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Abstract

We propose a method to perform adaptive transfer of visual cate-
gory knowledge from labeled datasets acquired in one image domain to
other environments. We learn a representation which minimizes the ef-
fect of shifting between source and target domains using a novel metric
learning approach. The key idea of our approach to domain adapta-
tion is to learn a metric that compensates for the transformation of the
object representation that occurred due to the domain shift. In addi-
tion to being one of the first studies of domain adaptation for object
recognition, this work develops a general adaptation technique that
could be applied to non-image data. Another contribution is a new
image database for studying the effects of visual domain shift on ob-
ject recognition. We demonstrate the ability of our adaptation method
to improve performance of classifiers on new domains that have very
little labeled data.

1 Introduction

Supervised classification methods, such as kernel-based and nearest-neighbor
classifiers, have been shown to perform very well on standard object recog-
nition tasks (e.g. [1], [2], [3]). However, many such methods expect the
test images to come from the same distribution as the training images, and
often fail when presented with a novel visual domain. While the problem
of domain adaptation has received significant recent attention in the nat-
ural language processing community, it has been overlooked in the object
recognition field. In this paper, we explore the issue of domain shift in
the context of object recognition, and present a novel method that adapts
existing classifiers to new domains where labeled data is scarce.
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source domain target domain

train test SVM-bow NBNN [3]
source source 54 ± 2 61 ± 1
source target 20 ± 1 19 ± 1

Figure 1: (a) Example of extreme visual domain shift. (b) Degradation of
the performance of two object classification methods (an SVM over a bag-
of-words representation (SVM-bow) and the Naive Bayes nearest neighbor
(NBNN) classifier of [3]) when trained and tested on these image domains
(see Sec.5 for dataset descriptions). Classification accuracy is averaged over
31 object categories, and over 5 random 80%-20% splits into train/test data.

There are many scenarios where we have a source domain with plenty
of labeled examples, but want to recognize objects in a target domain for
which we have very few labels. As Figure 1 shows, it is often insufficient to
just train the object classifier on the source domain, as its performance can
degrade significantly on the target domain. Even when the same features are
extracted in both domains, and the necessary normalization is performed on
the image and the feature vectors, the underlying cause of the domain shift
can change the feature distribution and thus violate the assumptions of the
classifier. There are many possible causes of visual domain shift, including
changes in the camera used to collect the data, the resolution of the images,
the lighting, the background, and even the prevalent pose of the objects.
In the extreme case, all of these changes take place, such as when shifting
from typical object category datasets mined from internet search engines to
images captured in real-world surroundings (see Figure 1).

Recently, domain adaptation methods that attempt to transfer classi-
fiers learned on a source domain to new domains have been proposed in the
language community. For example, Blitzer et al. adapt sentiment classifiers
learned on book reviews to electronics and kitchen appliances [4]. In this
paper, we argue that addressing the problem of domain adaptation for ob-
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Figure 2: Unlike category transfer methods, our method does not transfer
structure between related tasks, but rather transfers the structure of the
domain shift to new tasks (which may or may not be related), such as from
tasks 1,2 and 3 to task 4, as shown in the figure.

ject recognition is essential for two reasons: 1) while labeled datasets are
becoming larger and more available, they still differ significantly from many
interesting domains, and 2) it is unrealistic to expect the user to collect many
labels in each new domain, especially when one considers the large number
of possible object categories. Therefore, we need methods that can transfer
object category knowledge from large source datasets to new domains.

In this paper, we propose to compensate for image domain mismatch
by using a machine-learning method to automatically adapt existing object
classifiers. We introduce a novel adaptation technique based on learning
cross-domain metrics. While we evaluate our technique on object recogni-
tion, it is a general adaptation method that could be applied to non-image
data. Our approach leverages labeled source domain data, together with a
small amount of supervised target domain data, to learn a distance metric
that essentially reduces differences between the domains. The target domain
supervision could consist of either class labels, or similarity/dissimilarity
constraints (i.e. this target-domain object is similar to this source-domain
object). We focus on two scenarios: one in which significantly more labels
are available in the source domain than in the target domain for all cat-
egories, and one in which some categories do not have any labels in the
target domain. The latter scenario is important as it requires the adap-
tation method to transfer learned domain knowledge to new categories it
encounters in the target domain.

