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Abstract

A Minimum Spanning Tree Framework for Inferring Phylogenies

by

Daniel Giannico Adkins

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish B. Rao, Chair

This dissertation discusses how to write efficient, deterministic programs to infer phylogenetic
trees. These programs are based on a theoretically optimal polynomial time algorithm. The pro-
grams are practical and efficient.

The problem is to infer phylogenetic trees from sequence data at the leaves. Likelihood ap-
proaches attempt to solve an NP-complete optimization problem, and are computationally intense.

Our approach is to apply efficient, polynomial time algorithms which are provably accurate to
within a constant factor of optimal.

We present a program which is practical and computationally efficient.
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Chapter 1

Introduction

A phylogeny is the evolutionary development and history of a group of organisms. A phyloge-
netic tree is a formal representation of the phylogeny, or evolutionary history of a set of species.
Since Charles Darwin published “The Origin of the Species,” phylogeny has primarily been a
taxonomy problem of interest to biologists.

With the relatively recent discovery of DNA and the advent of automatic sequencing of entire
genomes, phylogeny has been recast as a mathematical or computational problem. Biologists have
proposed mathematical models of evolution which posit that evolution is, by and large, a random
process acting on DNA over time. Some models posit that mutations occur independently and
randomly to individual DNA characters, provided no external factors such as survival are at stake.
Other models look at larger changes, such as the rearrangement of entire genes, by observing the
movement of conserved segments of the genome.

Whatever the particular model of evolution, the general idea is that the expected number of
evolutionary events that occur in a genome is a function of time. Over time, speciation events occur
where a single species splits into two distinct species, never to recombine. Of course, species do
sometimes reintegrate, but we choose to ignore that in our models. The result of this process is an
evolutionary tree with a root and a set of distinct species or organisms at the leaves.

The combinatorial problem is, given a set of data for the species at the leaves and assum-
ing some reasonable model of evolution, to reconstruct the phylogenetic tree which led to those
species. We are interested mainly in the structure of the tree, since that embodies the evolutionary
relationships between the species. We are not as interested in the internal sequences or any branch
lengths in the tree, although some algorithms learn this data and make use of it.

The problem of phylogenetic reconstruction is of interest to biologists, naturally, but also to
mathematicians, statisticians, and computer scientists. Biologists are using algorithms to resolve
ambiguities in the tree of life, and also to advance theories about the relation between mice and
men, for example. To the other fields, the problem is related to problems of percolation theory and
information flow over a noisy channel. They view evolution as transmitting information over time,
which is a natural idea. Over time, information is lost to random mutations, but also information is
duplicated and transmitted through replication. Of course, making copies is not the explicit goal.
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There is an interplay between random mutations, which are ways of trying new configurations, and
preserving the configurations which are proven to work.

In the inference of phylogenies, two central issues are the inference of quartet topologies and
the use of ancestral sequences. In this dissertation, we implement and test a novel framework
which proceeds by alternatively inferring quartet topologies and learning ancestral sequences. This
framework provides a context in which to study the performance of methods for inferring quartet
topologies as well as a motivation for optimizing their performance.

We study the performance of the framework with a variety of ancestral sequence methods. We
show the framework is effective for both nucleotide data and genomic data.

In Chapter 2, we present the basic algorithm and compare the performance of our implemen-
tation with other programs. We extend the algorithm of Mihaescu et al. [MHR08] to incorporate
more sophisticated ancestral learning techniques which require us to estimate edge lengths. We de-
scribe the performance of our framework using various combinations of ancestral sequence learn-
ing methods described therein and quartet methods described subsequently in this dissertation.

As an example of the difficulties of learning quartets, the sequence at an internal node with a
distant child and a closely related child should be closer to the closely related child. Here the accu-
racy of quartet topology and distances comes into play, motivating further study of the performance
of quartet methods for distance estimation.

In order to understand and improve our relative performance in comparison with previous
methods we study a variety of methods to infer quartet topologies. We first study the relative
performance of the standard distance-based methods with likelihood methods. We observe that
likelihood performs better for some quartets. We provide insight into this phenomenon by show-
ing that the estimates from likelihood have smaller confidence intervals than those provided by
distance methods. Our methods for estimating the confidence intervals are presented in Chapter 3.
Our implementation illustrates that these methods can be incorporated in the future to actually pro-
vide confidence intervals for edge lengths in programs (which is not done currently in any program
to our knowledge.)

In Chapter 4, we give a theoretical proof that the framework is effective for genomic data. This
follows a previous proof [MHR08] showing that essentially the same framework was theoretically
effective for nucleotide data.
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Chapter 2

Molecular Phylogeny

In this chapter, we describe our algorithmic framework for molecular phylogeny. In molecular
phylogeny, we are concerned with sequences of characters, typically DNA. Each character evolves
independently according to a Markov process.

2.1 Background
We assume that evolution proceeds independently on each character in the tree according to

a Markov process. The parameters of the Markov process may change from edge to edge in the
tree, but not from site to site for any given edge. For molecular data (i.e. A, C, G, T), the most
general model is the general time reversible (GTR) model [Tav96], which only assumes that the
transition probability matrix has non-zero determinant. More specific models include the Kimura
2 or 3 parameter models [Kim80, Kim81] (Figure 2.1), which group the transition and transversion
probabilities. The simplest model is the Jukes-Cantor model [JC69], with one parameter for the
transition probability among any characters.

The Jukes-Cantor process can be described as follows. With probability θ, no mutation occurs;
the character is copied. With probability 1 − θ, a random mutation occurs. All characters are
equally likely to occur, including the original character. The θ formulation is useful because we
can multiply parameters for edges to get a composite parameter. By taking a logarithm,

d(e) = − log θ(e), (2.1)

we get an additive metric.
With a formal model defined and with long enough sequences, the problem is well-formulated.

There is one correct tree that we can say with high probability generated the sequences we ob-
served. We can reconstruct that tree and its internal branch lengths accurately, if only we had
enough trials. Of course, the amount of sequence data that is necessary depends on the method
used. Daskalakis et al. [DMR06] shows that with certain reasonable restrictions on the branch
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Figure 2.1: The Kimura two-parameter model of nucleotide substitution.

lengths, the amount of data needed to reconstruct a tree with n leaves is O(log n). This bound is
tight.

2.1.1 Distance Estimation
Given two sequences, we can estimate the distance between them assuming the Jukes-Cantor

model of evolution. First, we compute the normalized agreement between the two sequences, a
and b, of length k

A(a, b) =
1

k

k∑
i=1

[ai = bi]. (2.2)

From that, we can estimate the parameter θ for the edge or path between a and b as,

θ̂(a, b) =
4

3

(
A(a, b)− 1

4

)
. (2.3)

If the agreement is less than 1/4, this value may be negative. In those cases, we consider it to be
0. Also, for convenience, we also use the equivalent additive distance estimate

d̂(a, b) = − log θ̂(a, b). (2.4)

2.1.2 Four Point Method
The four point method is an unbiased estimator for the middle edge of a quartet of taxa, given

the sequences at the leaves of the quartet and a distance function between sequences. Given a
quartet (ab|cd), the four point method estimates the length of the middle edge (x, y) as

d̂(x, y) =
1

4

(
d̂(a, c) + d̂(a, d) + d̂(b, c) + d̂(b, d)− 2d̂(a, b)− 2d̂(c, d)

)
. (2.5)
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Similarly, we can estimate the other edge lengths as

d̂(a, x) =
1

4

(
2d̂(a, b) + d̂(a, c) + d̂(a, d)− d̂(b, c)− d̂(b, d)

)
(2.6)

d̂(b, x) =
1

4

(
2d̂(a, b) + d̂(b, c) + d̂(b, d)− d̂(a, c)− d̂(a, d)

)
(2.7)

d̂(c, y) =
1

4

(
2d̂(c, d) + d̂(a, c) + d̂(b, c)− d̂(a, d)− d̂(b, d)

)
(2.8)

d̂(d, y) =
1

4

(
2d̂(c, d) + d̂(a, d) + d̂(b, d)− d̂(a, c)− d̂(b, c)

)
(2.9)

although these estimators are biased unlike the middle edge estimator.
We use the four point method primarily to determine the orientation of a quartet of nodes. The

correct orientation is the one with the largest middle edge by this estimator. In fact, if we orient
the quartet incorrectly, the middle edge estimate will have a negative expected value.

As a simplification, it is not necessary to do the full calculation to find the orientation of four
nodes with the largest middle edge. It suffices to pick the smallest sum of side edges:

(ab|cd) d̂(a, b) + d̂(c, d); (2.10)

(ac|bd) d̂(a, c) + d̂(b, d); (2.11)

(ad|bc) d̂(a, d) + d̂(b, d). (2.12)

2.2 Related Work
For an overview of the field of phylogenetics, see the books by Semple and Steel [SS03] and

Felsenstein [Fel04].
Distance-based methods define a metric on the tree, usually represented by a pairwise distance

matrix. The original four-point method is due to Buneman [Bun71].
Maximum likelihood, although NP-hard and difficult to approximate, is used in heuristic pro-

grams to great effect, e.g. RAxML [Sta04, Sta06] and GARLI [Zwi06]. There are also Bayesian
program using Markov chain Monte Carlo techniques, e.g. MrBayes [HR01, RH03, ADHR04].

There has been more theoretical work on distance-based algorithms and quartet methods in
particular. Erdös et al. [ESSW99a, ESSW99b] proposed the short quartets method which clears the
hurdle of information loss in long quartets by only piecing together quartets of bounded diameter.
Their method reconstructs trees with polynomial sequence lengths as opposed to the exponential
requirement of neighbor joining.

Daskalakis et al. [DMR06] proved optimal phylogenetic reconstruction results. Namely, un-
der certain conditions on the edge lengths, you can reconstruct phylogenetic trees with O(log n)
sequence data at the leaves. This result is optimal to a constant factor. Mihaescu et al. [MHR08]
later gave a more efficient, polynomial time algorithm which achieved the same optimal bounds.
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The key idea of our algorithm is to not just use the distances between leaves, but to also learn
ancestral genomes. For molecular data, the ancestral approach has been shown to be more ac-
curate than distance-based methods in theory and practice. In practice, likelihood methods (e.g.
RAxML [Sta04, Sta06] and PhyML [GG03]) and parsimony methods (e.g. Fitch-Hartigan [Fit71,
Har73]) which learn internal sequences significantly outperform distance methods. In theory, the
recursive majority algorithm for learning ancestral sequences was introduced and analyzed by
Mossel [Mos04]. The recursive procedure is also a key step in the logarithmic-sized phylogeny
reconstruction algorithms of Daskalakis, Mossel, and Roch [DMR06] and Mihaescu, Hill, and
Rao [MHR08].

2.3 Our Approach
Our algorithm maintains a forest of correct subtrees of T , infers characters on interior nodes of

each tree, and uses that information to decide how to join these subtrees. The main tool for joining
subtrees is the now classical four-point method, which can properly sort out the topology of a
quartet given sufficiently accurate distances among the four positions. If we can estimate distances
between internal nodes with sufficient accuracy, our algorithm will reconstruct the correct tree.

The algorithm begins by forming a forest consisting of each taxa as an isolated tree. At each
step, it combines two subtrees into a larger tree. A tree Tf in the forest corresponds to a set of taxa
and an induced subtree in the true evolutionary tree T . An edge in Tf may correspond to a path in
T . The algorithm maintains the property that the set of trees in the forest corresponds to a disjoint
induced subgraph in T .

The algorithm joins trees by locating the shortest path (in evolutionary distance) between two
subtrees in the forest. Adding an edge corresponds to joining two subtrees, T1 and T2. That edge
corresponds to a path in the evolutionary tree. By choosing the shortest such path and correspond-
ing edge, the algorithm maintains the disjointness condition of the forest. By choosing to attach
the edge to the appropriate place in T1 and T2, the algorithm maintains the correct topologies on
the subtrees of the forest.

