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Abstract

This paper presents a comprehensive theory of surface
reconstruction from image derivatives in photometric stereo.
For an object with an unknown, general isotropic BRDF, we
show that just two measurements of the spatial and temporal
image derivatives, under unknown light source positions on a
circle, suffice to determine the surface.

This result is the culmination of a series of fundamental
observations. First, we discover a photometric invariant that
relates image derivatives to the surface geometry, regardless
of the form of isotropic BRDF. Next, we show that just two
pairs of differential images from unknown light directions
suffice to recover this surface information from the photomet-
ric invariant. This is shown to be equivalent to determining
isocontours of constant magnitude of the surface gradient, as
well as isocontours of constant depth, for the entire surface.
Further, we prove that specification of the surface normal at
a single point completely determines the surface depth from
these isocontours.

In addition, our theory also suggests practical algorithms
that require additional initial or boundary information, but al-
low reconstruction of depth from lower order derivatives. The
theoretical results of the paper are illustrated with examples
on synthetic and real data.

1. Introduction
The image formation process is an interplay between the

geometry of a scene, its reflectance properties and the illu-
mination conditions under which it is observed. Photometric
stereo aims to recover the surface structure, using shading
cues from varying illumination. For Lambertian scenes, there
exist wide-ranging theories of photometric stereo and shape-
from-shading to recover shape from image intensities and
gradients, respectively. However, the theoretical relationships
between image gradients and surface geometry, for general
BRDFs and unknown light source motions, remains largely
unexplored.

This paper presents an intensive theoretical study of the
utility of image gradients for recovering scene structure for
complex BRDFs and unknown light directions. We assume
a homogeneous, isotropic BRDF, while a differential pair
of lights undergo unknown motion on a circle. The various
aspects of our theory are illustrated in Figure 1.

We begin with the observation that a single image for-
mation equation yields several differential equations when
spatial and temporal derivatives of the image are considered.
Moreover, these differential equations are linear in the BRDF

derivatives, so under appropriate conditions (such as circular
motion of the light source), they may be eliminated to yield a
photometric invariant that relates image derivatives, surface
geometry and light source directions.

A surprising discovery is that for isotropic BRDFs, it is
possible to uncover such an invariant that is independent of
lighting directions. Moreover, we show that the N × 3 matrix
whose columns are the image derivatives at a pixel under
N light source positions, must be rank 2 and its null vector,
(λ, κ, 1)>, is determined by surface geometry alone.

For a surface z(x, y) : R2 → R, the entities λ and κ
are space varying functions whose relationship to surface
depths, z, or gradients ∇z, is not straightforward. Yet, we
show that the information contained in those functions can be
succinctly expressed as the direction of the surface gradient
and the direction of the gradient of the scalar field ‖∇z‖.
Thus, from image information alone, one may determine
surface structure up to level curves of constant depth and
isocontours of constant magnitude of the gradient.

Further, we show that for general surfaces where these
two sets of isocontours intersect transversally, surface nor-
mal information at a single point suffices to determine the
depth. Thus, in theory, differential photometric stereo allows
recovery of surface depths from unknown light positions on a
circle, for unknown isotropic BRDFs.

While the theory suggests an elegant algorithm for depth
reconstruction, recovering isocontours of constant depth re-
quires higher-order derivatives, which may lead to noisy es-
timation. For practical applications, we suggest two addi-
tional algorithms that can recover surface normals and depths,
resepectively, given additional information in the form of
normals on a curve, or depths at the boundary.

Throughout the paper, we validate the theoretical results
with several synthetic and real data examples.

To summarize, this paper introduces a comprehensive the-
ory of photometric stereo using image derivatives, resting on
several fundamental contributions:

• A novel photometric invariant that relates image deriva-
tives to the geometry of a surface with arbitrary isotropic
BRDF, without requiring light positions.
• Two differential measurements suffice to extract surface

information by solving a small linear system.
• Isocontours of constant depth and constant magnitude of

the gradient may be recovered from the invariant.
• Theoretical recovery of surface depth by specifying the

surface normal at a single point.
• Practical algorithms for surface normal or depth estima-

tion that require only lower order derivatives.



Figure 1. An outline of our differential theory of photometric stereo. Two or more differential pairs lead to an uncalibrated photometric
invariant. Isocontours of constant ‖∇z‖ and constant z may be recovered from the invariant. Additional information in the form of gradient at
a single point suffices to recover depths. Normals on a curve or depths on the boundary can be used for a more noise robust estimation.

2. Related Work
This work differs from most earlier computer vision stud-

ies in considering differential information within the context
of photometric stereo, with unknown BRDF and light direc-
tions. Our theoretical results also distinguish this work by
establishing a minimal requirement of two differential pairs
for 3D reconstruction.

Most prior work in photometric stereo has dealt with Lam-
bertian surfaces, for which the surface normal can be recov-
ered from three images [13]. In some cases, specularity re-
moval has been used as a pre-processing step for using Lam-
bertian photometric stereo [3].

The example-based photometric stereo of [6] is valid for
general BRDFs, but requires a reference object of the same
material. With multiple views, Helmholtz stereopsis [15] is
an elegant approach to eliminate the BRDF by exploiting reci-
procity when the camera and light source are swapped. With a
color-based separation of the Lambertian and specular compo-
nents of a dichromatic reflectance model, shape is recovered
from two images in [12]. Further empirical properties of the
BRDF can be exploited to recover 3D shape, but require a
dense coverage of the lighting hemisphere [2, 7].