Rather than committing to a specific form of the classifier, we only as-
sume that it operates over (kernelized) distances between examples. This
enables our method to benefit a broad range of classification methods, from

3



k-NN to SVM, as well as clustering methods. The key idea is to learn a
distance metric that places examples from different domains that belong to
the same category closer together. Metric learning has been successfully
applied to a variety of problems in vision and other domains (see [5, 6, 7]
for some vision examples) but to our knowledge has not been applied to do-
main adaptation. In this work, we adapt the information theoretic method
of [8], which takes a set of constraints as input and learns a Mahalanobis
distance function dA(xi,xj) = (xi − xj)TA(xi − xj), parametrized by a
positive semi-definite matrix A, such that the constraints are satisfied. The
algorithm can be kernelized and can be easily applied over large-scale data.
Given m tasks with labels in both domains, we generate constraints between
pairs of object examples (one from the source and one from the target) that
should be considered either similar or dissimilar, and learn a metric that
appropriately satisfies such constraints. One of the key advantages of our
metric-based approach is that it can be applied over novel test samples from
categories seen at training time, and can also generalize to new categories
which were not present at training time.

Our approach can be thought of as a form of knowledge transfer from the
source to the target domain. However, in contrast to many existing transfer
learning paradigms (e.g. [9]), we do not presume any degree of relatedness
between the categories that are used to learn the transferred structure and
the categories to which the structure is transferred (see Figure 2). Individual
categories are related across domains, of course; the key point is that we are
transferring the structure of the domain shift, not transferring structures
common to related categories.

In the next section, we relate our approach to existing work on domain
adaptation. Section 3 provides background knowledge on the information-
theoretic metric learning method of [8], and Section 4 presents the domain
adaptation algorithm. We evaluate our approach on a new dataset designed
to study the problem of visual domain shift, which is described in Section
5, and show empirical results of object classifier adaptation on several sim-
ulated and real visual domains in Section 6.

2 Related Work

The domain adaptation problem has recently started to gain attention in
the natural language community. Daume III [10] proposed a domain adap-
tation approach that works by transforming the features into an augmented
space, where the input features from each domain are copied twice, once to
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a domain-independent portion of the feature vector, and once to the portion
specific to that domain. The portion specific to all other domains is set to
zeros. While “frustratingly” easy to implement, this approach only works
for classifiers that learn a function over the features. With normalized fea-
tures (as in our experimental results), the nearest neighbor classifier results
are unchanged after adaptation. Structural correspondence learning is an-
other method proposed for NLP tasks such as sentiment classification [4].
However, it is targeted towards language domains, and relies heavily on the
selection of pivot features, which are words that frequently occur in both do-
mains (e.g. “wonderful”, “awful”) and are correlated with domain-specific
words.

Recently, several adaptation methods for the support vector machine
(SVM) classifier have been proposed in the video retrieval literature. Yang
et al. [11] proposed an Adaptive SVM (A-SVM) which adjusts the existing
classifier fs(x) trained on the source domain to obtain a new SVM classifier
f t(x). Cross-domain SVM (CD-SVM) proposed by Jiang et al. [12] defines
a weight for each source training sample based on distance to the target
domain, and re-trains the SVM classifier was with re-weighted patterns.
The domain transfer SVM (DT-SVM) proposed by Duan et al. [13] used
multiple-kernel learning to minimize the difference between the means of the
source and target feature distributions. These methods are specific to the
SVM classifier, and they require target-domain labels for all categories. The
advantage of our method is that it can perform transfer of domain-invariant
representations to novel categories, with no target-domain labels.

