
Nye's Trie and Floret Estimators: Techniques for

Detecting and Repairing Divergence in the SCADS

Distributed Storage Toolkit

Jesse Trutna
David A. Patterson, Ed.
Armando Fox, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-30

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-30.html

March 18, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Nye’s Trie and Floret Estimators: Techniques for Detecting and
Repairing Divergence in the SCADS Distributed Storage Toolkit

by Jesse Trutna

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor David Patterson
Research Advisor

(Date)

* * * * * * *

Professor Armando Fox
Research Advisor/Second Reader

(Date)

Nye’s Trie and Floret Estimators: Techniques for Detecting and

Repairing Divergence in the SCADS Distributed Storage Toolkit

Jesse Trutna

March 8, 2010

Abstract

We present two novel data structures developed in
the SCADS distributed storage toolkit [4] for syn-
chronizing replicated datasets with predictable per-
formance: Nye’s trie is a lightweight index for or-
dered key-value sets that supports synchronization
with time and bandwidth utilization proportional to
the number of diverging entries. While efficient, this
process is only predictable if the number of divergent
entries can be measured. For this, we introduce the
floret estimator, a novel sublinear-space set summa-
rization structure used to estimate the cardinalities
of set difference, union, and intersection operations.

We describe how these structures satisfy the de-
sign requirements of the SCADS system, detail their
design and implementation, and present a set of mi-
crobenchmarks demonstrating their functionality.

1 Background

SCADS is a distributed storage system toolkit tar-
geting web-scale, interactive applications. The goal
of the project is to achieve “scale-independence,” or
the ability to scale an application from a single user
to hundreds of millions without application modifi-
cation or operator intervention. To provide scale-
independence, SCADS leverages techniques from ma-
chine learning, utility computing, and a custom query
language, PIQL [19].

Accepting that consistency relaxation is either
desirable or unavoidable for many applications1,
SCADS embraces it to enhance scalability. All PIQL

queries include explicit performance and consistency
requirements of the form “FETCH user BY last-
name, must complete in 30ms and be no more than
2 minutes out of date.” Reifying consistency allows
SCADS to propagate updates and maintain indexes
asynchronously.

To handle increasing traffic, a machine learning
agent, the Director, uses models of system behav-
ior to automatically allocate or deallocate resources
necessary to satisfy query requirements. The Direc-
tor may request or release machines from the utility
computing environment; migrate, replicate, and/or
coalesce hot or cold data regions; create or destroy
indexes; allocate or deallocate resources for index
maintenance and update propagation; or perform
any other action necessary to minimize resource con-
sumption while maintaining service level objectives
(SLOs). Achieving minimum resource utilization
requires monitoring traffic and workload patterns,
modeling the current state of the system, and pre-
dicting the effects of all potential actions. As a con-
sequence, synchronization, like all mechanisms used
by the Director, must have predictable performance.

1.1 Architecture

At its core, SCADS is a distributed key-value store
in the vein of Chord [23], Dynamo [12], and BigTable
[10]. This design pattern is common to most of

1. The presence of social networks make datasets non-
partitionable, requiring inter-component coordination. In dis-
tributed systems, it is impossible to preserve availability in the
presence of failures without relaxing consistency.[14]

1

the scalable data storage systems currently emerg-
ing from industry [17][1][2]. Unlike existing systems,
SCADS supports a high level language that federates
queries into lookups over materialized indexes. This
raises the programming abstraction, but makes up-
date propogation more complicated.

Records are partitioned over a cluster of indepen-
dent key-value storage nodes called storage engines.
Commonly, keys will be sorted lexicographically and
each storage engine will be responsible for some small
number of contiguous ranges. A data placement layer
keeps track of the assignment of key ranges to stor-
age engines and forwards this information to clients
on request. (See Figure 1)

Figure 1: SCADS Architecture

Storage nodes unify caching and primary storage -
if the Director needs to increase the server capacity
for a particular piece of data, it allocates a storage
engine from the utility computing environment, repli-
cates the necessary data, and updates the mapping
in the data placement layer. Synchronization is per-
formed between storage engines to maintain replica
consistency and as a step in the data migration pro-
cess.

1.2 Storage Engine

In addition to synchronization, storage engines have
two mechanisms that allow them to be directed ef-
fectively: responsibility awareness and a direct inter-

engine copy channel. The Director combines the
three mechanisms to perform all data migration and
synchronization operations.

1.2.1 Responsibility Awareness

Each storage engine is made aware of the set of data
for which it is responsible. Storage engines will return
an exception if they receive a request for data outside
their responsibility.

1.2.2 Direct Copy Port

SCADS requires frequent transfers of data between
storage servers. To avoid creating bottlenecks at the
data placement or director components, storage en-
gines feature a optimized inter-engine communication
channel. This channel is used for short-term, pairwise
communication between storage nodes for copying or
synchronizing data.

1.2.3 Synchronization/Reconciliation

The synchronization API call takes three arguments:
destination host, synchronization range, and a con-
flict resolution function. Any key-value pair within
the synchronization range that exists at the source,
but not the destination, or which has differing values
at the two hosts is passed to the conflict resolution
function. The resulting value is then installed at the
destination host.

1.3 Role of Synchronization

1.3.1 During Scale Up / Scale Down

As traffic increases, the Director will notice increas-
ing response times or increased latencies in the prop-
agation of updates to replicas. Depending on avail-
able resources and the distribution of load across the
dataset, it will either replicate hot data items or mi-
grate data away from overloaded machines. As traf-
fic decreases or particular items become less popular,
performance will improve and update latency will de-
crease. Eventually, the Director will coalesce data
and release unnecessary resources to reduce costs.

