
Practical Shape Analysis

Bill McCloskey

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-57

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-57.html

May 10, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Practical Shape Analysis

by

William Terrence McCloskey

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Eric Brewer, Chair
Professor George Necula
Professor Leo Harrington

Spring 2010

Practical Shape Analysis

Copyright 2010
by

William Terrence McCloskey

1

Abstract

Practical Shape Analysis

by

William Terrence McCloskey

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Eric Brewer, Chair

Shape analysis is a program analysis technique used to prove that imperative programs using
manual memory management will not crash. In the past, shape analysis has been applied to
data structures like linked lists and binary trees. It has also been used on simplified versions
of Windows device drivers.

We describe techniques that allow us to apply shape analysis to data structures that
occur commonly in systems code. These data structures often use arrays, hash tables, C
strings, and buffers of a known size. Sometimes, memory in these data structures is managed
by manual reference counting. Analyzing such code is difficult or impossible with existing
shape analyses. Most difficult of all, many data structures use several of these patterns at
the same time, such as a hash table pointing to reference counted objects through which a
doubly linked list threads.

We describe an analysis capable of handling these data structures easily and efficiently.
Our technique uses abstract interpretation over the combination of two abstract domains.
One, based on three-valued logic, is used for analyzing the heap. The other domain reasons
about integers and set cardinality. The key feature of the combined domain is that quantified
facts can be shared between the integer and heap domains. The precision we achieve is
significantly greater than if either domain were used independently.

Besides improvements in precision, we also describe changes that make both domains
more scalable and efficient. We present the results of experiments analyzing the cache data
structure of the thttpd web server, which uses a hash table, linked lists, and reference
counting in a single data structure. We successfully prove the absence of memory errors in
about two minutes.

i

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Programming Language . 3

1.1.1 Syntax . 4
1.1.2 Semantics . 5

1.2 Analysis of Programs . 7
1.3 Domain Structure . 12
1.4 Base Domains . 14

1.4.1 Heap Domain . 14
1.4.2 Integer Domain . 15

1.5 Thesis Structure . 16

2 Heap Domain 17
2.1 Introduction . 17
2.2 TVLA Overview . 18

2.2.1 Abstraction . 20
2.2.2 Transformers . 25

2.3 Finite Differencing . 28
2.3.1 Difference Formulas . 31
2.3.2 Improved Precision . 34
2.3.3 Transitive Closure . 36

2.4 Formula Evaluation . 38
2.4.1 Semantics . 38
2.4.2 Introduction . 39
2.4.3 Query Execution . 41
2.4.4 Query Execution Examples . 43
2.4.5 Query Optimization . 45
2.4.6 Query Optimization Examples . 49
2.4.7 Experiments . 50

ii

2.5 Sharpening . 53
2.5.1 Integrity Constraints . 54
2.5.2 Correctness by Case Analysis . 55
2.5.3 Sharpening Algorithm . 57
2.5.4 Soundness . 59
2.5.5 Completeness . 63
2.5.6 Use In Practice . 64

2.6 Abstraction . 65
2.6.1 Present = 1/2 . 67
2.6.2 Disjunctive Abstraction . 72
2.6.3 Control Flow-Sensitive Abstraction Predicates 73
2.6.4 Experiments . 74

2.7 Related Work . 75
2.7.1 TVLA . 75
2.7.2 Automated Separation Logic Analyses 77
2.7.3 Hoare-style Verification . 80

2.8 Conclusion . 81
2.9 Proofs . 83

2.9.1 Soundness of Sharpening . 83
2.9.2 Completeness of Sharpening . 88

3 Combination Domain 92
3.1 Introduction . 93

3.1.1 Cardinality Invariants . 94
3.1.2 Class Sharing . 96
3.1.3 Numerical Fields . 97
3.1.4 Predicate Sharing . 99
3.1.5 Cardinality Functions . 102

3.2 Pre-Order and Join . 104
3.3 Assignment . 110
3.4 Branching . 114
3.5 Base Domain Requirements . 115
3.6 Related Work . 118
3.7 Conclusion . 120
3.8 Proofs . 121

3.8.1 Meaning of Domain Elements . 121
3.8.2 Meaning of Facts . 122
3.8.3 Soundness . 122

iii

4 Domain Adaptations 130
4.1 Heap Domain Modifications . 130

4.1.1 Types and Functions . 131
4.1.2 Class Representation . 133
4.1.3 Matching, Merging, and Repartitioning 135
4.1.4 Assignment . 135

4.2 Integer Domain . 138
4.2.1 Overview . 138
4.2.2 Dimensions . 141
4.2.3 Predicates . 143
4.2.4 Class Abstraction . 145
4.2.5 Cardinality Functions . 148
4.2.6 Consequences . 150
4.2.7 Partial Order and Join . 151
4.2.8 Repartitioning . 152
4.2.9 Related Work . 154

5 Experiments 155
5.1 The Code . 160

6 Conclusion 169

Bibliography 171

iv

List of Figures

1.1 Syntax of the PBJ language. 5
1.2 Control-flow graph for example program. 8

2.1 Query optimization example. 49
2.2 Transitive closure query optimization example. 51
2.3 Histogram of loop invariant sizes. 76

3.1 Implementation of combined domain saturation. 107
3.2 Pseudocode for combined domain’s partial order. 108
3.3 Pseudocode for combined domain’s join algorithm. 109
3.4 Combined domain’s widening algorithm. 110
3.5 Pseudocode for term translation. 112
3.6 Pseudocode for assignment transfer function. 113
3.7 Pseudocode for assume transfer function. 116

5.1 thttpd’s cache data structure. 155
5.2 Excerpts of the thttpd map and add hash functions. 156

v

List of Tables

2.1 Semantics of finite difference formulas. 30
2.2 Semantics of the future operator. 32
2.3 Finite differencing rules. 33
2.4 More precise finite differencing rules. 35
2.5 Semantics of formulas. 38
2.6 Query optimization rules. 47
2.7 Query evaluation experiments. 52
2.8 Transitive closure experiments. 52
2.9 More query evaluation data. 53
2.10 Semantics of formulas. 70
2.11 Performance comparison of TVLA/Deskcheck abstractions. 75

5.1 Analysis times of thttpd analysis. 157
5.2 Breakdown of predicates used in thttpd analysis. 158

vi

Acknowledgments

I am indebted to many people for help with this thesis. My advisor, Eric Brewer, read
through all the drafts and made many improvements. Over the years, he has given me
freedom and encouragement, without which I would not have finished. The research is a
product of a fruitful and very enjoyable collaboration with Mooly Sagiv and Tom Reps, who
also read through drafts and made suggestions. George Necula served on my committee and
has helped me in many ways as a mentor and teacher at Berkeley. And Ras Bod́ık provided
me with years of free lunches and much-needed advice.

I also owe a great deal to my friends at Berkeley, AJ, Manu, Padma, Dave, Evan, Ana,
David, and Brian, to my mom and dad, and to Jamie.

Thank you all.

1

Chapter 1

Introduction

The goal of this thesis is to statically analyze realistic systems programs, such as servers
and operating systems. We search for memory errors in these programs. Memory errors
can take the form of out-of-bounds memory accesses, accesses to freed memory, or freeing
memory more than once or not at all.

The correctness of all programs depends on invariants. These are properties that the
program ensures are always true. We need to discover a set of invariants that, taken together,
imply memory safety. Ideally, this set of invariants would be much smaller than the set
required to prove total program correctness. Unfortunately, memory safety is not so well
contained—its tendrils reach far deep—so we need to discover some surprisingly sophisticated
invariants. We describe some of them in the next few paragraphs and explain why they are
necessary to prove memory safety. We emphasize that all these examples are used in real
code [39].

Reachability. Reachability plays an important role in the definition of memory safety. In
order to prove that there are no memory leaks, we must prove the invariant that all allocated
objects are reachable.

However, reachability plays an important role even if we are not interested in guarantee-
ing the absence of memory leaks. Consider a program where list1 and list2 point to two
disjoint linked lists. The following code frees the elements of list1 and then traverses the
other list.

1 while (list1 != null) {
2 tmp = list1->next;
3 free(list1);
4 list1 = tmp;
5 }
6 p = list2;
7 while (p) { ...; p = p->next; }

Without reachability, there is no way to distinguish elements of list1 from elements of

CHAPTER 1. INTRODUCTION 2

list2. Therefore, we have no way to know that an element freed at line 3 is not accessed
at line 7. To solve the problem, we must infer the invariant that elements reachable from
list2 are not reachable from list1 and therefore will not be freed.

Cardinality. Suppose that free list points to a linked list of nodes that are available to
be used when needed. If the list becomes too large, then the following code releases some
of the elements to the operating system.

1 while (free_count > DESIRED_FREE_COUNT) {
2 tmp = free_maps;
3 free_maps = tmp->next;
4 --free_count;
5 free(tmp);
6 }

Proving that this code does not dereference a null pointer at line 3 requires us to infer the
invariant that free count holds the length of the linked list.

Index invariants. Suppose we have a data structure like the one below.

struct T { int index; char *data; }
struct T *table[32];
...
obj = malloc(sizeof(Obj));
obj->index = i;
table[i] = obj;
obj->data = ...;

The array table points to objects of type T. The index of an object in table is stored in
its index field. When freeing an object, the index field is used to remove it from the table:

n = obj->index;
table[n] = null;
free(obj);

Danger lurks here. If obj->index is incorrect, then we will null out the wrong table entry.
As a consequence, obj will remain in the table after it has been freed. Then it is possible
that the following code accesses freed memory.

if (table[i]) puts(table[i]->data);

To prevent this problem, we must ensure that if table[i] = obj then obj->index =

i. This invariant is difficult to infer because it quantifies both over an integer, i, and a heap
object, obj.

CHAPTER 1. INTRODUCTION 3

Reference counting. Manual reference counting, in which the programmer tracks the
number of references to a given object, is very closely related to memory safety. We want
to prove that a given reference counting scheme does not access memory that it has already
freed. To do so, we must prove the invariant that the reference count tracked by the pro-
grammer is equal to the actual number of references. The problem is complicated by the
fact that programmers may track only a subset of all references to a given object; other
references may be handled in a different way.

Until now, invariants of this complexity have not been checkable by automated analyses.
There do exist analyses that can verify some of these properties. Heap analyses based
on canonical abstraction [46] or separation logic [4] can check reachability properties. A
few specialized systems can check cardinality properties [31, 25] or reference counting [21].
However, no system is able to check all of these properties simultaneously on a single data
structure.

To avoid reinventing the wheel, our goal is to combine the best aspects of existing analyses
to create a more powerful tool that can analyze many complex invariants simultaneously.
This thesis presents an analysis, called Deskcheck, that is able to verify all of these
invariants. Deskcheck performs abstract interpretation [15] over a combination of an
existing heap domain and an existing integer domain. These domains have been augmented
to communicate invariants with each other as they learn them, increasing their individual
power. We have used Deskcheck to verify the memory safety of the cache module of a
real-world web server called thttpd [39]. All of the invariants listed above are needed to
verify the thttpd cache.

The next few sections describe the fundamentals of Deskcheck, followed by an overview
of our combination technique and a summary of the rest of the thesis.

1.1 Programming Language

Programs are provided to Deskcheck in a language called PBJ. The syntax of the
language is close to Pascal. The semantics is modeled on logic, much as in other modeling
languages like Boogie [30]. Eventually, we would like to use techniques from tools like
CCured [38] and Deputy [11] to translate C and C++ programs to PBJ automatically. For
now, we must be content with manual translations.

A PBJ program begins with a list of type declarations, such as “type List;” or “type
IntArray;”. Values in PBJ are either integers or instances of a user-defined type, like List.

All program data is stored in maps. A map is a mapping from a sequence of keys to
values. Every variable in the program is a map with a given signature. The signature tells
us the types of the map’s keys and values. A map x with the signature “x[int,int]:int”
maps two integers to an integer. The syntax “y:int” is shorthand for a map that requires
no keys and returns an integer. The number of keys is called the arity.

The simplest way to describe how this works is with an example.

CHAPTER 1. INTRODUCTION 4

Example 1 Consider the following program.

1 procedure test1()
2 x:int;
3 a[int]:int;
4 {
5 x := 0;
6 a[0] := x;
7 a[1] := x+1;
8 }

This program declares two maps, x and a. The map x works much like a variable. We
can assign a value to it and access the value later. The map a is like an array. The integer
key acts as an array index. 2

Maps are a general way of expressing typical programming language concepts like vari-
ables, arrays, and fields. The following example shows how fields work.

Example 2 Consider this program.

1 type List;
2

3 global List_data[List]:int;
4 global List_next[List]:List;
5

6 procedure test2(p:List)
7 sum:int;
8 {
9 sum := 0;

10 while (p != null) {
11 sum := sum + List_data[p];
12 p := List_next[p];
13 }
14 }

This program traverses a linked list. First we declare the type of list elements. Then we
declare two global maps, List data and List next, representing fields of the list object. We
intend List data[e] to refer to the data field of a linked list node e. Similarly, List next[e]

is a pointer to the next element of the list. All user-defined types include a special null
value that can be used as a terminator. 2

1.1.1 Syntax

The grammar for the PBJ language is shown in Figure 1.1. We omit the grammar for
declaring types, maps, and procedures. Statements are conventional. The most common

CHAPTER 1. INTRODUCTION 5

stmt ::= lvalue := expr ;
| id (expr*) ;

| lvalue := id (expr*) ;

| lvalue := new type ;

| delete lvalue ;

| assert (expr) ;

| return expr ;
| if (expr) stmt else stmt
| while (expr) stmt
| label L ;

| goto L ;

| { stmt* }

lvalue ::= id | id [expr*]

expr ::= lvalue
| int-literal
| expr + expr
| - expr
| expr = expr
| expr > expr
| not expr
| expr && expr
| expr || expr

Figure 1.1: Syntax of the PBJ language.

statement is assignment. Following it is the syntax for procedure calls; the result of a
procedure can be stored or ignored. The new and delete statements are similar to malloc

and free in C. Unlike C++, no constructors or destructors are invoked. The grammar for
expressions is utterly conventional.

PBJ is statically typechecked. If, for example, x has signature x[int]:List and field

has signature field[List]:int, then field[x[3]] will be accepted by the type checker
while field[3] will be rejected.

1.1.2 Semantics

Values in PBJ are either integers or elements of some user-defined type. For each type,
we assume that there exists an infinite, fixed universe of values, or “individuals.” Initially,
all individuals of a type t belong to an “available” set, A(t). When the program asks for a
new individual of type t via new t, we remove an arbitrary individual from A(t) and return
it to the program.

We store the state of a PBJ program as a function, σ. For any map variable m, σ(m)
stores the value of m. If m has arity k, then σ(m) will be a function of arity k. As an
example, after the statements in Example 2 execute, the state will be as follows.

σ(x) = {〈〉 7→ 0}
σ(a) = {〈0〉 7→ 0, 〈1〉 7→ 1}

A map of arity 2 would have keys like 〈1, 2〉.

Expressions. We write the semantics for an expression e as 〈e, σ〉 → v where σ is the
state in which the expression is evaluated and v is the result of the evaluation. We give

CHAPTER 1. INTRODUCTION 6

some examples of how expressions are evaluated.

〈e1, σ〉 → v1 · · · 〈en, σ〉 → vn (〈v1, . . . , vn〉 7→ v) ∈ σ(x)

〈x[e1, . . . , en], σ〉 → v

〈e, σ〉 → n 〈e′, σ〉 → n′

〈e+ e′, σ〉 → n+ n′

〈e, σ〉 → v 〈e′, σ〉 → v′ v′′ = if v = v′ then 1 else 0

〈e = e′, σ〉 → v′′

The rule for addition assumes that both operands evaluate to integers. The PBJ type
system ensures that this will always be the case. The rule for x[1] succeeds only when the
key 〈1〉 is present in σ(x). When the key is not present, we are not able to evaluate the
expression to any value. We say that we do not “make progress” on such expressions.

Statements. We only give the semantics of a few key statements. Control structures like
“if” and “while” are handled in the typical way. We need to track the state σ, the set of
available objects A, and the set of freed objects F . We write the meaning of a statement s
as 〈σ,A, F 〉 s 〈σ′, A′, F ′〉. This means that, starting in the left state, s finishes in the right
state.

〈e, σ〉 → v 〈ei, σ〉 → vi σ′ = σ[x 7→ σ(x)[〈v1, . . . , vn〉 7→ v]]

〈σ,A, F 〉 x[e1, . . . , en] := e 〈σ′, A, F 〉
〈ei, σ〉 → vi v ∈ A(t) A′ = A[t 7→ A(t)\v] σ′ = σ[x 7→ σ(x)[〈v1, . . . , vn〉 7→ v]]

〈σ,A, F 〉 x[e1, . . . , en] := new t 〈σ′, A′, F 〉
〈e, σ〉 → v v 6∈ F F ′ = F ∪ {v}

σ′ = {x 7→ {k 7→ v′ : (k 7→ v) ∈ σ(x) ∧ v 6∈ k} : x ∈ dom(σ)}
〈σ,A, F 〉 delete e 〈σ′, A, F ′〉

In the new t statement, an individual from A(t) is arbitrarily chosen, removed from A(t),
and returned as the result. In the delete e statement, e is evaluated to some individual v.
Then all entries of the form 〈. . . , v, . . .〉 7→ v′ are removed from all maps. We use the set F
to ensure that no individual is ever freed twice.

If we are not able to make progress on a statement’s sub-expressions, then we cannot
make progress on the statement either. This condition signals that the program is in error.
The goal of this thesis is to guarantee the absence of such errors.

Logic connection. The semantics of PBJ programs is similar to the semantics of many-
sorted logic. In the rest of the thesis, we use the language of logic when reasoning about
the formal semantics of PBJ programs. Map variables are called “uninterpreted functions.”
(They are called uninterpreted to distinguish them from interpreted functions like +.) Types

CHAPTER 1. INTRODUCTION 7

are called “sorts.” Values are called “individuals,” and they are drawn from a “universe.”
Eventually we introduce predicates from logic as well. To distinguish predicates from unin-
terpreted functions, we write a predicate as Pred and an uninterpreted function as func.

1.2 Analysis of Programs

The goal of our program analysis is to statically exclude certain classes of errors. Now
that we have explained PBJ semantics more clearly, we can state the errors.

• Accessing a map with a key that is not in its domain.

• Using delete twice on the same value.

• Failing an assertion in the program.

To solve this problem, we use the technique of abstract interpretation [13]. This section
gives a brief overview of abstract interpretation; it can be skipped by those already familiar
with it.

Throughout this section we use the following example program. Our goal is to prove
that the assertion holds.

1 procedure test(n:int)
2 i:int
3 {
4 i := 0;
5 while (i < n)
6 i := i+1;
7 assert(i = n);
8 }

Interpretation. The first step in proving the assertion is to transform the program into
a control-flow graph, shown in Figure 1.2. The edges of this graph shown how the program
transitions between statements. Each edge corresponds to a point in the execution of the
program. For example, this program will pass through the points labeled U and Z once,
while passing through X n times.

We can “interpret” the program by starting at the point labeled U in some initial program
state where n is positive. We execute it according to the semantics shown in the previous
section. Whenever we reach a branch in the graph, we evaluate the condition (i < n in this
case) to choose whether to go left or right. We can label each program point p with the
set of all states that pass through that program point. We call this set Σ(p). For example,

CHAPTER 1. INTRODUCTION 8

i := 0

i < n

assert(i = n) i := i+ 1

U

V

W

X

Y

Z

Figure 1.2: Control-flow graph for example program.

Σ(V) contains all states where n is a positive number and i is zero. To simplify notation,
we write S(a, b) for the following state.

σ(i) = {〈〉 7→ a}
σ(n) = {〈〉 7→ b}

(Technically a state also contains the sets A and F described earlier, but we elide them from
this example.) The states at V are {S(0, n) : n > 0}. Continuing in this fashion, we get the
following.

Σ(V) = {S(0, n) : n > 0}
Σ(W) = {S(i, n) : 0 ≤ i ≤ n ∧ n > 0}
Σ(X) = {S(i, n) : 0 ≤ i ≤ n− 1 ∧ n > 0}
Σ(Y) = {S(i, n) : 1 ≤ i ≤ n ∧ n > 0}
Σ(Z) = {S(n, n) : n > 0}

The final equation allows us to prove that the assertion holds: in every state listed, i=n is
true.

Abstract interpretation. Unfortunately, the analysis presented above cannot be exe-
cuted on a computer since the sets Σ(p) are infinite. Instead, we must find a way to describe
any Σ(p) using a finite representation. Let S be the set of all states that can arise at any
program point. For example, S contains S(0, 0), S(0, 1), S(1, 0),

We call the finite representation of some set of states an abstract element. The collection
of all abstract elements is called an abstract domain, denoted D. There are many possible

CHAPTER 1. INTRODUCTION 9

abstract domains. In this section, we use as an example a very simple domain whose job it
is to decide whether i is negative, positive, or zero.

There are five abstract elements in D = {i:−, i:0, i:+,>,⊥}. The first three elements
mean that i is negative, zero, or positive. The > element means that i can have any sign;
its value is unknown. The ⊥ element will be described later. We can map every element
of D to the set of states that it represents. We use the notation γ(e) to denote the states
represented by abstract element e.

γ(i:−) = {S(i, n) : i < 0, n ∈ Z}
γ(i:0) = {S(0, n) : n ∈ Z}
γ(i:+) = {S(i, n) : i > 0, n ∈ Z}
γ(>) = {S(i, n) : i, n ∈ Z}
γ(⊥) = ∅

To generate a mapping in the other direction, from 2S to D, we approximate. Given a
set of states S ⊆ S, we map it to some element e such that S ⊆ γ(e). That is, it might map
to an element that represents additional states.1 We call this map α. For example, α(Σ(V))
is the abstract element i:0 even though γ(i:0) is bigger than Σ(V) (because γ(i:0) places
no constraints on n). Similarly, Σ(Y) and Σ(Z) map to i:+. At W and X we are forced to
map to >, because i can be either zero or positive.

This form of approximation (called over-approximation because we allow a bigger set
to represent a smaller one) is sound because any errors present in the program will still
be found in the abstraction. Consider assertion checking. Suppose we approximate the set
of states entering an assert statement with an element e. If every state in γ(e) passes the
assertion, then, since the set of states that can actually reach the assertion is a subset of
γ(e), there can be no assertion failure.

In order for this formalism to make sense, we require D to be a partial order. We write
the order as v. For our example domain the order is shown below.

i:− i:0 i:+

>

⊥

This means that ⊥ v i :0 v >. We require that if e v e′, then γ(e) ⊆ γ(e′). Then, when
choosing α(S), we pick the one lowest in the order that still over-approximates S. That is
why, in the examples above, we did not use > unless necessary. However, we are required

1Ideally, we would like to be able to create a one-to-one mapping between sets of states and their finite
representations. Unfortunately, these sets have different size. The set D must be at most countably infinite,
since all its elements are themselves finite. The set of all sets of states is the power set of S. Since S is
infinite, the power set is uncountably infinite.

CHAPTER 1. INTRODUCTION 10

to have the > element in case none of the other elements is large enough to abstract a given
set of states, as was the case for W and X.

If everything is defined correctly, then α and γ should form a Galois insertion:

∀e ∈ D. α(γ(e)) = e

∀S ⊆ S. γ(α(S)) ⊇ S

Based on the semantics we gave earlier, a program state is a triple 〈σ,A, F 〉. Thus,
elements of S are triples of this form.

Transfer functions. Given an abstract element e, we need a way to compute the effect
of a program statement on the element. For example, suppose that γ(e) is the set of states
{S(0, n) : n > 0}. When we execute the statement i := i + 1, we get a new set of states
{S(1, n) : n > 0}. Given only the original element e and the statement i := i + 1, we need
to compute a new element e′ that approximates the new set of states.

There is no way to do this in general. We require each domain to supply a function,
called T (e, s), that computes the effect of an assignment s on an element e. In our example
sign domain, we define T as follows. Only assignments to i have any effect at all. The
assignment i := c returns either i:−, i:0, or i:+ depending on whether c is negative, zero,
or positive. The assignment i := i + c is more difficult. It depends on the original element
e. If e = i:− and c is negative, then the new value of i is still negative, so we return i:−.
Similarly, if e is i:+ and c is positive, then we return i:+. If e is i:0, we return i:− or i:+
if c is negative or positive, respectively. In other case we must return >.

In order for the transfer function T to be sound, we need it to satisfy the following.

∀〈σ,A, F 〉 ∈ γ(e). ∀σ′, A′, F ′. 〈σ,A, F 〉 s 〈σ′, A′, F ′〉 ⇒ 〈σ′, A′, F ′〉 ∈ γ(T (e, s))

When this formula holds, we say that the transfer function T is sound.
Our handling of branches is similar to our handling of assignments. However, since

branches are not of much relevance to this thesis, we omit the details.2

The other necessary ingredient of an abstract domain is that the partial order must be
computable. We must have a computable test to tell us whether e v e′. We also must be
able to compute the least upper bound (join) of two elements in this order, which we write
as e t e′. We will see below how these pieces are used.

In summary, we have defined a domain D, a partial order v, a join t, and a transfer
function T . These are the essential constituents of any abstract domain.

Analysis engine. The abstract domain defined above is not precise enough to prove the
assertion, so we define a more powerful abstract domain. Elements consist of conjunctions
of facts. A fact is of the form e1 ≤ e2 or e1 < e2, where ei is either an integer (like 7) or a

2We convert branches to non-deterministic choice points. We place assume statements after the choice
points to enforce the branch condition. The assume statements are processed by T like any other statement.

CHAPTER 1. INTRODUCTION 11

variable (like n). We say that a state 〈σ,A, F 〉 ∈ γ(e) if all the facts in e are satisfied by
σ. Using our notation above, the state S(1, 4) satisfies n ≤ 4 and i ≤ n but not n ≤ i. To
guarantee that an element is finite, we ignore facts of the form 3 ≤ 4. Also, if the fact n ≤ 5
is true, then we leave out facts like n ≤ 6, n ≤ 7, etc.

We perform the analysis as a fixed-point computation.3 We process each statement via
its transfer function as if we were executing the program. In the case of loops, we keep
iterating the loop until we reach a fixed-point. Our analysis is monotonic (abstractions only
get bigger over time), so the Knaster-Tarski theorem ensures that a fixed-point exists and
that the least-fixed point is the result of iteratively applying the analysis.

We begin the analysis with the element 1 ≤ n at U (refer to Figure 1.2). When we apply
the transfer function for i := 0, we get the following element at V .

V : 0 ≤ i ∧ i ≤ 0 ∧ i < n ∧ 1 ≤ n

The state at V is copied to W without change. The branch has no effect in this case, so the
abstraction at X is the same.

The transfer function for the increment returns the following element.

Y : 1 ≤ i ∧ i ≤ 1 ∧ i ≤ n ∧ 1 ≤ n

To compute the new abstract element at W , we take the join of the element at V and
the element at Y .

W : 0 ≤ i ∧ i ≤ 1 ∧ i ≤ n ∧ 1 ≤ n

Next we apply the transfer function for the branch to D. This generates a new element
at X:

X : 0 ≤ i ∧ i ≤ 1 ∧ i < n ∧ 1 ≤ n

We apply the increment transfer function to this element, and it loops back around again.
Continuing in this fashion, we get a succession of elements at W . After k steps:

W : 0 ≤ i ∧ i ≤ k ∧ i ≤ n ∧ 1 ≤ n

This example illustrates a painful reality: the Knaster-Tarski theorem does not guarantee
that we will find a least-fixed point in a finite number of iterations.

Consequently, we introduce a new requirement on all domains D. Besides a computable
join operator t, we need a computable widening operator. The widening operator ∇ is an
over-approximation of the join: et e′ v e∇e′. Thus it is always safe to use widening instead
of join. In addition, unlike the join, a succession of widenings is guaranteed to stabilize after
a finite number of steps.

If we perform a widening at W of the results of step k and step k+1, we get the following:

W : 0 ≤ i ∧ i ≤ n ∧ 1 ≤ n

3We perform fixed-point iteration using the method of Bourdoncle [7].

CHAPTER 1. INTRODUCTION 12

We have simply dropped the fact that i ≤ k. We apply the transfer functions for the true
branch and the increment, getting the following.

X : 0 ≤ i ∧ i < n ∧ 1 ≤ n

Y : 1 ≤ i ∧ i ≤ n ∧ 1 ≤ n

Then we join Y with V to get the new value for W .

W : 0 ≤ i ∧ i ≤ n ∧ 1 ≤ n

This is the same as the previous W , so we have found a fixed point. We are done with the
loop.

Once we reach a fixed-point at a given edge, we call the abstract element there an invari-
ant. As suggested by the name, an invariant is a property that will hold at that program
point no matter what the inputs and no matter how many times the edge is executed. The
entire abstract interpretation process amounts to finding the strongest invariant at each
program point.

We now address program point Z. We apply the transfer function for the false branch
to the element at W . Essentially, we are adding a constraint ¬(i < n) to the element at W .

Z : n ≤ i ∧ i ≤ n ∧ 1 ≤ n

A consequence of this element is that i = n, so we have proved that the assertion always
holds. This was our goal.

To summarize, the basic progress of program analysis is to iteratively execute the trans-
fer functions, using the join operator at merge points in the control-flow graph and using
widening to force the iteration to stabilize. When we reach a fixed-point, we are done. A
full description of this process can be found in the work of Bourdoncle [7].

1.3 Domain Structure

Our goal is to construct a domain that is capable of inferring all the example invariants
listed in the introduction, such as reachability, cardinality, and reference counting. Although
no existing domain is able to infer all of these invariants, some domains can infer some
of these invariants. Since we would like to reuse previous work, our domain will be a
combination of these domains. The existing domains of interest to us fall into two categories.

• Integer domains prove relationships between integer variables. One common domain,
called polyhedra, will discover any invariant of the form a1 · x1 + · · · + an · xn ≤ c,
where each xi is a program variable and the ais and c are constants.

• Heap domains prove properties of data structures, such as linked lists and binary trees.
These domains are less commonly used because they are more complex, more brittle,
and run more slowly.