In the general case, the algorithm needs to find the correct pair of trees and edges, e1 = (a, b)
and e2 = (c, d), in the forest to serve as the endpoints of the new edge. We assume that it tries
all pairs of edges and estimates the distance of the connecting edge as follows. It removes edges
e1 = (a, b) and e2 = (c, d), breaking their respective trees into two subtrees. It then learns internal
sequences at a, b, c, and d from the separate subtrees. These internal sequences can then by used in
the four point method to estimate the length of the edge connecting the two edges assuming that this
is indeed the correct pair of edges. This follows since the sequences at a, b, c, and d are independent
random variables; they are learned from entirely separate subtrees in the true evolutionary subtree.
If we are at an incorrect pair of edges, (a, b) and (c, d), one or more of the subtrees will contain a
portion of the path in the tree connecting the edges. This creates dependencies between the learning
algorithm in the supposedly separate subtrees and makes the distance computation invalid. The
algorithm contains a check for this case (essentially the four point method at adjacent edges).
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Now, given that the middle edge distance output by the four point method is sufficiently well
estimated by a distance estimator and learning method, the algorithm finds the shortest possible
joining edge and proceeds. The efficient algorithm optimizes this approach by caching various
sequence learning results.

We compared our algorithm to neighbor joining, PAUP*, and RAxML. The most interesting
was RAxML, a likelihood-based program which is the best program we were able to find. Results
are given later in Section 2.4. We found that our initial efforts, while good, were clearly inferior
to RAxML’s trees. One theory was that our method of learning sequences, simple majority at
depth two, did not account for edge lengths (nor should it have to according to the theory), while
RAxML was making full use of estimated edge lengths and every parameter it could get its hands
on. The quartet method gives a reliable estimate of the middle edge of a quartet, so we decided
to use that to estimate edge lengths. We used these edge lengths as a rudimentary weight in the
majority calculation of the sequence learning process. This version is dubbed the weighted quartet
algorithm and is, to date, the best performing algorithm we have. Its performance is comparable
to RAxML’s, with the exception of some particularly difficult small interior edges that RAxML
seems to be better at learning than we are. Getting those last edges correct is the focus of the
remainder of this research.

In addition to using edge weights to compute a simple weighted majority, we use those edge
weights to make a Bayesian calculation of the probabilities of certain characters in sequences. The
motivation behind this was to mirror the likelihood calculation that RAxML was performing during
its learning process, as well as to accurately account for the probabilistic process that generated
the data in the first place. This is tricky to get right, and simply propagating probabilities from the
leaves all the way to the interior nodes of the tree was unsuccessful. Just as in the quartet method, it
is necessary to round at some point and learn internal sequences, instead of always relying on just
the leaf data. It is not clear why this is the case, or what is the best way to do Bayesian sequence
learning.

We note that the method of picking two close trees and then doing a quartet walk is potentially
more expensive than it needs to be, especially since we observed that the correcting quartet walk
rarely occurs on trial runs. According to the theory, the length of the middle edge of the quartet
joining two trees should be minimized at the join point. Therefore, if we simply tried joining
between every pair of edges, then the correct place to join would be at the smallest middle edge,
with no need to walk. This optimization simplifies the code and speeds it up. But, we eventually
discovered that using this as a starting point was a good idea, as it usually eliminated the walk, but
it is still necessary to check in case of small interior edges.

Another thing we tried was fixing up quartets after the fact. Our program would sometimes
make mistakes on early edges, joining trees off by one vertex, because it did not have information
on where the later vertices were in the tree. This appears to be a problem caused by the order
of joining; the incorrect quartet can be detected and corrected once the tree is fully assembled.
In retrospect, we realize that this is pretty much how RAxML is operating. It first generates a
candidate tree with some simple, greedy method. Then, it spends most of its time trying out
various local rearrangements on that tree which might improve its likelihood score. We initially
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tried this using the quartet test as the check of whether or not a quartet needed to be flipped. We
also later used a likelihood test, although it only considered the internal sequences on the quartet
and not the entire tree as RAxML generally does.

2.3.1 Joining Metric
One option for the joining metric is parsimony. We join two trees at the point which increases

the parsimony score the least. This approach, while not optimal, is simple to implement and
compares favorably in practice to the hsearch (heuristic search) method of PAUP*. The problem
of maximizing parsimony over an entire tree is NP-complete [FG82].

Another joining metric is the quartet test. We select two trees to join which have vertices which
are close to each other by the corrected distance metric, a variation on Hamming distance which
corrects for bias. It does not matter if we precisely get the smallest distance here, only that the
distance between the two trees is smaller than some threshold. Given two close trees as a starting
point, we then perform a quartet test to determine precisely where the join points should be. This
quartet test performs reliably if the distances between the two trees is short. This method is more
computationally expensive than the parsimony method, but gives better results.

2.3.2 Learning Edge Lengths
We use the four point method not only to decide where to join trees, but also to learn edge

lengths. We can reliably learn the length of an edge in the middle of a quartet of sequences. We
use this method, along with the sequence learning algorithm, to bootstrap other edge lengths in the
tree.

Another edge learning technique we considered was maximum likelihood. Instead of using the
four point method directly, we computed the maximum likelihood quartet and branch lengths from
the sequences at the leaves of the quartet. This optimization is more expensive, but bounded in
cost because we are just doing it for a quartet, not the entire tree.

2.3.3 Learning Internal Sequences
We have three methods for learning the sequence at an internal node from its two children.
The first is to take a simple majority of the four children at a depth of two from the node.

If three or more share the same character, the parent gets that character. Otherwise, the parent
character is unknown.

The second technique is similar to the first, but instead we take a weighted majority of the
children. The weights we use on each branch are the copy probabilities, θ(e).

The third technique is Bayesian. We use the branch lengths to determine the conditional prob-
abilities of each character at the parent. We carry these distributions through the tree as if we were
computing the likelihood of the tree. We round the probabilities in order to determine an actual
sequence at each internal node. This is crucial for the four point method.
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2.3.4 Disjoint-Set Forests
As we join together trees into a forest, we need to be able to efficiently tell if two nodes are

in the same tree. This calls for a disjoint-set forest. We use a modified version of the standard
union-find algorithm [CLR90, Chapter 22].

2.3.5 Pruning
If the distance across the quartet is too large, our techniques to estimate the middle edge will get

overwhelmed by the overall noise, especially if the middle edge itself is small. We have a technique
to cope. When an edge is too long, we remove it from consideration entirely. Statistically, there
is no bias, although we have reduced the sample size. It only makes sense to do this if the loss in
signal is less than the noise being removed.

We implement this in the algorithm by assigning a weight of 0 to edges we want to eliminate.
This implies that their neighbor will get weight 1, and we will just copy the more reliable sequence
in its entirety rather than introduce excessive noise.

The log likelihood function sums the log likelihoods over leaf patterns seen at each nucleotide
site. The effect of this is to decrease the influence of sites where the distribution at any of these
sequences is flat. That is, the sites where the learning noise is high are automatically given lower
weights compared to sites where the confidence in the learned character is higher.

We incorporate this idea into the distance method by adding a bit pruning heuristic into our
approach. Ideally, such an approach would prune bits by trading off the signal added for each
bit with the noise introduced by each bit on a per quartet basis. Experiments show that choosing
thresholds appropriately can improve the performance of our approach.

In particular, one might set the threshold as a function of sequence length or even locally for a
particular quartet based on the signal available in the associated learned sequences.

2.3.6 Post Facto Fixup
This heuristic makes a pass over the final tree using a quartet method. The theory is that when

the tree is completely assembled and mostly correct, is is possible to correct earlier mistakes made
with less information. The issue is, once again, that optimizing using the proxies available for a
correct topology may not actually help given noise, and that our fixup methods do not necessarily
globally optimize the measure. Moreover, for some of our methods, we may improve the score for
a particular place, while decreasing the score corresponding to another location in the tree.

2.4 Experimental Results
In this section, we experimentally evaluate our algorithm on molecular data.
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2.4.1 Experimental Setup
We first generate random trees using r8s [San03]. By default, r8s generate ultrametric trees,

so we must randomly perturb the output. Another factor in the difficulty of trees is the maximum
normalized Hamming distance for any pair of vertices. We scale the branch lengths of the trees to
control the difficulty of a dataset.

For each random tree, we generate sequence data. We start with a random sequence of chosen
length at the (arbitrary) root. We evolve the sequence to get internal sequences and leaf sequences.
The leaf sequences are the test data, while the original tree is the correct answer.

We feed the leaf sequences to all programs and compare the resulting trees with the model tree.
The Robinson-Foulds distance between two trees measures the number of differing edges. We
normalize this value over the number of possible edges to get the normalized error rate for each
program on each input.

In our first set of experiments, we compared the following programs:

• mp – PAUP* maximum parsimony

• nj – PHYLIP neighbor joining

• qw – Our program using weighted majority sequence learning

• r – RAxML

Our programs take as input the leaf sequences in PHILIP format and output output a tree in
NEWICK format. Other programs do not necessarily operate in this manner, so we wrap them in
shell scripts so that they can be run in our test framework.

2.4.2 Results
We ran a series of experiments on trees with varying sizes and sequence lengths. The trees

ranged from 100 to 400 taxa, and the sequence lengths ranged from 1000 to 5000. For each pro-
gram, we plot the normalized Robinson-Foulds error versus the number of taxa. Each plot only
contains data points of a fixed sequence length. As discussed before, normalized Hamming dis-
tance is supposed to be a proxy for the difficulty of the dataset. We ran experiments and have results
for 6 datasets. Trees in datasets A (Figure 2.2), B (Figure 2.3), and C (Figure 2.4) all have normal-
ized Hamming distances between 0.6 and 0.7. Trees in dataset D (Figure 2.5) have a normalized
Hamming distance between 0.75 and 0.8. Trees in dataset E (Figure 2.6) have a normalized Ham-
ming distance of roughly 0.5. Finally, trees in dataset F (Figure 2.7) have a normalized Hamming
distance of about 0.25.

There are three factors which influence the difficulty of inferring a tree from its sequences.
First, we expect all programs to make more errors with short sequence lengths, and converge
to correctness as the sequence length increases. Second, we expect that increasing the number
of taxa will increase the error rate, not only because there are more opportunities for error, but
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also because more edges are deep in the tree and thus difficult to learn. Finally, the maximum
normalized pairwise Hamming distance serves as a proxy for difficulty. We especially expect
neighbor joining, which is a distance method, to be tripped up by high pairwise distances.

We find that in all datasets, neighbor joining generally performs worse than all other programs.
As expected, this is especially true in dataset D, which has the highest normalized maximum Ham-
ming distances. We also find the RAxML tends to be the best of the programs we tested in most
cases. In most of the datasets, we find that maximum parsimony and our program fall between
neighbor joining and RAxML. There is one exception. In dataset E, which has the lowest normal-
ized maximum Hamming distances, we find that maximum parsimony does as well as RAxML.

The absolute differences between the programs are small. We are dealing with a constant factor
difference. But these constant factors are significant, because when the learning error improves by
a factor of 2 or 3, the probability of learning that edge incorrectly is 4 or 5 standard deviations out,
and thus on the order of 1000 times more unlikely.

Our algorithm is sound. Not only is it a well-understood terminating algorithm with proven
bounds, at each step of the algorithm we can know how confident we are of the edge we just
added. It knows with some certainty that it is right at each step. When we do not have confidence,
that is significant as well.

2.4.3 Illustrative Example
We evaluate our program versus neighbor joining and RAxML. This experiment is deeper and

narrower than the previous experiments. We choose one interesting 100-taxa tree on which to plot
results. For this tree, we generate sets of random sequences of varying length. For each sequence
length, we generate 10 sets of random sequences. To evaluate the programs, we run them on
the sample inputs and compare the resulting tree to the original tree. The metric we use for this
comparison is normalized error, which is the percentage of internal edges which differ from the
model tree. To generate a smooth and accurate graph, we average the results for the 10 inputs at
each sequence length.

