
Elements of Model-Based Design

Jeff C. Jensen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-19

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-19.html

February 19, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 1

Elements of Model-Based Design
Jeff C. Jensen

Department of Electrical Engineering & Computer Science
University of California, Berkeley

Berkeley, CA 94720
Email: jeffcjensen@cal.berkeley.edu

F

Abstract—Model-Based Design (MBD) is a powerful design technique
for cyber-physical systems, but too often literature assumes knowledge
of a methodology without reference to a specific design process. This
report decomposes MBD into ten fundamental steps and introduces an
iterative design process that is exercised with two case studies of cyber-
physical systems.

Index Terms—model-based design, cyber-physical systems, embed-
ded systems, models of computation, PTIDES.

1 INTRODUCTION

Cyber-physical systems [1] are dynamic systems that inte-
grate physical processes with computation, often in feed-
back loops, where physical processes affect computations
and visa-versa. These systems are reactive since they
maintain a permanent interaction with their environ-
ment, and most commonly real-time since by design they
must conform to externally defined timing constraints
[20]. We describe and evaluate a design methodology
that leverages mathematical modeling of physical dy-
namics, formal models of computation, simulation of
heterogeneous systems, and code synthesis for cyber-
physical systems.

2 MODEL-BASED DESIGN

2.1 Model-Based Design
Model-based design (MBD) [2] [3] [4] [9] emphasizes
mathematical modeling to design, analyze, verify, and
validate dynamic systems [4]. An embedded computer
interacts with the real world through sensing and ac-
tuation, impacting the physical dynamics of its envi-
ronment. A complete model of a cyber-physical sys-
tem represents its coupling of physical processes and
embedded computations. The notion of correctness for

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at the University of California at Berkeley, which
receives support from the National Science Foundation (NSF awards #CCR-
0225610 (ITR),#0720882 (CSR-EHS: PRET), #0647591 (CSR-SGER), and
#0720841 (CSR-CPS)), the U. S. Army Research Office (ARO #W911NF-07-
2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-
06-0312 and AF-TRUST #FA9550-06-1-0244), the Air Force Research Lab
(AFRL), the State of California Micro Program, and the following companies:
Agilent, Bosch, Lockheed Martin, National Instruments, Thales and Toyota.

real-time embedded software must be extended beyond
the traditional functional relationship between inputs
and outputs to include the times at which inputs are
processed and outputs are produced. In the case of hard
real-time or safety-critical systems, timing constraints
may be specified by the developer to facilitate the explicit
modeling of time.

Mathematical models are used to design, simulate,
synthesize, and test cyber-physical systems. Such models
are based on system specifications and analysis of the
physical context in which the system resides. Modeled
systems may be tested and simulated offline [9], enabling
developers to verify the logic of their application, as-
sumptions about its environment, and end-to-end (i.e.
closed-loop) behavior. We introduce an MBD workflow
for the design of cyber-physical systems through exten-
sive use of mathematical and computer-aided modeling.

2.2 Models of Computation

Embedded software is commonly written directly in
languages like C/C++, Java, or assembly without regard
to a formal programming model beyond the language
specification itself. Cyber-physical systems are complex
systems that demand strong analyzability, reliable per-
formance, and confidence in the correctness of concur-
rent software; this is especially important in the case
of sensor networks where success hinges on scalability,
modularization, and the ability to model both individual
nodes and the network as a whole.

Traditional programming models such as threading
are difficult to analyze, burdening developers to infor-
mally reason about correctness, determinism, real-time
performance, and reliability. The analysis of threaded
software is intractable since any arbitrary execution of
concurrent processes is valid, and faulty or nondeter-
ministic interleavings of instructions may exist without
detection. The interactions between threads are (in all
but the simplest cases) incomprehensible to humans [5].
Without explicit modeling of the interactions between
concurrent processes, it is difficult (if not impossible) to
reason about deadlock avoidance. While threading is the

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 2

dominant design pattern used in conventional concur-
rent software, satisfactory results are achieved primarily
through the use of semiphores, mutex locks, critical sec-
tions, and other techniques that prune the expressiveness
of the language. To address these problems in cyber-
physical systems where correctness, determinism, and
reliability trump design language expressibility, more
sophisticated design patterns must be used.

Fast hardware can give the illusion of real-time com-
puting, but traditional programming models lack timing
constructs and are unable to guarantee deadlines will
be met. The sole reliance on a hardware architecture to
deliver real-time performance is brittle and unreliable,
as illustrated by Richards’ Anomaly, where tasks that
were once schedulable yield missed deadlines when
processor speed is increased [6]. Software models that
incorporate timing constructs simplify real-time analysis,
and in some cases guarantee that deadlines will be met.

A model of computation is a set of allowable instructions
used in a computation along with rules that govern
the interaction, communication, and control flow of a
set of computational components [9]. A formal model
of computation defines semantics that often result in
greater analyzability and the potential to simulate com-
putation within a physical environment through the
use of heterogeneous modeling tools. Models built in a
formal model of computation may be easier to analyze
with respect to determinism, execution time, reachability,
memory usage, and latency [13] [14]. Designing and
modeling an application according to a formal model
of computation leads to robust software that is simpler
to analyze, sidestepping the many pitfalls of threading.
These software dynamics alter the evolution of a cyber-
physical system, and if modeled may be generalized and
used in an MBD workflow to broaden the understanding
of a system.

Advantages of using a specific model of computation
depend its semantics, if timing constructs are used, and
if it is Turing-complete. Timing constructs are introduced
by LabVIEW’s structured dataflow with timed loops [7],
Simulink [8], discrete event (DE) [11], and Program-
ming of Temporally Integrated Distributed Embedded
Systems (PTIDES) [12], allowing developers to reason
about the timing behavior of their software irrespective
of target hardware architectures. While Turing-complete
models of computation lack timing semantics [13] and
suffer from undecidability of the number of instructions
executed, the domain over which the computation halts,
the range of values that may be produced by a com-
putation, memory utilization, and more [15], models of
computation that are not Turing-complete bypass many
of these limitations. Synchronous models of computation
such as Esterel [16], Lustre [17], some variants of state-
charts [18], synchronous dataflow [19], and synchronous
reactive [20] are not Turing-complete and enable devel-
opers to statically analyze models to guarantee memory
usage, deadlock avoidance, and timing behavior.

2.3 Elements of Model-Based Design

MBD is an iterative process where modeling of a physi-
cal system may influence the selection of hardware and
model of computation, both of which may be charac-
terized and used to construct a complete system model.
We decompose the MBD of a cyber-physical system into
ten steps, though we emphasize that steps need not be
ordered as they are here.

2.3.1 State the Problem

Use simple language to describe the problem to be
solved, without the use of mathematics or technical
terminology. This is the “elevator speech” for the project
and is a handy reference for the authors, related teams,
colleagues and experts, vendors, and machine shops.

2.3.2 Model Physical Processes

Models of physical processes are simplified representa-
tions of real systems. Physical processes are typically
described by a deterministic or probabilistic evolution of
the system versus time [21]. Models of physical processes
are usually in the form of systems of differential equa-
tions or Laplace transfer functions. Complex physical
processes may be represented by multiphysics simula-
tion methods.

The first iteration of this step should give insight into
the physical dynamics at play, with the expectation that
this step may be revisited if subsequent steps demand
more detailed models.

2.3.3 Characterize the Problem

Isolate fixed parameters, adjustable parameters, and
variables to be controlled. Identify quantities that char-
acterize physical processes, such as configuration spaces,
safety limitations, input and output sets, saturation
points, and modal behavior. Understand how a process
may interact with a computation, including end-to-end
latency requirements, fault conditions, and response to
noise and quantization error.

2.3.4 Derive a Control Algorithm

A control algorithm can be thought of as a set of rules
that translates samples of an environment into physical
quantities via embedded computation. Determine con-
ditions under which physical processes are controllable
and derive a suitable control algorithm to be executed
by an embedded computer. Specify maximum tolerable
latencies and delays from sensing to actuation; this
will aid the selection of an embedded computer, since
controller bandwidth and end-to-end latency are limited
by processing speed. In highly distributed applications,
or systems that are globally asynchronous but locally
synchronous, it may be necessary to select a model of
computation before a control algorithm can be derived.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 3

2.3.5 Select a Model of Computation
The model of computation used depends on the nature
of the problem: does the problem characterization sug-
gest real-time constraints? Must the system be determin-
istic? Are computers, sensors, or actuators distributed
across network boundaries? Are formal verification or
validation required? Are inputs and outputs periodic?
Synchronous? Prioritize each of these concerns and se-
lect the model of computation that fits best. Revisit
the derivation of the control algorithm to determine
the impact of latency jitter or variable sampling rates
introduced by an asynchronous model of computation.

2.3.6 Specify Hardware
Select hardware that is capable of solving the problem
as characterized. For each component, consider its input
and output bandwidths, delay from input to output,
power usage, and lifespan. Actuators should be capable
of producing forces and torques in excess of minimum
values derived from earlier problem characterization.
Consider and model the impacts of using cost-effective
substitutes for ideal parts.

Selection of an embedded computer may necessitate
a deeper understanding of latency and execution time
requirements of control algorithms, worst-case execution
time measurements of synthesized software, and rea-
soning as to how software will interact with a specific
hardware architecture. This step may require several
iterations with software design and simulation before an
embedded computer can be selected with confidence.

2.3.7 Simulate & Solve
Solve the problem using a desktop simulation tool that
supports the model of computation. Depending on the
robustness of the development environment, incorporate
models of sensors, actuators, and physical processes.
Following the concept of platform-based design [22],
separate application logic and architecture-specific soft-
ware into modular components. If no development tool
can capture the dynamics of the cyber-physical system
as a whole, use multiple tools to capture the behavior of
dynamic subsystems.

While it may not be possible to model every subsystem
within a single tool, the exercise can root out logical
errors and garner a better understanding of the system
as a whole. What is left out of disjoint simulations is a
representation of the relationships between signals that
cross subsystem boundaries and the behavior of hetero-
geneous compositions of subsystems. The interactions
between heterogenous systems [23] may be simulated
in Ptolemy II [9], LabVIEW with LabVIEW Controls,
Design, and Simulation toolbox, and to a limited extent,
Simulink.