2

Migrating data during scale up and scale down is
very similar. If the destination does not have a copy
of the data, the Director first instructs the source
server to copy the specified range to the destination
server. During this copy, writes will continue to arrive
at the source. Once the copy is complete, the Director
adds the region to the responsibility policy at the des-
tination, updates the mapping at the data placement
layer, and removes the region from the responsibility
policy of the source. Finally, to propagate writes that
arrived at the source before the responsibility policy
was set, the migrated region is synchronized with an
appropriate conflict resolution function.

1. source.copy set(destination, ’m-z’)

2. destination.set responsibility(’m-z’)

3. source.set responsibility(’a-l’)

4. source.sync set(destination, ’m-z’,
resolver)

5. source.remove set(’m-z’)

Replication during scale-up is essentially identical
to migration, except the original node retains respon-
sibility for the copied range. To maintain consistency
between the replicas, sync is called as often as neces-
sary to maintain SLOs.

1. source.copy set(destination, ’m-z’)

2. destination.set responsibility(’m-z’)

3. source.sync set(destination, ’m-z’) (peri-
odically)

To remove a replica during scale-down, the region
is removed from the responsibility policy and the
range is synchronized.

1. source.set responsibility(’m-z’)

2. destination.sync set(source, ’m-z’)

The exact interleaving of responsibility assignment,
copy, and synchronization procedures produce differ-
ent consistency-availability tradeoffs. For example,
if, during the migration procedure, the responsibility
policy is set before the data is copied, synchroniza-
tion isn’t necessary, but data will be unavailable for
the duration of the copy.

1.3.2 For Failure Recovery

Partial failures are a reality of distributed storage
systems; individual machines, network switches, and
inter-datacenter links are all prone to failure or con-
gestion. Maintaining availability under these condi-
tions may require accepting writes on both sides of a
partition. When the partition is repaired, data repli-
cated across the partition must be synchronized. In
the case of single-machine or rack failures, this can be
done by a one-way sync from the non-isolated replica.
In the case of a non-isolating partitions, synchroniza-
tion must be performed in both directions.

1.3.3 For Anti-Entropy

With replication, a particular data item may be read
from any of several locations. Reading and writing to
a majority of replicas will prevent stale reads but can
lead to reduced performance or downtime in the pres-
ence of failures. Non-quorum reads and writes solve
this problem, but introduce the possibility of return-
ing arbitrarily stale results. Synchronization can be
used to ensure the propagation of updates in accor-
dance with user-specified consistency requirements.

2 Sync Overview

The synchronization mechanism in SCADS must ful-
fill a variety of roles. Migration, failure recovery, and
anti-entropy each place unique constraints on the de-
sign of the synchronization process. We summarize
these requirements below.

Efficient Synchronization over Subsets
Synchronization usually occurs over small
regions of a node’s data. Even when mov-
ing large ranges, the Director will iteratively
migrate smaller pieces to simplify modeling.
The synchronization process must be able to
handle synchronizing over these small regions
efficiently.

Proportionality in Time and Bandwidth The
most important property for our synchro-
nization implementation is that it be able to

3

synchronize over a wide range of divergences
efficiently. For cases where divergence is low,
like migration and anti-entropy, it should use
minimal network bandwidth and complete
quickly. For cases where divergence is moderate
or high, the synchronization structure should
not impose significant network overhead.

Minimal Memory/CPU Overhead Reducing ei-
ther the memory available for data storage or
the service capacity of a single machine directly
increases the total number of servers required.
In utility computing environments, additional
servers means higher operational costs.

Predictable Performance In order for the Direc-
tor to operate effectively, it must be able to pre-
dict the performance impacts of the operations it
invokes. Assuming the proportionality require-
ment is achieved, the Director must be able to
estimate the degree of divergence between repli-
cated regions before beginning synchronization.

3 Nye’s Trie

Named in honor of Bill Nye, Nye’s Trie is
a lightweight, incrementally-updatable aggregation
and search-based synchronization mechanism. Nye’s
trie uses a modified burst trie [15] to build a
lightweight index for generating Merkle trees [18] over
subsets of an ordered key-value database. The use
of a burst trie gives us a tunably space-efficient way
to store a tree of precomputed results and amelio-
rates the consequences of having many small records.
Merkle trees [18] allow us to synchronize remote sets
efficiently.

Unfortunately, burst tries are not directly
amenable for use as a synchronization structure. We
detail a set of modifications that enable the efficient
construction of Merkle trees over burst tries and al-
low efficient use of a pre-existing backing store.

3.1 Supporting Synchronization

3.1.1 Replace Interior Hashing with XOR-
mixing

Merkle trees support synchronization with running
time and bandwidth utilization proportional to the
number of differences between sets, but are relatively
expensive to maintain. When a key-value pair is in-
serted, the hash of every node along the path from
root to leaf must be recalculated. (See Figure 2) This
requires reading every sibling of every ancestor of
the inserted key and recomputing H cryptographic
hashes, where H is the length of the path.

Figure 2: Insertion with cryptographic rehashing

The problem is exacerbated by moving to a burst
trie. Here, when a record is inserted, the container
node must recalculate the hash from the contained
nodes. This necessitates recreating a complete trie
comprised of all contained children, calculating the
hash value for every leaf and interior node and re-
turning this value. This may need to be done for
up to b containers, where b is the maximum branch-
ing factor of the trie. In addition, maintaining the
integrity of the hash calculation means locking the
contained range during the recalculation of the hash.

