
TEMU: Binary Code Analysis via Whole-System

Layered Annotative Execution

Heng Yin
Dawn Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-3

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html

January 11, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

TEMU: Binary Code Analysis via Whole-System Layered
Annotative Execution

Heng Yin
Dept. of Electrical Eng. & Comp. Science

Syracuse University
Syracuse, NY 13244
heyin@syr.edu

Dawn Song
Computer Science Division

UC Berkeley
Berkeley, CA 94720

dawnsong@cs.berkeley.edu

ABSTRACT
Dynamic binary analysis has demonstrated its strength in
solving a wide-spectrum of computer security problems, such
as malware analysis, protocol reverse engineering, vulner-
ability detection, diagnosis, and defense, software testing,
etc. An extensible platform for dynamic binary analysis
provides a foundation for solving these problems. To enable
a variety of applications, we explore a unique design space.
We aim to provide a whole-system view, take an external
approach, facilitate fine-grained instrumentation, and have
sufficient efficiency. These design goals bring about a new ar-
chitecture, namely whole-system out-of-the-box fine-grained
dynamic binary analysis. To further facilitate fine-grained
dynamic binary analysis, we propose layered annotative ex-
ecution as a core technique, which incorporates shadow flag
analysis, taint analysis, and symbolic execution. We have
implemented this new architecture and the core technique
in an analysis platform called TEMU. Because of its exten-
sibility and versatility, TEMU has enabled and fostered a
handful of research projects.

1. INTRODUCTION
Dynamic binary analysis has demonstrated its strength in

many research problems, such as malware analysis, protocol
reverse engineering, vulnerability signature generation, soft-
ware testing, profiling and performance optimization, etc.
An extensible platform for dynamic binary analysis serves
as a foundation for solving these problems, and therefore
becomes a critical building block.

In this paper, we present an extensible platform that ad-
dresses the common challenges and requirements in dynamic
binary analysis, and thus greatly facilitates building various
custom analysis techniques on top of it. First of all, we of-
ten need a whole-system view, including the OS kernel and
all the application running on the system. Such a whole-
system view enables us to analyze the activities happening
in the OS kernel (such as kernel malware and kernel vulner-
abilities) and interactions between multiple processes. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to VEE ’10, Pittsburgh, PA, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

addition, we prefer an external approach. That is, we want
to perform analysis completely outside the execution envi-
ronment. This out-of-the-box approach provides excellent
isolation and good transparency. It makes it more difficult
for malware to detect the presence of the analysis environ-
ment and interfere with analysis results. Moreover, in many
cases, we need to perform deep analysis by inspecting in a
fine-grained manner (i.e., at the instruction level). Finally,
the analysis overhead should be acceptable.

To address these challenges, we propose a new architec-
ture for dynamic binary analysis, called whole-system out-
of-the-box fine-grained dynamic binary analysis. The basic
idea is to run an entire operating system (including common
applications) inside a whole-system emulator, and execute
the binary code of interest in this emulated environment.
During execution of the binary code, we monitor and ana-
lyze its behavior at the instruction level, completely from
the emulator. We propose and implement a core technique,
namely layered annotative execution, as a Swiss army knife,
to fine-grained binary code analysis. Essentially, during the
execution of each instruction in the emulated environment,
depending on the instruction semantics and the analysis pur-
pose, we can annotate certain memory locations or CPU
registers or update existing annotations. This is a layered
approach, because we can place extra analysis processes on
top of the existing analysis to extract more insightful results.
We implement the new architecture and the core technique
into a generic dynamic binary analysis platform, codenamed
TEMU. It is based on an open-source whole-system emula-
tor, QEMU [2].

TEMU has been widely used for many research projects
in numerous categories, as listed below:

• Malware analysis. The objective of malware anal-
ysis is to automatically extract important insights of
an unknown malicious program. Panorama [42] de-
tects and analyzes a myriad of malware such as key-
logger, spyware, rootkits and backdoors, which access
sensitive information in abnormal ways. Renovo [24]
is a generic unpacker, which extracts original code and
data from packed malicious binaries. HookFinder [41]
identifies hooks installed by malware and provides in-
sightful knowledge about hooking mechanisms. BitScope [6]
uncovers potentially hidden functionality of malware,
and provides semantic understanding of dependencies
between inputs and outputs.

• Protocol reverse engineering. Protocol reverse en-
gineering aims to extract the knowledge of application-
level protocol format and semantics directly from its

1

implementation. Polyglot [12] extracts the format and
semantics of incoming protocol messages. Dispatcher [11]
supersedes Polyglot in the following aspects: 1) dealing
with encrypted messages; 2) analyzing bidirectional
protocol messages; and 3) extracting more semantic
information.

• Vulnerability detection, diagnosis, and defense.

Software vulnerabilities (e.g., buffer overflows) can be
exploited by attackers to compromise millions of ma-
chines in hours or even minutes. TEMU has been used
to automatically detect exploits to previously unknown
vulnerabilities [32], automatically generate filters to
protect vulnerable hosts [8, 31], and used to demon-
strate that automatically generating exploits from se-
curity patches is possible [9].

In summary, we have made the following contributions:

• We systematically study the common requirements and
challenges in a wide-spectrum of security applications
of dynamic binary analysis. In particular, whole-system
view, external approach, and fine granularity are im-
portant for many applications.

• We have proposed a new analysis architecture, whole-
system out-of-the-box fine-grained dynamic binary anal-
ysis, to address these requirements and challenges.

• We have devised a core technique for fine-grained bi-
nary analysis, namely layered annotative execution, as
a versatile solution for various analysis needs.

• We have designed and implemented an extensible plat-
form, TEMU, to realize this new architecture and core
technique.

• We have evaluated the capabilities, extensibility, and
efficiency of this platform by demonstrating that we
can build various tools easily on top of it to enable a
suite of security applications.

2. SYSTEM OVERVIEW

2.1 Design Goals
We aim to develop an analysis platform that provides suf-

ficient support for a wide-spectrum of analysis purposes. We
have identified the following design goals, which no existing
analysis frameworks have addressed systematically.

Whole-system view. Having a complete view of the ex-
ecution environment (including the OS kernel and all the
applications) is critical for many analysis problems. Mal-
ware often infiltrates into the OS kernel, injects code into
another process, and interacts with multiple processes. Zero-
day worm exploits sometimes involve multiple processes and
the OS kernel [15]. Without a whole-system view, we are un-
able to obtain a complete picture of these malicious activi-
ties. However, many analysis platforms (e.g., Valgrind [29],
DynamoRIO [5], Pin [25]) only provide a local view (i.e., a
view of a single user-mode process).

External monitoring approach. We prefer to take an
external approach versus an internal monitoring approach.
In an external approach, no modification is made in the
execution environment to be analyzed, and the execution

is observed and instrumented completely from outside. In
contrast, an internal monitoring approach, taken by Val-
grind [29], DynamoRIO [5], and Pin [25], places the anal-
ysis tool into the same execution environment to be ana-
lyzed. Therefore, the system state and memory layout are
perturbed. The external monitoring approach provides ex-
cellent isolation and better transparency. As a result, it
makes it more difficult for malware to detect the presence of
the analysis environment and interfere with analysis results.

OS awareness. A central challenge brought by the whole-
system view and external monitoring approach is the seman-
tic gap. That is, we can only see the hardware-level view
of the analyzed system, such as the states of cpu registers,
physical memory, and IO devices. However, we need an OS-
level view to get meaningful analysis results. For example,
we need to know what process is currently running and what
module an instruction comes from. Therefore, we need tech-
niques that can be used to extract the OS-level semantics
from the analyzed system.