CHAPTER 1. INTRODUCTION 13

Mixing these domains is difficult. An integer domain can infer integer properties, but it
is incapable of reasoning about data structures at all. Consider this program.

1 type List;
2 global List_data[List]:int;
3

4 procedure test(p:List)
5 n:int
6 {
7 n := 10;
8 List_data[p] := 10;
9 }

Any integer domain easily proves the invariant n = 10 at line 7, but no integer domain
can prove anything relevant to line 8. Heap domains have a similar drawback—they cannot
prove anything about integers.

One solution to this problem is to simultaneously analyze a program using both an integer
domain and a heap domain. This approach would allow us to infer both integer and heap
invariants. Unfortunately, we would never infer any invariants that require both integer and
heap reasoning. For example, consider the index invariant from the introduction. There,
an array called table points to heap-allocated objects. Each object has an index field. We
want to ensure that if table[i] = obj, then obj.index = i. Formally, we write the following
(ignoring array bounds for now):

Inv1 := ∀i:Z. ∀obj :H. table[i] = obj ⇒ (obj.index = i ∨ obj = null). (1.1)

Inv1 quantifies over both heap objects and integers. Such quantified invariants over mixed
domains are beyond the power of existing abstract domains, even when two are used simul-
taneously.

The ingredient that is missing from this approach is communication. Each time one
domain infers a fact, it must communicate it to the other domain, which may make use of
the fact. Together, the two domains can infer mixed invariants with both heap and integer
components.

To facilitate the communication between domains, we construct a combined domain.
This domain relies on an integer and a heap domain. These are called the base domains.

Combined Domain

Heap Domain Integer Domain

(base domains)

CHAPTER 1. INTRODUCTION 14

Both base domains have been modified to communicate information to the combined domain
whenever they infer a new invariant. The combined domain immediately forwards the new
invariants to the other domain.

1.4 Base Domains

As our heap domain we have chosen canonical abstraction, as first implemented in the
TVLA tool [46]. However, we have heavily modified this domain, as described in Chapter 2.
For our integer domain we use difference-bound matrices [36]. We also have made many
changes to this domain, as described in Chapter 4. This section briefly explains the rationale
for starting with these two domains.

1.4.1 Heap Domain

There are, at present, only two techniques for automatically inferring heap invariants:
canonical abstraction as implemented in TVLA [46] and separation logic [4]. In both tech-
niques, the user provides descriptions of the data structures to be analyzed. Confusingly, the
descriptions are called “predicates” in both systems, although they mean different things.
In both cases, the analysis infers invariants in terms of the predicates specified by the user.
Providing sophisticated predicates is more work, but it leads to stronger invariants.

TVLA predicates are written in first-order logic with transitive closure. The predicates
specify properties of data structures that might be of interest. For example, the following
predicate specifies a doubly linked list property.

Inverse(n:H) := n.next.prev = n

Another property of interest for lists is whether their nodes have multiple incoming pointers.

Shared(n:H) := ∃n1 :H. ∃n2 :H. n1.next = n ∧ n2.next = n ∧ n1 6= n2

TVLA domain elements are conjunctions of these predicates (or their negations). For ex-
ample, an element might state that a list satisfies Double and never satisfies Shared.

Separation logic predicates are written recursively. A single separation logic predicate
will typically describe an entire data structure. For example, a predicate describing a singly
linked list is as follows. (The ? operator is similar to conjunction.)

SLL(x:H) := (x = null) ∨ (∃y:H. (x.next = y) ? SLL(y))

Like in TVLA, a separation logic domain element is essentially a conjunction of predicates.
The primary difference from TVLA is that each object in the heap can be referenced only
once across all predicates. This is how the ? operator differs from conjunction—it implicitly
states that the two operands are “separate,” that they describe disjoint portions of the heap.

CHAPTER 1. INTRODUCTION 15

This provision is often useful in reasoning about separation logic formulas. However, it makes
it nearly impossible to decompose a data structure description into multiple predicates.
Instead, a single predicate is used for the entire data structure.

We chose to use TVLA as our heap abstraction because its predicates are more com-
posable. In TVLA, the description of a complex data structure is the conjunction of many
predicates, usually simple ones. In separation logic, a complex data structure must be
described using one complex predicate.

Composability is important for two reasons. The simpler reason is that it allows us to
describe a complex data structure by combining predicates from simpler structures. For
example, a chained hash table can be described using a set of array predicates and a set of
linked list predicates.

However, we have a more important reason for favoring composability. When used inside
of the combined domain, a heap domain shares information with the integer domain through
its predicates. As it discovers that more predicates are true, it sends them to the integer
domain. To be effective, the heap domain must communicate each bit of information as it
learns it. Separation logic predicates are too coarse-grained to be useful for this purpose.
TVLA predicates, which constrain a much smaller portion of the data structure, work well.

We do not wish to argue in this section that TVLA is strictly better than separation
logic. It is often slower, less scalable, and more complex to implement. We chose TVLA
mainly because it cooperates well with the combination domain. §2.7 has a much more
detailed discussion of the strengths and weaknesses of the two approaches.

1.4.2 Integer Domain

There are many integer domains of varying performance and expressiveness. Perhaps
the most commonly used is the domain of polyhedra [2]. This domain infers conjunctions
of linear inequalities of the form a1 · x1 + · · ·+ an · xn ≤ c.

We chose, instead, to implement the domain of difference-bound matrices [36]. This
domain infers more restricted facts of the form x1−x2 ≤ c. That is, it bounds the difference
between two variables. Either variable can be missing, permitting invariants like x ≥ c and
x ≤ c.

We chose this domain mainly because it is simple to implement while still being suffi-
ciently powerful to infer all the invariants in our test programs. Since we have made many
changes to the domain to make it cooperate with the combined domain, simplicity of im-
plementation was very important to us. Another benefit of this domain over polyhedra is
that it performs better. Eventually, though, we expect that a more powerful domain will be
needed. We expect that most of the changes proposed in this thesis should apply equally
well to other, more powerful integer domains.

CHAPTER 1. INTRODUCTION 16

1.5 Thesis Structure

The main goal of the thesis is to analyze the data structures in real-world systems
programs for memory safety. In particular, we want to develop an analysis that can infer
invariants like the ones in the introduction. For an application, we focus on the cache module
of the thttpd web server. We have divided the problem into several parts.

• First, using the framework of abstract interpretation [15], we design a parameter-
ized combined abstract domain, into which two existing base abstract domains can be
“plugged.” The most important aspect of our combined domain is that it supports
quantification in both the base domains. The purpose of the combined domain is to
share facts between the base domains. As a consequence, the responsibility for ana-
lyzing a program is interleaved between the two base domains as they share facts. We
describe the combined domain in Chapter 3.

• In order to use our combined domain, we need good base domains. We have selected
TVLA [46] as our heap domain for its composability. However, TVLA has several
drawbacks. It is not known to scale well and it is also difficult to use. Our heap
domain is actually a heavily modified version of TVLA, designed to correct these
problems. Chapter 2 describes the heap domain. Chapter 4 explains the (minimal)
adaptations to make this domain work well with the combined domain.

• For our integer domain, we use a very simple relational domain based on difference
matrices [36]. It is very easy to integrate this domain with our combined domain.
However, the result is not very powerful. To achieve the full potential of the combined
system, we must improve the integer domain. As the third piece of the thesis, we
augment our integer domain to support quantified reasoning and cardinality. These
improvements, described in Chapter 4 allow it to reason about index invariants and
reference counting.

Based on these pieces, we identify three goals for the thesis. The first is to make a
working combined domain that reasons effectively about the invariants of interest to us.
The second goal is to improve TVLA so that it is sufficiently scalable and easy to use when
analyzing thttpd. The final goal is to augment the integer domain to the point that it
can reason about complex cardinality and reference counting invariants. In Chapter 5 we
present our thttpd experiments and in Chapter 6 we discuss the goals in the context of the
experiments.

17

Chapter 2

Heap Domain

2.1 Introduction

This chapter describes the heap domain used in Deskcheck. This domain is based on
the Three-Valued-Logic Analyzer (TVLA) [47]. In this chapter, we review the main ideas of
TVLA and present some improvements to the basic algorithm. The improvements fall into
four categories.

À We use the technique of finite differencing to generate transfer functions automatically.
We extend existing finite differencing research [40] to be more precise and to handle
arbitrary uses of transitive closure. (§2.3)

Á TVLA requires frequent evaluations of first-order logic formulas. We develop an effi-
cient algorithm for evaluating formulas similar to the way that a relational database
optimizes and executes queries. (§2.4)

Â TVLA includes a phase called sharpening. Given an abstract program state, it makes
the state more precise without changing its concrete denotation. To implement sharp-
ening, TVLA uses a syntactic mechanism that sometimes requires manual intervention.
We develop a new, semantic algorithm for sharpening and prove that, in a limited sense,
it is complete. (§2.5)

Ã TVLA uses a disjunctive abstraction, which occasionally leads to state-space explosion.
We continue to use a disjunctive abstraction, but we reduce the need for disjunction
in the common case. As an example, TVLA typically requires three disjuncts to
represent a singly linked list. Our domain is able to represent the same list using only
one disjunct. (§2.6)

To distinguish our domain from vanilla TVLA, we call ours “the heap domain.” Both
domains implement a form of canonical abstraction [47]. In the remainder of the chapter,
we review TVLA (§2.2) and present the extensions above. Related work is presented in §2.7.

CHAPTER 2. HEAP DOMAIN 18

2.2 TVLA Overview

This overview of TVLA is an adaptation of material from Sagiv, Reps, and Wilhelm [47].
We first present the concrete semantics and then we describe the abstraction. To describe
the concrete semantics, we informally show how to convert a concrete heap to its TVLA
representation. We completely ignore the existence of integers throughout this section.

TVLA views each heap object as a node. Thus, we generate a node for every object in the
concrete heap. Every variable and field is represented by an uninterpreted function. TVLA
converts these functions to predicates. For every function f : T1 × T2 → T3, it generates a
predicate F : T1 × T2 × T3. If f (x, y) = z, then F(x, y, z) holds; otherwise F(x, y, z) is false.
Predicates that represent functions are called core predicates.1

Besides core predicates, TVLA also allows the user to define a set of instrumentation
predicates. Each instrumentation predicate is defined in the language of first-order logic
with transitive closure. Formally stated, this language is as follows.

ϕ := P(x, y, . . .) atomic facts

| x = y equality

| ¬ϕ negation

| ϕ1 ∧ ϕ2 conjunction

| ϕ1 ∨ ϕ2 disjunction

| ∀v. ϕ universal quantification

| ∃v. ϕ existential quantification

| TC(s, t;x, y). ϕ transitive closure

In the last line, ϕ is expected to have x and y as free variables. If we interpret it as a
function, ϕ(x, y), then (TC(s, t;x, y). ϕ) holds if there is a sequence of nodes n1, n2, . . . , nk
such that s = n1, t = nk, and ϕ(ni, ni+1) holds for i = 1 to k − 1. (Since k = 1 is legal, we
are using reflexive transitive closure.)

Example 3 We might define an instrumentation predicate as follows.

SharedViaNext(n) := ∃n1. ∃n2. Next(n1, n) ∧ Next(n2, n) ∧ ¬(n1 = n2)

This predicate holds at a node if there are multiple incoming next pointers, such in as
next(n1) = n and next(n2) = n. 2

An instrumentation predicate may have arbitrary arity, including zero. One predicate
may, in its definition, refer to another predicate as an atomic fact. We only require that
predicates have no cyclic dependencies.

1In TVLA, core predicates are more general than functions. In our system, all core predicates are
functions.

CHAPTER 2. HEAP DOMAIN 19

Given a concrete heap, we can evaluate all the instrumentation predicates at all possible
places to see where they hold. Since any given heap is finite, there is no difficulty in
evaluating quantifiers. Since there is no abstraction, the answer is always precise.

This forms a complete picture of the information stored in a TVLA heap: a set of nodes
and the predicates that hold among them. The predicate facts are simply a conjunction
of atomic literals, which have the form P(n1, n2, . . .) or ¬P(n1, n2, . . .). The combination of
nodes and predicate information is called a structure in TVLA.

Example 4 Consider a linked list of three elements, headed by a pointer head and linked
together by next pointers. Call the three nodes n1, n2, and n3. Additionally, there is a
“null” node z. We have head = n1 and null = z. For i ∈ {1, 2}, next(ni) = ni+1; also,
next(n3) = z. Since functions are required to be total, we say that next(z) = z. Converting
these functions to predicates, we get the following.

Head(n1) ∧ Null(z) ∧ Next(n1, n2) ∧ Next(n2, n3) ∧ Next(n3, z) ∧ Next(z, z)

There are also many negated facts.

¬Head(n2) ∧ ¬Head(n3) ∧ · · · ∧ ¬Next(z, n3)

In addition, we can evaluate the SharedViaNext predicate defined above.

¬SharedViaNext(n1) ∧ ¬SharedViaNext(n2) ∧ · · · ∧ ¬SharedViaNext(z)

We can also define other predicates.

SharedViaHead(n) := Head(n) ∧ ∃n′. Next(n′, n)

HeadReaches(n) := ∃n′. Head(n′) ∧ TC(n′, n; v, v′). Next(v, v′)

The first predicate holds of a node if it has an incoming next pointer and it is also the head.
The second predicate holds if it is reachable from the head via next edges. If we evaluate
these predicates, we see that SharedViaHead is false at all nodes and HeadReaches is true at
all nodes. 2

It quickly becomes awkward to write out all these predicate values. Hence, we adopt a
graphical notation.

n1

Head,HR
n2

HR

n3

HR

z
HR,Null

Nodes are circles. Unary predicates are written next to the nodes that satisfy them. We
abbreviate HeadReaches as HR. The Next predicate is shown using edges. If a predicate
value is not shown (such as Next(n1, n3) or SharedViaHead(n1)) then it is false.

CHAPTER 2. HEAP DOMAIN 20

2.2.1 Abstraction

Call the structure above L3 because it represents a three-node list. In a program analysis,
the goal is to represent all possible data structures that might occur at a given point in the
program. If this set consisted of lists of size 1, 2, or 3, then we could represent this state as
a disjunction of structures, L1 ∨ L2 ∨ L3. But what about the more likely case of a list of
arbitrary length? This would require an infinite disjunction, which cannot be represented in
a computer. Hence, we need abstraction. Abstraction is the process of converting something
arbitrarily large into something that is guaranteed to have finite size.

Since disjunctions must be finite, we need a single structure that can represent an ar-
bitrary number of nodes. To do this, we introduce the concept of a summary node, which
represents one or more concrete nodes. Nodes that are not summary nodes are called sin-
gleton nodes. Using summary nodes, we can begin to construct a structure that represents
linked lists of many different sizes.

n1

Head,HR
n2

? HR

z

?
HR,Null

Here, n2 is a summary node. It is written in bold and drawn with a double circle as a
reminder.

We are now faced with a conundrum: should the edges shown with question marks be
true or false? n2 potentially represents many concrete nodes. n1 connects to the first one,
but not to the rest. Similarly, only the last node represented by n2 connects to z.

To resolve the problem, we allow predicate values to take on the value 1/2, meaning
“don’t know.” We set Next(n1,n2) = 1/2 because some of the nodes represented by n2

have an edge from n1 but not all of them. The same goes for Next(n2, z). We are also forced
to set Next(n2,n2) = 1/2. The reason is that every node represented by n2 has a next edge
to its successor node, which may also be represented by n2.

We can now redraw the diagram above as follows. Dashed lines show when a Next
predicate value is 1/2.

n1

Head,HR
n2

HR

z
HR,Null

Now we can define a TVLA structure more formally.

Definition 1 A structure S is a tuple, 〈U, ι〉. U is the set of nodes and ι is the interpretation
of predicates. For each predicate P of arity k, ι(P) : Uk → {0, 1, 1/2}. 0 means the predicate
value is false and 1 means true. 2

We use a clever trick to distinguish summary nodes from singleton nodes. We create a
binary predicate, Eq(n, n′), that holds when n = n′. For a singleton node n, Eq(n, n) = 1.

CHAPTER 2. HEAP DOMAIN 21

For a summary node n, Eq(n, n) = 1/2. Why not 1? Because there may be concrete nodes
n1 and n2 represented by n and they are not the same. We can track the Eq predicate using
ι just like we do any other predicate.

We distinguish between concrete structures, which never contain 1/2 predicate values,
and three-valued structures, which may contain 1/2. We would like to state formally which
concrete structures are represented by a three-valued structure. Whenever a structure S ′

represents another structure S, we say that S embeds into S ′ and write S v S ′.

Example 5 Using the same structure as Example 4, we would like to show the following.

n1

Head,HR
n2

HR

n3

HR

z
HR,Null v

n′1
Head,HR

n′2

HR

z′

HR,Null

We call the left structure S = 〈U, ι〉 and the right structure S ′ = 〈U ′, ι′〉. The first step
in showing that one structure embeds inside another is to match up the nodes. We define a
function f from U to U ′. In this case, it should be intuitive how the nodes match up.

f(n1) = n′1 f(n2) = n′2 f(n3) = n′2 f(z) = z

Then we check that the predicates in the two structures match up. Whenever P(n) = 1
in S, we require that P(f(n)) = 1 or 1/2 in S ′. Similarly, whenever a predicate is 0 in S, it
must be 0 or 1/2 in S ′.

Consider the value of ι′(Next)(n′1,n
′
2). There are two relevant constraints.

1 = ι(Next)(n1, n2) v ι′(Next)(n′1,n
′
2) = 1/2

0 = ι(Next)(n1, n3) v ι′(Next)(n′1,n
′
2) = 1/2

Some values are less constrained. If we consider ι′(Next)(n′1, n
′
1), the only constraint we

get is that 0 = ι(Next)(n1, n1) v ι′(Next)(n′1, n
′
1) = 0.

We also consider the unary predicates, such as HeadReaches(n′2).

1 = ι(HeadReaches)(n2) v ι′(HeadReaches)(n′2) = 1

1 = ι(HeadReaches)(n3) v ι′(HeadReaches)(n′2) = 1

We omit the other predicate checks, but we do examine the Eq predicate. The condition
that the predicates match up says that if n is a summary node in S, then it must map to a
summary node in S ′ (i.e., if ι(Eq)(n, n) = 1/2 then ι′(Eq)(f(n), f(n)) = 1/2). Additionally,
if f(n1) = f(n2) = n′, where n1 and n2 are distinct nodes in U , then n′ must be a summary
node. 2

CHAPTER 2. HEAP DOMAIN 22

Before giving the formal definition of embedding, we need to define an ordering on
{0, 1, 1/2}. This order formalizes our intuitive notion that 0 and 1 are “more specific” than
1/2.

0 v 0 1 v 1 1/2 v 1/2

0 v 1/2 1 v 1/2

We call 0 and 1 “definite values” and call 1/2 an “indefinite value.”

Definition 2 Given two TVLA structures, S = 〈U, ι〉 and S ′ = 〈U ′, ι′〉, we say that S
embeds into S ′ if there exists a surjection f : U → U ′ (called the embedding function) that
satisfies the following. For any predicate P,

ι(P)(n1, . . . , nk) v ι′(P)(f(n1), . . . , f(nk)). 2

Now we can define the meaning of a three-valued structure in terms of concrete structures.
γ(S) is the set of concrete structures represented by a three-valued structure S.

γ(S) = {S0 : S0 is concrete ∧ S0 v S}

Some embeddings are more precise than others. For example, in Example 5, we could
have instead chosen all the predicate values in S ′ to be 1/2 and S still would have embedded
into it. But given a structure S and an embedding function f , f induces a most precise
structure S ′ such that S v S ′. We can characterize S ′ as follows (where t is the least upper
bound of the v relation).

ι′(P)(n′1, . . . , n
′
k) =

⊔
f(ni)=n′

i

ι(P)(n1, . . . , nk)

This formulation identifies all relevant constraints of the form v v ι′(P)(n′1, . . . , n
′
k) and then

takes the least upper bound over all these v.

Canonical abstraction. The preceding material on embeddings offers a way to collapse
nodes of a structure together in the most precise possible way (the induced embedding).
However, it does not offer any insight in choosing which nodes to collapse (i.e., in choosing
f). Ultimately, this choice is a heuristic, but the following technique is easy to understand
and works well in practice.

We identify a subset of predicates A called abstraction predicates. These predicates must
be unary. Then we form an equivalence relation on nodes. We write n ≡ n′ if, for every
P ∈ A, ι(P)(n) = ι(P)(n′).

Then we collapse equivalent nodes. More formally, we define f≡(n) = [n]≡. That is, a
node n is mapped to its equivalence class in ≡. This ensures that f≡(n) = f≡(n′) if and
only if n ≡ n′.

CHAPTER 2. HEAP DOMAIN 23

Another way to think of this process is in terms of canonical names. Assume that
A = {P1,P2, . . . ,Pm}. Then the canonical name of a node n is a sequence,

〈ι(P1)(n), ι(P2)(n), . . . , ι(Pm)(n)〉.

Nodes having the same canonical name are collapsed to the same node.

Example 6 In the preceding example, we would have obtained the given f if A were
{Head,Null}. Adding any of the sharing or reachability predicates above to A would not
have made a difference, because they all evaluate to the same value on n2 and n3. Using
A = ∅ would have merged all nodes into a single node.

We could have defined a predicate like the following.

Second(n) = ∃n′. Head(n′) ∧ Next(n′, n)

This predicate is true on n2 and false on n3. The choice A = {Head, Second,Null} would
result in no abstraction at all. Assuming the ordering of predicates given here, the canonical
names would be:

n1 : 〈1, 0, 0〉 n2 : 〈0, 1, 0〉 n3 : 〈0, 0, 0〉 z : 〈0, 0, 1〉 2

Summary nodes. Examining γ yields a deeper understanding of summary nodes. Let
S ′ be a structure with one summary node, n. Assume there are no predicates besides
Eq. Let S be some concrete structure such that S v S ′. That is, let S ∈ γ(S ′). Since
ι′(Eq)(n, n) = 1/2, Definition 2 imposes no constraints on predicate values in S. The only
constraint at all is that there must be some surjection mapping nodes of S to nodes of S ′.
If S has no nodes, then no such function can exist. If it has at least one node, then there is
such a function (it maps all nodes of S to n).

Consequently, a summary node in an abstract structure must abstract at least one node
in a concrete structure. This restriction is useful because it makes some reasoning simpler.
However, it also causes problems, which we will address in §2.6.

Joining structures. The embedding relation defines a partial order on structures. We
write the least upper bound (or join) of this order as t. This operation has the property
that γ(S t S ′) ⊇ γ(S) ∪ γ(S ′). However, it is not always possible to join two structures.
As we saw above, there is no structure S such that γ(S) includes both an empty structure
and a structure with one or more nodes. Thus, if S0 is the empty structure and S1+ is a
structure with a single summary node, it simply is not possible to join S0 with S1+.

Nevertheless, it is possible to join some structures. If there exists a bijection m mapping
the nodes of S to the nodes of S ′, then we define the join as follows. Let S = 〈U, ι〉 and let
S ′ = 〈U ′, ι′〉 (so that m maps U to U ′). Then S t S ′ = 〈U, ι′′〉, where for every predicate P,

ι′′(P)(u1, . . . , uk) = ι(P)(u1, . . . , uk) t ι′(P)(m(u1), . . . ,m(uk)).

CHAPTER 2. HEAP DOMAIN 24

Note that both S and S ′ embed into the joined structure—S via the identity embedding
function and S ′ via m−1.

Since there is no bijection between nodes of S0 and nodes of Si+1, this join does not work
here. (In fact, the existence of a bijection is not a necessary condition for the existence of a
join. However, we only perform joins of structures where a bijection exists.)

Domain. For the reasons just mentioned, a single TVLA structure may not be able to
represent all the states that arise at a given point in a program. Consequently, we use a
disjunction of structures, S1∨· · ·∨Sn. We will define a domain for abstract intepretation [13]
where these disjunctions of TVLA structures are the domain elements. The meaning of a
domain element is defined as follows.

γ(S1 ∨ S2 ∨ · · · ∨ Sk) = γ(S1) ∪ γ(S2) ∪ · · · ∪ γ(Sk)

We still must define (1) a least upper bound on the domain elements (a join), (2) a partial
order on domain elements, and (3) a way of approximating the effect of a program statement
on a domain element. To distinguish the partial order and join of domain elements from
those over TVLA structures, we write the domain element versions as vvv and ttt.

Before describing these operations, we place a restriction on domain elements. The
purpose of this restriction is to ensure that a domain element is always finite in size. We
first make the observation that any structure that satisfies the canonical abstraction is finite:
there is at most one node for any given canonical name, and there are 2|A| canonical names.

However, the number of disjuncts in the domain element can still grow without bound.
To prevent this, we first say that the canonical name of a structure is the set of canonical
names of its nodes. So the canonical name of the structure in Example 6 is

{〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 0〉, 〈0, 0, 1〉}.

Here, then, is the restriction: a domain element should not contain two structures with the
same canonical names. If it does, we join them together via t into a single structure. The
bijection we use for the join matches nodes with the same canonical name.

This completes the definition of the TVLA domain. The domain elements are disjunc-
tions of structures, where each structure has at most one node with a given canonical name,
and where no two disjuncts have the same set of canonical node names. We say that

S1 ∨ · · · ∨ Sk vvv S ′1 ∨ · · · ∨ S ′k

if for each Si there is an S ′j with the same canonical node names such that Si v S ′j. The
join operation ttt first forms the element S1 ∨ · · · ∨ Sk ∨ S ′1 ∨ · · · ∨ S ′k and then merges, via
t, any two disjuncts with the same set of canonical names.

We have already informally described an algorithm for converting a concrete heap into a
three-valued structure by computing predicate values as in Example 4. Let β be the function

CHAPTER 2. HEAP DOMAIN 25

that runs this algorithm and then computes the canonical abstraction (i.e., merges nodes
with the same canonical name). Given this β, we form α as follows.

α(S) =
⊔
{β(e) : e ∈ S}

The γ function we have already seen. The ⊥ element in TVLA is an empty disjunction.
The next section explains the transformer for assignment.

Example 7 Consider the set S of all acyclic singly linked lists of zero or more elements.
We will compute α(S). The empty list is represented by a single null node, z, as follows.

z
Head,HeadReaches,Null

Using the abstraction predicates A = {Null}, we represent the other cases using a single
summary node for all list elements, as follows. The question mark means that Head(n) =
1/2.

n
Head?,HeadReaches

z
HeadReaches,Null

If the first structure is S0 and the second is S1+, then the domain element we desire is
S0 ∨ S1+. 2

The disjunction of these two structures represents exactly the set of acyclic singly linked
lists. So in this case, γ(α(S)) = S. (In general we are guaranteed only that γ(α(S)) ⊇
S.) The example illustrates the importance of instrumentation predicates. Without the
HeadReaches predicate, it would be possible for an unreachable node to be abstracted by
n—essentially forming floating garbage. Similarly, the SharedViaHead and SharedViaNext
predicates (not shown because they are false everywhere) exclude the possibility of cycles.

2.2.2 Transformers

This section discusses how the abstraction is updated due to program statements. We
focus on the assignment operation; other operations work similarly. Assignment is divided
into four stages.

Focus An assignment statement may reference objects that are represented by summary
nodes in the current abstraction. Operating directly on summary nodes usually leads
to imprecision, so the focus operation splits the node in question off from the summary
node. This stage is called materialization in some papers.

CHAPTER 2. HEAP DOMAIN 26

Sharpen Abstraction “forgets” some information about predicates like Next, but it re-
tains the information indirectly in instrumentation predicates like HeadReaches and
SharedViaNext. When a node is materialized, the Next information about it may still
be imprecise. However, we can use the instrumentation predicates to recover this
information. This process is called sharpening (or, in some texts, coerce).

Update This step actually performs the assignment. Suppose it has the form f (e) := e′.
The first step is to update the F predicate. Instrumentation predicates may depend on
F; these predicates are updated afterwards using a process called finite differencing.

Blur The focus step usually breaks the canonical abstraction because the node it material-
izes has the same canonical name as the original summary node. The blur step restores
the canonical abstraction by merging nodes that have the same canonical name.

These steps are illustrated in the following example.

Example 8 Consider the abstract structure from Example 5. It represents a list of two or
more elements. We will analyze the statement head := next[head]. We consider the four
stages mentioned above in turn.

nh
Head,HR

nt

HR

z
HR,Null

In the focus stage, the analysis ensures that both head and next[head] are represented
by singleton nodes. Since Head(nh) = 1, and nh is a singleton node, there is no need to do
anything for head. However, next[head] is some object abstracted by the summary node nt

(we know this because Next(nh,nt) = 1/2). Thus, we need to materialize nt.
Intuitively, we split nt into two nodes, nt1 and nt2. Both nodes satisfy the same set of

predicates as nt did with three exceptions: nt1 is a singleton node, and Next(nh, nt1) = 1
while Next(nh,nt2) = 0. This yields the following structure.

nh
Head,HR

nt1

HR

nt2

HR

z
HR,Null

However, the split ignores the possibility that nt could represent only a single concrete
node. In that case, we should not create nt2 at all. Thus, we get a second structure.

nh
Head,HR

nt1

HR

z
HR,Null

CHAPTER 2. HEAP DOMAIN 27

We call these two structures S2 and S1, respectively. The result of the focus operation is
S2 ∨ S1.

Next comes the sharpen operation. It is applied independently to S2 and S1. We
consider S1 first because it is simpler. The only indefinite information in this structure are
the facts Next(nt1, nt1) = 1/2 and Next(nt1, z) = 1/2, meaning that it is not known whether
nt1 points to itself or to z. In fact, though, nt1 cannot point to itself. To see why, recall the
definition of SharedViaNext.