Specify desired input domain and output range of
expected values. If warranted, verify and validate the
design based on these specifications or contracts between
software components. A number of desktop simulation

tools feature verification and validation, or models may
be transformed and fed into external tools. Model veri-
fication tools include Simulink Design Verifier [24] and
the Eclipse Modeling Project Validation Framework [25].

Simulation is a powerful tool throughout the iterative
design process and at varied levels of granularity. Sub-
systems may be constructed and tested independently
to produce data that may be incorporated in the next
iteration of a model. The scheduler for a model of
computation may consider worst-case execution time of
computations [14], measurements that cannot be made
until code has been synthesized. Control algorithms may
be adjusted according to the model of computation,
especially if parameters of the algorithm depend on step
size or latency.

2.3.8 Construct
Build the device according to specifications, taking note
where exceptions have been made that may impact
earlier modeling. Plan construction in a way that al-
lows individual components or subsystems to be tested
against theoretical models, facilitating iteration between
simulation and testing.

2.3.9 Synthesize Software
Code synthesizers are usually incorporated into desk-
top simulation environments, examples of which are
LabVIEW, Simulink, and Ptolemy II. Assuming a code
generator synthesizes code that faithfully executes the
semantics of the model of computation, the synthe-
sized code is correct by construction. Code generators
may directly support the embedded computer used, or
generic code may be synthesized and tied to handwritten
architecture-specific code. If code synthesis is infeasible
or unavailable, handwritten code should carefully follow
the selected model of computation.

2.3.10 Test
Configure adjustable parameters to create a test envi-
ronment that is as simple as possible and test each
subsystem independently. Computational systems may
be isolated from physical systems via hardware in the
loop testing, where programmable hardware such as
embedded computers or field-programmable gate arrays
simulate the feedback from physical or other computa-
tional processes. Results in execution time and latency
can be used to refine previous models, and unexpected
test results may point to errors in modeling or imple-
mentation.

2.4 MBD Case Studies

We present two studies of MBD in the construction
of cyber-physical systems, showing step-by-step design
and analysis. For an arbitrary application, the level of
detail at each step need not match what we show
here; in simple applications, whiteboard drawings may

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 4

suffice, while complex applications may require multi-
ple modeling tools, programming languages, embedded
targets, custom hardware, and sophisticated physical
and mathematical reasoning. No model can ever be
complete [15]; MBD models behavior with enough detail
to sufficiently understand and solve the problem given
the assumptions about its environment.

In the first case study, we augment an existing cyber-
physical system with a new capability. The Cal Climber
uses a commercially available robotics platform based
on the popular iRobot Roomba autonomous vacuum
cleaner. The off-the-shelf platform is capable of driving,
sensing bumps and cliffs, executing simple scripts, and
communicating with an external controller. We extend
the platform with an external embedded computer and
a sensor that measures tilt with respect to Earth’s gravity.
The Cal Climber demonstrates the composition of cyber-
physical systems, where a robotics platform is modeled
as a subsystem and treated as a collection of sensors
and actuators located beyond a network boundary. The
application does not require real-time processing of data
or complex modeling of physical processes. It offers a
simple canonical example of MBD in a practical appli-
cation.

The second case study is inspired by more sophis-
ticated industrial processes. The Tunneling Ball Device
is a cyber-physical system whose operation demands
hardware and real-time embedded computing that de-
liver high-precision sensing and actuation. Computa-
tions are event driven, and signals present reflect those
in an automotive engine control unit for control of fuel
injection, ignition timing, and valve retraction of an
automotive engine. The system is naturally extensible
to a distributed platform, presenting an interesting ex-
ample for modeling distributed cyber-physical systems.
Dynamics are captured iteratively and with greater detail
throughout each step of the design process.

3 CAL CLIMBER

3.1 State the Problem
Modify the iRobot Create [27] (Fig. 1) consumer robotics
platform to autonomously navigate to the top of an
incline, avoiding cliffs and obstacles along the way.

3.2 Model Physical Processes
Tilt is a measurement of the orientation of the robot
with respect to gravity. We fix a coordinate system so
that uphill orientation corresponds to a vector with a
45◦ angle with respect to the positive x and y axes (Fig.
2). We represent tilt as a vector ~a ∈ R2, ~a = (ax, ay),
whose magnitude is proportional to the component of
gravitational acceleration in the plane of the robot. If
the robot is level then ~a = ~0, if the robot is oriented
uphill then ∠~a = 45◦, if the robot is tilted to the left
then ∠~a = −45◦, if the robot is tilted to the right then
∠~a = 135◦, and if the robot is tilted downhill then
∠~a = −135◦.

www.irobot.com �

�

Anatomy
Top View

Omnidirectional
IR Receiver

Cargo Bay

Charging Socket

Serial Port

Handle

Cliff Sensor
Openings Contact

Points for
Home Base

Battery

Bottom View

Cargo Bay
Connector

6-32 Mounting
Cavities

Buttons and Lights

Power LED

Power Button
Play

Button Advance Button

Play LED Advance LED

Tailgate

Fourth Wheel

Wheel Clips

Fig. 1: iRobot Create [27] robotics platform. Source: iRobot Corporation.

Fig. 2: Coordinate system for iRobot orientation with respect to gravity.
The acceleration vector has positive and equal x and y components,
indicating uphill orientation.

Four bump sensors distributed in the front of the robot
detect when it impacts an object. Four infrared sensors
detect cliffs, and wheel drop sensors detect when a wheel
is no longer in contact with the ground. No cliff or bump
detection is available from the rear of the vehicle.

3.3 Characterize the Problem

We have not constrained the rate with which the robot
must ascend an incline, hence the overall rate of the
robot is an adjustable parameter. The left and right
wheels of the robot may be actuated independently,
and the ratio of their rates is a controllable parameter.
Each wheel can rotate at a rate of up to ±vmax, where
vmax = 500mm/s. The robot does not have out-of-the-
box capability to measure acceleration, so we will add a
sensor to measure acceleration. Since acceleration due
to gravity is a DC signal, we pass tilt measurements
through a lowpass filter. Filtering and advanced logic are
beyond the capabilities of the factory-embedded com-
puter, prompting us to use an external embedded com-
puter. Wheel actuation commands and sensor feedback
can be communicated between the robotics platform and
an external embedded computer via UART serial, with
a latency of at most 15ms (a fixed parameter).

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 5

If the robot is on level ground, then ‖~a‖ = ~0 and ∠~a
is undefined. In practice, the accelerometer will register
some small, nonzero value, and the angle will be erratic.
To prevent jitter, we set a magnitude threshold Athreshold
to differentiate near-level ground from an incline. In both
level ground and climbing modes, we increment wheel
speed slowly to reduce accelerometer noise induced
by changes in wheel speeds, effectively introducing a
second lowpass filter into the system. Measurements
with magnitudes larger than acceleration due to gravity
will be clipped.

Climbing a hill does not present hard real-time con-
straints; however, response to cliff and object detection
must happen quickly to avoid hard impacts or falling off
a cliff. The embedded computer will place a high priority
on responding to these sensor events.

3.4 Derive a Control Algorithm

A simple proportional control algorithm will change
wheel speeds in response to tilt measurements. If the
robot is tilted left of uphill orientation, the left wheel
speed should increase relative to the right wheel to
correct the orientation, and visa-versa. The left and right
wheel speeds, vx, vy : R2 −→ [−vmax, vmax], respectively,
are given by

vx(~a) =

{
vmax

ax
‖~a‖ if ‖~a‖ ≥ Athreshold

vmax if ‖~a‖ < Athreshold

(1a)

vy(~a) =

{
vmax

ay
‖~a‖ if ‖~a‖ ≥ Athreshold

vmax if ‖~a‖ < Athreshold.
(1b)

The proportional control algorithm correctly orients the
robot, with one interesting side effect being an unstable
equilibrium point at ax, ay < 0 and ax = ay , resulting in
the robot attempting to back up the hill. Any deviation
from this point will cause the robot to quickly rotate
about and return to uphill climbing. A more advanced
control algorithm could implement mode changes to
prevent this behavior. This is advantageous not only
from the standpoint of optimality, but also safety, since
bump and cliff sensors are not present on the rear of the
robot and hence backing up a hill increases the risk of
undetected incident obstacles.

3.5 Select a Model of Computation

The robot can be configured to transmit sensor packets
periodically, or only when polled. A synchronous model
of computation would be well-suited for periodic sensor
updates, and an asynchronous model of computation
would suffice for either periodic or aperiodic sensor up-
dates. The LabVIEW programming environment enables
desktop simulation and its code synthesis framework
natively supports many embedded computers. We select
LabVIEW for its ease of use and ability to synthesize
code from a desktop simulation.

HillClimb.solution.vi
C:\Users\elgeeko\Documents\EECS c149\Lab 4 - Hillclimb LabVIEW\Code\VIs\Solution\
HillClimb.solution.vi
Last modified on 2009-06-26 at 10:54
Printed on 2009-12-14 at 17:23

Page 1

On Hill

360 20
40

60

80

100

120

140
160180200

220

240

260

280

300

320
340

75

45

0

10

20

30

25

Elevation

175

Accel Swing

5000
50

100 150 200 250 300 350 400

500

Vmax

1001 20 40 60 80

20

Hill Threshold

8

Oversample

Controller Parameters

564x

563y

Accel

500-500

-200 0 200

-60

Left

500-500

-200 0 200

440

Right

Wheel Speed

-18

x

49

y

Accelerometer

50

avoid distance

50

backup distance

Simulate Accelerometer

RightAvoid Direction

ClimbControl State

0Distance

0Angle

State

Wall

Virtual Wall

Advance
Play

Buttons

Right
LeftBump

Right
Left

Caster
Wheeldrop

Left
Front Left

Front Right
Right

Cliff

LD0
LD1
LD2

Left Wheel
Right Wheel

Overcurrent

00Infrared

0Distance

0Angle

Not ChargingCharging State

0Voltage

0Current

0Temperature

0Charge

0Capacity

Battery

Sensors

1

iRobot Port

0

Echo Port

Fig. 3: LabVIEW front panel of the Cal Climber model. The user
specifies elevation and rotation in the bottom left control, and control
algorithm outputs and ADC sample values are displayed in the
remaining indicators. In this simulation, the robot is tilted to the right
by 75◦, and the wheels adjust to compensate.