Support for fine-grained analysis. Many analysis prob-
lems require fine-grained instrumentation (i.e., at instruc-
tion level) on binary code. Traditional debugging techniques
(such as hardware breakpoint and single stepping) incur sig-
nificant performance overhead, which is often hundreds of
times slowdown or even more. Dynamic translation is a
technique that translates code at runtime and caches the
translated code. Consequently, dynamic translation pro-
vides a more efficient foundation for fine-grained instrumen-
tation. Tools like Valgrind [29], DynamoRIO [5], Pin [25],
and QEMU [2] take this approach to facilitate fine-grained
instrumentation.

2.2 Architecture
To address the above design goals, we propose a new ar-

chitecture, whole-system out-of-the-box fine-grained dynamic
binary analysis. The basic idea is to run an entire operat-
ing system (including common applications) inside a whole-
system emulator, execute the binary code of interest in this
emulated environment, and then observe and analyze the
behaviors of this binary code from the emulator. Figure 1
illustrates this new analysis architecture.

This new architecture is able to address all the above de-
sign goals. First of all, such a whole-system emulator em-
ulates a full system, including CPU, physical memory, and
IO devices. Therefore, it has a complete view of the emu-
lated execution environment. In addition, performing anal-
ysis within this whole-system emulator follows the external
monitoring approach. That is, we completely observe the ac-
tivities of the emulated system from outside. On one hand,
this whole-system emulation approach provides excellent iso-
lation between the emulated guest system and the emula-
tor. On the other hand, we are aware that whole-system
emulation can still be detected [19, 26, 34]. We leave this
transparency issue as future work. To bridge the semantic
gap, we devise a set of mechanisms that can extract the OS-
level semantics from the emulated guest system. We imple-
ment these mechanisms in the Semantic Extractor. Finally,
this whole-system emulator makes use of dynamic transla-
tion techniques to emulate the guest system execution, and
therefore facilitate fine-grained instrumentation.

We make a key observation that many analysis techniques
(such as shadow flag analysis [24], dynamic taint analy-
sis [12,32,41,42], and symbolic execution [6,11,30]) need to

2

Guest System
Plugin 1

A
P

I

Plugin 2
Annotative

Execution Engine

Semantics

Extractor

Whole-System Emulator

Plugin 2

Figure 1: Architecture of TEMU

annotate a memory location or CPU register based on the
semantics of the currently executed instruction, or update
the existing annotations. Therefore, we propose a unified
analysis technique, annotative execution, to summarize and
generalize these specific techniques. Furthermore, a more
advanced analysis technique can be built on top of a more
basic analysis technique. For instance, dynamic taint anal-
ysis can be built on top of shadow flag analysis, and sym-
bolic execution can be built on top of dynamic taint analy-
sis. Therefore, this annotative execution has an inherently
layered structure. We implemented this layered annotative
execution in the Annotative Execution Engine.

To facilitate implementing custom analysis, we have de-
fined a clear interface between the platform and a plugin.
Such an interface can hide unnecessary details from users
and reuse common functionalities.

We have implemented a new analysis platform, TEMU,
in Linux, based on an open-source whole-system emulator,
QEMU [2]. It has become the dynamic analysis component
in the BitBlaze binary analysis infrastructure [4, 37]. At
the time of writing, TEMU can be used to analyze binary
code in Windows 2000, Windows XP, and Linux systems.
We describe these three components in Section 3, 4 and 5
respectively.

3. SEMANTICS EXTRACTOR
The semantics extractor is responsible for extracting OS-

level semantics information of the emulated system, includ-
ing process, module, thread, symbol information, and ex-
ecution context. The mechanisms presented below are ex-
tensions to the technique of virtual machine introspection,
which was first proposed for host intrusion detection [22]
and later extended for malware detection [40].

3.1 Process and Module Information
For the current execution instruction, we need to know

which process, thread and module this instruction comes
from. In some cases, instructions may be dynamically gen-
erated and executed on the heap.

Maintaining a mapping between addresses in memory and
modules requires information from the guest operating sys-
tem. We use two different approaches to extract process and
module information for Linux and Windows.

For Linux, we can directly read process and module infor-
mation from outside, because we know the relevant kernel
data structures, and the addresses of relevant symbols are
also exported in the system.map file. In order to maintain

the process and module information during execution, we
hook several kernel functions, such as do_fork and do_exec.

For Windows, we do not have access to the kernel source
code. Although some kernel data structures have been re-
verse engineered for some versions of Windows, this is not
a robust way to extract OS-level semantics across different
versions and service packs. Instead, we have developed a
kernel module for this purpose. We load this module into
the guest operating system to collect the updated memory
map information. This kernel module registers two callback
routines. The first callback routine is invoked whenever a
process is created or deleted. The second callback routine
is called whenever a new module is loaded and gathers the
address range in the virtual memory that the new module
occupies. In addition, the kernel module obtains the value
of the CR3 register for each process. As the CR3 register
contains the physical address of the page table of the current
process, it is different (and unique) for each process. All the
information described above is passed on to TEMU through
a predefined I/O port. This is a suboptimal solution cur-
rently, in that we favor portability over transparency. We
leave a better solution to this problem as future work.

3.2 Thread Information
We obtain the current thread ID, which is important for

analyzing multi-threaded programs. In Windows, the data
structure for the current thread is mapped into a well-known
virtual address, so we can obtain this information directly.
For Linux, we can also obtain the thread information by a
similar approach. However, the current implementation of
TEMU only gets thread information from Windows for now,
and will support Linux in the future.

3.3 Symbol Information
Given a binary module, we parse its header information

in memory and extract the exported symbol names and off-
sets. After we obtain the locations of all modules, we can
determine the absolute address of each symbol by adding
the base address of the module and its offset. This feature
is very useful, because all APIs in user libraries and kernel
APIs are exported by their hosting modules. The symbol
information conveys important semantics information, be-
cause from a function name, we are able to determine what
purpose this function is used for, what input arguments it
takes, and what output arguments and return value it gen-
erates. Moreover, the symbol information makes it more
convenient to hook a function—instead of giving the actual
address of a function, we can specify its module name and
function name. Then TEMU will automatically map the
actual address of the function for the user. In the current
implementation, TEMU is able to parse memory images of
PE and ELF binary modules, and thus supports both Win-
dows and Linux.

3.4 Execution Context
With the knowledge of processes and modules, we are able

to tell which process or module performs a certain behav-
ior directly. However, if this behavior happens in library
or system code, it is actually performed on behalf of the
program that invokes the functionality in system or library
code. Therefore, we need to determine if a certain behavior
is performed under the execution context of the program to
be analyzed.

3

External function calls. First, we consider the case where
the program under analysis makes an external function call,
whose function body is located in another code module (i.e.,
library). We use the following observation: Whenever a pro-
gram makes a function call, the value of the stack pointer at
the time of the function call must be greater than the value
of the stack pointer at the time when a certain behavior is
performed in that external function call. This is because one
or more stack frames have to be pushed onto the stack when
making function calls, and the stack grows toward smaller
addresses on the x86 architecture.

Based on our observation, we use the following approach
to identify the execution in an external function: When-
ever the execution jumps into the code under analysis, we
record the current value of the stack pointer, together with
the current thread identifier. When execution jumps out of
this code region, we check whether there is a recorded stack
pointer for the current thread identifier, and if so, whether
this value is smaller than the current stack pointer. If this is
the case, we remove the record as the code is not on the stack
anymore. Whenever an interesting behavior is observed, we
check whether there is a recorded stack pointer under the
current thread identifier. If so, we consider this behavior to
be performed on behalf of the code under analysis, because
this means that the code under analysis is on the call stack.

Software interrupts. The program under analysis may
make a software interrupt (e.g, int 80 for system call in
x86), and then the kernel will service this software interrupt.
Therefore, we need to attribute the behavior happening in-
side the software interrupt to the program under analysis.
In the whole-system emulator, we can easily observe all the
software interrupts. Then we can attribute the execution
during this software interrupt under the same thread con-
text to the program’s context.