3 Information Theoretic Metric Learning

Metric learning has been shown to be successful in a number of learning
tasks in vision [5, 6, 7]; in this section we give an overview of information-
theoretic metric learning, the method we adapt. For more details, we refer
the reader to [8].

The goal of Mahalanobis-based metric learning methods is to learn a
distance function parameterized by a positive semi-definite matrix A. Given
two data points xi and xj , the Mahalanobis distance function is given by

dA(xi,xj) = (xi − xj)TA(xi − xj).

The fact that A is positive semi-definite (i.e., it has non-negative eigenvalues)
ensures that the resulting distance is non-negative. Further, by factorizing A
as A = GTG, we can equivalently view the Mahalanobis distance as (Gxi−
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Gxj)T (Gxi − Gxj); that is, the distance is simply the squared Euclidean
distance after applying the linear transformation specified by G.

We aim to learn the matrix A given side-information about the desired
metric. This information is often either similarity/dissimilarity constraints
(pairs of points that should have a small/large distance) or relative distance
constraints (two points should have a smaller/larger distance than two other
points). In this paper, we utilize similarity and dissimilarity constraints,
which we will denote as pairs (xi,xj) ∈ S for similarity constraints and
(xi,xj) ∈ D for dissimilarity constraints. The optimization problem seeks
to find a matrix A such that the learned distances are small for the pairs in S
and large for the pairs in D. Information-theoretic metric learning (ITML)
formulates this problem as follows:

min
A�0

D`d(A,A0)

s. t. dA(xi,xj) ≤ u (i, j) ∈ S,
dA(xi,xj) ≥ ` (i, j) ∈ D,

(1)

where the regularizer D`d(A,A0) is given by tr(AA−1
0 )− log det(AA−1

0 )− d
(d is the dimensionality of the data) and is defined only between positive
semi-definite matrices. This regularizer is called the LogDet divergence and
has many properties desirable for metric learning such as scale and rotation
invariance [8]. A0 is the initial Mahalanobis matrix, and is often chosen to
be the identity. Note that one typically adds slack variables, governed by
a tradeoff parameter γ, to the above formulation to ensure that a feasible
solution can always be found.

We follow the approach given in [8] to find the optimal A for (1). At
each step of the algorithm, a single pair (xi,xj) from S or D is chosen, and
an update of the form

At+1 = At + βtAt(xi − xj)(xi − xj)TAt

is applied. In the above, βt is a scalar parameter computed by the algorithm
based on the type of constraint and the amount of violation of the constraint.
Such updates are repeated until reaching global convergence; typically we
choose the most violated constraint at every iteration and stop when all
constraints are satisfied up to some tolerance ε.

In some cases, the dimensionality of the data is very high, or a linear
transformation is not sufficient for the desired metric. In such cases, we can
apply kernelization to the above algorithm in order to learn high-dimensional
metrics and/or non-linear transformations. The natural notion of similarity
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(a) Domain shift problem (b) Pairwise constraints (c) Invariant space

Figure 3: The key idea of our approach to domain adaptation is to learn a
metric that compensates for transformations due to domain shift. By lever-
aging similarity and dissimilarity constraints (b) we aim to reunite samples
coming from two different domains (blue and green) in a common invariant
space (c) in order to learn and classify new samples more effectively across
domains. We are also interested in applying our classifier to new categories
(represented by the lightly-shaded stars); our transformations should be ef-
fective in learning such new categories. This figure is best viewed in color.