SharedViaNext(n) := ∃n1. ∃n2. Next(n1, n) ∧ Next(n2, n) ∧ ¬(n1 = n2)

Because SharedViaNext(nt1) = 0, there cannot be multiple incoming next pointers to nt1.
Therefore, we can sharpen Next(nt1, nt1) to 0. Since next is a total function, we can then
sharpen Next(nt1, z) to 1. The resulting structure S ′1 is as follows.

nh
Head,HR

nt1

HR

z
HR,Null

We can apply the same techniques to S2. Using exactly the same reasoning, we recognize
that Next(nt1, nt1) = 0 and Next(nt2, nt1) = 0. We also consider the fact Next(nt1, z) = 1/2.
We can prove this to be false as follows: if it were true, then nt2 would not be reachable
from head, contradicting the HeadReaches(nt2) = 1 fact. Hence, we obtain the following.

nh
Head,HR

nt1

HR

nt2

HR

z
HR,Null

We call the two structures resulting from sharpen S ′1 and S ′2.
Next we perform the update phase. Recall that the statement is head := next[head].

First the core predicate Head is updated: Head(nh) is updated to 0 and Head(nt1) is updated
to 1. Next, the instrumentation predicates are updated. The details of this process are
described later. The result is that HeadReaches(nh) is updated to 0. The result for S ′2 is
below.

nh nt1

Head

HR

nt2

HR

z
HR,Null

Finally the blur phase executes. Its operation depends on the abstraction predicates. If
A = {Head,Null}, then nh and nt2 will be merged together, since neither of them satisfy
either abstraction predicate. It’s unlikely that this is a desirable outcome; when performing
list iteration, it’s usually best to keep the nodes already seen separate from those yet to be
visited. Thus, we choose A = {Head,Null,HeadReaches}. Then no merging will occur. 2

We will consider the update and sharpen operations in greater detail in the next sections,
where we propose modifications to them.

CHAPTER 2. HEAP DOMAIN 28

2.3 Finite Differencing

The previous section presented an overview of the TVLA approach to shape analysis.
The final section of the overview explained how an assignment statement is processed in
four phases: focus, sharpen, update, and blur. The update phase is the one that actually
implements the assignment. It does so via a process called finite differencing, which was
described by Reps, Sagiv, and Loginov [40].

This section presents the first contribution of this thesis: an extension to make finite
differencing more precise. (This contribution was number À in the bulleted list in the
introduction.) We first present an overview of finite differencing and then describe our
extensions starting in Section 2.3.2.

Finite differencing updates the instrumentation predicates according to how the core
predicates are affected by the assignment. As an example, suppose we have the predicate
P(x) := A(x)∨B(x), where A and B are core predicates. If A(n) is updated from 0 to 1, and
if B(n) remains 0, then we must update P(n) from 0 to 1 as well.

We could, of course, simply re-evaluate all the instrumentation predicates after updating
the core predicates. However, the purpose of instrumentation predicates is to retain infor-
mation about summary nodes that has been lost in the core predicates. As we will see, if
we simply re-evaluate them we get an imprecise answer for summary nodes.

Instead, we generate a formula for the “derivative” of an instrumentation predicate. The
derivative formula evaluates to true only in places where the original predicate would be
affected by the assignment. As long as the nodes relevant to the change are fully materi-
alized, the core predicates will contain sufficient information to get precise results for the
instrumentation predicates.

Given a formula ϕ, the goal is to compute two difference formulas: ϕ+ and ϕ−. ϕ+

evaluates to 1 if changes in the core predicates cause the value of ϕ to change from 0 to 1.
ϕ− evaluates to 1 holds if core predicate changes cause ϕ to change from 1 to 0. We use the
terminology that ϕ “goes up” or “goes down” in these cases.

To be a bit more precise, ϕ+ is 1 if ϕ was 0 in every concrete structure before the
assignment and if it is 1 in every concrete structure after the assignment. ϕ+ is 1/2 if ϕ
changes from 0 to 1 in some, but not all, structures. And ϕ+ is 0 if ϕ never goes from 0 to
1 in any concrete structure. Similar statements hold for ϕ−.

If ϕ references predicate A(x) as an atomic literal, then ϕ+ and ϕ− will reference A+(x)
and A−(x). These formulas evaluate to 1 whenever A(x) goes up or goes down. The next
example explains the process.

Example 9 Let A, B, and C be core predicates. Assume that P(x) := A(x)∨B(x) as above
and that Q(x) := P(x) ∧ C(x). Let there be three nodes, n1, n2, and n3 (the last one is a
summary node). Initially, the predicates are as follows.

CHAPTER 2. HEAP DOMAIN 29

A B C P Q

n1 1 0 1 1 1
n2 0 0 0 0 0
n3 1/2 1/2 1 1 1

P(x) := A(x) ∨ B(x)

Q(x) := P(x) ∧ C(x)

Notice that the facts about P and Q store information that could not be obtained by evalu-
ating their defining formulas (shown on the right): although it is not known whether A or B
hold at n3, the P(n3) = 1 fact requires that each concrete node abstracted by n3 satisfies
either A or B.

Suppose an assignment changes A so that it goes down at n1 and up at n2. If we simply
re-evaluate P and Q everywhere, we get the following. We show a change from v to v′ as in
v → v′. No arrow means no change.

A B C P Q

n1 1→ 0 0 1 1→ 0 1→ 0
n2 0→ 1 0 0 0→ 1 0
n3 1/2 1/2 1 1→ 1/2 1→ 1/2

The re-evaluation of P and Q at n3 causes imprecision. Previously, P preserved the fact
that either A or B is true at every node abstracted by n3. Despite the fact that nothing
about n3 is changed by the assignment, we lose this information in the re-evaluation.

Although it is tempting not to re-evaluate P at n3 since nothing changed there, this does
not work in general: if the defining formula for P had contained quantifiers, then failing to
re-evaluate would be unsound.

Instead, we use differencing to compute a more precise answer for P and Q everywhere.
The first step is to translate the assignment into differences in the core predicates. We can
compute the differences directly based on the old and new values of A, B, and C. We only
show the values for A, since B and C are not affected by the assignment (meaning that their
derivatives are zero everywhere).

A A+ A−

n1 1→ 0 0 1
n2 0→ 1 1 0
n3 1/2 0 0

It is important to point out one subtlety of differencing for the core predicates. We can
set A+ and A− to zero only because A is not affected at any of the concrete nodes abstracted
by n3. If there is a change at some n3 such that A(n3) remains 1/2, we must set both
A+(n3) and A−(n3) to 1/2.

The changes to P, written P+(n) and P−(n), are computed by evaluating formulas in our
logic. Later in the section will will show how to generate these formulas; for now it suffices
to say that they are typical first-order logic formulas that depend on A+, A−, B+, and B−

as well as the old values of A and B. Evaluating them yields the following. Ignore the last
column.

CHAPTER 2. HEAP DOMAIN 30

A B C P A+ A− P+ P− P′(x)

n1 1→ 0 0 1 1 0 1 0 1 0
n2 0→ 1 0 0 0 1 0 1 0 1
n3 1/2 1/2 1 1 0 0 0 0 1

Using the values for P+(n) and P−(n) we can directly compute the new value of P, written
P′. It is defined as

P′(x) := P+(x) ∨ (P(x) ∧ ¬P−(x)).

Notice that both P+ and P− are zero at n3, meaning that no update is required there. This
allows us to retain the information saved in P there.

Next we move on the Q(x) := P(x)∧C(x). Q+ and Q− are defined in terms of the current
values of P and C as well as the differences. However, we have all this information since
the differences to P have just been computed. In general, it is always possible to order the
updates to instrumentation predicates as long as there are no cyclic dependencies. 2

Comparison. We can compare our approach to finite differencing with TVLA’s. First
we review our approach. Given an assignment operation, we compute changes to the core
predicates such as A, above. We temporarily store these changes in the heap structure as
ι(A+) and ι(A−). Then we evaluate the difference formulas P+ and P− to compute changes
to the instrumentation predicate P. These formulas will depend on A+ and A−, so we will
look up ι(A+) and ι(A−) during evaluation. We store the evaluation results in ι(P+) and
ι(P−) in case another instrumentation predicate, like Q, depends on P.

To fully illustrate the idea, we show evaluation rules for finite differencing formulas
(Table 2.1). Let JϕKS,A be the result of evaluating ϕ over three-valued structure S. The
assignment A binds free variables to nodes.

ϕ JϕKS,A (assume S = 〈U, ι〉)
P(v1, . . . , vk) ι(P)(A(v1), . . . , A(vk))
P+(v1, . . . , vk) ι(P+)(A(v1), . . . , A(vk))
P−(v1, . . . , vk) ι(P−)(A(v1), . . . , A(vk))
x = y ι(Eq)(A(x), A(y))
¬ϕ′ ¬ Jϕ′KS,A
ϕ1 ∧ ϕ2 Jϕ1KS,A ∧ Jϕ2KS,A
ϕ1 ∨ ϕ2 Jϕ1KS,A ∨ Jϕ2KS,A
∀v. ϕ′

∧
n∈UJϕ′KS,A[v→n]

∃v. ϕ′
∨
n∈UJϕ′KS,A[v→n]

Table 2.1: Semantics of finite difference formulas.

The main difference between TVLA and our system is that TVLA handles differencing
syntactically while we do it semantically. TVLA never stores differences in ι. Instead, it

CHAPTER 2. HEAP DOMAIN 31

substitutes one difference formula into another, so that difference formulas do not depend
on other differences. The following example illustrates the approach.

Example 10 Suppose that the change to A above was caused by the statement “a :=
next[a].” Considering only the syntax of this statement, TVLA will generate formulas for
A+ and A−.

A+(n) := ∃n′. A(n′) ∧ Next(n′, n)

A−(n) := A(n) ∧ ¬Next(n, n)

(The final clause in the down formula is needed in case a points to itself.) TVLA will then
syntactically substitute these formulas into the difference formulas it generates for P, so that
P+ and P− do not include any reference to differences in A or any other formula. 2

Our system computes updates “on-demand” given an arbitrary set of changes to core
predicates. In contrast, TVLA examines each assignment before the analysis runs and com-
putes customized difference formulas for each instrumentation predicate. TVLA’s approach
has the advantage that the syntactic substitution may reveal opportunities for simplifying
the difference formula that our system would not discover. Typically, though, it results in
larger formulas that take longer to evaluate. Additionally, the up-front cost of generating
and storing update formulas for every statement in the program can be burdensome.

2.3.1 Difference Formulas

The previous section described how difference formulas are used. This section describes
how they are generated. Differencing is syntax-directed. We begin by computing P+ and
P−. First consider the up formula: P+(x) = (A(x) ∨ B(x))+. P will go up if either A goes
up or B goes up. But we can be more precise than this. If A goes up when B was already
equal to 1, then P will not go up. We can formalize this insight as follows.

P+(x) = (A+(x) ∧ ¬B(x)) ∨ (¬A(x) ∧ B+(x))

This formula is evaluated in the “old” state, before any predicates are updated by the as-
signment statement. Thus, A(x) does not account for any changes to A from the assignment.

Now we consider P−(x) = (A(x)∨B(x))−. If A(x) goes down, then P(x) will go down as
well, but only if the new value of B(x) is 0. Similarly, P will go down if B goes down and
A is zero in the future. In order to formalize this notion, we need a way to express “the
future value of A(x).” We use the future operator, denoted F[ϕ]. Normally ϕ is evaluated
in the old state, but F[ϕ] evaluates ϕ in the updated state. This can be implemented easily
as long as all the predicates mentioned in ϕ have already been updated. Since we only use
F[·] on sub-expressions of P, this requirement will always be satisfied.

Using the future operator, we can generate P− based on the intuition above.

P−(x) = (A−(x) ∧ ¬F[B(x)]) ∨ (¬F[A(x)] ∧ B−(x))

CHAPTER 2. HEAP DOMAIN 32

To formally define the semantics of the future operator, we need to extend the evaluation
rules in Table 2.1. Now we must evaluate formulas over two structures: the original one S
and the updated one S ′. We let JϕKS,S′,A be the result of the evaluation. Table 2.2 shows
the updated rules.

ϕ JϕKS,S′,A (assume S = 〈U, ι〉)
P(v1, . . . , vk) ι(P)(A(v1), . . . , A(vk))
P+(v1, . . . , vk) ι(P+)(A(v1), . . . , A(vk))
P−(v1, . . . , vk) ι(P−)(A(v1), . . . , A(vk))
x = y ι(Eq)(A(x), A(y))
F[ϕ′] Jϕ′KS′,S′,A

¬ϕ′ ¬ Jϕ′KS,S′,A

ϕ1 ∧ ϕ2 Jϕ1KS,S′,A ∧ Jϕ2KS,S′,A

ϕ1 ∨ ϕ2 Jϕ1KS,S′,A ∨ Jϕ2KS,S′,A

∀v. ϕ′
∧
n∈UJϕ′KS,S′,A[v→n]

∃v. ϕ′
∨
n∈UJϕ′KS,S′,A[v→n]

Table 2.2: Semantics of the future operator.

Using the same intuition appearing above, we present the complete finite differencing
rules for all types of formulas in Table 2.3. Rather than describe them in detail, we give a
few examples to show how they are used.

Example 11 In the following examples we depict formulas as trees that grow to the right.
Consider the new formula R(a0) := ∃b. E(a0, b) ∧ C(b). We show this formula as follows.

R(a0 : T)

∃b ∧
E(a0, b)

C(b)

This formula has a typical structure. It might mean: R holds of a node n if n points to
another object (via the field edge E) where C holds.

We can compute the derivatives of R using Table 2.3 (and a few simplifications to be
described).

CHAPTER 2. HEAP DOMAIN 33

ϕ ϕ+ ϕ−

true, false false false
P(x) P+(x) P−(x)
x = y false false
¬ϕ′ ϕ′− ϕ′+

ϕ1 ∧ ϕ2 (ϕ+
1 ∧ F[ϕ2]) ∨ (F[ϕ1] ∧ ϕ+

2) (ϕ−1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ−2)
ϕ1 ∨ ϕ2 (ϕ+

1 ∧ ¬ϕ2) ∨ (¬ϕ1 ∧ ϕ+
2) (ϕ−1 ∧ ¬F[ϕ2]) ∨ (¬F[ϕ1] ∧ ϕ−2)

∃x. ϕ′ (∃x. ϕ′+) ∧ (¬∃x. ϕ′) (∃x. ϕ′−) ∧ (¬∃x. F[ϕ′])
∀x. ϕ′ (∃x. ϕ′+) ∧ (∀x. F[ϕ′]) (∃x. ϕ′−) ∧ (∀x. ϕ′)

Table 2.3: Finite differencing rules.

R+(a0 : T)

∧

∃b ∨

∧
E+(a0, b)

F[C(b)]

∧
F[E(a0, b)]

C+(b)

¬R(a0)

R−(a0 : T)

∧

∃b ∨

∧
E−(a0, b)

C(b)

∧
E(a0, b)

C−(b)

¬ ∃c ∧
F[E(a0, c)]

F[C(c)]

Consider the left formula. The bottom branch says that for R to go up, it must have
been zero before. According to the top branch, it will go up if a new E edge to some node
is created and if C is true there in the future state. It will also go up if C goes up at a node
that has an incoming E edge from a0.

Now consider the right formula. The bottom branch says that for R to go down, it must
be false when re-evaluated the future state. The top branch provides an additional condition.
Either there must be a node where C was true and E went down, or where E was true and
C went down. The top branch ensures that the existential quantifier goes down somewhere
where it originally held; the bottom branch ensures that there are no other places where it
still holds.

We make two notes about these formulas. At the top level, R+ has two branches; ac-
cording to the rules in the table, the bottom one should be ¬∃y. E(a0, y) ∧ C(y). However,
we recognize that this expression contains the defining formula for R, so we replace it with
R(a0). This makes formulas smaller and more efficient to evaluate as well as more precise.

Secondly, the formula for R− should contain F[∃y. E(a0, y)∧C(y)]. However, it is always
valid to push the F[·] operator down to atomic formula, as we have done. Having F[·] only
apply to atomic formulas simplifies our algorithms. 2

CHAPTER 2. HEAP DOMAIN 34

Example 12 Now consider another typical formula, S(x) := ∀y. E(x, y)⇒ C(y). We obtain
the following derivatives.

S+(a0 : T)

∧

∃b ∨

∧
E−(a0, b)

¬C(b)

∧
E(a0, b)

C+(b)

∀c ∨
¬F[E(a0, c)]

F[C(c)]

S−(a0 : T)

∧

∃b ∨

∧
E+(a0, b)

¬F[C(b)]

∧
F[E(a0, b)]

C−(b)

S(a0)

On the left, the top branch says that for S to go up, an E edge to some node where C is
false must go down. Or C must go up at a node with an incoming E edge. Additionally, the
bottom branch re-evaluates S in the future state.

The meaning of the down derivative should be clear by now. 2

Example 13 The following example shows another small divergence from Table 2.3. Let
U(x) := ∃y. ∃z. G(x, y, z). We get the following derivatives.

U+(a0 : T)

∧
∃b. ∃c. G+(a0, b, c)

¬U(a0)

U−(a0 : T)

∧
∃b. ∃c. G−(a0, b, c)

¬∃d. ∃e. F[G(a0, d, e)]

In the presence of chained quantifiers (of the form ∃a. ∃b. · · · ∃z. ϕ or ∀a. ∀b. · · · ∀z. ϕ) we
apply the quantifier rule from Table 2.3 only once. 2

2.3.2 Improved Precision

The formulas given above are correct. However, they often yield imprecise results even
in the common case.

Example 14 Consider, again, the predicate P(x) := A(x) ∨ B(x). Let the initial values be
A(n) = 0 and B(n) = 1/2. Assume that A goes up to 1 at n. Clearly the final value of P(n)
should be 1. However, using the difference formula we get the following.

P+(n) = (A+(n) ∧ ¬B(n)) ∨ (¬A(n) ∧ B+(n))

= (1 ∧ 1/2) ∨ (1 ∧ 0)

= 1/2

Using this information, we are forced to update P(n) to be 1/2. 2

CHAPTER 2. HEAP DOMAIN 35

The problem here is that the formulas given above are, in some sense, too precise. We
get P+(n) = 1/2 because, in a concrete structure where B(n) = 1, P(n) was already 1 and
so P(n) does not actually go up.

More generally, each up formula contains two pieces: a check that the new value is 1 and
a check that the old value was 0. The latter check ensures that we only update a predicate
when it is actually changing. Unfortunately, if the previous value of a predicate was 1/2,
then we can never say definitively that it goes up or down because we are unsure of its old
value.

We would prefer to take a looser interpretation of the “did it change?” check. To do
so, we introduce a new operator, 1[·], called the definite operator. Its job is to promote 1/2
values to 1. The value of 1[ϕ] is 0 if ϕ is 0 and 1 if ϕ is 1/2 or 1.

Using the definite operator, we can refine the difference formula for disjunction as follows.

(ϕ1 ∨ ϕ2)+ = (ϕ+
1 ∧ 1[¬ϕ2]) ∨ (1[¬ϕ1] ∧ ϕ+

2)

Using values from the previous example, P+(n) now equals 1, as desired. The following table
gives the same rules as Table 2.3 but modified to be more precise.

ϕ ϕ+ ϕ−

ϕ1 ∧ ϕ2 (ϕ+
1 ∧ F[ϕ2]) ∨ (F[ϕ1] ∧ ϕ+

2) (ϕ−1 ∧ 1[ϕ2]) ∨ (1[ϕ1] ∧ ϕ−2)
ϕ1 ∨ ϕ2 (ϕ+

1 ∧ 1[¬ϕ2]) ∨ (1[¬ϕ1] ∧ ϕ+
2) (ϕ−1 ∧ ¬F[ϕ2]) ∨ (¬F[ϕ1] ∧ ϕ−2)

∃x. ϕ′ (∃x. ϕ′+) ∧ (1[¬∃x. ϕ′]) (1[∃x. ϕ′−]) ∧ (¬∃x. F[ϕ′])
∀x. ϕ′ (1[∃x. ϕ′+]) ∧ (∀x. F[ϕ′]) (∃x. ϕ′−) ∧ (1[∀x. ϕ′])

Table 2.4: More precise finite differencing rules.

Example 15 To see the difference, compare these derivatives for R(x) := ∃y. E(x, y)∧C(y)
to the ones in Example 11.

R+(a0 : T)

∧

∃b ∨

∧
E+(a0, b)

F[C(b)]

∧
F[E(a0, b)]

C+(b)

1[¬R(a0)]

R−(a0 : T)

∧

1 ∃b ∨

∧
E−(a0, b)

1[C(b)]

∧
1[E(a0, b)]

C−(b)

¬ ∃c ∧
F[E(a0, c)]

F[C(c)]

CHAPTER 2. HEAP DOMAIN 36

The only change to the up derivative is that the check that R was zero before (the lower
branch) is inside 1[·]. The down derivative may seem a bit more complex. However, the
inner definite operators have no effect, since they are nested inside the outer one. The
purpose of the outer one is to ensure that if R is 0 in the future state, then R− is 1 even if
a change only maybe occurred. 2

Comparison. In TVLA the imprecision explained above is acceptable because it is even-
tually “fixed up” by the sharpening operation, which TVLA runs after every transformer.
However, sharpening is the most expensive operation in the analysis. Using the formulas in
Table 2.4 gives precise results, allowing us to sharpen much less frequently.

2.3.3 Transitive Closure

So far we have not discussed finite differencing rules for formulas that use transitive
closure. We do so now. First, assume that ψ := (TC(s, t;x, y). ϕ(x, y)). Sometimes we
write ψ(·, ·) to allow substitution of other variables for s and t. We wish to generate ψ+ and
ψ−. The easiest way to do this is instead to compute the new value of ψ, call it ψ′, and then
derive ψ+ and ψ− from it.

The changes that can affect ψ are either ϕ going up or down. Thus, we could simply
write ψ′ = (TC(s, t;x, y). F[ϕ]), but this is not very precise. In many cases, ψ will be known
definitely even when no information about ϕ is available. Thus, we want a formula that
reuses ψ whenever possible. The solution is to stitch together a path from s to t consisting of
sub-paths from x to y where either (1) ϕ+(x, y) holds, or (2) ψ(x, y) holds and is “trusted,”
meaning that no ψ− edges can affect it.

Example 16 To see what this means, consider the following example.

1 2
ϕ?

ϕ?

3
ϕ?

4
ϕ+

5
ϕ−

6

7

ϕ+

ψ
ψ

In this figure, an unlabeled solid edge means that ϕ holds between the two nodes. A
dotted edge means that ϕ goes up or down, depending on the label. A dashed edge means
that ϕ is 1/2 in the original structure. Finally, a squiggle edge means that ψ held in the
original state. Node 2 is a summary node while the other nodes are singletons. The goal is
to compute where ψ holds in the future.

Between nodes 1 and 3, ψ was known to hold even though ϕ may not hold in between.
Since ϕ does not go down anywhere between 1 and 3, the existing ψ edge is considered
“trusted,” so we can be sure that ψ holds in the future as well.

CHAPTER 2. HEAP DOMAIN 37

Between nodes 4 and 7 the situation is more difficult. The ψ edge from 4 to 7 cannot
be trusted: ϕ goes down between 4 and 5, and the path originally witnessed by the ψ edge
may depend on ϕ between 4 and 5. However, ϕ is known to hold between 4 and 6, and ϕ
goes up between 6 and 7. So ψ still holds between 4 and 7 in the future, although it uses a
different path of ϕ edges than it did previously.

Using these inferences, we can stitch together a path from node 1 to node 7: first the
trusted ψ edge from 1 to 3 is used, followed by the ϕ+ edge to 4, the ϕ edge to 6 that doesn’t
go down, and finally the ϕ+ edge to 7. 2

We formalize the logic behind this example as follows. We will use the transitive closure
operator to stitch together our path. We will close over a new formula, ϕnew, to be defined.

ψ′(s, t) := TC(s, t;x, y). ϕnew(x, y)

ϕnew(x, y) should hold either if ϕ goes up or if there is a trusted ψ edge.

ϕnew(x, y) := ϕ+(x, y) ∨ ψtrusted(x, y)

To decide whether an existing ψ(x, y) is trusted, we need to know whether it might have
used a ϕ edge that went down. This can happen only if there is a ϕ−(a, b) edge such that x
reaches a and b reaches y.

ψtrusted(x, y) := ψ(x, y) ∧ ¬∃a, b. ψ(x, a) ∧ ϕ−(a, b) ∧ ψ(b, y)

This fully defines ψ′. However, we also need ψ+ and ψ− in case ψ is used inside some
other formula. We could simply say that ψ+ = ψ′ ∧ 1[¬ψ]. However, this will return 1 even
when no change has taken place. We can make it more precise by requiring that ϕ go up
somewhere. For ψ to go up between s and t, there must be a path from s to a place where
ϕ goes up, and then a path from there to t. The path must be along existing ψ edges or
else edges where ϕ goes up. We formalize such a path with ψ∆.

ψ∆(x, y) = TC(x, y; a, b). ψ(a, b) ∨ ϕ+(a, b)

ψ+(s, t) = ψ′(s, t) ∧ 1[¬ψ(s, t) ∧ ∃a, b. ψ∆(s, a) ∧ ϕ+(a, b) ∧ ψ∆(b, t)]

We do essentially the same thing for ψ−. However, we do not need ψ∆ edges in this case—we
can simply use ψ edges.

ψ−(s, t) = ¬ψ′(s, t) ∧ 1[ψ(s, t) ∧ ∃a, b. ψ(s, a) ∧ ϕ−(a, b) ∧ ψ(b, t)]

Comparison. The original finite differencing rules presented in Reps et al. [40] also han-
dled transitive closure using trusted edges. However, those authors wanted to completely
eliminate transitive closure from the difference equations.2 Rather than taking the transi-
tive closure of ϕnew, as we do, they allow only three steps to be taken along ϕnew edges.

2Transitive closure cannot be axiomatized in a complete way in first-order logic. Thus, eliminating
transitive closure permits traditional theorem provers to be applied to shape analysis.

CHAPTER 2. HEAP DOMAIN 38

The “three-step rule” can be encoded using only existential quantification. However, the
three-step rule supports only single-edge changes during an assignment. Our rules allow ar-
bitrary ϕ edge additions and deletions. Although single-edge changes are the common case,
checking that an assignment makes only a single edge change introduces a lot of complexity
into the analysis. As a result, our finite differencing code is about 300 lines of ML. TVLA’s
is about 1,300 lines of Java.

2.4 Formula Evaluation

The previous section described the finite differencing mechanism. It is an easy, declarative
way to describe how instrumentation predicates are affected by an assignment. This section
describes an efficient, novel way to evaluate the difference formulas (or any formulas). This
step can be costly if done naively. We borrow techniques from the database literature to
make it run faster. This section is contribution Á from the introduction.

2.4.1 Semantics

Recall the semantics of queries, shown again in Table 2.5. We evaluate a formula ϕ over
two structures: the state before an assignment, S = 〈U, ι〉, and the state after an assignment,
S ′ = 〈U, ι′〉. Note that the universes are the same. Each formula may evaluate to 0, 1, or
1/2. Since ϕ may have free variables, we also need an assignment, A, which maps free
variables of ϕ to individuals from U . We use the notation JϕKS,S′,A to mean the evaluation
of ϕ in structures S and S ′ over assignment A.

ϕ JϕKS,S′,A (assume S = 〈U, ι〉)
P(v1, . . . , vk) ι(P)(A(v1), . . . , A(vk))
P+(v1, . . . , vk) ι(P+)(A(v1), . . . , A(vk))
P−(v1, . . . , vk) ι(P−)(A(v1), . . . , A(vk))
x = y ι(Eq)(A(x), A(y))
F[ϕ′] Jϕ′KS′,S′,A

¬ϕ′ ¬ Jϕ′KS,S′,A

1[ϕ′] 1[Jϕ′KS,S′,A]
ϕ1 ∧ ϕ2 Jϕ1KS,S′,A ∧ Jϕ2KS,S′,A

ϕ1 ∨ ϕ2 Jϕ1KS,S′,A ∨ Jϕ2KS,S′,A

∀v. ϕ′
∧
n∈UJϕ′KS,S′,A[v→n]

∃v. ϕ′
∨
n∈UJϕ′KS,S′,A[v→n]

TC(s, t;x, y). ϕ′ ι(Eq)(A(s), A(t)) ∨
∨
P∈Paths(S,A(s),A(t))

∧
〈n1,n2〉∈P Jϕ′KS,S′,A[x→n1,y→n2]

Table 2.5: Semantics of formulas.

CHAPTER 2. HEAP DOMAIN 39

The logical operators ∧, ∨, and ¬ appearing on right-hand side of the table are just as
one would expect: 0∧ 1 = 0, 0∨ 1 = 1, 0∧ 1/2 = 0, and 0∨ 1/2 = 1/2. The Paths function
works as follows: from the complete graph over the nodes U , it returns all subsets of edges
that form a path from A(s) to A(t).

One can convert Table 2.5 to an evaluation algorithm in an obvious way. Unfortunately,
each nested quantifier introduces an O(|U |) factor to the complexity of evaluation. An
assignment statement may require the evaluation of 50 or so difference formulas, each of
which may have quantifiers nested two or three levels deep. Even for small programs,
|U | ∼ 100 and there may be thousands of assignment statements to analyze. Consequently,
the naive algorithm is quite slow, as we will show in our experiments.

2.4.2 Introduction

The process of optimizing and executing a query is shown below. We briefly describe
each step in this section.

Query
optimization

Execution
Query planFO(TC) formula Results

The goal is to execute formulas from first-order logic with transitive closure (FO(TC)).
To make an analogy with databases, we call these formulas queries. The first step is to
optimize these queries, making them easier to execute. Query execution then generates a
series of results, such as “ϕ(x) is 1/2 at x = n4.”

Optimizing a query generates a query plan. In our system, a query plan is not much
different from a query except that a bit more information is included about how to execute
it. Query plans are pre-computed, so the cost of optimization can usually be neglected. The
goal is to make query execution as fast as possible. Since the purpose of all this machinery
is to execute a query, we discuss this step first. Then we describe how queries are optimized.

Query execution. We use as an example the query ϕ(x) := ∃y. E(x, y) ∧ A+(x). When
optimized, this query has the following query plan: (find(y). A+(x) ∧ E(x, y)). We will
explain later why the query is optimized this way. The query plan differs from the original
query in only two ways: the order of the conjunction has been reversed and the existential
quantifier has been converted to a special “find” quantifier. For now, assume that find has
the same meaning as existential quantification.