Fast system calls. The program under analysis may make
a fast system call (i.e., sysenter in x86), and there is no soft-
ware interrupt happening for this fast version. To associate
behaviors happening in a system call with the program that
executes sysenter, we instrument sysenter and sysexit

instructions, and attribute the execution in the same thread
context between sysenter and sysexit to the program un-
der analysis.

4. ANNOTATIVE EXECUTION ENGINE
We propose a generic technique for dynamic binary code

analysis, layered annotative execution. During the execution
of each instruction, depending on the instruction seman-
tics, we can annotate the operands of this instruction, or
propagate annotations from source operands to destination
operands, or update the existing annotations.

We can perform annotative execution in a variety of ways.
The most basic analysis is shadow flag analysis, in which
we may simply annotate certain memory locations or reg-
isters to be dirty or clean. A more advanced analysis is
dynamic taint analysis, in which we not only annotate cer-
tain memory locations and registers to be tainted, but also
keep track of taint propagation. The most advanced analy-
sis is symbolic execution, in which we not only mark certain
inputs (i.e, memory locations or registers) as tainted, but
assign a meaningful symbol to these inputs. Then during
taint propagation, we associate symbolic expressions to the
tainted memory locations and registers. These symbolic ex-

pressions indicate how these variables are calculated from
the symbolic inputs. This is a layered approach: one anal-
ysis mechanism is built on top of another to perform more
advanced analysis, as illustrated in Figure 2.

Shadow Flag Analysis

Dynamic Taint Analysis

Symbolic Execution

Figure 2: A Layered Approach for Annotative Exe-

cution

Shadow memory. We use a shadow memory to store and
manage the annotations of each byte of the physical memory
and CPU registers and flags. To support tracking memory
being swapped in and out, we also have shadow memory for
the hard disks. With the shadow memory for the hard disks,
the system can continue to track the annotations that have
been swapped out.

uint64_t regs_bitmap = 0; //bitmap for CPU registers
uint8_t *regs_records; //annotations for CPU registers

typedef struct _tpage_entry {
uint64_t bitmap; //bitmap for 64-byte memory chunk

uint8_t records[0]; //byte array for 64 annotations
} tpage_entry_t;
tpage_entry_t **tpage_table; //page table for main memory

typedef struct disk_record

uint64_t index; //index for a 64-byte disk chunk
uint64_t bitmap; //bitmap for the 64-byte disk chunk

struct list_head link; //linked list entry
uint8_t records[0]; //byte array for 64 annotations

disk_record_t;

struct list_head disk_hashtable[1024]; //hash table for disk

Figure 3: Data structures for shadow memory

The code snippets in Figure 3 illustrate how TEMU main-
tains the shadow memory. The shadow memory for CPU
registers is straightforward, because there are only a small
number of registers. A 64-bit integer regs_bitmap is big
enough to shadow each byte of 8 general-purpose registers
in 32-bit x86 architecture. regs_records is a byte array
to store annotations for registers. The type of annotation
record should be defined by the plugin, and is opaque to the
platform. Hence, TEMU just treats an annotation record
as a sequence of bytes, and only needs to know the size of
an annotation record. Once the size of annotation record is
provided by the plugin, regs_records will be allocated with
appropriate size.

To ensure efficient memory usage, the shadow memory for
main memory is organized as a one-level page table. Each
page entry responds to 64 bytes in main memory. If an entry
is NULL, it means no annotations associated with any of the
64 bytes in it. Otherwise, the bitmap field indicates which
of 64 bytes have annotations. The records is the byte array
for storing 64 annotation records. Similarly, the records

field is defined as a zero-length array, and will be allocated
with appropriate size when the size of annotation record is
provided by the plugin.

The shadow memory for the hard disk is managed differ-
ently. Because the size of a hard disk is several orders of

4

magnitude larger than main memory, a 1-level page table
will not be space efficient. A multiple-level page table is
more space efficient at the price of page lookup speed. Con-
sidering that in practice, a very small amount of disk data
are annotated (for page swapping and small data files), we
use a hash table. The disk space is divided into 64-byte
chunks, and the index to a disk chunk is used to look up the
hash table. The size of hash table is independent of the disk
size, and lookups in this hash table are efficient when only
a small number of disk chunks are annotated.

Code instrumentation. We instrument the execution of
the guest system to enable annotative execution. We also
implant callbacks to notify the plugin of various events, as
shown in Section 5.

QEMU uses dynamic translation techniques to emulate a
guest system. That is, when a block of code (i.e, a code
stream with a single entry and a single exit) from the guest
system is executed for the first time, it is translated into
statements in an intermediate form, and then the code ex-
ecuted on the host system is generated from these interme-
diate statements. The translated code is stored in the code
cache, such that the code translation overhead can be amor-
tized over subsequent executions of the same code block.

The code instrumentation is intermingled with a dynamic
translation process. In general, there are two ways to in-
sert instrumentation code: 1) inline the instrumenting in-
structions or statements directly into the translated code,
as Memcheck [28] and Argos [33] do; and 2) insert function
calls, and the actual instrumentation tasks are implemented
in these functions. The advantage of the first approach is
efficiency, because some redundant operations can be opti-
mized away during the code emission phase. Its disadvan-
tage is lack of capability and extensibility. It is cumbersome
and sometimes infeasible to implement comprehensive func-
tionality for instrumentation. The second approach is on
the contrary: less efficiency but greater capability. There-
fore, we take the second approach, in favor of capability over
efficiency. We plan to investigate performance optimization
in future work.

In Appendix A, we use a concrete example to walk through
this code instrumentation process in more detail.

4.1 Shadow Flag Analysis
Shadow flag analysis is the most basic analysis in this

layered architecture. Basically, depending on the execution
context and the semantics of the current instruction, we can
decide whether to create an annotation for a memory lo-
cation or register. Later, we can check or change this an-
notation. Compared to the other more advanced analysis
techniques, shadow flag analysis is the most efficient.

4.2 Taint Analysis
Our dynamic taint analysis is similar in spirit to a num-

ber of previous systems [13,14,16,32,38]. In comparison, our
design and implementation is the most complete. For exam-
ple, previous approaches either operate on a single process
only [14,32,38], or they cannot deal with memory swapping
and disks [13,16].

Taint source. A plugin is responsible for introducing taint
sources into the system. TEMU supports taint input from
hardware, such as the keyboard, network interface, and hard
disk. TEMU also supports tainting a memory region (e.g.
the output of a function call, or a data structure in a specific

application or the OS kernel).

Basic propagation policy. After a data source is tainted,
we need to monitor each CPU instruction and DMA oper-
ation that manipulates this data in order to determine how
the taint propagates. For data movement instructions and
DMA operations, the destination will be tainted if and only
if the source is tainted. For arithmetic instructions, the re-
sult will be tainted if and only if any byte of the operands
is tainted. We also handle the following special situations.

Constant function. Some instructions or instruction se-
quences always produce the same results, independent of
the values of their operands. A good example is the in-
struction “xor %eax, %eax” that commonly appears in IA-
32 programs as a compiler idiom. After executing this in-
struction, the value of eax is always zero, regardless of its
original value. We recognize a number of such special cases
and untaint the result.

Table lookup. A tainted input may be used as an index
to access an entry of a table. The taint propagation policy
above will not propagate taint to the destination, because
the value that is actually read is untainted. Unfortunately,
such table lookup operations appear frequently, such as for
Unicode/ASCII conversion in Windows. Thus, TEMU has
an option to propagate taint through table lookups: if any
byte used to calculate the address of a memory locations is
tainted, then, the result of a memory read using this address
is tainted as well. The plugin has capability to enable or
disable this option.