In a Nye’s Trie, we avoid these difficulties by
slightly weakening the anti-collision properties of the
the tree. Instead of computing a cryptographic hash
at each node, we generate cryptographic hashes only
at the leaves and combine interior values by taking
their XOR. Since XOR is commutative and associa-
tive, updates are fast - updating the trie only requires

4

XOR’ing in the hashed value to every node in the root
to leaf traversal. (See Figure 3)

Figure 3: Insertion with xor mixing

This gives us an extremely efficient way to update
the synchronization structure. On insertion, we cal-
culate a cryptographic hash for the new key-value
pair. We then perform a simple traversal of the trie,
XOR’ing in the new hash as we descend.

Since XOR is its own inverse, updates are similarly
simplified. The old value is read from the backing
store, its hash is calculated, he hash of the new value
is calculated, and a single traversal from root to con-
tainer node is performed, XOR-ing both values along
the way.

It seems clear that replacing cryptographic rehash-
ing with XOR will weaken the anti-collision proper-
ties of the trie - XOR is associative and cryptographic
hashes are not. Still, XOR is entropy-preserving, and
cryptographic hashing at the leaves provides a degree
of protection. Intuitively, we note that the introduc-
tion of a new key-value pair to the trie has a 50%2

chance of flipping each bit of the root hash, giving us
strong avalanche properties. A formal analysis of the
effects are future work, but similar tricks have been
used in other papers [8] without comment.

3.1.2 Implicit Containers

With XOR-mixing, we can use a burst trie as the
basis of our synchronization structure. But doing
so would be inefficient in terms of memory utiliza-
tion - the key of every key-value pair in the database
would be redundantly stored in a container node. In
SCADS, we already have a data structure that stores
the key-value pairs, the BDB tree that backs the
storage engine. Nor is this a minor concern. Data
items are likely to be small, on the order of hun-
dreds of bytes. And with lexicographic sorting, keys

are often semantically meaningful. They may include
date stamps, GUIDs, and other meaningful data. Re-
dundant storage of keys would likely incur significant
space overhead for many applications

We can leverage the backing store to accomplish
significant memory savings at the expense of a small
increase in reconstruction time during synchroniza-
tion. First, we replace each container node in the
burst trie with a pointer to the appropriate portion
of the BDB Tree. We can accomplish this implicitly
since the path to a container node is precisely the pre-
fix of the keys of the records it contains. Recognizing
this, we turn container nodes into simple structures
containing just the number, total size of records, and
XOR’d digest of all “contained” records. If a con-
tainer node needs to be burst, we simply retrieve all
records prefixed by the path to the node from the
backing store.

We no longer redundantly store key suffixes and, as
important, we no longer store a digest for every key-
value pair inserted into the trie. Again, key-value
pairs are likely to be small, on the order of hundreds
of bytes, and digests are large in relation - a 16-byte
digest for each 100-byte record would impose a 16%
memory overhead. Instead of storing a digest for each
entry, we store digests for groups of entries whose ag-
gregate size is approximately that of the burst thresh-
old for containers. If we are required to examine the
digest for entries in a container node, we simply burst
it and reconstruct the trie of its contents.

The bursting size of containers is a tunable param-
eter. With it, the operator can control the tradeoff
between the total size of the digest trie and the la-
tency penalty for bursting containers. A reasonable
size for a container would be some small multiple of
the systems’ block size.

3.1.3 Efficient Sub-Trie Construction

The only occasion where synchronization is per-
formed over a entire range is in the case of a par-
tition between two identical replicas. Even in this
case, the Director is likely to perform synchroniza-
tion in a piecemeal fashion. It is much more common

2. Assuming a good hash function.

5

for synchronization to be performed over small por-
tions of a replicated region. Before synchronization
can begin, participating nodes must construct tries
that cover just the requested ranges.

Figure 4: Filtering without hash recalculation

Replacing traditional hashing with XOR-mixing
offers advantages here as well. Since XOR is asso-
ciative and the digest of an interior node is the XOR
of the hashes of all records with that prefix, we can
quickly reconstruct a Nye’s trie by simply pruning
the parent trie. (See Figure 4) This requires travers-
ing the trie with the begin and end keys for the range
and splitting at most two container nodes.

3.2 Application to General Aggre-
gates

We note that the technique detailed above for con-
struction of subtries could be used to compute any
associative aggregate over a contiguous subset of en-
tries. Bursting and coalescing nodes already requires
maintaining the count and aggregate size of inserted
key-value pairs. Invertible, associative aggregates like
sum and count can be maintained in exactly the same
top-down fashion as the hash digest. Non-invertible
aggregates like max or min require an additional
bottom-up pass to handle deletions. Returning the
value stored at the pruned root node allows a Nye’s
trie to be used as a index for calculating these aggre-
gates. Returning subsequent levels allows the trie to
be used as a kind of “prefix-width” histogram.

4 Floret Estimator

Providing time and bandwidth proportionality is not
sufficient to make synchronization predictable: With-
out knowing how divergent candidate regions are, the

Director cannot estimate how long synchronization
will take. Ideally, we would be able to estimate the
exact number of differing elements at each host. Un-
fortunately, existing set similarity techniques focus
on fractional overlap and are either not incremen-
tally updatable [7] or have estimation time linear in
the size of the compared sets [3].

We present preliminary work on a new set simi-
larity estimation technique, the floret estimator, that
estimates the number of non-shared values in each of
the compared sets, can be updated to reflect inser-
tions and deletions, and has estimation time linear
in the size of the sketch. The estimator’s accuracy
is inversely proportional to the number of differing
items, making it functional as a set checksum.

A floret estimator is built around a degenerate
counting Bloom filter [13]. To construct a floret es-
timator, each host builds a sketch consisting of an
array of n counters. Each element of the set is then
hashed to a positive integer less than n and the re-
spective counter is incremented. For deletions or up-
dates, the counter is decremented. To estimate simi-
larity between two sets, we construct a new array by
subtracting sketches element-wise. By examining the
distribution of resulting values, we can estimate the
number of entries unique to each side: The variance
gives an estimate of the total number of differing val-
ues. The mean measures the relative assignment of
these differences.