Let’s execute this query plan. Since changes occur locally, A+(x) will usually be true for
only one or two values of x. Thus, we can start by enumerating all the x values where A+(x)
holds. Next, we need to execute E(x, y). We already have a set of bindings for x, but y is
unknown. If we are smart, we keep an index on E that tells us, for a given x value, the set of
y values where E(x, y) holds. Then we can extend our result set so that it contains bindings
for 〈x, y〉 where query is true. Finally, the find quantifier projects out the x binding from
the result. Our result is a set of x values where ϕ is true.

CHAPTER 2. HEAP DOMAIN 40

One major advantage of this approach over the naive one is that we only get results where
ϕ is true. Most of the queries that we evaluate in practice are false almost everywhere. We
save a lot of time by enumerating only the places where they evaluate to true.

Let us consider the execution of this query plan more closely. When we execute A+(x),
we have no information on the value of x. The result is a set of xs where A+(x) is 1 or
1/2. We can write the result as a set of pairs of the form 〈A, v〉, where A is an assignment
binding x to a node and v is 1 or 1/2.

Now consider E(x, y). This time we start with an initial assignment A0 with a binding
for x. We still return a set of pairs 〈A, v〉, where A contains all the bindings from A0 as
well as a binding for y. In general, when executing a query plan ψ, we start with an initial
assignment A0 and we return a set of pairs, 〈A, v〉, where A includes the same bindings as
A0 as well as bindings for the remaining free variables of ψ. v is always 1 or 1/2.

Query optimization. Consider the previous query plan again.

find(y). A+(x) ∧ E(x, y)

Suppose we execute the conjunction in the opposite order. We would enumerate places 〈x, y〉
where E(x, y) holds and then verify that A+ holds there. Unfortunately, there are likely to
be many more places where E holds than places where A+ holds. Consequently, we will
generate many intermediate results that are later discarded. This is inefficient. Thus, an
important part of query optimization is ordering conjunctions to minimize the size of the
result set at any point.

Another aspect of query optimization is quantifier conversion. One easy rule is to convert
all universal quantifiers to existentials using De Morgan’s law. Each existential quantifier is
then converted to either a “find plan” or a “scan plan.” A find plan, such as (find(x). ψ(x)),
relies on ψ(x) to enumerate x values where ψ(x) is 1 or 1/2. Its only job is to project the x
bindings out of the resulting assignments.

Scan plans, of the form (scan(x). ψ(x)), are less efficient but sometimes necessary. They
iterate over all nodes n ∈ U , executing ψ with an initial assignment where x is bound to
n. Consider a query like ∃x. ¬P(x). We often store indexes that enumerate the places
where predicates are 1 or 1/2, but we have not found it profitable to index the places where
predicates fail to hold. Therefore, the only way to execute the query is to scan over every
node x in the structure, looking for places where P(x) is 0 or 1/2. We convert such a query
to a scan plan, (scan(x). ¬P(x)). Given an initial assignment A0, a scan quantifier executes
its subquery using the initial assignment A0[x 7→ n] for every possible node n.

Returning to the flow chart, we can fill in some details.

Query
optimization

Execution
Query planFO(TC) formula Results

CHAPTER 2. HEAP DOMAIN 41

The query optimization stage chooses the best order for executing conjunctions. It also
replaces existential quantifiers with either find or scan quantifiers. The result is a query
plan. Given a query plan and an initial assignment A0, the execution engine returns a set of
results 〈A, v〉 containing a complete assignment A and whether the result is 1 or 1/2. The
next two sections describe query execution and query optimization in more detail.

2.4.3 Query Execution

As a notational convenience, we write the result of executing query plan ψ with initial
assignment A0 as (ψ ?A0). The next few paragraphs describe the execution algorithm.

Derivatives. Derivative queries are the easiest to execute. Consider P+(x, y). We always
keep around the complete set of tuples where a derivative holds because the set is expected
to be small. Call this set D. If the initial assignment A0 contains neither variables x or y,
we simply add each tuple to A0 and put it in the result set:

P+(x, y) ?A0 = {〈A0[x 7→ x′, y 7→ y′], v〉 : 〈x′, y′, v〉 ∈ D}.

However, it may be that A0 already contains a binding for x. Then we would return the
following.

P+(x, y) ?A0 = {〈A0[y 7→ y′], v〉 : 〈A0(x), y′, v〉 ∈ D}.

We use a similar procedure if y, or both x and y, are in A0. In all cases, we simply iterate
over D.

Atomic formulas. Imagine we are given the query plan P(x, y) along with an initial
assignment A0. There are several ways to execute this query. If x and y are present in
A0 then we check ι(P)(A0(x), A0(y)). If it is a non-zero value v then we return the result
{〈A0, v〉}. Otherwise we return an empty result.

In some cases, we use indexes to generate the result. Let the index I1(n) be a set of tuples
〈n′, v〉 where ι(P)(n, n′) = v. Similarly, let I2 be an index over y. We only keep indexes for
binary predicates where one argument is known already. This is profitable because, treating
the binary predicate as a graph edge, the degree of a given node is usually small. In the
case that x is known in A0, we return the following.

P(x, y) ?A0 = {〈A0[y 7→ y′], v〉 : 〈y′, v〉 ∈ I1(A0(x))}.

When there is no index available, we scan over the entire relation ι(P), looking for places
where it is non-zero that match A0.

CHAPTER 2. HEAP DOMAIN 42

Negation. Negation is the Achilles’ heel of our algorithm. Given the query plan ¬ψ, we
are only able to return results if all the free variables of ψ are already present in A0. Luckily,
the query optimization algorithm guarantees that this condition holds.

To evaluate the negation, we recursively evaluate ψ. Because of the restriction above,
there are only three possible results: ∅, {〈A0, 1〉}, and {〈A0, 1/2〉}. If we get an empty result,
we return {〈A0, 1〉}. For a 1 result, we return ∅. And for the 1/2 result, we return a 1/2
result.

(¬ψ) ?A0 =


∅ if (ψ ?A0) = {〈A0, 1〉}
{〈A0, 1〉} if (ψ ?A0) = ∅
{〈A0, 1/2〉} if (ψ ?A0) = {〈A0, 1/2〉}

Definite operator. Given the query plan 1[ψ], we recursively evaluate ψ. Then we iterate
over its results 〈A, v〉, converting a 1/2 values in v to 1.

1[ψ] ?A0 = {〈A, 1〉 : 〈A, v〉 ∈ (ψ ?A0)}

Conjunctions. We assume that the query optimizer has already decided which conjunct
should be executed first. So when given a query plan ψ1∧ψ2, we first compute R1 = (ψ1 ?A0).
Then for each resulting tuple 〈A1, v1〉 in R1, we compute (ψ2 ?A1). If it returns a tuple
〈A2, v2〉, then we return a tuple 〈A2, v1 ∧ v2〉. More formally,

(ψ1 ∧ ψ2) ?A0 = {〈A2, v1 ∧ v2〉 : 〈A1, v1〉 ∈ (ψ1 ?A0) ∧ 〈A2, v2〉 ∈ (ψ2 ?A1)}.

Disjunction. We handle disjunctions in a fairly obvious way: we execute both subqueries
with the same initial assignment and then merge the results together. However, we have to
be careful when merging. For convenience, we define a function to merge results together.
Given a set S, possibly containing more than one entry for a given assignment A, merge(S)
will return a single result set that is the disjunction of its inputs.

merge(S) = {〈A, 1〉 : 〈A, 1〉 ∈ S}
∪ {〈A, 1/2〉 : 〈A, 1/2〉 ∈ S ∧ 〈A, 1〉 6∈ S}

Then we handle disjunctions as follows.

(ψ1 ∨ ψ2) ?A0 = merge((ψ1 ?A0) ∪ (ψ2 ?A0))

Finds. To execute a find query (find(x). ψ), we recursively execute ψ. It will enumerate
values of x satisfying the query. We project away the x binding from these results and then
merge them together using the merge function.

(find(x). ψ) ?A0 = merge({〈A\x, v〉 : 〈A, v〉 ∈ (ψ ?A0)})

CHAPTER 2. HEAP DOMAIN 43

Scans. We process scans similarly. However, we explicitly iterate over every node, passing
it in with the initial assignment for ψ.

(scan(x). ψ) ?A0 = merge({〈A\x, v〉 : ∃n ∈ U. 〈A, v〉 ∈ (ψ ?A0[x 7→ n])})

Transitive closure. Finally, we give rules for transitive closure. This step is a bit trickier.
Consider the plan (TC(s, t;x, y). ψ). We will assume that A0(s) is known in the initial
assignment but A0(t) is not. (It is also possible to compute an answer in the symmetric
case when A0(t) is known but A0(s) is not, or when both are known. The query optimizer
ensures that at least one or the other is known.)

We essentially use breadth-first search. In each iteration, we advance a frontier F .
Throughout the algorithm, we keep track of the reachability set T . Both F and T are sets
of pairs, 〈n, v〉. If v = 1, then n is reachable from A0(s); if v = 1/2, it may be reachable.
We use a fixed-point computation, beginning with T0 = ∅ and F0 = {〈A0(s), 1〉}. Then we
advance as follows.

T ′i = {〈A′(y), v ∧ v′〉 : ∃〈n, v〉 ∈ Fi. 〈A′, v′〉 ∈ ϕ ?A0[x 7→ n]}
Ti+1 = mergenodes(Ti, T

′
i)

Fi+1 = Ti+1 − Ti

The mergenodes function is similar to merge, above: it unions the sets, but when a given
node that is in both sides, it joins their values via ∨. When Fj = ∅, we stop iterating. Note
that these steps compute irreflexive transitive closure. We add reflexivity explicitly at the
end:

(TC(s, t;x, y). ψ) ?A0 = merge(R1 ∪R2)

R1 = {〈A0[t 7→ n], v〉 : 〈n, v〉 ∈ Tj}
R2 = {〈A0[t 7→ A0(s)], ι(Eq)(A0(s), A0(s))〉}

2.4.4 Query Execution Examples

We now give some examples of how realistic query plans are executed. We show the
recursive execution of queries as follows.

ψ1 ?A1

ψ2 ?A2

→ {〈A, v〉}
ψ3 ?A3

→ {〈A′, v′〉}
→ {〈A′′, v′′〉}

This notation means that we execute the query ψ1 with the initial assignment A1. While
executing ψ1, we need to recursively execute the query ψ2 with the initial assignment A2.

CHAPTER 2. HEAP DOMAIN 44

This execution terminates with one result, 〈A, v〉. We perform another recursive evaluation
as well, also returning one result. Based on these, we return one result, 〈A′′, v′′〉, for the
original query.

Example 17 Consider the query (find(x). find(y). P(x, y)). Suppose that P holds at (n, n1)
and that it may hold at (n, n2) and at (n′, n3). We recursively execute the query down to
the atomic formula, as follows.

(find(x). find(y). P(x, y)) ? {}
(find(y). P(x, y)) ? {}

P(x, y) ? {}
→ {〈{x 7→ n, y 7→ n1}, 1〉, 〈{x 7→ n, y 7→ n2}, 1/2〉, 〈{x 7→ n′, y 7→ n3}, 1/2〉}

→ {〈{x 7→ n}, 1〉, 〈{x 7→ n′}, 1/2〉}
→ {〈{}, 1〉} 2

Example 18 We are given the query plan (find(x). P(x) ∧Q(x)). Suppose that P holds at
n and n′ and that Q holds only at n′. We first execute P with an empty initial assignment.
Each result forms an initial assignment for executing the Q query.

(find(x). P(x) ∧ Q(x)) ? {}
(P(x) ∧ Q(x)) ? {}

P(x) ? {}
→ {〈{x 7→ n}, 1〉, 〈{x 7→ n′}, 1〉}
Q(x) ? {x 7→ n}
→ {}
Q(x) ? {x 7→ n′}
→ {〈{x 7→ n′}, 1〉}

→ {〈{x 7→ n′}, 1〉}
→ {〈{}, 1〉} 2

Example 19 Consider ¬P(x). We are only able to execute this query given an initial
assignment that includes an x binding. Suppose that P holds at n but not at n′.

¬P(x) ? {x 7→ n}
P(x) ? {x 7→ n}
→ {〈{x 7→ n}, 1〉}

→ {}
¬P(x) ? {x 7→ n′}

P(x) ? {x 7→ n′}
→ {}

→ {〈{x 7→ n′}, 1〉} 2

CHAPTER 2. HEAP DOMAIN 45

Example 20 Now take the query (∀x. (¬P(x))∨Q(x)). The optimizer will convert this to
the query plan (¬find(x). P(x) ∧ (¬Q(x))). Suppose that P holds at n and n′. Q does not
hold at n but it may hold at n′.

¬find(x). P(x) ∧ (¬Q(x)) ? {}
find(x). P(x) ∧ (¬Q(x)) ? {}

P(x) ∧ (¬Q(x)) ? {}
P(x) ? {}
→ {〈{x 7→ n}, 1〉, 〈{x 7→ n′}, 1〉}
Q(x) ? {x 7→ n}
→ {}
Q(x) ? {x 7→ n′}
→ {〈{x 7→ n′}, 1/2〉}

→ {〈{x 7→ n′}, 1/2〉}
→ {〈{}, 1/2〉}

→ {〈{}, 1/2〉} 2

Example 21 Finally, we look at the transitive closure query (TC(s, t;x, y). E(x, y)). To
execute this query we require that either s or t is bound in the initial assignment. Suppose
that s is bound to singleton node n and that E holds at (n, n′) and (n′, n′′). We perform a
breadth-first search of the graph, using recursive E queries to determine the edge set.

(TC(s, t;x, y). E(x, y)) ? {s 7→ n}
E(x, y) ? {s 7→ n, x 7→ n}
→ {〈{s 7→ n, x 7→ n, y 7→ n′}, 1〉}
E(x, y) ? {s 7→ n, x 7→ n′}
→ {〈{s 7→ n, x 7→ n′, y 7→ n′′}, 1〉}
E(x, y) ? {s 7→ n, x 7→ n′′}
→ {}

→ {〈{s 7→ n, t 7→ n}, 1〉, 〈{s 7→ n, t 7→ n′}, 1〉, 〈{s 7→ n, t 7→ n′′}, 1〉} 2

2.4.5 Query Optimization

The process of query optimization converts a formula to a query plan. Since there may be
many query plans that generate the same results, we are interested in the one that executes
the quickest. The main goal of query optimization is to determine the order in which to
execute the operands of a conjunction.

Example 22 Consider the query plan A+(x)∧E(x, y). If we execute the query in this order,
we can use derivative information for A+ to quickly enumerate all the nodes x where A+(x)
holds. Then, for each such x value, we can use an index to find all nodes y where E(x, y)
holds.

CHAPTER 2. HEAP DOMAIN 46

On the other hand, consider the plan E(x, y) ∧ A+(x). We must iterate over all tuples
(x, y) where E holds and then filter out the ones where A+(x) holds. Since A+ typically holds
in a small number of places, the second form of the query will be slower than the first. 2

This example illustrates a very common way to execute queries in our analysis. Since
predicates like P+ and P− typically hold in only a few places (for core predicates, usually
only one place), we would like to start query execution there. Then we continue along edge
predicates. Nodes typically have small degree, so the size of the result set expands only
gradually. Ideally, query execution should be no more expensive than traversing a graph,
starting at nodes where derivatives hold and walking along edge predicates. As much as
possible, we would like to avoid generating a result and then filtering it later.

Strategies. The query optimizer generates many different possible plans for a given query.
We classify these plans according to (1) their estimated cost, and (2) the variables that must
be in the initial assignment A0 for the plan to be valid. The reason for (2) is that some
efficient strategies may be valid only when some variables are already in A0. In the extreme
case, negations can execute only when all free variables are already in A0.

The triple containing the required variables, the cost, and the query plan, written
〈V, c, ψ〉, is called a strategy. If an initial assignment A0 contains bindings for all the variables
in V , then we say that the strategy is feasible.

We use a recursive process to generate many strategies for a query; at the top level, we
choose the cheapest feasible one. We write O(ϕ) to denote the set of strategies that result
from optimizing the query ϕ. The algorithm for generating strategies is shown in Table 2.6
and the heuristics it uses are described below.

Atomic predicates. Consider derivative P+(x) (or P−(x)). The number of nodes where
a derivative holds is typically small, so even when x is not part of the initial assignment, we
say that executing P+(x) has cost 0, since it will generate few results. This corresponds to
the strategy 〈∅, 0,P+(x)〉.

Now consider a binary predicate E(x, y). The set of pairs of nodes where E holds may be
large. When the initial assignment does not contain x or y, we assign a cost of 1 to E(x, y).
This is the strategy 〈∅, 1,E(x, y)〉. However, if either x or y is known, we give the query a
cost of 0, because the degree of nodes is usually small, so the result size will not increase
much. This corresponds to two strategies: 〈{x}, 0,E(x, y)〉 and 〈{y}, 0,E(x, y)〉.

Now consider P(v1, . . . , vk) where k 6= 2. If all the variables are known, we use cost 0,
generating the strategy 〈{v1, . . . , vk}, 0,P(v1, . . . , vk)〉. If some variable is unknown we assign
the cost to be 1, giving the strategy 〈∅, 1,P(v1, . . . , vk)〉.

Disjunction. We consider a disjunction ϕ1 ∨ ϕ2. Since both subformulas are executed
with the same initial assignment, they can be optimized independently. We recursively
run O(ϕ1) and O(ϕ2). Suppose that 〈V1, c1, ψ1〉 is a strategy for the first subquery and

CHAPTER 2. HEAP DOMAIN 47

ϕ O(ϕ)
P(x, y) {〈∅, 1, ϕ〉, 〈{x}, 0, ϕ〉, 〈{y}, 0, ϕ〉}
P(v1, . . . , vk) {〈{v1, . . . , vk}, 0, ϕ〉, 〈∅, 1, ϕ〉}
¬ϕ′ {〈FV(ϕ′), c,¬ψ〉 : 〈V, c, ψ〉 ∈ O(ϕ′)}
1[ϕ′] {〈V, c,1[ψ]〉 : 〈V, c, ψ〉 ∈ O(ϕ′)}
ϕ1 ∧ ϕ2 {〈V1 ∪ (V2 − FV(ϕ1)), c1 + c2, ψ1 ∧ ψ2〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}

∪ {〈V2 ∪ (V1 − FV(ϕ2)), c1 + c2, ψ2 ∧ ψ1〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}
ϕ1 ∨ ϕ2 {〈V1 ∪ V2, c1 + c2, ψ1 ∨ ψ2〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}
∃x. ϕ′ {〈V, c, find(x). ψ〉 : 〈V, c, ψ〉 ∈ O(ϕ′) ∧ x 6∈ V }

∪ {〈V \{x}, c+ 10, scan(x). ψ〉 : 〈V, c, ψ〉 ∈ O(ϕ′) ∧ x ∈ V }
TC(s, t;x, y). ϕ′ {〈V − {x} ∪ {s}, c,TC(s, t;x, y). ψ〉 : 〈V, c, ψ〉 ∈ O(ϕ′) ∧ y 6∈ V }

∪ {〈V − {y} ∪ {t}, c,TC(s, t;x, y). ψ〉 : 〈V, c, ψ〉 ∈ O(ϕ′) ∧ x 6∈ V }

Table 2.6: Query optimization rules. Note that strategies are pruned after each recursive
call.

〈V2, c2, ψ2〉 is returned for the second subquery. In order to execute both queries, all variables
in V1 and V2 must belong to the initial assignment. Thus, we form the combined strategy
〈V1 ∪ V2, c1 + c2, ψ1 ∨ ψ2〉 (adding the costs is simply a heuristic). Written out formally, we
have the following.

O(ϕ1 ∨ ϕ2) := {〈V1 ∪ V2, c1 + c2, ψ1 ∨ ψ2〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}

Conjunction. Conjunctions are the heart of query optimization. As before, we start by
optimizing the subqueries ϕ1 and ϕ2. For strategy 〈V1, c1, ψ1〉 returned for the first subquery
and 〈V2, c2, ψ2〉 for the second, we return two combined strategies: one where ψ1 is executed
first and the other where ψ2 is done first.

First assume ψ1 executes first. We generate a strategy 〈V, c1 + c2, ψ1 ∧ ψ2〉, where V is
to be determined. To determine V , the set of variables that must be present in the initial
assignment, we form constraints. The execution of ψ1 requires V1 ⊆ V . Naively, we might
think V2 ⊆ V is required as well. However, the execution of ψ1 added variables FV(ϕ1) to
the assignments of its results. These results are fed back in as the initial assignment for
executing ψ2. Thus, we can make a looser constraint that V2 ⊆ V ∪FV(ϕ1). Combining this
with the V1 ⊆ V constraint, the smallest solution for V is V1 ∪ (V2−FV(ϕ1)). Formally, we
get the following strategies.

{〈V1 ∪ (V2 − FV(ϕ1)), c1 + c2, ψ1 ∧ ψ2〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}

We combine these with the symmetric set of strategies where ψ2 is executed first.

{〈V2 ∪ (V1 − FV(ϕ2)), c1 + c2, ψ2 ∧ ψ1〉 : 〈Vi, ci, ψi〉 ∈ O(ϕi)}

CHAPTER 2. HEAP DOMAIN 48

Negation. In §2.4.3, the rule to execute ¬ϕ had a side condition requiring that all free
variables of ϕ be in the initial assignment. When optimizing a negation, we must ensure this
condition holds. Thus, for every strategy 〈V, c, ψ〉 generated for ϕ, we generate a strategy
〈FV(ϕ), c,¬ψ〉 for the negation. Notice how this strategy requires that all free variables
belong to the initial assignment.

Definite operator. Executing 1[ϕ] is no more difficult than executing ϕ, so we use es-
sentially the same set of strategies:

O(1[ϕ′]) := {〈V, c,1[ψ]〉 : 〈V, c, ψ〉 ∈ O(ϕ′)}

Existentials. As described earlier, there are two possible query plans for an existential
(∃x. ϕ): find and scan. Find relies on the subquery to generate bindings to x while scan
iterates over all nodes, binding x in the initial assignment. We generate strategies for both
find and scan.

First we optimize the subquery. Let 〈V, c, ψ〉 be a resulting strategy. We can generate a
strategy that uses find only if x is not in V (i.e., if x is not required in the initial assignment).
In this case, we generate the strategy 〈V, c, find(x). ψ〉. On the other hand, a scan query
plan is always feasible, allowing us to generate the strategy 〈V \{x}, c+ 10, scan(x). ψ〉. We
eliminate x from V because it is not needed in the initial assignment. We add 10 to the cost
of the strategy to account for the cost of iterating over all nodes.

Transitive closure. There are two ways to execute a transitive closure (TC(s, t;x, t). ϕ):
forward and backward. The forward method starts at the known node s and walks forward
along ϕ(x, y) edges. We require that executing ϕ with x in the initial assignment generate a
binding for y. Every node we reach is bound to t in the result. The backward method starts
at t and walks backwards along ϕ(x, y) edges, generating x bindings given a y binding, and
arriving at bindings for s.

Given a strategy 〈V, c, ψ〉 for ϕ, the forward method is feasible if y 6∈ V . In this case
we generate a strategy 〈V − {x} ∪ {s}, c,TC(s, t;x, y). ψ〉. s is added to the set of required
variables because we must know the node from which to start walking forward.

The backward method is feasible if x 6∈ V . We generate a similar strategy in this case.
See Table 2.6.

Pruning. Without some form of pruning, the set of strategies generated by O may become
quite large. Many of these strategies will be redundant. A strategy 〈V, c, ψ〉 is redundant
if there is some other strategy that dominates it. A strategy 〈V ′, c′, ψ′〉 dominates it when
V ′ ⊆ V and c′ ≤ c. In this case we remove the dominated strategy. The following function
performs this sort of pruning. It is run before returning a given recursive result from O
(meaning that pruning occurs at every level of the formula tree).

Prune(S) = {〈V, c, ψ〉 : ¬∃〈V ′, c′, ψ′〉 ∈ S. V ′ ⊆ V ∧ c′ ≤ c ∧ 〈V ′, c′, ψ′〉 6= 〈V, c, ψ〉}

CHAPTER 2. HEAP DOMAIN 49

S+(a0 : T)

∧[1]

1[2] ∃b[3] ∨[2]

∧[1]

E−(a0, b) {〈∅,0〉}

1[¬C(b)] {〈{b},0〉}

∧[4]

1[E(a0, b)] {〈∅,2〉;〈{a0},0〉;〈{b},0〉}

C+(b) {〈∅,0〉}

¬[5] ∃c[6] ∧[7]

F[E(a0, c)] {〈∅,2〉;〈{a0},0〉;〈{c},0〉}

¬F[C(c)] {〈{c},0〉}

[1] {〈∅, 0, upper〉} [2] {〈∅, 0〉} [3] {〈∅, 0, find〉} [4] {〈∅, 0, lower〉} [5] {〈{a0}, 0〉}
[6] {〈∅, 2, find〉; 〈{a0}, 0, find〉} [7] {〈∅, 2, upper〉; 〈{a0}, 0, upper〉; 〈{c}, 0, upper〉}

Figure 2.1: Optimization results for up derivative of S(x) := ∀y. E(x, y)⇒ C(y).

2.4.6 Query Optimization Examples

This section describes the optimization of a few complex but typical queries.

Example 23 We begin with the up derivative of S(x) := ∀y. E(x, y)⇒ C(y). This formula
was explained in Example 12. The optimization results are shown in Figure 2.1. We show
query strategies in small print to the left of each formula or else separately, at the bottom
of the figure. Recall that the top branch of this formula looks for places where E(x, y) goes
down or C(y) goes up. The bottom branch verifies that the formula is true in the future.
Note that universal quantifiers have been converted to existentials by De Morgan’s laws.

Each formula is annotated with a set of strategies. To save space we do not show the
ψ component of strategies. Instead, when there is a choice between several query plans, we
give a description of which one is chosen, at least at the top level. For conjunctions, we say
whether the upper or the lower branch is executed first. For existentials, we say whether we
use a scan or a find query. And for transitive closure we say whether we search forward or
backward.

Like most queries, this one has only one optimal strategy: given derivative information
for E and C, we start with the upper branch of the query. The top-right conjunction generates
tuples (a0, b) satisfying E−. It filters out the ones that satisfy C. These results are unioned
with the results of the lower conjunction, which generates nodes b where C goes up and then
finds a0 nodes by walking across existing E edges. The existential quantifier, converted to a
find quantifier, projects b out of the results. Finally, in the lower branch, we check that each
result satisfies the query in the future state. Since a0 is already known, we find c nodes by
walking across E edges as before.

CHAPTER 2. HEAP DOMAIN 50

In this query the main function of the optimizer is to choose whether to execute the upper
or lower branch of a conjunction first. Consider the upper-right conjunction. Executing E−

first requires no variables in the initial assignment. After executing it, variables a0 and b
become known, allowing us to execute the lower conjunct, which requires b to be known.
Using the reverse execution order would require b to be known beforehand, meaning that
the ∃b quantifier would have to be executed using a scan rather than a find. 2

This query illustrates a very important point. Besides increasing the precision of trans-
formers, finite differencing provides a mechanism for executing queries incrementally. Rather
than re-evaluating a query completely for every statement, we have a way to compute only
what has changed. Another way to say this is that derivatives make good queries for query
optimization because up and down formulas tend to have small result sets.

Example 24 We optimize the up derivative of Path(s, t) := TC(s, t;x, y). E(x, y). The
results are shown in Figure 2.2.

This query can also be executed without any expensive scans. The lower branch is
executed first. Its job is to determine places (a0, a1) where Path might go up. Then the
upper branch checks that there is indeed a path between those nodes.

The lower branch looks for intermediate nodes (f, g) where E+(f, g) and where there is
a path from a0 to f and from g to a1. The path must be a sequence of existing path edges
or else E+ edges. When executing the query, we first find the single E+(f, g) edge. Then we
find all a0 that reach f via a sequence of Path or E+ edges, as well as all a1 that g reaches
along such edges. After projecting out f and g, we have all the a0 and a1 where Path can
go up. We check that Path was not already true there in the original structure.

Next, the upper branch executes. It verifies that there is a path between a0 and a1 along
either E+ edges or trusted edges. To check if an edge is trusted, we find all d and e where
E−(d, e) holds and then see if this E− edge might break the Path edge we are trying to use.
If it cannot, then the edge is trusted.

One interesting point to note is that the transitive closure operation labeled [9] is executed
backward. The conjunction to the left of it executes its lower branch, an E+, first. When
the transitive closure executes next, variable f is known while a0 is not. Thus we execute it
backward. In a symmetrical way, the transitive closure labeled [11] must be executed in the
forward direction. 2

2.4.7 Experiments

Using the web server cache, we compared the performance of the naive evaluation al-
gorithm to the more efficient one presented here. The total analysis time with the naive
algorithm was 141.03s. Of this time, 131.26s were spent running queries (93%). In contrast,
the total analysis time using the optimized algorithm was 9.71s, of which 22 milliseconds
were spent running queries (less than 1%). The efficient algorithm is nearly 6,000 times
faster than the naive algorithm. Although it would undoubtedly be possible to further
optimize the algorithm, the time would be better spent on other stages of the analysis.