Logic and bit shifting. We need to take care of these op-
erations with more precision. For example, for “and $0xff,

%eax”, if all of the 4 bytes of eax is tainted before this in-
struction, then only the lowest byte of eax should be tainted
after the execution of this instruction. Similarly, for “shr
$24, %eax”, only the lowest byte of eax should be tainted
if eax the highest byte is tainted originally. We cover these
special instructions to track taint more precisely.

Tracking multiple taint labels. For many analysis pur-
poses, it is often necessary to introduce and track multi-
ple taint sources simultaneously. When an instruction (e.g.,
add) has multiple tainted source operands, the destination
operand (often) needs to be marked as tainted from the mul-
tiple taint labels. How to maintain multiple labels is in fact
application-specific. The plugin may choose to pick one la-
bel, maintain up to a number of labels, or maintain all of the
labels. Thus, TEMU asks the plugin to handle this situation
when multiple taint labels converge.

4.3 Symbolic Execution
Symbolic execution gives abstract interpretation of how

certain values are processed on both the data plane and
the control plane. On the data plane, symbolic execution
allows registers and memory locations to contain symbolic
expressions in addition to concrete values. Thus, a value in
a register may be an expression such as X + Y where X and
Y are symbolic variables. Consider a small program in Fig-
ure 4. After execution, we produce a symbolic expression for
mem[10], which is mem[10] = y*3+5. This symbolic expres-
sion abstractly interprets how the content in this memory
location is calculated from the relevant symbolic inputs on
the data plane.

On the control plane, symbolic execution generates a path
predicate, describing the constraints on the symbolic inputs

5

L1: z = 10;
L2: x = 2;
L3: x = y*3;
L4: z = x+4;
L5: k = z+1;
L6: if(z<10)
L7: mem[10] = k;

Figure 4: A Simple Symbolic Program

needing to be satisfied for the program execution to go down
that path. In the above example, the if statement z < 10
has to be true for the mem[10] to be assigned a new value.
The symbolic execution can give us a path predicate y < 2,
which abstractly describes what condition has to be satisfied
in order to perform the assignment operation on L7.

When certain conditions are not satisfied, behaviors de-
pending on these conditions will not be exhibited. In the
above example, if the actual value of y is 3, then the if
statement z<10 will not be true, and the operation on L7
will not be executed. To uncover the hidden behaviors, for
each control flow decision that depends on symbolic inputs,
we will determine which branches are feasible and try to ex-
plore all the feasible execution paths. More precisely, for
each branch, we extract a symbolic expression as the path
predicate, and use a theorem prover to determine if the path
predicate can be true. In the above example, we will be able
to explore both branches for the if statement on L6, because
we determine the path predicate can be either true or false.
Thus, we will be able to uncover the memory assignment on
L7.

During symbolic execution, for each instruction, we need
to determine if it should be executed symbolically. If so, we
enqueue this instruction and its operands into the symbolic
machine. As a consequence, the instructions and states in
the symbolic machine form a symbolic program. Then if we
want to query the symbolic expression and path predicate of
a symbol, we extract formulas from the symbolic program.
In addition, whenever a control flow decision is dependent
on a symbolic variable, we attempt to explore all feasible
directions.

Generate symbolic program. An instruction can be ex-
ecuted concretely iff all operands of the instruction are con-
crete. Thus, deciding whether an instruction should be exe-
cuted concretely or symbolically requires information about
which data in the system is concrete and which is symbolic.
Recall that the shadow memory associated with registers
and memory indicates the status of each byte. A symbolic
byte is marked as tainted. Thus, to determine if an instruc-
tion needs to be executed symbolically, we just need to check
if any of its operands is tainted. If so, we perform symbolic
execution, and mark the destination operand as tainted, just
like normal taint propagation. Otherwise, we execute this
instruction concretely.

Mixed symbolic and concrete execution means that many
instructions will be executed concretely and never be exe-
cuted on the symbolic machine. Therefore, if an instruction
to be symbolically executed has any concrete operands, we
must update those concrete values inside the symbolic ma-
chine.

Ideally, during symbolic execution, we would like to gen-
erate symbolic expressions and path predicates on the fly.
However, this naive approach would incur unacceptable per-

formance overhead at runtime. To optimize the performance,
we perform “lazy” symbolic execution. Its basic idea is to
quickly perform as few operations as possible to guarantee
fast runtime performance, and maintain enough informa-
tion for post analysis. Specifically, for each instruction that
needs to be executed symbolically, we enqueue that instruc-
tion, along with the relevant machine states (including all
operands and other related memory and register states) into
our symbolic machine. Then we quickly mark the destina-
tion operand as symbolic by checking the source operands.
This strategy enables fast runtime performance. As a conse-
quence, the instructions and states in the symbolic machine
form a symbolic program, just like the one in Figure 4.

Extract symbolic formulas. We take the following steps
to extract a symbolic formula for a symbol from the symbolic
program. First, we perform dynamic slicing on the symbolic
program. This step removes the instructions that the sym-
bol does not depend upon. After this step, the symbolic
program will be reduced tremendously. Then we generate
one expression by substituting intermediate symbols with
their right-hand-side expressions. Finally, we perform con-
stant folding to further simplify the expression. Still using
the program in Figure 4 as an example, to get the symbolic
expression for mem[10], we perform dynamic slicing first. It
would remove the instructions on L1 and L2. Then we per-
form symbol substitution, and we get a formula like below:

mem[10] = y*3+1+4

Then we perform constant folding on it, and finally get:

mem[10] = y*3+5

Explore multiple execution paths. When executing a
conditional jump instruction that depends on a symbolic
condition, we attempt to explore all feasible paths. To de-
termine if a path is feasible, we generate the path predi-
cate for that path, and ask the Solver if this path predicate
is satisfiable. The Solver is a theorem prover or decision
procedure, which performs reasoning on symbolic formulas.
TEMU is extensible; we can plug in any Solver appropriate,
and our system thus can automatically benefit from any new
progress on decision procedures, etc. Currently in our im-
plementation, we use STP as the Solver [20,21].

A satisfiable path predicate means a feasible path. The
plugin needs to decide which feasible direction needs to be
explored now. It needs an algorithm to prioritize the paths
in the malicious code. For example, it can use breadth-first
search, depth-first search, and other strategies.

Once we decide which direction to explore, we save the
state of the emulated system, and then make the system
execution go to that direction by changing the EIP regis-
ter. Later, if we want to explore the other direction, we
can simply restore the state and start execution from that
point. More specifically, the saved state includes the states
of whole emulated machine (such as registers, memory, and
I/O devices), the state of shadow memory in TEMU, and
the symbolic program. The size of this entire state can be
large. We can employ various compression techniques to re-
duce the size. For example, we can save the relative state
changes to an initial state, instead of the absolute state.
Then we can perform common compression methods on the
relative state to further reduce its size.

The functionality of state saving and restoring enables a
distributed architecture for binary code analysis. It may be

6

still time-consuming to analyze a complex and big binary
program, in terms of the number of branches that depend
upon symbolic inputs. A centralized controller may dissem-
inate different saved states to multiple working nodes, such
that they can explore multiple different execution paths in
parallel. This architecture would significantly reduce the
overall analysis time.

Moser et al. also built system that is capable of exploring
multiple execution path for malware analysis [27]. In com-
parison, our implementation is more comprehensive. First,
TEMU maintains path predicates with bit-level accuracy
and can handle non-linear path constraints, whereas their
system can only handle linear constraints. Second, their sys-
tem saves and restores states for a specific process, assuming
malware is only within one process, while our system han-
dles whole-system states and thus can cope with malware
that involves kernel code and multiple processes.

5. TEMU APIS
In order for users to make use of the functionalities pro-

vided by TEMU, we define a set of functions and callbacks.
By using these interfaces, users can implement their own
plugins and load them into TEMU at runtime to perform
custom analysis tasks. Currently, TEMU provides the fol-
lowing functionalities:

• Switch between emulation and virtualization mode.
With support of a kernel accelerator, QEMU can be
configured to run under virtualization mode, which is
nearly as efficient as native execution. We enhance
this feature to enable or disable virtualization mode
at runtime. For example, we can boot up the guest
system under virtualization mode, and switch to emu-
lation mode just before analyzing a program.