More formally, we construct a floret estimator by
initializing an array of n b-bit counters. n and b are
selected to ensure that no particular bucket will re-
ceive more than 2b items and to tune the accuracy of
the estimator.3 We hash each element to a counter
using a hash function with good avalanche properties.
(See Figure 5) To estimate the similarity between two
sets, we construct a new array C. If Ai is the value of
the i-th counter for estimator A and Bi is the value
of the i-th counter in estimator B, we set

Ci = Ai −Bi

3. The expected size is m/n with variance m/(n(n − 1))
where m is the cardinality of the represented set. Increasing n
decreases the variance of the estimator.

6

We then calculate the sample mean

x̄ =
1
n

n−1∑
i=0

Ci.

and sample variance

S2 =
1

n− 1

n−1∑
i=0

(Ci − x̄)2

and return a pair of values, [n2 (n
n−1S

2 + x̄),
n
2 (n

n−1S
2− x̄)] representing the number of unique el-

ements in the left and right sets, respectively.

Figure 5: Floret estimator construction

4.1 Derivation

Consider a floret estimator fA built over a set A′ and
a floret estimator fB built over a set B′ using the
same number of buckets and the same hash function.
Let A′i be the value of the i-th counter of fA. Let B′i
be the value of the i-th counter of fB . Let C be an
array of size n where

Ci = A′i −B′i
We note that any element |A′ ∩ B′| will map to the
same counter in both fA and fB . Thus

Ci = Ai −Bi
where Ai is the number of elements from A−B falling
into the i-th counter of fA and Bi is the number
of elements from B − A falling into the i-th counter

of fB . Since all elements are assigned to random
buckets, Ai is a binomial random variable with mean

a = |A−B|
and

p = 1/n

and Bi is binomial with mean

b = |B −A|
and

p = 1/n

We note that a and b are precisely the values we
would like to estimate. Using the properties of ex-
pectation and variance, we derive

E[Ci] = E[Ai −Bi]
= E[Ai]− E[Bi]

=
a

n
− b

n

= (a− b) 1
n

V ar[Ci] = V ar[Ai −Bi]
= V ar[Ai] + V ar[Bi]− Cov[Ai, Bi]

= a
n− 1
n2

+ b
n− 1
n2

− 0

= (a+ b)
n− 1
n2

We know have two equations and four unknowns. We
don’t know the true expectation and variance of Ci,
but we do have n “samples” from Ci: C0, C1, ...,
Cn−1. We can use these samples to calculate the
sample mean

x̄ =
1
n

n−1∑
i=0

Ci.

and sample variance

S2 =
1

n− 1

n−1∑
i=0

(Ci − x̄)2.

then substitute these unbiased estimators for the un-
known expectation and variance.

x̄ = (a− b) 1
n

7

S2 = (a+ b)
n− 1
n2

We can now solve for a and b. After algebraic ma-
nipulation, we arrive at our estimates for a and b.

a =
n

2
(

n

n− 1
S2 + x̄)

b =
n

2
(

n

n− 1
S2 − x̄)

4.2 Error

We note that in calculating the sample mean and
sample variance, we’ve relied on the assumption that
our samples from C are independent. They are not.
The algorithm could be altered to make the sam-
ples independent by incrementing each bucket with
some fixed probability. This would require the gen-
eration of a seeded random number for each bucket
and doesn’t seem to improve accuracy in practice:
The current approach has the advantage that x̄ =
E[Ci] = µ can be calculated exactly, removing es-
timation error for this quantity. Knowing µ means
the only source of estimation error in our original ap-
proach is the error inherent in estimating S2 and the
error from assuming independence.

Another important characteristic of both ap-
proaches is that the error of the estimator decreases
as the number of divergent elements decreases. This
follows since V ar(x̄) = σ2

n , V ar(S2) = (2σ4

n−1 + µ4
n),

and σ2, µ4 → 0 as a, b → 0. This is a particularly
useful property for detecting single record changes in
large data sets.

Another way to reduce estimation error would be
to maintain multiple floret estimators in parallel.
With different hash functions, the sample variances
derived from each estimator become samples from the
distribution of the sample variance itself. This would
also help to minimize the effects of the faulty inde-
pendence assumption.

An full analysis of the effects of the independence
assumption, the tradeoff in accuracy between con-
structing multiple small floret estimators versus a sin-
gle large one, and a more formal analysis of all floret
estimator properties is an area of future work.

4.3 Other measures

Since the sum of the entries in a floret estimator is
equal to the size of the represented set,

|A| =
n−1∑
i=0

Ai

and the floret estimator estimates |A−B| and |B−A|,
the floret estimator can be used to derive a number of
alternative quantities. These include the cardinality
of the intersection

|A ∩B| = |A| − |A−B|
the cardinality of the union

|A ∪B| = |A|+ |B −A|
the Jaccard coefficient [16]

J(A,B) =
|A ∩B|
|A ∪B|

the Jaccard distance

Jδ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
and set containment [6]

c(A,B) =
|A ∩B|
|A|

.

5 Implementation

5.1 Nye’s Trie

The prototype for our synchronization trie is imple-
mented as a in-memory data structure in Java. To
provide a stub implementation of the BDB backing
store, we used the Java version of the BDB library.

5.2 Floret Estimator

The prototype for the floret estimator is implemented
as a simple Java class. The MurmurHash function
was used to populate the floret estimator array. The
Apache Commons Math library was used to calculate
mean and variance.