CHAPTER 2. HEAP DOMAIN 51

Path+(a0 : T, a1 : T)

∧[1]

 [2] ∨[3]

E+(b, c) {〈∅,0〉}

∧[4]

Path(b, c) {〈∅,2〉;〈{b},0〉;〈{c},0〉}

¬[5] ∃d[6] ∃e[6] ∧[7]

∧[1]

Path(b, d) {〈∅,2〉;〈{b},0〉;〈{d},0〉}

E−(d, e) {〈∅,0〉}

Path(e, c) {〈∅,2〉;〈{c},0〉;〈{e},0〉}

1[8] ∧[1]

¬Path(a0, a1) {〈{a1,a0},0〉}

∃f [6] ∃g[6] ∧[7]

∧[1]

 [9] ∨[10]

Path(h, i) {〈∅,2〉;〈{h},0〉;〈{i},0〉}

E+(h, i) {〈∅,0〉}

E+(f, g) {〈∅,0〉}

 [11] ∨[12]

Path(j, k) {〈∅,2〉;〈{j},0〉;〈{k},0〉}

E+(j, k) {〈∅,0〉}
TC(g, a1; j, k)

TC(a0, f ; h, i)

TC(a0, a1; b, c)

[1] {〈∅, 0, lower〉} [2] {〈{a0}, 0, fwd〉; 〈{a1}, 0, bwd〉} [3] {〈∅, 2〉; 〈{b}, 0〉; 〈{c}, 0〉}
[4] {〈∅, 2, upper〉; 〈{b}, 0, upper〉; 〈{c}, 0, upper〉} [5] {〈{c, b}, 0〉} [6] {〈∅, 0, find〉}
[7] {〈∅, 0, upper〉} [8] {〈∅, 0〉} [9] {〈{a0}, 0, fwd〉; 〈{f}, 0, bwd〉}
[10] {〈∅, 2〉; 〈{h}, 0〉; 〈{i}, 0〉} [11] {〈{a1}, 0, bwd〉; 〈{g}, 0, fwd〉}
[12] {〈∅, 2〉; 〈{j}, 0〉; 〈{k}, 0〉}

Figure 2.2: Optimization results for up derivative of the transitive closure predicate
Path(s, t) := TC(s, t;x, y). E(x, y).

CHAPTER 2. HEAP DOMAIN 52

To get a better understanding of the evaluation algorithm, we instrumented it with
counters. We counted the number of evaluations of atomic predicates and derivatives. Note
that the efficient algorithm may return multiple results for each evaluation if the initial
assignment does not contain all the free variables.

Algorithm # atomic evaluations # derivative evaluations
Naive 94,795,212 (0.202) 23,070,446 (0.000784)
Efficient 9,314 (1.11) 10,502 (0.0528)

Table 2.7: Number of query evaluations and average result set size in parentheses).

Not surprisingly, the difference in time between the algorithms is similar to the difference
in number of evaluations. The naive algorithm performs 5,947 times as many evaluations
and is 5,966 times slower.

The naive algorithm we implemented does differ from Table 2.5 in how it implements
transitive closure. It performs a breadth-first search. It maintains a frontier, and at each
step of the search it picks a frontier node and another arbitrary node and checks to see if
the one can reach the other. The newly reachable nodes become the frontier of the next
iteration. This algorithm introduces many nested loops over nodes, so we suspected that it
is responsible for many of the evaluations performed by the naive algorithm. The results
bear out this hypothesis.

Evaluation context # atomic evaluations # derivative evaluations
In TC 80,548,460 (0.204) 20,464,304 (0.000779)
Outside TC 14,246,752 (0.194) 2,606,142 (0.000824)

Table 2.8: Number of query evaluations in naive algorithm inside and outside of transitive
closure quantifiers.

Clearly, most atomic and derivative evaluations in the naive algorithm appear as part of
a transitive closure query. A better transitive closure algorithm might be able to eliminate
some of these evaluations. However, even if it were able to eliminate all evaluations inside
transitive closures, it would still perform 850 times as many evaluations as the efficient
algorithm. Assuming a constant time per evaluation, the naive query algorithm would still
consume the majority of the total analysis time.

One reason that the efficient algorithm is so much faster is that, for the queries used in
the web server example, it never performs a scan. The query optimizer is able to convert
every existential quantifier into a find operation. The naive algorithm uses scans for every
quantifier. It also performs implicit scans over every predicate argument, since each instru-
mentation derivative must be evaluated over its entire domain. The average nesting depth
for the web cache, including predicate arguments, is 2.73.

CHAPTER 2. HEAP DOMAIN 53

We broke down the atomic predicate evaluations further for the efficient algorithm. For
each evaluation of P(v1, . . . , vk), we counted the number of variables in {v1, . . . , vk} that
were known (i.e., present in the initial assignment) and unknown.

Query type # evaluations Average result set size
1 known, 0 unknown 1,500 0.185
2 known, 0 unknown 3,144 0.413
0 known, 1 unknown 296 1.89
1 known, 1 unknown 4,219 1.69
0 known, 2 unknown 155 6.84
Derivative 10,502 0.0528

Table 2.9: Efficient evaluation statistics.

We can first consider how many “filter” evaluations occur. These are evaluations where
all variables are already known. All evaluations performed by the naive algorithm are filter
evaluations. The first two rows shows that the efficient algorithm performs 4,644 filter
queries versus 4,670 queries where at least one variable is unknown. Of the “filter” queries,
1,576 (or 34%) return a positive answer. Ideally this number would be 100%, meaning that
we never generate a result and then discard it, but some filtering is inevitable.

We designed our algorithm based on the hypothesis that derivatives return few results
and that nodes have small degree. The data shows that derivatives indeed return very few
results. We measure node degree by the number of results returned by a query where one
variable is known and the other unknown. The average is 1.69. On the other hand, the
average number of results returned for a binary query where neither variable is known is
larger: 6.84.

2.5 Sharpening

The previous two sections described new techniques for computing the effect of an as-
signment statement precisely and efficiently. However, as explained in Section 2.2.2, two
preprocessing steps are needed before an assignment can be analyzed: focus and sharpen.
We give an example of both steps here; the remainder of this section describes a new algo-
rithm for sharpening, which is contribution number Â of this chapter.

Example 25 Suppose we are to analyze the statement x := next[x]. Also suppose we have
the following instrumentation predicate:

Shared(n) := ∃n1, n2. Next(n1, n) ∧ Next(n2, n) ∧ n1 6= n2.

These predicate holds when an object has two or more incoming next pointers.
Now consider the following structure. The edges denote the Next predicate.

CHAPTER 2. HEAP DOMAIN 54

u1 u2

X

Note that neither u1 nor u2 satisfies Shared.
Analyzing the assignment x := next[x] directly on the state will not yield anything

useful. We will simply get that x may point to some node abstracted by u2. In a typical
loop we want a more precise abstraction that distinguishes between nodes that have already
been seen and those yet to be seen—without this we will not infer a precise loop invariant.

Consequently, before the assignment we focus on next[x]. The focus operation is simply
a case analysis—it does not change the meaning of a domain element at all. We get a
disjunction of the following two structures.

S1 S2

u1

X
u2

X
u1

X
u2 u′2

Now we can apply sharpening to these two structures to make them more precise. In
S1, Shared(u2) = 0, which tells us that u2 cannot have a Next edge to itself. If it did,
then it would have two incoming next pointers, contradicting the fact that Shared(u2) = 0.
Similarly, in S2 we discover that Next(u2, u2) = 0.

We can also show that Next(u′2, u2) = 0 in S2. However, the reasoning for this inference
is more complex. Since u′2 is a summary node, setting Next(u′2, u2) to 0 means that no node
abstracted by u′2 can have an edge to u2. And, indeed, if even one node abstracted by u′2
had a Next edge to u2 then u2 would be shared, contradicting the Shared(u2) = 0 fact. 2

The remainder of this chapter describes the algorithm that infers facts like Next(u′2, u2) =
0, as we just did in the example.

2.5.1 Integrity Constraints

Instrumentation predicates retain vital information in the heap abstraction. Sharpening
exploits that information by bringing core predicates in line with instrumentation predicates.
It is considered the most difficult and expensive step in the TVLA algorithm [5].

We can use a formula to express the desire for core predicates and instrumentation
predicates to agree. Let the instrumentation predicate P (of arity k) have formula ϕ as
its definition. The following sentence asserts that the core predicates and instrumentation
predicates agree.

∀u1, . . . , uk. P(u1, . . . , uk) ⇐⇒ ϕ(u1, . . . , uk). (2.1)

This formula is called an integrity constraint.

CHAPTER 2. HEAP DOMAIN 55

Formally, we assume we have a set of integrity constraints I. Each integrity constraint
is a closed formula in first-order logic with transitive closure (FO(TC)). Although integrity
constraints are always quantified if-and-only-if statements, as above, this section allows them
to be arbitrary.

Every concrete heap that is abstracted by a structure S must satisfy the integrity con-
straints for all the instrumentation predicates (it must also embed into S, of course). We
define γI(S) to be the set of all concrete heaps that satisfy the integrity constraints I and
embed into S. Relating this to the previous definition, γ(S) = γ∅(S).

The sharpening algorithm applies integrity constraints to a heap. It may sharpen a
particular predicate value from 1/2 to 0 or 1, or it may decide that the heap is infeasible and
throw it away entirely. Sharpening only affects the interpretation of predicates ι; the universe
U is left alone. This restriction is a practical one. Relaxing it would make sharpening more
precise, but the problem would become undecidable.

Formally, sharpening is the process of refining S by finding some S ′, over the same nodes
as S, where S ′ embeds into S and γI(S

′) = γI(S). There will always be a best S ′ (lowest in
the embedding order) as long as γI(S) 6= ∅.

Example 26 Consider the following heap structure S.

u1

A
u2

E?

Assume that we have the integrity constraint ∀n. A(n) ⇒ ∃n′. E(n, n′) in I. Any concrete
heap S ′ ∈ γI(S) that satisfies this integrity constraint must have E(u1, u2) = 1. Therefore,
we sharpen E to 1 there. 2

2.5.2 Correctness by Case Analysis

Any sharpening of structure S to S ′ that satisfies the γI(S
′) = γI(S) condition is correct.

However, this property does not provide much insight in designing an algorithm to implement
sharpening: we would have to enumerate all the structures in γ(S) and then filter out those
not satisfying I. Since γ(S) is typically infinite, we need a better approach.

We can use case analysis to obtain a more direct technique for sharpening. Consider
sharpening the predicate value p(u1, . . . , uk) to v (either 0 or 1). We write this sharpening
as pv(u1, . . . , uk). Suppose we want to decide if the sharpening is correct. We split the
original structure S into structures S1, . . . , Sn. These structures should embed into S via
embedding functions fi. We require the case analysis to be exhaustive, meaning

γ(S) = γ(S1) ∪ · · · ∪ γ(Sn).

In some of the Si cases, the sharpening will be realized, meaning that p(u′1, . . . , u
′
k) = v

for every u′j that embeds into the original structure’s uj (i.e., where fi(u
′
j) = uj). In the

remaining cases, we require the integrity constraint to be violated, meaning it should evaluate

CHAPTER 2. HEAP DOMAIN 56

to 0. If we can split the cases in this way, so that in each one either the sharpening is realized
or the integrity constraint is violated, then the sharpening is sound.

Consider Example 26. We can split the structure exhaustively into two cases: one
where E(u1, u2) = 0 and the other where E(u1, u2) = 1. The first structure violates the
integrity constraint and the second one realizes the sharpening E1(u1, u2), meaning that this
sharpening is valid.

The problem becomes slightly more complex when summary nodes are involved because
there are more cases to analyze, as in this example.

Example 27 Consider the following heap structure S.

u1

A
u2

E?
B

Imagine we have the integrity constraint ∀n. A(n)⇒ (∀n′. B(n′)⇒ E(n, n′)). Intuitively, we
can see that E can be sharpened to 1 between u1 and u2. To prove this, we use the following
case analysis.

S1 S2 S3

u1

A
u2

E
B

u1

A
u2

B
u1

A

u2

B
u′2

E? B

In the first one, S1, every B node has an edge from the A node. In the latter two cases, there
is at least one B node that does not have an incoming edge. (We are forced to partition
this situation into two cases because summary nodes in TVLA always represent at least one
node.)

These structures form an exhaustive case analysis of S. The sharpening E1(u1,u2) (i.e.,
E set to 1) is realized only in S1. However, the integrity constraint is violated in S2 and S3,
so the sharpening is sound. 2

Notice that in the case analysis above, we split the node u2 in structure S3. This
appears to contradict our statement earlier that sharpening does not change the universe U .
In fact, there is no contradiction. Although case analysis may materialize nodes to justify a
sharpening, no nodes are materialized in the heap that results from the sharpening. In the
example above, we sharpened E between u1 and u2; we did not change U at all.

The next section presents an algorithm that will find most sharpenings that require only
a finite case analysis. Unfortunately, some sharpenings may be sound but require infinite
case analysis to prove correct. This commonly happens with integrity constraints that use
transitive closure. When transitive closure is not involved, only a small number of cases are
typically necessary to prove a given sharpening.

CHAPTER 2. HEAP DOMAIN 57

2.5.3 Sharpening Algorithm

The previous section offers a possible algorithm for sharpening structures: starting with
a possible sharpening pv(u1, . . . , uk), search for a case analysis that proves the sharpening
correct. However, even if we ignore the problem of infinite case analysis, the algorithm will
still be very slow. This section presents an efficient algorithm that will find many, but not
all, sharpenings. Later we will analyze its completeness.

Our algorithm, called M , requires no case analysis. Instead, it traverses the given in-
tegrity constraint, ϕ, in a syntax-directed fashion. We write M(ϕ, S,A) to denote the
resulting sharpenings given the constraint ϕ, a structure S, and an assignment A of free
variables to nodes. The sharpenings that are returned have the form pv(v1, . . . , vk).

As a precondition for using M , we assume that JϕKS,A = 1/2. If ϕ evaluates to 1 then
no sharpenings are possible. If it evaluates to zero, then the entire heap can be discarded.
When designing the algorithm M , we can think of the results returned by M(ϕ, S,A) as
atomic literals that are implied by the integrity constraint ϕ.

Atomic literals. We start by considering ϕ = P(v1, . . . , vk). Clearly this ϕ logically
implies the sharpening P1(A(v1), . . . , A(vk)). Similarly, if ϕ = ¬P(v1, . . . , vk) then we return
P0(A(v1), . . . , A(vk)).

Conjunctions. Suppose ϕ = ϕ1 ∧ ϕ2. We recursively run M on both conjuncts. Assume
that M(ϕ1, S, A) returns a result pv(u1, . . . , uk). Using the intuition above, we know that
ϕ1 ⇒ pv(u1, . . . , uk). Consequently ϕ⇒ pv(u1, . . . , uk). Therefore, any sharpening returned
for either ϕ1 or ϕ2 is also valid for ϕ. We simply union them together to get M(ϕ, S,A).

M(ϕ1 ∧ ϕ2, S, A) := M(ϕ1, S, A) ∪M(ϕ2, S, A).

Example 28 Consider the following structure S with only one node.

u
A?,B?

Suppose that we are asked to compute M(A(x) ∧ ¬B(x), S, A), where A(x) = u. We recur-
sively apply M , obtaining the following.

M(A(x), S, A) = {A1(u)}
M(¬B(x), S, A) = {B0(u)}

Then we return the combined answer {A1(u),B0(u)}. 2

Note that we cannot always apply M recursively to ϕ1 and ϕ2. It may be that one of
these subformulas evaluates to 1. We cannot apply M to this subformula because M is only
valid on formulas evaluating to 1/2. So we act as if M returned the empty set when applied
to that conjunct. In other words, we simply return the result of applying M to the other
conjunct.

CHAPTER 2. HEAP DOMAIN 58

Disjunctions. Disjunctions are handled somewhat similarly. Let ϕ = ϕ1 ∨ ϕ2. Suppose
that both disjuncts evaluate to 1/2. If a sharpening pv(u1, . . . , uk) is returned byM(ϕ1, S, A),
that means that ϕ1 ⇒ pv(u1, . . . , uk). This does not mean that ϕ⇒ pv(u1, . . . , uk) because
ϕ is too weak.

However, if pv(u1, . . . , uk) is returned by both ϕ1 and ϕ2 then it must be that ϕ ⇒
pv(u1, . . . , uk) and so we can return pv(u1, . . . , uk) as a sharpening for ϕ. In other words,

M(ϕ1 ∨ ϕ2, S, A) := M(ϕ1, S, A) ∩M(ϕ2, S, A).

Example 29 Consider the following structure S.

u1

A?
u2

A?

Suppose that we are asked to compute M(A(x)∨A(y), S, A), where A(x) = u1 and A(y) = u2.
We recursively apply M , obtaining the following.

M(A(x), S, A) = {A1(u1)}
M(A(y), S, A) = {A1(u2)}

Intersecting these answers yields the empty set. And, indeed, it is not sound to perform any
sharpenings in this case. Some members of γI(S) have A(u1) = 0 and other members have
A(u2) = 0 (although no member has both).

However, given an alternate assignment A′ where A′(x) = u1 and A′(y) = u1, we get the
following.

M(A(x), S, A′) = {A1(u1)}
M(A(y), S, A′) = {A1(u1)}

In this case, the intersection is {A1(u1)}. And, indeed, the integrity constraint applied at
A′ does require A(u1) to be 1. 2

As we did for conjunctions, if either ϕ1 or ϕ2 does not evaluate to 1/2, then we return
M applied to the other disjunct as the result.

Quantifiers. We handle universal quantifiers much as we handled conjunctions: by com-
bining the results. Suppose ϕ = ∀v. ϕ′. For each n ∈ U , we compute M(ϕ′, S, A[v 7→ n]).
We union together all these sharpenings. As before, we skip over places where ϕ′ does not
evaluate to 1/2.

M(∀v. ϕ′, S, A) =
⋃
u∈U

{M(ϕ′, S, A[v 7→ u]) : Jϕ′KS,A[v→u] = 1/2}

CHAPTER 2. HEAP DOMAIN 59

We do the analogous thing for existentials. Instead of union, we use intersection.

M(∃v. ϕ′, S, A) =
⋂
u∈U

{M(ϕ′, S, A[v 7→ u]) : Jϕ′KS,A[v→u] = 1/2}

For transitive closure, we use the definition that it is a disjunction over all paths and
a conjunction over the edges in the path. Then we turn conjunctions into unions and
disjunctions into intersections, as follows.

M(ITC(s, t;x, y). ϕ′, S, A) =
⋂

P∈Paths(S,A(s),A(t))

⋃
(u1,u2)∈P

{
M(ϕ′, S, A[x 7→ u1, y 7→ u2])

: Jϕ′KS,A[x 7→u1,y 7→u2] = 1/2

}

This equation handles irreflexive transitive closure, which we write as ITC. For reflexive
transitive closure, we convert the formula (TC(s, t;x, y). ϕ) to (x = y)∨ (ITC(s, t;x, y). ϕ).

Putting all this together, we obtain the following algorithm. We assume that integrity
constraints are in negated normal form.

ϕ M(ϕ, S,A)

P(v1, . . . , vk) {P1(A(v1), . . . , A(vk))}
¬P(v1, . . . , vk) {P0(A(v1), . . . , A(vk))}

ϕ1 ∧ ϕ2


M(ϕ1, S, A) if Jϕ2KS,A 6= 1/2

M(ϕ2, S, A) if Jϕ1KS,A 6= 1/2

M(ϕ1, S, A) ∪M(ϕ2, S, A) otherwise

ϕ1 ∨ ϕ2


M(ϕ1, S, A) if Jϕ2KS,A 6= 1/2

M(ϕ2, S, A) if Jϕ1KS,A 6= 1/2

M(ϕ1, S, A) ∩M(ϕ2, S, A) otherwise

∀v. ϕ′
⋃
u∈U{M(ϕ′, S, A[v 7→ u]) : Jϕ′KS,A[v→u] = 1/2}

∃v. ϕ′
⋂
u∈U{M(ϕ′, S, A[v 7→ u]) : Jϕ′KS,A[v→u] = 1/2}

ITC(s, t;x, y). ϕ′
⋂
P∈Paths(S,A(s),A(t))

⋃
(u1,u2)∈P

{M(ϕ′, S, A[x 7→ u1, y 7→ u2]) : Jϕ′KS,A[x 7→u1,y 7→u2] = 1/2}

2.5.4 Soundness

This algorithm is straightforward and easy to implement. However, it holds several
surprises.

1. When S contains summary nodes and when ϕ includes existential quantifiers, the
algorithm is unsound. That is, it generates incorrect sharpenings. We fix this problem
by filtering out any sharpening involving a summary node introduced by an existential
quantifier.

CHAPTER 2. HEAP DOMAIN 60

2. Even when fixed in this way, the algorithm is still unsound in an even stranger way. If
ϕ includes multiple occurrences of the same variable in the same predicate at different
positions (such as E(x, x)) then the results may be unsound. However, in our experience
no realistic integrity constraints have this form. So we require that M never be applied
to such a constraint.

This section describes the soundness problems in detail and presents solutions for them.
We begin by explaining the problem posed by summary nodes and existential quantifiers.

Example 30 We reconsider Example 27.

u1

A
u2

E?
B

Recall that we can sharpen E(u1,u2) to 1 when using the integrity constraint ∀n. A(n) ⇒
(∀n′. B(n′)⇒ E(n, n′)). We saw that this was legal based on the following case analysis.

S1 S2 S3

u1

A
u2

E
B

u1

A
u2

B
u1

A

u2

B
u′2

E? B

Consider changing the integrity constraint to ∀n. A(n) ⇒ (∃n′. B(n′) ∧ E(n, n′)) (we
changed the inner universal quantifier to existential). Since there is only one valid binding
for n′, our algorithm does not care whether the quantifier is universal or existential. It
returns the same sharpening either way. However, that sharpening is incorrect for this
integrity constraint! The new constraint requires that the A node connect to some B node,
but not necessarily all the B nodes. In the case analysis, S3 no longer violates the integrity
constraint.

We can look more closely at the real source of the problem. Given the same structure,
suppose we are asked to compute M(E(n, n′), S, A), where A(n) = u1 and A(n′) = u2.
The problem is that u2 is a summary node. Returning the answer E1(u1,u2), as the al-
gorithm does, means the following: any structure not violating the integrity constraint has
E(u1,u2) = 1. Is this true?

The crucial issue is whether the integrity constraint E(n, n′) is violated in a structure
when E links A(n) to some nodes abstracted by A(n′), but not all of them. If it is violated
in the “some but not all” case, then the sharpening is valid. Otherwise it is not. And the
answer depends on whether n′ is a universally or an existentially quantified variable. 2

When we have a potential sharpening pv(u1, . . . , uk) and each ui is either a singleton
node or came from a universally quantified variable, then the sharpening is legal: because
the quantifier is universal, the integrity constraint will evaluate to zero if even one of the p

CHAPTER 2. HEAP DOMAIN 61

values is changed. However, if there is a ui summary node that came from an existentially
quantified variable, then changing one of the p values will not change the evaluation of the
integrity constraint—it will still yield 1/2.

We take advantage of this insight in the algorithm. We track in the assignment A not only
the node mapped to a variable, but also whether it is universally or existentially quantified.
For example, we write A(n) = 〈u1,∀〉 and A(n′) = 〈u2,∃〉 when n is universally quantified
and n′ is existentially quantified, as in the example.

Before returning an answer pv(u1, . . . , uk) based on a literal P(v1, . . . , vk), we check
whether each vi is existentially quantified, and if it is, we return the answer only if ui
is a singleton node. The following helper function implements this check.

Filter(pv(v1, . . . , vk), S, A)
if for all i, A(vi) = 〈ui, ∃〉 ⇒ ι(Eq)(ui, ui) = 1
then return {pv(A(v1), . . . , A(vk))} else return ∅

Based on these insights, we can revise the definition of M as follows. The cases not
listed below are the same as before. Note that when the augmented A is used by JϕKS,A, we
assume the quantifier information is dropped.

ϕ M(ϕ, S,A)

P(v1, . . . , vk) Filter(P1(v1, . . . , vk), S, A)
¬P(v1, . . . , vk) Filter(P0(v1, . . . , vk), S, A)
∀v. ϕ′

⋃
u∈U{M(ϕ′, S, A[v → 〈u,∀〉]) : Jϕ′KS,A[v→u] = 1/2}

∃v. ϕ′
⋂
u∈U{M(ϕ′, S, A[v → 〈u,∃〉]) : Jϕ′KS,A[v→u] = 1/2}

ITC(s, t;x, y). ϕ′
⋂
P∈Paths(S,A(s),A(t))

⋃
(a1,a2)∈P

{M(ϕ′, S, A[x→ a1, y → a2]) : Jϕ′KS,A[x→a1,y→a2] = 1/2}

The definition of Paths is slightly different here. The paths it returns still consist of
sets of node pairs, but now the nodes are annotated with ∀/∃ information, just like A. The
first and last nodes (A(s) and A(t)) are quantified as determined by A; the nodes in the
middle are always existentially quantified, as befits the TC operator. Note that Paths may
return paths that are not simple. An edge may occur once as the first edge, meaning one
endpoint may be universally quantified, and again as an inner edge where both endpoints
are existentially quantified.

With this revision, the algorithm is now correct except for a very unusual corner case.
Before describing that case, we present an example.

Example 31 We revisit the example of the Shared predicate from the beginning of the
section. Recall that

Shared(n) := ∃n1, n2. Next(n1, n) ∧ Next(n2, n) ∧ n1 6= n2.

We consider only the structure S2 from that example, shown below.

CHAPTER 2. HEAP DOMAIN 62

u1

X
u2 u′2

First we form the integrity constraint according to Equation 2.1. For simplicity, we
only use one direction of the implication since it is sufficient to obtain the results we need.
Desugaring implication and converting to negated normal form yields

ϕ = ∀n. Shared(n) ∨ (∀n1, n2. ¬Next(n1, n) ∨ ¬Next(n2, n) ∨ n1 = n2).

Our goal is to obtain the results {Next0(u2, u2),Next0(u′2, u2)}.
We define ψ as the inner ∀-quantified formula so that the integrity constraint is ϕ =

(∀n. Shared(n) ∨ ψ). We start by evaluating M(∀n. Shared(n) ∨ ψ, S, []), where [] is the
empty assignment. According to the algorithm, we recursively evaluate M(Shared(n) ∨ ψ)
at every node and union the results. We concentrate on u2, since the others simply return
∅.

Thus we compute M(Shared(n) ∨ ψ, S, [n 7→ 〈u2, ∀〉]). In processing the disjunction, we
recognize that Shared(u2) = 0, so we simply return the result of M(ψ, S, [n 7→ 〈u2,∀〉]).

ψ is defined as (∀n1, n2. ¬Next(n1, n) ∨ ¬Next(n2, n) ∨ n1 = n2). We first process it at
n1 = u1 and n2 = u2, causing us to evaluate

M(¬Next(n1, n) ∨ ¬Next(n2, n) ∨ n1 = n2, S, [n1 7→ 〈u1,∀〉, n2 7→ 〈u2,∀〉, n 7→ 〈u2,∀〉]).

The first disjunct is zero because Next(u1, u2) = 1. The third equality disjunct is also zero
because u1 6= u2. Thus, we simply return

M(¬Next(n2, n), S, [n1 7→ 〈u1, ∀〉, n2 7→ 〈u2, ∀〉, n 7→ 〈u2,∀〉]) = {Next0(u2, u2)}.

Next, we can process ψ at n1 = u1, n2 = u′2. We evaluate

M(¬Next(n1, n) ∨ ¬Next(n2, n) ∨ n1 = n2, S, [n1 7→ 〈u1,∀〉, n2 7→ 〈u′2,∀〉, n 7→ 〈u2, ∀〉]).

As before, only the second disjunct is relevant, giving us

M(¬Next(n2, n), S, [n1 7→ 〈u1,∀〉, n2 7→ 〈u′2,∀〉, n 7→ 〈u2, ∀〉]) = {Next0(u′2, u2)}.

Note that we were able to return this result only because n2 was universally quantified.
We union these two results together. No other evaluations of ψ return anything useful,

so they form the final result. 2

Syntactic restriction. The algorithm presented is the one that we implement. However,
as we already described, it is unsound in an unusual case.

Example 32 Let ϕ = ∀n. E(n, n). Assume S is is a single summary node u with a 1/2 E
self-loop.

CHAPTER 2. HEAP DOMAIN 63

u

Let S] contain two concrete nodes with definite E self-loops.

u1 u2

Then algorithm M will infer the sharpening E1(u, u), which is invalid in S]. 2

The obvious culprit is E(n, n), where a variable is used twice in the same predicate in
an integrity constraint. However, we can craft more sophisticated examples not fitting this
model. Consider ϕ = ∀n, n′. E(n, n′)∨E(n′, n), under which M is unsound over the same S,
but now S] must contain an additional E edge from one node to the other (but only in one
direction).

To fix this problem, we place a syntactic restriction on the sharpening formulas ϕ. The
restriction says that a universally quantified variable can appear in only one position for
a given predicate P. Thus, a formula like ∀n. E(n, n) is invalid because the universally
quantified variable n appears in both the first and the second parameter of E. Similarly,
∀n, n′. E(n, n′) ∨ E(n′, n) is also illegal since n still appears as the first parameter of E and,
later, as the second parameter of E.

However, we do allow a variable to appear twice in a predicate if one of them is negated.
Thus, the formula ∀n, n′. E(n, n′)∨¬E(n′, n) is legal because E and ¬E are treated separately
by the restriction. In practice, all the sharpening rules of interest to us meet the restriction.

Given this restriction on integrity constraints, the sharpening algorithm is sound. The
proof of this theorem appears in §2.9.

Theorem 1 Let ϕ be a sharpening rule that satisfies the syntactic restriction. Let S be a
structure, and S] a concrete structure that embeds into S via f . Assume JϕKS = 1/2. Assume
that JϕKS] = 1. Assume that pv(u1, . . . , uk) ∈ M(ϕ, S, []). Then ι](p)(u′1, . . . , u

′
k) = v for all

〈u′1, . . . , u′k〉 such that f(u′i) = ui for each i. 2

2.5.5 Completeness

Despite the fairly ad-hoc fixes mentioned above, the algorithm is still complete in a
limited sense. Its main weakness is that it fails to find every possible sharpening when
ϕ contains positive references to the equality predicate. Equality makes sharpening much
more difficult because it allows the sharpening formula to constrain the size of the model.
In general, dealing with cardinality is a very difficult problem, one which is not solved by
our sharpening algorithm.

Example 33 This examples shows how equalities affect sharpening. Let ϕ = (∃n. A(n)) ∧
(∀n, n′. A(n)⇒ n = n′). Then consider the structure below.

CHAPTER 2. HEAP DOMAIN 64

u
A?

The first clause of the integrity constraint says that some node satisfies A. The second clause
says that there is at most one node. Thus, it is safe to sharpen A to one here, but algorithm
M will not discover this fact. 2

Despite this problem, if we ignore constraints involving equality, we can make a useful
statement about the completeness of M . The overall goal is to prove that if pv(u1, . . . , uk) 6∈
M(ϕ, S,A), then there is some structure S ′ that embeds into S where p does not equal v
and where ϕ holds.