Sensors In

Control State In

Control State Out

Sensors Out
Wheeldrop

Cliff
Bump

Left

Front Left
Left

Left
Control State

Angle
Distance

Avoid Direction

Right

Left 0

Bump! Reset sensors, choose avoid direction,
reset distance, change to backup state.

Wheeldrop
Cliff

Bump

Backup

 True

Bumps, drops, or cliffs?

Fig. 4: Block diagram of state evolution block of the LabVIEW model
of the Cal Climber. The blocks displayed represent the logic to change
state if bump, cliff, or wheel drop sensors are fired.

Fig. 5: Modified iRobot Create with Luminary Micro LM3s8962 em-
bedded computer and ADXL-220 accelerometer.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 6

3.6 Specify Hardware

An ADXL-220 [28] two-axis accelerometer outputs an
analog voltage proportional to measured acceleration.
The Luminary Micro LM3s8962 [37] embedded com-
puter supports UART serial to communicate to the robot,
has an analog-to-digital converter (ADC) to sample the
accelerometer, a 5V source to power the accelerometer,
can be powered from the robot battery, and is easily
mounted along with the sensor in the cargo bay of the
robot.

3.7 Simulate & Solve

We verify application logic by simulating in a desktop
environment. The accelerometer is represented by a dial
that may be adjusted to change the simulated tilt from
0◦ to 45◦, and the tilt of the robot by a dial that may
be turned from 0◦ to 360◦. The output of the virtual
accelerometer mimics the output of the ADC on the
embedded computer as it samples the accelerometer,
where the analog signal is simulated according to the ac-
celerometer datasheet and the user-provided incline and
tilt. Robot sensor packets are generated periodically and
passed into the application for processing. Users may
manually trigger bump, cliff, and wheel drop events.
Portions of the desktop simulation model are shown in
Figs. 3–4.

Our application logic mimics a state machine with
states for drive, climb, backup, turn, and reset modes.
Bump, cliff, and wheel drop events trigger an object
avoidance sequence which instructs the robot to back
up and turn away from a detected object. The simulation
displays the speeds of the left and right wheels, as well
as the program state, in response to user input. Once
our application logic has been verified in simulation, we
construct the device.

3.8 Construct

The configuration is shown in Fig. 5, and wiring
schematics are shown in Appendix A.

3.9 Synthesize Software

LabVIEW natively supports the embedded computer,
and by use of the conditional disable structure, we use
the same model for desktop simulation and embedded
code synthesis. C code is automatically synthesized and
downloaded to the embedded computer.

3.10 Test

The robot successfully climbs towards the top of an
incline and avoids obstacles and cliffs along the way.
Actuation is smooth and the robot returns quickly to the
correct orientation when manually displaced.

R 75

R 20

R 50

(a) Illustration of the device.
The drop target, located below
the optical sensors, is marked
by an inscribed circle.

R 75

R 20

R 50

(b) Spinning disc of the Tun-
neling Ball Device.

Fig. 6: The Tunneling Ball Device

4 THE TUNNELING BALL DEVICE

4.1 State the Problem

Steel ball bearings are dropped one at a time at sporadic
intervals towards a fixed drop target located below a
spinning disc (Fig. 6). The disc has been bored through
at two opposite ends, and the ball will pass (“tunnel”)
through untouched if the disc is correctly aligned at the
time of impact. Should the disc be improperly rotated,
the ball will collide with the disc, signifying failure. The
device must sense when a ball is dropped, track the
position of the disc, and adjust the trajectory of the disc
so that the ball tunnels through the disc unscathed. Only
one ball will be above the disc at any time, and between
drops the disc should return to a default speed. The disc
must not stop at any time, and changes in rate should
be minimal.

4.2 Model Physical Processes

4.2.1 Kinematics of a Ball in Freefall

A ball β = (z0, v0, t0) ∈ B ⊂ R2
+×R is a tuple of its initial

altitude, initial velocity, and time at which it is detected
above the drop target. Let z : B×R −→ R be the vertical
distance from the center of the ball to the middle of the
disc,

z(β, t− t0) = z0 − v0t−
1

2
gt2 (2)

where g is constant acceleration due to gravity [29].
A ball with radius rb first comes into contact with

the disc at arrival time Ta(β), is centered in the disc
(assuming no impact has occurred) at time Tc(β), has
departed the disc at time Td(β), and is known to be
above the disc for time ∆T (β):

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 7

296 298 300 302 304 306 308 310
0

1

2

3

4

5

6

7

8
Impact Radius

time (ms)

im
pa

ct
 r

ad
iu

s
(m

m
)

Fig. 7: Impact radius of a 7.5mm radius ball dropped from a height of
400mm. The impact radius is equal to the radius of the ball while the
center of the ball passes through the thickness of the disc.

Ta, Tc, Td : B −→ R
∆T : B −→ R+

(3)

Ta(β) =
1

g

(√
v20 + 2g

(
z0 − rb −

h

2

)
− v0

)
+ t0 (4a)

Tc(β) =
1

g

(√
v20 + 2gz0 − v0

)
+ t0 (4b)

Td(β) =
1

g

(√
v20 + 2g

(
z0 + rb +

h

2

)
− v0

)
+ t0 (4c)

∆T (β) = Ta(β)− t0 (4d)

where h denotes the thickness of the disc. The drop
interval [t0, Ta(β)] is the duration for which a ball is
known to be above the disc, and the impact interval is
the interval over which the ball is passing through the
disc, given by I : B −→ P(R) (where P is the powerset
operator)

I(β) = [Ta(β), Td(β)] . (5)

The impact radius is the radius RI : B × R −→ R+ that
describes the widest horizontal slice of the ball that is
passing through the disc (Fig. 7):

RI(β, t) =


0 if |z(β, t)| > rb + h

2

rb if |z(β, t)| < h
2√

r2b −
(
|z(β, t)| − h

2

)2
otherwise.

(6)
An equivalent condition for the impact radius to be
nonzero is that t fall within the impact interval I(β).

(a) Disc rotated with the door
centered over the drop target (op-
timal tunnel).

(b) Disc rotated with the door
offset from the drop target (sub-
optimal tunnel).

Fig. 8: Disc rotations showing optimal and sub-optimal tunnels. The
drop target is centered, and the tunnel is represented by the broken
line. The impact radius must be smaller than the tunnel radius for the
ball to pass.

4.2.2 Kinematics of a Rotating Disc

Let ϑ = [R −→ (−π, π]] be the set of functions that
describe the rotation of a disc over time. The disc has two
doors bored at opposing ends, each with radius rdoor. We
fix a coordinate system so that the doors on the disc are
centered above the drop target at rotation 0 and π. The
distance from the center of the disc to the drop target is
rdrop and is the quantity that relates the angular velocity
of the disc to the linear velocity of the center of the door
(Fig. 6(b)).

The Euclidean distance d : ϑ×R −→ R+ from the drop
target to the center of the nearest of two doors is

d(θ, t) =
√

2rdrop
√

1 + min {cos (θ(t)) , cos (π − θ(t))}
=2rdrop sin

(
1
2 min {|θ(t)|, |π − θ(t)|}

)
.

(7)

As the disc rotates, the doors pass over the drop target
exposing the tunnel through which a ball may pass (Fig.
8). The tunnel radius RT : ϑ × R −→ R+ is the largest
allowable impact radius at time t:

RT (θ, t) =

{
rdoor − d(θ, t) if d(θ, t) ≤ rdoor

0 if d(θ, t) > rdoor.
(8)

4.2.3 Dynamics of a DC Motor with Load

To rotate the disc, was must connect it to a driving
source, such as a motor. DC brushed motors are a reason-
able starting point for analyzing the rotation of the disc
because they are simple, inexpensive, and widely used.
They are commonly driven by pulse-width modulation
(PWM) generators (though modeled as if driven by
linear-gain amplifiers) and provide position information
via attached digital encoders. If later modeling requires
more advanced motor technology, we will reexamine
this choice. To determine the load placed on the motor,
we calculate disc inertia by applying the parallel axis

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 8

theorem of inertial masses [29] and relating to disc
density ρ and thickness h by

Jdisc = πρh

[
1

2
r4disc − 2

(
1

2
r4door + r2doorr

2
drop

)]
. (9)

The net inertia J of the rotating system is the sum of the
disc inertia, motor armature inertia (assuming inertia of
an optionally attached encoder is negligible), armature
axle inertia, and disc axle inertia,

J = K2
G (Jarmature + JarmatureAxle) + Jdisc + JdiscAxle (10)

where KG is the gear ratio from the load to the motor.
A standard DC brushed motor with torque con-

stant Kτ , armature resistance R, armature inductance L,
damping coefficient b, back-electromotive force constant
KB , and input voltage amplification KA is modeled by
the system of linear differential equations [30]

τ(t) = Kτ i(t) (11)

KGτ(t) = b
dθ(t)

dt
+ J

d2θ(t)

dt2
(12)

KAv(t) = Ri(t) + L
di(t)

dt
+KB

dθ(t)

dt
(13)

where τ(t) is the torque produced by the motor and i(t)
is the armature coil current induced by input voltage
v(t). Moving to the Laplacian domain, the transfer func-
tion of the system is [30]

Θ(s)

V (s)
=

KAKGKτ

JLs3 + (RJ + Lb)s2 + (Rb+K2
GKBKτ)s

, (14)

where s is the Laplace complex variable.

4.3 Characterize the Problem
We characterize the Tunneling Ball problem by seven
fundamental quantities: minimum drop time, maximum
correction angle, the minimum torque to effect this
angle within the minimum drop time, the minimum
voltage required to produce this torque, lower and upper
bounds on disc rate, position tolerance, and conditions
for success. We translate these quantities into physical
parameters used to select appropriate hardware for the
device.

4.3.1 Minimum Drop Time
Balls are dropped with forces are present beyond gravity
and drag, hence the set of initial velocities is bounded
above. While no ball can achieve speed higher than
its terminal velocity unless an outside force is applied
[29], we assume dropped balls have reasonably small
initial velocities and that the drop altitude z0 is small
enough that velocity at arrival time is much less than
terminal, so that we may disregard drag. Assuming we
can reasonably bound vmax or measure it experimentally,
we find from (4a) and (4d) that the drop time ∆T is
bounded below by tmin, where

vmax = max
β∈B

v0 (15)

tmin = min
β∈B

∆T (β). (16)

4.3.2 Maximum Correction Angle
For a ball to pass through the disc, a tunnel must
be present at the time of impact, likely requiring the
position of the disc when the ball arrives be altered
from that of its original trajectory. Any point in a door
is never more than one-quarter rotation away from the
drop target, which sets maximum position error

θmax =
π

2
, (17)

which is independent of any control or planning algo-
rithm employed. While these algorithms should seek
to position the door to form an optimal tunnel (at the
expense of greater rotation), θmax reflects that at any
point in time over the impact interval, the disc can at
most be one-quarter rotation from its desired position.

