reconstructed protolanguages. A reconstruction of Proto-Oceanic (POc)

originally developed by [1] using the comparative method was the basis for evaluation.

We used the cognate information provided in the database, automatically constructing

a global tree and set of subtrees from the cognate set indicator matrix M(`, c) = 1[` ∈
L(c)], c ∈ {1, . . . , C}, ` ∈ L. For constructing the global tree, we used bootstrapped neigh-

bor joining [22] with a metric based on cognate overlap, dc(`1, `2) =
∑C

c=1M(`1, c)M(`2, c).

We bootstrapped 1000 samples and formed an accurate (90%) consensus tree. The tree

obtained is not binary, but the AR inference algorithm scales linearly in the branching

factor of the tree, meaning that approximate inference remained possible (in contrast,

SSR scales exponentially [55]).

The first claim we verified experimentally is that having more observed languages aids

reconstruction of protolanguages. To test this hypothesis we added observed modern

languages in increasing order of distance dc to the target reconstruction of POc so that

the languages that are most useful for POc reconstruction are added first. This prevents

the effects of adding a close language after several distant ones being confused with an

improvement produced by increasing the number of languages.

The results are reported in Figure 3.5 (a). They confirm that large-scale inference is de-

sirable for automatic protolanguage reconstruction: reconstruction improved statistically

significantly with each increase except from 32 to 64 languages, where the average edit

distance improvement was 0.05.

We then conducted a number of experiments intended to assess the robustness of the

system, and to identify the contribution made by different factors it incorporates. First,

we ran the system with 20 different random seeds to assess the stability of the solutions
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Figure 3: Phylogenetic trees for three language families.
Clockwise, from the top left: Romance, Austronesian and
Proto-Malayo-Javanic.

formance of our system and the factors relevant to
its success. The database contained, as of Novem-
ber 2008, 124,468 lexical items from 587 languages
mostly from the Austronesian language family. The
database includes partial cognacy judgments and
IPA transcriptions, as well as a few reconstructed
proto-languages. A reconstruction of Proto Oceanic
(POc) originally developed by (Blust, 1993) using
the comparative method was the basis for evaluation.

We used the cognate information provided in the
database, automatically constructing a global tree2

and set of subtrees from the cognate set indicator
matrix M(!, c) = 1[! ∈ L(c)], c ∈ {1, . . . , C}, ! ∈
L. For constructing the global tree, we used the
implementation of neighbor joining in the Phylip
package (Felsenstein, 1989). The distance ma-
trix used the Hamming distance of cognate indi-
cators, dc(!1, !2) =

∑C
c=1 M(!1, c)M(!2, c). We

bootstrapped 1000 samples and formed an accurate
(90%) consensus tree. The tree obtained is not bi-
nary, but the AR inference algorithm scales linearly
in the branching factor of the tree (in contrast, SSR
scales exponentially (Lunter et al., 2003)).

The first claim we verified experimentally is that
having more observed languages aids reconstruction
of proto-languages. To test this hypothesis we added
observed modern languages in increasing order of
distance dc to the target reconstruction of POc so
that the languages that are most useful for POc re-
construction are added first. This prevents the ef-
fects of adding a close language after several distant

2The dataset included a tree, but as of November 2008, it
was generated automatically and “has [not] been updated in a
while.”
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Figure 4: Mean distance to the target reconstruction of
proto Oceanic as a function of the number of modern lan-
guages used by the inference procedure.

ones being confused with an improvement produced
by increasing the number of languages.

The results are reported in Figure 4. They con-
firm that large-scale inference is desirable for auto-
matic proto-language reconstruction: going from 2-
to-4, 4-to-8, 8-to-16, 16-to-32 languages all signifi-
cantly helped reconstruction. There was still an av-
erage edit distance improvement of 0.05 from 32 to
64 languages, altough this was not statistically sig-
nificant.

We then conducted a number of experiments in-
tended to assess the robustness of the system, and to
identify the contribution made by different factors it
incorporates. First, we ran the system with 20 dif-
ferent random seeds and assessed the stability of the
solution found. In each cases, learning was stable
and helded performances. See Figure 5.

Next, we found that all of the following ablations
significantly hurts reconstruction: using a flat tree
in which all languages are equidistant from the re-
constructed root and from each other instead of the
consensus tree, dropping the markedness features,
disabling sharing across branches and dropping the
faithfulness features. The results of these experi-
ments are shown in Table 2.

For comparison, we also included in the same
table the performance of a semi-supervised system
trained by K-fold validation. The system was ran
K time, with disjoint 1 − K−1 of the POc. words
given to the system (as observations in the graph-

Condition Edit dist.
Unsupervised full system 1.87
-FAITHFULNESS 2.02
-MARKEDNESS 2.18
-Sharing 1.99
-Topology 2.06
Semi-supervised system 1.75

Table 2: Effects of ablation of various aspects of our
unsupervised system on mean edit distance to proto
Oceanic. -Sharing corresponds to the subset of the fea-
tures in OPERATION, FAITHFULNESS and MARKEDNESS
that condition on the current language, -Topology corre-
sponds to using a flat topology where the only edges in
the tree connect modern languages to proto Oceanic. The
semi-supervised system is described in the text. All dif-
ferences (compared to the unsupervised full system) are
statistically significant.

ical model) for each run. It is semi-supervised in
the sense that gold reconstruction for many internal
nodes are not available (such as the common ances-
tor of Kw. and Lau in Figure 6).3

Figure 6 shows the results of a concrete run over
32 languages, zooming in to a pair of the Solomonic
languages and the cognate set from Table 1. In the
example shown, the reconstruction is as good as the
oracle, though off by one character (the final /s/ is
not present in any of the 32 inputs and therefore
is not reconstructed). The diagrams show, for both
the global and the local features, the expectations
of each substitution superimposed on an IPA sound
chart, as well as a list of the top changes. Darker
lines indicate higher counts. This run did not use
natural class constraints, but it can be seen that lin-
guistically plausible substitutions are learned. The
global features prefer a range of voicing changes,
manner changes, adjacent vowel motion, and so on,
including mutations like /s/ to /h/ which are common
but poorly represented in a naive attribute-based nat-
ural class scheme. On the other hand, the features lo-
cal to the language Kwara’ae (Kw.) pick out the sub-
set of these changes which are active in that branch,
such as /s/→/t/ fortition.

3We also tried a fully supervised system where a flat topol-
ogy is used so that all of these latent internal nodes are avoided;
but it did not perform as well.
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Figure 5: Mean distance to the target reconstruction of
POc as a function of the EM iteration.

5.2 Comparisons against other methods

The first two competing methods, PRAGUE and
BCLKG, are described in Oakes (2000) and
Bouchard-Côté et al. (2008) respectively and sum-
marized them in Section 1. Neither approach scales
well to large datasets. In the first case, the bottleneck
is the complexity of computing multi-alignments
without guide trees and the vanishing probability
that independent reconstructions agree. In the sec-
ond case, the problem comes from slow mixing of
the inference algorithm and the unregularized pro-
liferation of parameters. For this reason, we built a
third baseline that scales well in large datasets.

This third baseline, CENTROID, computes the
centroid of the observed word forms in Leven-
shtein distance. Let L(x, y) denote the Lev-
enshtein distance between word forms x and
y. Ideally, we would like the baseline to
return argminx∈Σ∗

∑
y∈O L(x, y), where O =

{y1, . . . , y|O|} is the set of observed word forms.
Note that the optimum is not changed if we restrict
the minimization to be taken on x ∈ Σ(O)∗ such
that m ≤ |x| ≤ M where m = mini |yi|,M =
maxi |yi| and Σ(O) is the set of characters occurring
in O. Even with this restriction, this optimization
is intractable. As an approximation, we considered
only strings built by at most k contiguous substrings
taken from the word forms in O. If k = 1, then it
is equivalent to taking the min over x ∈ O. At the
other end of the spectrum, if k = M , it is exact.
This scheme is exponential in k, but since words are
relatively short, we found that k = 2 often finds the
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Figure 3.5. Left: Mean distance to the target reconstruction of POc as a function of the
number of modern languages used by the inference procedure. Right: Mean distance and
confidence intervals as a function of the EM iteration, averaged over 20 random seeds and
ran on four languages.

found. In each case, learning was stable and accuracy improved during training. See

Figure 3.5 (b).

Next, we found that all of the following ablations significantly hurt reconstruction: using

a flat tree (in which all languages are equidistant from the reconstructed root and from

each other) instead of the consensus tree, dropping the markedness features, dropping

the faithfulness features, and disabling sharing across branches. The results of these

experiments are shown in Table 3.1.

For comparison, we also included in the same table the performance of a semi-supervised

system trained by K-fold validation. The system was run K = 5 times, with 1−K−1 of

the POc words given to the system as observations in the graphical model for each run.

It is semi-supervised in the sense that target reconstructions for many internal nodes are

not available in the dataset (for example the common ancestor of Kwara’ae (Kw.) and

Lau in Figure 3.6 (b)), so they are still not filled.2

Figure 3.6 (b) shows the results of a concrete run over 32 languages, zooming in on a

pair of the Solomonic languages and the cognate set from Figure 3.3 (a). In the example

shown, the reconstruction is as good as the oracle (described in Section 3.4.4), though

2We also tried a fully supervised system where a flat topology is used so that all of these latent internal
nodes are avoided; but it did not perform as well—this is consistent with the -Topology experiment of
Table 3.1.
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Condition Edit dist.

Unsupervised full system 1.87

-faithfulness 2.02
-markedness 2.18
-Sharing 1.99
-Topology 2.06

Semi-supervised system 1.75

Table 3.1. Effects of ablation of various aspects of our unsupervised system on mean edit
distance to POc. -Sharing corresponds to the restriction to the subset of the features in
operation, faithfulness and markedness that are branch-specific, -Topology corre-
sponds to using a flat topology where the only edges in the tree connect modern languages
to POc. The semi-supervised system is described in the text. All differences (compared
to the unsupervised full system) are statistically significant.

off by one character (the final /s/ is not present in any of the 32 inputs and therefore is

not reconstructed). In (a), diagrams show, for both the global and the local (Kwara’ae)

features, the expectations of each substitution superimposed on an IPA sound chart, as

well as a list of the top changes. Darker lines indicate higher counts. This run did not use

natural class constraints, but it can be seen that linguistically plausible substitutions are

learned. The global features prefer a range of voicing changes, manner changes, adjacent

vowel motion, and so on, including mutations like /s/ to /h/ which are common but

poorly represented in a naive attribute-based natural class scheme. On the other hand,

the features local to the language Kwara’ae pick out the subset of these changes which

are active in that branch, such as /s/ > /t/ fortition.

3.4.4 Comparison against other methods

The first competing method, prague was introduced in [70]. In this method, the word

forms in a given protolanguage are reconstructed using a Viterbi multi-alignment between

a small number of its descendant languages. The alignment is computed using hand-set

parameters. Deterministic rules characterizing changes between pairs of observed lan-

guages are extracted from the alignment when their frequency is higher than a threshold,

and a proto-phoneme inventory is built using linguistically motivated rules and parsimony.

A reconstruction of each observed word is first proposed independently for each language.

If at least two reconstructions agree, a majority vote is taken, otherwise no reconstruction

is proposed. This approach has several limitations. First, it is not tractable for larger
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trees, since the time complexity of their multi-alignment algorithm grows exponentially

in the number of languages. Second, deterministic rules, while elegant in theory, are not

robust to noise: even in experiments with only four daughter languages, a large fraction

of the words could not be reconstructed.

Since prague does not scale to large datasets, we built a second, more tractable baseline.

This new baseline system, centroid, computes the centroid of the observed word forms

in Levenshtein distance. Let Lev(x, y) denote the Levenshtein distance between word

forms x and y. Ideally, we would like the baseline system to return:

argmin
x∈Σ∗

∑
y∈O

Lev(x, y),

where O = {y1, . . . , y|O|} is the set of observed word forms. This objective function is

motivated by Bayesian decision theory [77], and shares similarity to the more sophisticated

Bayes estimator described in Section 3.3.4. However it replaces the samples obtained by

MCMC sampling by the set of observed words. Similarly to the algorithm of Section 3.3.4,

we also restrict the minimization to be taken on x ∈ Σ(O)∗ such that m ≤ |x| ≤ M and

to strings built by at most k contiguous substrings taken from the word forms in O, where

m = mini |yi|,M = maxi |yi| and Σ(O) is the set of characters occurring in O. Again, we

found that k = 2 often finds the same solution as higher values of k. The difference was

in all the cases not statistically significant, so we report the approximation k = 2 in what

follows.

We also compared against an oracle, denoted oracle, which returns

argmin
y∈O

Lev(y, x∗),

where x∗ is the target reconstruction. We will denote it by oracle. This is superior

to picking a single closest language to be used for all word forms, but it is possible for

systems to perform better than the oracle since it has to return one of the observed word

forms. Of course, this scheme is only available to assess system performance on held-out,

it cannot make new predictions.

We performed the comparison against [70] on the same dataset and experimental con-

ditions as used in the original paper (see Table 3.2). The Proto-Malayo-Javanic (PMJ)

dataset was compiled by [69], who also reconstructed the corresponding protolanguage.

Since prague is not guaranteed to return a reconstruction for each cognate set, only 55

word forms could be directly compared to our system. We restricted comparison to this
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Figure 3.6. (a) A visualization of two learned faithfulness parameters: on the top, from
the universal features, on the bottom, for one particular branch. Each pair of phonemes
have a link with grayscale value proportional to the expectation of a transition between
them. The five strongest links are also included at the right. (b) A sample taken from our
POc experiments (see text). (c-d) Phylogenetic trees for two language families: Malayo-
Javanic and Oceanic.
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Comparison prague centroid fl-small fl-big

Protolanguage PMJ POc PAn PAn
Heldout (prop.) 79 (1.0) 243 (1.0) 162 (1.0) 261 (1.0)
Modern languages 4 70 4 541
Cognate sets 179 1321 241 6323
Observed words 470 10783 570 54347
Mean word length 5.0 4.5 4.4 4.8

Table 3.2. Experimental setup: number of held-out proto-word from (absolute and rela-
tive), of modern languages, cognate sets and total observed words.

subset of the data. This favors prague since the system only proposes a reconstruction

when it is certain. Still, our system outperformed prague, with an average distance of

1.60 compared to 2.02 for prague. The difference is marginally significant, p = 0.06,

partly due to the small number of word forms involved.

To get a more extensive comparison, we considered the hybrid system that returns

prague’s reconstruction when possible and otherwise back off to the Sundanese (Snd.)

modern form, then Madurese (Mad.), Malay (Mal.) and finally Javanic (Jv.) (the op-

timal back-off order). In this case, we obtained an edit distance of 1.86 against 2.33, a

statistically significant difference.

Since prague does not scale well to large datasets, we also compared against oracle

and centroid in a large-scale setting. Specifically, we compare to the experimental

setup on 64 modern languages used to reconstruct POc described before. Encouragingly,

while the system’s average distance (1.49) does not attain that of the oracle (1.13), we

significantly outperform the centroid baseline (1.79).

3.4.5 Incorporating prior linguistic knowledge

The model also supports the addition of prior linguistic knowledge. This takes the form

of feature templates with more internal structure. We performed experiments with an

additional feature template:

STRUCT-FAITHFULNESS is a structured version of faithfulness, replacing x and y

with their natural classes NCβ(x) and NCβ(y) where β indexes types of classes, ranging

over {manner, place, phonation, isOral, isCentral, height, backness, roundedness}. This

feature set is reminiscent of the featurized representation of [43].
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We compared the performance of the system with and without struct-faithfulness

to check if the algorithm can recover the structure of natural classes in an unsupervised

fashion. We found that with 2 or 4 observed languages, faithfulness underperformed

struct-faithfulness, but for larger trees, the difference was not significant. faith-

fulness even slightly outperformed its structured cousin with 16 observed languages.

3.4.6 Functional load experiments

In this section, we describe how we used our system to investigate an open question in

historical linguistic related to a statistical property of sound changes called functional

load. Functional load is a concept introduced by Martinet [58]. Its purpose is to formalize

the amount of information lost when a language undergoes a certain sound change. The

functional load of a pair of phonemes interpolates between the concepts of complementary

and contrastive distributions. Two phonemes are in complementary distribution if the

environment in they occur is disjoint. They are in contrastive distribution if both are found

in the same environment with a change in meaning. In one extreme, if two phonemes in

complementary distribution are merged, then one can argue that no information is lost,

because no new homophones are created by the merger.

The role of functional load in language change has been debated for a long time. Mar-

tinet conjectured that functional load should be considered as a factor affecting language

change. His argument was based on the premise that communication is the main function

of language, and therefore some measure of information should be considered as a poten-

tial factor determining the fitness of languages undergoing change. Martinet, however,

did not perform an empirical evaluation—his argument was based purely on theoretical

considerations.

Later, King [41] formalized Martinet’s conjecture and evaluated its empirical support

based on four languages. He concluded that “the functional load hypothesis [. . . ] seems

to be not much use [...]”. This conclusion was criticized by Hockett [32] and Surendran

et al. [83] on the basis of the small number of languages and sound changes considered.

Indeed, within the four languages studied by King, only 16 mergers are found. However,

no positive counter-evidence was provided by his critics.

We revisited the question of whether Martinet’s conjecture is valid, using experiments

performed on a considerably larger set of languages. The results support the view that
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King’s study was based on too few languages to be conclusive. Importantly, it provides

statistical counter-evidence supporting the hypothesis formulated by Martinet.

In his 1967 article, King defined the following conjecture:

weak point hypothesis: “If all else is equal, sound change is more likely to
start within oppositions bearing low functional load than within oppositions
bearing high functional loads.”

To measure functional load quantitatively, we used the same estimator as the one used

by King. King’s definition is based on associating a context vector cx,` to each phoneme

and language. For a given language with N(`) phoneme tokens, these context vectors are

defined as follows: first, fix an enumeration order of all the contexts found in the corpus,

where the context is defined as a pair of phonemes, one at the left and one at the right of

a position. Element i in this enumeration will correspond to component i of the context

vectors. Then, the value of component i in context vector cx,` is set to be the number

of time phoneme x occurred in context i and language l. Finally, King’s definition of

functional load FL`(x, y) is the dot product of the two induced context vectors:

FL`(x, y) =
1

N(`)2
〈cx,`, cy,`〉 =

1

N(`)2

∑
i

cx,`(i)× cy,`(i),

where the denominator is simply a normalization that insures FL`(x, y) ≤ 1. Note that

if x and y are in complementary distribution in language `, then the two vectors cx,` and

cy,` are orthogonal. The functional load is indeed zero in this case.

Earlier in this chapter, we have shown heat maps where the color encodes the log of the

number of sound changes that fall into a given 2-dimensional bin. Each sound change

x > y is encoded as pair of numbers in the unit interval, (l̂, m̂), where l̂ is an estimate

of the functional load of the pair and m̂ is the posterior fraction of the instances of the

phoneme x that undergo a change to y. We now describe how l̂, m̂ were estimated. The

posterior fraction m̂ for the merger x→ y between languages pa(`) → ` is easily computed

from the same expected sufficient statistics used in Section 3.3.3 for parameter estimation:

m̂`(x→ y) =

∑
p∈ΣN(S, x, p, `, y)∑

p′∈Σ

∑
y′∈ΣN(S, x, p′, `, y′)

.

The estimate of the functional load requires additional statistics, i.e. the expected context

vectors ĉx,` and expected phoneme token counts N̂(`), but these can be readily extracted
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from the output of the MCMC sampler. The estimate is then:

l̂`(x, y) =
1

N̂(`)2
〈ĉx,`, ĉy,`〉.

Finally, the set of points used to construct the heat map is:{(
l̂pa(`)(x, y), m̂`(x→ y)

)
: ` ∈ L− {root}, x ∈ Σ, y ∈ Σ, x 6= y

}
.

3.5 Experiments in computational biology

One advantage of using the exponential families described in this chapter is that the

method can be easily ported from the linguistic domain to biology. The only modification

needed is to change the set of features.

Biological datasets give us a valuable opportunity to evaluate aspects of the models not

tested by the linguistic data alone. In particular, for short sequences over a large alphabet,

the main difficulty is ancestral reconstruction, and aligning the characters of the words

is relatively easy. On the other hand, sequence alignment of biological sequences is much

more challenging because of the large lengths and smaller alphabet sizes. There exists

well established benchmarks for the task of Multiple Sequence Alignment (MSA), which

we use in Section 3.5.2 to establish a new validation for the PEF model.

3.5.1 Features

All of the experiments in this section use the three features defined in Section 3.2.5, i.e.

operation, markedness, and faithfulness, as well as the following two extra features

based on proteomic expert knowledge:

HYDROPHOBIC-MODELING Large indels are less frequent in the hydrophobic core of

globular proteins, since these stretches often correspond to the folded core. To detect

hydrophobic cores, we used the heuristic described in [17]. The features themselves are

indicator functions of insertion or deletion conjoined with whether the current location is

being part of a hydrophobic stretch or not. A context of size five is needed to accommodate

these features, but as described in Section 4.2, running time performance is not negatively

impacted by these large contexts with AR, the inference algorithm described in the next
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Sum of Pairs score (SP)

BAliBASE protein group PEF Handel [33] Handel-EM [34] Clustal [29]

test1/ref1 0.85 0.77 0.83 0.88
test1/ref2 0.77 0.69 0.71 0.79
test1/ref3 0.74 0.67 0.76 0.79

Table 3.3. Average SP scores for PEF and other MSA systems.

chapter. This contrast to previous approximate inference approaches (for example, SSR,

also reviewed in the next chapter).