The method of [1] uses bilateral symmetry of a spatially
varying BRDF to recover isocontours of constant depth. It
requires a dense configuration of known lights on a circle and
initial information on an entire curve to recover depth. In
contrast, our theory is based on derivative information and
requires as few as two differential pairs of light sources, at un-
known positions on a circle. Further, we recover isocontours
of constant depth as well as constant magnitude of the gra-
dient, from which surface depth can be obtained with initial
information at a single point.

A related work that uses differential information to derive
photometric invariants is the active photometric stereo of
[4]. However, it recovers depth using a distance-dependent
imaging model and requires calibrated light source positions.

Besides photometric stereo, derivative information in im-
ages has been considered in other contexts. Shape from shad-
ing seeks to recover depth from a single image of a Lamber-
tian surface [10, 14]. In computer graphics, the first-order
behavior of reflection as a convolution and visibility under
area lighting have been studied in [11]. Optical flow uses

Figure 2. An illustration of
two possible parameteriza-
tions for the surface nor-
mal. The gnomonic pro-
jection (red line) is denoted
n = πg(bn) and the stereo-
graphic projection (purple
line) is denoted n = πs(bn).

spatial and temporal derivatives for recovering the motion
field [9]. Indeed, the form of our photometric invariant bears
a striking resemblance to the optical flow constraint. However,
our theory does not rely on brightness constancy assumptions,
neither does it suffer from the aperture problem.

3. Image Formation for Isotropic BRDFs
Throughout this paper, the object and the camera are

fixed, while the directional point light source moves around
the object. The camera principal axis is oriented along
v̂ = (0, 0, 1)>, pointing towards the origin. We assume
orthographic projection and the object is represented by a
surface z(x, y), where x = (x, y)> represents a point on the
image plane. A unit 3-vector on S2 ⊂ R3 is represented as ŵ,
whereas a 2-vector on R2, is represented as w. For a vector
w ∈ R2, we denote l(w) =

√
‖w‖2 + 1.

3.1. A Note on Surface Normal Parameterizations
The relationship between the unit normal n̂ on the 2-

sphere and its representation n is determined by the projec-
tion mapping π : S2 → R2 [8]. For a gnomonic projection,
from the center of the sphere to the tangent plane resting

on the north pole, n̂ =
(n>, 1)>

l(n)
, thus, n = [−zx,−zy]>.

For a stereographic projection centered on the south pole,

n̂ =
(2n>, l(n)2 − 2)>

l(n)2
. Similarly, we represent a direc-

tional point light source ŝ by a 2-vector, s. Figure 2 illustrates
the two parameterizations.

The theory of the paper is independent of this choice and
valid for both projections (indeed, for any centered on the line
joining the north and south poles). For practical implementa-
tions, we will choose one of the above two mappings.



3.2. Parameterizing Isotropic BRDFs
We develop our theory for homogeneous isotropic BRDFs.

Such reflectance functions depend only on the three angles
between the unit normal n̂, the light source direction ŝ and
the viewing direction v̂, thus, they can be represented as
a function of the form ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂). For gnomonic
projection, the angles that determine the isotropic BRDF are

n̂>ŝ =
n>s + 1
l(n)l(s)

, n̂>v̂ =
1
l(n)

, ŝ>v̂ =
1
l(s)

. (1)

Thus, the BRDF can be written as a function of the form
ρ̂(n>s, l(n), l(s)), appropriately defined from ρ̄:

ρ̄(n̂>ŝ, n̂>v̂, ŝ>v̂) = ρ̂(n>s, l(n), l(s)) = ρ̂(α, β, γ), (2)

where, we denote α = n>s, β = l(n), γ = l(s) for the
parameters of an isotropic BRDF. It may be verified that the
same is true for a stereographic projection. Note that for our
assumptions, n depends on space variables x and s depends
on time variables t.

3.3. Ratio images
The image formation model can be easily generalized to:

E(x, t) = a(x) ρ̂ (α(x, t), β(x), γ(t)), (3)

where a(x) is a surface albedo. This is a reasonable model
and in particular, subsumes the Lambertian assumption of tra-
ditional photometric stereo, while allowing for more general
isotropic BRDFs, possibly modulated by a spatially-varying
texture or albedo. In fact, we make no assumptions on the
form of the isotropic BRDF ρ̂.

In practice, one may eliminate the pointwise albedo a(x)
by considering ratio images. Note that ratios of arbitrarily
illuminated images need not preserve the functional depen-
dence of the isotropic BRDF on α, β and γ. But ratios with
respect to the image obtained from a light source colocated
with the sensor, that is, s = (0, 0)>, do preserve the desired
form of the BRDF. It can be easily seen from (2) that such
ratio images, denoted by I , have the form

I(x, t) =
a(x) ρ̂(α, β, γ)
a(x) ρ̂(β)

= ρ(α, β, γ), (4)

where ρ(·) is the appropriately defined function. The exact
form of ρ̄(·), ρ̂(·) or ρ(·) is not important for us, since we will
derive our photometric invariant by eliminating it.

Alternatively, one may also take ratios with respect to an
image under uniform (floodlit or cloudy sky) illumination.