4.3.3 Minimum Torque
Equation (17) establishes that the final position of the
disc may need to be altered from its original trajectory by
at most θmax in at least tmin seconds. The trajectory with
the least maximum torque that adjusts for the maximal
correction angle is given by Maupertuis’ principle of
classical mechanics [31], and is the result of applying
a constant torque τmin over the drop interval. We take
the problem statement together with the differential
equations governing the physical processes at play and
solve to find this torque. Given a ball β ∈ B and disc
rotation θ ∈ ϑ for t < t0, we solve motor equations (11)
and (12) subject to ∆T (β) = tmin, τ(t) = τmin, θ(t0) = θ0,
and dθ

dt (t0) = ω0, for t ≥ t0:

δ(t) , 1− e− b
J t (18)

θ(t− t0) = θ0 +
J

b
ω0δ(t) +

KG

b

(
t+

J

b
δ(t)

)
τmin (19)

τmin = min
θ0∈(−π,π]

∣∣∣∣∣
(
− b

KG

)
θ0 + J

b ω0δ(tmin)

tmin + J
b δ(tmin)

∣∣∣∣∣
=

(
b

KG

)
θmax

tmin + J
b δ(tmin)

.

(20)

The minimum torque equation (20) follows from our
assumption that the final position of the disc is be driven
towards the nearest door, a rate-optimal approach that
minimizes the change in rate over the drop interval
by altering the final position of the disc by no more
than ±θmax. An energy-optimal approach would place
preference on slowing the disc to take advantage of
damping; however, this results in adjustments larger
than θmax, and by the mean-value theorem of calculus
[32], a larger change in rate. τmin represents the minimum
torque necessary for a nonzero tunnel to be present at
ball arrival time while minimizing the change in rate.
Applying the minimum torque over the drop interval
is necessary for the “worst-case” ball to pass through

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 9

the disc, but not sufficient; rather, τmin establishes a
lower-bound on the motor torque required in order for
the Tunneling Ball problem to be solvable. A planning
algorithm seeking to create an optimal tunnel would
make use of greater rotation at the cost of increased
torque.

4.3.4 Minimum Voltage

The minimum voltage vmin is the voltage applied to the
motor that is required to produce constant torque τmin.
Substituting τ(t) = Kτ i(t) = τmin into equations (13) and
(19),

KAvmin =

(
R

Kτ
+
KBKG

b
δ(tmin)

)
τmin+KBω0 (1− δ(t)) .

(21)
We have assumed that Kτ i(t0) = τmin, which anticipates
an instantaneous change in current and hence v(t0) =∞.
While this is not realizable in a physical system, we
assume motor inductance to be negligible to establish
reasonable lower bounds. Tighter bounds may be calcu-
lated by solving equations (11) – (13) subject to power
supply saturation constraints; these effects are nonlinear,
and are beyond the scope of this study.

4.3.5 Rate Bounds

Substituting τmin into (19) and solving for ωmin = dθ
dt (tmin)

yields the highest rate achieved over the correction
interval,

ωmin = ω0 +

(
KG

b
τmin − ω0

)
δ(tmin). (22)

The motor must be capable of rotating at this rate in
order to correct for maximum error, though a control or
planning algorithm would make use of higher rates.

If the disc rotates fast enough, the tunnel is not open
long enough for any ball to pass through the disc regard-
less of initial conditions. The maximum rate ωmax the disc
may travel and still have a nonzero tunnel present over
the impact interval is

ωmax =
2θw

min
β∈B
‖I(β)‖

. (23)

Invoking the mean-value theorem of calculus [32], any
rotation of the disc that exceeds an average rate of
ωmax over the impact interval will result in failure. For
small values of tmin, it may be necessary to rotate the
disc quickly through the drop interval to position the
door, and then slowly over the impact interval to a rate
averaging less than ωmax to allow the ball to pass. The
rate over the drop interval then exceeds ωmax, but its
average value is bounded by θmax/tmin.

4.3.6 Position Tolerance

A tunnel is present if a door is rotated over the drop
target. The tunnel angle θw is the angle at which a tunnel

(a) Range through which a
nonzero tunnel exists, (−θw, θw).

298 300 302 304 306 308
14

16

18

20

22

24

w
in

do
w

 (
de

g)

time (ms)

Tunnel Window vs. Time

(b) Tunnel window as a ball
passes through the disc.

Fig. 9: Illustration of tunnel angle θw and simulation of tunnel window.

appears (Fig. 9(a)),

θw = cos−1

(
1− 1

2

(
rdoor

rdrop

)2
)

=2 sin−1
(
rdoor

2rdrop

)
.

(24)

The tunnel window φ : B −→ (0, θw] is the absolute
amount by which the disc may be rotated away from
the drop target and still present a tunnel larger than the
impact radius (Fig. 9(b)),

φ(β, t) = 2 sin−1
(
rdoor −RI(β, t)

2rdrop

)
. (25)

As a ball approaches and departs the disc, RI(β, t)→ 0
and φ(β, t)→ θw as expected.

The position tolerance ε : B × ϑ × R −→ (−π, θw]
if positive is the largest angle by which the disc may
be rotated from its current position in either direction
without impacting the ball, if negative is the angle by
which the disc must be rotated for the tunnel radius to
equal the impact radius, and is a measure of the tolerable
error in position over the impact interval (Fig. 10):

ε(β, θ, t) = φ(β, t)−min {|θ(t)|, |π − θ(t)|} . (26)

If the disc is outside the tunnel window, or within the
tunnel window but the tunnel radius is smaller than the
impact radius, then ε(β, θ, t) ≤ 0, indicating impact has
occurred. If the position tolerance is positive over the
impact interval, then the ball passes through untouched.

4.3.7 Success
A ball successfully tunnels through the disc if its im-
pact radius is smaller than the tunnel radius for all
times within the impact interval (Fig. 11). The predicate
S : B × ϑ −→ {true, false} is the conditional for success
given a ball and a trajectory,

S(β, θ)⇔ [t ∈ I(β)⇒ RI(β, t) ≤ RT (θ, t)]

⇔ [t ∈ I(β)⇒ ε(β, θ, t) > 0] .
(27)

The success predicate establishes both necessary and
sufficient conditions for the ball to pass through the

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 10

298 300 302 304 306 308
13

14

15

16

17

18

19

20
Position Error Tolerance

time (ms)

to
le

ra
nc

e
(d

eg
)

Fig. 10: Simulated position tolerance. The tolerance is always nonzero,
indicating the ball does not impact the disc.

285 290 295 300 305 310 315 320
0

5

10

15

Impact and Tunnel Radii

time (ms)

ra
di

us
 (

m
m

)

(a) Ball passes through the center
of the door. The impact radius
is always smaller than the tunnel
radius, resulting in success.

285 290 295 300 305 310 315 320
0

5

10

15

Impact and Tunnel Radii

time (ms)

ra
di

us
 (

m
m

)

(b) Ball does not pass through
the center of the door. The im-
pact radius becomes larger than
the tunnel radius at t ≈ 302ms,
resulting in failure.

Fig. 11: Simulation of successful and unsuccessful ball drops.

disc untouched. There are scenarios where a ball impacts
the side of the door but still bounces through the door
towards the drop target, in which case equation (27) is
sufficient but not necessary. These boundary cases do
not significantly extend the conditions that lead to a
successful tunnel and introduce additional complexity
to modeling and simulation; we have excluded them
from this study. We have not restricted the condition of
success to disc trajectories that are physically realizable,
which disregards physical constraints, such as maximum
motor torque. We take these constraints into account in
trajectory planning.

4.4 Derive a Control Algorithm
The motor transfer function (14) shows a system pole at
s = 0, indicating position is uncontrollable in an open-
loop configuration [30]. To govern the trajectory of the
disc, we place the motor in a feedback loop with an
embedded microcontroller. The microcontroller produces
output (either analog or PWM) that is amplified and

Trajectory
Saturation Sample

and Hold

In<Lo>S/H

Quantizer

PWM Clock

Motor Transfer Function

0.595

7.957e-7s +2.9e-3s +0.01754 s3 2

Encoder Delay
Discrete

PID Controller

PID

Add

Fig. 12: Simulink model of the motor and PID controller.

applied to the motor, and consumes digital encoder
pulses as position feedback.

We synthesize a position controller for position sta-
bilization and trajectory. Position control of a DC motor
may be implemented by a proportional, integral, deriva-
tive (PID) control algorithm [39], allowing independent
development of a planning algorithm. This follows the
system design paradigm orthogonalization of concerns, or
decoupling aspects of design to allow for more effective
exploration of alternative solutions [40]. Assuming a PID
or similar control algorithm can track a useful range
of disc trajectories, trajectory planning may then be im-
plemented independently. This can enable, for example,
the PID control algorithm to be executed on a simple
microcontroller (or motor controller), while trajectory
planning may be executed on a more advanced hardware
platform. Logical orthogonalization of software is of
greater interest, since trajectory planning can solve the
Tunneling Ball problem in a way that is optimal with
respect to tunnel radius, while the control algorithm may
be derived in a way that is optimal with respect to the
transfer function of the motor.

The PID control algorithm may be automatically syn-
thesized from a simulation software, such as LabVIEW,
MATLAB, or Simulink. We used Simulink to model of
the motor plant in a feedback loop with a PID controller
(Fig. 12), a model that we later used to tune the PID
constants during the simulation step. After specifying
hardware, we revisit this step to automatically tune the
PID controller using the MATLAB SISO tool; simulated
tracking error of the closed-loop system is shown in
Fig. 13, and the resulting proportional, integral, and
derivative constants for the discrete PID controller are,
respectively, Kp = 4, Ki = 10, Kd = 0.2. With these val-
ues, settling time is less than 125ms (half the minimum
drop time), and steady-state error is less than 0.1% of a
rotation.