AFFINE-GAPS The length distribution of consecutive indels has a much fatter tail than

the geometric tail predicted by simple models such as TKF91 (see Section 2.7). For

example, a virus can insert long stretches in a genome in a single atomic event. This has

been modeled using affine gap penalties, where “opening” a gap is more expensive than

extending an already opened gap. This motivates having two sets of features, one for

point indels, and one for indels of length more than one.

3.5.2 Multiple Sequence Alignment Results

We performed experiments on the task of protein multiple sequence alignment, for which

the BAliBASE [86] dataset provides a standard benchmark. BAliBASE contains annota-

tions created by biologists using secondary structure as alignment cues.

We report the Sum of Pairs (SP) scores, a standard evaluation score for this task. Sum

of Pairs measures edge recall, i.e. the fraction of the annotated alignments links that are

identified by the algorithm. Only a subset of the data, the “core blocks” is annotated and

used to compute this score. See [15], for instance, for the details.

In all three BAliBASE subdirectories considered, the PEF’s SP performance was higher

than Handel’s [33], a probabilistic system base on the TKF91 stochastic process. We also

compared PEF to a subsequent version of Handel described in [34], where amino acid

states are split to model rate heterogeneity, a feature that we did not implemented in

our system—we foresee no conceptual difficulty in doing so, but we leave this for future

work. Even without state splitting, ours system still outperformed [34] in two of the three

subdirectories considered.
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All probabilistic systems underperformed Clustal [29], a popular heuristic. One possibil-

ity for this gap is the numerous hidden variables introduced in generative approaches,

resulting in a situation where exact inference in an inferior model may be preferable to

approximate inference in a better model. Note however that Clustal’s parameters were

extensively tuned on BAliBASE, creating an unfair advantage over our unsupervised sys-

tem.

One should keep in mind the main goal motivating PEF: performing ancestral sequence

reconstructions. Since Clustal lacks derivation hidden variables, it cannot perform this

task jointly with MSA. Conversely, we show in Chapter 5 that if one only cares about

MSA performance, PEFs can be modified to achieve state-of-the art MSA performance.
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Chapter 4

Inference in Phylogenetic

Exponential Families

In the preceding chapter, we have delayed the discussion of an important point: how

to compute or approximate the E step of the learning algorithm presented in Section .

Recall that in the E step, the problem is to compute the posterior over the Phylogenetic

Exponential Family (PEF) model given a collection of observed strings. This will be the

topic of this chapter.

As it is often the case, the distribution associated with the posterior expectation is known

only up to a normalization constant Z, which is hard to compute. Throughout this

chapter, we assume that the parameters of the PEF have been fixed (in practice, these

parameters come from the previous M step). In this setup, computing Z is equivalent to

summing over all the accepting paths of a weighted automaton (we will review this fact

in the next section). More generally, with fixed parameters, all the inference problems in

PEF models (computing moments, sampling, estimating data likelihood) can be cast in

the language of weighted transducers and automata [63].

The chapter is divided into two sections, covering exact and approximate inference, re-

spectively. The contributions in exact inference are mostly theoretical: we show a new

transducer formulation based on elementary operations on indexed matrices (tensor prod-

uct and GLn field operations), and use it to obtain drastically simplified transducer al-

gorithms. As in previous exact transducer inference approaches, these algorithm have

exponential running time in the number of taxa at the leaves, but they form a better

foundation for the second section on approximate inference.
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4.1 Exact inference

We start this section by stating formally what are the quantities we seek to compute.

Given a set of parameters θ, a PEF model can be cast into a tree-shaped graphical

model where nodes are string-valued random variables X representing a fragment of DNA,

RNA or protein of a species. Edges denote evolution from one species to another, with

conditional probabilities derived from the stochastic model described in Section 3.2.4.

Usually, only the terminal nodes Y are observed, while the internal nodes are hidden.

The interpretation is that the sequence at the root is the common ancestor of those at the

terminal nodes, and it subsequently evolved in a branching process following the topology

of the tree.

Usually, distributions in discrete graphical models are specified by exhaustive tables of

real numbers. In this case, such representation is impossible since the state space, the

set of string, is infinite. Instead, the distribution at the root of the graphical model is

specified by a probabilistic automaton, and the conditional distributions for the edges are

specified using string transducers.

The distribution of interest is X|Y , and more precisely, the goal is to compute E[T (X)|Y ],

where T is the sufficient statistic of PEF.

The initial step toward this goal are the same as in finite state-space directed graphical

model: we first convert the directed graphical model into an equivalent factor graph,

where indicator functions are added to the leaves (See Figure 4.1). In the factor graph,

factors connected to one variable are weighted automata, and factors connected to two

variables, weighted transducers. We explain this construction in more detail in the next

section, reviewing the concepts of weighted automata and transducers at the same time.

As shown in [16], casting the problem into a factor graph makes it possible to general-

ize the sum-product algorithms to string-valued random variables. Sum-product allows

us to get all the expected sufficient statistics with as few probabilistic computations as

possible. The sum-product algorithm itself works in the same way, the difference comes

in the way the intermediate factors are represented and in the way the primitive proba-

bilistic operations are implemented. We introduce these operations in Section 4.1.2, and

then present our contributions in Sections 4.1.4 and 4.1.5, which is a series of simpler

algorithms for implementing these primitive probabilistic operations, and an analysis of

these algorithms.
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4.1.1 Transducers and factor graphs

Weighted automata and transducers are simply automata and transducer where each arc

in the transition diagram (a complete graph over a set of states Q) is associated with an

emission-specific non-negative weight. Here we use the mealy model (i.e. where emissions

are defined on edges rather than states) and assume without loss of generality that there

is a single start and stop state. In automata, emissions are elements of Σ̂ = Σ∪ {ε}, and

in transducers, elements of Σ̂2 (pairs of symbols). The weight function is therefore a map

w : Σ̂ × Q2 → [0,∞) for automata, and w : Σ̂2 × Q2 → [0,∞) for transducers. A valid

path is a sequence of states qi ∈ Q and emissions α̂i ∈ Σ̂ starting at start and ending at

stop: p = q0, α̂1, q1, α̂2, q2, . . . , α̂n, qn. The weight of a path, w(p) is the product of the arc

weights. The normalization of a transducer or automata is the sum of all the valid paths’

weights.

In an automaton, a path emits a string s ∈ Σ∗ if s is equal to the concatenation of the

non-epsilon emissions produced along the path ŝ = α̂1 ◦ · · · ◦ α̂n ∈ Σ̂∗, in which case we

write s ≡ ŝ. Let also the weight assigned to a string s ∈ Σ∗, w(s), be defined as the sum

of the weights of all the paths emitting s.

Similarly, in transducers, a path emits a pair of strings s, s′ if s is the concatenation of

the each of the first components of the emissions (removing the epsilons), and s′ of each

of the second components. The weight assigned to a pair of strings w(s, s′) is then the

sum of the weights of all the paths emitting s, s′.

To exemplify the concepts of weighted transducers and automata, we show the state

diagrams for the building blocks of the factor graph behind PEF inference. To simplify

the notation, we will assume in this section that there are no markedness features: θω,t,p,` =

θω,t,p′,` for all p, p′. Relaxing this assumption simply involves increasing the size of the

state space of the weighted transducers and automata to encode the previously generated

symbol. This is conceptually and computationally easy, but the automata are easier to

visualize in the restricted setting.

There are three types of factors to go over (see Figure 4.1: there is an automaton at

the root modeling the initial string distribution; there are transducers capturing string

mutation probabilities between pairs of species connected by an edge in the original phy-

logenetic tree; and finally, there is one automaton attached to each leaf, which is an

indicator functions on the observed strings.

The root factor simply generates strings of geometric distributed length with specified n-
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H. Sapiens

Hylobates

M. Fuscata

M. Sylvanus

root / MCRA

time

Figure 4.1. Factor graph construction (right) derived from a phylogenetic tree (left):
in green, the automaton at the root that models the initial string distribution; in blue,
the transducers capturing string mutation probabilities; and in red, the automata at the
leaves, which are indicator functions on the observed strings.

gram expectations. We show a simple example in Figure 4.2 where the length distribution

has mean 1/(1− q− p), and the proportion of ‘a’ symbols versus ‘b’ symbols is p/q. Note

that to obtain a probabilistic automaton from a weighted automaton, one simply divides

the weights by the normalization of the automaton.

We now turn to the problem of specifying the weighted transducers encoding the binary

factors. The weights of these binary transducers should precisely encode the probabilities

assigned to pairs of strings by the mutation Markov chain of Section 3.2.4. In order to

do this properly, it is important to avoid overcounting transducer paths. Historically,

weighted transducers have been motivated by the problem of finding maximum weight

path, in which case overcounting is not a problem and can be safely ignored. However

in our probabilistic framework, where summing over paths is needed to normalize the

posterior distribution, avoiding overcounting is important.

We start by showing in Figure 4.4 a transducer that would be an appropriate implementa-

tion of the mutation Markov chain in the case of maximization (i.e. the path of maximum

weight coincides with the MLE of the mutation Markov chain), but that is not correct

for computing summations. The problem is that any path containing, for example, one

consecutive insertion and deletion will be counted at least twice: one where the insertion

is performed first, and one where the deletion is performed first. This violates the de-
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a:p

b:q

ε:1-q-p

Figure 4.2. An initial (prior) string distribution automaton. We are using the standard
graphical automata representation, where states are dashed circles (to differentiate them
from nodes in graphical models), and arcs are labelled by emissions and weights. Zero
weight arcs are omitted. The start and stop state are indicated by inward and outward
arrows. We show here a simple example where the length distribution has mean 1/(1 −
q − p), and the proportion of ‘a’ symbols versus ‘b’ symbols is p/q.

a:1 b:1 a:1

Figure 4.3. An automaton encoding a string indicator function. In this example, only
the string ‘aba’ is accepted (i.e. the string ‘aba’ is the only string emitted with positive
weight).
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(a, ε):p2

(ε,a):p3

(a,a):p1

Figure 4.4. An example of a mutation transducer that gives positive weights to the same
pairs of strings as the mutation Markov chain of Section 3.2.4. We show the example for
the case where there is a single character in the alphabet. Note that this transducer would
be an appropriate implementation in the case of maximization (i.e. the path of maximum
weight coincides with the MLE of Section 3.2.4), but it is not correct for computing
summations.

scription of the mutation Markov chain, where insertions need to be performed first by

construction.

Fortunately, a simple modification of the transducer achieves this, shown in Figure 4.5.

Now that we have described the factor graph, we turn to the high-level description of the

exact PEF inference algorithm: the sum-product algorithm generalized to string-valued

factor graphs.

4.1.2 Sum-product on string-valued factor graphs

As it is often done in standard treatments of finite-state space graphical model, we start

by describing the elimination algorithm. This section covers elementary material, but is

necessary to setup the precise terminology needed for the following sections.

Going from the elimination algorithm to sum-product is easy in trees: it only involves

executing the elimination algorithm twice while keeping track of the eliminated factors.

We therefore focus without loss of generality on the elimination algorithm on string-valued
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(a,a):p1

(a, ε):p2

(ε,a):p3

(a, ε):p 2

(ε,a):p3

(ε, ε):1 (ε,a):p3

Figure 4.5. A correct mutation transducer. Note that there is a bijection between deriva-
tions in the mutation Markov chain and accepting paths in this transducer.

factor graphs.1. The main goal is to identify what fundamental probabilistic operations

are needed.

Given a set of query nodes, the elimination algorithm proceeds iteratively as follows (see

Figure 4.6 for an example): At each step, there is a factor graph containing all the query

nodes plus a set S of other nodes to marginalize. As long as S is non-empty, the algorithm

picks one leaf factor or node and eliminate it. We call the operation corresponding to a

factor elimination pointwise product , and to variable elimination, marginalization (shown

in Figure 4.7). We define two kinds of pointwise products: those where the variable

connected to the eliminated factor is also connected to a binary factor (first kind, shown

in Figure 4.8), and the others (second kind, shown in Figure 4.9).

The invariant of the elimination algorithm is the joint marginal distribution of the query

nodes. This constrains the properties of the operations. If we let w(i) denote the weight

function of automaton or transducer i, as shown in Figures 4.7, 4.8, and 4.9, then the

constraints can be easily shown to be:

marginalization: w(m)(s) =
∑

s′∈Σ∗

w(1)(s, s′) ∀s ∈ Σ∗

pointwise product (first kind): w(p)(s) = w(1)(s) · w(2)(s) ∀s ∈ Σ∗

pointwise product (second kind): w(p)(s) = w(1)(s, s′) · w(2)(s) ∀s, s′ ∈ Σ∗

1More precisely on the elimination algorithm in the case where the query nodes are not separated by
a non-query node in the original graphical model.
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(1)

(2)

(3)

(4)
(5)

Figure 4.6. (1) and (3) are pointwise operation of the first kind; (2) and (4) are marginal-
ization operations; and (5) is a pointwise product of the second kind.

... ...

Mα,β Mα
(m)

Figure 4.7. Marginalization operation
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...

Mα
(1) Mα

(2)

...

Mα
(p)

Figure 4.8. Pointwise product of the first kind

...

Mα,β
(1)

Mα
(2)

...

...

...

Mα,β
(p)

Figure 4.9. Pointwise product of the second kind
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We will show in Section 4.1.4 how we can implement the operations to satisfy these prop-

erties, but before doing this, we first describe a convenient way of representing transducers

in the next section.

4.1.3 Matrix representation of transducers and automata

The representation we use in this section originates from [81], where it was introduced

in the context of formal power series, and therefore, of automata. Here we will need the

extension to transducer, which we describe after reviewing the basic representation theory

definitions.

We can assume without loss of generality that its states are labelled by the integers

1, . . . , K, and that state 1 is the unique start state, and K, the unique stop state. As in

[81] we view automata as a character-indexed collections of K ×K matrices,(
Mα̂ ∈ MK ([0, 1])

)
α̂∈Σ̂

There is one matrix in this collection for each type of emission, i.e. for each character in

the alphabet, and entry Mα(k, k′) encodes the weight of transitioning from states k to k′

while emitting α.

While epsilons are convenient when defining new automata, some of the algorithms in the

next section assume that there are no epsilon transitions of positive weights. Fortunately,

converting an automata defined with the matrices as above into a new automaton with

epsilon-free transition matrices M ′
α is easy:2

M ′
α =

{
0 if α = ε

M∗
εMα o.w.

whenever M∗ = (1−M)−1 exists. The proof is in Appendix A.1, where we also show that

there is a simple closed form for the normalizer of any automata as well:

Z = φ

∑
α∈Σ̂

Mα̂

∗  ,

where φ(M) = M(1, K).

2We assume without loss of generality that the last emission of positive weight path is never an
epsilon—this can be done by adding a boundary symbol at the end of each string.
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Transducers can be viewed as a collection of matrices as well, but this time the index runs

over pairs of symbols (α̂, β̂) ∈ Σ̂:(
Mα̂,β̂ ∈ MK ([0, 1])

)
α̂,β̂∈Σ̂

Note that in the context of transducers, epsilons need to be kept in the basic representa-

tion, otherwise transducers could not give positive weights to pairs of strings where the

input has a different length than the output.

4.1.4 Implementation of the probabilistic operations

We now describe how the operations of marginalization and pointwise product can be

succinctly expressed by the matrix formulation. Some of the results in this section are

known (again, in the language of formal series). In particular a version of our result

on pointwise products of the first kind appears in [51], but this previous work lacks the

important epsilon-free condition, as well as a treatment of transducers needed to perform

pointwise products of the second kind.

We start by the easier operation, marginalization. Referring to the notation of Figure 4.7,

we show in Appendix A.2 that:

M
(m)
α̂ =

∑
β̂∈Σ̂

Mα̂,β̂.

The pointwise multiplication operations are simple as well, but there is a subtlety involving

the epsilon transitions. Consider the following candidate for the first type of pointwise

product (shown in Figure 4.8):

M
(p)
α̂ = {M (1)

α̂ |M (2)
α̂ }, (4.1)

where {A|B|C| . . . } denotes the tensor product A⊗ B ⊗ C ⊗ · · · . Note that we avoided

the standard tensor product notation ⊗ because of a notation conflict with the notation

of the automaton and transducer literature, in which ⊗ denotes multiplication in an

abstract semi-ring (the generalization of normal multiplication, · used in this thesis). The

operator ⊗ is also often overloaded in the literature to mean the product or concatenation

of automata or transducers, which is not the same as the pointwise product as defined

here.
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Note that Equation (4.1) is incorrect if one of the transducers has non-zero epsilon tran-

sitions. To see why, note that for a given string, say ab ∈ Σ, computing φ applied to the

the right hand side of Equation (4.1) yields terms such as

w(1)(q1, a, q2, ε, q3, b, q4) · w′(2)(q′1, a, q
′
2, ε, q

′
3, b, q

′
4),

with qi ∈ Q, q′i ∈ Q′ but no terms such as

w(1)(q1, a, q2, b, q3) · w′(2)(q′1, a, q
′
2, ε, q

′
3, b, q

′
4).

This is a problem since both types of terms are found when applying φ to the left hand

side of Equation (4.1). We show in Appendix A.2 that this problem disappears when both

automata are epsilon-free.

We now turn to pointwise products of the second kind, where an automaton is pointwise

multiplied with a transducer. The difference is that all epsilons cannot be removed from

a transducer: without emissions of the form (α, ε), (ε, α), transducers would not have

the capacity to model insertions and deletions. Fortunately, there is a work around: as

long as the automaton M (2) is epsilon free, we show in Appendix A.2 that pointwise

multiplications of the second kind can be implemented as follows:

M
(p)

α̂,β̂
=


{
M

(1)

α̂,β̂

∣∣M (2)
α̂

}
if α̂ 6= ε{

M
(1)

α̂,β̂

∣∣I} o.w

Now that we have a simple expression for all of the operations required by the elimination

(or sum-product) algorithm on string-valued graphical models, we turn to the problem of

analyzing the time complexity of exact inference in string-valued graphical models.

4.1.5 Efficiency analysis

In this section, we analyze the computational complexity of the formulae obtained in the

previous section. The main result is that for a fixed number of taxa, the exact E step of

the algorithm of Section 4 is polynomial in the length of the sequences involved, however

the cost also grows exponentially in the number of taxa. We also get a new proof for the

running time of exact inference in the TKF91 model, as well as an improved running time

for general string-valued, tree-shaped graphical models.

Let us look at the matrix implementation of the three operations defined in the previous

sections. Clearly, the most expensive operations are to compute epsilon closures (which
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... ...
...

Mα
(1) Mα

(L)Mα
(2)

Figure 4.10. The first two steps of the elimination algorithm on the star tree.

involve taking the inverse of a matrix) and tensor products. We will denote the complexity

degree of matrix multiplication by d. For tensor products, if A is a n×n matrix and B is

m×m, then {A|B} is a (nm)× (nm) matrix, and so it can take up to m2n2 operation to

form the tensor product of dense matrices. Fortunately, sparsity patterns can be exploited

in both cases as we will see shortly. More precisely: we will use the following two results:

First, if A has k nonzero entries, and B, l nonzero entries, then forming the tensor product

takes time kl. Second, if A is also assumed to be triangular, then solving Ax = b takes

time O(k). We will assume throughout this section that matrices are stored in a sparse

representation.

Note that in the elimination algorithm, the automata/transducer’s matrices produced by

a pointwise multiplication are fed into other pointwise products, augmenting the size of

the automata/transducer matrix representations. Fortunately, part of this growth can be

efficiently managed using sparsity and properties of tensor products. We therefore seek an

expression for the total running time, i.e. taking into account the growth of the size of the

intermediate factor matrix representations. To simplify the notation, we cover here the

case of a star-shaped tree—removing this assumption only affect the running time up to

a constant that does not depend on the sequence lengths or the number of taxa. To make

the problem formulation concrete and concise, assume that we seek the normalization

Z of the star-shaped, string-valued factor graph with L leaves. In the context of exact

inference, the normalization problem is representative of the other tasks such as taking

expectations or extracting samples.

Initially, the all the factors are of constant size, except for the factors at the leaves, which

are of linear size (by that, we means that the matrices are O(N × N), where N is the

geometric length of the observed sequences). In Figure 4.10, we show the result of the

first two steps of the elimination algorithm. The operations involved in this first step are

pointwise products of the second kind, (and therefore involve tensor products) however
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the size of the initial pairwise factors is constant (see Figure 4.5), so the intermediate

factors produced, M (1), . . . ,M (L) are of linear size. The second step is a marginalization,

which does not increase the size of the matrices. Omitting the factor at the root (which

is also of constant size, and therefore will not change the asymptotic running time), we

get:

Z = φ

∑
α̂∈Σ̂

{(
M (1)

ε

)∗
M

(1)
α̂

∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗
M

(L)
α̂

}∗

(4.2)

Computing the right-hand-side naively would involve inverting a NL by NL matrix, and

worse, even if the matrices M
(l)
α̂ were sparse,

(
M

(l)
ε

)∗
would not be guaranteed to be

sparse as well, so the full cost of inversion would have to be paid. This would lead to

a slow running time of NLd. In the rest of this section, we show how the running time

can be decreased to NL using properties of tensor products and weak assumptions on the

factors. Moreover, we will show that these assumptions are always satisfied in PEFs and

in many other graphical models of interest.