The results are plotted in Figure 2.8. On this dataset, we are more accurate than neighbor
joining but less accurate than RAxML. The tree we selected is by no means special. We got similar
results on many other trees. The size of the gap between the programs in this experiment seems to
depend on the number of difficult edges in the tree. We do not have an exact characterization of
what makes an edge difficult, be we do know that small edges deep in the tree are more difficult
than large edges toward the boundary of the tree.
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Figure 2.2: Dataset A. We compare neighbor joining (nj), maximum parsimony (mp), RAxML (r),
and our weighted quartet program (qw). Trees in this dataset are not scaled, and have a maximum
normalized Hamming distance of 0.6–0.7. The y-axis is the percentage of internal edges a program
gets wrong. The independent variables are the number of taxa in a dataset (leaves) and the length
of the sequences. At lower sequence lengths and higher number of taxa, RAxML makes the fewest
errors while neighbor joining makes the most.
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Figure 2.3: Dataset B. We compare neighbor joining (nj), maximum parsimony (mp), RAxML (r),
and our weighted quartet program (qw). Trees in this dataset are not scaled, and have a maximum
normalized Hamming distance of 0.6–0.7. The y-axis is the percentage of internal edges a program
gets wrong. The independent variables are the number of taxa in a dataset (leaves) and the length
of the sequences. As in dataset A, at lower sequence lengths and higher number of taxa, RAxML
makes the fewest errors while neighbor joining makes the most.
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Figure 2.4: Dataset C. We compare neighbor joining (nj), maximum parsimony (mp), RAxML (r),
and our weighted quartet program (qw). Trees in this dataset are not scaled, and have a maximum
normalized Hamming distance of 0.6–0.7. The y-axis is the percentage of internal edges a program
gets wrong. The independent variables are the number of taxa in a dataset (leaves) and the length
of the sequences. As in datasets A and B, at lower sequence lengths and higher number of taxa,
RAxML makes the fewest errors while neighbor joining makes the most.
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Figure 2.5: Dataset D. We compare neighbor joining (nj), maximum parsimony (mp), RAxML
(r), and our weighted quartet program (qw). Trees in this dataset are scaled by a factor of 2, and
thus have a maximum normalized Hamming distance of 0.75–0.8. The y-axis is the percentage of
internal edges a program gets wrong. The independent variables are the number of taxa in a dataset
(leaves) and the length of the sequences. The large pairwise distances cause neighbor joining to
especially poorly, while RAxML only has a clear advantage on trees with sequence length 1,000.



16

 0

 2

 4

 6

 8

 10

 12

 14

 100  150  200  250  300  350  400

RF
 e

rro
r (

%
)

No. of taxa

Sequence length = 1000

nj
mp

r
qw

 0

 2

 4

 6

 8

 10

 12

 14

 100  150  200  250  300  350  400

RF
 e

rro
r (

%
)

No. of taxa

Sequence length = 2000

nj
mp

r
qw

 0

 2

 4

 6

 8

 10

 12

 14

 100  150  200  250  300  350  400

RF
 e

rro
r (

%
)

No. of taxa

Sequence length = 3000

nj
mp

r
qw

 0

 2

 4

 6

 8

 10

 12

 14

 100  150  200  250  300  350  400

RF
 e

rro
r (

%
)

No. of taxa

Sequence length = 4000

nj
mp

r
qw

 0

 2

 4

 6

 8

 10

 12

 14

 100  150  200  250  300  350  400

RF
 e

rro
r (

%
)

No. of taxa

Sequence length = 5000

nj
mp

r
qw

Figure 2.6: Dataset E. We compare neighbor joining (nj), maximum parsimony (mp), RAxML (r),
and our weighted quartet program (qw). Trees in this dataset are scaled by a factor of 0.5, and
thus have a maximum normalized Hamming distance of about 0.5. The y-axis is the percentage of
internal edges a program gets wrong. The independent variables are the number of taxa in a dataset
(leaves) and the length of the sequences. All programs do well due to the small pairwise distances,
except for neighbor joining on some trees with sequence length 1,000.
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Figure 2.7: Dataset F. We compare neighbor joining (nj), maximum parsimony (mp), RAxML (r),
and our weighted quartet program (qw). Trees in this dataset are scaled by a factor of 0.25, and
thus have a maximum normalized Hamming distance of about 0.25. The y-axis is the percentage
of internal edges a program gets wrong. The independent variables are the number of taxa in a
dataset (leaves) and the length of the sequences. In this low mutation regime, all programs do well,
but RAxML and maximum parsimony appear to be the clear winners.
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Figure 2.8: We compare neighbor joining (nj), RAxML (r), and our quartet program (q) on one
particular 100 taxa tree. Each point in the graph is the result of generating 10 sets of sequences
for that tree and running the programs on those sequences. The y-axis is the percentage of internal
edges a program gets wrong, averaged over the 10 runs. The x-axis is the sequence length. Two
trends are clear. First, as the sequence length increases, the error rate of all programs tends to 0.
Second, there is a clear order among the programs. RAxML makes fewer errors than our quartet
program on average, and our program makes fewer errors than neighbor joining on average.
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Chapter 3

Learning Quartets

We compare two methods for learning quartets, a distance method and a likelihood method.
The input is a set of four sequences or distributions, and the output is the proper quartet arrange-
ment along with some measure of a confidence. Note, there are only three possible arrangements
here (Figure 3.1).

3.1 Distance Method
Given a set of sequences a, b, c, d and estimated pairwise distances, denoted d̂(a, b), the distance

method estimates the middle edge to be

d̂(a, c) + d̂(a, d) + d̂(b, c) + d̂(b, d)− 2d̂(a, b)− 2d̂(c, d)

4
. (3.1)