8

5.3 Synchronization Procedure

The data placement layer begins the synchronization
procedure by instructing a storage node to synchro-
nize a range of keys with a destination node and par-
ticular conflict resolution function. The source node,
A, constructs a trie over that range, opens a channel
to the remote node and passes its own address, the
synchronization range, conflict resolution function,
and the hash value of its root node. The remote node
constructs its own hash trie over the specified range
and compares the hash of the root. If the hashes are
the same, it returns true and the synchronization call
is trivially complete. If the hashes are not the same,
it returns false and synchronization begins.

To perform the sync, both nodes maintain four
data structures: A “failed” queue that contains the
integer ids of those nodes whose hashes do not match.
A “consider” queue containing a serialized represen-
tation of a nodes children. A “sync” queue that con-
tains the integer ids of key-value pairs which should
be transferred from the source to destination. And a
“edge” dictionary that maps integer ids to nodes in
the hash trie. The “edge” dictionary represents the
unresolved nodes in the synchronization process. It
can be thought of as a wavefront descending the trie.
The destination maintains a fourth queue, “records”,
containing key-value pairs that should be resolved.

while !sync_finished

id <- failed.pop

node <- edge.get(id)

if node.is_a? container

node <- burst(node)

end

if node.occupancy == 1

sync << node

else

consider << construct_childset(id, node)

end

end

Figure 6: Source Synchronization Thread

All communication between the storage nodes is
done asynchronously through the insertion and re-
moval of entries from these queues. Before send-
ing the “false” response, the destination node adds

def construct_childset(id, node)

res = ""

res << id

res << node.children.size

for child_edge in node.out_edges

child_id = ID_SOURCE++

child = node.get_child(child_edge)

edge[child_id] = child

res << child_id

res << child_edge

res << child.hash

end

edge.delete(id)

return res

end

Figure 7: Child Set Constructor

while !sync_finished

child_set <- consider.pop()

id <- child_set.id

node <- edge.get(id)

if node.is_a? container

node <- burst(node)

end

for child in child_set

local_child = node.get_child(child.edge)

if local_child == null

sync << child.id

else if local_child.hash != child.hash

edge[child.id] = local_child

fail << child.id

end

end

edge.delete(id)

end

Figure 8: Destination Synchronization Thread

9

a mapping from 0 to its root node in its edge set.
Upon receiving a “false” response, the source node
puts a mapping from 0 to its root node in its edge
set and a 0 in the failed queue. The source and des-
tination then start their respective synchronization
threads.

Independent threads at the source drain the “con-
sider” and “sync” queues, transferring child sets and
key-value pairs to the destination “consider” and
“records” queues respectively. Similarly, threads ex-
ist at the destination which drain the “failed” and
“sync” queues, transferring integer node ids to the
source “failed” and “sync” queues.

A thread at the destination polls the “records”
queue and applies the conflict resolution function
to the remote and the local values for retrieved
records. The result of this resolutionis written into
the database. If a bidirectional sync is desired, the
algorithm must be modified to achieve consensus on
the result in the presence of intervening writes.

5.4 Nye’s Trie - Bulk Loading

With implicit containers, our Nye’s Trie doesn’t ac-
tually store any of the records it summarizes. This
presents a unique problem when constructing the
trie over a large pre-built data set: The naive ap-
proach of iteratively inserting records requires re-
reading ranges from the underlying store as contain-
ers are repeatedly burst.

To avoid this overhead, we present a algorithm for
efficiently bulk-loading a burst trie. We start with
a single root node, then insert records in increasing
lexicographic order sorted by key.

For each key, we construct a full, uncompressed
path through the trie - if the key was ‘foo’, we would
construct nodes corresponding to ‘f’, ‘fo’, and ‘foo’.
After the path is constructed, the previously inserted
key is inspected. We consider the currently and previ-
ously inserted keys as siblings of the node correspond-
ing to their largest common prefix. We note that no
records will be inserted into the subtrie rooted at the
child node corresponding to the “left”, or previously
inserted, sibling. It is thus safe to traverse that sub-
trie and collapse any branches that do not meet the
bursting criteria. Since container nodes are implicit,

his is a simple as removing all the nodes children.
Pseudocode follows:

class Node

occupancy = 0

volume = 0

children = {}

insert(key, value)

occupancy <- occupancy + 1

volume <- volume + value.size

if key.size > 0

edge <- key.charAt(0)

if !children.include?(edge)

children[edge] = new Node

end

child = children[edge]

suffix = key.substring(1, key.length)

child.insert(suffix, value)

end

end

end

constructFrom(records) {

root = new Node();

prev = []

for record in records

key = record.key

value = record.value

root.insert(key, value)

newPath = traverse(root, key)

i <- 0

while prevPath[i] == newPath[i]

i <- i + 1

end

while i < prevPath.length

ptr <- prevPath[i]

if ptr.volume < THRESHOLD

ptr.children = null

end

i++

end

end

return root

end

6 Evaluation

6.1 Synchronization - Bandwidth

This test measures the network utilization of synchro-
nization as a function of divergence. We construct a
replicated region consisting of one million 100-byte

10

sequential key-value pairs on two separate machines
Increasing percentages of both sets were modified and
the synchronization algorithm was run. The com-
munication channel between the engines was instru-
mented to record the total volume of data transferred.
The line marked “enumeration” indicates the total
size of the range as reported by the underlying berke-
ley database and represents the bandwidth cost of
transferring the entire data set directly. In a real
implementation, compression would be used in both
algorithms.

Figure 9: Network utilization of hash trie

Figure 9 shows the desired linear increase in band-
width utilization as the degree of divergence is in-
creased.

6.2 Synchronization - Time

For this test, we again constructed a replicated region
consisting of one million 100-byte key-value pairs on
separate machines. Increasing percentages of both
sets were modified and the synchronization algorithm
was run.