4. A Novel Differential Photometric Invariant
A common approach to recovering shape from photomet-

ric information is to derive invariants that relate the image
intensities to surface geometry and light source directions.
Most prior work focuses on more restricted classes of BRDF
(such as Lambertian) to avoid the complexities of general
BRDFs. However, one may deal with complex BRDFs if
they can be eliminated from a system of equations. In this

section, we use differential information to derive such an in-
variant. A surprising and useful result is that our invariant
does not depend on light source positions, so it is in fact an
uncalibrated invariant.

4.1. Differential Images
Intuitively, a single image formation equation leads to

independent relations upon differentiation with respect to
various space or time variables. These may then be related
by eliminating any terms that depend on the functional form
of the BRDF. In this section, we use this intuition to derive a
novel photometric invariant.

The space and time derivatives of the images in (4) are

∇xI(x, t) = ραJ>(n)s + ρβ
1
l(n)

J>(n)n (5)

It(x, t) = ραs>t n + ργ
1
l(s)

s>t s (6)

where α, β, γ are defined previously and J(n) = [nx,ny] is
the 2 × 2 Jacobian related to the second fundamental form,
II . (For the gnomonic projection, J(n) = l(n) · II .)

This system of three equations (note that (5) represents two
equations) is clearly underconstrained, with the unknowns
ρα, ρβ , ργ , n and s. However, one way to extract constraints
on the normal might be to eliminate the BRDF derivatives,
which can be done from these three equations if one of ρα,
ρβ or ργ terms can be made to identically vanish. This can be
achieved in a setup of circular motion, as discussed next.

4.2. Circular Motion Yields an Invariant
Let us constrain the source to move in a circle around

the camera axis. Intuitively, since ‖s‖ is now constant, γ
stays constant. Thus, the BRDF reduces to a 2D one, which
allows elimination of derivatives with respect to α and β.
Mathematically, s>t s = 0 for lights on a circle, so equation

(6) yields ρα =
It

s>t n
. Substituting in the two equations in

(5):

Ix =
(

It
s>t n

)
s>nx + ρβ

1
l(n)

n>nx (7)

Iy =
(

It
s>t n

)
s>ny + ρβ

1
l(n)

n>ny (8)

Eliminating ρβ from the two equations leads to:

Ixs>t n− Its>nx
Iys>t n− Its>ny

=
n>nx
n>ny

. (9)

Clearly, the right hand side depends only on position, while
the left hand side contains time-dependent entities. Thus, a
photometric invariant that relates image derivatives, surface
geometry and light directions can be expressed as

Ixs>t n− Its>nx
Iys>t n− Its>ny

= constant across time. (10)



4.3. The Invariant Is Independent of Light Positions
It might seem at a first glance that, given light source

positions, a non-linear minimization framework can be used
to solve for the unknowns {n,nx,ny}, up to scale, using the
constraint in (9). However, as we show below, the light source
directions are not required at all. That is, the invariant (10)
directly relates image derivatives to surface geometry.

Proposition 1. The entire information in the photometric
invariant (10) is encapsulated by two entities, which depend
only on surface geometry and not on source positions s.

While the above may seem surprising given the presence
of light source terms in (10), a closer look at the structure of
(10) immediately proves the above proposition.

Proof. Defining

λ =
n>nx
n>ny

, u = nx − λny, (11)

we can rewrite (9) as

Ix − λIy
It

=
s>u
s>t n

= κ. (12)

By definition, λ depends only on the surface normal and is
constant across time (that is, independent of light source po-
sitions). Also, by definition of λ and u in (11), we have
u>n = 0, that is, u is orthogonal to n. Since the lights
lie on a circle, st is also orthogonal to s. Moreover, at
time t (or equivalently, angular position on the circle of
sources), the light source is s = (r cos t, r sin t)>. Then,
st = (−r sin t, r cos t)>, thus, ‖s‖ = ‖st‖. It follows that κ
is actually the (signed) ratio of the magnitudes of u and n. 1

Indeed, with n⊥ = (−n2, n1)>, it immediately follows:

u = −κn⊥. (13)

Thus, we have the following constraint, equivalent to the
invariant in (9), but which does not depend on knowledge of
light source positions:

Ix − λIy − κIt = 0. (14)

Clearly, all the information in the invariant is encapsulated by
λ and κ, which depend only on surface geometry.

It is tempting to compare equation (14) to the optical flow
relation [9]. However, we note that (14) is derived without
resorting to a brightness constancy assumption and as we
discuss next, recovery of λ and κ in a photometric stereo
setup does not suffer from the aperture problem.

1In practice, the temporal derivative is obtained as a difference between
images at time t and t+δt, so asserting ‖s‖ = ‖st‖ assumes that the angular
difference δt betwen the lights of the rotating differential pair is known. This
is the same as the ratio of their distance and the radius of the circle on which
they are situated. Note that just an unmarked piece of string may suffice to
create any integral ratio.

4.4. Importance of the Invariant
This result of Proposition 1 is a surprising one and in

fact, can be understood as a more fundamental relationship
between spatial and temporal derivatives of images due to
isotropic BRDFs:

Corollary 2. For a surface with isotropic BRDF, the N × 3
matrix of spatial and temporal image derivatives at a pixel,
recorded for N > 1 unknown light positions on a circle, must
be rank 2. In addition, the null-vector, denoted (λ, κ, 1)>,
depends only on the surface geometry.

The above is also useful practically, since it raises the
possibility that surface information may be recovered
from image derivatives in photometric stereo for isotropic
BRDFs, without knowledge of light source positions. In
fact, as few as two differential image pairs suffice to estimate
λ and κ by solving a small linear system. This is an important
observation:

Corollary 3. Two pairs of differential images suffice to re-
cover surface information contained in the invariant of (10).