• Query and set value of a memory cell or a register.

• Query and set annotation of a memory cell or register.

• Register and remove a function hook. We can hook a
function by either its entry point or its name (if the
function name is exported). We can hook both the
entry and exit of a function call. To determine the exit
point, we obtain the return address from the call stack
on the function entry. We use the thread identifier to
distinguish different call instances, so function hooks
in multi-threaded environment are properly handled.

• Query OS-level semantics information. We can query
information about processes, modules, threads, execu-
tion contexts, etc.

• Save and load the guest system state. This interface
helps to switch between different machine states for
more efficient analysis. QEMU can save and load a
virtual machine state. We extend this feature to save
annotations and other analysis states into the virtual
machine state, and then load it back. This extended
feature facilitates multiple path exploration, because
we can save a state for a specific branch point and ex-
plore one path, and then load this state to explore the
other path without restarting the program execution.

TEMU defines callbacks for a set of events, including (1)
the entry and exit of a basic block; (2) the entry and exit of

an instruction; (3) propagation of annotations; (4) memory
read and write; (5) register read and write; (6) interrupts
and exceptions; (7) events of IO devices such as network and
disk inputs and outputs; (8) OS-level events, such as process
creation and exit, and module loading and unloading; and
so on.

6. EVALUATION
In this section, we evaluate this analysis platform with re-

spect to its capabilities, extensibility and ease of application
development. That is, we want to see on top of TEMU: 1)
how different kinds of analysis tools can be built; and 2) how
easy these tools can be implemented.

To evaluate these metrics, we present four malware anal-
ysis tools that are built on top of TEMU. They are Ren-
ovo [24] (a generic unpacker), Panorama [42] (an informa-
tion flow tracker), HookFinder [41] (a hook analyzer), and
MineSweeper [7] (a hidden behavior explorer).

6.1 Renovo: Generic Unpacker
Malware often employs various code obfuscation techniques.

One common technique is code packing, which transforms
a program into a packed executable by compressing or en-
crypting the original code and data into packed data. When
this packed executable gets executed, the embedded unpack-
ing routine recovers the original code and data and transfers
the execution to the original entry point. Renovo [24] cap-
tures an intrinsic nature of code packing behavior. That
is, independent of specific packing techniques, original code
and data regions belong to memory regions that are modi-
fied during the unpacking process, and later the instruction
pointer jumps into some of these modified regions to execute
unpacked code.

Renovo makes use of shadow flag analysis functionality
provided by TEMU. Renovo runs the program to be un-
packed in TEMU. When the program executes a memory
write instruction, it marks the corresponding destination
memory region as dirty, which means it is newly generated.
During the program execution, when it sees the instruction
pointer jump to one of these newly-generated memory re-
gions, Renovo determines that this is the unpacked code.
Apparently, this tool needs OS-level semantics provided by
TEMU to know whether the current execution is under the
context of the program to be unpacked.

Experimental results. Both synthetic and real-world sam-
ples were used to evaluate the effectiveness and efficiency of
Renovo. The results from Renovo were also compared with
those from other two unpackers, UUnP [17] (a plugin of IDA
Pro) and PolyUnpack [35] (an unpacker based on OllyDe-
bug).

Renovo UUnP PolyUnpack

Unpacked 12 6 6
Avg. Time (sec.) 14+30 26 656

Table 1: Unpacking Synthetic Samples.

Synthetic samples were generated by applying 15 differ-
ent packers on Microsoft Notepad. Table 1 summarizes the
results. While Renovo can unpack the majority of synthetic
samples (12 out of 15), UUnP and PolyUnpack can only
unpack 6 out of 15 samples.

7

[tcp]212.27.63.117:80:1047 IEXPLORE.EXE

explorer.exe

IEXPLORE.EXE!
GoogleDesktopAPI2.dll

GoogleDesktopCrawl.exe!
GoogleDesktopCrawl.exe

c:\$LogFile

%TEMP%\Content.IE5\
0JBRMNI7\qemu[1].htm

GoogleDesktopIndex.exe!
GoogleDesktopAPI2.dll

GoogleDesktopIndex.exe!
GoogleDesktopIndex.exe

GoogleDesktopIndex.exe!
gzlib.dll

GoogleDesktopIndex.exe!
GoogleDesktopSSD.dll

%INST_DIR%\577eef2d8a09\
rpm1m.cf1

%INST_DIR%\577eef2d8a09\
fi ih.ht1

[tcp]72.14.219.147:1068:443

Figure 5: A Taint Graph for Google Desktop

Renovo UUnP PolyUnpack
Extracted results 366 186 171
IRC pattern found 363 176 86
Avg. time (sec.) 10.9+30 15.7 365.8

Table 2: Unpacking Real-world Malware Samples.

Table 2 shows the results against 374 real-world packed
malware samples. Similarly, Renovo is able to unpack the
vast majority of them, whereas UUnP and PolyUnpack can
only handle less than half. In terms of efficiency, considering
that Renovo needs approximately 30 seconds for system to
boot up, Renovo is in fact the most efficient among these
three tools. In particular, PolyUnpack, as a fine-grained
analysis tool on top of a debugger, is significantly slower
than Renovo based on TEMU. Therefore, it demonstrates
the efficiency of TEMU, due to dynamic binary translation.

6.2 Panorama: Information Flow Tracker
A wide-spectrum of malware categories, including spy-

ware, keyloggers, network sniffers, stealth backdoors, and
rootkits, share similar fundamental characteristics. They
tend to access, tamper with, and leak sensitive information
in abnormal ways. Panorama is built on top of TEMU to
capture this abnormal information access behavior.

Panorama [42] utilizes the dynamic taint analysis func-
tionality implemented in TEMU to capture information ac-
cess behaviors. Several unique features in this taint anal-
ysis are critical for this tool. First, our taint analysis is
performed on the whole system, and therefore can capture
system-wide information flows. Second, it is customizable:
the plugin can define its own data structure for taint record
and track multiple taint sources simultaneously. Finally, the
OS-level semantics provided by TEMU are used to lift up
the hardware-level taint propagation events to OS level, and
therefore to generate OS-level taint propagation graphs.

Experimental results. Google Desktop was chosen for a
case study. Google Desktop would send sensitive user infor-
mation such as the local search index files back to Google’s
servers in certain configuration settings [23]. Within 30 min-
utes, Panorama was able to automatically capture this infor-
mation leakage and present insightful results in the form of
OS-level taint graphs. Figure 5 illustrates a representative
taint graph. From this taint graph, we can see that a web-
page first was received by the Internet Explorer, and then a
component from Google Desktop (GoogleDesktopAPI2.dll)
obtained the web page and passed it over to a stand-alone
program also from Google Desktop (GoogleDesktopIndex.exe).
This stand-alone process further processed this information
and saved it into two data files (rpm1m.cf1 and fiih.ht1)
in its local installation directory. Eventually it sent some

information derived from the web page to a remote Google
server (72.14.219.147) through an HTTPS connection. This
taint graph demonstrates the necessity of having a whole-
system view, because this information leakage involved mul-
tiple processes and components.

6.3 HookFinder: Hook Analyzer
One important malware attacking vector is its hooking

mechanism. Malware implants hooks for many different pur-
poses. Spyware may implant hooks to get notified of the
arrival of new sensitive data. Rootkits may implant hooks
to intercept and tamper with critical system information to
conceal their presence in the system. A stealth backdoor
may also place hooks on the network stack to establish a
stealthy communication channel with remote attackers. Ex-
isting hook detection tools detect hooks by checking known
memory regions for suspicious entries. To evade detection,
malware tends to install hooks in previously unknown mem-
ory regions.