A

@@@@@@@ C

~~~~~~~
A

@@@@@@@ B

~~~~~~~
A

@@@@@@@ B

~~~~~~~

B

~~~~~~~
D

@@@@@@@
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D

@@@@@@@

D

~~~~~~~
C

@@@@@@@

Figure 3.1: Three possible quartet arrangements.
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Figure 3.2: A difficult quartet: p = 20%, p′ = 60%, and q = 30%.

3.2 Likelihood Method
The likelihood method optimizes a log likelihood function

LL(T |D) =
∑
i

logL(T |Di) (3.2)

where T is the quartet with branch lengths, and Di is the sequence data observed at the ith char-
acter. This function is optimized by any means necessary, which for us means either Newton’s
method or a simple grid search since the search space is relatively small and can be searched
exhaustively.

3.3 Why Likelihood Works
We perform an experiment where for a given model quartet, we generate sets of 1000 random

characters and then evaluate the two algorithms on the data. We repeat this many times in order
to get a complete picture of the accuracy of the algorithms at learning the middle edge. Note that
the value of the middle edge we expect the algorithms to learn is the empirical value based on the
two internal sequences of the quartet, not the model value. Although, on average, the empirical
value equals the model value, we wish to evaluate how close the algorithms come to learning the
empirical value on any given trial, not the variance of the empirical value itself (which is a function
of the sequence length).

We give some results for one particularly bad quartet in the Felsenstein zone, with p = 20%,
p′ = 60%, and q∗ = 30% (Figure 3.2). These values are straight expected mutation rates, not
adjusted copy probabilities. For this case, we give some empirical graphs of the absolute error of
each method versus the true empirical values. To collect this data, we fix the outer edges and let
the likelihood optimizer figure out the optimal value of q. This gives an unfair advantage to the
likelihood method.

In Figure 3.3, we see that the likelihood method is a better estimator of the middle edge length
than the quartet method. In order to understand the behavior of the likelihood method, we examine
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(a) Distance Method (b) Likelihood Method

Figure 3.3: Quartet test error versus likelihood test error. These are plots of the empirical cumula-
tive distribution of error for these two methods on one particular quartet.

the statistics of the likelihood function. In Figure 3.4, we plot the expected value of LL(q) with
error bars at one standard deviation. Examining the figure, it appears that LL(q) can be potentially
maximized at a point far from the optimal value q∗ without deviating from the error bars.

In fact, a better way to narrow down the permissible range is to analyze the difference between
LL(q) and LL(q∗). Assuming q∗ is the model edge length, define

∆LL(q) = LL(q)− LL(q∗). (3.3)

If ∆LL(q) > 0 then q might maximize LL. Thus, we compute the expected value and variance
of ∆LL(q) instead of LL(q) and get a much tighter bound on likely values of q. In particular, as
shown in Figure 3.5, the likelihood optimizer will likely output a value of q between 0.24 and 0.36
(the true value is 0.30). This analysis matches the empirical error for the likelihood method from
Figure 3.3, where we observe that the error is less than 0.06 with 95% probability.

3.4 Quartet Likelihood Experiment
In this section, we test the hypothesis that RAxML’s advantage is due to its use of likeli-

hood. We compare RAxML, dnaml, and our own quartet likelihood optimizer. Details on running
RAxML and dnaml are in Appendix C.
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Figure 3.4: E[LL(q)]±σ. The middle curve is the expected value, while the outer curves represent
one standard deviation. The right graph is a zoomed version of the left graph. The shaded region
shows that that q can lie between 0.03 and 0.55 without deviating from the error bars.

Figure 3.5: E[∆LL(q)] ± σ. The middle curve is the expected value, while the outer curves
represent one standard deviation. The right graph is a zoomed version of the left graph. The
shaded region shows q can lie between 0.24 and 0.36 without deviating from the error bars.
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Table 3.1: Quartet Showdown

percent correct best likelihood
n ll RAxML dnaml ll RAxML dnaml
100 66.8 69.4 64.9 81.8 9.2 9.0
250 71.5 76.5 70.3 83.7 9.8 6.5
500 72.1 79.6 74.8 83.4 10.1 6.5
1000 76.1 82.7 78.4 84.5 9.7 5.8

The test dataset for this experiment consists of 1,000 quartets each with sequences lengths of
100, 250, 500, and 1,000. Each edge of a quartet has a length randomly generated by the expression
− log r, where r is picked uniformly at random from the range [10−6, 1). Values less than 10−6

are excluded to avoid numerical problems with the various algorithms. Given branch lengths for a
quartet, we then generate sequences for the quartet.

Our likelihood optimizer uses the Newton-Rhapson method in an attempt to directly optimize
the likelihood function over the space θ ∈ [0, 1]5. To avoid a bad initial position, we split the search
space into 25 = 1024 half-planes. We search each half-plane separately and pick the maximum
over all searches.

Each method is given the leaf sequences of the quartet and asked to determine the correct quar-
tet as well as its edge lengths. The likelihood optimizer determines branch lengths and likelihood
values for the three possible quartet orientations. For each program, we are primarily interested
in whether or not it picked the correct quartet orientation. We also independently compute the
likelihoods for the quartets returned by each program.

The results of the experiment are in Table 3.1. We find that RAxML is better at inferring the
correct topologies than a straight likelihood optimizer. We find this to be the case even though
our likelihood optimizer knows the evolutionary model is Jukes-Cantor, while RAxML optimizes
under the general GTR-Γ model. Our likelihood optimizer produces quartets and edge lengths
which have a higher likelihoods than the quartets returned by RAxML. RAxML’s advantage does
not appear to be in its likelihood optimizer.

We also ran dnaml as an alternative to our likelihood optimizer to verify that our optimizer is
effective. Indeed, our likelihood optimizer, albeit slower, produces better likelihood values than
dnaml.
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Chapter 4

Gene Order Phylogeny

In this chapter, we give a polynomial time algorithm for inferring phylogenies from gene order
data. Our basic contribution is a method for estimating distance and an associated learning method
which can be used to infer adjacencies at internal nodes. This leads to a polynomial time algorithm
for reconstructing a phylogeny on a set of n taxa from gene order data consisting of N = O(log n)
genes. We give an ancestral reconstruction technique and an associated distance metric that can be
used in the framework of Mihaescu et al. [MHR08].

4.1 Whole Genome Phylogeny
We have discussed the problem of phylogenetic reconstruction in terms of molecular data, i.e.

A, C, G, and T. One can take a longer view by looking at the order of genes in a genome. In
theory, genes are conserved over a much longer period of time than one could conceivably align
sequences by characters. These genes get moved around by large evolutionary events, such as
inversions, transversions, and transpositions. Algorithms that operate on the whole genome have
the potential to solve the broader problem of how very different species relate to each other, rather
than just the closely related species.

For molecular data, the most effective approaches for inferring phylogenies are based on recon-
structing internal sequences. For gene order data, the problem of reconstructing internal genomes
remains a challenge. For example, even finding the median of three signed permutations under the
inversion distance or breakpoint metrics is NP-hard [Cap99, PS98].

Previous approaches, as embodied for example in GRAPPA [MTWW02], use various heuristics
and branch and bound techniques to find good solutions for small trees. Due to the exponential
nature of their methods, they need to piece together these small tree solutions for larger trees.
Moreover, the algorithms are not shown to converge to the correct tree even if they were to solve
the NP-hard problems optimally.
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4.2 Our Approach
The key idea of our algorithm is to not just use the distances between leaf genomes, but to

also learn ancestral adjacencies. For molecular data, the ancestral learning approach is more ac-
curate than distance-based methods in theory and practice. The recursive majority algorithm for
learning ancestral sequences was introduced and analyzed by Mossel [Mos04]. This recursive pro-
cedure is also a key step in the phylogeny reconstruction algorithms of Daskalakis, Mossel, and
Roch [DMR06] and Mihaescu, Hill, and Rao [MHR08], which only require logarithmic length
sequences (as a function of the number of taxa).

Our algorithm is based on the recursive majority learning algorithm and the tree joining meth-
ods of Mihaescu et al. We maintain a forest of correct subtrees with inferred adjacencies on the
interior nodes. We use the inferred adjacencies to decide where to join two trees in the forest using
the now classical four-point method. The four-point method can sort out the topology of a quartet
given sufficiently accurate distances among the four nodes. Our contribution is to show that suffi-
ciently accurate distances can be recovered at internal nodes using gene-order data. After joining
two trees, we infer the internal adjacencies using the recursive majority algorithm and proceed
with the rest of the algorithm until the entire tree is reconstructed.

It is not immediately apparent how one can reconcile character-based models of evolution,
which assume that each character evolves independently, with the Nadeau-Taylor model for gene-
order data. We simplify the gene-order data by showing that it is sufficient to represent a genome
by its set of adjacencies rather than its full signed permutation. We also show that it is okay to
assume that these adjacencies evolve independently as if they were characters. This simplification
leads to a distance estimator and ancestral learning algorithm which we can plug directly into the
algorithm of Mihaescu et al.

4.3 Definitions and Notation
In this section, we define the representation of a genome along with the Nadeau-Taylor [NT84]

model of evolution.
A genome consists of a set of N genes. We assume each genome has the same set of N genes

and each gene appears exactly once. A genome is described by a signed circular permutation of
the set [N ]. We call this permutation the gene order data. Let G be a genome with signed ordering
g1, g2, . . . , gN . Since G is circular, any rotations are equivalent (e.g. g2, . . . , gN , g1). Any signed
reversals are also equivalent (e.g. −gN ,−gN−1, . . . ,−g1).

Remark. The number of unique gene-orders on N genes is 2n−1(n− 1)!

Genomes evolve through a serious of evolutionary events. We consider three classes of genome
rearrangement events:

• An inversion between indices i and j, for i ≤ j, reverses the interval between gi and gj ,
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resulting in the genome

g1, . . . , gi−1,−gj, . . . ,−gi, gj+1, . . . , gN .

• A transposition on G acts on indices i, j, k, with i ≤ j and k 6∈ [i, j], by transplanting the
interval between gi and gj and inserting it immediately after gk. This results in the genome

g1, . . . , gi−1, gj+1, . . . , gk, gi, . . . , gj, gk+1, . . . gN .

• An inverted transposition is an inversion composed with a transposition. Like a transposi-
tion, it acts on indices i, j, k, with i ≤ j and k 6∈ [i, j], resulting in the genome

g1, . . . , gi−1, gj+1, . . . , gk,−gj, . . . ,−gi, gk+1, gN .

The Nadeau-Taylor model of genome evolution uses only genome rearrangement events. The
model assumes that each of the three types of events obeys a Poisson distribution on each edge,
with the three means for the three types of events in some fixed ratio. Within each class, all events
occur with equal probability.

In this chapter, we further simplify the model by assuming that only inversions occur.

Definition 1. Genes i and j are said to be adjacent in the gene-order if either i is followed imme-
diately by j or −j is followed immediately by −i. Such a pair (i, j) is called an adjacency.

Remark. We note that (i, j) and (−j,−i) are the same adjacency. We usually view a gene-order as
the set of its adjacencies.

In the phylogeny reconstruction, we assume that there is a model tree T with n leaves rooted at
ρ, and for each edge e ∈ T , a real numberD(e) specifying the mutation rate. The genome on every