Note that three light sources can create two differential
pairs. It is instructive to recall that traditional photometric
stereo for Lambertian surfaces requires three images to com-
pletely determine the surface normal.

At this stage, it is natural to seek a characterization of the
exact surface information recoverable from λ and κ. In the
following section, we will show that knowledge of λ and κ,
together with initial information at a single point, suffices to
completely determine the surface depths.

4.5. Experimental Evaluation
Here, we empirically illustrate the validity of the relation

in (14). A differential pair of lights is moved on a circle and
real images of a plastic apple of varying albedo are acquired
at 11 unknown light positions. Ratio images are computed
with respect to a floodlit image.

Figure 3 illustrates that the ratios
Iy
Ix

and
It
Ix

computed for

the 11 different light positions lie close to a straight line. The
entities λ and κ are given by the best-fit straight line.

Figure 3. The ratio of image derivatives at a pixel, recorded for
various light positions, lie on a straight line given by the equation

λ
Iy

Ix
+ κ

It

Ix
= 1.



5. Reconstructibility Using the Invariant
The previous section demonstrates that the entire informa-

tion in the invariant can be expressed (and recovered) in terms
of the two entities λ and κ. However, it is not immediately
clear what this means in terms of surface reconstruction. We
answer this conclusively in the present section.

5.1. Isocontours of Constant ‖∇z‖
To begin, we show that one may recover isocontours where

magnitude of the gradient, ‖∇z‖, stays constant. This follows
directly from the definition of λ in Proposition 1:

Corollary 4. From two or more differential images of a sur-
face, obtained from unknown light source positions, one may
recover isocontours of constant magnitude of the surface gra-
dient.

Proof. Consider the scalar field g(x, y) = ‖n(x, y)‖. The
gradient associated with this field is∇g = (‖n‖x, ‖n‖y)>. It
is well-known that the level curves of a scalar field, g(x, y) =
c, for constant c, are orthogonal to ∇g. The direction of the

tangent to the level curves is
‖n‖y
‖n‖x

, which is the same as

1
λ

, by definition (11). Thus, knowing the value of λ, one

may trace the isocontours of constant ‖n(x, y)‖, using the
knowledge of their tangent directions. The statement of the
theorem follows as a special case for the gnomonic projection,
where n = −∇z.

Note that the result we have proved is actually more general
than the statement of Corollary 4. It may be easily verified
by the reader that the isocontours of constant ‖n‖ are the
same for any n derived from a projection centered on the line
joining the poles.

5.1.1 Experimental Evaluation

In Figure 4, we illustrate the recovery of isocontours of con-
stant ‖∇z‖ using synthetic data. For the images of a synthetic
sphere of varying albedo and the synthetic bunny, we use a
simplified Torrance-Sparrow model

ρ̄ =
1

4πσ2
exp

−(cos−1 n̂>ĥ
σ

)2
 , ĥ =

ŝ + v̂
‖ŝ + v̂‖

.

(15)
with σ = 0.3. For images of the vase of varying albedo, we
use a constant coefficient Phong-Blinn model: ρ̄ = n̂>ŝ +
(n̂>ĥ)σ , with a typical value of σ = 5.

In each case, we observe that the recovered isocontours of
constant ‖∇z‖ match the ground truth very closely.

5.2. Isocontours of Constant Depth
To recover isocontours of constant ‖n‖, we required knowl-

edge only of λ. However, we should be able to further dis-
ambiguate the surface using κ. The following proposition
gives a constructive proof that λ and κ together determine the
isocontours of constant depth (in addition to the isocontours
of constant ‖∇z‖).

Proposition 5. From two or more differential images of a
surface, obtained from unknown source positions, one may
recover the direction of the surface gradient at every point.

Proof. Let us denote n = (p, q)>, thus, nx = (px, qx)>
and ny = (py, qy)>. Given two or more pairs of differential
images, one may estimate λ(x, y) and κ(x, y) using the linear
relation in (14). Thereby, one obtains two linear, first order
PDEs from (13) at every pixel:

px − λ(x, y)py = κ(x, y)q (16)
qx − λ(x, y)qy = −κ(x, y)p. (17)

Further, since we are dealing with a surface, it must satisfy
the integrability condition:

py − qx = 0. (18)

Thus, we have a coupled first order system of three lin-
ear PDEs in the two variables p and q. Note that this is an
overdetermined system, which may not be solvable in general.
However, in our particular case, we can exploit the special
form of the PDEs to derive an unusual solution.

Consider the function h = p− λq. Taking partial deriva-
tives, we get

hx = px − λqx − λxq
= px − λpy − λxq = (κ− λx)q (19)

hy = py − λqy − λyq
= qx − λqy − λyq = −κp− λyq. (20)

By integrability of h, we have hxy = hyx, which gives us
another first order linear PDE:

(λx − κ)qy − λyqx − κpx = κxp+ κyq. (21)

Thus, we have a linear system in {px, py, qx, qy}, given by 1 −λ 0 0
0 0 1 −λ
0 1 −1 0
−κ 0 −λy (λx − κ)


 px
py
qx
qy

 =

 κq
−κp

0
κxp+ κyq

 ,
(22)

whereby expressions for {px, py, qx, qy} are obtained in terms
of linear functions of {p, q}:

px = ν1p+ η1q, py = ν2p+ η2q (23)
qx = ν2p+ η2q, qy = ν3p+ η3q. (24)

with  ν1
ν2
ν3

 =
1
∆

 λ(κ2 − λxκ+ λκx)
κ2 − λxκ+ λκx
−(λκ2 + λyκ− κx)