HookFinder [41] aims to automatically detect malware’s
hooking behaviors (especially previous unseen ones), and ex-
tract insightful knowledge about hooking mechanisms. It
captures an inherent property of hooking behavior: a hook
is one of the impacts (i.e., state changes in the execution
environment caused by malware) that redirects the system
control flow back into the malicious code. To characterize
the impacts of malware, HookFinder performs fine-grained
impact analysis, which is a variant of dynamic taint analy-
sis. This variant was easily implemented on top of TEMU.
Thus, it demonstrates that TEMU is flexible and extensible.

Sample Size Runtime Hooks

Online Offline

Troj/Keylogg-LF 64KB 6m 9m 2
Troj/Thief 334KB 4m 3s 1
AFXRootkit 24KB 6m 33m 4
CFSD 28KB 4m 2m 5
Sony Rootkit 5.6KB 4m 2s 4
Vanquish 110KB 5m 12m 11
Hacker Defender 96KB 5m 27m 4
Uay Backdoor 212KB 4m 25s 5

Table 3: Hook Detection and Analysis Results

Experimental results. Eight real-world malware sam-
ples were used to evaluate the effectiveness and efficiency
of HookFinder. Five of these samples have presence in the
kernel space. Therefore, it is critical to have a whole-system
view, in order to analyze these malicious behaviors in the
kernel space. The runtime breaks down into an online detec-
tion phase and offline analysis phase. In the online detection
phase, a malware sample was run in TEMU, hooking be-
haviors were identified, and an impact trace was generated.

8

In the offline analysis phase, backward dependency analysis
was performed on the impact trace, and hook graphs were
generated. Within 6 minutes, HookFinder was able to detect
the hooking behaviors of all the samples during the online
detection phase. Then in up to 27 minutes, HookFinder
extracted hook graphs from the impact trace. It is worth
noting that HookFinder was able to detect and analyze the
new hooking technique employed by the Uay backdoor.

6.4 MineSweeper: Hidden Behavior Explorer
Malware often contains hidden behavior which is only ac-

tivated when properly triggered. For example, many viruses
attack their host systems on specific dates; some keyloggers
only record keystrokes to files when the application window
name contains certain keywords; some distributed denial-
of-service tools only start launching attacks when receiving
certain network commands. Detecting these hidden behav-
iors is important for understanding the malware’s malicious
behavior and for effective malware defense.

MineSweeper [7] is a tool that automatically explores mul-
tiple execution paths, in order to uncover the hidden func-
tionality in malware. This tool takes advantage of the sym-
bolic execution functionality in TEMU. It marks potential
trigger conditions (e.g., inputs from the registry, file sys-
tem, network, and system time) as symbolic, and then per-
forms symbolic execution at runtime. Whenever a branch
condition becomes symbolic, this tool determines feasible
branches by solving the path predicate for each branch, and
then explores these feasible branches.

Program Run Time Cond. Symbolic
Total STP Jumps Ratio

MyDoom 28m 2.2m 11 0.00136%
NetSky 9m 0.3m 6 0.00040%
Perf. Keylogger 2m <0.1m 2 0.00508%
TFN 21m 6.5m 14 0.00052%

Table 4: Analysis Results on Real-world Malware

Samples using MineSweeper

Experimental results. Four realworld malware samples,
including two Email worms (MyDoom and NetSky), a key-
logger (Perfect Keylogger) and a DDoS tool (TFN), were
used to evaluate the effectiveness and efficiency of MineSweeper.
MineSweeper was able to uncover hidden functionalities in
these malware samples. Table 4 summarizes the results. The
end-to-end run time was up to 28 minutes. In addition, the
run time for solving formulas (i.e., STP runtime) was listed,
up to 2.2 minutes. The number of conditional jumps that
need to be explored symbolically was relatively small, up to
14. The percentage of instructions that need to be executed
symbolically was also low.

The NetSky worm was known to have time triggered func-
tionality. MineSweeper extracted from NetSky a graph of
program paths that depend on the system time, shown in
Figure 6. We can see that the date must be February 26th,
2004, between 6 and 9am, to launch an attack.

Therefore, by making use of symbolic execution function-
ality in TEMU, MineSweeper can automatically extract hid-
den functionality in malware in minutes.

6.5 Tool-writing Ease

LOC

TEMU 315,174
Renovo 364
Panorama 793
HookFinder 1,052
MineSweeper 3,652

Table 5: Code Sizes of TEMU and Plugins

We use code sizes to roughly measure the amount of ef-
forts that are needed to build these analysis tools. Table 5
lists the lines-of-code for each of these analysis tools. We
can see that with several hundred or thousand lines of code,
various comprehensive analysis tools can be easily built on
top of our analysis platform. As a comparison, we also show
the size of the analysis platform. TEMU is based on QEMU
0.9.1. TEMU has an addition of 11,097 lines to the QEMU
code base, which has 304,077 lines of code in total. There-
fore, TEMU provides common functionalities and hides the
unnecessary complexity for various analysis purposes. Com-
pared to writing a tool from scratch, the benefit of this anal-
ysis platform is clear.

7. RELATED WORK
Tools like DynamoRIO [5], Pin [25], Strata [36], and Val-

grind [29] support fine-grained instrumentation of a user-
level program. They all provide high-level interfaces to fa-
cilitate building custom analysis tools. However, as they can
only instrument a single user-level process, they are not suit-
able to analyze the activities in the operating system kernel
(e.g., kernel malware and kernel vulnerabilities) or applica-
tions that involve multiple processes. DynamoRIO, PIN and
Strata are designed to achieve highly efficient dynamic in-
strumentation, whereas Valgrind is targeted at heavyweight
analysis, such as shadow value analysis [28]. It eliminates the
complexity of the x86 instruction set by first translating x86
instructions into intermediate representations, namely VEX
statements. Like Valgrind, TEMU is designed to support
myriad of in-depth analyses. It takes advantage of dynamic
translation mechanism in QEMU to build more comprehen-
sive analysis platform.

PinOS [10] is an extension to Pin for whole-system in-
strumentation. Hence, PinOS can be used to instrument
both kernel and user-level code. To achieve whole-system
instrumentation, PinOS is built on top of the Xen [1] vir-
tual machine monitor with Intel VT technology. TEMU also
enables whole-system instrumentation and offers a whole-
system view. However, compared to PinOS, TEMU provides
substantially better support, such as OS-level semantics ex-
traction and layered annotative execution, for analysis tools
built on top of it.

Dytan [14] is a platform for performing dynamic taint
analysis. With the high-level interface provided by Dytan,
custom taint analysis tools can be easily built. Dytan is
based on Pin, and thus can only analyze a single user-level
process. By contrast, TEMU is a whole-system analysis
platform and provides even richer functionalities for various
analysis purposes.

Nirvana [3] is another analysis platform for a user-level
program, using software dynamic translation techniques. In
particular, it is used to build a sophisticated instruction-level
tracing and time-traveling debugging tool, called iDNA. A

9

1. Day == 26

false 2. Month == 2true

false 3. Year == 2004

true

false
4. Hour == 6

true

5. Hour == 7

false
Attack!

true

6. Hour == 8

false

true

false

true

Figure 6: NetSky’s Hidden Behavior Extracted by MineSweeper.

comprehensive tracing tool was also developed on top of
TEMU. While Nirvana can only analyze a user-level pro-
gram, TEMU can be used to analyze kernel code and multi-
ple programs simultaneously, with extra functionalities, such
as exploit detection, offline symbolic execution, etc.

Cobra [39] is a malware analysis platform. Cobra is imple-
mented as a kernel module and inserted into the Windows
kernel space to observe malware’s execution in both user and
kernel space. It uses a technique called localized execution
to instrument and inspect malware’s behavior. The localized
execution technique is in spirit similar to dynamic transla-
tion techniques. Cobra takes an internal approach, because
the analysis is performed in the same execution environment
to be analyzed.