Ideally, we would like S ′ to be a concrete structure (meaning no 1/2 predicate values)
and we would like to show that JϕKS′,A′ = 1. However, this is a much more difficult problem,
since it requires us to determine if the model S is satisfiable under the constraint ϕ. Since ϕ
is an arbitrary formula in first order logic with transitive closure, this problem is undecidable.
Instead, we allow S ′ to be an abstract structure—one that itself may be unsatisfiable as well.

A simple way to explain our completeness result is as follows: “If some sharpening result
pv is not returned by M , then by materializing some nodes in S and changing some predicate
values from 1/2 to 1 we can obtain a structure S ′ where pv is violated and where ϕ is not
falsified.” This is a much weaker result, but it is still quite useful for understanding whether
M will generate a given sharpening. The full statement of the theorem (which is complex)
and its proof appear in §2.9.

2.5.6 Use In Practice

We have found that this algorithm works very will in practice. Because it is essentially
an instrumented version of the evaluation algorithm, we can use the techniques from §2.4,
including query optimization, to run sharpening quickly.

In only a few cases has the algorithm failed to find a correct sharpening. These cases all
related to transitive closure, where infinite case analysis is required to prove the sharpening
correct. Our completeness result does not apply here. To alleviate the problem, we aug-
ment the integrity constraints that we generate for transitive closure predicates. Consider
the predicate NextTC(s, t) := TC(s, t;x, y). Next(x, y). Normally we would generate the
following integrity constraint, which follows from Equation 2.1.

∀s, t. NextTC(s, t) ⇐⇒ TC(s, t;x, y). Next(x, y)

To improve sharpening, we generate additional integrity constraints.

• ∀s, t. (TC(s, t;x, y). NextTC(x, y))⇒ NextTC(s, t)

• If Next is known to be a function:

∀x, y, z. NextTC(x, y) ∧ NextTC(x, z) ∧ ¬NextTC(z, y)⇒ NextTC(y, z)

CHAPTER 2. HEAP DOMAIN 65

• If Next is known to be a function:

∀x, y, z. NextTC(x, y) ∧ x 6= y ∧ Next(x, z)⇒ NextTC(z, y)

Aside from these forms added for any transitive closure predicate, we have found no need
to manually add additional integrity constraints.

Comparison. The TVLA algorithm for sharpening [46] tries to rewrite each integrity
constraint into rules of the form

∀v1, . . . , vk. ψ ⇒ P(v1, . . . , vk).

Then it searches for places where ψ has the value 1 and sets P to 1 at those places. Originally
the algorithm searched all tuples 〈u1, . . . , uk〉, and thus had exponential complexity in k, but
Bogulov et al. [5] present an improvement that dramatically increases performance for most
rules via incremental evaluation. However, both of these approaches rely on simple syntactic
rewriting of the integrity constraints. The automatically generated integrity constraints
typically need to be augmented with rules that the user provides. These rules are not
checked for soundness, so they may make the analysis unsound.

2.6 Abstraction

This section presents the contributions of this thesis related to abstraction (contribution
Ã of the introduction). Abstraction is the process of summarizing an infinite set of items
using only a finite description. For example, an abstraction of a linked list is a finite
description of the infinitely many linked lists of all possible lengths. The abstraction we
present in this section is called the Deskcheck abstraction.

Recall that TVLA uses a disjunctive abstraction. An abstract element in the TVLA
domain is a disjunction of three-valued structures. If E = S1 ∨ · · · ∨ Sn, then the meaning
of E is γ(E) = γ(S1) ∪ · · · ∪ γ(Sn).

When computing the join of two abstract elements, E and E ′, TVLA tries to avoid
generating large disjunctions. Rather than simply concatenating the disjuncts E and E ′,
TVLA will compute the canonical node names of each structure in E and E ′. Each structure
S gets a canonical structure name N(S) equal to the canonical names of its nodes. If
E = S1∨· · ·∨Sn and E ′ = S ′1∨· · ·∨S ′n and if there are some Si and S ′j so that N(Si) = N(S ′j),
then a single disjunct appears in the result to represent both Si and S ′j. Consequently, at
most one disjunct appears in the result for each canonical structure name. This ensures a
finite abstraction. (See the introduction for more information.)

Example 34 Consider joining the following two abstract elements, E = S0∨S2 and E ′ = S3.
Let Si be a structure abstracting a linked list of i elements. We assume the abstraction
predicates are A = {Head,HeadReaches} (assuming head points to the head of the list). We
show the structures here, with abbreviated predicate names.

CHAPTER 2. HEAP DOMAIN 66

S0 S2 S3

(empty)
u1

H,HR
u2

HR
u1

H,HR
u2

HR

Note that the canonical abstraction has already been applied, causing the second and third
nodes of S3 to be collapsed into a summary node.

The canonical structure names are as follows.

N(S0) = ∅
N(S2) = {{Head,HeadReaches}, {HeadReaches}}
N(S3) = {{Head,HeadReaches}, {HeadReaches}}

Since the canonical structure name of S3 is the same as the name of S2, the result of the
join operation is S0 ∨ (S2 t S3). Note that (S2 t S3) = S3. 2

Scalability. The canonical abstraction guarantees that TVLA’s abstractions are finite,
but it does not guarantee that they are small. In practice, descriptions may be very large,
involving many disjuncts.

Consider a single linked list with an unknown number of nodes. We need three dis-
juncts to represent it. The first one represents the empty case; this structure has canon-
ical name ∅. The second one represents a single node; this structure has canonical name
{{Head,HeadReaches}}. The third structure is the “two or more nodes” case; it has canon-
ical name {{Head,HeadReaches}, {HeadReaches}}.

With multiple lists, the number of disjuncts increases exponentially. Consider two list
pointers, x and y , pointing to distinct lists. Let there be predicates X and Y for the head
pointers and RX and RY for reachability. Then there are nine disjuncts with the following
canonical structure names.

N(S00) = ∅
N(S10) = {{X,RX}}
N(S01) = {{Y,RY}}
N(S11) = {{X,RX}, {Y,RY}}
N(S20) = {{X,RX}, {RX}}
N(S02) = {{Y,RY}, {RY}}
N(S12) = {{X,RX}, {Y,RY}, {RY}}
N(S21) = {{X,RX}, {RX}, {Y,RY}}
N(S22) = {{X,RX}, {RX}, {Y,RY}, {RY}}

In general n lists require 3n disjuncts. This is clearly insupportable.

CHAPTER 2. HEAP DOMAIN 67

2.6.1 Present = 1/2

The crux of the problem is that in TVLA a summary node always abstracts at least one
concrete node. If a summary node could represent zero or more concrete nodes, then the
scalability problem would mostly be solved. Only one disjunct would be needed to abstract
a single list. Consequently, the number of disjuncts for n lists would fall from 3n to 1n = 1.

In this section, we propose a new property for nodes called present. If a node is present,
then it behaves as normal. If a node is not present, then it is as if the node does not exist.
If present is 1/2, then the node may or may not be present in the structure.

It is tempting to treat present as if it were another predicate, much as summary nodes
are formalized using the equality predicate. Unfortunately, this is not possible. To see why,
we must make a diversion and consider the logical meaning of a TVLA structure. Consider
the following structure.

n1

A
n2

E

We write the logical denotation of S as follows. (See Yorsh et al. [51] for more information
on the logical meaning of heap structures.)

∃n1. A(n1)

∃n2. ¬A(n2)

∀n, n′. A(n) ∧ ¬A(n′)⇒ E(n, n′)

Each existential quantifier corresponds to a node in the structure, postulating its ex-
istence based on the abstraction predicates it satisfies. Each universally quantified fact
corresponds to some definite predicate fact (i.e., not 1/2) for a non-abstraction predicate,
like E above. Even summary-node-ness can be encoded this way. If n1 were a singleton,
then we would have the fact ∀n, n′. A(n) ∧ A(n′)⇒ n = n′.

Notice now that the present property discussed above cannot be encoded as a predicate
because it is not representable with a universal quantifier. Instead, present-ness affects the
initial existential quantifiers. This is a fundamental change to the meaning of structures so
it must be handled completely differently.

Semantics. Recall that a structure S is formalized as 〈U, ι〉. We update this to include
present information as 〈U, ρ, ι〉. The new value ρ is a function mapping nodes to {0, 1/2, 1},
denoting whether they are present. This change requires a few definitions to be updated.
First we change the definition of embedding.

Definition 3 Given two TVLA structures S = 〈U, ρ, ι〉 and S ′ = 〈U ′, ρ′, ι′〉, we say that S
embeds into S ′ if there exists a function f (called the embedding function) that satisfies the
following conditions.

CHAPTER 2. HEAP DOMAIN 68

• For any predicate P and any nodes n1, . . . , nk ∈ U ,

ι(P)(n1, . . . , nk) v ι′(P)(f(n1), . . . , f(nk)).

• For any node n′ ∈ U ′,  ∨
n∈U :f(n)=n′

ρ(n)

 v ρ′(n′).

When these conditions hold we write S v S ′. 2

The difference between this definition and Definition 2 is that instead of requiring the
embedding function to be a surjection, we add the extra condition on ρ. This condition
reduces to surjectivity when ρ and ρ′ always equal 1.

Note that this definition does not match our intuition in one way. Let S be a structure
with a single node where ρ = 0 and let S ′ be an empty structure. Although these structures
seem semantically equivalent, they are not according to the embedding relation. However,
we can simply remove the ρ = 0 node from S or add a ρ = 0 node to S ′ to satisfy the
definition.

We also redefine the notion of a concrete structure. Now we say a structure is concrete
if all predicate values are definite and if ρ is 1 everywhere. Then we restate the definition
of γ:

γ(S) = {S0 : S0 is concrete ∧ S0 v S}.

The modified definition of a concrete structure allows us to ignore the ρ = 0 issue mentioned
above, at least as it related to γ. We can always add new nodes with ρ = 0 to any
abstract structure without changing its meaning. Any concrete structure that embeds into
the original structure will embed into the new one and vice versa.

Example 35 Consider a heap with two singleton nodes, n and n′. Let ρ(n) = 1 and
ρ(n′) = 1/2. Additionally, let the binary predicate E hold from n to n′ (i.e., ι(E)(n, n′) = 1).

There are two concrete structures that embed into this one. One structure has both
nodes.

S2 = 〈{n, n′}, ρ2, ι2〉 ρ2(n) = ρ2(n′) = 1 ι2(E)(n, n′) = 1

The other structure has only n.

S1 = 〈{n}, ρ1, ι1〉 ρ1(n) = 1

The interesting point is that S1 contains no E edges even though the original structure
required E to be 1 between n and n′. Nevertheless, the embedding relationship holds. 2

CHAPTER 2. HEAP DOMAIN 69

Join. We still define the join in essentially the same way. Let m be a bijection mapping
nodes of a structure S = 〈U, ρ, ι〉 to nodes of a structure S ′ = 〈U ′, ρ′, ι′〉. Then S t S ′ =
〈U, ρ′′, ι′′〉.

ι′′(P)(u1, . . . , uk) =


ι′(P)(m(u1), . . . ,m(uk)) if ∃i. ρ(ui) = 0

ι(P)(u1, . . . , uk) if ∃i. ρ(m(ui)) = 0

ι(P)(u1, . . . , uk) t ι′(P)(m(u1), . . . ,m(uk)) otherwise

ρ′′(u) = ρ(u) t ρ′(m(u))

As before, both S and S ′ embed into the joined structure—S via the identity embedding
function and S ′ via m−1.

Query evaluation. The new present property forces us to modify some important parts
of the system. The most important is query evaluation. Imagine that the query ∃x. ϕ(x) is
being evaluated and that, for some node u, ϕ(u) is true. Normally we would return true in
this case. However, if ρ(u) = 0, we must find another u or else return false. If ρ(u) = 1/2,
we must find another u or return 1/2. Essentially, we must convert every query of the form
∃x. ϕ into ∃x. ρ(x) ∧ ϕ. Similarly, we convert every ∀x. ϕ query into ∀x. ρ(x)⇒ ϕ.

Transitive closure queries can be similarly transformed, although there are two possible
ways to do so. We could transform the query TC(s, t;x, y). ϕ as follows: TC(s, t;x, y). ρ(x)∧
ϕ or TC(s, t;x, y). ρ(y) ∧ ϕ (or we could use ρ on both x and y but this is redundant).

Unfortunately, neither way is perfectly precise. To see why, we can consider the transitive
closure query as an infinite disjunction P0 ∨ P1 ∨ · · · , where Pi holds when there is a path
of length i from s to t. Then we write Pi as follows:

∃x1, x3, . . . , xi−1. ϕ(s, x1) ∧ ϕ(x1, x2) ∧ · · · ∧ ϕ(xi−2, xi−1) ∧ ϕ(xi−1, t).

This formula has the advantage that we can transform it as we do the existential formulas.
It becomes the following.

∃x1, x3, . . . , xi−1. ρ(x1) ∧ · · · ρ(xi−1) ∧ ϕ(s, x1) ∧ ϕ(x1, x2) ∧ · · · ∧ ϕ(xi−1, t).

This is a different formula than the one obtained by adding ρ(x) or ρ(y) to ϕ. That formula
would include an extra ρ term s or t respectively. The difference turns out to be significant.

Example 36 Consider a structure S with three singleton nodes: n1, n2, and n3, with
predicates A, B, and E as follows.

n1 n2

E

n3

E
A B

The gray coloration means that ρ(n1) = ρ(n3) = 1/2.
Suppose we want to evaluate the query A(s) ∧ B(t) ∧ TC(s, t;x, y). E(x, y). It is valid

to return the answer 1 at s = n1, t = n3. However, we will get the answer 1/2 using the
transformed version of the formula. 2

CHAPTER 2. HEAP DOMAIN 70

The only way to fix the problem is to change the evaluation algorithm to account for
ρ. The algorithm must weight results by ρ only for the inner nodes. Recall the previous
definition for evaluation of JTC(s, t;x, y). ϕ′KS,S′,A from §2.4.1; we update it as follows.

ι(Eq)(A(s), A(t))∨
∨

P∈Paths(S,A(s),A(t))

 ∧
n∈In(P,A(s),A(t))

ρ(n)

∧
 ∧
〈n1,n2〉∈P

Jϕ′KS,S′,A[x→n1,y→n2]


We define the function In(P, ns, nt) on a path P to return the “inner” nodes, as follows.

In(P, ns, nt) = {n : ∃n′. (〈n, n′〉 ∈ P ∧ n 6= ns) ∨ (〈n′, n〉 ∈ P ∧ n 6= nt)}

We cannot always exclude ns and nt as inner nodes because the path may loop around
through s or t. We detect this by noticing that the path enters s (or leaves t); in such cases,
s (or t) is considered an inner node.

Rather than transforming universal and existential quantifiers, we can change their eval-
uation rules as well, giving us a more uniform treatment of the subject. The results are
shown in Table 2.10.

ϕ JϕKS,S′,A (assume S = 〈U, ι〉)
∀v. ϕ′

∧
n∈U ¬ρ(n) ∨ Jϕ′KS,S′,A[v→n]

∃v. ϕ′
∨
n∈U ρ(n) ∧ Jϕ′KS,S′,A[v→n]

Table 2.10: Semantics of formulas.

Sharpening. There are two changes needed in the sharpening algorithm. First, we saw in
the previous paragraph that queries must be transformed to deal with the present property.
We perform the same transformations on sharpening queries. Consequently, sharpening can
now return two kinds of results: the normal kind of the form pv(u1, . . . , uk), and a new
kind of the form ρv(u). The new kind says that ρ(u) should be sharpened to v. Here is an
example of how this might come about.

Example 37 Let S be a structure containing a single node n where ρ(n) = 1/2. Let A be
a predicate and let A(n) = 1/2. Suppose that we have the integrity constraint ∃x. A(x).

n
A?

We transform this constraint into ∃x. ρ(x)∧A(x). Then we use our standard sharpening
algorithm. On the subquery A(x) it returns A1(n). On the subquery ρ(x) it returns ρ1(n).
The ∧ operator unions these sharpenings so that the final result is {A1(n), ρ1(n)}, meaning
that n must be present and must satisfy A. 2

CHAPTER 2. HEAP DOMAIN 71

The second modification is more subtle. To understand it, we change the above example
somewhat.

Example 38 We start with the same structure S but suppose that we have the integrity
constraint ∀x. A(x) instead.

n
A?

We transform this constraint into ∀x. ¬ρ(x)∨A(x). In this case the standard sharpening
algorithm returns no results: at the ∨ operator, it intersects {ρ0(n)} with {A1(n)}, producing
nothing.

In fact, it is legal to sharpen A to 1 at n. (We cannot sharpen ρ(n) at all.) The reason
is that if n exists then the integrity constraint requires it to satisfy A. If it doesn’t exist
then there is no harm in setting A(n) = 1 since it will have no effect on the meaning of the
element. 2

How do we make our sharpening algorithm to generate this result? We modify its
handling of disjunctions when both sides evaluate to 1/2. The algorithm used to return
M(ϕ1, S, A) ∩ M(ϕ2, S, A). Now we allow a result pv(u1, . . . , uk) to be returned if it is
returned by one side of the disjunction as long as the other side returns ρ0(ui) for some i.
Formally, we return the following additional results.

{pv(u1, . . . , uk) : ∃i. pv(u1, . . . , uk) ∈M(ϕi, S, A) ∧ ∃j. ρ0(uj) ∈M(ϕ1−i, S, A)}

Focus. Having ρ available to us, we can simplify the focus operation as follows.

Example 39 Recall the focus that took place in Example 25. We started with the following
structure.

u1 u2

X

Then we focused next[x], yielding two structures.

S1 S2

u1

X
u2

X
u1

X
u2 u′2

In some sense, S2 is the more general structure. We need S1 only because the summary
node u′2 in S2 cannot represent zero concrete nodes. But using ρ, we can generate a single
structure into which both S1 and S2 embed.

CHAPTER 2. HEAP DOMAIN 72

u1

X
u2 u′2

This structure differs from S2 only in that ρ(u′2) = 1/2. 2

Using ρ = 1/2 allows us to return only one result for most focus operations.

2.6.2 Disjunctive Abstraction

The reason for introducing ρ = 1/2 nodes is to solve TVLA’s scalability issues. An
obvious way to do this is to eliminate disjunctions entirely from domain elements. Given a
domain element S1 ∨ · · · ∨ Sn, we want to form a single structure S that overapproximates
every Si.

We cannot form S1t · · · tSn directly because the join operation still requires a bijection
between nodes. Instead, we collect all the canonical node names, A = N(S1)∪ · · · ∪N(Sn).
Then we generate new structures S ′i by adding nodes from A to Si if they are not already
present; these nodes are added with ρ = 0. Finally, we use the join algorithm to form
S ′1 t · · · t S ′n = S. We call this abstraction “single” because every domain element contains
a single structure.

Unfortunately, the single abstraction tends to be imprecise. By merging so much, it
throws away important information. Instead, we have found a compromise between TVLA’s
disjunctive abstraction and the single abstraction.

When joining a structure S with a structure S ′, TVLA represents the result as S t S ′ if
N(S) = N(S ′) (i.e., if the canonical names match), and as S ∨S ′ otherwise. We change the
condition to N(S) ⊆ N(S ′) or N(S) ⊇ N(S ′). Doing so requires some tweaking, of course.
Since computing StS ′ requires a bijection between the nodes, we introduce new nodes with
ρ = 0 to the “smaller” structure (just as we do in the single abstraction).

Example 40 Consider the following three structures, which make up the normal linked list
abstraction in traditional TVLA. We abbreviate the head pointer predicate as H and the
reachability predicate as R.

S0 S1 S2

(empty)
u1

H,R
u1

H,R
u2

R

Our goal is to join these three structures together. Their canonical names are as follows:

N(S0) = ∅
N(S1) = {{H,R}}
N(S2) = {{H,R}, {R}}

CHAPTER 2. HEAP DOMAIN 73

TVLA would normally leave these three structures separate, leading to an exponential num-
ber of disjuncts where multiple lists are involved.

The modified heuristic above joins these three structures together into S0 t S1 t S2,
yielding the following structure.

u1

H,R
u2

R 2

One unfortunate property of this join algorithm is that it is not associative. We have
not found this to be a problem in practice. Nevertheless, we give an example that exposes
the problem.

Example 41 Consider the following three structures, with the unary predicates X, Y, Z,
and P. The first three are abstraction predicates and the last one is not.

Sa S Sb
u1

X
u2

Y
u1

P,X
u1

P,X
u3

Z

Consider trying to join these three structures together. We will not join Sa with Sb
because there is no subset relationship between their node names. However, we can join S
to either Sa or Sb. Which one we choose affects the precision of the result.

First consider doing the join (Sa t S) t Sb. This causes S to be joined with Sa, leading
to a disjunction of the following two structures.

S ′a Sb
u1

P?,X
u2

Y
u1

P,X
u3

Z

On the other hand, Sa t (S t Sb) yields the following disjunction.

Sa S ′b
u1

X
u2

Y
u1

P,X
u3

Z

The second version is more precise because it contains definite information about P
everywhere. 2

2.6.3 Control Flow-Sensitive Abstraction Predicates

In TVLA, a predicate is either an abstraction predicate or it is not. This section intro-
duces the freedom for the user to temporarily change whether a predicate is an abstraction
predicate. This allows him to use a coarse abstraction most of the time while switching to a
finer abstraction when invariants need to be temporarily broken. We give an example now.

CHAPTER 2. HEAP DOMAIN 74

Example 42 We use an example similar to the linked list one earlier. However, now we
suppose that the list is terminated by a null object that satisfies the predicate N, which is
an abstraction predicate. If the head predicate, H, is also an abstraction predicate, then we
need two disjuncts to represent lists of arbitrary size.

S0 S1

n
H,N,R

u1

H,R
u2

R

n
N,R

These two structures will not be merged because the node names are incomparable.
Sometimes it is beneficial for these two structures to be kept separate. For example, when
traversing a list, it is useful to keep the “null” case separate because the loop test will select
it out anyway. But throughout most of the program we want to merge these cases to avoid
state-space explosion. At those times we remove the H predicate from A, resulting in the
following structure.

u
H?,R

n
H?,N,R 2

The implementation of this feature is straightforward. The annotations @enable(P) and
@disable(P) add and remove predicate P from the set of abstraction predicates A. When
P is removed, we re-apply the canonical abstraction to coarsen the abstraction. Adding P
to A performs case splitting everywhere P = 1/2 and then sharpens the results.

2.6.4 Experiments

In this section we try to quantify the effects of the Deskcheck abstraction (the one
presented here) versus the normal TVLA abstraction. We use our thttpd benchmark.
Our first experiment compares the running time when using the TVLA abstraction versus
the Deskcheck abstraction. We also tested the benefit of using flow-sensitive abstraction
predicates. We measured both the analysis time and the sizes of the inferred loop invariants,
in terms of the number of disjuncts. For each loop that appears in the program, we added
up the number of disjuncts that were inferred at that program point. Since there are many
loops, we present the minimum, median, and maximum loop invariant size.

The Deskcheck abstraction runs 8.6 times faster than the TVLA abstraction with fixed
abstraction predicates. It also uses many fewer disjuncts. Besides the performance difference,
presenting fewer disjuncts to the user makes the analysis results much easier to understand.
Figure 2.3 presents histograms of the loop invariant sizes. Most loops in the Deskcheck
abstraction have only two disjuncts in their inferred loop invariants. This is the minimum
number: we record the loop invariant before testing the loop condition, so it includes the
loop exit case. (Loops with only one disjunct are typically non-terminating.)

CHAPTER 2. HEAP DOMAIN 75

Abstraction Abstraction predicates Running time # disjuncts
TVLA Fixed 574.91 6/18/70
TVLA Flow-sensitive 460.71 4/12/47
Deskcheck Flow-sensitive 66.87 1/2/6

Table 2.11: Performance comparison of abstractions. The number of disjuncts is shown in
the form of min/median/max.

Besides its performance advantages, we found that the Deskcheck abstraction makes
analysis results easier to understand. Analyzing a program with the TVLA abstraction
generates a huge number of disjuncts at each program point. If the user finds an error in the
program, or if the analysis results are imprecise, the user must pore over each disjunct to
understand the problem. In TVLA, this takes the form of paging through a hundred-page
PostScript file of analysis results. The Deskcheck abstraction collapses the disjuncts, often
into a single structure, making the results much easier to read and understand.

2.7 Related Work

2.7.1 TVLA

The TVLA system of Sagiv, Reps, and Wilhelm [46] forms the basis of the heap domain.
The most complete description of TVLA is in the TVLA journal paper [46]. However, a
number of innovations have been made since then that we describe.

Abstractions. The disjunctive abstraction used by TVLA, in which two structures with
the same canonical name are merged, is described by Manevich et al. [34]. §2.6 describes
our modifications to this abstraction to make it more concise and efficient by collapsing
structures if one’s canonical name is a subset of the other’s.
§2.6 also describes ρ = 1/2 nodes. Our use of these nodes is not a new innovation. In an

early paper, Sagiv, Reps, and Wilhelm [45] describe a shape analysis system using a single
structure per program point. A command-line option causes TVLA to run in this mode,
called single mode. TVLA uses a property similar to ρ (called active) to represent summary
nodes that may not be present. It also uses a join algorithm similar to ours.3 However, its
sharpening algorithm is not able to make inferences about ρ as ours does. The single mode
does not appear to be used much because of the imprecision of having one structure per
program point. Our subset-based abstraction, along with the improved sharpening, seems
to solve this problem.

Nodes with ρ = 1/2 are also addressed by Arnold [1]. That paper presents an analysis
based on TVLA where all summary nodes have ρ = 1/2. Unlike TVLA’s single abstraction,

3See tvla.core.generic.GenericSingleTVSSet.

CHAPTER 2. HEAP DOMAIN 76

0 10 20 30 40 50 60 70
0

2

4

6

(a)

0 10 20 30 40 50 60 70
0

2

4

6

(b)

0 10 20 30 40 50 60 70
0

2

4

6

(c)

Figure 2.3: Histograms of the size of loop invariants under different abstractions. (a) TVLA
abstraction with fixed abstraction predicates. (b) TVLA abstraction with flow-sensitive
abstraction predicates. (c) Deskcheck abstraction with flow-sensitive abstraction predicates.

CHAPTER 2. HEAP DOMAIN 77

that work allows multiple structures per program point. The extra flexibility in summary
nodes allows it to represent most invariants using a single structure. “Degenerate” struc-
tures are then eliminated since they embed into the more general structure. It is unclear
how this strategy compares to our subset-based abstraction. However, their experiments
suggest that it uses more structures per program point on similar programs (singly linked
list manipulation).

A different approach to the state-space explosion problem is taken by Manevich et al. [33].
This work allows a domain element to contain conjunctions of structures as well a dis-
junctions. Thus, the abstraction for two linked lists, L and L′, might look as follows:
(S0 ∨ S1 ∨ S2) ∧ (S ′0 ∨ S ′1 ∨ S ′2). Each of the structures Si describes one case of list L while
using a very imprecise abstraction for list L′. The structures S ′j use a precise abstraction of
L′ and an imprecise abstraction of L. Together they describe both lists precisely as long as
no correlations exist between the lengths of the lists. The advantage over the usual approach
is that n lists require 3n structures rather than 3n structures. Compared to our approach,
their decomposition technique is more powerful but also more complicated, both in theory
and in implementation. Additionally, the user is required to describe how the heap should be
decomposed into separate conjunctions. Implementing transformers is also more complex.

Finite differencing. Using finite differencing to generate transfer functions was first de-
scribed by Reps, Sagiv, and Loginov [40, 41]. We improve on this technique by introducing
the definite operator, 1[·], and by refining the finite differencing of transitive closure. A re-
lated piece of work by Yorsh et al. [52] uses theorem provers to generate transfer functions.
This technique may be more precise than finite differencing, but it runs much more slowly.

Sharpening. We have already compared TVLA’s sharpening algorithm to our own. The
best descriptions of TVLA’s algorithm are in Sagiv et al. [46] and in Bogudlov’s work on
improving the performance of sharpening [5].

2.7.2 Automated Separation Logic Analyses

Analyses based on separation logic form the other main branch of shape analysis research.
The first paper describing a program analysis using separation logic presents the Smallfoot
system of Berdine et al. [4]. Other tools include Space Invader [19], SLAyer [49], and Xisa [9].
Separation logic analyses tend to be more efficient than TVLA but less powerful. Almost
all separation logic analyses focus on programs that manipulate linked lists (Xisa [9] is the
sole exception).

An important speed advantage that separation logic analyses have is that they do not
require sharpening. A separation logic analysis uses summarization and materialization
much like TVLA, but no sharpening is needed after materialization. Given that sharpening
accounts for most of the work in a TVLA-based analysis, this is an important advantage.
Note, though, that sharpening imposes only a constant-factor performance cost on TVLA; it

CHAPTER 2. HEAP DOMAIN 78

may cause the analysis to run 2x or even 10x slower, but not polynomially or exponentially
slower. Thus, avoiding sharpening improves performance but not scalability.

The main scalability advantage of separation logic analyses is their sophisticated join
algorithms, which allow them to use only a single disjunct per program point (much as
we try to do in §2.6). Separation logic analyses have been shown to scale to fairly large
programs. The largest program is a Windows Firewire driver that is over 10,000 lines of code
[49]. However, this result should be treated with some care. Device drivers are often fairly
stylized, using only a few data structure patterns that are easy to analyze. Additionally,
the authors of that paper modified the driver by eliminating arrays and by converting some
doubly linked lists into singly linked lists. Nevertheless, the result is very impressive. We
hope that our techniques from §2.6 would be as successful as theirs, but their is no evidence
either way.

A third advantage of separation logic analyses is that interprocedural analysis is some-
what easier. Since the heap is broken into disjoint pieces, the portion to be used by a callee
can be disconnected from the caller’s heap. The call is then analyzed in isolation and the
resulting heap is stitched back into the caller’s original heap without much effort. In TVLA
this process is made more difficult because instrumentation predicate values can depend
on nodes arbitrarily far away. Although some progress has been made on interprocedural
analysis in TVLA [28, 42, 43], the goal has typically been to improve precision rather than
scalability. This thesis does not address the problem of interprocedural analysis at all.