 , (25)

 η1
η2
η3

 =

 κ
0
0

+
κy + κ2

∆

 λ2

λ
1

 , (26)

where ∆ = −(κλ2 + λλy − λx + κ) is the (3, 2)-minor of
the 4× 4 matrix in (22). At this stage, the reader may verify



(a) (b) (c) (d)
Figure 4. Recovery of isocontours of constant ‖∇z‖. Red curves plot the isocontours, while the green dots represent points chosen to start
tracing the curves. (a) A sphere with variable albedo and simplified Torrance-Sparrow BRDF. (b) A vase with Blinn-Phong BRDF. (c) A bunny
with Torrance-Sparrow BRDF. (d) Ground truth isocontours for the bunny.

by substitution that the expressions above are consistent with
the definitions of λ and κ in (11).

Now, we again use integrability of p and q, that is (px)y =
(py)x and (qx)y = (qy)x, to get two new PDEs:

(ν1p+ η1q)y = (ν2p+ η2q)x (27)
(ν2p+ η2q)y = (ν3p+ η3q)x, (28)

These are linear, first order PDEs, where we can again re-
place the first order derivatives {px, py, qx, qy} using (23)
and (24) to get two (dependent) homogeneous linear equa-
tions in {p, q}. Using, say, the first equation, we can get the
ratio of p and q as

q

p
=

ν1y + η1ν3 − ν2x − ν2η2
ν2η1 + η2x + η2

2 − ν1η2 − η1y − η1η3
(29)

The statement of the theorem follows by considering a
gnomonic projection, where p = −zx and q = −zy .

Again, we note that the actual result proved is stronger and
holds for several projections besides gnomonic. To emphasize
the import of the result: using just Gaussian elimination and
repeated use of the integrability condition, just two pairs
of differential images at unknown light source positions
allow us to recover the direction of the gradient at every
point of a surface with isotropic BRDF, without requiring
any additional information.

Similar to Corollary 4, it immediately follows that:

Corollary 6. From two or more differential images of a sur-
face, obtained from unknown source positions, it is possible to
recover the isocontours of constant depth (or the level curves)
for the entire surface.

This result may be contrasted with symmetry-based meth-
ods [1] that theoretically require a dense configuration of
lights at known positions to recover the same information.

5.2.1 Experimental evaluation

The recovery of the direction of the gradient and the level
curves of constant depth is illustrated for synthetic data in
Figure 5. To display the direction of the gradient, the arrows
are plotted with length normalized to one. The isocontours
of constant depth are shown in red. All points on a red curve
have the same depth as the green point on that curve.

(a) (b)
Figure 5. Recovery of isocontours of constant depth. (Top row) Red
curves plot the isocontours, while the green dots represent points
chosen to start tracing the curves. (Bottom row) Plots of the direction
of the gradient, with the length of the vector normalized to one for
display.(a) A vase with variable albedo and Blinn-Phong BRDF. (b)
A bunny with Torrance-Sparrow BRDF.

5.3. Surface Reconstruction from Isocontours
We note that one may not recover magnitude of the gra-

dient without additional information, since the uncalibrated
invariant of (10) is homogeneous in p, q and their derivatives.
The following proposition establishes that, with the results
of Corollaries 4 and 6, additional information is required for
general surfaces only on a set of measure zero.

We assume that the surface can be split into a finite number
of regions, each of which satisfies a generality condition,
namely, that the isocontours of constant z and constant ‖∇z‖
are not everywhere parallel. Surfaces such as a hemisphere
are not general, but most surfaces do satisfy this condition.

Proposition 7. Given the isocontours of constant depth and
constant ‖∇z‖, under certain assumptions of generality for
the surface z(x, y), specification of the surface normal at a
single point suffices to reconstruct the depth map up to a
global convex-concave ambiguity and additive offset.

Proof. Let x∗ be a point in an open set U where the isocon-
tours of constant z and constant ‖∇z‖ intersect transversally.



Figure 6. Transver-
sality of isocontours
of constant z and
constant ‖∇z‖ is
sufficient to recover
depth, given normal
at x∗. See Proposi-
tion 7.

Then, within U , one may define unit vector fields v and w
that are tangent, respectively, to the isocontours of constant z
and constant ‖∇z‖ and thus, are transversal. Then, since ∇z
is orthogonal to v, it is apparent that the following relation
must hold at the point x∗ ∈ U (see Figure 6)

w · ∇z
‖∇z‖

= ±
√

1− (v ·w)2. (30)

Note the sign ambiguity, which arises since the directions of
v and w can be specified at most up to a global sign. If the
value of ‖∇z‖ is specified at x∗, it is also specified at every
point on the isocontour of constant ‖∇z‖. Thus, we have a
linear ODE in z along that isocontour, which may be solved
up to an additive constant, c∗.

Since the isocontours of constant z and constant ‖∇z‖ are
transversal in U , the values of depths can now be assigned, up
to an unknown c∗, along all the isocontours of constant z that
intersect the isocontour of constant ‖∇z‖ passing through x∗
and thus, almost everywhere on U .