node of T evolves from the genome at ρ. For edge e = (u, v) ∈ T , with u being the parent of v,
the genome at v is the result of applying D(e) ·N random inversions to the genome at u. Note that
D(·) induces a tree metric on nodes in T . Given a set of observed genomes on the leaves, denoted
δT , we want to reconstruct the model tree T .

Our method is based on learning ancestral genomes. More specifically, our algorithm maintains
a set of correct subtrees of T , infers sets of adjacencies on interior nodes of each tree using genomes
on its leaves, and uses that information to decide how to join these subtrees.

We now define notions of the distance between two random genomes. For node u ∈ T , let u
be a random variable denoting the genome at node u. We abuse the notations further by denoting
also by u the set of all adjacencies in u. For subtree T ′ of T rooted at u, such that δT ′ ⊆ δT , we let
ũ(T ′) denote the set of learned adjacencies at node u by the recursive procedure on tree T ′. Note
that ũ(T ′) is a random variable. For two random genomes u and v, let

θ̂(u, v) = |u ∩ v|/N
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be the fraction of common adjacencies, and

θ(u, v) = E[|u ∩ v|/N ]

be its expectation. We also define the estimated distance to be

d̂(u, v) =
log θ̂(u, v)

N log(1− 2/N)

and the true distance to be

d(u, v) =
log θ(u, v)

N log(1− 2/N)
.

Intuitively, since θ(u, v) will be approximately (1−2/N)D(u,v)N (see Section 4.6), d(u, v) approx-
imates D(u, v).

To extend the distance notation to sets of learned adjacencies, we let

d(ũ(T ′), u) = D(ũ(T ′), u) =
log(E [|ũ(T ′) ∩ u|] /N)

N log(1− 2/N)
,

and

d̂(ũ(T ′), u) =
log(|ũ(T ′) ∩ u|/N)

N log(1− 2/N)
.

For a fixed setA of adjacencies, we also define notions of distances with respect toA as follows.

θA(u, v) = E [|u ∩ v ∩ A|/N ]

dA(u, v) = − log θA(u, v)

We define θ̂A(·, ·) and d̂A(·, ·) accordingly.

4.4 Empirical Distance Theorems
We now state theorems regarding empirical distances. These theorems are proved later in

Sections 4.6 and 4.7.

Theorem 1 For any ε > 0 and M > 0 there exists an N = O(log n) such that for two random
genomes G and G′ the following are true:

1. Pr[|d̂(G,G′)−D(G,G′)| > ε] < 1/n3 when D(G,G′) ≤M + ε;

2. Pr[d̂(G,G′) < M ] < 1/n3 when D(G,G′) > M + ε.

Theorem 2 For any ε′, ε′′ > 0, there exists N = O(log n) such that for tree T ′ ⊆ T , rooted at u,
where δT ′ ⊆ δT , the following are true.
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1. For a set of adjacencies A, such that |A ∩ u| ≥ βN for some β ≤ 1, let

µ′ũ = E[|ũ(T ′) ∩ u ∩ A|].

Then, we have
Pr[||ũ(T ′) ∩ u ∩ A| − µ′ũ| > ε′µ′ũ] < 1/n3.

2. Pr [|ũ(T ′)− u| > ε′′N ] < 1/n3.

4.5 Four-Point Method
We now describe the four-point method, as used in this chapter. Denote by (a, b|c, d) a quartet

Q such that a and b form a cherry and c and d form a cherry. Given a distance metric d̂ on the four
leaves, the four-point method (FPM) returns the quartet topology Q = (x, y|z, t) that minimizes
the sum d̂(x, y) + d̂(z, t) over all permutations (x, y, z, t) of (a, b, c, d). Let

ME(d̂;x, y|z, t) =
1

4
(d̂(x, z) + d̂(x, t) + d̂(y, z) + d̂(y, t)− 2d̂(x, y)− 2d̂(z, t)).

If dQ is any tree metric corresponding to the quartet topology Q, FPM(dQ) = Q. Let e be the
length of the middle edge of Q. We also have that ME(dQ; a, b|c, d) returns e. If we are given
another approximate metric d̂ such that for all pairs x, y ∈ {a, b, c, d}, |d̂(x, y) − dQ(x, y)| < δ,
then |ME(d̂;x, y|z, t)− e| < 2δ, and if δ < e/2, we get that FPM(d̂) = Q.

We note that the analysis of Theorem 1 implies that FPM on a quartet of diameter O(log n)
succeeds with high probability when N = poly(n). In Appendix B.1, we show how to modify
the algorithm of Mihaescu et al. so that it does not use the recursive learning procedure and only
calls FPM on quartets of diameter O(log n). Thus, this implies that the reconstruction is possible
for N = poly(n), without the ancestral learning algorithm. However, with the recursive learning
algorithm, we can reduce N down to O(log n).

4.6 Estimating the true evolutionary distance
Let G and G′ be genomes such that G evolves to G′ according to the Nadeau-Taylor model

with k evolution events. Let A(G,G′) = |G∩G′| be the number of their common adjacencies. Let
µ = E[A(G,G′)] be its expectation. There have been studies on µ, e.g., see [Wan01, Eri02]. One
can compute the exact value of µ given k. Here, we are interested in the question of how close is
A(G,G′) to µ. Given k, we will prove the following bounds on µ:

N

(
1− 2

N

)k
≤ µ ≤ 1 + (N − 1)

(
1− 2

N − 1

)k
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From these bounds, it can be seen that our distance

d(G,G′) =
− log(µ/N)

N
· log

(
1− (1− 2/N)

)
is approximately k/N . Hence, if A(G,G′) is close to µ, our distance d̂(G,G′) will be close to
k/N = D(G,G′) as well.

In this section we show that A(G,G′) is concentrated around its mean. Hence, our approxima-
tion of k is accurate, i.e., d̂(G,G′) is close to D(G,G′) with high probability for N = O(log n).
More precisely, this section is devoted to proving the following theorem.

Theorem 1. For any ε > 0 and M > 0 there exists an N = O(log n) such that for two random
genomes G and G′ the following are true:

1. Pr[|d̂(G,G′)−D(G,G′)| > ε] < 1/n3 when D(G,G′) ≤M + ε;

2. Pr[d̂(G,G′) < M ] < 1/n3 when D(G,G′) > M + ε.

First we compute the probabilities that a random inversion will create or break a certain ad-
jacency. Using the notation from Wang and Warnow [WW01], we compute the probabilities of
randomly destroying an arbitrary adjacency (separation) and randomly recreating a previously
destroyed adjacency (unification). Given that an inversion cuts a circular permutation in two
distinct places, and that there are N places to cut, the total number of possible inversions is(
N
2

)
= N(N − 1)/2. An adjacency can be broken by an inversion that cuts at the adjacency

and at any of the other N − 1 places. Thus, the probability of separating an arbitrary adjacency is

s =
N − 1

N(N − 1)/2
=

2

N
.

Now we consider reconstructing a broken adjacency (i, j). Assume without loss of generality that
i is positive and precedes j. There are two possibilities. If j is positive, it is impossible to rejoin
i and j in one inversion. If j is negative, there is precisely one inversion that brings j next to i,
namely (i+ 1, j). Thus the unification probability for an arbitrary broken adjacency is

u =
2

N(N − 1)
.

We start with the lower bound. We define the random variable ZL to be the number of adja-
cencies remaining after k steps, assuming that they only break and are never reconstructed. This is
clearly a lower bound on the true number of adjacencies remaining. We can compute the expected
value of ZL by examining one adjacency. At each time step, that adjacency will be broken with
probability 2/N . It survives k steps with probability (1− 2/N)k. By linearity of expectation,

µL = E
[
ZL
]

= N

(
1− 2

N

)k
.
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To get a concentration bound is not so simple, though, because the adjacency breaking events
are not independent. At any time, at most two adjacencies can be broken. Even though the events
are not mutually independent, we show in Section B.4 that they have negative dependencies. There-
fore, as observed by Dubhashi and Ranjan [DR98], we can still use Chernoff’s bound to obtain the
following result.

Lemma 1. Let µL = E[ZL] = N(1− 2/N)k. Then Pr[ZL < (1− δ)µL] < exp(−µLδ2/2).

Now we consider the upper bound. We define the random variable ZH to be the number of
adjacencies remaining after k steps ignoring the signs. The analysis of the upper bound is more
involved since we must consider recreated adjacencies.

We first analyze the expected value E[ZH ], paying attention to how it changes over time. We
consider genomes in this analysis unsigned circular genomes. We define events regarding the
presence of adjacencies in the genomes. Because of linearity of expectation, it suffices to analyze
one particular adjacency. Consider a fixed pair of consecutive genes a = (gi, gi+1). Let Ek be the
event that there is no breakpoint at a in Gk, i.e., gi and gi+1 are adjacent in Gk. The following
claim calculates the probabilities Pr[Ek|E0] and Pr[Ek|E0] by solving recurrences as in Wang and
Warnow [WW01]. This calculation appears more detailed than necessary to analyze the expected
value of ZH , but we shall use the results again later to prove a concentration bound.
Claim. The following are true for any k ≥ 0:

Pr[Ek|E0] =

(
1− 1

N

)(
1− 2

N − 1

)k
+

1

N
(4.1)

Pr[Ek|E0] =
1

N

(
1−

(
1− 2

N − 1

)k)
(4.2)

Proof. We review bounds on creating and destroying a given adjacency. The probability that a
random inversion creates a given adjacency is 2

N(N−1)
. Also, given that some adjacency a is present

in Gk, the probability that it is destroyed is 2/N .
As in Wang and Warnow [WW01], we analyze these probabilities using recurrences. Let Pk =

Pr[Ek]. We have the following recurrence:

Pk+1 = Pk

(
1− 2

N

)
+ (1− Pk)

2

N(N − 1)

P0 = 1

This recurrence reduces to

Pk+1 =
2

N(N − 1)
+

(
1− 2

N
− 2

N(N − 1)

)
Pk

=
2

N(N − 1)
+

(
1− 2

N − 1

)
Pk
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which solves to

Pk =

(
1− 1

N

)(
1− 2

N − 1

)k
+

1

N
.

The analysis of Pr[Ek|E0] is nearly identical. We have the same recurrence, but with initial condi-
tion P0 = 0. This solves to

Pk =
1

N

(
1−

(
1− 2

N − 1

)k)
.

Let random variable Yt denote the number of adjacencies betweenG0 andGt ignoring the signs.
Let ZH

t = E[ZH |Yt]. Note that Z0, Z1, . . . is a martingale sequence. Using these two expressions
derived above, we have that

ZH
t = Yt(Pr[Ek−t|E0]) + (N − Yt)(Pr[Ek−t|E0]),

which expands to

ZH
t = Yt

((
1− 1

N

)(
1− 2

N − 1

)k−t
+

1

N

)
+ (N − Yt)

(
1

N

(
1−

(
1− 2

N − 1

)k−t))

=

(
Yt
N

+
N − Yt
N

)
+

(
Yt

(
1− 1

N

)
− N − Yt

N

)(
1− 2

N − 1

)k−t
= 1 + (Yt − 1)

(
1− 2

N − 1

)k−t
.

By plugging in Y0 = N at t = 0 in the previous expression, we get the expected value of ZH .

Corollary.

µH = E[ZH ] = 1 + (N − 1)

(
1− 2

N − 1

)k
.

We now state the concentration lemma, whose proof, following the balls and bins analysis of
Kamath et al. [KMPS95], uses Azuma’s inequality.

Lemma 2.
Pr
[
|ZH − µH | ≥ λ

]
≤ 2 · exp

(
− λ2(N − 1)

8(N2 − µ2
H)

)
.

Proof. We have to resort to Azuma’s Inequality for martingale sequences with bounded differ-
ences. We mainly follow Kamath et al. [KMPS95]. Call the random variable we want to analyze
X . Let time t denote the stage at which the first t random inversions have been applied. Let Ft
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denote all the set of events at time t. Let Xt = E[X|Ft] denote the conditional expectation of X
at time t. Note that the sequence X0, X1, . . . Xk forms a martingale. If we can get the bound on
|Xt − Xt−1|, we can use Azuma’s inequality, stated as follows, to get the concentration bound of
X .

Azuma’s Inequality. Let X0, X1, . . . be a martingale sequence such that for each t,

|Xt −Xt−1| ≤ ct

where ct may depend on t. Then, for all k ≥ 0 and any λ > 0,

Pr[|Xk −X0| ≥ λ] ≤ 2 · exp

(
− λ2

2
∑k

t=1 ct

)
.

Suppose that we are at time t − 1; thus, the values of Yt−1 and ZH
t−1 are determined. To use

Azuma’s Inequality, we need to analyze the difference random variable ∆t = ZH
t − ZH

t−1:

∆t =

(
Yt −

N

N + 1

)(
1− 2

N

)k−t
−
(
Yt−1 −

N

N + 1

)(
1− 2

N

)k−t+1

=

(
1− 2

N

)k−t(
Yt − Yt−1 +

2

N
Yt−1 −

2

N + 1

)
.

To finish, we note two things. First, Yt−1 ≤ N . Second, in any one time step, we can break up to 2
adjacencies. (It is also possible, but unlikely, to recreate up to 2 adjacencies.) Thus, we can bound
|Yt − Yt−1| ≤ 2. This gives us

∆t ≤ 4 ·
(

1− 2

N

)k−t
.

Setting ct = 4(1− 2/N)k−t, we obtain that

k∑
t=1

c2
t =

k∑
t=1

16 ·
(

1− 2

N

)2(k−t)

= 16 · 1− (1− 2/N)2k

1− (1− 2/N)2
= 4 · N

2 − µ2
H

N − 1
.

Plugging this into Azuma’s inequality gives the desired result.

We are ready to prove Theorem 1.
Proof of Theorem 1: Let k = N ·D(G,G′). We first consider the case where D(G,G′) ≤M + ε.
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We start with the lower bound. We have µL = N(1− 2/N)k. Using Lemma 1, we have

Pr
[
d̂(G,G′) > D(G,G′) + ε

]
= Pr

[
Z = N(1− 2/N)

bd(G,G′)·N < N(1− 2/N)(D(G,G′)+ε)·N
]

≤ Pr
[
ZL < N(1− 2/N)(D(G,G′)+ε)·N

]
= Pr

[
ZL < N(1− 2/N)D(G,G′)·N(1− 2/N)ε·N

]
= Pr

[
ZL < µL(1− (1− (1− 2/N)ε·N))

]
≤ Pr

[
ZL < µL(1− (1− e−2ε))

]
< exp

(
−µL(1− e−2ε)2

2

)
.

Note note that if D(G,G′) ≤ M , µL = Ω(N). Therefore, the above probability is at most 1/2n3

for some N = O(log n).
We turn to the upper bound. We have µH = N(1− 2/N)k + 2N/(N − 1)(1− (1− 2/N)k) ≤

N(1− 2/N)k + 2. Thus,

Pr
[
d̂(G,G′) < D(G,G′)− ε

]
= Pr

[
Z = N(1− 2/N)

bd(G,G′)·N > N(1− 2/N)(D(G,G′)−ε)·N
]

≤ Pr
[
ZH > N(1− 2/N)(D(G,G′)−ε)·N