4.5 Select a Model of Computation
Three types of signals are present in the Tunneling Ball
Device: periodic, pseudoperiodic, and sporadic. A pseudope-
riodic signal is a signal whose domain may be partitioned
into connected intervals over which the signal is either
periodic or a monotonic chirp. A sporadic signal [41] is
a signal that is nonzero in at most a countably infinite
number of points, where the separation between these
points is bounded below. Sporadic events may be peri-
odic, aperiodic, or randomly distributed (provided the

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
Tracking Error vs. Time

time (s)

er
ro

r
(d

eg
)

Fig. 13: Simulated error in disc position tracking via PID control. For
times t < 0, the disc is in steady-state with ω0 = 4rps. For times t ≥ 0,
the desired position tracks a new rate of 5rps ≈ ω0 + θmax/tmin, and
the PID controller adjusts to compensate.

minimum time gap is never violated).
If we use a PWM generator that is external to our

microcontroller, it will likely sample an analog input
and change the duty cycle of its output, both with fixed
period. Ball drops are sporadic. A three-phase motor
encoder generates a pulse signal for alignment and a
second for position. Given a step input, a motor responds
with transient and steady-state components [42]; when
transient components dominate, encoder pulse arrival is
described by an exponential chirp, and when steady-
state components dominate, encoder pulses are essen-
tially periodic. Using the imprecise partitioning of tran-
sient and steady-state behavior, and that a linear time-
invariant system may be characterized by its impulse
(equivalently step) response [42], we model the encoder
and alignment signals as psuedoperiodic. Though not
mathematically rigorous, this partitioning agrees with
the intuition that encoder pulses should arrive with
increasing frequency when the disc is speeding up,
decreasing frequency when slowing down, and roughly
constant frequency when in steady-state.

We must choose a model of computation that is well-
suited to handle the mixture of periodic, pseudoperiodic,
and sporadic signals. A synchronous language would
be a poor fit, since pseudoperiodic signals have varied
frequencies and sporadic signals may be aperiodic, forc-
ing synchronous models to execute at a high frequency
[43]; additionally, synchronous models have difficulty
handling non-negligible computation times and sensor
latencies. All signals of interest are digital in nature,
indicating that continuous models are also a poor fit.
Statecharts are an option, though the system is easily
represented with only a few simple states, and timing
behavior is not easily analyzed.

Two models of computation that appeal us are DE
and PTIDES. DE employs a super-dense model of time
that captures the passage of physical time as a contin-
uous model would, but its computations are discrete
and event-triggered in nature, appealing to the discrete
signals present in the device. Time metrics inform a
model not just of causal relationships between events
(as would be available in many synchronous models),

but also delays between them.
PTIDES, which faithfully executes DE semantics, ex-

tends DE by specifying timing constraints at sensor and
actuator boundaries, which are used to produce real-time
guarantees through static analysis of the model. PTIDES
models may be statically analyzed to determine causal
relationships, relaxing DE constraints by allowing out-
of-order execution of event processing as long as the
determinism of the underlying DE model is unchanged.
This extends the class of models for which feasible DE
schedules exist, as out-of-order processing may reduce
the delay between sensing and actuation [12].

Unlike DE, which has shown to be a strong language
for simulation but is rarely used to synthesize code,
PTIDES models are readily deployed to embedded tar-
gets while still benefiting from the powerful simulation
features of DE. PTIDES is an inherently distributed
model of computation, which allows the modeling of
systems that are separated by network boundaries. The
distribution of computational systems over a network
further orthogonalizes a problem through modulariza-
tion.

A natural distributed extension to our device would
be to employ a high-rate embedded system such a field-
programmable gate array to decode the motor and to
execute the control algorithm, and a more powerful
embedded computer for kinematics calculations and tra-
jectory planning. Given the discrete, mixed-signal nature
of inputs and the potential opportunities for distributed
computation, we find PTIDES to be the best fit to solve
the Tunneling Ball problem. We use Ptolemy II [9] to
simulate the application and to synthesize code.

4.6 Specify Hardware

A children’s “rolling ball” kit that includes a mechan-
ical bucket elevator, ramps, funnels, and marbles, was
kicking around our lab. We select this kit as our starting
point, and challenge ourselves to derive the remaining
components by reasoning about the properties of this
kit and by using modeling and simulation to justify our
decisions. We fix the drop altitude to the height of the
elevator, and we set the ball radius to that of the marbles.
We choose a door that is slightly larger than the ball,
and size the disc accordingly. We construct the disc from
G10F4 garolite, which is strong enough to withstand the
impact of the ball and lightweight to reduce inertial load
on the disc. The dimensions of the selected components
are shown in Table 1, along with the minimum drop time
we determined experimentally.

The bounds on rate, torque, and voltage from the
problem characterization guide us in motor selection.
Motors commonly have a wide range of operation with
respect to rate, and gearing may be used to convert
motor speed into disc torque [30]. As ω0 becomes small,
torque required from the motor becomes constant and
proportional to θmax, yielding the final rate ωmin at ar-
rival time. As ω0 increases, the tunnel window contracts

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 12

−30 −20 −10 0 10 20 30
0

5

10

15

20
Tunnel Radius vs. Time

time (ms)

tu
nn

el
 r

ad
iu

s
(m

m
)

1 rps
4 rps
8 rps

Fig. 14: Tunnel radius RT (t) for different values of ω0. Motor constants
substituted from the datasheet for a Maxon Re-35 motor [33].

0 2 4 6 8 10

50

100

150

Min Torque vs. Default Disc Rate

disc rate (rps)

m
in

 to
rq

ue
 (

m
N

m
)

Fig. 15: Minimum torque necessary for S for varied ω0. Motor constants
were substituted from the datasheet for a Maxon Re-35 motor [33].

(Fig. 14) and the minimum torque grows proportionally,
demanding more power from the motor (Fig. 15).

In simple terms, the faster the rate of the disc, the
more difficult the Tunneling Ball problem becomes. Since
the rate of the disc may be controlled via software
(within the bounds of motor capabilities), we choose a
motor that can operate over a range that will allow for
testing, tuning, and final configuration of the device. We
consider the range of between 2 and 16 rotations per
second (rps).

Ideally, we would select a motor based on our cal-
culated values for minimum torque, rate, and voltage.
Motor requirement equations (20)-(21) show that these
values depend on the motor parameters themselves, and
that approximation is difficult. If viscosity is neglected
(b = 0), then motor model equations (11) and (12) may
be solved to yield τmin � θmaxKGJ/t

2
min, which may offer

some help in motor selection. The dependency of motor
requirements on its characteristics prevents identifying a
motor directly; however, specifications for a given motor
can be substituted into the motor requirement equations
to determine if the motor will be sufficient. The selection
process then becomes a process of trial and error. The
Maxon Precision Motors Re-35 DC brushed motor (Table

3) meets all of the design requirements when geared to
the disc at a load-to-motor ratio of 1:2, and has a form
factor on the order of the disc radius. We then calculate
values for minimum torque and voltage (Table 2) using
motor specifications and the range of motor rates we
selected.

Two important quantities we have not considered thus
far are the maximum rate ωstall and maximum torque τstall
that may be produced by the motor; we incorporate these
quantities into trajectory planning. Position information
is provided by a motor encoder, which is characterized
by its rise time and resolution (counts per turn). A
Hewlett-Packard HEDL 5540 (Table 4) 500 count per
turn encoder is our choice, noting that we will verify
sufficient resolution by simulation.

We have modeled the motor as if it were controlled by
a linear gain amplifier, which is uncommon due to power
efficiency and cost concerns. Instead, we use a more
conventional pulse-width modulation (PWM) generator.
We treat the PWM output signal as if it were the equiv-
alent output from a linear gain amplifier, since PWM
generators that produce a high-frequency output have
approximately the same effect, and mathematical repre-
sentations of PWM signals are cumbersome. Control sys-
tems with high-frequency closed-loop bandwidths may
need more advanced modeling to understand the impact
of PWM signals, in which case the reader is referred to
[38] for a more precise treatment of PWM generators.
Many microcontrollers feature onboard PWM genera-
tors, and when combined with an external amplification
and switching circuit (commonly referred to as an ’H-
bridge’ [35]), are sufficient to power a motor.

We construct the drop sensor from two sequential
optical sensors at a fixed altitude above the drop target.
As the ball passes through the first optical sensor, the
time of the event tdrop is recorded and compared to the
time the ball passes through the second optical sensor,
which is the time t0 when the ball is known to be a
fixed altitude above the disc. The initial velocity of the
ball is calculated by dividing the distance between the
sensors hdrop by the difference in time, and adding a term
that represents the change in velocity due to constant
gravitational acceleration for this duration:

v0 =
hdrop

tdrop
+

1

2
gtdrop. (28)

The optical sensors must allow a ball to pass through
them, work in ambient light, and have a small rise time
to reduce sensing delays. The Contrinex LGS-0030-005-
502 fork through-beam sensor meets these requirements
and can be mounted on an adjustable housing, allowing
drop sensor accuracy to be tuned. Increasing the sensor
separation increases measurement accuracy, but at the
cost of shrinking the drop interval.

Our embedded computer senses drops, decodes en-
coder pulses, tracks disc alignment, and actuates the
motor via PWM. The Luminary Micro LM3s8962 (Ta-
ble 6) has ample general-purpose input/output (GPIO)

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 13

ports, 5 and 15 volt outputs for powering sensors, low
interrupt latency, high-frequency PWM generation, and
high-precision timers which may be useful depending
on the model of computation.

4.7 Simulate & Solve

We define a disc trajectory θ̂ ∈ ϑ to be a correction
trajectory for β if and only if β ∈ B and S(β, θ̂). At
the time a ball drop is detected, the disc must follow
a correction trajectory or the ball will impact the disc.
Intuitively, the correction trajectory should match the
original trajectory for all times up to and including t0,
after which the trajectory may be altered to yield a
successful tunnel. Physical limitations of the motor must
also be taken into account to avoid exceeding maximum
rate and torque. Let Ω : B × ϑ −→ P(ϑ) map a ball and
its original trajectory to the set of correction trajectories,
where ∀t < Td(β),

θ̂ ∈ Ω(β, θ)⇔
[
t < t0 ⇒ θ̂(t) = θ(t)

]
∧

∣∣∣∣∣bdθ̂(t)dt
+ J

d2θ̂(t)

dt2

∣∣∣∣∣ < KGτstall

∧

∣∣∣∣∣dθ̂(t)dt

∣∣∣∣∣ < KGωstall

∧ S(β, θ̂)

. (29)

The above equation assumes zero tracking error, and
a more thorough analysis would include the control
algorithm in determining members of this set.