We will need the following basic properties:

Lemma 1. Let A(l) be m× k matrices, and B(l) be k × n matrices. We have:{
A(1)B(1)

∣∣∣∣ . . . ∣∣∣∣A(L)B(L)

}
=

{
A(1)

∣∣∣∣ . . . ∣∣∣∣A(L)

}{
B(1)

∣∣∣∣ . . . ∣∣∣∣B(L)

}
Lemma 2. If A(l) are invertible, then:{(

A(1)
)−1
∣∣∣∣ . . . ∣∣∣∣ (A(L)

)−1
}

=

{
A(1)

∣∣∣∣ . . . ∣∣∣∣A(L)

}−1

Lemma 3. If A is a m× k invertible matrix, and B is a k × n matrix such that A− B

is invertible, then (
A−1B

)∗
= A(A−B)−1
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Applying these to Equation (4.2), and letting M̄ = I −M , we obtain:

Z = φ

∑
α̂∈Σ̂

{(
M (1)

ε

)∗
M

(1)
α̂

∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗
M

(L)
α̂

}∗

= φ

({(
M (1)

ε

)∗ ∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗}∑
α̂∈Σ

{
M

(1)
α̂

∣∣∣∣ . . . ∣∣∣∣M (L)
α̂

})∗

= φ

{M̄ (1)
ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}({
M̄ (1)

ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}
−
∑
α̂∈Σ

{
M

(1)
α̂

∣∣∣∣ . . . ∣∣∣∣M (L)
α̂

})−1


= φ
(
A(A−B)−1

)
,

where A =

{
M̄

(1)
ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}
, and B =

∑
α̂∈Σ

{
M

(1)
α̂

∣∣∣∣ . . . ∣∣∣∣M (L)
α̂

}
.

Naively, this still has running time NLd, but the advantage of this equation is that it allows

us to exploit sparsity patterns. If we can show that the relevant automata and transducer’s

matrices are upper triangular sparse matrices (i.e. N by N matrices with O(N) non zero

entries), then it is easy to show that A and B would then be upper triangular as well,

with only O(NL) non-zero components. Furthermore, if we let C = (A − B)−1, we can

see that only its last column x is actually needed to compute Z. At the same time, we

can write (A − B)x = [0, 0, . . . , 0, 1], which can be solved using the back substitution

algorithm, getting an overall running time of O(NL).

We will call a transducer or automaton triangular if its states can be ordered such that

all its matrices are upper triangular. The question now is whether the matrices M
(l)
α̂

are triangular. Observe first that among the original factors, the indicator factors at the

leaves are triangular, but not the other ones (both the root automaton and the mutation

transducer have cycles of positive weights, implying that they do not have a triangular

matrix representation). Fortunately, the triangular property is not only preserve by the

factor graph operations, they are also contagious :

Lemma 4. If a transducer is triangular, then marginalizing it will create a triangular au-

tomaton. Moreover, the outcome of a pointwise product (either of the first or second kind)

is guaranteed to be triangular whenever at least one of its input automaton or transducer

is triangular.

While this lemma is trivial to prove, it has important consequences on the cost of exact

inference: the running time of O(NL) holds not only for PEF, but also more generally
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whenever there are triangular automata at the leaves of the graphical model. We get as

a corollary a more general proof that exact inference in star-shaped TKF91 phylogenetic

tree can be done in time O(NL).

4.1.6 Summary

In this section, we have introduced a new framework for approaching exact inference in

PEFs, and more generally, in string-valued graphical models. While conceptually simple

and general, the framework does not yield polynomial-time inference as a function of the

number of taxa studied. This should not come as a surprise: the PEF parameters can

be set so that the problem of inference is equivalent to computing the partition function

of a non-planar Ising model.3 Consequently, the topic of the next section is approximate

inference.

We conclude by making the observation that exact inference algorithms are needed as

subroutines in most approximate inference algorithms (in particular, in those that follow).

We therefore expect that the techniques developed in this section have the potential to

make an impact, by simplifying the analysis and implementation of inference algorithms

for string-valued graphical models.

4.2 Approximate inference

In this section, we introduce a new approximate inference algorithm that exploits the

specific structure of PEF. After giving an high-level overview of the algorithm (reviewing

related work at the same time, and comparing our algorithm to this previous art), we give

a formal description and prove that it is asymptotically consistent.

3This is done as follows: assume that there are only two symbols in the alphabet, set the insertion
and deletion transducer parameters to zero, and use the faithfulness and markedness features to simulate
the spin agreement potentials. Each point has five neighbors (previous and next characters in the current
word, parent character, and two descendent characters). The graph can be shown to be non-planar by
embedding copies of K3,3.
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4.2.1 Overview

In PEFs, the string-valued graphical model introduced in the previous section can be mis-

leading. It only encodes one type of independence relation, those between generations.

There is another important structure that is not exploited by the exact inference algo-

rithms. Informally, indel events that operate at the beginning of the sequences should not

affect, for instance, those at the end. However, because alignments between the sequences

are unknown in practice, it is difficult to exploit this structure in a principled way.

In many previous works [100, 59, 48], the following heuristic approach is taken to perform

inference on the hidden nodes (refer to Figure 4.11): First, a guide tree (d) and a multiple

sequence alignment (a) (a transitive alignment between the characters in the sequences of

the modern species) are computed using heuristics [6, 29]. Second, the problem is cast into

several easy subproblems as follows. For each equivalence class in the multiple sequence

alignment (called a site, corresponding to a column in Figure 4.11(b)), a new graphical

model is created with the same tree structure as the original problem, but where there

is exactly one character in each node rather than a string. For nodes with a character

in the current equivalence class, the node in this new tree is observed, the rest of the

nodes are considered as unobserved data (Figure 4.11(c)). Note that the question marks

are not the gaps commonly seen in linearized representations of multiple alignments, but

rather phantom characters. Finally, each site is assumed independent of the others, so

the subproblems can be solved efficiently by running the forward-backward algorithm on

each site.

This heuristic has several problems, the most important being that it does not allow

explicit modeling of insertions and deletions (indel), which are frequent in real biological

data and play an important role in evolution [88]. If indels are included in the probabilistic

model, there is no longer a deterministic notion of site on which independence assumptions

can be made. This complicates inference substantially, making inference intractable, as

discussed in the Section 4.1.

Holmes et al. [33] developed an approximate Markov chain Monte Carlo (MCMC) infer-

ence procedure for the TKF91 model. Their algorithm proceeds by sampling the entire

sequence corresponding to a single species conditioning on its parent and children (Fig-

ure 4.11(e)). Doing so is possible using techniques such as those described in Section ??.

Since all the taxa but one are held fixed, exact inference on these simpler conditional is

cubic.
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We will call this type of kernel a Single Sequence Resampling (SSR) move. Unfortunately,

chains based exclusively on SSR still have performance problems.

There are two factors behind these problems. The first factor is a random walk behavior

that arises in tall chains found in large or unbalanced trees [33, 3]: initially, the indel

events resampled at the top of the tree are independent of all the observations. It takes

time for the information from the observations to propagate up the tree. The second

factor is the computational cost of each SSR move, which is O(N3) with the TKF91

model and binary trees. For long sequences, this becomes prohibitive, so it is common

to use a “maximum deviation pruning strategy” (i.e., putting a bound on the relative

positions of characters that mutate from one to the other) to speed things up [3].

4.2.2 Ancestry resampling

In this section, we present a novel MCMC kernel for phylogenetic indel models that we

refer to as Ancestry Resampling (AR). AR addresses both of the efficiency and accuracy

problems that arise for SSR. Another remarkable property with AR is that the running

time does not grow when features with large contexts are used. This is especially impor-

tant for the large-context features introduced and used in the experiments on biological

data of Section 3.5.

The intuition behind the AR approach is to use an MCMC kernel that combines the

advantages of the two approaches described above: like the forward-backward algorithm

in the site-independent case, AR always directly conditions on some part of the observed

data, but, like SSR, it is capable of resampling the indel history. This is illustrated in

Figure 4.11(f).

We now define some auxiliary variables that will be useful in the next section. Between

each pair of nodes a, b ∈ V connected by an edge and with respective strings x,y ,

we define an alignment random variable: its values are bipartite matchings between the

characters of the strings x and y. Links in this alignment denote survival of a character

(allowing zero or more substitutions). Note that this alignment is monotonic: if character

i in x is linked to character j in y, then the characters i′ > i in x can only be unlinked

or linked to a character with index j′ > j in y. The random variable that consists of the

alignments and the strings for all the edges and nodes in the phylogenetic tree τ will be

called a derivation.

Note also that a derivation D defines another graph that we will call a derivation graph.
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Figure 4.11. Comparison of different approaches for sampling MSAs: (a,b,c,d) heuristics
based on site independence; (e) Single Sequence Resampling; (f) Ancestry Resampling.
The boxes denote the structures that can be sampled or integrated out in one step by
each method.

Its nodes are the characters of all the strings in the tree. We put an edge between

two characters x, y in this graph iff two properties hold. Let a, b ∈ V be the nodes

corresponding to the strings from which respectively x, y belongs to. We put an edge

between x, y iff (1) there is an edge between a and b in E and (2) there is a link between

x, y in the alignment of the corresponding strings. Examples of derivation graphs are

shown in Figure 4.12.

The approximate inference algorithm we propose, Ancestry Resampling (AR), is based

on the Metropolis-Hastings (MH) framework. While the SSR kernel resamples the whole

sequence corresponding to a single node, AR works around the difficulties of SSR by joint

resampling of a “thin vertical slice” (Figure 4.11(f)) in the tree that is composed of a

short substring in every node. As we will see, if we use the right definition of vertical

slice, this yields a valid and efficient MH algorithm.

We will call one of these “thin slices” an ancestry A, and we now discuss what its definition

should be. Some care will be needed to ensure irreducibility and reversibility of the

sampler.

We first augment the state of the AR sampler to include the derivation auxiliary variable

described in Section 2.4. Let D be the current derivation and let x be a substring of one

of the terminal nodes, say in node e. We will call x an anchor . The ancestry will depend

on both a derivation and an anchor. The overall MH sampler is a mixture of proposal

distributions indexed by a set of anchors covering all the characters in the terminal strings.
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Each proposal resamples a new value of A(D,x) given the terminal nodes and keeping

A(D,x)c frozen.

We first let A0(D,x) be the set of characters connected to some character in x in the

derivation graph of D (see Figure 4.12(a)). This set A0(D,x) is not a suitable definition

of vertical slice, but will be useful to construct the correct one. It is unsuitable for

two reasons. First, it does not yield an irreducible chain, as illustrated in same figure,

where nine of the characters of this sample (those inside the dashed curve) will never

be resampled, no matter which substrings of the terminal node is selected as anchor.

Secondly, we would like the vertical slices to be contiguous substrings rather than general

subsequences to ease implementation.

We therefore modify the definition recursively as follows. See Figure 4.12(b) for an illus-

tration of this definition. For i > 0, we will say that a character token y is in Ai(D,x) if

one of the following conditions is true:

1. y is connected to Ai−1(D,x),

2. y appears in a string · · · y′ · · · y · · · y′′ · · · such that both y′ and y′′ are in Ai−1(D,x),

3. y appears in a string · · · y′ · · · y · · · such that y′ is in Ai−1(D,x) and x is a suffix,

4. y appears in a string · · · y · · · y′ · · · such that y′ is in Ai−1(D,x) and x is a prefix.

Then, we define A∞(D,x) := ∪∞i=0Ai(D,x). In words, a symbol is in A∞(D,x) if it is

linked to an anchored character through the alignments, or if it is “squeezed” between

previously connected characters. Cases 3 and 4 handle the boundaries of strings. With

this property, irreducibility could be established with some conditions on the anchors, but

it turns out that this definition is still not quite right.

With A∞, the main problem arises when one tries to establish reversibility of the chain.

This is illustrated in Figure 4.12(d). In this example, the chain first transitions to a

new state by altering the circled link. One can see that with the definition of A∞(D,x)

given above, from the state 4.12 (e), the state in 4.12 (d) is now unreachable by the same

resampling operator, the reason being that the substring labeled z in the figure belongs

to the frozen part of the state if the transition is visited backwards.

While there exist MCMC methods that are not based on reversible chains [13], we prefer

to take a simpler approach: a variation on our definition solves the issue, informally by

taking vertical slices A(D,x) to be roughly the “complement of the ancestry taken on the
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Figure 4.12. (a): the simple guide tree used in this example (left) and the correspond-
ing sequences and alignments (right). (a,b,c): the definitions of A0,A∞,A respectively
are shaded (the “selected characters”). (d,e): An example showing the non-reversibility
problem with A∞.

complement of the anchor”. More precisely, if x = x′xx′′ is the string at the anchor node

e, we let the resampled section to be A(D,x) := (A∞(D,x′)∪A∞(D,x′′))c This creates

slightly thicker slices (Figure 4.12(c)) but solves the reversibility problem. We will call

A(D,x) the ancestry of the anchor x. With this definition, the proposal distribution can

be made reversible using a MH acceptance ratio; it is also irreducible.

The problem of resampling a single slice decomposes along the tree structure τ , but an

unbounded number of indels could occur a priori inside the thin slice. It may seem at

the first glance that we are back at our initial problem: sampling from a tree-structured

directed graphical model where the support of the space of the nodes is a countably infinite

space. But in fact, we have made progress: the distribution is now concentrated on very

short sequences. Indeed, the anchors x can be taken relatively small (we used anchors of

length 3 to 5 in our experiments).

Another important property to notice is that given an assignment of the random variable

A(D,x), it is possible to compute efficiently and exactly an unnormalized probability

for this assignment. The summation over the possible alignments can be done using a

standard quadratic dynamic program known in its max version as the Needleman-Wunsch

algorithm [66].
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4.2.3 Cylindric proposal

We now introduce the second idea that will make efficient inference possible: when resam-

pling an ancestry given its complement, rather than allowing all possible strings for the

resampled value of A(D,x), we restrict the choices to the set of substitutes that are close

to its current value. We formalize closeness as follows: Let a1, a2 be two values for the

ancestry A(D,x). We define the cylindric distance as the maximum over all the nodes e

of the Levenshtein edit distance between the substrings in a1 and a2 at node e. Fix some

positive integer m. The proposal distribution consider the substitution ancestry that are

within a ball of radius m centered at the current state in the cylindric metric. The value

m = 1 worked well in practice.

Here the number of states in the tree-structured dynamic program at each node is poly-

nomial in the lengths of the strings in the current ancestry. A sample can therefore be

obtained easily using the observation we have made that unnormalized probability can be

computed.4 Next, we compute the acceptance ratio, i.e.:

min

{
1,

P(ap)×Q(ac|ap)

P(ac)×Q(ap|ac)

}
,

where ac, ap are the current and proposed ancestry values and Q(a2|a1) is the transition

probability of the MH kernel, proportional to P(·), but with support restricted on the

cylindric ball centered at a1.

4.2.4 Efficiency results

We performed experiments to measure the efficiency of AR. Since the focus is not on

absolute accuracy in this section, all the algorithms do inference on the TKF91 model.

The hypothesis discussed in Section 4.2.1, i.e. that AR is faster than SSR since it avoid

a random walk along the phylogenetic tree to propagate indels, predicts that the com-

putational gap between SSR and AR should grow as the size of the phylogenetic tree

augmented.

To test this, we have generated data from TKF91 along increasingly large trees. Giving

4What we are using here is actually a nested dynamic programs, meaning that the computation of a
probability in the outer dynamic program (DP) requires the computation of an inner, simpler DP. While
this may seem prohibitive, this is made feasible by designing the sampling kernels so that the inner DP
is executed most of the time on small problem instances. We also cached the small-DP cost matrices.
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Figure 4.13. Sum-of-Pairs score (SP) and Column Score (CS) as a function of the depth
of the generating trees.

both algorithms the true parameters and a fixed time budget, we then measured the SP

score for each.

This prediction is confirmed as illustrated in Figure 4.13. For short trees, the two al-

gorithms perform equally, SSR beating AR slightly for trees with three nodes, which is

not surprising since SSR actually performs exact inference in this tiny topology. How-

ever, as trees get taller, the task becomes more difficult, and only AR maintains good

performance.

Note that in these experiments, we have not applied a marginalization technique used

Handel, which sums over the nucleotide identity of the internal sequences. Since this

technique cannot be applied in the PEF models (because of markedness interactions), we

have not to implement this feature in these experiments.
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Chapter 5

Multiple Alignment Random Fields

In this chapter, we focus on the task of multiple sequence alignment (MSA), which allows

us to use a simpler model family, or more precisely, a family of models with less hidden

variables. We call these models multiple alignment random fields (MARF).

The consequence of removing hidden variables (the internal nodes in a phylogenetic tree),

is the introduction of a loopy interactions between sets of observed sequences, contrasting

with the acyclic interactions found in the model of Chapter 3. We describe in this chapter

a new algorithm to perform inference in this loopy graph. In contrast to the methods of

Chapter 4 (and also to much of the phylogenetic inference literature), we use a variational

methods to formulate this algorithm.

The technique we use to create this variational algorithm applies much more broadly than

MSA, covering a wide class of combinatorial inference problems. We present it from this

general point of view in Section 5.4. We also apply it to MSA in Section 5.4.7, obtaining

state-of-the-art MSA performances.

5.1 Model

The construction of MARF is based on the observation that a MSA is fully specified

by the collection of all pairwise alignments. Given L sequences, there are
(

L
2

)
pairwise

alignments, and we introduce one random variable for each of these pairwise alignments.

Note that the converse does not hold: given an arbitrary collection of pairwise alignments,

there is not necessarily a global MSA that has these pairwise alignments as marginals.
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trans-con

align-con

poset-con

Figure 5.1. MARF graphical model.

For example, no MSA can have the following marginal pairwise alignments: x linked with

y in a first pairwise alignment, y linked with z in a second one, but z not linked with x

in a third one.

More generally, let us look at the properties that characterize all consistent pairwise

alignments (a collection of pairwise alignments is consistent if there is a MSA with these

pairwise alignment marginals).

Consider first only two sequences of length M and N respectively. A pairwise sequence

alignment is a bipartite graph on the characters of the two sequences (where each bipartite

component has the characters of one of the sequences) constrained to be monotonic: if a

character at index m ∈ {1, . . . ,M} is aligned to a character at index n ∈ {1, . . . , N} and

another character at index m′ > m is aligned to index n′, then we must have n′ > n. A

multiple alignment between K sequences of lengths N1, N2, . . . , NK is a K-partite graph,

where the k-th components’ vertices are the characters of the k-th sequence, and such

that the following three properties hold (see Figure 5.2):

ALIGN-CON: Each pair of components forms a pairwise alignment as described above.

TRANS-CON: The alignments are transitive, i.e., if character c1 is aligned to c2 and c2 is

aligned to c3 then c1 must be aligned to c3.

POSET-CON: The alignments satisfy a partial order property: there exists a partial order

p on the connected components of the graph with the property that if C1 <p C2 are two

distinct connected components and c1 ∈ C1, c2 ∈ C2 are in the same sequence, then the

index of c1 in the sequence is smaller than the index of c2.

Let us look at a factor graph constructed from these constraints (see Figure 5.1). The
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Figure 5.2. (a) An example of a valid multiple alignment between three sequences. (b)
Examples of invalid multiple sequence alignments illustrating what is left out by the three
constraints of Section 5.1.

variables are the pairwise alignments. The constraints in Align-Con can be viewed

as unary factors; those in Trans-Con, as binary factors; and those in (3), as factors

of degree three and higher, including factors over all variables. While Align-Con and

Trans-Con induce a polynomial number of factors (in the number of taxa), Poset-Con

induces an exponential number of factors.

In MARF, we only parameterize interactions of type Align-Con. This is done in the

same fashion as in the mutation Markov chain of Section 3.2.4, i.e. with locally normalized

transducers with local transition probabilities taken from an exponential family. MARF

and PEF are therefore similar at a small scale (i.e. in the form of the individual factors),

but quite different at a larger scale (i.e. in the way the factors are interconnected).

5.2 Computational aspects

Some aspects of MARF makes inference easier than PEF inference, but other aspects

introduce new difficulties. On one hand, the random variables now have a finite domain,

and the graphical model admits a simple and efficient learning procedure based on a penal-

ized pseudolikelihood (described below). On the other hand, there is now an exponential

number of factors in the graphical model. In this section, we see how this difficulty can

be addressed using a new variational framework.
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5.2.1 Parameter estimation

We use a penalized pseudolikelihood to learn the mutation Markov chain parameters.

This is equivalent to performing training on a dataset of pairwise alignments.

We optimize the objective function using EM, just as in Section 4, but this time the E

step is tractable (alignment of two sequences of lengths N and M can be computed in

time quadratic O(NM) using for example the transducer algorithms of Section 4.1). This

enables fast training.

In our experiments we used the following features (defined in Section 3.5.1): operation,

markedness, faithfulness, affine-gaps, and hydrophobic-modeling (the last in

the list was only used for analyzing protein sequences).

5.2.2 Inference

After computing parameters, we need to compute MSAs for each group of sequences.

Recall that just computing the pairwise alignments, as we did for training, is not sufficient,

for two reasons.

1. First, a collection of pairwise alignments computed separately will not be consistent

in general, potentially creating malformed outputs.

2. Second, the higher order interactions should be put to contribution to disambiguate

hard alignment problems. For example, if it is not clear whether nucleotides x and

y in two divergent sequences should be aligned, there might be a nucleotide z in an

intermediate sequence, such that the alignments x− z and y − z are more certain.

This information should be used to disambiguate the x− y alignment.