]
= Pr

[
ZH > µH +N(1− 2/N)(D(G,G′)−ε)·N − µH

]
≤ Pr

[
ZH > µH +N(1− 2/N)(D(G,G′)−ε)·N −N(1− 2/N)D(G,G′)N − 2

]
≤ Pr

[
|ZH − µH | > N(1− 2/N)D(G,G′)N((1− 2/N)−εN − 1)− 2

]
< 2 exp

(
−(N(1− 2/N)D(G,G′)N((1− 2/N)−εN − 1)− 2)2(N − 1)

8(N2 − µ2
H)

)
= e−Ω(N) < 1/2n3,

if D(G,G′) ≤M , for some N = O(log n).
Therefore, for N = O(log n), Pr[|d̂(G,G′)−D(G,G′)| > ε] < 1/n3, if D(G,G′) < M + ε.
The upper bound above also implies the theorem in the case where D(G,G′) > M + ε. To see

this, consider another genome G′′, such that D(G,G′′) = M + ε. Note that d̂(G,G′′) statistically
dominates d̂(G,G′) and Pr[d̂(G,G′′) < M ] < 1/n3.

Let G0 = G, Gk = G′, and Gi denote G0 after the i-th random inversions. Let random variable
Z be A(G0, Gk). To show that Z stays close to the bounds above, we introduce two other random
variables ZL and ZH defined as follows.



34

Let ZL denote the number of adjacencies in G0 which remain in all G1, G2, . . . , and Gk, i.e.,
ZL is the number of adjacencies which have never been broken. The analysis of the expectation
and variance of ZL appears in the work of Wang [Wan02], where this model is called the box
model.

Let ZH denote the number of adjacencies between G0 and Gk ignoring the signs. For example,
(1, 2) is considered as an adjacency in genome (0, 1,−2, 3).

The expectations of ZL and ZH can be expressed analytically. For each adjacency a =
(x, x′) ∈ G0, let an indicator random variable ZL

a be 1 if x and x′ remain adjacent in all Gi,
for 0 ≤ i ≤ k. Since a random inversion breaks a given adjacency with probability 2/N , we have

E
[
ZL
a

]
= Pr

[
ZL
a = 1

]
= (1− 2/N)k.

Therefore,
E
[
ZL
]

= NE
[
ZL
a

]
= N(1− 2/N)k.

To analyze the upper bound, we note that a random inversion breaks a given adjacency with
probability (n − 3)/

(
N
2

)
= 2/N − 2/

(
N
2

)
, and it destroys a given breakpoint, i.e., creating an

adjacency, with probability 2/
(
N
2

)
. Later in this section, we show that this leads to

E
[
ZH
]

= N (1− 2/N)k +
2N

N − 1

(
1− (1− 2/N)k

)
.

Not only are ZL and ZH lower and upper bounds of µ, but also Z dominates ZL and ZH in turn
dominates Z. For any x, Pr[Z ≤ x] ≤ Pr[ZL ≤ x], and Pr[Z ≥ x] ≤ Pr[ZH ≥ x]. Therefore, to
get concentration bounds for Z, one needs only to show that ZL and ZH concentrate around their
means.

To prove Theorem 1, we need two concentration lemmas for ZL and ZH . For ZL, we prove that
the underlying random variables for ZL are negatively dependent [DR98] and then use Chernoff’s
bound. For ZH , following the balls-and-bins analysis of Kamath et al. [KMPS95], we use Azuma’s
inequality to show the concentration result.

4.7 Learning Ancestral Adjacencies
In this section we will show how to recover, up to an a priori bounded error, the set of adjacen-

cies at the interior nodes of a phylogenetic tree from the adjacencies at the leaves of the tree, by
means of a recursive algorithm.

Definition 2. Let T = (V,E) be a tree rooted at ρ with boundary (leaf-set) δT .

Let T ′ denote a rooted binary tree with n nodes. Let B denote the tree induced by the first two
top-most levels of T ′. Let r denote B’s root, let a, b, c and d denote its 4 leaves, and let r1 and r2

denote two internal nodes, where r1 (r2) is the parent of a and b (c and d). Let T ′u denote a subtree
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of T ′ rooted at u. Recall that ã(T ′a), b̃(T
′
b), c̃(T

′
c), and d̃(T ′d) denote the predicted adjacencies at

nodes a, b, c, and d, respectively. Since T ′ is clear in this section, for brevity, we omit T ′ and write
ã, b̃, c̃, d̃, and r̃ for ã(T ′a), b̃(T

′
b), c̃(T

′
c), d̃(T ′d), and r̃(T ′).

Our prediction uses the recursive majority algorithm on these quartets. The predicted adjacency
set r̃ is

{(x, y) : (x, y) is an adjacency in at least 3 predicted sequences at the leaves}.

With this definition, we never get inconsistency, i.e., if (x, y) ∈ r̃, for any y′ 6= y, (x, y′) 6∈ r̃. The
goal is to correctly recover a large fraction of r.

Definition 3. Adjacencies in r̃ ∩ r are recovered adjacencies, while adjacencies in r̃ − r are ac-
cidental adjacencies. We make a particular note for adjacencies in r̃ that, after being destroyed,
get recreated during the evolution process. An adjacency i is recovered in the box model if it gets
recovered even if we discard all recreated adjacencies.

To analyze r̃, we consider three types of adjacencies in r̃, (1) adjacencies recovered in the box
model, (2) other recovered adjacencies, called recreated adjacencies, and (3) accidental adjacen-
cies. Let Xb, Xr, and Xa denote the number of adjacencies of each type, respectively. Later we
shall see that r̃ mostly consists of adjacencies in the first type.

4.7.1 Adjacencies recovered in the box model
We first analyze Xb. This gives a lower bound on the expected number of recovered adjacen-

cies. We assume the box model. Let θ denote the lower bound on the probability that a given
adjacency is preserved by the evolution process on one edge of the tree. If we assume that along
the edge of the tree, at most k evolutionary events occurs, θ ≥ (1 − 2/n)k. The next lemma
analyzes the probability that an adjacency is recovered. It shows that for some θ it is possible to
recover an adjacency with constant probability.

Lemma 3. For some θ, there is a constant α such that, if an adjacency at node v ∈ a, b, c, d is
recovered recursively with probability at least α, an adjacency i at r is recovered with probability
at least α.

Proof. Consider some adjacency i ∈ r. We compute the probability that adjacency i is recovered.
There are 2 cases.
Case 1. Adjacency i remains in all genomes at all nodes a, b, c, and d. This case occurs with
probability at least θ6; in this case, adjacency i can be recovered if it is recovered in at least
3 nodes, which occurs with probability at least 4α3(1− α) + α4.
Case 2. Adjacency i remains in only three nodes, which happens with probability at least 4 θ5(1−
θ). In this case, adjacency i is recovered with probability at least α4.
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Combining the two cases, we have that adjacency i is recovered with probability at least

α′ = θ6(α4 + 4α3(1− α)) + 4 θ5(1− θ)α3.

We want α′ ≥ α. From numerical experimentation, this is true for α = 0.94 when θ > 0.988.
Therefore, for some value of the parameter θ, the expected fractions of adjacencies that we recover
is at least α.

Lemma 3 implies the following corollary.

Corollary. For some θ, there is a constant α such that E[Xb] ≥ αN .

We not only want Xb to be large, since we use the set of learned adjacencies to estimate the
closeness of two nodes in the tree, we want Xb to be near its expectation with high probability. We
now show that Xb does not deviate much from E[Xb]. For adjacency i ∈ r, let indicator random
variable Wi = 1 if and only if adjacency i is recovered in the box model. Note that the Wi’s are not
independent. However, in Section B.4, we show that they are negatively dependent. As observed in
Dubhashi and Ranjan [DR98], the Chernoff bound still applies. Therefore, we have the following
lemma.

Lemma 4. Let µb = E[Xb]. The following are true:

Pr[Xb < (1− δ)µb] < exp
(
−µbδ2/2

)
;

Pr[Xb > (1 + δ)µb] < exp
(
−µbδ2/3

)
.

The analyses of the numbers of accidental adjacencies and recreated adjacencies together with
the proof of Theorem 2 are given in Appendix B.2.

4.8 The algorithm
Our algorithm is essentially the same as the one in Mihaescu et al. [MHR08], but, instead

of using distances between pairs of binary random variables, we measure the distance between
two genomes by the expected number of evolution steps between them. Here, we describe the
algorithm for completeness.

We are given a model tree T , such that the mutation rate on each edge is bounded, i.e., for all
e ∈ T ,

f < D(e) < g.

We give an algorithm that reconstructs T if g is small enough. More specifically, our algorithm
works if g < d0/2, where d0 = 0.006.

Let ε > 0 be a constant such that ε < f/100, and 2g + 6ε = g′ < d0. Let α be the constant
implied by Lemma 3 for θ = e−2g′ . Let β = −0.5 logα. Finally let M = 10g + 6β + 100ε.
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Let N = O(log n) as implied by Theorem 1 and Theorem 2 for ε = ε′ = ε/4 and ε′′ =
(ε/4) · e−M .

In what follows, we say that an event happens with high probability if the event occurs with
probability at least 1−O(1/n3).

The following central lemma shows that with these parameters the four-point method succeeds
with high probability for quartets with diameter, under D, at most M .

Lemma 5. Let a, b, c, d be nodes in the tree T and let Q = (a, b|c, d) be the subtree they induce on
T . Let Ta, Tb, Tc, Td be subtrees of T rooted at a, b, c, d respectively, such that δ(Tx) ⊆ δ(T ) for
all x ∈ {a, b, c, d}. If the diameter of Q under D is at most M and the length of the middle edge of
Q is e, then

FPM(d̂; ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)) = Q

and
|ME(d̂; ã(Ta), b̃(Tb)|c̃(Tc), d̃(Td))− e| < 2ε,

with high probability.

Proof. The proof uses Theorem 1 and 2 to bound the sizes of ũ ∩ ṽ for pairs of sets of learned
adjacencies. To make sure that FPM is correct, we show that d̂(ã, b̃) + d̂(c̃, d̃) is less than both
d̂(ã, c̃) + d̂(b̃, d̃) and d̂(ã, d̃) + d̂(b̃, c̃).

We show that
d̂(ã, b̃) + d̂(c̃, d̃) < d̂(ã, c̃) + d̂(b̃, d̃)

with high probability. The case for (a, d|b, c) is similar. Let ũ = ũ(Tu), for u ∈ {a, b, c, d}.
Let Auv = u ∩ v, and Ãuv = ũ ∩ ṽ for u, v ∈ {a, b, c, d}. From Theorem 1, the following hold

with high probability:

1. d̂(a, b) ≤ D(a, b) + ε, i.e., |Aab| ≥ N(1− 2/N)D(a,b)N+εN ,

2. d̂(c, d) ≤ D(c, d) + ε, i.e., |Acd| ≥ N(1− 2/N)D(c,d)N+εN ,

3. d̂(a, c) ≥ D(a, c)− ε, i.e., |Aac| ≤ N(1− 2/N)D(a,c)N−εN ,

4. d̂(b, d) ≥ D(b, d)− ε, i.e., |Abd| ≤ N(1− 2/N)D(b,d)N−εN .

We derive the upper bound for d̂(ã, b̃). Since D(a, b) < M , |Aab| = Ω(N). Let Aãb = ã∩Aab.
We have also that

E[|Aãb|] ≥ N(1− 2/N)D(a,b)N+εN · (1− 2/N)D(ã,a) = N(1− 2/N)D(a,b)N+εN+D(ã,a)N .

From Theorem 2, we have that
|Aãb| ≥ (1− ε′)E[|Aãb|],

i.e.,
|Aãb| ≥ N(1− 2/N)D(a,b)N+εN+D(ã,a)N(1− ε′),
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for some ε′, with high probability.
Let Aãb̃ = b̃ ∩ Aãb; thus,

E[Aãb̃] = |Aãb|(1− 2/N)D(b̃,b)N .

Now applying Theorem 2 again, we have that

|Aãb̃| ≥ (1− ε′)E[|Aãb̃|],

i.e.,
|Aãb̃| ≥ (1− ε′)2N(1− 2/N)D(a,b)N+εN+D(ã,a)N+D(b̃,b)N ,

with high probability. This implies that

|Ãab| ≥ (1− ε′)2|Aab|(1− 2/N)D(a,ã)N+D(b,b̃)N

≥ (1− ε′)2N(1− 2/N)D(a,b)N+D(a,ã)N+D(b,b̃)N+εN

≥ e−2ε′N(1− 2/N)D(a,b)N+D(a,ã)N+D(b,b̃)N+εN

≥ (1− 2/N)2ε′NN(1− 2/N)D(a,b)N+D(a,ã)N+D(b,b̃)N+εN

= N(1− 2/N)D(a,b)N+D(a,ã)N+D(b,b̃)N+εN+2ε′N ,

where the third inequality is true because

e−2ε′ ≤ 1− 2ε′ + 2ε′2 ≤ 1− ε′,

if ε′ ≤ 1/2. Hence,

d̂(ã, b̃) ≤ D(a, b) +D(a, ã) +D(b, b̃) + ε+ 2ε′

= D(a, b) +D(a, ã) +D(b, b̃) + 3ε/4,

with high probability. A similar argument shows that

d̂(c̃, d̃) ≤ D(c, d) +D(c, c̃) +D(d, d̃) + 3ε/4,

with high probability.
We turn to the lower bound for d̂(ã, c̃). LetA′ãc̃ = Aac∩ã∩c̃. By two applications of Theorem 2

as in the previous bound for d̂(ã, b̃), we have that

|A′ãc̃| ≤ (1 + ε′)2N(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN

≤ (1− 2/N)−ε
′NN(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN

= N(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN−ε′N .
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Now, there might be adjacencies in Aãc̃−A′ãc̃, i.e., those which are accidental adjacencies in ã
and c̃. Part (2) of Theorem 2 implies that |Aãc̃ −A′ãc̃| ≤ 2ε′′N ≤ (ε/2)N(1− 2/N)MN , with high
probability. Thus,

|Aãc̃| ≤ N(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN−ε′N + (ε/2)N(1− 2/N)MN

≤ (1 + ε/2)N(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN−ε′N

≤ N(1− 2/N)D(a,c)N+D(ã,a)N+D(b̃,b)N−εN−ε′N−(ε/2)N ,

with high probability. i.e.,

d̂(ã, c̃) ≥ D(a, c) +D(a, ã) +D(c, c̃)− ε− ε′ − ε/2
= d̂(ã, c̃)

≥ D(a, c) +D(a, ã) +D(c, c̃)− ε,

with high probability.
A similar argument shows that d̂(b̃, d̃) ≥ D(b, d)+D(b, b̃)+D(d, d̃)− ε, with high probability.
Let e denote the middle edge of Q. Thus,

d̂(a, c) + d̂(b, d)− d̂(a, b)− d̂(c, d) ≥ D(a, c) +D(b, d)−D(a, b)−D(c, d)− 4ε

= 2D(e)− 4ε > 0,

if D(e) > 2ε, which is true. Thus, d̂(a, c) + d̂(b, d) > d̂(a, b) + d̂(c, d), as required.
The previous calculation also shows that |d̂(x, y) − D(x, y)| < ε for x, y ∈ {a, b, c, d} with

high probability. Therefore, |ME(d̂; ã(Ta), b̃(Tb)|c̃(Tc), d̃(Td))−e| < 2εwith high probability.

The main algorithm maintains a forest F of subtrees of the model tree T , satisfying these two
invariants: (1) All trees have edge lengths less than g′, and (2) All subtrees are edge-disjoint.

The correctness and the running time of the algorithm follows from the same proof as in Mi-
haescu et al. [MHR08] and Lemma 5.

4.9 Implementation
To implement our algorithm for gene-order data, we reused our program for molecular data.