Note that the sign ambiguity in (30) corresponds to a global
convex-concave ambiguity and the unknown constant c∗ cor-
responds to a global additive offset.

Finally, we note that for a unit normal n̂ = (n1, n2, n3)>,

we have ‖∇z‖ =

√(
1
n3

)2

− 1. Thus, specifying the sur-

face normal at a single point is sufficient to determine ‖∇z‖
and seed the above depth reconstruction.

Again, we contrast with calibrated methods [1], which use
dense sources to recover isocontours of constant z and re-
quire additional information on an entire curve to resolve the
depth. As the above proof shows, incorporating gradients
has the advantage of reducing this ambiguity, in an uncal-
ibrated framework with only two differential images, to
the specification of information at a single point.

5.3.1 Experimental Evaluation

To empirically demonstrate reconstruction from isocontours,
we simulate a monkey saddle, z = x3 − 3xy2, for which
the isocontours of constant z and ‖∇z‖ are transversal. In
Fig. 7(b), we show recovery of isocontours of constant z and
‖∇z‖. Specifying the normal at a single point on one of the
isocontours of constant ‖∇z‖ allows us to assign depths to
isocontours of constant z (Fig. 7(c)) and recover the depth
map (Fig. 7(d)). The recovered depth is nearly the same as
ground truth, except in regions where the chosen isocontour
(dotted green in Fig. 7(c)) does not cross level curves of z.

(a) (b)

(c) (d)
Figure 7. Depth recovery for a monkey saddle surface. (a) The
ground truth surface. (b) Recovered isocontours of constant ‖∇z‖
(red) and constant z (cyan), from images under a Torrance-Sparrow
BRDF model. All points on the red and cyan curves have same
depths as the respective green and magenta points. (c) Specifying
the surface normal at one point (marked in blue) on the surface
determines all depths along the corresponding isocontour of constant
‖∇z‖ (green ponts), from which depth at every other point can be
determined by tracing isocontours of constant z (red curves). (d)
The reconstructed surface by tracing all the isocontours.

6. Practical Algorithms for Reconstruction

At this stage, we recall that given image derivatives, one
may estimate the entities λ and κ that contain sufficient in-
formation for disambiguating the surface, given the surface
normal at a single point. However, in practice, the equation
(29) involves third-order derivatives of the surface normal,
which can lead to noisy estimation.

One alternative to recover the surface normals or depth
is to incorporate additional information in the form of ini-
tial or boundary conditions. In this section, we present al-
gorithms for recovering surface normals given initial infor-
mation across a curve, or recovering depths given boundary
information. These algorithms require only the estimation
of λ and κ, which can be performed directly from image
derivatives, without resorting to higher order differentiation.

The images used for real data experiments were acquired
using a Canon 5D camera. For the clay ball dataset (Fig.9(a)),
the differential pair is created by attaching two light bulbs to
a shaft, which can be rotated around a wheel using a crank.
The axis of the wheel is aligned with the camera principal
axis. The time step ∆t, computed as the ratio of the distance
between the bulbs and the radius of the shaft, was 0.12 (about
7 degrees). For the teflon ball (Fig.12), apple (Fig.10) and toy
dog (Fig.13) datasets, we used a gantry to acquire images at
∆t corresponding to 2 degrees.

Image derivatives are computed using a Savitzky-Golay
filter. The PDE solution for Algorithm 2 in Section 6.2 uses
central differences, with a smoothness regularizer and can be
implemented in standard PDE solution frameworks.



(a) Recovered iso(r) (b) Estimated θ (c) Ground truth θ (d) Estimated zx (e) Estimated zy (f) Estimated
and θ height map

Figure 8. Reconstruction for a synthetic sphere using Algorithm 1 of Section 6.1. (a) Isocontours of constant r = ‖∇z‖ computed using the

estimated λ(x, y), followed by estimation of θ = tan−1

„
zx

zy

«
using seed values of the surface normal specified on the brown dots. The

values of θ are shown using a color-code that maps the interval
h−π

2
,
π

2

i
between blue and red. (b) Recovered values of θ, with the specified

color map. (c) Ground truth θ. (d) Estimated gradient in the x direction, zx, red indicates large positive value and blue indicates large negative
value. (e) Estimated gradient in the y direction, zy , with the same color map. (f) Side view of the height recovered from integration of estimated
zx and zy , which matches the ground truth shape. Red indicates higher heights and blue indicates lower heights.

6.1. Algorithm 1: Recovering Surface Normals
Proposition 8. Initial data in the form of known surface
normals on a curve suffices to recover the surface normals
from the coupled PDEs in (16) and (17).

Note that including the integrability requirement of (18) is
ignored here (as is done in traditional Lambertian photometric
stereo). Once the surface normals are estimated, one may
impose integrability while recovering the depth map.

Proof. Consider the isocontours of constant ‖∇z‖, parame-
terized by x, which are solutions to the ODE ẏ = −λ(x, y).
For a closed, smooth surface, these characteristic curves will,
in general, be non-intersecting.

Along the above curves, the pair of PDEs in (16) and (17)
reduces to a pair of ODEs:

ṗ = κq, q̇ = −κp. (31)

Let p = r sin θ and q = r cos θ. Then, the following pair of
relations, obtained by differentiating p and q with respect to
the curve parameter (in this case, x) and substituting in the
above pair of ODEs, must be true:

ṙ cos θ = (r sin θ)(θ̇ − κ), ṙ sin θ = (r cos θ)(κ− θ̇).
(32)

Thus, ṙ2 = r2(θ̇ − κ)2. So, a solution to the pair of ODEs
can be obtained as

ṙ = 0, θ̇ = κ. (33)

Given initial data along a curve, we can solve the above pair
of ODEs. These initial conditions amount to specifying r and
θ along a curve.