(or kernel) for Mahalanobis metrics is xT
i Axj , which is just a generalized

inner product (the Mahalanobis distance is directly computed using this
similarity). Given a matrix of data points X = [x1, ...,xn], the resulting
kernel matrix is given by K = XTAX. It is straightforward to show that
the updates for ITML may be written in terms of the kernel matrix by
multiplying the updates on the left by XT and on the right by X, yielding

Kt+1 = Kt + βtKt(ei − ej)(ei − ej)TKt,

where ei is the i-th standard basis vector and Kt = XTAtX. Typically, one
selects A0 = I, and so K0 = XTX, corresponding to some kernel matrix
over the input data when we map the input data points in X to a high-
dimensional feature space. Furthermore, the learned kernel function may
be computed over arbtirary points, and the method may be scaled for very
large data sets; see [8, 7] for details.

4 The Metric Learning Approach to Domain Adap-
tation

In this section we present a domain adaptation algorithm that utilizes the
metric learning paradigm described in the previous section to compensate
for domain shift.
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Our approach is to learn a metric that is invariant to domain-induced
alterations of the features. The idea of encapsulating the changes in feature
distribution due to domain shift within a Mahalonobis distance seems intu-
itive, yet, to the best of our knowledge, has not been explored in computer
vision or elsewhere. Our main hypothesis is that the shift can be approxi-
mated as an arbitrary linear scaling and rotation of the feature space. We
aim to recover this transformation by leveraging existing similarity and dis-
similarity constraints between points in the two domains. Since the matrix
A corresponding to the Mahalanobis distance is symmetric positive semi-
definite, we can think of it as mapping samples coming from two different
domains into a common invariant space, in order to learn and classify in-
stances more effectively across domains. Because a linear transformation
may not be sufficient, we optionally kernelize the distance matrix to learn
non-linear transformations.

We illustrate this idea with a conceptual example. Figure 3(a) shows
a three class problem (denoted by the shapes) with corresponding samples
from two domains (green and blue). We would like to leverage the more
abundant green samples in order to enable or improve classification of the
blue samples. Despite the fact that the green and the blue domain form well
posed classification problems, they have either been drawn from different
parts of the underlying data distribution, or an unknown transformation has
caused them to shift. We are to a certain degree agnostic as to the exact
transformation process, as it is a very complex composite of the imaging
process and environmental conditions. As visualized in Figure 3(b), we
form a set of constraints representing similarity constraints (black) as well
as dissimilarity constraints (red) across the two domains. In (c), the kernel
learned by ITML to satisfy these constraints effectively transforms the space
to map the green and blue samples of the same class closer together, while
keeping the inter-class distances large.

Generating Cross-Domain Constraints: Assume that there are n
categories, with data from each category denoted as di, consisting of (x, y)
pairs of input data and category labels. There are two cases that we consider.
In the first case, we have many labeled examples for each of the n categories
in the source domain data, Ds = {ds

1, ..., d
s
n}, and a few labeled examples for

each category in the target domain data, Dt = {dt
1, ..., d

t
n}. In the second

case, we have the same Ds but only have labels for a subset of the categories
in the target domain, Dt = {dt

1, ..., d
t
m}, where m < n. Here, our goal is to

adapt the classifier trained on the tasks m+ 1, ..., n, which only have source
domain labels, to obtain a new classifier, which reduces the predictive error
on the target domain by accounting for the domain shift. We do this by
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applying the transformation learned on the m categories to the features in
the source domain training set of the new categories, and re-training the
classifier.

To generate similarity constraints (xi,xj) ∈ S and dissimilarity con-
straints (xi,xj) ∈ D necessary to learn the domain-invariant transformation,
we use the following procedure. We sample a random pair consisting of a
labeled source domain sample (xs

i , y
s
i ) and a labeled target domain sample

(xt
j , y

t
j), and create a constraint

dA(xi,xj) ≤ u if yi = yj ,

dA(xi,xj) ≥ ` if yi 6= yj .
(2)

Alternatively, we can generate constraints based not on class labels, but
on information of the form: target sample xi is similar to source sample xj .
This is particularly useful when the source and target data include images of
the same object, as it allows us to best recover the structure of the domain
shift, without learning anything about particular categories. We refer to
these as correspondence constraints. It is important to generate constraints
between samples of different domains, as including same-domain constraints
can make it difficult for the algorithm to learn a domain-invariant metric.