The Tunneling Ball problem is solvable if and only
if Ω(β, θ) is nonempty. Since Ω(β, θ) is generally un-
countable if success is possible, we cannot construct it
algorithmically [15]. Mathematically deriving an optimal
planning algorithm greatly simplifies the question of
whether or not the problem is solvable, since if the
optimal trajectory is a correction trajectory then it is
executed, otherwise it and all suboptimal trajectories fail
and the problem is unsolvable. This enables the embed-
ded computer to predict failure and transition into a fault
mode. Constructing an optimal planning algorithm that
considers torque and rate saturation, motor dynamics,
and the control algorithm is a task we leave to the field
of optimization.

If tracking error is negligible, we treat the impact
radius as symmetric, and we consider only fixed-rate
correction trajectories, then the optimal solution to the
Tunneling Ball problem is for the correction trajectory
to center the disc over the drop target as the center of
the ball passes through the disc (Fig. 11(a)). To construct
such a trajectory, we record the disc position and rate
at drop time t0. Letting ω0 = dθ(t0)

dt , the correction angle
θc : B× ϑ −→ (−π, π] is

θc(β, θ) = θ(t0) + ω0Tc(β). (30)

TABLE 1: Tunneling Ball Device Dimensions

Quantity Description Value Units
z0 drop altitude 450 mm
tmin min drop time 250 ms
rb ball radius 7.5 mm
rdoor disc door radius 20 mm
rdisc disc radius 75 mm
rdrop disc center to door center 50 mm
h disc thickness 3 mm
ρ disc density 1800 Kg/m3

TABLE 2: Motor Requirements

Quantity Description Range Units
ω0 default disc rate 2 – 16 rps

12.6 – 100.5 rad/s
ωmin min disc rate 3.5 – 18.5 rps

21.9 – 116.1 rad/s
ωmax max disc rate 20.9 rps

131.6 rad/s
τmin min motor torque 60 – 294 mNm
vmin min motor voltage 2 – 15 V

TABLE 3: Maxon Precision Motors Re-3 DC Brushed Motor [33]

Quantity Description Value Units
ωstall nominal speed 49.5 rps

311 rad/s
τmax max (continuous) torque 105 mNm
τstall max (stall) torque 493 mNm
vmax max voltage 48 V

R armature resistance 11.50 Ω

L armature inductance 3.16 mH
b damping coefficient 1.22 mNm/(rad/s)
Kτ torque constant 119.00 mNm/A
KB back-EMF constant 0.12 V/(rad/s)
Jarmature armature inertia 65.5 g/cm2

KG gear ratio 0.5 rad/rad

TABLE 4: Hewlett-Packard HEDL 5540 Encoder [34]

Quantity Description Value Units
venc max output voltage 5 V
Kenc counts per turn 500 rot−1

denc signal rise time 180 ns

TABLE 5: Contrinex LGS-0030-005-502 Optical Sensor [36]

Quantity Description Value Units
vbeam output voltage 15 V
dbeam output signal rise time 250 µs

TABLE 6: Luminary Micro LM3s8962 Microcontroller [37]

Quantity Description Value Units
fmicro max clock frequency 50 MHz
dmicro input interrupt latency (at fmicro) 240 ns
fpwm PWM frequency 20 KHz
qdac PWM quantization level size 0.04 %
ddac PWM output latency 2 µs

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 14

Fig. 16: Top-level view of the Tunneling Ball Device in Ptolemy II.

Fig. 17: Ball drop simulator in Ptolemy II.

This angle must be adjusted in Tc(β) seconds, yielding
the correction rate ωc : B× ϑ −→ R

ωc(β, θ) =

{
− θc(β,θ)Tc(β)

if |θc(β, θ)| ≤ π
2

π sign(θc(β,θ))−θc(β,θ)
Tc(β)

if |θc(β, θ)| > π
2 .

(31)

The planning algorithm Ψ : B × ϑ −→ ϑ that produces
the trajectory is

(Ψ(β, θ)) (t) =

{
θ(t) if t < t0

θ(t0) + [ω0 + ωc(β, θ)] t if t ≥ t0,
(32)

which is the correction trajectory with constant rate
closest to ω0 that centers the ball in a door, indicated
by (Ψ(β, θ)) (Tc(β)) = 0 or π. Comparing the codomain
of Ψ to the set of all correction trajectories,

Ψ(β, θ) ∈ Ω(β, θ)⇔ |ω0 + ωc(β, θ)| < min {ωmax, ωstall} ,
(33)

a condition that is both computable and easily verified.
An advantage of a fixed-rate trajectory is that it is
easy for the control algorithm to track, since the control
voltage approaches a constant value and is directly pro-
portional to the disc rate after transients have decayed.

Turning to simulation, the Simulink modeling environ-
ment enables us to simulate nonlinear operations such as
quantization, saturation, and sampling. These operations
are difficult to model mathematically; however, simulat-
ing their effects is straightforward. Our Simulink model
for position control of the motor (Fig. 12) incorporates
the motor transfer function, sampling rate and quanti-
zation of a digital controller, latency and quantization of
the PWM generator, and voltage saturation.

We model the entire end-to-end heterogeneous system
in Ptolemy II, making use of its DE, PTIDES, and Con-
tinuous models of computation. The top-level view (Fig.
16) shows a drop generator, a controller, and physical
dynamics actors connected in a feedback loop. Ball drops
are simulated by the model in Fig. 17, the Continuous
model of the motor is shown in Fig. 18, and the top-level
view of the controller is shown in Fig. 19.

Fig. 18: Continuous motor model in Ptolemy II.

Fig. 19: PTIDES controller in Ptolemy II. This is the top-level actor for
code synthesis.

4.8 Construct
We construct a housing to enclose the motor, disc, and
dropped balls. As we drew schematics for constructing
the device (Appendix B), design tradeoffs were easily
considered by changing simulation parameters.

4.9 Synthesize Software
We automatically generate software lookup tables for
ball and disc kinematics for embedded software via
MATLAB scripting. We augment our PTIDES model with
delay and latency values for each hardware component.

PTIDES models in Ptolemy II are generated into C
code and statically linked against the PtidyOS [12] op-
erating system. PtidyOS is unlike embedded operating
systems like OpenRTOS [44], vxWorks [45], and RTLinux
[46] which use conventional threaded programming
models. PtidyOS instead performs all event process-
ing and context switching in interrupt service routines,
minimizing latency between software components and
dramatically reducing the number of context switches.
PtidyOS follows the event-order execution semantics of
PTIDES with traditional scheduling methods such as
earliest deadline first to guarantee optimal scheduling
when a feasible schedule exists. A simplified PtidyOS
application development cycle is shown in Fig. 20, and
reflects many of the elements of MBD discussed here.

4.10 Test
Sensors, actuators, electrical components, and software
control behave as expected. We tested the drop sensor
and found it to correctly detect a ball and its initial
velocity. At the time of this report, we observed signif-
icant friction between the disc, gears, axles, and motor,
prompting us to revisit the physical modeling step. The
motor stalls due to static friction for input voltages
less than 6% of vmax, suggesting the control algorithm
should incorporate modal behavior. Mechanical friction
is audible and appears to be rate-dependent. The fric-
tion is nonlinear and difficult to model. We are using

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 15PTIDES WorkflowPTIDES Workflow

Schedulability

Design

Simulation Analysis

Code
Generation

Program
A l i

PtidyOS

Analysis

PtidyOS
Runtime

Fig. 20: PtidyOS application development cycle in Ptolemy II. Source:
Jia Zou, University of California, Berkeley.

data acquisition devices to experimentally characterize
the motor plant and to revise simulation models to
determine controllability. If the system in its current
state is controllable, then we will synthesize new control
parameters; if not, we will consider machining options
to reduce mechanical friction.

The PID control parameters yield reasonable tracking
and steady-state error, but the rise time exceeds the
minimum drop time tmin. As the Tunneling Ball problem
is not solvable under these conditions, we have not
conducted tests involving ball drops.

5 CONCLUSION

5.1 Case Study: Cal Climber
The problem statement for the Cal Climber was simple,
though arguably incomplete. When we posed the prob-
lem to students in an introductory course in embedded
systems, we were asked, ”what should the robot do
when it reaches the top of the hill?”

The embedded computer does not support floating
point operations, and the traditional measurement for tilt
requires calculation of an inverse tangent. We derived
an alternate solution by revisiting the modeling of the
physical processes. We itereated the problem characteri-
zation step a second time when the system was rendered
unstable due to the lack of lowpass filters and rapid
changes in wheel speeds. The control algorithm used to
solve the problem is a relatively simple calculation and
worked well in an integer-only environment.

Given the flexibility of our design task, selecting a
model of computation was not as critical of a step,

and we were guided largely by convenience, though
statecharts were attractive and may have been used had
a suitable code synthesizer been available. Hardware
selection was straightforward, though a custom printed
circuit board was required to power the embedded
computer from the robot battery.

Simulation was extremely helpful in designing embed-
ded software, and LabVIEW supports live debugging of
the system including the ability to update the front panel
(Fig. 3) directly from the robot sensors. Simulation is
what led us to discover the unstable equilibrium point
of the control algorithm. Utilizing the display on the
embedded controller proved useful, since accelerometer
feedback could be displayed numerically and on text
sliders, enabling comparison between the sampled ac-
celerometer values and the expected values produced in
simulation. Construction took only a few hours, with the
most careful task being the alignment of the accelerome-
ter to coincide with the prescribed coordinate system.
Had the alignment not been precise, calibration may
have been added to the embedded software.

LabVIEW reliably synthesized, compiled, and pro-
grammed the software model into embedded C code.
In testing, the robot could climb a hill at full speed,
avoiding objects encountered along the way and without
driving off of a cliff (provided the cliff sensors were able
to see the cliff). The robot could even be placed on a
table that was held by a person at each corner, and as the
table was rotated in three dimensions, the robot climbed
towards the highest point. This quickly evolved into a
game that resembled the arcade game Pong [47].