To address (1), we use an approximation of the Bayes estimator, described in [80], which

we review in Section 5.2.2.1. However this technique does not address (2), which is why we

need the variational algorithm described in Section 5.2.2.2. At a high-level, the complete

system works as follows: the variational algorithm first computes high-quality pairwise

potentials using constraints Align-Con, Trans-Con, but not Poset-Con. Then, these

marginals are fed into the Bayes estimator approximation (where they become coefficients

of an optimization problem). The intuition behind this procedure is that most of the

disambiguations can be handled by the interactions of type Trans-Con, but in some
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rare cases, Poset-Con is still needed to avoid malformed output MSAs, which would

complicated validation and visualization of the produced MSAs.

5.2.2.1 Bayes estimator approximation

In this section, we review the technique of [80] to turn (potentially inconsistent) pairwise

posteriors into a point estimate, i.e. a (consistent) global alignment.

This techniques is based on the idea of approximating the Bayes estimator over a linear

MSA loss function. Here we describe the Bayes estimator in the simple case where the

loss function is the Sum of Pairs (SP) score, but other examples of losses are discussed in

[80].1

Recall that an estimator is a Bayes estimator if it belongs to the set:

argmin
m∈MSA

E [1− SP(M,m)|Y ] ,

where the random variable M is the model’s multiple sequence alignment (a deterministic

function of the pairwise alignments), Y is the observed sequences, and SP(·, ·) is the SP

score (turned into a loss by subtracting it from one).

Next, note that the SP score is a linear function of the individual alignment links present

in the reference MSA mg:

SP(mref,mg) =
1

|C(mref)|
∑

e∈C(mref)

1[e ∈ mref]1[e ∈ mref],

where C(m) is the set of edges in the core blocks (and all the possible edges if m is not a

reference). This means that the Bayes estimator can be written as:

argmax
m∈MSA

∑
e∈m

P (e ∈M |Y ) .

This objective function is intractable (because of the constraint set MSA), but a greedy

algorithm works well in practice. This algorithm maintains a priority queue of edges,

ordered by posterior, and builds a MSA incrementally, starting with the trivial, empty

MSA over the observations. At each step, the edge with highest priority is popped, and

1Recall that the SP score is a recall metric on the pairwise alignment edges, measured on the core
blocks (the part of the sequence that has been annotated).
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the algorithm attempts to add it to the current MSA. Testing whether the edge can be

added without violating the MSA constraints Align-Con, Trans-Con and Poset-Con

is non-trivial, but efficient algorithms do exist [71].

5.2.2.2 Computing the posterior

We now turn to the problem of computing the alignment edge posteriors P(e ∈ M |Y ).

This is done using a new variational framework described in full generality in Section 5.4.

In this section, we describe how it applies to the problem of MSA.

Our variational framework is applicable in the following setup: let C ⊂ X denote a

combinatorial space, by which we mean a finite but large set, where testing membership

is tractable, but enumeration is not, and suppose that the goal is to compute
∑

x∈C f(x),

where f is a positive function. In our case, the combinatorial space C is the set of pairwise

alignments over the sequences Y and satisfying constraints Align-Con, Trans-Con

and Poset-Con; the function f is the joint probability distribution (which we try to

normalize over the C); and X is the power set over the set E of edges, X = 2E.

We approach this problem by exploiting a finite collection of sets {Ci} ⊂ X such that

C = ∩iCi. Each Ci is larger than C, but paradoxically it is often possible to find such a

decomposition where for each i,
∑

x∈Ci
f(x) is tractable.

Equivalently, this decomposition can be seen from point of view of exponential families,

where the set intersection corresponds to a product of base measures,

ν(x) = 1[x ∈ C]

=
∏

i

νi(x)

=
∏

i

1[x ∈ Ci]

For MSAs, the factorization we use has two types of factors. There are
(

K
2

)
pairwise

alignment base measures, and T =
∑

k,k′,k′′:k 6=k′ 6=k′′ 6=k NkNk′Nk′′ transitivity base measures,

where Nk is the length of observed sequence k.

Alignment base measures enforce constraint Align-Con between a pair of sequences.

Transitivity base measures enforce constraint Trans-Con between a triplet of charac-

ters. Both types can be computed in polynomial time, the first, by using the transducer
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Figure 5.3. Pictorial representation of the terms involved in the transitivity super-
partition computation. The boxed alignment triplets correspond to the transitive cases.

machinery of Section 4.1, the second, by enumeration (see Figure 5.3, and Appendix B.4

for details).

Once this factorization is provided, our framework automatically makes a collection of

efficient and accurate variational algorithms available for performing inference. In our

experiments, we used the loopy belief propagation (BP) algorithm (see Section 5.4 for

details).

Note that we have excluded the intractable base measures of type Poset-Con in the

factorization. We characterize in Section 5.4.5 the effect of this omission.

5.3 Experiments

We first applied our model and inference algorithms to BAliBASE [86], a standard protein

multiple sequence alignment benchmark. We compared our system to Clustal 2.0.12 [29],

the most popular multiple alignment tool, and ProbCons 1.12, a state-of-the-art system

[15] that also relies on enforcing transitivity constraints, but which is not easily inter-

pretable as optimizing an objective function. The main advantage of our system over

the other systems is the better optimization technique, based on the measure factoriza-

tion. The posterior over the alignments is used to approximate the minimum Bayes risk

objective function over the “sum of pairs” (SP) metric, as described in Section 5.2.2.1.

We used the following experimental protocol: first, we trained parameters for HMMs

using EM ran on all pairs of sequences in the test1/ref1 directory, without using the gold

alignment information. Second, we ran BPMF with an annealing exponent of 1/10 on the
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Sum of Pairs score (SP)

BAliBASE protein group BPMF-1 BPMF-2 BPMF-3 Clustal [29] ProbCons [15]

short, < 25% identity 0.68 0.74 0.76 0.71 0.72
short, 20% — 40% identity 0.94 0.95 0.95 0.89 0.92
short, > 35% identity 0.97 0.98 0.98 0.97 0.98

All 0.88 0.91 0.91 0.88 0.89

Table 5.1. Average SP scores in the ref1/test1 directory of BAliBASE. BPMF-i denotes
the average SP of the BPMF algorithm after i iterations of (parallel) message passing.

consistency messages to avoid convergence problems. Third, we decoded (i.e. transformed

the marginals into a single multiple sequence alignment) using the minimum Bayes risk

approximation of [80]. Finally, we computed the standard SP (Sum of Pairs) metric on

the annotated core blocks.

We show the results in Table 5.1. Our system outperformed both baselines after three

BPMF parallel message passing iterations.

The algorithm converged in all protein groups, and performance was identical after more

than three iterations. Although the overall performance gain is not statistically significant

according to a Wilcoxon signed-rank test, the larger gains were obtained in the small

identity subset, the “twilight zone” where research on multiple sequence alignment has

focused.

We also tested our system on the comparative RNA dataset [39]. Since the annotation

are much more dense in this dataset, it allows us to meaningfully compare the precisions

of the alignments as well. We sampled 100 groups each containing nine 5S sequences

from all three phylogenetic domains. More iterations were required for the messages to

converge (12) in this larger dataset. We outperformed Clustal according to all metrics

(note that Probcons results are not included since it supports only protein sequences).

The results are shown Table 5.2.

To validate the importance of long indel modeling, we ran a separate experiment on the

RNA without the AFFINE-GAPS feature. We obtained a relative precision reduction of

32% and a recall reduction of 45%, confirming the critical role played by this feature in

biological experiments.

One caveat of this multiple alignment approach is its running time, which is cubic in the
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Scores

Metric BPMF-1 BPMF-6 BPMF-12 Clustal [29]

Edge recall (SP) 0.80 0.81 0.82 0.79
Edge precision 0.80 0.81 0.81 0.78

Edge F1 0.80 0.81 0.82 0.79

Table 5.2. MARF results on the comparative RNA dataset

length of the longest sequence, while most multiple sequence alignment approaches are

quadratic. For example, the running time for one iteration of BPMF in this experiment

was 364.67s, but only 0.98s for Clustal—this is why we have restricted the experiments

to the short sequences section of BAliBASE. Fortunately, several techniques are available

to decrease the computational complexity of this algorithm: the transitivity factors can

be subsampled using a coarse pass, or along a phylogenetic tree; and computation of the

factors can be entirely parallelized. We leave these improvements for future work.

5.4 General variational framework for combinatorial

spaces

In this section, we present the variational framework for combinatorial spaces in its full

generality. The description and analysis of the algorithms is easier to follow in the abstract

setup.

While previous authors have proposed mean field or loopy belief propagation algorithms to

approximate the partition function of a few specific combinatorial models—for example

[82, 7] for parsing, and [35, 96] for computing the permanent of a matrix—we are not

aware of a general treatment of variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization

over combinatorial spaces [84, 85, 18, 9], but maximization over combinatorial spaces is

rather different than summation. For example, in the bipartite matching example consid-

ered in both [18] and this chapter, there is a known polynomial algorithm for maximiza-

tion, but not for summation. Our approach is also related to agreement-based learning
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[50, 49], although agreement-based learning is defined within the context of unsupervised

learning using EM, while our framework is agnostic with respect to parameter estimation.

To make the exposition simpler, we use the running example of approximating the value

and gradient of the log-partition function of a Bipartite Matching model (BM) over

KN,N , a well-known #P problem [91]. Unless we mention otherwise, we will consider

bipartite perfect matchings; non-bipartite and non-perfect matchings are discussed in

Section 5.4.6.1.

We start by setting some notation: Since we are dealing with discrete-valued random

variables X, we can assume without loss of generality that the probability distribution

for which we want to compute the partition function and moments is a member of a

regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑
x∈B

exp{〈φ(x),θ〉 − A(θ)}ν(x), (5.1)

A(θ) = log
∑
x∈X

exp{〈φ(x),θ〉}ν(x), (5.2)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which

are assumed (again, without loss of generality) to be indicator functions: φj, ν : X →
{0, 1}. Here X is a superset of both C and all of the Cis. The link between this setup

and the general problem of computing
∑

x∈C f(x) is the base measure ν, which is set to

the indicator function over C: ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument

holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the

gradient, ∇jA, is equal to the expectation of the sufficient statistic φj under the ex-

ponential family with base measure ν [95]). We want to exploit situations where the

base measure can be written as a product of I measures ν(x) =
∏I

i=1 νi(x) such that

each factor νi : X → {0, 1} induces a super-partition function assumed to be tractable:

Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is typically done using dynamic

programming (DP). We also assume that the gradient of the super-partition functions is

tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =

x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by

SBM), the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we
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B1 BI

S1 S2 SJ...

... ...

family is curved by parameter tying, for the purpose of computing expectations one can always
work in the over-complete parameterization, and then project back to the coarse sufficient statistic
for parameter estimation.

2.2 Markov random field reformulation

We start by constructing an equivalent but more convenient exponential family. This general con-
struction has an associated bipartite Markov Random Field (MRF) with structure KI,J . This new
bipartite structure should not be confused with the bipartite graph from the KM,N bipartite graph
specific to the BM example: the former is part of the general theory, and is not specific to the
bipartite matching example.

The bipartite MRF has I random variables in the first graph component, B1, . . . , BI , each having a
copy of X as its domain. In the second component, the graph has J random variables, S1, . . . , SJ ,
where Sj has a binary domain {0, 1}. The pairwise potentials between an event (Bi = x) in the first
component and one (Sj = s) in the second is given by Ψi,j(x, s) = 1[φj(x) = s]. The following
one node potentials are also included: Ψi(x) = νi(x) and Ψj(s) = eθjs.

The equivalence between the two formulations follows from the rich sufficient statistic condition,
which implies:

X

s1∈{0,1}

X

s2∈{0,1}

· · ·
X

sJ∈{0,1}

IY

i=1

JY

j=1

1[φj(xi) = sj ] =


1 if x1 = x2 = · · · = xI

0 otherwise .

This transformation into an equivalent MRF reveals several possible variational approximations.
We show in the next section how loopy BP updates [14] can be defined over this graph, even though
some nodes in this graph—the Bis—have domains of exponential size. We then describe the updates
for mean field [15] and TRW [16]. In contrast to BP, these algorithms can provided bounds on the
partition function.

2.3 Implicit message representation

The variables Bi have exponential size domains, hence if we applied BP updates naively, the mes-
sages going from Bi to Sj would require summing over an exponential number of terms, and mes-
sages going from Sj to Bi would require an exponential amount of storage. To avoid summing
explicitly over exponentially many terms, we use a technique inspired by [7] and exploit the fact
that an efficient algorithm is assumed for computing the super-partition function Ai and its deriva-
tives. To avoid the exponential storage of messages going to Bi, we use an implicit representation
of these messages in the canonical parameter space.

Let us denote the messages going from Sj to Bi by Mj→i(s), s ∈ {0, 1} and the reverse messages,
mi→j(x), x ∈ X . Using the definitions of Ψi,j ,Ψi,Ψj , the standard BP updates become:

mi→j(s) ∝
X

x∈X

1[φj(x) = s]νi(x)
Y

j′:j′ #=j

Mj′→i(x)

Mj→i(x) ∝
X

s∈{0,1}

eθjs1[φj(x) = s]
Y

i′:i′ #=i

mi′→j(s). (3)

The task is to get an update equation that does not represent Mj→i(x) explicitly, by exploiting the
fact that the super-partition functions Ai and their derivatives can be computed efficiently. To do so,
it is convenient to use the following equivalent representation for the messages mi→j(s):

ζi,j = log
mi→j(1)
mi→j(0)

∈ [−∞, +∞].

If we also let fi,j(x) denote any function proportional to
∏

j′:j′ "=j Mj′→i(x), we can write:

ζi,j = log

„ P
x∈X φj(x)fi,j(x)νi(x)

P
x∈X (1− φj(x))fi,j(x)νi(x)

«
= logit

„P
x∈X φj(x)fi,j(x)νi(x)
P

x∈X fi,j(x)νi(x)

«
, (4)

3
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fact that the super-partition functions Ai and their derivatives can be computed efficiently. To do so,
it is convenient to use the following equivalent representation for the messages mi→j(s):

ζi,j = log
mi→j(1)
mi→j(0)

∈ [−∞, +∞].

If we also let fi,j(x) denote any function proportional to
∏

j′:j′ "=j Mj′→i(x), we can write:

ζi,j = log

„ P
x∈X φj(x)fi,j(x)νi(x)

P
x∈X (1− φj(x))fi,j(x)νi(x)

«
= logit

„P
x∈X φj(x)fi,j(x)νi(x)
P

x∈X fi,j(x)νi(x)

«
, (4)
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where logit(x) = log x− log(1 − x). This means that if we can find a parameter vector ξi,j ∈ Rd

such that

fi,j(x) = exp〈φ(x), ξi,j〉 ∝
Y

j′:j′ !=j

Mj′→i(x),

then we could write1 ζi,j = logit
(
∇jAi(ξi,j)

)
. We derive such a vector ξi,j as follows:

Y

j′:j′ !=j

Mj′→i(x) =
Y

j′:j′ !=j

X

sj′∈{0,1}

eθj′sj′ 1[φj′(x) = sj′ ]
Y

i′:i′ !=i

mi′→j′(sj′)

=
Y

j′:j′ !=j

eθj′φj′ (x)
Y

i′:i′ !=i

mi′→j′(φj′(x))

∝ exp

8
<

:
X

j′:j′ !=j

φj′(x)

0

@θj′ +
X

i′:i′ !=i

ζi′,j′

1

A

9
=

; .

The required parameters are therefore:
(
ξi,j

)
j′ = 1[j $= j′]

(
θj′ +

∑
i′:i′ "=i ζi′,j′

)
.

2.4 Reuse of partition function computations

Naively, the updates derived so far would require computing J times each super-partition function
Ai at each message passing iteration. We show that this can be reduced to computing each Ai only
once per iteration, a considerable gain.

We first define the vectors:

ξ̄i = θ +
X

i′:i′ !=i

ζi′ ,

and then rewrite the numerator inside the logit function in Equation (4) as follows:
X

x∈X

φj(x)fi,j(x)νi(x) =
X

s∈{0,1}

X

x:φj(x)=s

exp〈φ(x), ξ̄i〉e
−ξ̄i,jssνi(x)

= e−ξ̄i,j∇jAi(ξ̄i),

and similarity for the denominator:
X

x∈X

fi,j(x)νi(x) = e−ξ̄i,j∇jAi(ξ̄i) + (1−∇jAi(ξ̄i))

= 1 + (e−ξ̄i,j − 1)∇jAi(ξ̄i)

This argument holds for ξij finite. Adding conditions handling the other cases, we get the following
message updates:

ζi,j =


logit

`
∇Ai(ξ̄i,j)

´
− ξ̄i,j if ξ̄i,j is finite

ξ̄i,j otherwise.

2.5 Other variational algorithms

The ideas used to derive the BP updates can be extended to other variational algorithms with minor
modifications. We show here two examples: a naive mean field algorithm, and a TRW approxima-
tion.

1Note that in order to handle the cases where a canonical parameter coordinate is +∞, we need to slightly
redefine the super-partition functions as follows:

Ai(θ) =
X

x∈C

exp

(
JX

j=1

1[θj < +∞]θjφj(x)

)
νi(x)

JY

j=1

1[θj = +∞⇒ φj(x) = 1]
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BPMF(θ, A1, . . . , AI)

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do

3: ξ̄
(t)
i = θ +

∑
i′:i′ 6=i ζ

(t−1)
i′

4: ζ
(t)
i = logit

(
∇Ai

(
ξ̄

(t)
i

))
− ξ̄

(t)
i

5: end for
6: return µ̂ = logistic

(
θ +

∑
i ζ

(T )
i

)
Figure 5.4. Left: the bipartite graphical model used for the MRF construction described
in Section 5.4.1. Right: pseudocode for the BPMF algorithm.

use to enforce the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], (5.3)

ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (5.4)

We show in Appendix B.3 that A1 and A2 can be computed in time O(N2) for the SBM.

The last assumption we make is that given a vector s ∈ RJ , there is at most one possible

configuration x with φ(x) = s. We call this the rich sufficient statistic condition (RSS).

Since we are concerned in this framework with computing expectations, not with param-

eter estimation, this can be done without loss of generality. For example, if the original

exponential family is curved (e.g., by parameter tying), for the purpose of computing ex-

pectations one can always work in the over-complete parameterization, and then project

back to the coarse sufficient statistic for parameter estimation.

5.4.1 Markov random field reformulation

We start by constructing an equivalent but more convenient exponential family. This gen-

eral construction has an associated bipartite Markov Random Field (MRF) with structure

KI,J , shown in Figure 5.4. This new bipartite structure should not be confused with the

bipartite graph from the KN,N bipartite graph specific to the BM example: the former is

part of the general theory, the latter is specific to the bipartite matching example.

The bipartite MRF has I random variables in the first graph component, B1, . . . , BI ,

each having a copy of X as its domain. In the second component, the graph has J
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random variables, S1, . . . , SJ , where Sj has a binary domain {0, 1}. The pairwise potential

between an event {Bi = x} in the first component and one {Sj = s} in the second is

given by Ψi,j(x, s) = 1[φj(x) = s]. The following one-node potentials are also included:

Ψi(x) = νi(x) and Ψj(s) = eθjs.

The equivalence between the two formulations follows from the rich sufficient statistic

condition, which implies (for a full proof of the equivalence, see Appendix B.1):

∑
s1∈{0,1}

∑
s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I∏
i=1

J∏
j=1

1[φj(xi) = sj] =

{
1 if x1 = x2 = · · · = xI

0 otherwise.
(5.5)

This transformation into an equivalent MRF reveals several possible variational approxi-

mations. We show in the next section how loopy belief propagation [101] can be modified

to tractably accommodate this transformed exponential family, even though some nodes

in the graphical model—the Bis—have a domain of exponential size. We then describe

similar updates for mean field [72] and tree-reweighted [94] variational algorithms. We

will refer to these algorithms as BPMF (Belief Propagation on Measure Factorizations),

MFMF (Mean Field on Measure Factorizations) and TRWMF (Tree-Reweighted updates

on Measure Factorizations). In contrast to BPMF, MFMF is guaranteed to converge2,

and TRWBF is guaranteed to provide an upper bound on the partition function.3

5.4.2 Implicit message representation

The variables Bi have a domain of exponential size, hence if we applied belief propagation

updates naively, the messages going from Bi to Sj would require summing over an expo-

nential number of terms, and messages going from Sj to Bi would require an exponential

amount of storage. To avoid summing explicitly over exponentially many terms, we adapt

an idea from [82] and exploit the fact that an efficient algorithm is assumed for computing

the super-partition function Ai and its derivatives. To avoid the exponential storage of

messages going to Bi, we use an implicit representation of these messages in the canonical

parameter space.