A synthetic example: To demonstrate how the metric-based domain
adaptation algorithm works on a simple example, we create a synthetic do-
main by taking 31 object categories from the webcam dataset described in
Sec.5, and adding random noise to a subset of the feature dimensions. We
randomly select 20 of the 800 histogram dimensions and add independent
Gaussian noise to each selected dimension. Figure 4(a) shows an example
of an original feature vector (in this case, a normalized histogram of vector-
quantized local SURF [14] features) and its noisy version. This constitutes
a moderate amount of noise, and the corresponding “domain shift” signifi-
cantly degrades the performance of a nearest-neighbor classifier trained on
the original data.

Figure 4(b) visualizes the cross-domain metric learned using positive cor-
respondence constraints, generated by enforcing that the distance between
each original-domain point and its noisy version should be small (0.001). We
plot the diagonal of the A matrix that parametrizes the Mahalonobis dis-
tance (the off-diagonal entries were all close to zero). We see that the learned
distance correctly gives near-zero weights to the noisy dimensions (marked
with red stars) and near-one weights to the rest. In Figure 4(c), we show
the weights learned using positive and negative constraints based on class
labels. The learned transformation no longer recovers simply the domain
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Figure 4: Illustration of how our method learns a metric to compensate for
a synthetic domain shift; (a) an original sample (blue) and its noisy-domain
version (red); (b) weights learned by the metric using positive correspon-
dence constraints; (c) weights learned using label-based constraints. Noisy
dimensions are marked with red stars. This figure is best viewed in color.

shift, but also learns something about the categories, and the off-diagonal
entries are no longer close to zero. However, both types of constraints are
successful and result in a metric that recovers the original performance when
used with the nearest-neighbor classifier.

5 A Database for Studying Effects of Domain Shift
in Object Recognition

As detailed earlier, effects of domain shift have been largely overlooked in
previous recognition studies. Therefore, one of the contributions of this pa-
per is a database that allows researchers to study, evaluate and compare
solutions to the domain shift problem by establishing a multiple-domain la-
beled dataset and benchmark. The database, benchmark code, and code for
our method will be made available to the community upon time of publica-
tion.

In addition to the domain shift aspects, this database also proposes a
challenging office environment category learning task which reflects the dif-
ficulty of real-world indoor robotic object recognition, and may serve as a
useful testbed for such tasks. Our database provides a total of 4085 images
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Figure 5: New dataset for investigating domain shifts in visual category
recognition tasks. Images of instances form 31 categories are downloaded
from the web as well as captured by a high definition and a low definition
camera.

of 31 visual categories originating from 3 domains:1

Images from the web: The first domain consists of images from the
web downloaded from online merchants (www.amazon.com). This has be-
come a very popular way to acquire data, as it allows for easy access to large
amounts of data that lends itself to learning category models. These images
are of products shot at medium resolution typically taken in an environment
with studio lighting conditions. For each of the 31 categories we collected
on average 90 images. The images capture the large intra-class variation
of these categories, but typically show the instances only from a canonical
viewpoint.

Images from a digital SLR camera: The second domain consists
of images that are captured with a digital SLR camera in an office envi-
ronment with natural lighting conditions. The images have high resolution

1The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, laptop,
letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer, projector,
puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.
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(4288x2848) and low noise. We have recorded images of 5 instances for each
of the 31 categories. For each of the instances there are on average 3 images
taken from different viewpoints, for a total of 423 images.

Images from a webcam: The third domain consists of images recorded
with a simple webcam. The images are of low resolution (640x480) and show
significant noise and color as well as white balance artifacts. Many current
imagers on robotic platforms share a similarly-sized sensor, and therefore
also possess these sensing characteristics. We recorded the same 5 instances
as for the dSLR case summing to a total of 795 images.