All that is necessary is to convert the input of signed circular permutations into adjacencies. The
adjacencies of a genome with N genes can be converted into character sequences of length 2N
over an alphabet of size 2N . From there, the molecular algorithm applies directly.



40

Figure 4.1: We compare neighbor joining (nj), FastME (fm), and our gene-order program (go) on
37-gene datasets. The y-axis is the percentage of internal edges a program gets wrong. The x-axis
is the normalized average pairwise distance for a dataset. It is a property of the dataset, not an
independent variable. We find that our program does slightly worse on low mutation datasets, but
slightly better on datasets with higher average pairwise distances. Neighbor joining is the worst of
the three programs in most cases.

4.10 Experimental Results
We followed the outlines of the simulation study presented in [MTWW02]. We generate

160 leave trees using r8s [San03] and then perturb the edge lengths by choosing a random number
s in the range [−c, c] and multiplying by es. We try values of s in 1, 2, 3, 4, and 5. The higher the
number, the further we get from the ultrametric tree that is handed to us by r8s.

We then scale the resulting trees by multiplying each edge by a constant factor in 0.025, 0.05,
0.1, 0.2, 0.4, and 0.8. The purpose of this step is to give us trees with a wide range of inversion
distances between pairs of nodes. Average pairwise distance turns out to be a good proxy for the
difficulty of reconstructing a tree.

We run 3 trees for each parameter setting and generate 10 gene order datasets for each tree. We
then use a Poisson model using the edge weight as the mean to pick a number of inversions and
choose uniformly among them. We further ensure that every edge has at least one inversion event.
Thus, the empirical tree is fully resolved.

We compare our program to distance methods using distances computed with the EDE cor-
rection [MTWW02]. We ran both the FastME algorithm [DG02], and the neighbor joining algo-
rithm [SN87] from the PHYLIP package [Fel05].

We processed the data and sorted by our choice of c, and then sorted according to average
pairwise inversion distance among the genomes (which tops out at the length of the genomes). We
plot the results for c equal to 2 in Figures 4.1 and 4.2. We chose s-factor 2 since it gave the broadest
range of possible branch lengths. The results for the other s-factors are similar, but not presented
here. Essentially, as indicated by the graph, we do a bit worse for very low average distance (i.e.,
most branches have one inversion) and better for large average distance (i.e., when the evolutionary
rate is quite high.)
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Figure 4.2: We compare neighbor joining (nj), FastME (fm), and our gene-order program (go)
on 120-gene datasets. The y-axis is the percentage of internal edges a program gets wrong. The
x-axis is the normalized average pairwise distance for a dataset. It is a property of the dataset, not
an independent variable. We find that our program does slightly worse on low mutation datasets,
but much better on datasets with higher average pairwise distances. Neighbor joining is once again
the worst of the three programs, with an unexpected exception on the datasets with an average
pairwise distance of 0.9 or greater.

4.11 Related Work
Distance-based methods have been widely used in phylogeny reconstruction. For gene order

data, the first attempt by Blanchette, Kunisawa, and Sankoff [BKS99] applies the Neighbor Joining
method to the breakpoint distance matrix. Since then, there have been several efforts to come up
with better estimators for evolutionary distance than breakpoint distance or inversion distance:
EDE [MWWW01], Approx-IEBP [WW01], and Exact-IEBP [Wan01]. Eriksen [Eri02] derives an
analytic approximation of the expected inversion distance in terms of breakpoints. We point the
reader to surveys by Moret, Tang, and Warnow [MTW05] and by Wang and Warnow [WW05].

Researchers are also interested in using other parameters beside the numbers of breakpoints
or adjacencies. The concept of conserved intervals in genome rearrangements was introduced and
analyzed by Bérard, Bergeron, and Chauve [BBC04]. Blin, Chauve, and Fertin [BCF05] then
used conserved intervals as a distance metric in phylogeny reconstruction. Bergeron, Blanchette,
Chateau, and Chauve [BBCC04] later extended these techniques to a general algorithm that recon-
structs ancestral gene orders given a tree topology using conserved intervals.
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Appendix A

Pseudocode

ST-QUARTET(V )

1 E = ∅
2 for each vertex v ∈ V
3 E = E ∪ {(v, v)}
4 for i = 1 to |V | − 1
5 for each edge (u1, v1) ∈ E
6 for each edge (u2, v2) ∈ E
7 if FIND-SET(u1) 6= FIND-SET(u2)
8 cost = EST-ME(u1, v1, u2, v2)
9 if cost < best

10 best = cost
11 (x1, y1, x2, y2) = (u1, v1, u2, v2)
12 (u1, v1) = WALK-TREE(x1, y1, x2, y2)
13 (u2, v2) = WALK-TREE(x2, y2, x1, y1)
14 JOIN-TREES(u1, v1, u2, v2)

JOIN-TREES(u1, v1, u2, v2)

1 x = SPLIT(u1, v1)
2 y = SPLIT(u2, v2)
3 JOIN(x, y)
4 E = E ∪ {(x, y)}
5 LEARN(u1, v1, u2, v2, x, y)

SPLIT(u, v)

1 x = NEW-NODE()
2 E = E \ {(u, v)}
3 E = E ∪ {(u, x), (x, v)}
4 return x
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LEARN(a, b, c, d, x, y)

1 EST-ME(a, b, c, d, x, y)
2 // Learn sequences on x and y.
3 LEARN-SEQ(x→ y)
4 LEARN-SEQ(y → x)
5 // Learn edge lengths surrounding the quartet.
6 LEARN-EDGE(a, x)
7 LEARN-EDGE(b, x)
8 LEARN-EDGE(c, y)
9 LEARN-EDGE(d, y)

10 // Relearn sequences on x and y.
11 LEARN-SEQ(x→ y)
12 LEARN-SEQ(y → x)
13 // Propagate new sequence data down both sides.
14 PROPAGATE(x, y)
15 PROPAGATE(y, x)

PROPAGATE(u, parent)

1 for v ∈ Adj [u]
2 if v 6= parent
3 LEARN-SEQ(u→ v)
4 PROPAGATE(v, u)

WALK-TREE(u, v, e)

1 x = DIR(u, e)
2 y = DIR(v, e)
3 if x = v and y 6= u
4 return WALK-TREE(v, y, e)
5 if y = u and x 6= v
6 return WALK-TREE(x, u, e)
7 return (x, y)
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Appendix B

Technical Lemmas

B.1 Reconstruction for polynomial-length data without ances-
tral gene order learning

The analysis of Theorem 1 (see Section 4.6) implies that FPM on a quartet of diameter
O(log n) succeeds with high probability when N = poly(n). Note that the algorithm of Mi-
haescu et al. can be modified so that it does not use the recursive learning procedure and we only
call FPM on quartets of diameterO(log n). The only subroutine that uses the learning algorithm is
Dir(a, c, T ′, T ′′), which returns the node paired with c̃ in the quartet split FPM(d̂; x̃, ỹ, z̃, c̃) where
x̃, ỹ, z̃ are the learned sets of adjacencies on the neighbors of a using their edge-disjoint maximal
subtrees T ′x, T

′
y, T

′
z of T ′. Now, instead of using w̃, for w ∈ {x, y, z}, we choose some leaf w′ of

T ′w, with minimum depth. The distance from a to w′ is at most O(log n), because the minimum
degree of every interior node in T ′ is at least 3. For c̃, we choose some leaf c′ of T ′′ such that
the path from c to c′ in T ′′ contains at most O(log n) edges. Again, c′ exists because the degree
of every interior node of T ′′ is 3. Therefore, the diameter of the quartet for FPM is bounded by
O(log n), and FPM is correct with high probability. Function Dir returns the neighbor w of a
such that w′ is paired up with c′ in the quartet split returned by FPM. Thus, this implies that the
reconstruction is possible for N = poly(n).

B.2 Proofs of the recursive learning procedure

B.2.1 Accidental adjacencies
In this section we analyze random variable Xa, the number of accidental adjacencies. With an

analysis similar to the one in Lemma 3, we can show that E[Xa] = O(1). However, we want a
high probability bound.

To simplify the analysis, we consider genomes as unsigned. Multiplying the bounds here by 4
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gives bounds for signed genomes.
LetA denote the set of all unsigned adjacencies. LetA′ denote the setA− r. Let N ′ = |A′| =(

N
2

)
− N denote the number of possible adjacencies not in r. We are interested in the number

of common accidental adjacencies created by independent evolutionary processes on two or more
edges in the tree.

Let kN denote the upper bound on the number of evolution events on any edge. We now
show that in order to analyze Xa, it is enough to consider a random set of size 2kN from A′ as
the accidental adjacencies on any edge. Since we want to get an upper bound on the number of
accidental adjacencies, we consider all adjacencies in A′ that are created during the process; call
this set B. Note that it is possible that an evolution event preserves all current adjacencies, since
it might act upon a single gene x, thus flipping its sign, and the result is not observable when we
treat genomes as unsigned. In that case, we say that the two adjacencies containing x are created
as well.

Each application of a random reversal creates at most 2 new adjacencies; therefore, at most
2kN adjacencies are created. We consider their distribution. First note that in any evolution step,
a pair of created adjacencies completely determines each other. But between two evolution steps,
the choices are independent. Thus, we can divide the set of created adjacencies B into two sets
B1 and B2, such that each Bi is a random subset of size at most kN , but B1 and B2 completely
determine each other. The worst dependency to our analysis occurs when B1 and B2 are disjoint.
Therefore in the worst case, the set B is a random subset of A′ of size 2kN .

We are ready to prove the lemma stating that with high probability, Xa = O(log n).

Lemma 6. If N = Ω(log n), there exists an evolution rate k such that if the number of evolution
steps on each edge is at most kN , the set of accidental adjacencies in r̃ is of size O(log n) with
probability at least 1− 1/n3.

Proof. Recursively, we assume that for each leaf, the learning algorithm returns at most c log n
accidental adjacencies, for some c. As discussed above, we can assume that the set of accidental
adjacencies is a random subset of A′ of size c log n. Since N ′ = |A′| =

(
N
2

)
− N , we have

N ′ = Ω(log2 n).
To get an upper bound on the number adjacencies, we count the number of adjacencies that (1)

appear as accidental adjacencies on at least two of the leaves or (2) are created by the evolution
process on at least 2 of the 6 edges in this level of recursion. One can verify that any accidental
adjacencies returned fall into at least one of these two groups.
Case 3 (1). We analyze the number of common accidental adjacencies returned by two of the
leaves. The probability that, for a fixed pair of leaves, the number of common accidental adjacen-
cies is at least l is at most(

c log n

1

)( N ′−l
c logn−l

)(
N ′

c logn

) ≤ (c log n)2l

l!(N ′ − l)l
=

1

l!

(
c2 log2 n

N ′ − l

)l
<

1

12n3
,
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when l > c′ log n, for some c′, andN = Ω(log n). Therefore, the number of accidental adjacencies
in this case is at least

(
4
2

)
l = 6l with probability at most 1/2n3.

Case 4 (2). We consider accidental adjacencies which have been created on at least two edges
of the tree in this level of recursion. Fix two edges e1 and e2, and consider common adjacencies
created on these two edges. Denote the sets of adjacencies created on e1 by B1 and on e2 by B2.
Now, B1 and B2 are random subsets of size 2kN from A′ of size N ′ =

(
N
2

)
− N . For any given

B1 of size at most 2kN , the probability that B1 ∩B2 is of size at least p is(
2kN

p

)( N ′−p
2kN−p

)(
N ′

2kN

) ≤ (2kN)2p

p!(N ′ − p)p
=

1

p!

(
4k2N2

N ′ − p

)p
.

The term 4k2N2

N ′−p is less than 1 if k < 1/2
√

2 and N is larger than some constant independent of p.
Note that p! > 2p if p > 4; therefore setting p = O(log n) suffices to make the above probability
less than 1/30n3. Since there are

(
6
2

)
= 15 possible pairs of edges, using a union bound, we

conclude that there are more than 15p = O(log n) with probability at most 1/2n3.
Combining the two cases, we have that the number of accidental adjacencies is more than

l + p = O(log n) with probability at most 1/n3.

B.2.2 Recreated adjacencies
In this section, we consider other learned adjacencies, i.e., those that are already in r, but if

we discard all recreated adjacencies we would not recover it. Note that they are not considered
by Lemma 4. We denote by S ⊆ r̃ the set of these adjacencies, and by Xr the number of them,
i.e., the size of S. We call the adjacencies that remain at some leaf a, b, c, or d of B and are not
destroyed by the evolution process on the edges of B clean adjacencies.

Again, to simplify the analysis, we consider all genomes as unsigned. We follow the same
idea as in Section B.2.1. We first argue about the size and distribution the set of newly created
adjacencies on any edge.

Lemma 7. For N large enough, there exists a constant k such that for any edge where the number