Let us denote the messages going from Sj to Bi by Mj→i(s), s ∈ {0, 1} and the reverse

messages by mi→j(x), x ∈ X . From the definitions of Ψi,j,Ψi,Ψj, the explicit belief

2Although we did not have convergence issues with BPMF in our experiments.
3Surprisingly, MFMF does not provide a lower bound (see Appendix B.6).
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propagation updates are:

mi→j(s) ∝
∑
x∈X

1[φj(x) = s]νi(x)
∏

j′:j′ 6=j

Mj′→i(x)

Mj→i(x) ∝
∑

s∈{0,1}

eθjs1[φj(x) = s]
∏

i′:i′ 6=i

mi′→j(s). (5.6)

The task is to get an update equation that does not represent Mj→i(x) explicitly, by

exploiting the fact that the super-partition functions Ai and their derivatives can be com-

puted efficiently. To do so, it is convenient to use the following equivalent representation

for the messages mi→j(s): ζi,j = logmi→j(1)− logmi→j(0) ∈ [−∞,+∞].4

If we also let fi,j(x) denote any function proportional to
∏

j′:j′ 6=j Mj′→i(x), we can write:

ζi,j = log

( ∑
x∈X φj(x)fi,j(x)νi(x)∑

x∈X (1− φj(x))fi,j(x)νi(x)

)
= logit

(∑
x∈X φj(x)fi,j(x)νi(x)∑

x∈X fi,j(x)νi(x)

)
, (5.7)

where logit(x) = log x − log(1 − x). This means that if we can find a parameter vector

ξi,j ∈ RJ such that

fi,j(x) = exp〈φ(x), ξi,j〉 ∝
∏

j′:j′ 6=j

Mj′→i(x),

then we could write ζi,j = logit
(
∇jAi(ξi,j)

)
. We derive such a vector ξi,j as follows:∏

j′:j′ 6=j

Mj′→i(x) =
∏

j′:j′ 6=j

∑
sj′∈{0,1}

eθj′sj′1[φj′(x) = sj′ ]
∏

i′:i′ 6=i

mi′→j′(sj′)

=
∏

j′:j′ 6=j

eθj′φj′ (x)
∏

i′:i′ 6=i

mi′→j′(φj′(x))

∝ exp

{ ∑
j′:j′ 6=j

φj′(x)

(
θj′ +

∑
i′:i′ 6=i

ζi′,j′

)}
,

where in the last step we have used the assumption that φj has domain {0, 1},
which implies that mi→j(φj(x)) = exp{φj(x) logmi→j(1) + (1 − φj(x)) logmi→j(0)} ∝
exp{φj(x)ζi,j}. The required parameters are therefore:

(
ξi,j

)
j′

= 1[j 6=

j′]
(
θj′ +

∑
i′:i′ 6=i ζi′,j′

)
.

4 In what follows, we will assume that ζi,j ∈ (−∞,+∞). The extended real line is treated in Ap-
pendix B.7.



5.4 General variational framework for combinatorial spaces 82

5.4.3 Reuse of partition function computations

Naively, the updates derived so far would require computing each super-partition function

J times at each message passing iteration. We show that this can be reduced to computing

each super-partition function only once per iteration, a considerable gain.

We first define the vectors:

ξ̄i = θ +
∑

i′:i′ 6=i

ζi′ ,

and then rewrite the numerator inside the logit function in Equation (5.7) as follows:∑
x∈X

φj(x)fi,j(x)νi(x) =
∑

s∈{0,1}

∑
x:φj(x)=s

exp{〈φ(x), ξ̄i〉} · e−ξ̄i,js · s · νi(x)

= eAi(ξ̄i)−ξ̄i,j∇jAi(ξ̄i),

and similarly for the denominator:∑
x∈X

fi,j(x)νi(x) = eAi(ξ̄i)−ξ̄i,j∇jAi(ξ̄i) + eAi(ξ̄i)(1−∇jAi(ξ̄i))

= eAi(ξ̄i)
(
1 + (e−ξ̄i,j − 1)∇jAi(ξ̄i)

)
.

After plugging in the reparameterization of the numerator and denominator back into

the logit function in Equation (5.7) and doing some algebra, we obtain the more efficient

update ζi,j = logit
(
∇Ai(ξ̄i,j)

)
− ξ̄i,j, where the logit function of a vector, logit v, is defined

as the vector of the logit function applied to each entry of the vector v. See Figure 5.4

for a summary of the BPMF algorithm.

5.4.4 Other variational algorithms

The ideas used to derive the BPMF updates can be extended to other variational al-

gorithms with minor modifications. We sketch here two examples: a naive mean field

algorithm, and a TRW approximation. See Appendix B.2 for details.

In the case of naive mean field applied the graphical model described in Section 5.4.1, the

updates take a form similar to Equations (5.6), except that the reverse incoming message

is not omitted when computing an outgoing message. As a consequence, the updates are
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not directional and can be associated to nodes in the graphical model rather than edges:

Mj(s) ∝
∑
x∈X

1[φj(x) = s]νi(x)
∏

j

mi(x)

mi(x) ∝
∑

s∈{0,1}

eθjs1[φj(x) = s]
∏

i

Mj(s).

This yields the following implicit updates:5

ξ(t) = θ +
∑

i

ζ
(t−1)
i

ζ
(t)
i = logit

(
∇Ai

(
ξ(t)
))

, (5.8)

and the moment approximation µ̂ = logistic(ξ).

In the case of TRW, lines 3 and 6 in the pseudocode of Figure 5.4 stay the same, while

the update in line 4 becomes:(
ξi,j

)
j′

=

(
θj′ − ρi→j′ζi,j′ +

∑
i′:i′ 6=i

ρi′→j′ζi′,j′

)
·

{
ρj′→i if j′ 6= j

(1− ρi→j) otherwise,
(5.9)

where ρi→j are marginals of a spanning tree distribution over KI,J . We show in Ap-

pendix B.2 how the idea in Section 5.4.3 can be exploited to reuse computations of super-

partition functions in the case of TRW as well.

5.4.5 Large factorizations

In some cases, it might not be possible to write the base measure as a succinct product of

factors. Fortunately, there is a simple and elegant workaround to this problem that retains

good theoretical guarantees. The basic idea is that dropping measures with domain {0, 1}
in a factorization can only increase the value of the partition function. This solution is

especially attractive in the context of outer approximations such as the TRW algorithm,

because it preserves the upper bound property of the approximation.

5.4.6 Other examples of factorization

In this section, we show four other examples of measure factorizations, to demonstrate

the applicability beyond MSA inference.

5Assuming that naive mean field is optimized coordinate-wise, with an ordering that optimizes all of
the mi’s, then all of the Mj ’s.
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5.4.6.1 More matchings

Our approach extends naturally to matchings with higher-order (augmented) sufficient

statistic, and to non-bipartite/non-perfect matchings.

Let us first consider an Higher-order Bipartite Model (HBM), which has all the basic

sufficient statistic coordinates found in SBM, plus those of the form φj(x) = xm,n·xm+1,n+1.

We claim that with the factorization of Equation (5.3), the super-partition functions A1

and A2 are still tractable in HBM. To see why, note that computing A1 can be done by

building an auxiliary exponential family with associated graphical model given by a chain

of length N , and where the state space of each node in this chain is {1, 2, . . . , N}. The

basic sufficient statistic coordinates φj(x) = xm,n are encoded as node potentials, and the

augmented ones as edge potentials in the chain. This yields a running time of O(N3) for

computing one super-partition function and its gradient (see Appendix B.3 for details).

The auxiliary exponential family technique used here is reminiscent of [2].

Extension to non-perfect and non-bipartite matchings can also be done easily. In the first

case, a dummy “null” node is added to each bipartite component. In the second case,

where the original space is the set of
(

N
2

)
alignment indicators, we propose a decomposition

into N measures. Each one checks that a single node is connected to at most one other

node: νn(x) = 1[
∑N

n′=1 xn,n′ ≤ 1].

5.4.6.2 Linearization of partial orders

A linearization of a partial order p over N objects is a total order t over the same objects

such that x ≤p y ⇒ x ≤t y. Counting the number of linearizations is a well-known

#P problem [5]. Equivalently, the problem can be view as a matching between a DAG

G = (V,E) and the integers {1, 2, . . . , N} with the order constraints specified on the edges

of the DAG.

To factorize the base measure, consider a collection of I directed forests on V , Gi =

(V,Ei), i ∈ I such that their union covers G: ∪iEi = E. See Figure 5.4.6.2 for an

example. For a single forest Gi, a straightforward generalization of the algorithm used

to compute HBM’s super-partition can be used. This generalization is simply to use

sum-product with graphical model Gi instead of sum-product on a chain as in HBM (see

Appendix B.5 for details). Again, the state space of the node of the graphical model is
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A
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F I

Figure 5.5. The DAG representation of a partial order. An example of linearization is
A,C,D,B,E,F,G,H,I. The fine red dashed lines and blue lines demonstrate an example of
two forests covering the set of edges, forming a measure decomposition with two factors.
The linearization A,D,B,E,F,G,H,I,C is an example of a state allowed by one factor but
not the other.

{1, 2, . . . , N}, but this time the edge potentials enforce the ordering constraints of the

current forest.

5.4.6.3 Partition of the plane

Counting plane partitions is a classical problem in statistical physics, combinatorics and

probability theory [98]. A plane partition is an array of non-negative integers, pn,m, 0 ≤
n,m ≤ N such that pn+1,m ≥ pn,m, pn,m+1 ≥ pn,m. There is a well-known connection

between these arrays and a certain type of routing, exemplified in Figure 5.6. We will

describe the factorization in the routing formulation, which represents plane partitions as

a collection of N non-crossing integer paths, each of length 2N + 1. Path n starts and

ends at position n, and its transitions are either the identity, an increase by one (only

allowed in the first N transitions), or a decrease by one (in the last N transitions).

We propose an approximation based on N −1 factors. Each factor relaxes the problem to

enforcing non-crossing only for two consecutive paths. With this relaxation, the partition

function can be computed in O(N3) by using forward-backward on a chain of length

2N + 1 with state space O(N2) that keeps track of the position of the two consecutive

paths.
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Path 1

Path 2

Path 3

3
3

0

2 2
2

1
1

0

n m

Figure 5.6. The 3D representation of a plane partition with N = 3. The value pn,m is the
height of the pile at (n,m), for example p3,3 = 3. The equivalent routing representation
is shown as a dashed line. For example, path 1 is (1, 1, 1, 2, 2, 1, 1).

5.4.6.4 Traveling salesman problem

The method is not limited to #P problems derived from decision problems in P: we show

in this section for example that the counting version of the traveling salesman problem,

which is NP in its decision version [40], can be attacked with the same tools.

We consider a set of N cities {c1, . . . , cN}, where each pair of cities has an associated

parameter θ(cn, cm) ∈ R. A tour t is a list of cities, t = t1, t2, . . . , tN : tn ∈ {c1, . . . , cN}
where each city is visited exactly once, i.e. {t1, . . . , tN} = {c1, . . . , cN}. The weight of a

tour is the product of the weights of the pairs of consecutive cities in the tour (modulo

N): w(t) = exp{
∑N−1

n=1 θ(tn, tn+1) + θ(t1, tN)}. By normalization, this yields a probability

model:

P(T = t) = exp

{
N−1∑
n=1

θ(tn, tn+1) + θ(t1, tN)− A(θ)

}
A(θ) = log

∑
tour t

w(t),

and also an exponential family indexed by θ.

Fix without loss of generality an arbitrary city c1 as the starting and ending point, and

take X to be the set of all paths of length N that starts and ends at c1, but without the
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Figure 5.7. Experiments discussed in Section 5.4.7 on two of the matching models
discussed. (a) and (b) on SBM, (c), on HBM.

coverage restriction. One factorization for this problem can be constructed by looping over

the N − 1 other cities, cn 6= c1, and building for each one a factor that enforces that cn be

visited exactly once. Computation over a single factor can be computed using dynamic

programming (by maintaining the number of steps left and whether cn was visited or not).

Moreover, a state that satisfies all factors is a valid tour.

5.4.7 Matching experiments

As an additional set of experiments, we compared the approximation of SBM described

in Section 5.4 to the Fully Polynomial Randomized Approximation Scheme (FPRAS)

described in [73]. We performed all our experiments on 100 iid random bipartite graphs

of size N , where each edge has iid appearance probability p, a random graph model that

we denote by RB(N, p). In the first and second experiments, we used RB(10, 0.9). In this

case, exact computation is still possible, and we compared the mean Root Mean Squared

(RMS) of the estimated moments to the truth. In Figure 5.7(a), we plot this quantity

as a function of the time spent to compute the 100 approximations. In the variational

approximation, we measured performance at each iteration of BPMF, and in the sampling

approach, we measured performance after powers of two sampling rounds. The conclusion

is that the variational approximation attains similar levels of error in at least one order

of magnitude less time in the RB(10, 0.9) regime.

Next, we show in Figure 5.7(b) the behavior of the algorithms as a function of p, where we

also added the mean field algorithm to the comparison. In each data point in the graph,

the FPRAS was run no less than one order of magnitude more time than the variational

algorithms. Both variational strategies outperform the FPRAS in low-density regimes,

where mean field also slightly outperforms BPMF. On the other hand, for high-density
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regimes, only BPMF outperforms the FPRAS, and mean field has a bias compared to the

other two methods.

The third experiment concerns the augmented matching model, HBM. Here we compare

two types of factorization and investigate the scalability of the approaches to larger graphs.

Factorization F1 is a simpler factorization of the form described in Section 5.4.6.1 for non-

bipartite graphs. This ignores the higher-order sufficient statistic coordinates, creating an

outer approximation. Factorization F2, described in Section 5.4.6.1 specifically for HBM,

is tighter. The experimental setup is based on a generative model over noisy observations

of bipartite perfect matchings described in Appendix B.8. We show in Figure 5.7(c) the

results of a sequence of these experiments for different bipartite component sizes N/2.

This experiments demonstrates the scalability of sophisticated factorizations, and their

superiority over simpler ones.
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Chapter 6

The Poisson Sequence Change

Process

In this chapter, we attack the problem of joint phylogenetic tree and MSA inference

using a new stochastic process. This joint inference task has been an active field in the

last decade, and a large body of work suggests that the efforts spent in this field are

justified. Several studies have shown for example that using a fixed MSA creates biases in

the inferred phylogeny [99], and conversely, that a single guide tree may decreases MSA

accuracy [67].

So far, the state-of-the-art systems for MSA and phylogeny inference have been based

on system combination [53]: one uses a high performance, off the shelf algorithm for tree

inference, then feeds the result to an off the shelf MSA inference algorithm. In some cases,

this is iterated several times. The drawbacks of these systems include a lack of theoretical

understanding, over-alignment problems [80], the difficulty of getting calibrated confidence

intervals and challenging estimation problems.

As discussed in Section 2.8, defining string-valued continuous time Markov chains

(CTMCs) is the main alternative to system combination. Starting from a CTMC sup-

porting insertions and deletions (indels), we review in Section 6.1 how one automatically

gets a maximum likelihood estimate over both MSAs and phylogenetic trees, an estima-

tor with well-understood theoretical properties. By adding a prior over trees and a loss

function, one also gets a Bayesian estimator giving uncertainty estimates over trees and

alignments, as well as an easy way to model uncertainty over parameters.



90

The main obstacle to high performance CTMC-based joint inference is a specific prob-

abilistic calculation: the marginal density of a tree and MSA pair, integrating over all

CTMC sample along the tree leading to the specified MSA. If this quantity can be com-

puted exactly and efficiently, estimating the maximum likelihood (and, the posterior dis-

tribution) can be done using standard local search techniques (respectively, standard

Metropolis-Hastings moves). We emphasize that this quantity should be computed not

only efficiently, but also exactly. This is especially important in the Bayesian setting,

where the acceptance probability will involve taking a ratio of two marginal densities,

and where the asymptotic consistency guarantees of MCMC only hold if the acceptance

probability is calculated exactly. Even for simple indel models such as TKF91, the best

published algorithm is the technique of [62], which has worst-case time complexity expo-

nential in the number of taxa.1

In this chapter, we show that a slight modification to the TKF91 process makes it pos-

sible to compute exact marginal densities in time linear in both the sequence length and

the number of taxa. This is possible thanks to an equivalent Poisson process representa-

tion where alignment columns become exchangeable, a very useful property for deriving

algorithms. The algorithm we propose is very simple to implement, and the Poisson

process representation provides a framework for extending inference to more complicated

evolutionary models, for example long indel models.

There has been previous work on fully polynomial MCMC samplers for the TKF91 model

[36, 33], but they do not permit resampling the tree topology jointly with the MSA. The

approaches of [74] and [76] are closer to ours, but neither of these algorithms corresponds

to computing the marginal likelihood of a joint stochastic process: in the former case,

the probability of indel is independent of branch lengths, and in the latter case, it varies

in a way inspired by but not explicitly corresponding to marginalization of a stochastic

process. In neither case does the quality of the inferred MSAs tested empirically.

This chapter is organized as follows: after providing some background and preliminary

definitions in Section 6.1, we describe in Section 6.2 the new CTMC, the Poisson Sequence

Change Process (PSCP) and its Poisson process representation. In Section 6.3, we describe

a (fully) linear time algorithm that computes the exact marginal density of a MSA and

tree pair. In Section 6.4, we compare empirically the new process to other MSA and tree

inference approaches. We conclude with a discussion in Section 6.5 of how the new process

1Note that the algorithm has been described as linear in [54], which is true in terms of the sequence
length, but not in terms of the number of taxa.
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and the inference techniques described in this chapter can be used as the foundation of

more elaborate models.

6.1 Background

In this section, we define formally some of the concepts introduced informally in Section 2.

To model a finite inventory of nucleotides, let Σ denote a finite set, which we identify with

integers Σ = {1, 2, . . . , K − 1}.

We start this section by giving a constructive definition of the TKF91 process, reviewing

how to generate a path of DNA sequences from the TKF91 model. Let us assume that at

some point in time t, the sequence has length n. With probability one, the sequence will

stay unchanged for an interval of time ∆t, and then a single random substitution, insertion

or deletion (mutation) will change it. To sample ∆t and the nature of this mutation, we

simulate 3n + 1 independent random variable with exponential distributions. The value

of the smallest of these random variables (the “winner”) determines ∆t, and the index of

the winner determines the nature (whether it is a substitution, deletion or insertion, the

position of the operation, and the value of the introduced character, if applicable) of the

next event as follows.

First, for each of the n nucleotides in the sequence, there is one exponential with rate

µTKF; if one of these wins, that will cause the nucleotide to be deleted. Second, for

each of the n current nucleotides, we simulate an exponential variable corresponding to a

mutation event. These random variables have rates that depend on the current nucleotides

(these rates are organized in a rate matrix θ). If one of these wins, an extra multinomial

with parameters derived from θ is drawn to determine the new value of the nucleotide.

Finally, for each of the n + 1 positions before or after a nucleotide (and one “immortal”

position if the sequence is empty), there is one exponential with rate λTKF; if one of

these variables wins, it will cause an insertion. Again, an extra multinomial is drawn to

determine the nature of the inserted nucleotide, with parameters generally taken to be

from the stationary distribution π of the substitution rate matrix θ. That completes the

description of TKF91.

This describes a sequence indel processes on a single edge, i.e. a single time interval

with one ancestral species at one end of the interval, and one modern species at the end.
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Extending a process defined on an interval to one defined on a rooted phylogenetic tree is

conceptually easy since a phylogeny can be seen as a collection of lines attached together:

Definition 5 (Rooted phylogenetic tree). A rooted phylogenetic tree τ is specified by

two objects: a finite directed tree (V ,E ), called the topology, and a branch length map

b : E → (0,∞). Given a topology and a branch length map, the phylogenetic tree is the

set τ = {(e, t) : e ∈ E , t ∈ [0, b(e))} ∪ L, where we use L ⊂ V to denote the leaves, and

we identify the elements of V with points in the tree, i.e. if e = (v → w) ∈ E =⇒ w =

(e, b(e)). We will also use the notation b(v) = b(e) when e = (w → v), pa(v) = w when

(w → v) ∈ V , and child(v) = {v : (w → v) ∈ E }.

Given a CTMC and a phylogenetic tree, one can apply the CTMC process on all edges of

the trees in preorder, starting with the sequence produced by the edge above to generate

the sequences of any edge (a distribution over strings at the root is also needed; it is

generally taken to be the stationary distribution of the substitution rate matrix θ).

We conclude this section by a two structures on phylogenetic trees that will be useful in

the rest of this chapter. First, for any given phylogenetic tree τ , define a partial order on

the points of τ : (e, t) � (e′, t′) if e = e′ and t ≤ t′, or if there is a directed path in (V,E )

from e to e′. If x ∈ τ , we will denote the subtree rooted at x by τx = {y ∈ τ : y � x} (see

Figure 6.1). Second, endow the set τ with the obvious topology so that later on we can

define Poisson processes on trees.

6.2 Model

The stochastic process we propose is very similar to the TKF91 process, with the exception

of removing the dependence of the insertion rate on the sequence length. Therefore,

instead of having 3n+1 competing exponential random variables as in the TKF91 model

(n for substitutions, n+1 for insertions, and n for deletions), we now have 2n+1 variables

(n for substitutions, 1 for insertion, with rate λ, n for deletion, each of rate µ. When an

insertion occurs, its position is selected uniformly at random.2

This means that if the sequence has length λ
λTKF

−1 at some point in time, the distribution

2More precisely, assume there is a real numbers in the interval [0, 1] assigned to each nucleotide before
the insertion. When an insertion occurs, sample a new real number uniformly in the interval [0, 1] and
insert the new nucleotide at the unique position (with probability one) such that an increasing sequence
of real numbers is maintained.
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over the time and type of the next mutation will the same as TKF91,3 but in general will

be different.

Does this modification makes the model significantly less appropriate than TKF91 for

evolutionary modeling? In the typical cases where the lengths of the sequences have the

same order of magnitude across all species in the window of time studied, we show in

Section 6.4.1 that a model based on this new new process can be used effectively to do

inference on TKF91-distributed data. We also discuss in Section 6.5 how to accommodate

sequences of varying sizes. Finally, we show in Section 6.2.3 that the asymptotic sequence

length as time goes to infinity is the same in the modified process as in TKF91.