Figure 10 shows the desired, approximately, linear
increase in synchronization time as the degree of di-
vergence is increased

6.3 Nye’s Trie - Memory Footprint

To test the memory overhead of the Nye’s trie, we
constructed a BDB database with 400,000 256-byte
records, each with a 13-byte key. Using the Class-
mexer instrumentation library, we measured the deep

Figure 10: Synchronization time

memory utilization of the database. We then mea-
sured the overhead of creating the same database
with a hash trie, a Nye’s trie with burst size of 4KB,
and a Nye’s trie with a burst size of 32KB. Figure
11 shows the percentage overhead incurred by each
structure.

Figure 11: Memory overhead of tries

Figure 11 shows a significant reduction in memory
overhead between the Hash Trie and the default Nye’s
trie (12.8% to 1.3%). Increasing the burst size to 32K

11

reduces the memory overhead to .14%.

6.4 Nye’s Trie - Write Overhead

To test the impact of maintaining the Nye’s trie on
write speed, we measured the time required to insert
100,000 256-byte records into a BDB database with-
out synchronization support, with a hash trie, and
with a Nye’s trie. Writes were made to sequential
keys and, to avoid the overhead of bulk-loading, the
structures were pre-populated. This test is really a
measure of update speed. In the common case for
a Nye’s trie, the update path is nearly identical to
the regular write path with the exception that one
additional hash must be calculated.

Figure 12: Insertion overhead of tries (non-durable
writes)

Figure 12 demonstrates a 64% slowdown for the
Hash trie and about a 21% slowdown for the Nye’s
trie. These were non-durable writes, so updates were
not flushed to disk. If BDB is configured to use
durable writes, insert performance drops so sharply
that overhead from either structure becomes negligi-
ble.

6.5 Floret Estimator

To test the accuracy of the floret estimator, we con-
struct two sets with 1000 identical elements. From
time 0 to 50, we insert additional unique records into
the first floret estimator a. From time 50 to 150, we
insert additional elements into the second floret esti-
mator b. The first 50 of these records are the same as
those previously inserted into a. We chart the actual
and estimated number of differing values.

Figure 13: Estimator accuracy

As evidenced by Figure 13, the floret estimator
closely estimates the actual divergence of the under-
lying sets. Around t = 69, there is a spike in the
estimation of the number of unique elements in the
second floret estimator. The value should be zero,
but spikes to about 18. This is a consequence of the
fact that estimator accuracy is proportional to the
total degree of divergence, e.g. the total number of
differing entries, not the one-sided difference.

To test the effect of changing the number of buckets
in a floret estimator, we construct a series of floret
estimator with increasing bucket sizes. (See figure 14)
We ran 50 trials, each with 131072 divergent values
and recorded the standard deviation of the results as
a percentage of the total.

At 512 buckets, or a sketch size of about 1.5KB, the

12

Figure 14: Estimate Std. Dev as % of total number
of differing values

floret estimator has a standard deviation of about 6%
from the total number of differing records.

7 Future Work

In designing the SCADS synchronization mechanism
we’ve focused on satisfying the requirements of higher
layers with a simple, versatile approach whose perfor-
mance characteristics can be predicted easily. There
are a number of alternative approaches to the prob-
lems of migration and anti-entropy whose perfor-
mance characteristics are less clear.

Dynamo-like [12] systems use a procedure called
read-repair to handle diverging replicas. Here di-
vergence is detected at read time through the use
of vector clocks. This might be characterized as
lazy conflict resolution whereas our approach is
preemptive.Read-repair would be implemented at the
client library in the SCADS system, but would re-
move the necessity of supporting this behavior at the
storage engine and might change some of the design
considerations for the synchronization structure.

Hinted-Handoff is another technique used by the

Dynamo system, this time to improve availability.
Under hinted-handoff, if a replica cannot be reached,
the write is cached at a peer node who periodically at-
tempts to forward the write to the responsible node.
The performance characteristics and complexity of
implementing hinted-handoff in a system supporting
scale-down is unclear, but supporting this behavior
at the storage node may worth investigating.

Data migration is currently a three part procedure
implemented by independent mechanisms. Support-
ing this process as a single primitive could yield sig-
nifigant performance improvements. In particular,
the VMWare approach to migrating live virtual ma-
chines [11] seems like it could be adapted for synchro-
nization. Under this approach, while performing the
initial copy, we would log writes made to the copied
region. After the initial copy was complete, we would
copy the logged writes to destination host. While
copying this smaller set, we would again log any write
made to a record being copied. This process of copy-
ing and logging writes would continue until the set
of pending copies stops shrinking. At that point the
responsibility policy would be atomically swapped to
prevent further writes, and the final logged set would
be synchronized. Modeling this process seems signif-
icantly more complicated, but the potential perfor-
mance enhancements may be worth it

Approaches inspired by log shipping are another
avenue for exploration. Our current approach to syn-
chronization determines difference based on value.
For frequent synchronizations, this requires retrans-
mitting key-value pairs that may have already been
determined not to conflict. A log shipping based ap-
proach would include the notion of time. Here, stor-
age nodes would maintain state about their synchro-
nization history, synchronizing only those writes ar-
riving after the previous synchronization. This would
introduce a quantity of state between storage nodes
which would complicate modeling and scaling. A
simpler alternative might be to have storage nodes
maintain just a pairwise synchronization log, and
only transmit writes that occurred after the preced-
ing sync.

Hash tries also have a number of weaknesses that
may be addressed with hybrid or alternate synchro-
nization algorithms: For moderate to high degrees

13

of divergence, every container (or interior node in an
non-burst trie) will contain a diverging node. In these
cases, the entire interior of the trie will be sent, ne-
cessitating a large number of round trips and unnec-
essary network overhead.