Ether [18] is another platform for malware analysis. Ether
makes use of hardware virtualization techniques to observe
malware’s execution in a stealthy manner. Compared with
Cobra, Ether takes an external approach. The analysis is
performed outside the guest system, which in principle has
better transparency than an internal approach. However,
Ether is not an ideal platform for in-depth malware analysis,
which requires instruction-level instrumentation. Although
fine-grained instrumentation can be achieved through single-
step mode, its significant performance overhead (hundreds
of times slowdown) is unacceptable in many cases. In con-
trast, by using dynamic translation techniques, TEMU can
perform in-depth malware with much better efficiency due
to dynamic binary translation. However, emulation via dy-
namic translation is not as transparent as hardware virtu-
alization [19, 26, 34]. We leave it as future work to build a
more stealthy and efficient analysis platform by combining
hardware virtualization and emulation techniques.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented an extensible analysis plat-

form, TEMU. In order to support a wide-spectrum of dy-
namic binary analysis needs, TEMU explores a unique de-
sign space. It is able to provide a whole-system view, per-
form out-of-the-box analysis, and bridge the semantic gap
between hardware-level and OS-level views. To further facil-
itate fine-grained analysis, TEMU incorporates shadow flag
analysis, taint analysis, and symbolic execution, and gener-
alizes these techniques into a unified technique, layered an-
notative execution. To demonstrate the capabilities of this
platform, we described four malware analysis tools built on
top of it. These tools were comprehensive and powerful by
utilizing different functionalities of TEMU. Moreover, the
efforts of implementing these tools were significantly allevi-
ated, due to the support of TEMU.

We plan to enhance TEMU in the following aspects: 1)

better transparency by combining hardware virtualization
and dynamic translation techniques; 2) better efficiency by
exploiting more sophisticated optimization techniques; and
3) more robust OS-level semantic view reconstruction.

9. REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles
(SOSP’03, pages 164–177, 2003.

[2] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical
Conference, FREENIX Track, pages 41–46, 2005.

[3] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong,
Andrew Edwards, Ron Murray, Milenko Drinić, Darek
Mihočka, and Joe Chau. Framework for
instruction-level tracing and analysis of program
executions. In Proceedings of the 2nd International
Conference on Virtual Execution Environments
(VEE’06), pages 154–163, 2006.

[4] BitBlaze: Binary analysis for computer security.
http://bitblaze.cs.berkeley.edu/.

[5] Derek Bruening, Timothy Garnett, and Saman
Amarasinghe. An infrastructure for adaptive dynamic
optimization. In International Symposium on Code
Generation and Optimization (CGO’03), March 2003.

[6] David Brumley, Cody Hartwig, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Dawn Song. BitScope: Automatically dissecting
malicious binaries. Technical Report CS-07-133,
School of Computer Science, Carnegie Mellon
University, March 2007.

[7] David Brumley, Cody Hartwig, Zhenkai Liang, James
Newsome, Pongsin Poosankam, Dawn Song, and Heng
Yin. Automatically identifying trigger-based behavior
in malware. In Book chapter in ”Botnet Analysis and
Defense”, Editors Wenke Lee et. al., 2007.

[8] David Brumley, James Newsome, Dawn Song, Hao
Wang, and Somesh Jha. Towards automatic
generation of vulnerability-based signatures. In
Proceedings of the 2006 IEEE Symposium on Security
and Privacy, pages 2–16, 2006.

[9] David Brumley, Pongsin Poosankam, Dawn Song, and
Jiang Zheng. Automatic patch-based exploit
generation is possible: Techniques and implications. In
Proceedings of the 29th IEEE Symposium on Security
and Privacy, Oakland, CA, May 2008.

10

[10] Prashanth P. Bungale and Chi-Keung Luk. PinOS: A
programmable framework for whole-system dynamic
instrumentation. In Proceedings of the 3rd
international conference on Virtual Execution
Environments (VEE’07), pages 137–147, 2007.

[11] Juan Caballero, Pongsin Poosankam, Christian
Kreibich, and Dawn Song. Dispatcher: Enabling active
botnet infiltration using automatic protocol
reverse-engineering. In Proceedings of the 16th ACM
Conference on Computer and Communication
Security, Chicago, IL, November 2009.

[12] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn
Song. Polyglot: Automatic extraction of protocol
message format using dynamic binary analysis. In
Proceedings of ACM Conference on Computer and
Communication Security, October 2007.

[13] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin
Christopher, and Mendel Rosenblum. Understanding
data lifetime via whole system simulation. In
Proceedings of the 13th USENIX Security Symposium
(Security’03), August 2004.

[14] James Clause, Wanchun Li, and Alessandro Orso.
Dytan: a generic dynamic taint analysis framework. In
Proceedings of the 2007 international symposium on
Software testing and analysis (ISSTA’07), pages
196–206, 2007.

[15] Jedidiah Crandall, Zhendong Su, S. Felix Wu, and
Frederic Chong. On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm
exploits. In Proc. 12th ACM Conference on Computer
and Communications Security (CCS), 2005.

[16] Jedidiah R. Crandall and Frederic T. Chong. Minos:
Control data attack prevention orthogonal to memory
model. In Proceedings of the 37th International
Symposium on Microarchitecture (MICRO’04),
December 2004.

[17] Data Rescue. Universal PE Unpacker plug-in.
http://www.datarescue.com/idabase/unpack_pe.

[18] Artem Dinaburg, Paul Royal, Monirul Sharif, and
Wenke Lee. Ether: malware analysis via hardware
virtualization extensions. In Proceedings of the 15th
ACM Conference on Computer and Communications
Security, pages 51–62, 2008.

[19] Peter Ferrie. Attacks on virtual machine emulators.
Symantec Security Response, December 2006.

[20] Vijay Ganesh. STP: A decision procedure for
bitvectors and arrays.
http://theory.stanford.edu/~vganesh/stp.html,
2007.

[21] Vijay Ganesh and David L. Dill. A decision procedure
for bit-vectors and arrays. In W. Damm and
H. Hermanns, editors, Computer Aided Verification
(CAV ’07), volume 4590 of Lecture Notes in Computer
Science, pages 524–536, Berlin, Germany, July 2007.
Springer-Verlag.

[22] Tal Garfinkel and Mendel Rosenblum. A virtual
machine introspection based architecture for intrusion
detection. In Proceedings of Network and Distributed
Systems Security Symposium (NDSS’03), February
2003.

[23] Google’s desktop search red flag. http:
//www.internetnews.com/xSP/article.php/3584131.

[24] Min Gyung Kang, Pongsin Poosankam, and Heng Yin.
Renovo: A hidden code extractor for packed
executables. In Proceedings of the 5th ACM Workshop
on Recurring Malcode (WORM), October 2007.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In Proc. of 2005
Programming Language Design and Implementation
(PLDI) conference, june 2005.

[26] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi
Roglia, and Danilo Bruschi. Testing cpu emulators. In
Proceedings of the 18th International Symposium on
Software Testing and Analysis (ISSTA’09), pages
261–272, 2009.

[27] Andreas Moser, Christopher Kruegel, and Engin
Kirda. Exploring multiple execution paths for malware
analysis. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy(Oakland’07), May 2007.

[28] Nicholas Nethercote and Julian Seward. How to
shadow every byte of memory used by a program. In
Proceedings of the 3rd international conference on
Virtual Execution Environments (VEE ’07), pages
65–74, 2007.

[29] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary
instrumentation. In PLDI, pages 89–100, 2007.

[30] James Newsome, David Brumley, Jason Franklin, and
Dawn Song. Replayer: Automatic protocol replay by
binary analysis. In Rebecca Write, Sabrina
De Capitani di Vimercati, and Vitaly Shmatikov,
editors, In the Proceedings of the 13th ACM
Conference on Computer and and Communications
Security (CCS), pages 311–321, 2006.