On the other hand, this modification does have drastic simplifying effects on the complex-

ity of computing expectations. The simplifications are made possible by an equivalent

Poisson representation of the process described in the next section. Let us call the pro-

cess described in this section the Constant Insertion Rate Process (CIRP). In the next

section, we describe another process, the Poisson Sequence Change Process (PSCP), and

then show that CIRP and PSCP actually have the same distribution.

6.2.1 Poisson process representation

Before describing the Poisson Process representation, let us start by introducing a repa-

rameterization of the deletion and substitution rates µ, θ. To do this, we will need the

following notation: let g = ‘-’ /∈ Σ denote an extra symbol, with index K, called the gap

symbol . Also set Σg = Σ ∪ g.

The reparameterization is a matrix Q with entries given by:

Qk,k′ =


−
∑

k′′ 6=k′ Qk,k′′ if k = k′

0 if k = K

µ if k′ = K

θk,k′ o.w.

Note that in contrast to the model of [76], deletion (the gap symbol with index K) is an

absorbing state in this reparameterization. As we will see in Section 6.3, this avoids the

complications of the inference algorithms used in [76].

3Using the fact that the minimum of exponential variables with λi is exponential, with rate equal to
the sum of the λi.
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MRCA  Ω
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 τxstem

Figure 6.1. Notation used for describing the PSCP.

We will also assume that the phylogenetic tree τ has a branch above the most recent

common ancestor Ω (a “stem”: see Figure 6.1). Since we will let the length of this stem

go to infinity, this branch does not need to be represented in implementations, but it

simplifies the notation. Equivalently, we assume that the prior over sequence lengths at

Ω is at equilibrium.

A sample from a PSCP prior can be computed as follows (see Figure 6.2):

1. Sample insertion locations from a Poisson process with uniform intensity λ on τ :

X ∼ PP(λ× τ).

2. Order the insertions uniformly at random: (X1, X2, . . . , XI) ∼ Perm(X).

3. For each i ∈ {1, 2, . . . , I}, sample a homology path Hi from a CTMC along the

subtree τXi
rooted at Xi. This CTMC is based on the rate matrix Q, and an initial

distribution π. We use the notation Hi|Xi ∼ CTMC(τXi
, Q, π) for this sampling

step. A homology path is a map from the points of the subtree τXi
to nucleotides

(including the gap character).

4. Define the sample to return by concatenation as follows:

H(x, i) =

{
Hi(x) if Xi � x

g o.w.

H(x) = H(x, 1) ◦H(x, 1) ◦ · · · ◦H(x, I)
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M. Sylvanus

M. Fuscata

Hylobates

H. Sapiens

Sequences

Figure 6.2. Example of a PSCP sample. Here Σ has two symbols, represented by red and
green squares.

Given a sample H from the PSCP, one can extract the observed (modern) sequences as
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follows: Y (v) = ρg(H(v)), where v ∈ L, and ρg is the projection erasing the gap symbol

g from the sequences.

Samples can also be projected into MSAs, which are sets of views on homology paths

called columns. Formally:

M = {C : L→ Σg, C(v) = H(v, i), 1 ≤ i ≤ I, v ∈ L, ∃w ∈ L s.t. C(w) 6= g}.

The observed columns are required to have at least one character that is not equal to the

gap symbol.4

Note that this process assumes that a rooted phylogeny τ has been fixed. We will denote by

pτ (y,m) the marginal probability that this process generates a MSA m and observations

y, pτ (y,m) = Pτ (Y = y,M = m), integrating over all homology paths. For joint inference,

we make phylogenies T random, with a distribution specified by a prior with density p(τ).

6.2.2 Equivalence of the processes

In this section, we show equality in distribution of the two new processes introduced so

far, H ∼ CIRP.

The first step is to show that the distribution of the locations of the insertions in τ is

the same in the two processes. This fact is established by the following extension to the

Poisson Interval Theorem:

Theorem 6. Let Π be a Poisson Process of constant rate λ on a phylogenetic tree τ , and

let (X1, . . . , XI) be an ordering such that Xi ≺ Xj for all i < j. Let ∆i be the distance in

τ from Xi to the closest insertion point Xj with Xj ≺ Xi (setting ∆i to the distance to

the root (top of the stem) if there are no such Xj). Then ∆ are independent exponential

distributions with rate λ.

Proof. Let v ∈ L be an arbitrary but fixed leaf. Consider the smallest subset τ ′ ⊂ τ

connecting v to the root of τ . If we let Iv denote the set of Xi’s falling inside τ ′, we get by

applying the Restriction Theorem [42], that the random set {Xi : i ∈ Iv} is distributed

according to a Poisson process as well, {Xi : i ∈ Iv} ∼ PP(λ× τ ′).

4Note that this definition is slightly different than the one of Section 2 (in this new definition, the
order of the columns is not maintained, but for the purpose of computing the marginal likelihood in
PSCPs, the two representation are equivalent by exchangeability.
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Since τ ′ is Borel isomorphic with the real line, it follows from the Mapping Theorem and

the standard Poisson Interval Theorem [42] that the conclusion of the theorem is true for

all Xi with i ∈ Iv. By repeating the same argument for all v ∈ L, we get the theorem for

all Xi with i ∈ ∪v∈LIv = {1, . . . , I}.

The second step is to show that conditioning on insertions, the deletion-substitution

distribution is equal in the two processes. This can be easily seen as a consequence of the

well-known jump-hold construction of CTMCs [19]:

Theorem 7. Let Xt be a CTMC with rate matrix Q = (qi,j) and let Yi,j be independent

exponential random variables with rate qi,j. Then

(∆, J)|(X0 = i)
d
= (min

j 6=i
Yi,j, argmin

j 6=i
Yi,j),

where ∆ = inf{t : Xt 6= i}, J = X∆.

6.2.3 Asymptotic behavior

We compute the asymptotic length of the observed sequences under the modified process.

We have:

E[|Y |] = E[E[|Y |||X|]]

=
∞∑

n=0

pλ×L(n)E[|Y |||X| = n]

=
∞∑

n=0

pλ×L(n)nP[H(L) 6= g]

= P[H(L) 6= g]
∞∑

n=0

pλ×L(n)n

= P[H(L) 6= g](λL).

At the same time,

P[H(L) 6= g] =

∫ L

0

1

L
(e−µt) dt

=
1

L

1

µ

(
1− e−µL

)
,
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so it follows that:

lim
L→∞

E[|Y |] =
λ

µ
.

Using this result, we get a more intuitive re-parameterization of the PSCP, in terms of

asymptotic expected length L and intensity I:

{
L = λ

µ

I = λ · µ

 µ =
√

I
L

λ = L ·
√

I
L

6.3 Computational aspects

We start this section by showing that for two popular joint estimators for MSA and

phylogeny inference, the main challenge is to compute the marginal probabilities pτ (y,m)

for a sequence of candidate trees and MSAs.

Maximum likelihood

The objective function typically takes the form:

max
τ,m

pτ (y,m).

This can be optimized for example using simulated annealing, where a candidate phy-

logeny and MSA (τ ′,m′) are proposed at each step i, and are accepted (meaning that

they replaces the previous candidate (τ,m)) according to a sequence of acceptance func-

tions f (i)(p, p′) depending only on the marginal probabilities p = pτ (y,m), p′ = pτ ′(y,m
′).

Provided limi→∞ f (i)(p, p′) = 1[p′ > p] sufficiently slowly, this algorithm converges to the

maximum likelihood phylogeny and MSA.

Bayes estimators

In order to define a Bayes estimator, one typically specifies a decision space D (we have

considered for example the space of MSAs in Section 5.2.2.1, so let us consider now

the example of the space of multifurcating tree topologies), a projection into this space,
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(τ,m) 7→ ρ(τ,m) ∈ D and a loss function l : D → [0,∞) onD (for example, the symmetric

clade difference, or partition metric [4]).

In the Bayesian framework, given these objects, the optimal decision (called the consensus

tree for the choice of loss function given in the example above), is obtained by minimizing:

argmin
d∈D

E[l(d, ρ(T,M))|Y = y].

Even when MSAs are held fixed, this expectation is intractable, so it is usually approxi-

mated with the empirical distribution of the output (τ (i),m(i)) of a Markov chain Monte

Carlo algorithm.

Producing MCMC samples involves computing acceptance ratios of the form:

p(τ ′,m′, y)

p(τ,m, y)
q ((τ,m) → (τ ′,m′)) ,

for some proposal having a Radon-Nikodym derivative q.

From these two examples, it is clear that joint MSA and phylogeny inference requires a

fast way of computing pτ (m, y). The other main ingredient is to be able to propose trees

and MSAs efficiently. This is discussed in Section 6.3.2.

6.3.1 Computing the marginal likelihood

In this section, we demonstrate the significance of the Poisson Process representation,

showing that it drastically simplifies the computation of marginal likelihoods.

The first step is to condition on the number of homology paths, |X|. While the num-

ber of homology paths is random and unknown, we know it must be greater than the

number of columns |m| in the observed alignment. We need to consider an unknown and

unbounded number of birth events with no observed offsprings in the MSA, but as they
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are exchangeable, they can be easily marginalized analytically. This is done as follows:

P(Y = y,M = m) = E[P(Y = y,M = m||X|)]

=
∞∑

n=0

P(|X| = n) · P(Y = y,M = m||X| = n)

=
∞∑

n=|m|

P(|X| = n) · (Z(c∅))
n−|m|

∏
c∈m

Z(c)

=

(∏
c∈m

Z(c)

)
∞∑

n=|m|

ξn · (Z(c∅))
n−|m|

where ξn = P(|X| = n) = λn

eλn!
is a Poisson density, Z(c) = P(C = c) is the likelihood of a

single MSA column c, and c∅ is a column with a gap at every leaf v ∈ L: c∅ ≡ g.

This expression can be simplified by using the following identity:5

ϕ(q,N) =
∞∑

n=N

ξnq
n−N

=
1

qN

(
∞∑

n=0

ξnq
n −

N−1∑
n=0

ξnq
n

)

=
1

qN

(
eλ(q−1) −

N−1∑
n=0

ξnq
n

)
.

We get the simple formula:

P(Y = y,M = m) = ϕ(Z(c∅), |m|)
∏
c∈m

Z(c),

The next step is to compute the marginal Z(c) of an alignment column c. We compute

this by first conditioning on the random edge E on which is located the unique insertion

point X from where all the nucleotides in the current column c descend from. Computing

the prior probability that an insertion happens along a given edge is greatly simplified by

the following property of Poisson Processes:

Theorem 8. Let Π ∼ PP(ν) be the sample from a Poisson Process over S with fi-

nite intensity measure ν, ν(S) = λ < ∞, N ∼ Poi(λ), and Xi be iid ν
λ
, then

Π
d
= {X1, X2, . . . , XN}.
5In implementations, we found that the expression

∑∞
n=N ξnqn−N numerically worked better than

1
qN

(
eλ(q−1) −

∑N−1
n=0 ξnqn

)
, however the second expression is more convenient for deriving parameter

estimation updates in Appendix C.5.
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Suppose that we want to compare the likelihoods that an insertion occurred in two edges

e, e′ ∈ E of finite lengths (the case where one of the edge is the infinite length stem is

covered in Appendix C.1). We apply the theorem as follows: we set ν to the uniform

measure over τ , and we get the following formula:

P (E = e|E ∈ {e, e′})
P (E = e′|E ∈ {e, e′})

=
b(e)

b(e′)
.

This means that the probability of insertion along an edge (other than the stem) is

proportional to the branch length of this edge. We use the following notation for this

probability:

ιv = P(Ev) (6.1)

Ev = (E = (pa(v) → v)) .

Again see Appendix C.1 for the general formula for computing ιv.

Note that since the ι’s need not be recomputed for each column c ∈ m (as they depend

only on τ), facilitating implementation.

From the ι’s, the column likelihoods are computed as follows:

P(C) =
∑
v∈V

P(Ev)P(C|Ev)

=
∑
v∈V

ιvfv,

where fv is just the output of a slight modification Felsenstein’s peeling recursion [21]

applied on the subtree rooted at v (see Appendix C.3).

Since computing the peeling recursion for one column takes time O(|L|), we get a total

running time of O(|L| · |m|), where |L| is the number of observed taxa, and |m| is the

number of sites in the alignment.

6.3.2 Proposal distributions

Several objects need to be resampled in the joint MCMC inference algorithm: the tree

topology, the branch lengths, the MSA, and the parameters.

For trees and branch lengths, we use standard proposal mechanisms, described in [46].

More precisely: we unrooted the tree while keeping track of the edge e where the rooting
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was sitting. We then apply a stochastic neighbor interchange, a branch length resampling,

or both, to the unrooted tree. If the edge e is unchanged after this step, we reroot at the

same place; if the length of e was rescaled, we reroot proportionally; if e does not exists

after the resampling move, we pick a rerooting uniform at random.

The proposal over MSAs we used operates on linearized MSAs, so let m0 denote the

current MSA, and l0, its linearization (i.e. the linearization is an auxiliary variable). Our

proposals over MSAs works as follows: First, partition the leaves into two sets A,B.6

The support of the proposal is the set S of linearized MSAs m, l satisfying the following

constraints, for all :

1. If e has both end points in A (or both in B), then e ∈ m⇐⇒ e ∈ m0.

2. If e, e′ have both end points in A (or both in B), then e ≺l e
′ ⇐= e ≺l′ e

′.

We propose an element m ∈ S with probability proportional to
∏

c∈m Z(c). The set

S has exponential size, but can be sampled efficiently using a technique similar to the

“constrained sampling procedure” of [74]. Note that the proposal induces an irreducible

chain: one possible outcome of the move is to remove all links between two groups of

sequences. The chain can therefore move to the empty MSA and then construct any

MSA incrementally.

For parameters, we used the multiplicative proposals of [46] on the λ, µ parameterization.

6.4 Experiments

6.4.1 Simulations

We used synthetic data to assess the quality of the tree reconstructions produced by PSCP,

compared to the reconstructions of PhyML, a state-of-the-art tree inference system based

on maximum likelihood [79]. We also compared the inferred MSAs to those produced by

Clustal [29], the most popular MSA inference system.

In this study, we explored four types of potential improvements:

6In practice, we found that using the bipartitions such that |A| = 1 is sufficient.
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E
xp

. Tree resampled? No Yes No Yes
MSA resampled? No No Yes Yes

M
S
A

s Edge recall (SP) 0.25 - 0.22 0.24
Edge Precision 0.22 - 0.56 0.58
Edge F1 0.23 - 0.31 0.32

T
re

es Partition Metric 0.24 0.22 - 0.19
Robinson-Foulds 0.45 0.38 - 0.33

Table 6.1. PSCP results on simulated data. Note that scores for trees are losses (lower is
better), while scores for MSAs are accuracies (higher is better).

1. Resampling trees and MSAs increasing the quality of inferred MSAs, compared to

resampling only MSAs.

2. Resampling trees and MSAs increasing the quality of inferred trees, compared to

resampling only trees.

3. Resampling trees increasing the quality of inferred trees, compared to trees inferred

by PhyML.

4. Resampling MSAs increasing the quality of inferred MSAs, compared to MSAs

inferred by Clustal.

The results are show in Table 6.1. We observed improvements of all four types. Comparing

Edge F1 relative improvements to Robinson-Foulds relative improvements, the relative

additional improvement of type (2) is larger (13%) than that of type (1) (3%). But

overall (i.e. comparing the baselines to the joint system), the full improvements of both

trees and MSAs are substantial: 43% Edge F1 improvement, and 27% Robinson-Foulds

improvement. All these experiments are based on 100 replica, each having 7 taxa at the

leaves, a topology sampled from the uniform distribution, and branch lengths sampled

from rate 2 exponential distributions.

We also tested our system on data generated from the TKF91 model instead of the PSCP

model. We used the same tree distribution and number of replica as in the previous

experiments, and the same generating TKF91 parameters as [33].

We again observed improvements over the baselines, both in terms of MSA and tree

quality. For MSAs, the relative improvement over the baseline was actually larger on the
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5S

Metric PSCP Clustal [29]

Edge recall (SP) 0.43 0.68
Edge precision 0.71 0.66

Edge F1 0.47 0.67

Table 6.2. PSCP results on the comparative RNA dataset

5S+16S

Metric PSCP Clustal [29]

Edge recall (SP) 0.47 0.60
Edge precision 0.64 0.44

Edge F1 0.49 0.45

Table 6.3. PSCP results on the comparative RNA dataset with outliers.

TKF91-generated data than on the PSCP-generated data (47% versus 43%, as measured

by Edge F1 improvement over Clustal), but lower for phylogenetic trees (13% versus 27%,

as measured by Robinson-Foulds improvement over PhyML).

6.4.2 Real data

We have used the same protocol as in Section 5.3 to generate random subsets of the 5S

portion of the Comparative RNA dataset [39], and following [80], we have created an-

other version with one outlier, taken from 16S. We have additionally truncated annotated

alignments to 100 sites to speed-up the comparisons.

In the 5S dataset, we obtained a higher precision than Clustal, but a lower recall and F1

scores (see Table 6.2). We believe that this is due to the lack of long indel modeling in

these experiments. We discuss in Section 6.5 how this limitation can be removed.

The 5S+16S dataset results (Table 6.3) demonstrate that our system is less sensitive to

outliers than Clustal: in this case, PSCP outperforms Clustal both in edge precision and

edge F1 scores.
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6.5 Discussion

We have shown that our system achieves state-of-the-art performance in terms of the

quality of the inferred trees. In terms of MSA performance, we achieved higher precision

than Clustal, but at the cost of lower recall.

We believe that we could increase alignment recall by incorporating atomic long indel into

the model. Our system outperforming in recall and precision Clustal in the synthetic,

point-mutation experiments supports this thesis. We have also seen in Section 5.3, that

long indel modeling is crucial to get MSA performance that is competitive across all

metrics on real data. It is remarkable that the joint system is already competitive in

some of the conditions studied in the last section (e.g. in the presence of outliers).

A natural question is then how to create stochastic processes incorportating long indel

modeling. Extending the TKF91 model to handle long indel explicitly is non-trivial.

There has been several attempts in the past, but none have been fully satisfactory. These

approaches can be categorized as follows:

1. One approach [88] has been to globally segment the observed sequences and model

the evolution of each segment using a TKF91 model. This model is known as

the TKF92 model. Unfortunately, when there are several taxa under study, this

approach does not scale well—one ends up needing most segments having length

one, returning to TKF91.

2. Other approaches have attempted to add to TKF91 long indels as atomic events.

Unfortunately, this make computation of finite-dimensional marginals difficult. A

closed form expression for the marginals has been developed for the case where

only long insertions are considered [61], but not for the case where both long inser-

tions and deletions are present. Numerical computation of the marginal has been

attempted in [60], but the empirical results were mixed. Moreover, numerical so-

lutions are less attractive in joint models, as resampling trees required repeated

recomputation of these marginals.

We believe that PSCP is a better foundation to construct long indel models. The method

we propose is close to the approach of the second category above. Fortunately, the com-

putations are much easier than in the case of TKF91 extensions, thanks to the following

theorem [42]:
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Theorem 9. Let Π be a Poisson process with mean measure µ. Let the points of Π be

colored randomly with k colors, the probability that a point receives the i-th color being pi

and the colors of different points being independent (of one another and of the position

of the points). Let Πi be the set of points with the i-th color. Then Πi are independent

Poisson processes with mean measures µi = piµ.

Using the Poisson representation, this means that a long indel process can be constructed

as the union of Poisson processes, P1 ∪ (∪∞n=2In) ∪ (∪∞n=2Dn), where P1 is a PSCP, In

are insertion processes (PSCPs where insertions have length n instead of 1), and Dn are

long deletion processes (which are simpler than PSCPs: just a Poisson process picking

the location of the long indel).

In contrast to long indel processes generalizing TKF91, an efficient MCMC sampler for this

long-indel model can be constructed easily. This is done as follows: first, we can exploit

the decomposition and the algorithm of Section 6.3.1 to marginalize out P1. Second, the

other terms of the sum are represented explicitly as auxiliary variables. Since we have an

efficient algorithm for computing the marginal likelihood, the auxiliary variables can be

resampled easily. Note that designing an irreducible sampler without marginalizing P1

would be very difficult. Integrating out P1 creates a bridge of positive probability between

any patterns of long indels.

Superpositions of PSCPs have other applications outside of long indel modeling. For ex-

ample, they could be used to represent punctuated changes. An important example of

punctuated changes, systematic sound changes, was described in the context of diachronic

phonology in Section 2.6. To model these, we would again write the process as a superpo-

sition, P1∪Ptype, where P1 is the standard PSCP (which act at the token level), and Ptype

is a Poisson process inducing type-level changes. Again, inference can be carried in this

representation by marginalization of P1 and representing Ptype as an auxiliary variable.

Finally, another avenue to improve PSCP models is to make the insertion rate mean

measure more realistic: instead of being uniform across the tree, it could be modeled

using a parametric function, hence forming a Cox process. This would be most useful

when the sequences under study have very different lengths.
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Chapter 7

Conclusions

Phylogenetics is a great challenge for unsupervised learning, both in statistical and compu-

tational terms. In this thesis, we have shown how the challenging aspects of phylogenetics

can motivate new advances in unsupervised learning, and how this in turn move forwards

the field of phylogenetics. In this concluding chapter, we summarize our contributions

and propose new research directions.

7.1 Summary

The main contributions can be summarized as follows:

A probabilistic approach to language change: We developed the first computa-

tional approach that can scale to large scale phylogenies. Sound changes and

markedness are taken into account using a flexible feature-based unsupervised learn-

ing framework. We systematically and quantitatively evaluated and validated the

system using held-out reconstruction experiments. Using this model, we attacked

a 50-year-old open problem in linguistics regarding the role of functional load in

language change.