The downside of analyses based on separation logic is that they are more restricted than
TVLA. The language of separation logic is a powerful formalism for reasoning about data
structures, but the automated analyses based on it use only simple fragments. Most of the
analyses mentioned above are limited to analyzing linked list-like structures. Berdine et
al. [3] describe a technique to handle hierarchical lists of lists.

Chang and Rival [9] present a much more flexible technique in which the user describes
a data structure via a checker. A checker is a function that traverses a data structure and
ensures that it satisfies some desired invariants. The language used for checkers is somewhat
restricted; in particular, a node may only be traversed once. Nevertheless, checkers allow for
a much more expressive analysis. They have been shown to work for binary trees, including
red-black trees.

Despite these advances, analyses based on separation logic are still limited by their fairly
simplistic materialization heuristics. To see how, consider the following data structure:

1 struct node {
2 struct node *left, *right;
3 struct node *next;
4 };
5 struct node *tree_root;
6 struct node *list_head;

The left and right pointers form a binary tree rooted at tree root. The next pointers
form a link list, headed by list head, through the same set of nodes as the tree (or possibly

CHAPTER 2. HEAP DOMAIN 79

a subset). The following structure is an example, where next pointers are dotted and solid
edges show left and right pointers.

n1

n2 n3

n4

tree root = n1 list head = n2

This structure might appear in an operating system, where the tree of nodes is a process
tree and the linked list forms a ready queue of processes.

The only clear way to represent such a structure is to use two recursive predicates: one
to describe the tree fields and one to describe the list fields, as follows:

T (α) := (α = null) ∨ (∃β, γ. left[α] 7→ β ∗ right[α] 7→ γ ∗ T (β) ∗ T (γ))

L(α) := (α = null) ∨ (∃β. next[α] 7→ β ∗ L(β))

Then we can describe the state via T (tree root) ∗ L(list head). Technically, since the
fields that each predicate describes are distinct, the separating conjunction here is valid (at
least in Xisa).

Unfortunately, unfolding then becomes a problem. If, in the middle of traversing the
list, the programmer begins traversing down the tree, there is a problem: we must unfold
the tree predicate “in the middle,” at the place where the list iteration has stopped. No
separation logic analysis is currently capable of doing this. Xisa uses an unfolding heuristic
where two fields of the same object must be a finite number of checker unfoldings apart. No
other analysis even supports such predicates.

This is not to say that the problem is insolvable. It simply requires more complex
heuristics. Nevertheless, finding a heuristic that is powerful, elegant, and fast is quite a
challenge. TVLA’s approach, based on focus and sharpening, is powerful, elegant, and slow.

Ultimately, practitioners are faced with a choice between two imperfect techniques.
TVLA has been proven to work on some very complex algorithms (garbage collectors, con-
current wait-free data structures, the thttpd cache), but it does not yet scale to large
programs. The abstraction techniques of §2.6 should improve TVLA’s scalability, but the
lack of a good interprocedural analysis makes it impossible for us to test this hypothesis. On
the other hand, separation logic analyses are reasonably expressive and already have been
tested on much larger programs.

Aside from the trade-offs just mentioned, we have another reason for using TVLA as the
basis of our heap analysis. TVLA predicates are more compositional than separation logic
predicates. In TVLA, each property of a data structure—for example, cyclicity, sharing,
reachability, or a numerical property—is characterized by a separate predicate. Separation

CHAPTER 2. HEAP DOMAIN 80

logic typically captures all of these properties with a single predicate. In TVLA, to analyze
a data structure that combines properties of a list and a tree, we use existing list predicates
togerther with existing tree predicates. Separation logic requires a new, combined predicate.
Hence, we say that TVLA is more composable. We believe that composability makes our
analysis easier to use.

In the next chapter, we describe a combined domain for reasoning about heap and
integer properties. We use predicates to share information between the heap domain and
the integer domain. Individually, TVLA predicates are less constraining than separation
logic predicates, so they allow us to share information with the combined domain at a finer
granularity. This feature makes for a more precise combined analysis.

2.7.3 Hoare-style Verification

This verification methodology uses user-specified loop invariants and machine-generated
verification conditions to check program correctness. This work can be split into two pieces,
depending on whether the proving is done manually or automatically.

Automated approaches. McPeak and Necula [35] describe an automatic technique based
on loop invariants. Their logic does not support transitive closure reasoning. Instead, data
structure specifications are entirely local, such as n.next.prev = n. When a data structure
cannot be described this way, the code must be changed. In practice, this means that back
pointers must be added to singly linked lists and parent pointers to trees. They use a
modified version of the Simplify theorem prover for deduction. For the local specifications
described, they have a complete decision procedure. Verification time is low in practice,
although annotation overhead varies between 15% and 153% of the original program size.

The Pointer Assertion Logic Engine [37] is another automatic tool using loop invariants.
Specifications are written in monadic second-order logic and checked via the MONA tool [27].
Monadic second-order logic can express a form of reachability, but it has limited support for
integer reasoning. MONA checks these specifications via automata conversion. Although
MONA is heavily optimized, its complexity is non-elementary (it is a tower of exponents
whose height is the number of quantifier alternations in the specification). In our limited
experience, this worst-case complexity is realized alarmingly often. However, expert users
are probably able to avoid cases that lead to bad performance.

A third automated technique is the HAVOC tool by Lahiri and Qadeer [29]. These
authors use a decidable fragment of first-order logic, including a form of reachability. In this
case, the decision procedure is NP-complete. Verification times in practice are relatively
low for the experiments that are described. However, their technique seems to depend fairly
strongly on the very advanced Z3 theorem prover; Simplify is unable to prove some of their
examples. No information on annotation burden is provided.

CHAPTER 2. HEAP DOMAIN 81

Manual approaches. The Jahob system uses more powerful logics to express loop in-
variants [53, 54]. These formulas are checked using a variety of systems, including MONA,
Coq, and Isabelle. The latter two, being interactive theorem provers, require user guidance.
Programs are written in a language that combines loop invariants with proofs of verification
conditions. These annotations include typical proving hints like case splits and quantifier
instantiation.

Another example is the Ynot system [10]. Programs and specifications are written in Coq,
allowing an ML program to be extracted. The specification language uses separation logic.
Unlike the separation logic analyses above, the proof process is interactive, so users can make
use of the full power of Coq. The programs that are verified are small but sophisticated.
The annotation burden is relatively light compared to other Hoare-style approaches (less
than 100% in all cases). The main drawback is the difficulty of using Coq.

2.8 Conclusion

In this section we have presented four improvements to TVLA.

Finite differencing. In §2.3 we introduced the definite operator, 1[·], which improves
the precision of finite differencing. This operator allows us to characterize the completeness
of finite differencing in a way that was not previously possible. It also means that we no
longer need to run sharpening after every assignment, as TVLA does. Given the expense of
sharpening, this is a significant benefit.

We also described a new formula for computing finite differences of transitive closure
formula in the presence of arbitrary changes to core predicates. TVLA uses a more restricted
formula with many special cases and correctness checks. Our formula allows us to avoid this
complexity.

Formula evaluation. In §2.4 we described an efficient algorithm for evaluating formulas in
first-order logic with transitive closure. Our algorithm borrows optimization techniques from
databases to make queries run three orders of magnitude faster than the naive evaluation
algorithm.

Sharpening. §2.5 presented a new algorithm for improving the precision of a heap struc-
ture. We proved the soundness of the algorithm and characterized its completeness. The
completeness of our algorithm means that programmers typically do not have to supply cus-
tomized integrity constraints to our system, as they do in TVLA. Our approach also allows
us to use our fast formula evaluation algorithms from §2.4 for sharpening.

Abstraction. Finally, §2.6 describes several techniques to make our heap abstractions
smaller and to make our analysis more scalable. We introduced ρ = 1/2 nodes and we pre-
sented a new join algorithm for heap domain elements. Taken together, these improvements

CHAPTER 2. HEAP DOMAIN 82

increase absolute performance by almost an order of magnitude. For larger programs with
more complex invariants, we expect the improvements would be even greater.

CHAPTER 2. HEAP DOMAIN 83

2.9 Proofs

2.9.1 Soundness of Sharpening

The following theorems prove the soundness and completeness of the revised sharpening
algorithm. The algorithm is proved complete only in the sense that it returns answers that
are at least as precise as the sharpening algorithms in the previous section based on case
analysis.

We begin by presenting an augmented version of the sharpening algorithm, which we
will shortly prove is equivalent to the original algorithm. The augmented algorithm returns
tuples of the form pv(u : {x, y}) instead of just pv(u); x and y are ∀-quantified variables in
A. This change simplifies the soundness proof.

First we define some auxiliary functions.

function Var(v,A)
〈u, e〉 := A(v)
if e = ∃ then u : ∅ else u : {v}

function Filter′(pv(v1, . . . , vk), A)
if for all i, A(vi) = 〈ui, ∃〉 ⇒ ui a non-summary node
then {pv(Var(v1, A), . . . ,Var(vk, A))} else ∅

function Elim(v, T)
foreach pv(u1 : V1, . . . , uk : Vk) ∈ T , remove v from each Vi

function Repl(x, y, T)
foreach pv(u1 : V1, . . . , uk : Vk) ∈ T , replace x with y in each Vi

function ·∩ (T, T ′)
T ′′ := {pv(u1 : (V1 ∪ V ′1), . . . , uk : (Vk ∪ V ′k)) :

pv(u1 : V1, . . . , uk : Vk) ∈ T ∧ pv(u1 : V ′1 , . . . , uk : V ′k) ∈ T ′}
return T ′′

Next we make a few assumptions about formulas. We assume throughout that all quan-
tifiers use variables with distinct names to avoid scoping problems. We also assume all
formulas are in negated normal form. Rather than writing p(v1, . . . , vn) or ¬p(v1, . . . , vn)
for an atomic literal, we write pv(v1, . . . , vn) where v = 1 means a positive literal and v = 0
means a negative literal. The modified algorithm is as follows.

CHAPTER 2. HEAP DOMAIN 84

ϕ M ′(ϕ, S,A)
pv(v1, . . . , vk) Filter′(pv(v1, . . . , vk), A)

ϕ1 ∧ ϕ2


M ′(ϕ1, S, A) if Jϕ2KS,A 6= 1/2

M ′(ϕ2, S, A) if Jϕ1KS,A 6= 1/2

M ′(ϕ1, S, A) ∪M ′(ϕ2, S, A) otherwise

ϕ1 ∨ ϕ2


M ′(ϕ1, S, A) if Jϕ2KS,A 6= 1/2

M ′(ϕ2, S, A) if Jϕ1KS,A 6= 1/2

M ′(ϕ1, S, A) ·∩ M ′(ϕ2, S, A) otherwise

∀v. ϕ′
⋃
u∈U{Elim(v,M ′(ϕ′, S, A[v → 〈u,∀〉])) : Jϕ′KS,A[v→u] = 1/2}

∃v. ϕ′
⋂
· u∈U{M ′(ϕ′, S, A[v → 〈u,∃〉]) : Jϕ′KS,A[v→u] = 1/2}

TC(s, t;x, y). ϕ′
⋂
· P∈Paths(S,A(s),A(t))

⋃
(a1,a2)∈P

{Repl(x, s,Repl(y, t,M ′(ϕ′, S, A[x→ a1, y → a2]))) :
Jϕ′KS,A[x→a1,y→a2] = 1/2}

First we prove that this algorithm returns the same results as the original algorithm, but
augmented with more information. Specifically, since we want the soundness of M ′ to imply
soundness of M , we need to ensure that if M returns a sharpening, then M ′ will return some
augmentation of it.

Theorem 2 If pv(u1, . . . , uk) ∈ M(ϕ, S,A), then pv(u1 : V1, . . . , uk : Vk) ∈ M ′(ϕ, S,A), for
some Vis. 2

Proof The proof is by induction on the structure of ϕ. Rather than write out each case,
we simply note that Filter′ behaves the same as Filter aside from the addition of the Vi
components. Similarly, Elim and Repl only affect the Vi components of their argument.
And ·∩ is just standard intersection aside from the changes to the Vis. All the induction
cases simply apply the induction hypothesis and then take advantage of these observations.�

Before giving the formal soundness proof, we describe it at a high level. We are given a
sharpening formula ϕ, which may have free variables. Our goal is to connect the abstract and
the concrete world. The abstract world is composed of an abstract state S, an augmented
assignment A from the free variables of ϕ to nodes of S, and a sharpening result pv(u1 :
V1, . . . , uk : Vk) returned by M ′.

The concrete world is composed of a concrete state S] that embeds into S, an assignment
A] to nodes of S], and the guarantee that ϕ holds in S] under A]. We wish to prove that the
actual value of predicate p in S] at the given location is v, thus ensuring that M ′ returned
a sound result.

The crux of the proof is that while the results of M ′ are phrased in terms of abstract
nodes, we need to prove facts about p in the concrete state S]. To solve this problem, we
use the embedding function f that maps nodes of S] to nodes of S. Specifically, if M ′

returns pv(u1 : V1, . . . , uk : Vk), then p should have the value v in S] at any tuple of nodes
〈u′1, . . . , u′k〉 where f(u′i) = ui for all i.

CHAPTER 2. HEAP DOMAIN 85

There is one exception. Namely, if ϕ = R(x), then x is a free variable that is mapped to
a concrete node by A]. When M ′ returns R1(u : V) for ϕ, we are only interested in proving
that R = 1 at the node A](x)—not at every node in S] that f maps to u. Only higher up
in the induction, when x is finally quantified universally, are we concerned with every node
mapping to u. To summarize, we want to prove that p = v in S] at all nodes u′i that map
to ui, except when A] picks out a specific concrete node, in which case we only care about
that one.

To formalize the ideas in the previous paragraph, we need to define an auxiliary function
F , which returns the set of places where we have proved that p = v in S]. As described
above, it picks out the concrete nodes u′i that map to abstract nodes ui and that match the
mapping in A] when one is present.

F (〈u1 : V1, . . . , uk : Vk〉, A]) =

{〈u′1, . . . , u′k〉 : f(u′i) = ui ∧ ∀1 ≤ i ≤ k. ∀v ∈ Vi. A](v) = u′i}

Notice that tracking the Vi variables is necessary in order to know which variable names were
responsible for an M ′ result, which allows us to check A] for a mapping for that variable.

We also define the following notation. Assume A is an augmented assignment of variables
to nodes in some structure S and A] is an assignment from the same variables to nodes in
a concrete structure S] (which embeds into S via f). We say that A] embeds into A if for
every variable v, A(v) = 〈f(A](v)), e〉 where e can be either ∀ or ∃.

Now we can state the main soundness theorem. Aside from the issues mentioned above,
it is a straightforward induction.

Theorem 3 Let ϕ be a formula. Let S be a structure and S] a concrete structure that embeds
into S via f . Let A be an augmented assignment from the free variables of ϕ to S nodes.
Let A] be an assignment, from the free variables of ϕ to S] nodes, which embeds into A.
Assume JϕKS,A = 1/2 and JϕKS],A] = 1. Assume that pv(u1 : V1, . . . , uk : Vk) ∈ M(ϕ, S,A).
Then ι](p)(u′1, . . . , u

′
k) = v for all 〈u′1, . . . , u′k〉 ∈ F (〈u1 : V1, . . . , uk : Vk〉, A]). 2

Proof The proof is by induction on the structure of ϕ.

• Case ϕ = pv(v1, . . . , vk). Let 〈u′1, . . . , u′k〉 ∈ F (〈u1 : V1, . . . , uk : Vk〉, A]). Since we know
that pv(u1 : V1, . . . , uk : Vk) ∈ M(ϕ, S,A), it must be that each ui is either a non-summary
node or else is universally quantified in S. If ui is a non-summary node, then it must be that
A](vi) = u′i, since there is only one possible node that can embed into ui. If ui is a summary
node, then vi must be universally quantified in A, so Vi = {vi}. Therefore, A](vi) = u′i. Now
we know that A](vi) = u′i for all i. From JϕKS],A] = 1, we get that ι](p)(u′1, . . . , u

′
k) = v.

• Case ϕ = ϕ1 ∧ϕ2. The M ′ algorithm has three cases. In the first case, pv(u1 : V1, . . . , uk :
Vk) comes from ϕ1 alone. Also, Jϕ1KS,A = 1/2. And since JϕKS],A] = 1, it must be that
Jϕ1KS],A] = 1 as well. With these facts, we can apply the induction hypothesis to ϕ1 using
the same A and A]. This gives us precisely what we need.

The second case in M is symmetric to the first, so we consider the third case. We
know that pv(u1 : V1, . . . , uk : Vk) comes from either M ′(ϕ1, S, A) or M ′(ϕ2, S, A). Assume

CHAPTER 2. HEAP DOMAIN 86

the first, without loss of generality. Jϕ1KS,A = 1/2, and the other facts from the previous
paragraph still hold, so we can induct again over ϕ1, obtaining the desired result.

• Case ϕ = ϕ1 ∨ ϕ2. Again, M ′ has three cases. We consider the first. In this case,
pv(u1 : V1, . . . , uk : Vk) ∈ M ′(ϕ1, S, A) and Jϕ1KS,A = 1/2. We also know that Jϕ2KS,A = 0
(it cannot be 1/2, and if it were 1, then ϕ would be 1). By the embedding theorem [46],
any formula with a definite value in S has that same value in S]. Thus, Jϕ2KS],A] = 0. And
since JϕKS],A] = 1, it must be that Jϕ1KS],A] = 1. Now we have everything we need to apply
the induction hypothesis to ϕ1 and obtain the desired result.

The second M ′ case is symmetric to the first, so we jump to the third case. It must be
that pv(u1 : V ′1 , . . . , uk : V ′k) ∈ M ′(ϕ1, S, A) and pv(u1 : V ′′1 , . . . , uk : V ′′k) ∈ M ′(ϕ2, S, A),
where Vi = V ′i ∪ V ′′i for each i. We know that JϕiKS,A = 1/2 for i ∈ {1, 2}. From the
assumption that JϕKS],A] = 1 we know that either Jϕ1KS],A] = 1 or Jϕ2KS],A] = 1. Without
loss of generality, assume the first case. We apply the induction hypothesis on ϕ1 using
variables V ′1 , . . . , V

′
k . Now our goal is to prove that

F (〈u1 : (V ′1 ∪ V ′′1), . . . , uk : (V ′k ∪ V ′′k)〉, A]) ⊆ F (〈u1 : V ′1 , . . . , uk : V ′k〉, A]).

Let 〈u′1, . . . , u′k〉 be some tuple in the left-hand set. We already know that f(u′i) = ui for
all i. And since we know for each i that (∀v ∈ (V ′i ∪ V ′′i). A](v) = u′i), it must be that
(∀v ∈ V ′i . A](v) = u′i). Thus, the subset relationship holds and we obtain the desired result.

• Case ϕ = ∀v. ϕ′. Since pv(u1 : V1, . . . , uk : Vk) ∈ M ′(ϕ, S,A), there must be some u
such that pv(u1 : V1, . . . , uk : Vk) ∈ Elim(v,M ′(ϕ′, S, A[v → 〈u,∀〉])). Therefore, pv(u1 :
V ′1 , . . . , uk : V ′k) ∈ M ′(ϕ′, S, A[v → 〈u,∀〉]), where Vi = V ′i − {v} for each i. Additionally,
we know that Jϕ′KS,A[v→u] = 1/2. For each u′ such that f(u′) = u, we can define a new

A]u′ = A][v → u′]. We can extend A′ = A[v → 〈u,∀〉]. And since JϕKS],A] = 1, it must be
that Jϕ′KS],A]

u′
= 1. Then we can apply the induction hypothesis, for each u′ that maps to

u, using ϕ′, with A]u′ , A′, and the V ′i s. To complete this case, we need to show that

F (〈u1 : V1, . . . , uk : Vk〉, A]) ⊆
⋃

u′:f(u′)=u

F (〈u1 : V ′1 , . . . , uk : V ′k〉, A
]
u′).

We have some additional information based on the syntactic restriction that applies to
sharpening formulas. The restriction says that a universally quantified variable can appear
in only one position for a given pv. This implies that there is at most one i such that Vi 6= V ′i ,
and at this i, Vi ∪{v} = V ′i . Now let’s say that 〈u′1, . . . , u′k〉 is in the left-hand F . If Vi = V ′i
for all i, then we can extend A] with [v → u′] for any u′ where f(u′) = u, and we have shown
that 〈u′1, . . . , u′k〉 is in some right-hand F . So then let i be the place where Vi ∪ {v} = V ′i .
In that case we can extend A] with [v → u′i] and again we are done. Note that without the
syntactic restriction, we potentially would have had to extend A](v) to be both u′i and u′j,
for some i and j, and these two values might not be equal.

• Case ϕ = ∃v. ϕ′. We know that JϕKS],A] = 1. Thus, there is some node u′ such that

Jϕ′KS],A][v→u′] = 1. Let A]u′ = A][v → u′] and let A′ = A[v → 〈f(u′),∃〉]. Our intention is

CHAPTER 2. HEAP DOMAIN 87

to use the induction hypothesis over ϕ′ with A]u′ and A′. Since JϕKS,A = 1/2, it must be
that Jϕ′KS,A′ = 1/2—it cannot be 1, since that would make ϕ be 1, and it cannot be zero,
because then ϕ′ would be zero in S] by the embedding theorem. Finally, since we know that
pv(u1 : V1, . . . , uk : Vk) ∈M ′(ϕ, S,A), it must be that pv(u1 : V ′1 , . . . , uk : V ′k) ∈M ′(ϕ′, S, A′),
where V ′i ⊆ Vi for all i. Now we can induct on ϕ′ with A′, A]u′ , and the V ′i s. To complete
the case, we need to show that

F (〈u1 : V1, . . . , uk : Vk〉, A]) ⊆ F (〈u1 : V ′1 , . . . , uk : V ′k〉, A
]
u′).

Choose some 〈u′1, . . . , u′k〉 in the left-hand F . We will show that 〈u′1, . . . , u′k〉 is in F (〈u1 :
V ′1 , . . . , uk : V ′k〉, A

]
u′). We know that V ′i ⊆ Vi for all i. We also know that v is not in any Vi,

since existential variables never appear in these places. By examining the definition of F ,
we obtain the desired result.

• Case ϕ = TC(s, t;x, y). ϕ′. Since JϕKS],A] = 1, there must be a path from A](s) to A](t) in
S]. This path induces a corresponding path in S from A(s) to A(t) (though it may not be a
simple path). Let these paths be P] and P . P is one of the paths in Paths(S,A(s), A(t)). We
know that pv(u1 : V1, . . . , uk : Vk) ∈M ′(ϕ, S,A), so therefore there is some edge (a1, a2) ∈ P
such that pv(u1 : V ′1 , . . . , uk : V ′k) ∈ M ′(ϕ′, S, A[x → a1, y → a2]). The V ′i are such that
V ′i [x 7→ s, y 7→ t] ⊆ Vi (due to Repl).

Let (w1, w2) be the edge that corresponds to (a1, a2) in S]. Let A′ = A[x→ a1, y → a2]
and let (A])′ = A][x→ w1, y → w2]. Then we know that Jϕ′KS,A′ = 1/2 and Jϕ′KS], (A])′ = 1.
Now we can apply the induction hypothesis with ϕ′, A′ and (A])′. The final step is to prove
that

F (〈u1 : V1, . . . , uk : Vk〉, A]) ⊆ F (〈u1 : V ′1 , . . . , uk : V ′k〉, (A])′).

There are now several cases. The first case is that a1 = 〈f(w1), ∃〉 and a2 = 〈f(w2),∃〉.
In this case, neither x nor y occur in the V ′i , meaning that V ′i ⊆ Vi for each i. Thus, the
subset relationship is satisfied.

Now let a1 and a2 be universally quantified. For this to happen, (a1, a2) must be both the
first and the last edge on the path. Therefore A](s) = w1 and A](t) = w2. x and y may occur
in the V ′i sets but that they are replaced with s and t in Vi. If we consider the restrictions
on A] imposed by F , the differences are that on the right side we have (A])′(x) = u′i and on
the left side we have the corresponding A](s) = u′i (as well as similar constraints on y and
t). However, (A])′(x) = w1 by the definition of (A])′. We already know that A](s) = w1, so
the corresponding constraints on either side are equivalent and we are done.

The cases where only one of a1 or a2 is universally quantified are similar to the two
above. �

A corollary of this theorem is that M ′ is sound. In the text below, we write the empty
assignment as ε.

Corollary 1 Let ϕ be a sharpening rule. Let S be a structure, and S] a concrete structure
that embeds into S via f . Assume JϕKS,ε = 1/2. Assume that JϕKS],ε = 1. Assume that

CHAPTER 2. HEAP DOMAIN 88

pv(u1 : V1, . . . , uk : Vk) ∈ M(ϕ, S, ε). Then ι](p)(u′1, . . . , u
′
k) = v for all 〈u′1, . . . , u′k〉 such

that f(u′i) = ui for each i. 2

Proof We simply apply the soundness theorem with A = ε, A] = ε. �

2.9.2 Completeness of Sharpening

In this section we prove a limited completeness result. One limitation of the result is that
it does not hold when the equality predicate occurs in ϕ. Equality makes sharpening much
more difficult because it allows the sharpening formula to constrain the size of the model.
In general, dealing with cardinality is a very difficult problem, one which is not solved by
our sharpening algorithm.

We can see the difficulty caused by equalities in ϕ in the following example. Let ϕ =
(∃n. ¬A(n))∧ (∀n, n′. A(n′)⇒ n = n′). Then consider the structure It is safe to sharpen A
to zero here, but algorithm M will not discover this fact.

Now for the proof. The overall goal is to prove that if pv(u1, . . . , uk) 6∈ M(ϕ, S,A),
then there is some structure S ′ that embeds into S where p does not equal v and where ϕ
holds. More precisely, we show that there is an assignment A′ that embeds into A and a
set of concrete nodes u′1, . . . , u

′
k that embed into u1, . . . , uk where ι′(p)(u′1, . . . , u

′
k) = ¬v and

JϕKS′,A′ 6= 0.
Ideally, we would like S ′ to be a concrete structure (meaning no 1/2 predicate values)

and we would like to show that JϕKS′,A′ = 1. However, this is a much more difficult problem,
since it requires us to determine if the model S is satisfiable under the constraint ϕ. Since ϕ
is an arbitrary formula in first order logic with transitive closure, this problem is undecidable.
Instead, we allow S ′ to be an abstract structure—one that itself may be unsatisfiable as well.

A simple way to explain our completeness result is as follows: “If some sharpening result
pv is not returned by M , then by materializing some nodes in S and changing some predicate
values from 1/2 to 1 we can obtain a structure S ′ where pv is violated and where ϕ is not
falsified.” This is a much weaker result, but it is still quite useful for understanding whether
M will generate a given sharpening.

To make the proof work, we need to strengthen the induction hypothesis. Instead of
proving that there exist some S ′ and A′ for a given S and A, we prove that all S ′ and A′ of
a particular form violate pv while still satisfying ϕ. After the theorem we prove a corollary
that some such S ′ is guaranteed to exist.

Theorem 4 Let S be a structure and let ϕ be a formula whose free variables are mapped
to nodes of S by A. Assume there are no occurrences of equality in ϕ. Let JϕKS,A = 1/2.
Let pv(u1, . . . , uk) 6∈ M(ϕ, S,A), where p is not the equality predicate. Then let S ′ be any
structure and A′ be any assignment that satisfy the following.

1. S ′ embeds into S via some embedding function f .

2. A′ embeds into A via f .

CHAPTER 2. HEAP DOMAIN 89

3. There are u′1, . . . , u
′
k such that each u′i satisfies f(u′i) = ui.

4. ι′(p)(u′1, . . . , u
′
k) = ¬v (where ι′ defines the predicate values for S ′).

5. For any other 〈u′′1, . . . , u′′k〉 6= 〈u′1, . . . , u′k〉, ι′(p)(u′′1, . . . , u′′k) = ι(p)(f(u′′1), . . . , f(u′′k)).

6. For any predicate q 6= p, ι′(q)(u′′1, . . . , u
′′
k) = ι(q)(f(u′′1), . . . , f(u′′k)) (if q is not the

equality predicate).

7. For every ui that is a summary node, there is some usi 6= u′i where f(usi) = ui.

8. There is no v, i so that A(v) = 〈ui,∃〉, where ui is a summary node and A′(v) = u′i.

Then JϕKS′,A′ 6= 0. 2

Proof The proof is by induction over the structure of ϕ.

• Case ϕ = qv
′
(v1, . . . , vk). If q 6= p, then JϕKS′,A′ = JϕKS,A = 1/2 6= 0. So assume q = p.

In the case where there is some i so that A′(vi) 6= u′i, then JϕKS′,A′ = JϕKS,A = 1/2 6= 0. So
consider now the case where, for all i, A′(vi) = u′i. If v′ 6= v, then JϕKS′,A′ = 1 because (by the
assumptions above) ι′(p)(u′1, . . . , u

′
k) = ¬v = v′. If v′ = v, then consider the following. Since

pv(u1, . . . , uk) 6∈M(ϕ, S,A), it must be that some ui is a summary node and A(vi) = 〈ui,∃〉.
However, this possibility is contradicted by the assumption on A and A′.

• Case ϕ = ϕ1 ∧ϕ2. We consider the first case in M , where Jϕ2KS,A = 1. By the embedding
theorem, Jϕ2KS′,A′ = 1. We know that pv(u1, . . . , uk) 6∈M(ϕ1, S, A), so we can induct on ϕ1

to get Jϕ1KS′,A′ 6= 0. Thus, Jϕ1 ∧ ϕ2KS′,A′ 6= 0.
The second M case is symmetric to the first, so consider the third case. JϕiKS,A = 1/2

for i ∈ {1, 2}. Also, pv(u1, . . . , uk) 6∈ M(ϕi, S, A) for i ∈ {1, 2}. Thus, we can apply
the induction hypothesis to both ϕ1 and ϕ2 to obtain JϕiKS′,A′ 6= 0 for i ∈ {1, 2}. Thus,
JϕKS′,A′ 6= 0.