Each domain poses a challenging categorization task in itself. Beyond
that, it facilitates the investigation of how performance degrades when trans-
ferring from one domain to another and how effectively different methods
can compensate for this domain shift. The database lends itself to two
main settings. First, category models learned from the web can be evalu-
ated on the dSLR and webcam images, which can be thought of as in situ
observations on a robotic platform in an office environment. In order to
properly investigate the effects of domain shift in the absence of the effects
of viewpoint variation, we also annotated the database according to canon-
ical views for the dslr and webcam data. Second, domain transfer between
the high-quality dSLR image to low resolution webcam images allows for a
very controlled investigation of domain shift problems as the same instances
were recorded in both domain.

6 Experiments

In this section, we evaluate our metric-learning based domain adaptation
approach by applying it to k-nearest neighbor classification. k-NN classifies
the test sample using the majority vote of the closest training samples.
(There is no actual training stage in k-NN, so “training” here refers to the
fact that the true label of sample is known.) k-NN is sensitive to domain
shift, in particular one that affects distances between samples.

Implementation: All images were resized to the same width and con-
verted to grayscale. Local scale-invariant interest points were detected us-
ing the SURF [14] detector to describe the image. SURF features have
been shown to be highly repeatable and robust to noise, displacement, geo-
metric and photometric transformations. We set the blob response thresh-
old to 1000, and the other parameters to default values. A 64-dimensional
non-rotaionally invariant SURF descriptor was used to describe the patch
surrounding each detected interest point.
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After extracting a set of SURF descriptors for each image, vector quanti-
zation into visual words was performed to generate the final feature vector.
A codebook of size 800 was constructed by k-means clustering on a ran-
domly chosen subset of the amazon database. All images were converted to
histograms over the resulting visual words. No spatial or color information
was included in the image representation for these experiments; these would
no doubt improve the absolute performance for all methods.

In the following, we compare k-NN classifiers that use the learned cross-
domain metric to those that that operate in the original feature space using a
Euclidean distance, and show results on several visual domains. We explore
two settings for domain adaptation: one in which all categories have (a
small number of) labels in the target domain, and one in which the test
data belong to categories that only have labels in the source domain. We
refer to these as “same-category” and “new-category” settings.

Same-category setting: First, we perform a proof-of-concept experi-
ment on a synthetic image domain, and then show results on the Amazon,
webcam and dslr domains from our dataset. In all of the following experi-
ments, we generate constraints between all cross-domain image pairs in the
training set based on class labels. We kernelize the metric using an RBF
kernel with width σ = 1.0. As a performance measure, we use accuracy (to-
tal number of correctly classified test samples divided by the total number
of test samples) averaged over 20 randomly selected train/test sets. Here,
and in the rest of the section, A refers to the source domain and B refers to
the target domain.

To simulate a domain shift where the effective resolution is reduced and
some of the information is lost, we create a synthetic domain by applying
a Gaussian blur filter to the original webcam images. We then extract
SURF features on the blurred images as described above, except that here
we sample points on a regularly spaced grid, rather than use an interest
point detector, so as to isolate the effects of blurring on the quantized visual
words while keeping the point locations the same. We use 20 training images
per category in domain A (webcam) and 6 images in domain B (blurred
webcam).

Figure 6(a) shows the results. First, as a point of reference, we plot
the performance of the k-NN classifier trained on the source domain A and
tested on images from the same domain (knn AA). The next bar shows the
accuracy when the training examples come from A and the test examples
from B (knn AB). Here, the reduced effective resolution degrades perfor-
mance (although not by that much, considering the high level of blurring
used) from 91% to 85%. However, after applying the cross-domain metric
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Figure 6: (a)-(d) Domain adaptation results with target labels for all cate-
gories; (e) Domain adaptation results for categories not labeled in the target
domain

to the data and re-testing the k-NN classifier using the new distances, ac-
curacy goes back up to 91% (aknn AB). This demonstrates that, despite
the reduced amount of frequency information in domain B images, they still
contain the same amount of object-related information, and that our method
compensates for the drop in performance that is caused by the change in
the feature distribution.