New algorithms for MSA: We presented three novel algorithms for inferring multiple

sequence alignments. We analyze and explained the comparative strengths and

weaknesses of each of these algorithms.
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Exact phylogenetic inference: We introduced a matrix-based framework for analyz-

ing exact inference algorithms for string-valued graphical models. As a corollary,

we get simple proofs for the complexity upper bound of computing exact marginals

in various string-valued stochastic processes.

Approximate phylogenetic inference: We described two approximation algorithms

for computing conditional expectations in phylogenetic models. One is based on

MCMC, and the other, on variational inference.

Variational inference over combinatorial space: The technique we used to develop

the variational phylogenetic inference algorithm extends to many other situations.

We created a framework for developing variational algorithms in these situations.

As special cases, we obtained new algorithms for summing over linearizations of

partial orders, traveling salesman problems, and plane partitions.

Stochastic processes: We created a new string-valued CTMC to model evolution and

language change. In contrast to previous processes, the marginal likelihood of the

new process can be computed in fully polynomial time (polynomial in the length of

the sequences and in the number of taxa). We used this process to create a joint

stochastic process over MSAs and trees, and evaluated quantitatively the quality of

both outputs.

7.2 The future

We conclude by giving a few examples of potential research avenues building on the work

of this thesis.

Joint biological and linguistic phylogenetic inference: While there is an impres-

sive literature on how to perform phylogenetic inference in biology and linguistics,

there is currently no work that jointly leverages biological and linguistic sources of

information. Modeling both domains jointly is attractive for many reasons. For

example, adding genetic data to linguistic studies can help dating ancestral events:

dates estimated from purely linguistic character are not widely accepted, because

the linguistic change process is not as well understood as the biological one.

Sequential Monte Carlo (SMC) for phylogenetic inference: We have seen infer-

ence algorithms from the MCMC and variational frameworks. Is it possible to use



7.2 The future 109

SMC algorithms as well? Compared to MCMC and variational methods, SMC algo-

rithms have interesting tradeoffs. The challenge is to extend SMC, usually restricted

to state-space models, to combinatorial spaces.

Characterization of the set of tractable string-valued stochastic processes:

Given a string-valued jump process where the jumps depend only a localized con-

text, are the marginals guaranteed to be weighted transducers? If so, can we bound

the size of the state space and give efficient algorithms to approximate the weights?

Non-Parametric Phylogenetic Forests: The assumption that there is a single, tree-

shaped phylogenetic graph is frequently violated in biology and linguistics. These

violations can be caused by language contact, lateral gene transfers, population

structure, hybridization and creolization. The traditional approach to handle these

violations has been to use networks instead of trees [64], but this has limitations.

Some of these limitations are computational (the marginal likelihood becomes in-

tractable), others are representational (knowing that a taxon comes from two an-

cestors for example does not tell which part of the sequences comes from which

ancestor). One alternative is to allow each site to be modeled by its own tree,

where the trees can vary across sites, thus forming a phylogenetic forest. A suitable

model should encourage agreements across sites, but not require perfect agreement.

One avenue to approach this requirement is to use non-parametric priors (so that

a bound on the number of trees in the forest is not set a priori) that have these

properties while allowing tractable inference.

Computational Approaches to Syntactic and Morphological Change: Many

types of linguistic data (syntactic and morphological in particular) are being used

by historical linguists to study language change [31]. This project seeks to accom-

modate these other types of data in a computational framework. For syntax, one

potential approach is to represent grammars as vectors in an abstract vector space

(for example, the weight vector of a weighted context-free grammar), and to use a

Brownian motion on these vectors to model change.

More broadly, these contributions, current and future, fit inside a long-term program.

The objectives of this program include:

Statistical Regularities: What are the most frequent and important types of change?

In diachronic phonology in particular (the branch of historical linguistics concerned
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with sound changes), quantitative properties of these regularities are essentially

unknown [32]. The ramifications of this problem go far beyond the simple functional

load statistics described in Section 3.4.6. In biology, basic substitution regularities

have been intensely studied, but more complex types of change are still poorly

understood (such as context-sensitive changes and long indels, role of fitness beyond

affecting the overall rate of change).

Large Scale Topologies: What is the broad topology and rooting of the phylogenetic

graph of life and languages? In particular, which of the current language families are

likely to be related or unrelated? These questions are highly challenging because of

the amount of change involved [24]. For example, a relationship between a language

family in the New World and one in the Old World was only confirmed in 2008 [90].

Dating: Can we put date estimates on important speciation and migration events? Ex-

amples include human migrations into America, or the age of the last universal

common ancestor. Many of these questions are likely to be fertile grounds for re-

search, involving both phylogenetics and population genetics [27].
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Appendix A

Exact Inference Equations

A.1 Epsilon removal and normalization

Let s ∈ Σ∗ be a string of length N . We first prove that the epsilon-removed automaton

M ′
α of Section 4.1.3 assigns the same weights w′(s) to strings as the original automaton

Mα̂, w(s). Let s ∈ Σ∗. We have:

w(s) = φ

(∑
ŝ≡s

∏
α̂∈ŝ

Mα̂

)

= φ

 ∑
(k1,...,kN )∈NN

Mk1
ε Ms1M

k2
ε Ms2 · · ·MkN

ε Ms1


= φ

(
N∏

n=1

(
∞∑

m=0

Mm
ε

)
Msn

)

= φ

(
N∏

n=1

M ′
sn

)
= w′(s)

Here we used the nonnegativity of the weights, which implies that if the automaton has

a finite normalization, the infinite sums above will be absolutely convergent, and can

therefore be rearranged.



A.2 Implementation of probabilistic operations 112

Next, we prove the formula for the normalization:

φ

∑
α∈Σ̂

Mα̂

∗  = φ

 ∞∑
N=0

∑
α∈Σ̂

Mα̂

N 
= φ

 ∞∑
N=0

∑
(α̂1,...,α̂N )∈Σ̂L

N∏
n=1

Mαn


= Z

A.2 Implementation of probabilistic operations

Fix s ∈ Σ. We start by establishing the marginalization formula:

∑
s′∈Σ∗

w(s, s′) = φ

(∑
s′∈Σ∗

∞∑
N=0

∑
ŝ≡Ls

∑
ŝ′≡Ls′

N∏
n=1

Mŝ(n),ŝ′(n)

)

= φ

 ∞∑
N=0

∑
ŝ≡Ls

∑
ŝ′∈Σ̂:|ŝ′|=L

N∏
n=1

Mŝ(n),ŝ′(n)


= φ

 ∞∑
N=0

∑
ŝ≡Ls

N∏
n=1

∑
α̂∈Σ̂

Mŝ(n),α̂


= w′(s)

Here, we write ŝ ≡L s if ŝ has length L and ŝ ≡ s.

Next, we prove the formula for pointwise products of the first kind:

w(1)(s) · w(2)(s) = φ

(∑
ŝ≡s

∏
α̂∈s

M
(1)
α̂

)
φ

(∑
ŝ′≡s

∏
α̂′∈s′

M
(1)
α̂′

)

= φ

(∏
α∈s

M (1)
α

)
φ

(∏
α∈s

M (2)
α

)

= φ

(∏
α∈s

{
M (1)

α

∣∣∣∣M (2)
α

})
= w(p)(s),
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where we have use the epsilon-free assumption between lines 1 and 2.

Next, we establish the formula for pointwise products of the second kind:

w(1)(s, s′) · w(2)(s) = φ

(
∞∑

N=0

∑
ŝ≡Ns

∑
ŝ′≡Ns

N∏
n=1

M
(1)
ŝn,ŝ′n

)
φ

(∏
α∈s

Mα

)

=
∞∑

N=0

∑
ŝ≡Ns

∑
ŝ′≡Ns

φ

(
N∏

n=1

M
(1)
ŝn,ŝ′n

)
φ

(
N∏

n=1

{
I if ŝn = ε

M
(2)
ŝn

o.w

)

=
∞∑

N=0

∑
ŝ≡Ns

∑
ŝ′≡Ns

φ

(
N∏

n=1

M
(p)
ŝn,ŝ′n

)
= w(p)(s, s′)
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Appendix B

Derivations of the Variational

Framework

B.1 Markov random field reformulation

We prove in this section that under the Rich Sufficient Statistics condition (RSS)1, the

log-partition function is the same in the original exponential family and in the bipartite

MRF described in Section 5.4.1. Let us denote the latter log-partition function by Ã(θ).

We first prove the following identity, introduced previously as Equation (5.5):

Lemma 10.

∑
s1∈{0,1}

∑
s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I∏
i=1

J∏
j=1

1[φj(xi) = sj] =

{
1 if x1 = x2 = · · · = xI

0 otherwise.

Proof. Suppose first that there are indices i′, i′′ such that xi′ 6= xi′′ . By the RSS condition,

this means that there is at least one j0 such that φj0(xi′) 6= φj0(xi′′). Since the product∏I
i=1

∏J
j=1 1[φj(xi) = sj] contains both the factor 1[φj0(xi′) = sj0 ] and 1[φj0(xi′′) = sj0 ],

for any fixed term in the iterated sum, at least one of the two factors will be equal to

zero.

1We make the observation in passing that the RSS condition can also be described tersely as the
requirement that the σ-algebra generated by the sufficient statistics be equal to the base σ-algebra:
σ(φ1, . . . , φJ) = F .
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Conversely, if x = x1 = x2 = · · · = xI , then only the multi-index (s1, s2, . . . , sJ) =

(φ1(x), φ2(x), . . . , φJ(x)) in the iterated sum induces a non-zero term.

A slight extension of this argument yields:

Lemma 11. For all x = (x1, . . . , xI), where xi ∈ X , we have:

Ψ(x) =
∑

s1∈{0,1}

∑
s2∈{0,1}

· · ·
∑

sJ∈{0,1}

{
I∏

i=1

J∏
j=1

Ψi,j(xi, sj)

}{
J∏

j=1

Ψj(sj)

}{
I∏

i=1

Ψi(xi)

}

=

{
exp {〈φ(x1),θ〉} ν(x1) if x1 = x2 = · · · = xI

0 otherwise.

Using this lemma, we can prove the main proposition:

Proposition 12. Under RSS, Ã(θ) = A(θ).

Proof. We have:

exp Ã(θ) =
∑

x1∈X 1

∑
x2∈X 2

· · ·
∑

xI∈X I

Ψ(x)

=
∑

x1∈X 1

∑
x2∈X 2

· · ·
∑

xI∈X I

{
exp {〈φ(x1),θ〉} ν(x1) if x1 = x2 = · · · = xI

0 otherwise

=
∑
x∈X

exp {〈φ(x),θ〉} ν(x)

= expA(θ).

B.2 More information on the algorithms

In this appendix, we provide more information regarding the derivation of the variational

algorithms discussed in this chapter.
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MFMF(θ, A1, . . . , AI)

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do
3: ξ(t) = θ +

∑
i ζ

(t−1)
i

4: ζ
(t)
i = logit

(
∇Ai

(
ξ(t)
))

5: end for
6: return µ̂ = logistic(ξ)

TRWMF(θ, A1, . . . , AI ,ρ)

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do
3: λ

(t)
i,j = θj +

∑
i′:i′ 6=i ρi′→jζ

(t−1)
i′,j −

ρi→jζ
(t−1)
i,j

4: ξ̄
(t)
i,j = ρj→iλ

(t)
i,j

5: δ
(t)
i,j = (1− 2ρj→i)λ

(t)
i,j

6: ζ
(t)
i = logit

(
∇Ai

(
ξ̄

(t)
i

))
− δ

(t)
i

7: end for
8: return µ̂ = logistic

(
θ +

∑
i ζ

(T )
i

)
Figure B.1. Pseudocode for Mean Field Measure Factorization and Tree-Reweighted
Measure Factorization. The vector ρ is the collection of marginals of a distribution of
spanning trees over KI,J . Note that these marginals can also be updated, see [94] for
details.

BPMF

The BPMF algorithm maintains at each iteration the quantities ζi, ξ̄i, and super-partition

functions Ai(ξ̄i). Starting with ζ
(0)
i,j = 0, we use the following updates at each iteration

t = 1, 2, . . . , T :

ξ̄
(t)
i = θ +

∑
i′:i′ 6=i

ζ
(t−1)
i′

ζ
(t)
i = logit

(
∇Ai

(
ξ̄

(t)
i

))
− ξ̄

(t)
i ,

where the logit function of a vector logit v is the vector of the logit function applied to

each entry of the vector v, and we use the convention (±∞)− (±∞) = ±∞.

The approximation of the moments µj = ∇jA(θ) is proportional to the product of all the

incoming messages at the last iteration T , times the local potential,
∏

j mi→j(s)Ψj(s):

µ̂j

1− µ̂j

=

∏
j m

(T )
i→j(1)eθj∏

j m
(T )
i→j(0)e0

.

Using the notation logistic(v)j = (1 + exp(−vj))
−1, this is equivalent to:

µ̂ = logistic

(
θ +

∑
i

ζ
(T )
i

)
.
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TRWMF

We now derive Equation (5.9). We start from the explicit TRW updates, and show how

to make the large messages implicit:

mi→j(s) ∝
∑
x∈X

1[φj(x) = s]νi(x)

∏
j′:j′ 6=j (Mj′→i(x))

ρj′→i

(Mj→i(x))
1−ρi→j

,

where ρi→j are marginals of a spanning tree distribution over KI,J .

Again, the idea is to find a parameter vector ξi,j ∈ RJ such that∏
j′:j′ 6=j (Mj′→i(x))

ρj′→i

(Mj→i(x))
1−ρi→j

∝ exp〈φ(x), ξi,j〉. (B.1)

To do this, we start by rewriting the numerator of the left hand side of Equation (B.1):∏
j′:j′ 6=j

(Mj′→i(x))
ρj′→i =

∏
j′:j′ 6=j

(
eθj′φj′ (x)

∏
i′:i6=i (mi′→j′(φj′(x)))

ρi′→j′

(mi→j′(φj′(x)))
ρi→j′

)ρj′→i

= exp

{ ∑
j′:j′ 6=j

ρj′→i

(
θj′φj′(x) +

∑
i′:i′ 6=i

ρi′→j′ logmi′→j′(φj′(x))

− ρi→j′ logmi→j′(φj′(x))

)}

∝ exp

{ ∑
j′:j′ 6=j

ρj′→iφj′(x)

(
θj′ +

∑
i′:i′ 6=i

ρi′→j′ζi′,j′ − ρi→j′ζi,j′

)}
,

where we have used in the last step the assumption that φj has domain {0, 1},
which implies that mi→j(φj(x)) = exp{φj(x) logmi→j(1) + (1 − φj(x)) logmi→j(0)} ∝
exp{φj(x)ζi,j}.

A similar argument on the denominator of the left hand side of Equation (B.1) yields:

(Mj→i(x))
1−ρi→j ∝ exp

{
(1− ρi→jφj(x)

(
θj +

∑
i′:i′ 6=i

ρi′→jζi′,j − ρi→jζi,j

)}
.

Combining these gives the update:(
ξi,j

)
j′

=

(
θj′ +

∑
i′:i′ 6=i

ρi′→j′ζi′,j′ − ρi→j′ζi,j′

)
·

{
ρj′→i if j′ 6= j

(1− ρi→j) otherwise.

Finally, applying the argument introduced in Section 5.4.3 yields the reparameterized

updates shown in Figure B.1.
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B.3 Computing matching factorizations

In this section, we show how to compute efficiently the super-partition functions described

in the matching examples of Section 5.4 and 5.4.6.1.

Proposition 13. For perfect bipartite matchings in SBM, computing one super-partition

function Ai(θ) takes time O(N2).

Proof. For this type of super-partition function, we claim that computation simply in-

volves renormalizing rows or columns of a matrix. We first introduce some notation: let

the sufficient statistic coordinate j corresponds to the indicator xm,n, and X i denote a

random variable distributed according to the member indexed by θ in the exponential

family with base measure νi and sufficient statistics φ. Note that in the case of SBM, this

corresponds to a distribution over functions of the form f : {1, 2, . . . , N} → {1, 2, . . . , N}.

With this notation, we can write:

∇jA1(θ) = E[φj(X1)] (B.2)

= P(X1(m,n) = 1) (B.3)

=
exp θm,n∑N

n′=1 exp θm,n′
, (B.4)

and similarly:

∇jA2(θ) =
exp θm,n∑N

m′=1 exp θm′,n

. (B.5)

Therefore by caching the normalizations, it is possible to compute all the gradient in time

O(N2).

Proposition 14. For perfect bipartite matchings in HBM, computing one super-partition

functions Ai(θ) takes time O(N3).

Proof. As described earlier, at a high level, the technique we use to compute ∇jAi(θ)

involves constructing an auxiliary exponential family with associated graphical model

given by a chain of length N , and where the state space of each node in this graph is

{1, 2, . . . , N}. The basic sufficient statistic coordinates are encoded as node potentials,

and the augmented ones, as edge potentials in the chain.
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To make this precise, let us introduce some notation. Let τ , B(τ ) and ϕ(y) denote the

parameters, log-partition function and sufficient statistics of the auxiliary exponential

family, y = (y1, . . . , yN), yn ∈ {1, . . . , N}. We construct the sufficient statistic vectors

such that that they have the same dimensionality as φ. The coordinates of ϕ correspond

naturally to those of φ: if φj(x) = xn,m, then ϕj(y) = 1[yn = m], and if φj(x) =

xn,mxn+1,m+1, then ϕj(y) = 1[yn = m]1[yn+1 = m + 1]. With this construction and by

setting τ = θ, we have ∇jAi(θ) = ∇jB(τ ). This computation can be done with forward-

backward on chain of length N and state space of size N , hence a total running time of

O(N3).

B.4 Multiple sequence alignment factorization

We start by defining formally the state space, sufficient statistic and the measure factors

involved. The state space is the collection of all pairwise alignment indicators, and we use

the notation xk,k′
m,n to denote the indicator function on the alignment between character

m of sequence k and character n of sequence k′. In this section, we will assume for

simplicity that the sufficient statistic coordinates have the form φj(x) = xk,k′
m,n, but higher

order statistics were added for the experiments of Section 5.3. Handling those is no more

complicated than what was demonstrated for matchings in Section 5.4.6.1.

There are two types of factors in the measure decomposition:

Monotonicity: each pair of components k, k′ forms a pairwise alignment:

νi(x) =

Nk∏
m=1

Nk′∏
m′=1

1
[
xk,k′

m,n = 1, xk,k′

m′,n′ = 1 =⇒ (m > m′, n > n′) or (m < m′, n < n′)
]
.

Transitivity: for each triplet of sequences k, k′, k′′ and positions m,n, p, transitivity

holds:

νi(x) = 1
[
xk,k′

m,n = 1, xk′,k′′

n,p = 1 =⇒ xk,k′′

m,p = 1
]
.

Proposition 15. Each monotonicity factor can be computed in time O(NkNk′), where

Nk, Nk′ are the lengths of the sequences involved.

Proof. The idea is to use a non-homogeneous pair HMM, or weighted transducer [63]. In
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the pair HMM terminology, weights of matching two symbols in this transducer are given

by exp θk,k′
m,n, while the weights of deletions and insertions are set to one.2

Once the weighted transducer is constructed, there are standard polynomial-time algo-

rithms for finding its partition function and natural parameter gradient [63].

Proposition 16. Each transitivity factor can be computed in constant time, and the

super-partition functions take the form:

Ai(θ) = 1 + exp
(
θk,k′

m,n + θk′,k′′

n,p + θk,k′′

m,p

)
+ exp

(
θk,k′

m,n

)
+ exp

(
θk′,k′′

n,p

)
+ exp

(
θk,k′′

m,p

)
Proof. The eight possible cases to consider are shown in Figure 5.3, and the ones in the

support of the factor are boxed. They each correspond to a term in the sum above by

inspection.

B.5 Linearization of partial orders factorization

Proposition 17. The partition function and gradient of the factors proposed in Sec-

tion 5.4.6.2 can be computed in time O(N3).

Proof. Let Gi = (V,Ei) be the current forest in the factorization. We now introduce a new

auxiliary family: let τ , B(τ ) and ϕ(y) denote its parameters, log-partition function and

sufficient statistics of the auxiliary exponential family, y = (y1, . . . , yN), yn ∈ {1, . . . , N}.
We construct the sufficient statistic vectors in the same way as in the proof of Proposi-

tion 14. The base measure µ of the auxiliary family enforces the portions of ≤p that are

in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and

state space of size N , hence a total running time of O(N3).

2Special costs for deletion and insertion are encoded in the matching costs as a ratio, and long
gap/hydrophobic core modeling are encoded by augmenting the state of the transducers.
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statistic vectors in the same way as in the proof of Proposition 5. The base measure µ of the auxiliary
family enforces the portions of ≤p that are in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and state space
of size N , hence a total running time of O(N3).

A.6 MFMF does not provide a lower bound

In our experiments, we have seen instances where the log partition function estimate provided by
MFMF does not lower bound the true log partition function. In this section, we show why the
argument used in [5] to prove the bound in the case of standard mean field does not apply to MFMF.
As one would expect, the difference comes from the structured base measure.