[31] James Newsome, David Brumley, Dawn Song, Jad
Chamcham, and Xeno Kovah. Vulnerability-specific
execution filtering for exploit prevention on
commodity software. In Proceedings of the 13th

Annual Network and Distributed System Security
Symposium (NDSS), 2006.

[32] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis, and
signature generation of exploits on commodity
software. In Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS),
February 2005.

[33] Georgios Portokalidis, Asia Slowinska, and Herbert
Bos. Argos: an emulator for fingerprinting zero-day
attacks. In EuroSys 2006, April 2006.

[34] Thomas Raffetseder, Christopher Krügel, and Engin
Kirda. Detecting system emulators. In Information
Security, 10th International Conference, ISC 2007,
pages 1–18, October 2007.

[35] Paul Royal, Mitch Halpin, David Dagon, Robert
Edmonds, and Wenke Lee. PolyUnpack: Automating
the hidden-code extraction of unpack-executing
malware. In ACSAC ’06: Proceedings of the 22nd
Annual Computer Security Applications Conference on
Annual Computer Security Applications Conference,
pages 289–300, Washington, DC, USA, 2006. IEEE
Computer Society.

11

[36] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and
reconfigurable software dynamic translation. In
Proceedings of the international symposium on Code
generation and optimization (CGO’03), pages 36–47,
Washington, DC, USA, 2003.

[37] Dawn Song, David Brumley, Heng Yin, Juan
Caballero, Ivan Jager, Min Gyung Kang, Zhenkai
Liang, James Newsome, Pongsin Poosankam, and
Prateek Saxena. BitBlaze: A new approach to
computer security via binary analysis. In Proceedings
of the 4th International Conference on Information
Systems Security. Keynote invited paper., Hyderabad,
India, December 2008.

[38] G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. In Proceedings of
the 11th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’04), October 2004.

[39] Amit Vasudevan and Ramesh Yerraballi. Cobra:
Fine-grained malware analysis using stealth
localized-executions. In SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy
(S&P’06), pages 264–279, Washington, DC, USA,
2006. IEEE Computer Society.

[40] Xuxian Jiang Xinyuan Wang and Dongyan Xu.
Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction. In
Proceedings of ACM Conference on Computer and
Communication Security, October 2007.

[41] Heng Yin, Zhenkai Liang, and Dawn Song.
HookFinder: Identifying and understanding malware
hooking behavior. In 15th Annual Network and
Distributed System Security Symposium, 2008.

[42] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: Capturing
system-wide information flow for malware detection
and analysis. In Proceedings of ACM Conference on
Computer and Communication Security, October 2007.

APPENDIX

A. CODE INSTRUMENTATION IN TEMU
Here we walk through the code instrumentation process in

TEMU, by using a concrete example shown in Figure 7. In
this example, the original code block has three instructions,
ending with a conditional jump. This original code block
is first translated into a list of statements in an intermedi-
ate form. One instruction may be translated into multiple
intermediate statements. For instance, the shaded area in
the central text block corresponds to the statements for the
first instruction. To instrument this code block, we have two
approaches. First we extend the implementation of existing
statements.

void OPPROTO op_movl_T0_0(void)

{

T0 = 0;

taintcheck_reg_clean(R_T0);

}

The above code snippet shows the implementation of the
statement movl_T0_0. In addition to assigning 0 to the tem-

0x77e87efb: xor %eax,%eax

0x77e87efd: cmp %eax,0xc(%ebp)

0x77e87f00: jne 0x77e87f11

0x0000: block_begin

0x0001: insn_begin 0x77e87efb

0x0002: movl_T0_0

0x0003: movl_EAX_T0

0x0004: nop

0x0005: movl_eip_im 0x77e87efd

0x0006: insn_end

0x0007: insn_begin 0x77e87efd

0x0008: movl_A0_EBP

0x0009: addl_A0_im 0xc

0x000a: movl_T1_EAX

0x000b: ldl_user_T0_A0

0x000c: cmpl_T0_T1_cc

0x000d: movl_eip_im 0x77e87f00

0x000e: insn_end

0x000f: insn_begin 0x77e87f00

0x0010: set_cc_op 0x10

0x0011: setz_T0_cc

0x0012: taintcheck_jnz_T0_label 0x0

0x0013: jnz_T0_label 0x0

0x0014: movl_eip_im 0x77e87f11

0x0015: jmp_label 0x1

0x0016: movl_eip_im 0x77e87f02

0x0017: movl_T0_0

0x0018: insn_end

0x0019: exit_tb

0x001a: end

0x13b981a0: call TEMU_block_begin

0x13b981a5: test %eax,%eax

0x13b981a7: je 0x13b981aa

0x13b981a9: ret

0x13b981aa: sub $0x4,%esp

0x13b981ad: movl $0x77e87efb,(%esp,1)

0x13b981b4: call TEMU_insn_begin

0x13b981b9: add $0x4,%esp

0x13b981bc: mov $0x8,%ecx

0x13b981c1: movl $0x0,0x20(%ebp)

0x13b981c8: call taintcheck_reg_clean

0x13b981cd: sub $0x4,%esp

0x13b981d0: xor %edx,%edx

0x13b981d2: mov $0x8,%ecx

0x13b981d7: mov 0x20(%ebp),%eax

0x13b981da: movl $0x4,(%esp,1)

0x13b981e1: mov %eax,0x0(%ebp)

0x13b981e4: call taintcheck_reg2reg

0x13b981e9: sub $0x4,%esp

0x13b981ec: add $0x4,%esp

0x13b981ef: movl $0x77e87efd,0x44(%ebp)

0x13b981f6: call TEMU_insn_end

… …

0x0000: block_begin

0x0001: insn_begin 0x77e87efb

0x0002: movl_T0_0

0x0003: movl_EAX_T0

0x0004: nop

0x0005: movl_eip_im 0x77e87efd

0x0006: insn_end

0x13b981a0: call TEMU_block_begin

0x13b981a5: test %eax,%eax

0x13b981a7: je 0x13b981aa

0x13b981a9: ret

0x13b981aa: sub $0x4,%esp

0x13b981ad: movl $0x77e87efb,(%esp,1)

0x13b981b4: call TEMU_insn_begin

0x13b981b9: add $0x4,%esp

0x13b981bc: mov $0x8,%ecx

0x13b981c1: movl $0x0,0x20(%ebp)

0x13b981c8: call taintcheck_reg_clean

0x13b981cd: sub $0x4,%esp

0x13b981d0: xor %edx,%edx

0x13b981d2: mov $0x8,%ecx

0x13b981d7: mov 0x20(%ebp),%eax

0x13b981da: movl $0x4,(%esp,1)

0x13b981e1: mov %eax,0x0(%ebp)

0x13b981e4: call taintcheck_reg2reg

0x13b981e9: sub $0x4,%esp

0x13b981ec: add $0x4,%esp

0x13b981ef: movl $0x77e87efd,0x44(%ebp)

0x13b981f6: call TEMU_insn_end

Original Code

Intermediate Form

Translated Code

Figure 7: An example of how TEMU instruments

code.

porary register T0, we insert a function call taintcheck_reg_clean
to clean up the annotation that may be associated with T0.
The second approach is to define and insert new statements.
The statements in bold font are new statements inserted
during instrumentation. For instance, block_begin is in-
serted for the start of a basic block, and insn_begin and
insn_end are inserted at instruction boundary. Eventually,
the intermediate statements will be translated into a block
of instructions to be executed on the host machine. For
brevity, Figure 7 only shows the translated host instruc-
tions that correspond to the first guest instruction. The
inserted statements are implemented as function calls, such
as TEMU_block_begin and TEMU_insn_begin.

12