Figure 15: Divergence v. Bandwidth (normalized)

For moderate degrees of divergence, it may be
faster and more bandwidth efficient to just transmit
a digest for every key-value pair, then respond with
unmatched records. For very high degrees of diver-
gence, it may be more efficient to send the entire data
set unmodified. (See Figure 15)

8 Related Work

8.1 Set Reconciliation

Merkle Trees and Hash Tries are both examples of
“search-based” approaches to the more general prob-
lem of set reconciliation. Here, iterative rounds of
communication are used to isolate those elements of
the respective sets that do not match.

An alternative to search-based methods are enu-
meration methods. We have previously mentioned
two; sending the entire data set sending a digest for
every element of the data set. These approaches give
predictable performance, but are bandwidth ineffi-
cient when the degree of divergence is small.

In [21], Minsky et al. describe a synchronization
approach with nearly optimal communication com-

plexity. Here, entries in the set are represented as
b-bit integers over a finite field. Each peer maintains
a n-degree polynomial of the form (X − en)(X −
en−1)...(X − e0) where ei is the ith element of the
set. This polynomial has roots at exactly the ele-
ments of the set. To perform synchronization, nodes
exchange the upper terms of this polynomial, divide,
and factor to recover missing elements. This yields
a one round synchronization process with computa-
tional complexity O(n3). [20] demonstrates a tech-
nique to reduce this complexity by engaging in multi-
ple rounds of communication. This technique is com-
plex and the fixed-length requirement poses problems
for variable-length data. Variable-length entries can
be converted to a fixed length elements through a
process like hashing, but this requires maintaining
a dictionary mapping hashes to elements which may
grow large for high degrees of divergence.

There are also a variety of approximate reconcil-
iation techniques that aren’t directly useful for our
needs, but could be used as a preliminary step to
reduce the degree of divergence and, hence, overall
sync time. One approximate approach, presented in
[9], is to uses Bloom filters to construct approximate
representations of each set. To synchronize, the desti-
nation node maintains a Bloom filter of all its records
and transmits this to the source. The source iterates
through its elements, checking for their presence in
the Bloom filter. Any element not found in the fil-
ter is known to either be a mismatch or an element
only present at the source. False positives will result
in diverging replicas being missed. Bloom filters in-
duce minimal communication overhead, but require
the source to iterate through its entire set of entries.
This makes the approach infeasibly slow for small de-
grees of divergence.

In [8], Byers and Mitzenmacher detail a hybrid
merkle tree/Bloom filter approach that collapses in-
terior and leaf nodes into Bloom filters and uses this
to prune the hash tree search. A variant of this may
be useful for reducing the degree of divergence be-
fore running our exact synchronization approach and
bears investigation.

Set reconciliation is also related to the more general
area of error-correcting codes and there may be tech-
niques from this area of work that could be adapted.

14

8.2 Set Similarity

The simplest technique for the similarity of two sets
are based on random sampling. Here, a set of ele-
ments is selected more or less at random from one set
and checked for inclusion at the other. The fraction
of shared elements is used to estimate the similarity
of the sets. Ensuring an accurate measurement gen-
erally requires a large sample and techniques do not
handle small degrees of divergence well. Estimating
similarity requires transmitting the entire set of sam-
pled elements to the remote host and performing a
lookup for every element. This is slow and poten-
tially bandwidth intensive for large samples.

A more efficient way to estimate similarity is to use
a sketch, or approximate set representation. Assum-
ing a finite, ordered universe of elements U , min-wise
sketching [5] involves creating N random permuta-
tions of the universe, applying each permutation to
the input set, and taking the minimum element of
each resulting set. This universe is generally a finite
set of consecutive integers. This results in a vector
of N elements. Similarity is estimated by comparing
the ratio of matching elements to the total number of
elements. A particular element will match only if the
same pre-image exists in both sets (w.h.p. if hash-
ing is applied). The sketch may be updated when
new elements are added to the represented sketch
by applying the N permutation functions and taking
the minimum of this generated value and the current
value in the sketch. Min-wise sketches are a compact,
fast way to estimate set similarity, but cannot handle
deletion or updates of existing elements - the “min”
operation is not invertible.

Wrapped filters are sketch-based similarity estima-
tion approach that can handle insertions and dele-
tions [3]. Here, a counting Bloom filter is main-
tained for each set. To estimate similarity, the filter
is transmitted to the remote host. The remote host
iterates through its entire dataset, checking each ele-
ment against the Bloom filter. If element matches the
Bloom filter, the buckets touched by that element are
decremented. Even if the element was not actually in
the filter, the decrementing process is likely to cause
the actual element to not match when it is checked.
Since only the number of matching elements is de-

sired, these two “errors” cancel out. Unfortunately,
wrapped filters require iterating through every ele-
ment in one of the sets and are prohibitively slow for
our purposes.

Outside of set similarity, there is a large body of
work on estimating similarity for computer foren-
sics, data streams, document clustering, and locality-
sensitive hashing. Most of these are focused on find-
ing similarity for static data or append-only data
items and do not handle updates or deletions. Still,
investigating these areas for applicable techniques is
an area of future work.

md5bloom also uses the statistical properties of
Bloom filters to estimate similarity, but bases its
analysis on the number of matching bits between reg-
ular Bloom filters, not the magnitude of difference
between counting Bloom filters [22]. md5bloom was
designed for computer forensics on static files and
does not handle updates or deletions.

9 Conclusion

We have demonstrated two novel data structures, the
Floret Estimator and Nye’s Trie, which form a syn-
chronization mechanism for the SCADS data storage
system that is predictable, lightweight in both mem-
ory and CPU overhead, and uses time and bandwidth
in proportion to the degree of divergence in the syn-
chronized range.