6.1.1 Experimental Evaluation

We will demonstrate the applicability of this algorithm us-
ing the synthetic sphere data. Given the estimated values of
λ(x, y), Figure 8(a) shows a few contours of constant r (that
is, the curves ṙ = 0), traced with the initial seed point marked
by a brown dot. At the brown dots, we specify the value

Figure 9. Isocontours of constant ‖∇z‖ for real data corresponding
to a hand-moulded clay ball and a plastic apple.

of the surface normal, thus, the value of θ. Then, along the
isocontours, we solve the integral equation θ =

∫
κ dx, with

the constant of integration being the specified value at the
brown dot. The recovered values of θ are shown color-coded
on the corresponding isocontours in Figure 8(a).

Figure 8(b) shows the values of θ recovered by tracing
isocontours over all the pixels of the image. The artifacts near
the center are due to discretization (our isocontours are traced
with sub-pixel precision, but the values of θ can be displayed
only up to a 1 pixel precision). For comparison, we show the
ground truth value of θ in Figure 8(c).

Given the values of r and θ, we can recover the gradients
zx and zy using the above equations. The recovered values
are shown in Figures 8(d) and (e). Finally, using the recovered
gradients, one may perform a surface normal integration to
estimate the depth map, shown in Figure 8(f).

Note that the algorithm requires knowledge of surface
normals along the curve given by the brown dots in Figure
8(a), which is difficult to obtain in practice. But if initial data
on a curve is indeed available, Algorithm 6.1 is an elegant
method to recover the surface normals directly from first
order image derivatives, without resorting to higher order
differentiation.

In Figure 9, we show the recovered isocontours of constant
‖∇z‖ on real data for a hand-moulded clay ball and a plastic
apple. If the surface normals are specified at a single point
on these contours, the shape may be recovered. Note that one
may not use the occluding contour as the initial curve, as it
can be shown to be non-transversal to isocontours of constant
‖n‖.
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Figure 10. Input pipeline for the apple dataset. (a) Sample images from the differential pair. (b) Floodlit image. (c) Ratios with respect to the
floodlit image. (d) Spatial and temporal derivatives. Blue indicates low values and red indicates high values.

Recovered height map Texture-mapped reconstruction
Figure 11. Reconstruction on real data for the apple dataset using
Algorithm 2 of Section 6.2, with Dirichlet boundary conditions. (Top
row) Side view. (Bottom row) Top and side view. (Left column)
Height map, red indicates higher values and blue stands for lower
values. (Right column) Texture-mapped reconstruction.

6.2. Algorithm 2: Recovering Depth
Proposition 9. Boundary data in the form of known depths
suffices to recover the surface depth from the PDEs in (16),
(17) and (18).

Proof. Using the integrability condition (18), the pair of equa-
tions (16) and (17) can be written as a single constraint:

px = λ2qy − λκp+ κq. (34)

For a gnomonic projection, we have p = −zx and q = −zy.
Thus, we can rewrite the above as

zxx − λ2zyy + λκzx − κzy = 0. (35)

This is a linear, second-oder hyperbolic PDE, which is well-
posed given Dirichlet boundary conditions.

While demanding the satisfiability of the constraint in (35)
is, in fact, a weaker condition than the coupled constraints in
(16) and (17), it leads to a convenient numerical implementa-
tion. In practice, depths may be specified at the boundary for
scenes where an object rests on a background plane. Indeed,
the extensive theory of solutions for hyperbolic PDEs can be
used to solve the PDE in (35).

6.2.1 Experimental Evaluation

In Figure 10(a), we show 2 of the 11 differential pair of images
for a plastic apple. Note that the object has variable albedo
and a non-Lambertian BRDF. These input images are divided
by the floodlit image in Figure 10(b) to obtain the ratio images
in Figure 10(c). Note that the albedo variations are eliminated
in the ratio images. Spatial and temporal derivatives are
computed on the ratio images (Figure 10(d)). From these
derivarives, we perform a reconstruction using Algorithm
2 of this section, with boundary depths set to 0. As seen
in Figure 11, the 3D reconstruction closely resembles the
expected shape.

In Fig. 12, as a means of easy comparison to ground truth,
we show experimental results for a real teflon sphere with
uniform albedo. Note that traditional Lambertian photometric
stereo can be performed with just two light sources, or several
coplanar lights, for an object with uniform albedo. Fig. 12(a)
shows 2 of the 13 differential pairs used for reconstruction,
while Fig. 12(b) shows the corresponding spatial and temporal
derivatives. It can be easily seen from the images that the
material of the sphere is non-Lambertian. Consequently, the
height map reconstructed by traditional photometric stereo
using 13 lights is clearly sheared (Fig. 12(c)). In contrast, the
reconstructed height map using the algorithm presented in
this section closely resembles a sphere (Fig. 12(d)).

In Figure 13(a), we show input images for a toy dog,
painted with water color. Note the coarse and fine scale varia-
tions in the albedo, as well as some non-Lambertian effects.
More importantly, the object surface is not differentiable, so
it presents a challenging scenario for the theory of this paper.
We again acquire a floodlit image (Figure 13(b)) and compute
ratio images to eliminate the albedo and obtain images whose
intensities depend only on the BRDF (Figure 13(c)).