We first review the argument of [5], Section 5.4, specializing it to our situation, where the graphical
model it described in Section 2.2 and the tractable subgraph is the fully disconnected graphical
model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We let M = ∇A(Rd) denote the
set of realizable moments. We will also use the following definition:

Definition 9 For an extended real-valued function f , the Legendre-Fenchel transformation is de-
fined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗, we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }. (10)

Formulation (10) is no more tractable than the definition of A, but gives a constrained optimization
problem that can be relaxed. Mean field methods can be seen as a particular type of relaxation where
the sup is taken over M , the set of realizable moment induced by a simpler exponential family. In
the case of naive mean field on our graphical model, the simpler family is defined as

NMF =




pγ(s1, . . . , sJ , b1, . . . , bI) = exp




∑

i

∑

x∈X

1[bi = x]γi,x +
∑

j

sjγj



 : γi,x, γj ∈ R




 ,

from which we define

MMF =
{
µ ∈ Rd : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform counting mea-
sure over the full state space), we have MMF ⊆ M , and it follows that the mean field estimate is a
lower bound. On the other hand, since the edge potentials are deterministic, this inclusion does not
hold.

We show a simple example: consider a pair of random variables,

P(X = 0, Y = 1)
P(X = 1, Y = 0)
P(X = 0, Y = 0)

14

statistic vectors in the same way as in the proof of Proposition 5. The base measure µ of the auxiliary
family enforces the portions of ≤p that are in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and state space
of size N , hence a total running time of O(N3).

A.6 MFMF does not provide a lower bound

In our experiments, we have seen instances where the log partition function estimate provided by
MFMF does not lower bound the true log partition function. In this section, we show why the
argument used in [5] to prove the bound in the case of standard mean field does not apply to MFMF.
As one would expect, the difference comes from the structured base measure.

We first review the argument of [5], Section 5.4, specializing it to our situation, where the graphical
model it described in Section 2.2 and the tractable subgraph is the fully disconnected graphical
model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We let M = ∇A(Rd) denote the
set of realizable moments. We will also use the following definition:

Definition 9 For an extended real-valued function f , the Legendre-Fenchel transformation is de-
fined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗, we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }. (10)

Formulation (10) is no more tractable than the definition of A, but gives a constrained optimization
problem that can be relaxed. Mean field methods can be seen as a particular type of relaxation where
the sup is taken over M , the set of realizable moment induced by a simpler exponential family. In
the case of naive mean field on our graphical model, the simpler family is defined as

NMF =




pγ(s1, . . . , sJ , b1, . . . , bI) = exp




∑

i

∑

x∈X

1[bi = x]γi,x +
∑

j

sjγj



 : γi,x, γj ∈ R




 ,

from which we define

MMF =
{
µ ∈ Rd : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform counting mea-
sure over the full state space), we have MMF ⊆ M , and it follows that the mean field estimate is a
lower bound. On the other hand, since the edge potentials are deterministic, this inclusion does not
hold.

We show a simple example: consider a pair of random variables,

P(X = 0, Y = 1)
P(X = 1, Y = 0)
P(X = 0, Y = 0)

14

statistic vectors in the same way as in the proof of Proposition 5. The base measure µ of the auxiliary
family enforces the portions of ≤p that are in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and state space
of size N , hence a total running time of O(N3).

A.6 MFMF does not provide a lower bound

In our experiments, we have seen instances where the log partition function estimate provided by
MFMF does not lower bound the true log partition function. In this section, we show why the
argument used in [5] to prove the bound in the case of standard mean field does not apply to MFMF.
As one would expect, the difference comes from the structured base measure.

We first review the argument of [5], Section 5.4, specializing it to our situation, where the graphical
model it described in Section 2.2 and the tractable subgraph is the fully disconnected graphical
model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We let M = ∇A(Rd) denote the
set of realizable moments. We will also use the following definition:

Definition 9 For an extended real-valued function f , the Legendre-Fenchel transformation is de-
fined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗, we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }. (10)

Formulation (10) is no more tractable than the definition of A, but gives a constrained optimization
problem that can be relaxed. Mean field methods can be seen as a particular type of relaxation where
the sup is taken over M , the set of realizable moment induced by a simpler exponential family. In
the case of naive mean field on our graphical model, the simpler family is defined as

NMF =




pγ(s1, . . . , sJ , b1, . . . , bI) = exp




∑

i

∑

x∈X

1[bi = x]γi,x +
∑

j

sjγj



 : γi,x, γj ∈ R




 ,

from which we define

MMF =
{
µ ∈ Rd : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform counting mea-
sure over the full state space), we have MMF ⊆ M , and it follows that the mean field estimate is a
lower bound. On the other hand, since the edge potentials are deterministic, this inclusion does not
hold.

We show a simple example: consider a pair of random variables,

P(X = 0, Y = 1)
P(X = 1, Y = 0)
P(X = 0, Y = 0)

14

Figure B.2. Left: the mean field realizable moments surface MMF, center, the realizable
moments volume M without a structured base measure, right, the realizable moment line
M with a structured base measure (in green, parallel to the z-axis).

B.6 MFMF does not guarantee a log partition lower

bound

In contrast to what one would expect with a mean field algorithm, MFMF is not guaran-

teed to lower bound the log partition function. In this section, we show why the argument

used in [95] to prove the bound in the case of standard mean field does not apply to MFMF,

and then show a simple counter example. As one would expect, the difference comes from

the structured base measure.

We first review the argument of [95], Section 5.4, specializing it to our situation, where

the graphical model it described in Section 5.4.1, and the tractable subgraph is the fully

disconnected graphical model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We

let M = ∇A(RJ ×X × · · · ×X ) denote the set of realizable moments . We will also use

the following definition:

Definition 18. For an extended real-valued function f , the Legendre-Fenchel transfor-

mation is defined as:

f ∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f ∗∗, we can use convexity of A to

obtain:

A(θ) = sup{〈θ,µ〉 − A∗(µ) : µ ∈ M }. (B.6)
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Formulation (B.6) is no more tractable than the definition of A, but gives a constrained

optimization problem that can be relaxed. Mean field methods can be seen as a particular

type of relaxation where the sup is taken over the set of realizable moment induced by a

simpler exponential family. In the case of naive mean field on our graphical model, the

simpler family is defined as

NMF =

{
pγ(s1, . . . , sJ , b1, . . . , bI) = exp

(∑
i

∑
x∈X

1[bi = x]γi,x +
∑

j

sjγj

)
: γi,x, γj ∈ R

}
,

from which we define

MMF =
{
µ ∈ RJ : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

AMF(θ) = sup{〈θ,µ〉 − A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform

counting measure over the full state space), we have MMF ⊆ M , and it follows that the

mean field estimate is a lower bound. On the other hand, since the edge potentials are

deterministic, this inclusion does not hold in our case.

To see why, we show a simple counter-example in Figure B.2: a graphical model on a pair

of binary random variables, X, Y . One can check easily that if an indicator edge potential

1[X = Y ] is added, then M is neither included nor enclosing MMF.

B.7 Handling extended real parameters

Note that in order to handle the cases where a canonical parameter coordinate is +∞,

we need to slightly redefine the super-partition functions as follows:

Ai(θ) =
∑
x∈C

exp

{
J∑

j=1

1[θj < +∞]θjφj(x)

}
νi(x)

J∏
j=1

1[θj = +∞⇒ φj(x) = 1].

We also use the convention (±∞)− (±∞) = ±∞.
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B.8 Matching experiments

The generative model used in the third experiment works as follows: first, generate a

bipartite perfect matching according to the exponential family HBM M ∼ HBM(θ),

next, generate a noisy observation for each edge, Ym,n|M ∼ N(1(em,n ∈ M), σ2). The

observations Ym,n and parameters θ, σ2 are given to the algorithm, but not the value of

M , which is reconstructed using the minimum Bayes risk estimator minm E[l(m,M)|Y ]

over the 0-1 loss l. The coefficients of this objective are approximated using BPMF.

One can check that forming the objective function involves computing moments over

HBM with parameters θj for the higher order sufficient statistic coordinates j, and with

parameters θj + 1/σ2 for the basic sufficient statistic coordinates j. We then optimized

the objective using the Hungarian algorithm [45]. The zero-one loss is computed against

the true (generating) matching, and averaged over 100 random noisy generated datasets.
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Appendix C

Derivation of the Poisson Sequence

Change Process Inference Algorithm

C.1 Computing the insertion weights

In this appendix, we show how to compute the insertion weights ιv introduced in the

column likelihood Equation (6.1).

In order to deal with the infinite branch length of the stem, we will assume that the joint

probability of the model conditions on the following event:

R = (X ≺ Ω =⇒ H(Ω) 6= g).

This is a reasonable construction since homology paths going extinct before Ω do not

affect the topology and MSA likelihood computations.

We begin by computing P(E = e|R) for all e ∈ E . The strategy we take is to get an

expression for P(E = e,R) for all e ∈ E up to a normalization constant that does not

depend on v. We will compute the normalization afterwards.

If Ω ≺ e, e′, then R ⊆ (E ∈ {e, e′}), and so we can use Theorem 8 to get:

P(E = e,R)

P(E = e′,R)
=

P(E = e)

P(E = e′)

=
b(e)

b(e′)
.
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To handle the infinite length stem, let us divide it into unit length segments e0, e1, e2, . . .

starting from Ω and going backward in time. Now let e = en for some n, and let e′ be

under Ω, i.e. Ω ≺ e′. We have:

P(E = e,R)

P(E = e′,R)
=

P(E = e)P(R|E = e)

P(E = e′)

=
b(e)

b(e′)
P(R|E = e).

The factor P(R|E = en) can be further decomposed as follows:

P(R|E = en) = β(1)(α(1))n,

where:

α(t) = P(H(Xt) 6= g|H(X0) ∼ π)

β(t) = P(H(XT ) 6= g|H(X0) ∼ π),

where T ∼ Uniform[0, t].

The functions α(t), β(t) can be evaluated efficiently and analytically using standard

Markov chain properties (see Appendix C.2).

Summing over these segments, we get:

P(R) =
∑
v 6=Ω

P(E = (pa(v), v),R) +
∞∑

n=0

P(E = en,R)

=
∑
v 6=Ω

b(v) +
β

1− α
,

where α = α(1), and β = β(1).

Putting it all together, we get:

ιv =
1

P(R)

{
β

1−α
if v = Ω

b(pa(v) → v) o.w.

C.2 Computing the survival probabilities

In this section, we show how to compute the functions α(t) and β(t) defined and used in

the previous section.
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We begin with α(t):

α(t) = 1−
∑
s 6=g

π(s)P(H(Xt) = g|H(X0) = s)

= 1−
(
πT exp(tQ)

)
K

The second function is obtained by first conditioning on T :

β(t) = 1−
∑
s 6=g

E [P(H(XT ) = g|H(X0) = s, T )]

= 1− 1

t

(
πT

∫ t

0

exp(uQ) du

)
K

The matrix-valued integral can be computed analytically by diagonalization: if we let

U,D be such that Q = UDU−1 with D diagonal, then:

It =

∫ t

0

exp(uQ) du

= U

(∫ t

0

exp(uD) du

)
U−1

= UD′U−1,

with D′ diagonal where:

D′
i,i =

{
1

Di,i
(exp(tDi,i)− 1) if Di,i 6= 0

t o.w.

To summarize:

β(t) = 1− 1

t

(
πTIt

)
K

C.3 Computing the modified Felsenstein peeling re-

cursions

In this section, we show how to compute fv = P(C|Ev) for all v ∈ V , a function used and

described in Section 6.3.1. We will proceed by conditioning on the value of the current

homology path H at v, H(v).
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A

S

Figure C.1. Edges with nonzero modified felsenstein peeling weight.

First, note that fv can be zero for some vertices. To see where and why, consider the set

of leaves S that that have a non-gap observation in the current column c. Then fv will be

non-zero only for the vertices ancestral to some leaf in S. Let us call this set of vertices

A (see Figure C.1).

Next, we use the standard Felsenstein peeling recursion to compute f̃v = P(C|Ev, H(v) 6=
g). This is done by dynamic programming for v ∈ V , s ∈ Σg as follows:

f̃v(s) =

{
1(c(v) = s) if v ∈ L∑

s′∈Σg
exp(b(v)Q)s,s′

∏
w∈child(v) f̃w(s′) o.w.

f̃v = πTf̃v.

Finally, for c 6= c∅, and using the fact that we always assume conditioning on R (as

described in Appendix C.1, we get:

fv = P(C|Ev)

= E[P(C|Ev, H(v))]

=

{
f̃v if v = Ω

1[v ∈ A]β(b(v))f̃v o.w.

For c = c∅, we get:

fv =

{
f̃v if v = Ω

1 + β(b(v))(f̃v − 1) o.w.
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C.4 Analytic MSA marginalization

In our experiments, we resampled both trees and MSAs, but in other cases, one may want

to fix the set of alignments to condition on, for example by using a high recall alignment m

(e.g., one produced by the variational framework of Chapter 5). We show in this appendix

how to sum over subsets of a high recall alignment (i.e. alignments such that the set of

edges is contained in the set of edges of m). This set has exponential size, but we show

that an efficient algorithm exists if the subset is defined properly.

Definition 19. A clade is a set of leaves induced by a tree topology as follows: for each

vertex v ∈ V , the induced clade fv is the subset of the leaves that are descendants of v.

We call this set of sets clades(τ).

Definition 20. Let p be a PSCP sample path, with MSA m and observed sequences

y. For all observed taxon v ∈ L, an alignment coordinate is a pair a = (v, i) where

i ∈ {1, . . . , |y(v)|} is an index in the observed sequence. Note that a multiple sequence

alignment can be viewed as an equivalence relation on the alignment coordinates, where

two coordinates are related if they are emitted by the same homology path. We will denote

these equivalence classes by [a]m.

Definition 21. For all set of coordinates S (in particular, for equivalence classes [a]m),

we define the taxon projection t as the set of taxon represented in the coordinates, t(S) =

{v ∈ L : ∃(v, i) ∈ S}.

We now define a partial order on the space of multiple sequence alignments (note that

this is a different partial order than the one described in Section 6.1). The set we sum

over will be derived from it.

Definition 22. If m and n are multiple sequence alignments over the same observations

y, we write m � n if the following condition is met: for all coordinate a, there is a clade

f such that t([a]m) = t([a]n) ∩ f .

This can be easily shown to be a partial order. There is a minimal elements: the empty

alignment. There is no maximal element however, so the partial order is not a lattice.

We can now formulate the probability we will compute in this section:

P (Y = y,M ∈ (↓ m∗)) ,

↓ m = {n : n � m}.
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Figure C.2. Example of c-minimal clades.

We will call m∗ the bounding alignment.

We will need two more definitions:

Definition 23. Given a column c and a clade f , the induced survivors set, is defined as

survivors(c, f) = {v ∈ f : c(v) 6= g}.

Definition 24. A subset of clades P ⊂ clades(τ) is c-minimal is for all f 6= f ′ ∈ P, we

have f ′ ⊂ f =⇒ survivors(c, f) 6= survivors(c, f ′). We will denote the largest c-minimal

set by Pc (see Figure C.2).

Note that for each f ∈ Pc with |f | > 1, there are unique fL, fR ∈ Pc such that fL∪fR = f .

We will also use the notation fT for the element of Pc of largest cardinality.

We define the following function on Pc: Z(f) = Z(c|f ), where c|f denotes restriction of

the column to the clade f :

(c|f ) (v) =

{
c(v) if c ∈ f
g o.w.
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The next step is to define two recurrences, r and s, which have the following semantics:

s(n) =
∑

m�m∗

s.t. |m|=n

∏
c∈m

Z(c)

ri(n) =
∑

m�{ci}
s.t. |m|=n

∏
c∈m

Z(c).

To computing these, first, corresponding to each column ci in the bounding alignment,

we pre-compute following recurrences for f ∈ Pc:

ri(f, n) =

{
Z(f) if n = 1∑n−1

m=1 ri(fL,m)ri(fR, n−m) o.w.

ri(n) = ri(fT , n).

Next, define a global recurrence collecting the results of the sub-recurrences:

s(i, n) =


1[n = 0] if i = 0∑n

m=1 ri(m)s(i− 1, n−m) if i ≥ 1 and n ≥ 2

0 o.w.

s(n) = s(|m∗|, n).

Computing all of these recurrences take time O(|L|2 · |m∗|+ |y| · |m∗| · |L|) with practically

no hidden constants (in particular, they do not depend on the size of Σ).

Let q = Z(c∅). The result of these recurrences can be used to compute the probability of

interest as follows:

P (Y = y,M ∈ (↓ m∗)) = E
[
P
(
Y = y,M ∈ (↓ m∗)

∣∣|X|)]
=

∞∑
n=0

ξn

n∑
m=0

qn−ms(m)

=

|y|∑
n=0

ξn

n∑
m=0

qn−ms(m) +
∞∑

n=|y|+1

ξn

|y|∑
m=0

qn−ms(m)

=

|y|∑
n=0

ξnq
nS(n) +

 ∞∑
n=|y|+1

ξnq
n

S(|y|)

=

|y|∑
n=0

ξnq
nS(n) + q|y|+1ϕ(|y|+ 1)S(|y|),
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where |y| =
∑

v∈L |yv|, and we have used the fact that s(n) = 0 for n > |y| and defined

S(M) =
∑M

m=0
s(m)
qm .

C.5 Parameter estimation

In this section, we outline how to compute the gradient of the marginal log likelihood with

respect to the parameters λ, πk, Qk,k′ . Note that we did not use these computations in

our experiments (we used Bayesian estimators), but we include them for reference. These

computations can be used for example to construct maximum likelihood estimators.

The partial derivatives for λ can be derived directly:

∂

∂λ
log P(Y = y,M = m) =

∂

∂λ
log

(
ϕ(Z(c∅), |m|)

∏
c∈m

Z(c)

)

=
∂

∂λ
logϕ(Z(c∅), |m|).

Where, for any q ∈ [0, 1], N > 1:

∂

∂λ
ϕ(q,N) =

∞∑
n=N

qn−N ∂

∂λ
ξn(λ)

=
∞∑

n=N

qn−1−(N+1)e−λλn−1

(n− 1)!
−

∞∑
n=N

qn−Ne−λλn

n!

= ϕ(q,N − 1)− ϕ(q,N).

so that we have:

∂

∂λ
log P(Y = y,M = m) =

∂

∂λ
logϕ(q,N)

=

(
∂
∂λ
ϕ(q,N)

)
ϕ(q,N)

=
ϕ(q,N − 1)

ϕ(q,N)
− 1.

For the derivative with respect to the other parameters, we use a different strategy: we

use the left-hand side of the following result, which we prove in Appendix C.6:
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Proposition 25. Let {Pθ : θ ∈ Θ ⊆ Rn} be an indexed collection of probability measures

dominated by µ. For a given observed event E, we let πθ(A) = Pθ(A ∩ E) denote the

likelihood with density fθ = dπθ

dµ
, and λθ(A) = πθ(A)

πθ(E)
, the posterior probability distribution.

If `ω(θ) and L(θ) are both differentiable at ω ∈ Θ, then

∇`ω(ω) = ∇L(ω), π-a.s. (C.1)

where:

`ω(θ) =

∫
log fθ dλω,

L(θ) = πθ(E).

In our case, the terms of the expression on the LHS of Equation (C.1) (the expected

complete loglikelihood) that depend on πk and Qk,k′ are:∑
c∈m

〈φτ ,E[N(c)|Y = y,M = m]〉+(
E[|X||Y = y,M = m]− |m|

)
〈φτ ,E[N(c∅)|Y = y,M = m]〉,

where N(c) is the sufficient statistics vector for the CTMC that created column c (i.e. the

waiting time for each state and the transition counts), and φτ is the corresponding param-

eter vector (i.e. the marginal transition probabilities computed by matrix exponentiation

using τ).

How to compute E[N(c)|Y = y,M = m] is explained in [30], so we only show how to

compute E[|X||Y = y,M = m].

First, note that

P[|X||Y = y,M = m] ∝ ξnq
n−|m|,

so the normalization is ϕ(q, |m|), which implies that:

E[N(c)|Y = y,M = m] =
λqeλ(q−1) −

∑|m|−1
n=0 nξnq

n

q|m|ϕ(q, |m|)
.

C.6 Proof of proposition 25

We start by proving the following lemma:
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Lemma 26. If φ, ψ are real-valued functions such that:

1. φ(x0) = ψ(x0) for some x0,

2. φ(x) ≤ ψ(x) on an open set S containing x0,

3. φ and ψ are differentiable at x0,

then ∇ψ(x0) = ∇φ(x0).

Proof. Without loss of generality, φ, ψ are univariate functions with φ(x0) = ψ(x0) = 0,

and x0 = 0.

Let δ = ψ′(x0) − φ′(x0) and consider a sequence an > 0 converging to zero with an ∈ S.

We have:

lim
n→∞

ψ(an)− φ(an)

an

= δ,

and since the numerator and denominator are both positive for all n, we conclude that

δ ≥ 0.

By doing the same argument with a sequence bn < 0 converging to zero, we get that

δ ≤ 0, hence the derivatives are equal.

We can now prove Proposition 25:

Proof. Let gθ = dλθ

dµ
denote the densities for the posteriors, fix ω ∈ Θ, and define

φ(θ) = `ω(θ)−
∫

log gω dλω

ψ(θ) = L(θ).

To apply the lemma, we need to show (1) and (2).

For (1), we have:

φ(ω) =

∫
log

dπω

dλω

dλω

=

∫
Pω(E) dλω

= Pω(E) = L(ω),
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where we have used the a.s. uniqueness of Radon-Nikodym derivative to establish the

simplification from the first to second line.

For proving (2), we use Jensen’s inequality:

φ(θ) =

∫
log

dπθ

dλω

dλω

≤ log

∫
dπθ

dλω

dλω

=

∫
log dπθ = L(θ).
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