10 Acknowledgments

It is with deep gratitude that I’d like to thank my
advisors Armando Fox and David Patterson; Profes-
sor Michael Franklin; fellow graduate students and
SCADmates Nick Lanham, Michael Armbrust, Beth
Trushkowsky, Peter Bodik, and Kristal Sauer; under-
graduate researchers Steven Schlankser, Borden Liu,
and Haruki Oh; the RAD Lab; and U.C. Berkeley for
the opportunity to work, study, and discover with
them on a fun and fascinating project. I’d also like
to thank Andrew Krioukov for harassing me about
early versions of my abstract, Blaine Nelson for help
with maths, Neil Conway for insight into databases,

15

and the CSUA’s Brandon Liu for assistance in nam-
ing my data structures. Finally, I must express my
deep, personal gratitude to the illustrious Phillip Ed-
ward Nunez for being such an unbelievable friend,
mentor, and inspiration. Thanks Phil.

I’d also like to thank the many sponsors with-
out whom my research would not have been possi-
ble. This research was supported in part by gifts
from Sun Microsystems, Google, Microsoft, Amazon
Web Services, Cisco Systems, Cloudera, eBay, Face-
book, Fujitsu, Hewlett-Packard, Intel, Network Ap-
pliance, SAP, VMWare and Yahoo! and by matching
funds from the State of California’s MICRO program
(grants 06-152, 07-010, 06-148, 07-012, 06-146, 07-
009, 06-147, 07-013, 06-149, 06-150, and 07-008), the
National Science Foundation (grant #CNS-0509559),
and the University of California Industry/University
Cooperative Research Program (UC Discovery) grant
COM07-10240.

References

[1] Hypertable: An open source, high performance,
scalable database. http://hypertable.org/.

[2] Project Voldemort. http://project-
voldemort.com/.

[3] Agarwal, S., and Trachtenberg, A. Ap-
proximating the number of differences between
remote sets. In IEEE Information Theory Work-
shop, 2006. ITW’06 Punta del Este (2006), Cite-
seer, pp. 217–221.

[4] Armbrust, M., Fox, A., Patterson, D.,
Lanham, N., Trushkowsky, B., Trutna,
J., and Oh, H. SCADS: Scale-independent
storage for social computing applications. In
Proc. CIDR (2009).

[5] Broder, A., Charikar, M., Frieze, A., and
Mitzenmacher, M. Min-wise independent per-
mutations. Journal of Computer and System
Sciences 60, 3 (2000), 630–659.

[6] Broder, A., et al. On the resemblance and
containment of documents. In Proceedings of

the Compression and Complexity of Sequences
(1997), vol. 1997, Citeseer.

[7] Broder, A. Z., Charikar, M., Frieze,
A. M., and Mitzenmacher, M. Min-wise in-
dependent permutations. Journal of Computer
and System Sciences 60 (1998), 327–336.

[8] Byers, J., Considine, J., and Mitzen-
macher, M. Fast approximate reconciliation
of set differences. In BU Computer Science TR
(2002), pp. 2002–19.

[9] Byers, J., Considine, J., Mitzenmacher,
M., and Rost, S. Informed content delivery
across adaptive overlay networks. IEEE/ACM
Transactions on Networking (TON) 12, 5
(2004), 767–780.

[10] Chang, F., Dean, J., Ghemawat, S., Hsieh,
W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E.
Bigtable: A distributed storage system for struc-
tured data. In OSDI 06 (November 2006).

[11] Clark, C., Fraser, K., Hand, S., Hansen,
J., Jul, E., Limpach, C., Pratt, I., and
Warfield, A. Live migration of virtual ma-
chines.

[12] Decandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P.,
and Vogels, W. In SOSP (2007) (New York,
NY, USA).

[13] Fan, L., Cao, P., Almeida, J., and Broder,
A. Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM Transac-
tions on Networking (TON) 8, 3 (2000), 293.

[14] Gilbert, S., and Lynch, N. Brewer’s con-
jecture and the feasibility of consistent avail-
able partition-tolerant web services. In In ACM
SIGACT News (2002), p. 2002.

[15] Heinz, S., Zobel, J., and Williams, H. E.
Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. 20, 2 (2002),
192–223.

16

[16] Jaccard, P. Étude comparative de la distri-
bution florale dans une portion des Alpes et des
Jura. Bulletin del la Société Vaudoise des Sci-
ences Naturelles 37 (1901), 547–579.

[17] Lakshman, A., and Malik, P. Cassandra:
A structured storage system on a p2p network.
Presented at SIGMOD 2008.

[18] Merkle, R. C. A digital signature based on a
conventional encryption function. In CRYPTO
’87: A Conference on the Theory and Applica-
tions of Cryptographic Techniques on Advances
in Cryptology (London, UK, 1988), Springer-
Verlag, pp. 369–378.

[19] Michael Armbrust, Nick Lanham, S. T.
A. F. M. J. F. D. A. P. Piql: A performance
insightful query language for interactive applica-
tions, 2010.

[20] Minsky, Y., and Trachtenberg, A. Practi-
cal set reconciliation, 2002.

[21] Minsky, Y., Trachtenberg, A., and Zip-
pel, R. Set reconciliation with nearly op-
timal communication complexity. In in In-
ternational Symposium on Information Theory
(2000), p. 232.

[22] Roussev, V., Chen, Y., Bourg, T., and
Richard, G. md5bloom: Forensic filesystem
hashing revisited. digital investigation 3 (2006),
82–90.

[23] Stoica, I., Morris, R., Karger, D.,
Kaashoek, M. F., and Balakrishnan, H.
Chord: A scalable peer-to-peer lookup service
for internet applications. pp. 149–160.

17