The reconstruction using Algorithm 2 of this section, with
boundary depths set to 0, is shown in Figure 14(a). A depth
map for the reconstruction is shown in Figure 14(b). A texture-
mapping on the same reconstruction is shown in Figure 14(c).
In Figure 14(d), we show a close-up of the reconstruction for
the head.

Note the fine scale structure recovered by the algorithm,
such as the eyes and the smiling mouth. There is a minor
loss of detail near the feet of the toy dog, which might be
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(Assumes Lambertian BRDF)
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Figure 12. Comparison with traditional Lambertian photometric stereo, using real data. (a) Two sample differential pairs of images of a teflon
ball. (b) Spatial and temporal image derivatives. Red stands for positive values and blue stands for negative values. (c) Height recovered using
traditional Lambertian photometric stereo. Note the shearing of the surface which is typically due to ignoring non-Lambertian effects. (d)
Height recovered using the theory of Section 6.2.
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Figure 13. Input real images for the toy dog dataset. (a) Sample images from the differential pair. (b) Floodlit image. (c) Ratios with respect to
the floodlit image. (d) Spatial and temporal derivatives. Red stands for positive values and blue stands for negative values.

(a) Reconstructed surface (b) Height map (c) Texture-mapped reconstruction (d) Close-up of head

Figure 14. Reconstruction for the toy dog using Algorithm 2 of Section 6.2, with Dirichlet boundary conditions. Note that the surface is not
continuously differentiable, so does not meet the strict requirements of our theory. Yet, the PDE solution is robust enough to recover a high
quality depth map. (a) A top-and-side view of the recovered surface. (b) Recovered height map. Brighter shading indicates higher values. (c) A
texture-mapped display of the 3D reconstruction. (d) A close-up reconstruction of the head.

due to shadows and low levels of illumination (all the light
source positions are above the level of the head). While
the theory of the paper is derived for differentiable surfaces,
this example shows robustness to minor non-differentiablity,
provided the surface is continuous. We remind the reader

that all the reconstructions in this paper are obtained from
unknown light source positions.



7. Implementation Details
In this section, we provide some implementation details

relevant to the real data experiments.

7.1. PDE Solution
We take central differences to numerically solve the system

of equations arising from equation (35) at every pixel:

zx =
zr − zl
2∆x

, zxx =
zr − 2z + zl

(∆x)2
,

zy =
zt − zb
2∆y

, zyy =
zt − 2z + zb

(∆y)2
,

where {∆x,∆y} are the step lengths in the x and y directions
and {zl, zr, zb, zt} are the pixels on the left, right, bottom and
top of z, respectively, which are one step length away. The
depths of the boundary pixels are specified to be 0. Thus, we
obtain a linear system of the form Az = b, where A is a
large, but extremely sparse matrix. Note that the reconstructed
depths at the boundaries may be non-zero, since the PDE
constraints and the boundary constraints are solved in a single
linear system, in a least squares sense.

Points where |λ| and |κ| cross a certain threshold (set to 50
in our implementation) are detected. We do not write the PDE
constraint at these points, instead, we impose a condition that
the depth must be continuous at these points.

Optionally, a regularization term (such as an isotropic prior
on the norm-squared gradient, or the Laplacian) may be added
to enhance smoothness of the solution. The regularized objec-
tive function is

min
z
‖Az− b‖22 + µ‖∇z‖22. (36)

When regularization is used, we minimize (36) using the CVX
convex optimization software [5]. For the apple dataset, we
use a value of µ = 0.01. For the teflon ball dataset, no
regularization is required (µ = 0).

For the toy dog dataset, instead of the above reg-
ularizaton, we weighted each PDE by the quantity

1
min{1 + |λ|, 1 + |κ|, τ}

. This downweights the contribu-

tion of regions where λ and κ tend to infinite values. We use a
value of τ = 5, although the optimization can tolerate a large
range of values.

7.2. Acquisition Setup
The acquisition setup described in Section 6 is pictured

in Figure 15. It consists of two light bulbs mounted close
together at the end of a rigid shaft. The length of the shaft
is set to 8 times the distance between the two lights, which
results in a ∆t of approixmately 7 degrees. The shaft is
connected to a wheel, which can be rotated using the crank.
A camera is placed facing the object, aligned with the axis of
rotation of the wheel.

The crank is moved by hand and rigidly clamped to a
table while acquiring images, resulting in different unknown
positions of the differential light pair. The differential image
pairs are acquired by turning lights 1 and 2 on and off at a
few different positions of the crank.

Figure 15. Acquisition setup.

8. Discussions
In this paper, we have presented a comprehensive theory

that relates image gradients to surface geometry in uncali-
brated photometric stereo for isotropic BRDFs. In the process,
we have uncovered fundamental insights into the nature of
differential information contained in photometric images for
isotropic BRDFs. We have presented a novel invariant for
surface reconstruction and precisely characterized the extent
to which this invariant informs surface reconstruction.

A key observation in our work is the linearity of the dif-
ferentiation operation, that may be used to derive novel con-
straints on surface geometry, regardless of the exact form
of the BRDF. This insight is of potential relevance in many
other domains like shape from shading and optical flow and
may provide a unified framework to analyze all of these prob-
lems with general BRDFs. Theoretical analysis of such a
framework is already the subject of our ongoing work.
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