We also show two baseline methods, both trained using only labeled
examples from domain B. The first is a k-NN classifier (knn BB), which we
see does not perform as well with the limited amount of labeled examples we
have available in B. The second is a k-NN classifier that uses a class-specific
metric learned on domain B samples (mlknn BB). Note that our method
ultimately relies on a classifier that does not use class-specific learning, and
so this baseline is not directly comparable; we show it here as an example
of a more powerful classifier, which nevertheless fails to perform as well as
our adapted k-NN classifier, given the small amount of labeled target data.

Next, we perform adaptation between real image domains from our
dataset. The shift between dslr and webcam domains represents a mod-
erate amount of change, mostly due to the differences in the cameras, as
the same objects were used to collect both datasets. Results of adaptation
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Figure 7: Examples of 5 nearest neighbors retrieved for dslr query images
(larger images) from the amazon dataset (smaller images), using the Eu-
clidean metric (top row of each set) and the learned cross-domain metric
(bottom row of each set)

for the dslr-to-webcam shift, using 8 labels in dslr and 2 labels in webcam,
per category, are shown in Figure 6(b). Since webcam actually has more
training images, the reverse webcam-to-dslr shift is probably better suited
to adaptation. We show results with 20 webcam and 3 dslr labels in Fig-
ure 6(c). In both cases, our adapted k-NN classifier (aknn AB) outperforms
the non-adapted Euclidean-distance k-NN classifiers (knn AB and knn BB)
and also k-NN with metric learning (knn BB).

The shift between the amazon and the dslr/webcam domains is the most
drastic. Next, we adapt from amazon to the canonical-pose dslr data, train-
ing a cross-domain metric by choosing 20 images per category from amazon
and 3 images per category from dslr. Results are shown in Figure 6(d),
where we see that, even for this challenging problem, the adapted k-NN
classifier outperforms the non-adapted baselines.

New-category setting: Here we show results for the case when we
don’t have target labels for all of the categories, and so we must transfer the
domain-invariant metric to new categories. We use the first 15 categories in
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the webcam and dslr domains to learn the metric, forming correspondence
constraints between images of the same object instance in roughly the same
pose. We test the metric on the remaining 16 categories, averaging perfor-
mance over 20 random splits into train/test data. The results are shown in
Figure 6(e). We compare the baseline, non-adapted k-NN classifier, which
uses the last 16 categories in domain A as training data and domain B as test
data (knn AB) and the adapted k-NN classifier using the metric learned on
the first 15 categories (aknn AB). Our approach clearly learns something
about the domain shift, significantly improving the performance. Note that
the overall accuracies are higher as this is a 16-way classification task.

7 Conclusion

Many successful object recognition methods expect the test image to be
drawn from the same distribution as the training dataset, making them
brittle in the face of shifting imaging conditions. In this paper, we presented
a detailed study of domain shift in the context of object recognition, and
introduced a novel adaptation technique that projects the features into a
domain-invariant space via a transformation learned from labeled source
and target domain examples. The output of our algorithm is a learned
kernel function, which can be computed over arbtirary new points and can
scale for very large data sets. Our approach can be applied to adapt a
wide range of visual models which operate over distances between samples,
and works both on cases where we need to classify novel test samples from
categories seen at training time, and on cases where the test samples come
from new categories which were not seen at training time. This is especially
useful for object recognition, as large multi-category object databases can be
adapted to new domains without requiring labels for all of the possibly huge
number of categories. Our results show the effectiveness of our technique
for adapting k-NN classifiers to a range of domain shifts, from a simulated
loss of image information, to the large shifts caused by switching between
datasets collected using different paradigms.
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