We compared the behavior of the Cal Climber as
programmed by hand and by synthesized code. The
behavior was indistinguishable in most cases. On rare
occasions, the robot programmed by handwritten code
would deviate from its control algorithm and spin
around uncontrollably. This behavior was unexpected
(and rather surprising in a late-night laboratory environ-
ment), and we later determined it to be a concurrency
issue relating to serial communication. In a mode where
the embedded computer asynchronously requested sen-
sor packets from the robot, a timed interrupt sent a
packet request over the serial port while the main pro-
gram loop regularly broadcast wheel speeds; when prop-
erly interleaved, the main program loop would begin
sending the wheel speed broadcast and be interrupted
so that the sensor update request was injected into the
communication stream. The first few bytes of the sensor
request were numerically large, and when injected into
the communication stream, instructed the robot to drive
one of its wheels at full speed. The handwritten code
was revised to use a timed interrupt to flag when an
update request should be sent, and the request itself
was generated within the main program loop, serializing
the two communications. This was not optimal, since a
sensor request could be delayed by program execution
time. We did not observe this bug when executing code
synthesized from LabVIEW.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 16

Challenges in code synthesis arose in development
of the Cal Climber, the most notable being code size.
The embedded computer has a conservative amount of
memory, and the LabVIEW code generator relies heavily
on a real-time operating system with a large memory
footprint. Linking to floating point libraries or enabling
parallel execution produced code that would not fit in
the flashable memory space of the embedded computer.

Low-level functionality such as configuring ADC rate,
supporting hardware interrupts, and buffer sizes, were
hidden by the LabVIEW dataflow abstraction. Drivers
for writing to the display on the embedded computer
forced the software to block for 50ms, which resulted in
serial communication buffers overflowing. We resolved
this problem by using an inline-C node in LabVIEW to
reference the C-code libraries provided by the manu-
facturer. While these challenges were difficult to isolate
given the abstraction and the bulk of the generated
code, dataflow semantics were faithfully executed, so
concurrency issues did not arise.

5.2 Case Study: The Tunneling Ball Device

The problem statement for the Tunneling Ball Device
was ambiguous about the meaning of ’sporadic,’ though
we gave a more precise definition in the problem char-
acterization. The requirement that only one ball be in the
air at any point in time may be relaxed, though we have
yet to consider this.

The modeling of the physical processes at play was
time consuming but ultimately necessary, as early simu-
lation gave insight into the physical quantities of interest,
error tolerance, and overall difficulty of the problem.
Processes we did not consider include drag on the ball
in freefall, and perhaps of greater importance, grinding
and slipping of gears and friction of axles against their
bearings.

Characterizing the Tunneling Ball problem proved the
most challenging design aspect, and we were heavily
aided by co-iterating with the simulation step. Deriving
minimum quantities from the physical dynamics was
difficult and required solving a system of linear nonho-
mogenous differential equations, for which initial condi-
tions were crucial. It was not until we rigorously defined
trajectories and planning algorithms in terms of their
domains, codomains, and trajectory transformations that
we found the correct set of initial conditions that yielded
solutions consistent with real-world values. MATLAB
calculations often caught errors in sign or values whose
magnitude was not practical. A more thorough descrip-
tion of the success predicate might be found through
the use of symbolic equation tools, such as Maple [48]
or Mathematica [49].

MATLAB scripting was useful when were tuned ad-
justable parameters such as ball radius, tunnel radius,
disc size, and drop altitude. We performed simulations
of tunnel window, impact window, and the success
predicate. We replicated every equation used to describe

the physical processes to ensure calculations agreed with
our the understanding of the problem.

In practice, the selection of a model of computation
is often based on available tools without regard to the
physics of the system, characterization of the problem,
or distribution of computations. The signals present in
the Tunneling Ball Device clearly aligned with PTIDES
or DE, and choosing an incompatible model of com-
putation would have introduced significant complexity
in application design. A more thorough modeling of
computational processes would incorporate worst-case
execution time and sensor to actuator latencies of the
software, both of which can be represented in PTIDES.

Rigorous simulations verified calculations and demon-
strated the system in its entirety, often catching errors
in equations or designs. One such example is that an
initial model of our motor omitted viscosity, an error
we caught when simulations showed the disc spinning
at a constant rate with no voltage applied. We verified
tracking error and rise time by simulation. In solving
the Tunneling Ball problem, we may have been able
to derive optimal planning algorithms from Maple or
Mathematica, though we utilized neither.

5.3 Summary and Future Work

We developed two cyber-physical systems using Model-
Based Design (MBD). The Cal Climber became the
topic of an industry case study on embedded systems
design from the LabVIEW environment [50], and has
been adopted by several universities as a laboratory
embedded systems platform. The Tunneling Ball Device
presented us with far more difficult modeling, machin-
ing, and software constraints. While modeling proved
essential in devising and realizing the device, it is not
yet capable of solving the problem at hand, a failure
that recapitulates an earlier point: no model can ever be
complete.

The models for the Tunneling Ball Device are infor-
mative, albeit incomplete as they fail to capture the
friction that was introduced by imprecise machining.
The Center for Hybrid and Embedded Software Systems
at the University of California, Berkeley, continues to
investigate enhancements to the device including high-
precision machining to reduce friction and experimental
characterization of the plant for use in simulation and
PID tuning.

MBD methodology proved critical in nearly every
aspect of the development of these cyber-physical sys-
tems, especially in device construction, hardware selec-
tion, and selection of the model of computation. The
development of each device prompted iteration between
design steps in distinct ways, displaying the usefulness
and expressiveness of the methodology. The elements
of MBD invoke powerful modeling theory in a strongly
pedagogical, combined application of mathematics, en-
gineering, and computer science. Each of the elements
investigated in this report is only a preview of a vast field

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 17

of research, but the formalization into codependent steps
offers an innovative approach to the design of cyber-
physical systems.

ACKNOWLEDGMENTS

The Ptolemy II framework has been developed for many
years by open source developers around the world and
researchers from the Center for Hybrid and Embedded
Systems at the University of California, Berkeley. The
first version of PtidyOS was written by Jia Zou and
Shanna-Shaye Forbes in Spring 2009, and extensions
were written by Jia Zou, Slobodan Matic, Jeff C. Jensen,
and Isaac Liu. The expertise of the University of Cal-
ifornia, Berkeley, Department of Electrical Engineering
and Computer Science Electronics Support Group was
instrumental in the construction of both the Cal Climber
and the Tunneling Ball Device. Construction of the Cal
Climber was overseen by Professor Sanjit A. Seshia, and
the research and development leading to this report was
advised by Professor Edward A. Lee, at the University
of California, Berkeley.

APPENDIX A
SCHEMATICS OF THE CAL CLIMBER

Fig. 21 shows the wiring of the iRobot Create, Lu-
minary Micro LM3s8962 embedded computer, Analog
Devices ADXL-322 accelerometer, and optional Spark-
Fun Electronics BlueSMiRF [51] Bluetooth serial modem.
Schematic for the iRobot Create carbo bay connector was
taken from the iRobot Create Manual [27], schematic
for the Luminary Micro was taken from the LM3s8962
datasheet [37], schematic for ADXL-322 accelerometer
was taken from the ADXL-322 datasheet [28], and image
of the BlueSMiRF Bluetooth radio was taken from the
BlueSMiRF datasheet [51].

APPENDIX B
SCHEMATICS OF THE TUNNELING BALL DEVICE

Schematics for the Tunneling Ball Device are shown in
Fig. 22 – 28. All measurements are in millimeters or
degrees, and all components are drawn to scale.

The device comprises a drop basin (Fig. 22 – 23), which
is the base of tunneling ball device, a motor housing,
and a sensor housing (Fig. 27 – 26). The drop basin
is composed of a floorboard which collects dropped
balls and returns them to a bin, a topboard (Fig. 25)
which prevents balls which have impacted the disc from
leaving the basin, and a disc (Fig. 28). The housing
material is made of clear 10mm polycarbonate, and the
disc of 3mm G10F4 garolite.

The motor shaft is rigidly connected to a metal gear to
take advantage of gearing ratio to the load and to pre-
vent balls impacting the disc from applying significant
torque to the motor shaft. Axles are fit into cylindrical
bearings mounted in the housing material.

Schematics for the optical sensors were provided from
the Contrinex Fork Through-Beak Sensors datasheet [36],
schematics for the motor were taken from the Maxon
Precision Motors, “Re 35, 35mm, Graphite Brushes, 90
Watt,” datasheet [33], and schematics for the encoder
were taken from the Hewlett-Packard, “Encoder HEDL
5540, 500CPT, 3 Channels” datasheet [34].

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 18

Luminary U1Tx / iRobot Rx

Luminary U1Rx / iRobot Tx

+15V

+15V

GND

GND

GND

ADC0

ADC1

+3.3V
GND

Luminary U0Rx / BS Tx

RTS/CTS

Luminary U0Tx / BS Rx

GND

+3.3V

iRobot Create cargo bay connector

Fig. 21: Wiring diagram for the Cal Climber

8
5

15
0

50

Tunneling Ball: Drop Basin

55

1
7

5

Top

Side

(middle

slice)

50

Author: Jeff C. Jensen. University of California, Berkeley, department of Electrical Engineering & Computer Science, 2009

2
5

0

6
0

T
T

T

5.0°

T

T

35

8
5

1
1

0

2
5

0

150

305

4
0

TT 105 50 150

R 75

42

3
5

9
2

1
0

T

75

180

Fig. 22: Tunneling Ball Device drop basin top view.

8
5

15
0

50

Tunneling Ball: Drop Basin

55

1
7

5

Top

Side

(middle

slice)

50

Author: Jeff C. Jensen. University of California, Berkeley, department of Electrical Engineering & Computer Science, 2009

2
5

0

6
0

T
T

T

5.0°

T

T

35

8
5

1
1

0

2
5

0

150

305

4
0

TT 105 50 150

R 75

42

3
5

9
2

1
0

T

75

180

Fig. 23: Tunneling Ball Device drop basin side view.