of evolution steps is at most kN , the number of recreated adjacencies is more than c1 log n with
probability at most O(n−3), and the set of recreated adjacencies is dominated by a random subset
of size c1 log n, for some constant c1.

Proof. There can be at most 2kN of them, if kN is the maximum number of evolution steps on
any edge. For any adjacency to be destroyed and recreated, it must (1) belong to one of the 2kN
adjacencies to be destroyed, and (2) get recreated, i.e., be among the 2kN created adjacencies.

We now look at the evolution process on an edge more closely. In the first evolution step, there
are N ′ =

(
N
2

)
− N adjacencies that can be created, none of them being candidates of recreated

adjacencies. In general, in the j-th step, if l < 2j adjacencies have been destroyed, there are
at most N ′ + l possible adjacencies that can be created, l of which are candidates for recreated
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adjacencies. Now, as in the discussion about accidental adjacencies, for our purpose of proving the
upper bound on the intersections of these sets, we can assume that the set of recreated adjacencies
are generated as follows. There are N ′ adjacencies with 2kN candidates. We pick a random subset
S ′ of size 2kN and the set of candidates in S ′ for the set of recreated adjacencies.

The probability that the number of recreated adjacencies is at least p is at most(
2kN

p

)( N ′−p
2kN−p

)(
N ′

2kN

) ≤ (2kN)2p

p!(N ′ − p)p
=

1

p!

(
4k2N2

N ′ − p

)p
≤ 1

n3
,

if k < 1/2
√

2, N is larger than some constant independent of p, and p = c1 log n, for some c1. The
lemma thus follows.

We now consider the learning process, and prove the bound on the size of S.

Lemma 8. For N large enough, there exists a constant k such that if kN is the upper bound on
the number of evolution steps on any edge, Xr = O(log n) with probability at least 1− n−3.

Proof. For each learned adjacency in S, either it appears as a clean adjacency in at least 3 leaves,
or it gets recreated in one of the edges in this level. For adjacencies in the later case, Lemma 7
implies that there are at most 6 · c1 log n with probability at most O(1/n3), since there are at most
6 edges in this level of recursion.

We turn to the former case. Assume that the recursive learning algorithm on each subtree
returns at most c′ log n recreated adjacencies. We prove the lemma by a detailed case analysis.
There are 2 cases.
Case 5 (1). We consider adjacencies that get recreated in other recursive levels, but appear as
clean adjacencies in less than two of the leaves. They must be recovered as accidental adjacencies
in some of the leaves.

Lemma 6 states that there are at most ca log n accidental adjacencies, for some ca, with high
probability. But note that this set can take on any subset of size ca log n from a set of almost all
adjacencies, while the adjacencies that we want are those destroyed by the evolution process. The
probability that this set contains at least l adjacencies from r is at most(

4kN

l

)( N ′−l
ca logn−l

)(
N ′

ca logn

) ≤ (4kN · ca log n)l

l!(N ′ − l)l
≤ 1

n3
,

if l = Ω(log n) when N is larger than some constant independent of l, because N ′ = Θ(N2).
Therefore, the number of recreated adjacencies of this type is more than

(
4
2

)
· 2 · l = O(log n) with

probability at least 1−O(1/n3).
Case 6 (2). We consider the set of recreated adjacencies whose copies appear as clean adjacencies
in at least three of the leaves. There are two subcases.

Subcase 2a: We consider the case of adjacencies which are returned as recreated in exactly one
of the leaves.
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Consider one leaf, say a. Let Sa denote the set of clean adjacencies in a which are returned
as recreated adjacencies by the learning algorithm on T ′a. Let W = |Sa|. From the inductive
hypothesis, we have that W ≤ c′ log n with high probability.

For v ∈ {r2, a, b, c, d}, let θv denote the probability that an adjacency in the parent of v remains
a clean adjacency at node v. Also, for leaf v, we denote by αv the probability that a given adjacency
is recovered in the box model. Let Ca denote the number of adjacencies in Sa such that it is
recovered in the box model in exactly two other leaves. We have

E[Ca] = W
( ∑
x,y,z∈{b,c,d}
x 6=y 6=z

θr2θxθyαxαy
(
(1− θz) + θz(1− αz)

))
.

By numerical experimentation in Mathematica, E[Ca] < 0.1845W < W/4 when θv ≥ 0.988, for
v ∈ {r2, b, c, d}, and αv ≥ 0.91, for v ∈ {b, c, d}. Note that Ca is a sum of negatively dependent
indicator random variables, as argued in Lemma 9; thus, we can apply a Chernoff bound to prove
that there exists a constant ε > 0, where 0.1845 < 1/4 − ε, such that Ca ≤ (1/4 − ε)W with
probability at least 1− 1/n3, if N is large enough.

Therefore, considering all four leaves, the number of recreated adjacencies in this case is at
most 4 · (1/4− ε)c′ log n < (1− 4ε)c′ log n.

Subcase 2b: We consider the case of adjacencies which are returned as recreated adjacencies
in at least two of the leaves. The probability that the number of common recreated adjacencies is
at least l is (

c′ log n

l

)( N−l
c′ logn−l

)(
N

c′ logn

) ≤ (ec′ log n

l

)l
(c′ log n)l

(N − l)l
<

1

n3
,

if N is larger than some constant independent of l and l = Ω(log n), since N = Θ(log n).
Combining all cases, we have that with probability at least 1−O(1/n3) the number of recreated

adjacencies returned from this level is at most (1 − 4ε)c′ log n + O(log n), for some ε > 0. If the
constant hidden in the big-O term is c2, we can set c′ = c2/4ε so that (1− 4ε)c′ log n+ c2 log n ≤
c′ log n, and the lemma follows.

B.3 Concentration result for learned adjacencies
We prove the following theorem regarding the concentration of the size of the learned adjacency

sets to its mean.

Theorem 2. For any ε′, ε′′ > 0, there exists N = O(log n) such that for tree T ′ ⊆ T , rooted at u,
where δT ′ ⊆ δT ,

(1) For a set of adjacencies A, such that |A ∩ u| ≥ βN for some β ≤ 1, let

µ′ũ = E[|ũ(T ′) ∩ u ∩ A|].
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Then, we have
Pr[||ũ(T ′) ∩ u ∩ A| − µ′ũ| > ε′µ′ũ] < 1/n3.

(2) Pr [|ũ(T ′)− u| > ε′′N ] < 1/n3.

Proof. We start with (2). From Lemma 6, the number of accidental adjacencies is O(log n) <
c′ log n, for some c′, with high probability if N is large enough. We can thus set N > c′/ε′′ log n =
O(log n) to get the bound.

We then prove (1). Assume without loss of generality that A ⊆ u. Recall that |ũ(T ′) ∩ u| =
Xb +Xr, where Xb is the number of adjacencies recovered in the box model and Xr is the number
of recreated adjacencies recovered. Let random variable XA = |ũ(T ′)∩ u∩A|. The first step is to
bound the contribution of Xb and Xr to XA.

LetX ′b denote the number of adjacencies inA∩u recovered in the box model. Since the analysis
of Xb uses indicator random variables, we can modify it to get the following. Let µ′b = E[X ′b]. We
have that µ′b > 0.94|A|, if the mutation rate is low enough, and Pr[|X ′b − µ′b]| > εN ] < e−ε

2N/2α,
where α = E[X ′b]/N .

Since Xr < c′′ log n for some c′′ with high probability, if N is large enough, we have that
E[Xr] ≤ c′′ log n + N/n3 ≤ (c′′ + 1) log n, because N = O(log n). However, we also have that
E[XA] ≥ E[X ′b] ≥ 0.94|A| ≥ 0.94βN . Therefore, if we set N > (4(c′′ + 1)/(0.94ε′β)) log n =
O(log n), we get that E[Xr] ≤ (ε′/2)E[XA], and E[X ′b] ≥ (1− ε′/2)E[XA].

Applying the concentration bound for X ′b discussed above proves the theorem.

B.4 Negative dependencies in the box model
Definition 4. Random variables Y1, . . . , YN are negatively associated if for every pair of disjoint
sets I, J ⊂ [N ],

E [f(Yi, i ∈ I)g(Yj, j ∈ J)] ≤ E [f(Yi, i ∈ I)] E [g(Yj, j ∈ J)]

for all functions f and g which are both non-decreasing or both non-increasing.

The following lists a few facts regarding negatively associated random variables.

Proposition 1 (Joag-Dev and Proschan [JDP83]).

1. Let Y1, Y2, . . . , Yn and Z1, Z2, . . . , Zm be two set of negatively associated random vari-
ables. If (Y1, . . . , Yn) and (Z1, . . . , Zm) are mutually independent, then the augmented vec-
tor (Y1, . . . , Yn, Z1, . . . , Zm) are negatively associated.

2. Let Y1, Y2, . . . , Yn be negatively associated random variables. Let I1, . . . , Ik ⊆ [n]1 be dis-
joint index sets, for some k. For j ∈ [k], let hj be functions that are all non-decreasing or
all non-increasing, and let Zj = hj(Yi, i ∈ Ij). Then vector (Z1, . . . , Zk) are negatively
associated.

1We denote by [n] the set {1, 2, . . . , n}.
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We consider the balls-and-bins experiment with N bins where two balls are thrown into differ-
ent bins at the same time. This is an extension of results in Section 2.2 of [DR98], which considers
the case where one ball is thrown in each round. For i ∈ [N ], letBi be an indicator random variable
which is 1 if one of the balls falls into bin i, and 0 otherwise.

Lemma 9. Random variables B1, . . . , BN are negatively associated.

Proof. Consider two subsets I, J ⊆ [N ], and non-decreasing functions f : R|I| → R, and g :
R|J | → R. Let random variable F = f(Yi, i ∈ I) and G = g(Yi, i ∈ J). We want to show that
E[FG] ≤ E[F ]E[G].

Since we can replace f(x1, x2, . . .) with f(x1, x2, . . .) − f(0, 0, . . .) and g(y1, y2, . . .) with
g(y1, y2, . . .)− g(0, 0, . . .), we can assume that f(0, 0, . . .) = 0 = g(0, 0, . . .).

Let event D be the event that one ball falls into some bin i ∈ I and another ball falls into some
bin j ∈ J . Let event EI denote the event that at least one ball falls in to bins in I , and let event EJ
denote the event that at least one ball falls into bins in J .

First, we consider E[FG]. We have

E[FG] = E[FG|D] Pr[D] + E[FG|D̄] Pr[D̄]

= E[FG|D] Pr[D],

since E[FG|D̄] = 0. Because random variables F and G are independent given D,

E[FG] = E[F |D]E[G|D] Pr[D].

We write

E[F ] = E[F |EI ] Pr[EI ] + E[F |ĒI ] Pr[ĒI ]

= E[F |EI ] Pr[EI ]

≥ E[F |D] Pr[EI ],

where the last inequality follows from the fact that f is non-decreasing. Similarly, we have E[G] ≥
E[G|D]E[EJ ].

The lemma follows if

E[FG] = E[F |D]E[G|D] Pr[D]

≤ E[F |D]E[G|D] Pr[EI ] Pr[EJ ]

≤ E[F ]E[G]

i.e., if Pr[D] ≤ Pr[EI ] Pr[EJ ].
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We have that

Pr[D] =
2|I||J |

N(N − 1)
,

Pr[EI ] =
|I| (N − |I|) + |I| (|I| − 1) /2(

N
2

)
=

2N |I| − 2|I|2 + |I|2 − |I|
N(N − 1)

= |I|2N − |I| − 1

N(N − 1)
,

Pr[EJ ] = |J |2N − |J | − 1

N(N − 1)
.

Thus,

Pr[EI ] Pr[EJ ] =
|I||J |(2N − |I| − 1)(2N − |J | − 1)

N2(N − 1)2
.

Therefore, it remains to check that

(2N − |I| − 1)(2N − |J | − 1)

2N(N − 1)
=

4N2 − 2N(|I|+ |J |)− 4N + |I||J |+ |I|+ |J |+ 1

2N2 − 2N
≥ 1.

Note that worst case occurs when |I| + |J | = N , so we assume that; thus, we need to check if
|I||J |+ 1 = |I|(N − |I|) + 1 ≥ N for |I| = 1, 2, . . . , N − 1, which is true.

For each bin 1 ≤ i ≤ N , let indicator random variableWi be 1 if bin i is empty and 0 otherwise.
With Lemma 9 and Proposition 1 in hand, we can show that theWi’s are negatively associated. For
each evolution step s on the tree, we have a vector of indicator random variables (Bs

1, . . . , B
s
N),

such that Bs
i = 1 if adjacency i is destroy in that step, and 0 otherwise. From Lemma 9, these

random variables are negatively associated. We can concatenate all random vectors for all evolution
steps on the tree; the resulting vector B is also negatively associated, from part 1 of Proposition 1.
From B, we can determine Wi, using only random variables associated with bin i. Therefore,
random variables W1, . . . ,WN are functions of disjoint subsets of negatively associated random
variables, which are negatively associated by part 2 of Proposition 1.
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Appendix C

Program Options

C.1 Neighbor Joining
For neighbor-joining, we used PHYLIP’s neighbor program with default options.

C.2 RAxML
RAxML, version 7.0.4, was run with the following command:

raxmlHPC -m GTRGAMMA

C.3 DNAML
DNAML, version 3.69, was run with “Transition/transversion” ratio set to 1.0000 and “Speed-

ier but rougher analysis” off (see Figure C.1).
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Nucleic acid sequence Maximum Likelihood method, version 3.69

Settings for this run:
U Search for best tree? Yes
T Transition/transversion ratio: 1.0000
F Use empirical base frequencies? Yes
C One category of sites? Yes
R Rate variation among sites? constant rate
W Sites weighted? No
S Speedier but rougher analysis? No, not rough
G Global rearrangements? No
J Randomize input order of sequences? No. Use input order
O Outgroup root? No, use as outgroup...
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? ANSI
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Write out trees onto tree file? Yes
5 Reconstruct hypothetical sequences? No

Figure C.1: Settings for dnaml.