8
5

8
5

50

Tunneling Ball: Floorboard

6
0

+
2

T

2
5

0

55+T

35

Top
200.00105.00

305

Side (middle slice)

5090+T

Author: Jeff C. Jensen. University of California, Berkeley, department of Electrical Engineering & Computer Science, 2009

5.0°

4
0

T

Fig. 24: Tunneling Ball Device floorboard side view.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 19

Tunneling Ball: Topboard

Top

2
5

0

Side (middle slice)

Author: Jeff C. Jensen. University of California, Berkeley, department of Electrical Engineering & Computer Science, 2009

T

85

T

105 50

T
T

305

T

T

T
2

5
0

T

T
8

0
6

0
T

T

T

150

1
0

9
0

T

T

10

3
0

10

R 25

Corridor

Placement

Fig. 25: Tunneling Ball Device topboard top view.

Tunneling Ball: Sensor Housing
Corridor Top

Corridor Side

T

9
0

T

70T T

2
5

0

5
5

10 30 10

2
5

0

70

Sensor Mount Top

T 35 T

70T T

Sensor Mount Side

2
5

0

T

Sensor Mount Side

(rotated 90 degree CW)

1
0

50

1
0

50

60

1
0

60

1
0

90T T

3
5

Fig. 26: Tunneling Ball Device drop sensor side view.

Tunneling Ball: Sensor Housing
Corridor Top

Corridor Side

T

9
0

T

70T T

2
5

0

5
5

10 30 10

2
5

0

70

Sensor Mount Top

T 35 T

70T T

Sensor Mount Side

2
5

0

T

Sensor Mount Side

(rotated 90 degree CW)

1
0

50

1
0

50

60

1
0

60

1
0

90T T

3
5

Fig. 27: Tunneling Ball Device drop sensor top view.

150

1
0

Tunneling Ball: Disc

Ball Dimensions

Top

Side

R 15

Author: Jeff C. Jensen. University of California, Berkeley, department of Electrical Engineering & Computer Science, 2009

R 75

R 20R 20

5
5

Fig. 28: Tunneling Ball Device disc.

ELEMENTS OF MODEL-BASED DESIGN, FEBRUARY 15, 2010 20

REFERENCES

[1] E. Lee, “Cyber Physical Systems: Design Challenges,” in Interna-
tional Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), May 2008.

[2] C. Brooks, C. Cheng, T. Feng, E. Lee, and R. von Hanxleden,
“Model Engineering Using Multimodeling”, in 1st International
Workshop on Model Co-Evolution and Consistency Management
(MCCM 08), September 2008.

[3] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, “Developing Applications Using Model-Driven Design
Environments,” IEEE Computer, vol. 39, no. 2, pp. 33, February
2006.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
Integrated Development of Embedded Software,” in Proceedings
of the IEEE, vol. 91, no. 1, January, 2003.

[5] E. Lee, “The Problem with Threads,” IEEE Computer, vol. 39, no.
5, pp. 33-42, May 2006.

[6] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, 2nd ed. Berlin: Springer, 2005.

[7] LabVIEW, LabVIEW User Guide, National Instruments, June 2009.
[8] Simulink, Control Design, Simulink Control Design 3 User’s Guide,

The MathWorks, Inc., September 2009.
[9] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y.

Zhao, and H. Zheng, “Overview of the Ptolemy Project,” Uni-
versity of California, Berkeley, Technical Memorandum. UCB/ERL
M03/25, July 2003.

[10] MATLAB, MATLAB 7 User’s Guide, The MathWorks, Inc., Septem-
ber 2009.

[11] G. Fishman, Discrete-Event Simulation: Modeling, Programming, and
Analysis. Springer-Verlag, 2001.

[12] P. Derler, T. Feng, and E. Lee, “PTIDES: A Programming Model
for Distributed Real-Time Embedded Systems,” University of Cal-
ifornia, Berkeley, EECS Technical Report. EECS-2008-72, May 2008.

[13] E. Lee, “Computing needs time,” ACM Communications, vol. 52,
no. 5, pp. 70-79, May 2009.

[14] J. Eidson, E. Lee, S. Matic, S. Seshia, and J. Zou, “Time-
centric Models for Designing Embedded Cyber-Physical Sys-
tems,” University of California, Berkeley, Technical Memorandum.
UCB/EECS-2009-135, October 2009.

[15] N. Cutland, Computability: An Introduction to Recursive Function
Theory. Cambridge, MA: Cambridge University Press, 1997, pp.
100-112, 149-156.

[16] G. Berry, “The Foundations of Esterel,” in Proof, Language, and
Interaction: Essays in Honour of Robin Milner. Cambridge, MA: MIT
Press, 2000.

[17] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice, “LUSTRE: A Declar-
ative Language for Real-Time Programming,” in Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, January 23rd 1987, pp. 178-188.

[18] D. Harel and A. Naamad, “The STATEMATE semantics of state-
charts,” ACM Transactions on Software Engineering Methodology, vol.
5, no. 4, pp. 293-333. October 1996.

[19] E. Lee and D. Messerschmitt, “Synchronous Dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235-1245, September 1987.

[20] A. Benveniste and G. Berry, “The Synchronous Approach to
Reactive and Real-Time Systems,” Proceedings of the IEEE, vol. 79
no. 9, September 1991.

[21] J. Shearer, B. Kulakowski, and J. Gardner, Dynamic Modeling and
Control of Engineering Systems, 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 1997, pp. 49-72.

[22] A. Sangiovanni-Vincentelli and G. Martin, “Platform-Based De-
sign and Software Design Methodology for Embedded Systems,”
IEEE Design and Test of Computers, vol. 18, no. 6, pp. 22-33. Decem-
ber 2001.

[23] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming Heterogeneity - The Ptolemy
Approach,” Proceeedings of the IEEE, vol. 91, no. 1. January, 2003.

[24] Simulink Design Verifier, Simulink Design Verifier 1.5 User Guide,
The MathWorks, Inc., Natick, MA, September 2009.

[25] Eclipse Modeling Project, “The Eclipse Modeling Framework
(EMF) Overview,” Eclipse Foundation, June 2005. Available:
http://www.eclipse.org. [Accessed: February 1st 2010].

[26] S. Sendall and W. Kozaczynski, “Model Transformation: The
Heart and Soul of Model-Driven Software Development,” IEEE
Software, vol. 20, no. 5, pp. 42-45. October 2003.

[27] iRobot, iRobot Create Owner’s Guide, iRobot Inc., January 2006.

[28] Analog Devices, “Small and Thin ±2g Accelerometer” ADXL322
Datasheet rev. 0, January 2007.

[29] H. Young, Sears & Zemanskys University Physics: with Modern
Physics, 11th ed. San Francisco, CA: Pearson, 2004, pp. 58-60, 178-
181, 334, 345-346.

[30] S. Shinners, Modern Control System Theory and Design, 1st ed. New
York, NY: Wiley Interscience, 1992, pp. 143-159, 256-258.

[31] E. Corinaldesi, Classical Mechanics for Physics Graduate Students.
Boston, MA: World Scientific Publishing, 1999, pp. 12-13.

[32] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York,
NY: McGraw-Hill, 1976, pp. 107-108.

[33] Maxon Precision Motors, “Re 35, 35mm, Graphite Brushes, 90
Watt,” 273759 datasheet. May 2009.

[34] Hewlett-Packard, “Encoder HEDL 5540, 500CPT, 3 Channels”
datasheet. May 2009.

[35] Signal Consulting LLC, “Si20HPB4-50V-20A-HB2 High Power H-
Bridge” datasheet.

[36] Contrinex, “Fork Through-Beam Sensors” LGS-0030-005-502
datasheet.

[37] Texas Instruments, “LM3s8962 Microcontroller” datasheet. July
2008.

[38] B. Axelrod, Y. Berkovich, and A. Ioinovici, “A new dynamic
discrete model of DC-DC PWM converters,” HAIT Journal of Science
and Engineering, vol. 2, no. 3-4, pp. 426-451. July 2005.

[39] R. Kelly and J. Moreno, “Learning PID Structures in an Introduc-
tory Course of Automatic Control,” IEEE Transactions on Education,
vol. 44, no. 4. November, 2001.

[40] K. Keutzer, A.R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System-Level Design: Orthogonalization of Concerns
and Platform-Based Design,” IEEE Transactions, vol. 19, no. 12.
December 2000.

[41] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in 11th Real-Time
Systems Symposium (IEEE). December 1990.

[42] C. Phillips and R. Harbor, Feedback Control Systems, 4th ed. Upper
Saddle River, NJ: Prentice Hall, 2000, pp. 116-124.

[43] H. Nyquist, “Certain Topics in Telegraph Transmission Theory,”
AIEE Transmissions, vol. 47, pp. 617-644. April 1928.

[44] The FreeRTOS.org Project, “OpenRTOS,” The FreeRTOS.org Project.
Available: http://freertos.org. [Accessed February 1st 2010].

[45] Wind River, “VxWorks: Embedded RTOS with sup-
port for POSIX and SMP,” Wind River. Available:
http://www.windriver.com/products/vxworks. [Accessed
February 1st 2010].

[46] Wind River, “RTLinuxFree,” Wind River. Available:
http://www.rtlinuxfree.com. [Accessed February 1st, 2010].

[47] Pong [Arcade]. Atari Inc., 1972.
[48] Waterloo Maple Inc., “Maple”, Waterloo Maple Inc.. Available:

http://www.maplesoft.com. [Accessed February 1st 2010].
[49] Wolfram Research, Inc., “Mathematica”, Wolfram Research. Avail-

able: http://www.wolfram.com. [Accessed February 1st 2010].
[50] J. Brettle and J. Jensen, “UC Berkeley Teaches Embed-

ded Systems with NI LabVIEW Embedded Module for ARM
Microcontrollers,” National Instruments, April 2009. Available:
http://sine.ni.com/cs/app/doc/p/id/cs-12246. [Accessed Febru-
ary 1st 2010].

[51] SparkFun Electronics, “BlueSMiRF Gold” RN-v1 datasheet.
February, 2008.

Jeff C. Jensen is a graduate student in the
Department of Electrical Engineering & Com-
puter Science and a member of the Center for
Hybrid and Embedded Software Systems at the
University of California, Berkeley. He holds an
A.A. in General Science and an A.A. in Liberal
Arts from Santa Monica College, and a B.S. in
Electrical Engineering & Computer Science from
the University of California, Berkeley. Research
interests include model-based design, models of
computation, and cyber-physical systems.