• Case ϕ = ϕ1 ∨ϕ2. We again have three cases. In the first, Jϕ2KS,A = 0 and Jϕ1KS,A = 1/2.
We also know that pv(u1, . . . , uk) 6∈M(ϕ1, S, A), so we can use the induction hypothesis on
ϕ1. This tells us that Jϕ1KS′,A′ 6= 0, which means that JϕKS′,A′ 6= 0.

The second case is symmetric to the first. In the third case, we know that either
pv(u1, . . . , uk) 6∈ M(ϕ1, S, A) or pv(u1, . . . , uk) 6∈ M(ϕ2, S, A) (or possibly both), so assume
pv(u1, . . . , uk) 6∈M(ϕi, S, A). We use the induction hypothesis on ϕi to obtain JϕiKS′,A′ 6= 0,
which tells us that JϕKS′,A′ 6= 0.

• Case ϕ = ∀v. ϕ′. The goal is to prove that Jϕ′KS′,A′[v→u′] 6= 0 for all u′ in S ′. Since
JϕKS,A = 1/2, we know that ϕ′ is either 1/2 or 1 everywhere in S. So if u′ is a place where ϕ′ is
1 at f(u′), then the embedding theorem does the work for us. On the other hand, if u′ is such
that ϕ′ is 1/2 at f(u′), then we know that pv(u1, . . . , uk) 6∈M(ϕ′, S, A[v → 〈f(u′), ∀〉]). Thus,
we can apply the induction hypothesis there with A[v → 〈f(u′),∀〉] and with A′[v → u′],
which gives Jϕ′KS′,A′[v→u′] 6= 0. Combining these facts together, we get JϕKS′,A′ 6= 0.

CHAPTER 2. HEAP DOMAIN 90

• Case ϕ = ∃v. ϕ′. There is some u where Jϕ′KS,A[v→u] = 1/2 and where pv(u1, . . . , uk) 6∈
M(ϕ′, S, A[v → 〈f(u′),∃〉]). Let u′ be some node such that f(u′) = u. If u′ = u′i for some
i, and u is a summary node, then pick u′ = usi instead. Apply the induction hypothesis on
ϕ′ with A[v → 〈u,∃〉] and A′[v → u′]. It is valid to do this, since we know that if u is a
summary node then u′ 6= u′i for any i, as required by the induction hypothesis. This gives
Jϕ′KS′,A′[v→u′] 6= 0, which implies the result we desire.

• Case ϕ = TC(s, t;x, y). ϕ′. We know that there is some path P in S from A(s) to A(t).
Our goal is to find a path P ′ in S ′ from A′(s) to A′(t) such that ϕ′ is non-zero along all the
edges of P ′. We select P ′ as follows. Each edge corresponds to an edge in P . If there is a
P edge from u to w, then we select a u′ and w′ in S ′ as follows and P ′ has an edge from
u′ to w′. For the first edge, u = A(s) and we select u′ = A′(s). Similarly, for the last edge,
w = A(t) and we choose w′ = A′(t). For all the intermediate nodes, we select any u′ such
that f(u′) = u, except that if u = ui for some i and u is a summary node then we choose
u = usi . We use the same method for selecting w.

Now consider each edge in P . Let it be from (a1, a2), where a1 = 〈u,Q1〉 and a2 = 〈w,Q2〉.
If Jϕ′KS,A[x→u,y→w] = 1, then we know that Jϕ′KS′,A′[x→u′,y→w′] = 1 by the embedding theorem.
If Jϕ′KS,A[x→u,y→w] = 1/2, then we use induction on ϕ′, with the assignments A[x→ a1, y →
a2] and A′[x→ u′, y → w′]. The induction shows that Jϕ′KS′,A′[x→u′,y→w′] 6= 0, as desired.

The induction is safe according to assumption 8 above because we have chosen the
intermediate nodes in the same way as in the previous case of existential quantification. At
the endpoints, we are also guaranteed to be safe because the given condition is assumed on
s and t, so in the induction it also holds for x and y. �

Corollary 2 Let S be a structure and let ϕ be a sharpening rule (a sentence). Assume
there are no occurrences of equality in ϕ. Let JϕKS,ε = 1/2. Let pv(u1, . . . , uk) 6∈M(ϕ, S, ε),
where p is not the equality predicate. Assume that ι(p)(u1, . . . , uk) = 1/2. Then there exists
a structure S ′ that embeds into S via f such that JϕKS′,ε 6= 0. 2

Proof We apply the completeness theorem above with A = A′ = ε. We need to find an
S ′ that satisfies the conditions of the proof. First we consider the nodes u1, . . . , uk. For
each one that is a summary node, we materialize it into a summary node usi and a concrete
node u′i. The predicate values for these nodes are copied from those over ui. If ui is not
a summary node, then we let u′i = ui. The predicate values are unchanged except that we
set ι′(p)(u′1, . . . , u

′
k) to be ¬v. (Note that the equality predicate will also differ because of

materialization.) It should now be easy to check that this S ′ satisfies the conditions of the
completeness theorem. �

Note that we can prove a slightly more restricted theorem in the case where the p in
p1(u, u) is the equality predicate. We require that the only changes between S and S ′ be
a single materialization of the node u. Proving completeness when ϕ is allowed to contain
equality is more difficult. In the case where ϕ contains only negative occurrences of equality,
the proof goes through essentially unchanged. When ϕ contains positive equality but no

CHAPTER 2. HEAP DOMAIN 91

existential quantification, we can use an S ′ where no materialization has taken place to show
JϕKS′,A′ 6= 0. Finding a more general treatment of equality is a subject for future work.

92

Chapter 3

Combination Domain

The previous chapter described our heap domain based on TVLA. Unfortunately, this
domain is not capable of reasoning about integers at all. We could augment the heap domain
to support integer reasoning, but in this chapter we choose a more general approach. We
describe a framework where two arbitrary domains can be combined. This way, our heap
domain can be combined with any one of the many existing integer domains (intervals,
difference constraints, octagon, polyhedra).

Techniques for combining domains have appeared in the past. The novel aspect of our
technique is that it deals with quantification. Quantification is particularly important when
reasoning about the heap, since most invariants of interest are quantified over all elements
of a data structure. Another important property of our technique is that the domains are
treated symmetrically. Most techniques for combining heap and integer reasoning treat the
integer reasoning as subservient. We treat both domains equally, which makes our framework
more powerful.

The introduction of this chapter presents some examples that show the power of our
combination framework:

• We show how to maintain a correlation between the size of a data structure (the
number of elements it contains) and an integer variable.

• We show how the integer domain exposes information about array index ranges so
that the heap domain can reason about arrays and quantify over array elements.

• We show how the heap domain exposes information about its nodes so that the integer
domain can reason about properties of heap objects and the values of their fields.

• We show how the heap and integer domains can expose instrumentation predicate
information to each other so that complex invariants involving a mixture of heap and
integer properties are provable.

• We show how the integer domain can define “instrumentation functions” that are
defined as the cardinality of some set. This allows the combined domain to reason

CHAPTER 3. COMBINATION DOMAIN 93

about complex invariants of manually reference-counted data structures.

In later sections, we explain the transfer functions for the domain and prove that it is
sound. We also describe some requirements that we demand of the domains being combined
beyond what is needed for abstract interpretation. Without these requirements, we would
be unable to handle quantification as precisely.

3.1 Introduction

The combined domain is built on top of two other domains, called the base domains.
An abstract element from the combined domain is an ordered pair of abstract elements,
〈e1, e2〉, from the base domains. In our examples, e1 is a heap domain element and e2 is
an integer domain element. However, we make some modifications to the way disjunctions
are handled. Previously, we allowed disjunctions to appear in heap domain elements. A
heap domain element was defined as a disjunction of three-valued structures. If we were to
continue to use this scheme, then a combined domain element would look as follows.

E = 〈S1 ∨ S2 ∨ · · · ∨ Sn, Z〉

Each Si is a three-valued structure and Z is an integer domain element.
The problem with this structure is that all the Sis must share a single integer domain

element. We would prefer to move disjunctions higher so that a domain element has the
following form.

E = 〈S1, Z1〉 ∨ · · · ∨ 〈Sn, Zn〉
Now each Si has its own integer element Zi. This is potentially more precise.

To make this work, we remove disjunctions from the heap domain so that a heap domain
element is a single three-valued structure. Then a combined domain element has the form
〈S,Z〉. Disjunctions are still necessary, of course. We wrap elements of the combined domain
in a special disjunctive domain, as shown in this diagram.

Disjunctive Domain

Combined Domain

Heap Domain Integer Domain

The disjunctive domain uses the same heuristics to merge disjuncts as we did in the heap
domain (based on canonical names of nodes in the heap domain element).

Having presented the structure of a combined domain element, we now show some ex-
amples of how it works. Later sections will flesh out the details. All of these examples are
analyzed using the disjunctive domain applied to the combined heap/integer domain.

CHAPTER 3. COMBINATION DOMAIN 94

3.1.1 Cardinality Invariants

In this example we would like to infer that an integer variable n holds the size of a linked
list. Neither a heap analysis nor an integer analysis would be able to infer this invariant by
itself.

1 type ListNode;
2 global next[ListNode]:ListNode;
3

4 procedure test()
5 n:int;
6 list, node:ListNode;
7 {
8 n := 0;
9 list := null;

10 while (*) {
11 node := new ListNode;
12 next[node] := list;
13 list := node;
14 label loop_mid;
15 n := n+1;
16 }
17 }

When we analyze the program above, we split up the variables between the two domains.
The integer domain is responsible for a variable x if its signature is “x[t1, . . . , tn] : int”.
Otherwise the heap domain is responsible. In the example, the integer domain manages the
n variable and the heap domain manages the next, list, and node maps. Assignments to a
given variable are handled by the domain responsible for that variable. So the assignment
n := 0 is handled by the integer domain. That means that, given a combined domain
element 〈e1, e2〉, the integer domain updates the e2 component of the domain element using
its transfer function for assignments.

Assume for now that no communication takes place between domains. Consider the
domain elements that are inferred at the program point labeled loop mid (line 14). In the
first loop iteration, n = 0 and there is only one node, pointed to by node. The second
iteration yields the same state as the previous one as well as a state where n = 1 and node
points to a two-element list. We depict this as follows.

E1 E2

n1

Node,List
z

List,Null
n1

Node,List
n2 z

Null

n = 0 n = 1

Up until now we have managed to preserve, via the disjunctive abstraction, the correlation
between n and the size of the list. Unfortunately, we are now forced to join E1 and E2

CHAPTER 3. COMBINATION DOMAIN 95

because the canonical names of nodes in E1 are a subset of canonical names in E2. The join
is done component-wise on the combined domain element: the heap elements are joined via
the heap domain’s join operation and the same for the integer domain elements. After the
join, we get the following domain element.

E1 t E2

n1

Node,List
n2 z

Null

0 ≤ n ≤ 1

Now we have lost the correlation between n and the list size.
To solve this problem, we share some information between the heap domain and the

integer domain. For each node in the heap domain, we create a variable in the integer
domain to denote the number of concrete nodes it represents. We call this a cardinality
variables. For a node u, the variable is written #u. This variable is always equal to 1 for
singleton nodes and 0 for nodes where ρ = 0.

To see how cardinality variables are useful, consider the same domain elements, now
augmented with cardinality variables.

E1 E2

n1

Node,List
z

Null
n1

Node,List
n2 z

Null

n = 0 ∧#n1 = #z = 1 n = 1 ∧#n1 = #n2 = #z = 1

Recall how the join works. Since the set of node names in E1 is a subset of the node
names in E2, we add nodes to E1 to make up the difference. These nodes, shown in black,
are added with ρ = 0.

E1 E2

n1

Node,List
n2 z

Null
n1

Node,List
n2 z

Null

n = 0 ∧#n1 = #z = 1 ∧#n2 = 0 n = 1 ∧#n1 = #n2 = #z = 1

Now when we join these two structures, we get the following result.

E
n1

Node,List
n2 z

Null

0 ≤ n ≤ 1 ∧#n1 = #z = 1 ∧#n2 = n

The integer domain now preserves a correlation between n and #n2, which is precisely what
we need to prove our desired invariant! We need to perform more iterations to complete the
analysis; however, we continually are able to preserve our invariant in the integer domain
using cardinality variables.

CHAPTER 3. COMBINATION DOMAIN 96

Classes. The foregoing trick of introducing cardinality variables may have seemed fairly
specific to the heap/integer combination. However, we can generalize the trick into a useful
technique for arbitrary domains. To do so, we define the concept of a class. A class is
a collection of individuals from some type (such as int or ListNode). Each domain is
responsible for collecting all the individuals it manages into a finite number of classes. This
grouping can change over time as individuals are moved between classes or as classes come
into and out of existence.

The heap domain creates one class for every node in a structure. The members of this
class are the set of concrete objects abstracted by the node, so the class for a singleton node
has only one member. We give names to classes and, like in the heap domain, we use bold
text to denote summary classes (those with an arbitrary size). The integer domain is also
required to group its individuals, the integers, into classes. In this example, there is no need
for integer classes, so we lump them all the integers into a single class called Z.

Whenever a base domain changes the membership of a class (by moving an individual
from one class to another, say) it must inform the combined domain. The combined domain,
in turn, informs the other base domain of the change. This is called repartitioning. Domains
also share information about the size and membership of their classes. They may declare
that a class is empty, a singleton, or that it has one or more elements. They also may declare
that two classes are disjoint, or that one class is a subset of another.

Cardinality variables themselves are not a feature of the combined domain. They are
maintained entirely by the integer domain. When the integer domain is informed of a new,
necessarily empty, class, it generates a new cardinality variable equal to zero. When two
classes are merged, the size of the new class is the sum of the sizes of the originals. When a
class is split in two, we maintain the constraint that the sizes of the new classes sum to the
old class size. Thus, every repartitioning causes the integer domain to update the cardinality
variables. The next chapter provides more detail about how this works.

3.1.2 Class Sharing

We now consider an example with arrays.

1 type T;
2 global table[int]:T;
3

4 procedure init(n:int)
5 i:int;
6 {
7 i := 0;
8 while (i < n) {
9 label loop_inv;

10 table[i] := null;
11 i := i+1;

CHAPTER 3. COMBINATION DOMAIN 97

12 }
13 }

This code initializes an array of pointers to null. Our goal is to ensure that when the loop
terminates all the array entries are null. What makes it a challenge is that while the table
map is managed by the heap domain, its key is an integer. How can the heap domain reason
about the values stored in table when it knows nothing about integers?

The solution is to use integer classes. In the previous example, the integer domain
lumped every integer into a single class Z. In this example, we split up the integers more
precisely. We maintain five classes.

I� = {x : x < 0}
I< = {x : 0 ≤ x < i}
Ii = {i}

I> = {x : i < x < n}
I� = {x : n ≤ x}

Just as we shared the heap classes with the integer domain, we share these classes with the
heap domain. Every time the grouping changes, such as in the statement i := i + 1, we
notify the heap domain of the change.

The heap domain stores these integer classes as nodes in its three-valued structure, as if
they were no different than nodes for heap objects. This permits it to treat the table map
as a predicate, as it does for all the maps it manages. If, for example, we know that table[i]
points to a node n, then we record Table(Ii, n) = 1.

Returning to the example, we infer the following invariant at the program point labeled
loop inv. The edges show the values of the Table predicate.

I� I< Ii I> I�

Null Undef

We have introduced a new node in this diagram, labeled with the Undef predicate. When
a value has not been assigned to some entry in a map, the heap node assigns it the special
value undef . This is to avoid the complexity of reasoning about partial functions.

The crucial feature of the invariant is that table[I<] is known to be null. When the loop
terminates, i = n and so all the desired array entries have been initialized to null.

3.1.3 Numerical Fields

The previous example illustrated how integer classes can be useful to reason about a map
managed by the heap domain. In this example, we will use heap classes to reason about a
map managed by the integer domain.

CHAPTER 3. COMBINATION DOMAIN 98

1 type ListNode;
2 global data[ListNode]:int;
3 global next[ListNode]:ListNode;
4

5 procedure test()
6 node, list:T;
7 {
8 list := null;
9 while (*) {

10 node := new ListNode;
11 data[node] := 0;
12 next[node] := list;
13 list := node;
14 label loop_end;
15 }
16 return list;
17 }

Suppose we want to verify that the data field of every list element generated here is zero.
The problem here is similar to the one with table before: while the data field is managed by
the integer domain, its argument (of type ListNode) is managed by the heap domain. The
solution is the same. We have already explained how the integer domain must be aware of
heap domain classes. Besides maintaining cardinality variables about them, it uses them to
track the values of maps as well.

Here is a domain element that occurs at the program point labeled loop end. (We have
elided cardinality variables.)

E
n1

Node,List
n2 z

Null

data[n1] = 0 ∧ data[n2] = 0

The integer domain is able to track facts about the data field in terms of the heap domain
classes. This is how we infer the data = 0 invariant.

There is some subtlety in the meaning of the fact data[n2] = 0. It is a quantified fact,
but the quantifiers are implicit. Writing them out,

∀n ∈ n2. data[n] = 0.

Every class that appears inside such a fact is implicitly quantified. For example, consider
the fact a[C] = b[C]. Intuitively, we might expect it to mean that every node abstracted
by C has equal a and b fields. In fact, it means something much stronger:

∀n ∈ C. ∀n′ ∈ C. a[n] = b[n′].

CHAPTER 3. COMBINATION DOMAIN 99

Since separate quantified variables are used, it means that every node abstracted by C has
an a field equal to the b field of any other node abstracted by C.

Another tricky aspect here is that the heap domain may rearrange its classes, possibly
affecting facts in the integer domain. Suppose that the integer domain is notified that the
classes n1 and n2 have been merged into a class n. In this case, it is easy to see that we
can replace the data facts above with the new fact data[n] = 0. However, if we had started
with the facts data[n1] = 10 and data[n2] = 20, then the merge would force us to replace
these with the weaker fact 10 ≤ data[n] ≤ 20. We describe later how this works.

3.1.4 Predicate Sharing

Sometimes it is necessary to share more than class information between the domains.
Consider these definitions.

1 type T;
2 global table[int]:T, index[T]:int;

The intention here is that table is an array of pointers to T objects. Each such T object
has an index field that holds its index in the array. Based on their signatures, the table
array is managed by the heap domain and the index field is managed by the integer domain.
We want to preserve the invariant that whenever table[j] = e, index[e] = j. We use the
following code as an example.

1 procedure add(i:int):T
2 obj:T;
3 {
4 obj := new T;
5 table[i] := obj;
6 index[obj] := i;
7 return obj;
8 }

It should be clear that this code preserves the given invariant. We partition the integers
in the same way as the previous example. For simplicity, we omit the I� and I� classes
from diagrams. For now, let us assume that all entries in table are null except for the one
at i. If we analyze the function, we end up with the following state, which implies the given
invariant.

I< Ii I>

n
Obj Null

index[n] = i

CHAPTER 3. COMBINATION DOMAIN 100

Unfortunately, the assumption that all entries of table are initially null is not true in
general. Usually, the other entries will point to objects where the invariant is satisfied. We
can try to use summary nodes to represent this initial situation.

I< Ii I>

n
Null

?

However, it is not clear what fact to put in the integer domain. We would like to constrain
index[n], but the value it must take on is different for each concrete node abstracted by
n. There simply is no way to represent this invariant without improvements to the integer
domain.

Integer domain predicates. In TVLA, the solution to such problems is to introduce
instrumentation predicates that preserve extra information about summary nodes. We use
the same technique here, but the predicate is an integer predicate. Predicates in the integer
domain have a much simpler syntax than heap domain predicates, which use first-order logic
with transitive closure. Integer predicates are simple atomic formulas of the following form:

formula ::= term ≤ term | term = term | term ≥ term

term ::= constant | x | map[x1, . . . , xn] | #x

Each of the x values used here must be an argument to the given predicate. For example,
the following is a valid predicate definition.

HasIndex(e:T, j :int) := index[e] = j

This defines a binary predicate that links an object to an integer if the object’s index field
equals the integer. The following diagram shows the same initial state as before, but now
the edges represent the HasIndex predicate.

I< Ii I>

n
Null

The integer domain is responsible for updating the value of this predicate whenever an
assignment takes place. We can also implement an analog of the sharpening operation for
integer predicates. The big leap is to expose this predicate to the heap domain. That is, we

CHAPTER 3. COMBINATION DOMAIN 101

tell the heap domain where the HasIndex predicate holds. Every time an assignment takes
place, the heap domain is informed of any changes to HasIndex.

Once the heap domain is aware of the HasIndex predicate, it can treat it like any other
predicate. In particular, it can define new predicates of its own that use HasIndex.

Inv(j :int) := ∀e:T. Table(j, e)⇒ (HasIndex(e, j) ∨ Null(e))

The following diagram enforces our invariant (that table[j] = e implies index[e] = j)
using the Inv predicate. The Table and HasIndex predicates are the same as what has already
been shown; we omit them.

I<

Inv
Ii

Inv

I>

Inv

n
Null

All that matters here is that the I< and I> classes satisfy Inv. Consequently, if table[j] = e
for any j in I< or I>, then either HasIndex(e, j) or Null(e). If table[j] is null, then we don’t
care about its index. Otherwise, HasIndex(e, j) tells us that index[e] = j as desired.

Notice that Ii satisfies Inv. This is because we assumed that table[i] is initially null.
Now we show how to analyze the example code using the HasIndex and Inv predicates.

After the allocation of obj, we get the following state. The edges show the Table predicate.

I<

Inv
Ii

Inv

I>

Inv

n n′
Obj

z
Null

This next diagram shows the HasIndex predicate for the same state. Notice that index[obj]
is unknown here.

I<

Inv
Ii

Inv

I>

Inv

n n′
Obj

z
Null

When we analyze the update to table, we swing the Table edge from null to obj. In
doing so, we potentially violate Inv(Ii) because HasIndex(n′, Ii) is not known to be true. No
communication with the integer domain is needed here. We get the following state, where
edges show the Table predicate.

CHAPTER 3. COMBINATION DOMAIN 102

I<

Inv
Ii

Inv?

I>

Inv

n n′
Obj

z
Null

Next, we analyze the index[obj] := i assignment, which is handled by the integer domain.
The integer domain recognizes that HasIndex(n′, Ii) must hold after the assignment; it sends
this fact to the heap domain. The heap domain realizes that Inv now holds at Ii and we get
the following result (we show the HasIndex edges this time).

I<

Inv
Ii

Inv

I>

Inv

n n′
Obj

z
Null

Since Inv holds at all the integer nodes, we have established that our invariant is preserved
by the procedure. It is important to realize that establishing this invariant required us to
share class information and share predicate information throughout the analysis.

3.1.5 Cardinality Functions

Consider the following code, which implements manual reference counting.

1 type T, C;
2 global rc[T]:int, contains[C]:T;
3

4 procedure incref(c:C, obj:T)
5 {
6 assert(contains[c] = null);
7 rc[obj] := rc[obj] + 1;
8 contains[c] := obj;
9 }

10

11 procedure decref(c:C)
12 obj:T;
13 {
14 obj := contains[c];
15 contains[c] := null;
16 rc[obj] := rc[obj]-1;
17 if (rc[obj] = 0)
18 delete obj;
19 }

CHAPTER 3. COMBINATION DOMAIN 103

We assume there is a set of objects of type T and they are pointed to by objects of type C

(via the contains map). Many C objects can point to the same T object. The number of
incoming pointers to a T object is stored in its rc field (its “reference count”). The incref

procedure adds a contains pointer to a T object and increments its reference count. The
decref procedure nulls out a contains pointer; if the T object has no more incoming pointers,
it is deleted for good.

Our goal is to prove that, when the T object is deleted, it has no incoming contains
pointers that might later be illegally dereferenced. To prove this, we prove a stronger
invariant: that the number of incoming contains pointers to a T object o is equal to rc[o].
Since the deletion only happens only if rc[obj] = 0, this stronger fact implies the goal.

For a single T object, we can use cardinality variables to imply the stronger invariant.
The edges show the contains pointer.

C1

C

C2

T

#C1 = rc[C2]

However, there typically will be an arbitrary number of T objects, forcing us to merge them
into a summary node.

C1

C

C2

T

?

Now there is no clear way to describe the invariant.
To solve the problem, we introduce a new feature to the integer domain: cardinality

functions. A cardinality function might be defined as follows. (We assume that Contains is
a predicate defined by the heap domain to model the contains map.)

RealRC [n:T] := |{c:C : Contains(c, n)}|
We emphasize that this feature does not require any special support from the combined
domain. It can be implemented entirely within the integer domain. The predicate Contains
is defined by the heap domain but shared with the integer domain (just as HasIndex was
shared with the heap domain in the last section).

Once we have this function, we define an integer domain predicate.

RCCorrect(n:T) := rc[n] = RealRC [n]

To enforce the invariant, we declare that RCCorrect holds of all T nodes.

C1

C

C2

T
RCCorrect

true

CHAPTER 3. COMBINATION DOMAIN 104

Verifying increment. We assume the following configuration on entering the function.
It resembles the state above, except that the c and obj objects are in their own classes. The
c object has a contains pointer to null.

C1

C

C2

T
RCCorrect

C ′1

C
C

C ′2

T
RCCorrect,Obj

T
Null

RealRC [C ′2] = rc[C ′2]

When incref increments the rc field, the numerical domain handles it. It infers that
RealRC [C ′2] = rc[C ′2]− 1. It also sets RCCorrect(C ′2) = 0 and informs the heap domain.

The heap domain handles the update to the contains pointer. It swings the pointer
over to the C ′2 object and informs the numerical domain that Contains(C ′1, C

′
2) = 1. This

causes the numerical domain to update its RealRC function at C ′2, increasing it by one.
Consequently, RealRC [C ′2] = rc[C ′2] is reestablished and so RCCorrect(C ′2) is restored. The
heap domain is informed, but it performs no further action.

The verification of decref is handled similarly.

3.2 Pre-Order and Join

The previous section explained the combined domain at a very high level by example.
The next few sections of this chapter present the implementation details of the combined
domain. The next chapter explains how the base domains implement the features needed
by the examples (particularly how the integer domains handles cardinality reasoning).

In this section, we present the partial order and join operations for the combined do-
main. We begin with an example to show the challenges inherent in defining an ordering on
combined domain elements. Let there be an integer field defined called data. In the integer
domain we define P(x) := data[x] ≥ 0. Consider the elements below.

EA EB

C1

X,P?
C2

P
C3

X?,P

#C2 = n ∧ data[C1] = 1 #C3 > n

The heap portion of EA is called EA
1 and the integer portion is called EA

2 . We use similar
notation for EB.

CHAPTER 3. COMBINATION DOMAIN 105

We are interested in knowing whether EA v EB in the partial order of the combined
domain. Stated another way, we want to know if every concrete state abstracted by EA is
also abstracted by EB. Stated yet another way, does EA, when interpreted as a constraint
on states, imply EB?

Consider the meanings of the elements. The list in EA has length n+1; every element has
a non-negative data. In EB, the list length must be greater than n and the data fields must
be non-negative. So EB is weaker than EA, meaning that we should be able to establish
EA v EB. The next few steps show how to do so.

Ê Saturate shared facts in EA. Proving the v relationship is difficult because the
constraints are split across the heap and integer domains in different ways in EA and EB.
In EB, the data constraint is stored entirely in the heap domain via P. In EA, it is partially
in the heap domain (via P(C2)) and partially in the integer domain (via data[C1] = 1).
To remedy the problem, we share facts about P between EA

1 and EA
2 . How this works is

described later in the section. In this case, the heap domain informs the integer domain
that P(C2) = 1, so the integer domain recognizes that data[C2] ≥ 0. The integer domain
knows data[C1] = 1, which implies P(C1) = 1, so it informs the heap domain of this fact.
The heap domain also informs the integer domain that #C1 = 1, although that fact is not
relevant to the discussion.

EA EB

C1

X,P
C2

P
C3

X?,P

#C1 = 1 ∧#C2 = n ∧ data[C1] = 1 ∧ data[C2] ≥ 0 #C3 > n

Ë Repartition classes. Next, we notice that EA and EB use different class names for some
of the same individuals. More precisely, C1 ∪ C2 = C3. To solve the problem, we rewrite
EA to use the same class names as EB. Note that both EA

1 and EA
2 must be re-written, since

they both refer to C1 and C2. In this case, the rewriting process merges C1 and C2 in EA.
Here is the result.

EA EB

C3

X?,P
C3

X?,P

#C3 = n + 1 ∧ data[C3] ≥ 0 #C3 > n

Ì Apply each subdomain’s partial order. We expect each subdomain Di to supply its
own partial order, which is invoked as EA

i vi EB
i to test if it holds. After saturation and

repartitioning, it should be clear that EA
1 v1 E

B
1 (since they are identical) and EA

2 v2 E
B
2

(since EA
2 is stronger). Thus, the relationship EA v EB holds in the combined domain.

CHAPTER 3. COMBINATION DOMAIN 106

This example gives a rough overview of how our partial order is defined. Now we describe
each of these steps in depth.

Saturation. We call the process of sharing facts between domains saturation. Saturation
is a semantic reduction (defined in [14]) as it allows the analysis to convert an abstract
element into a more precise one as long as they both represent the same set of states.
Saturation propagates shared facts between the domains until a fixed point is reached.

The shared information passed between domains must be expressed in a language that
both domains understand. We describe the common language using a simple grammar.

F ::= ∀x ∈ C. F | ∃x ∈ C. F | P(x, y, . . .) | ¬P(x, y, . . .) | t : [C1, C2, . . . , Cn] (3.1)

C is a class from either domain. P is a shared predicate from either domain. It may be the
equality predicate. All variables appearing in P must be bound by quantifiers.

The equality predicate = is interpreted by both domains. We use it to express cardinality
information about classes. For example, C = ∅ is written as ∀n ∈ C. n 6= n. To say |C| ≤ 1,
we write ∀n, n′ ∈ C. n = n′.

The special form t : [C1, C2, . . . , Cn] expresses a few constraints simultaneously. First,
it says that the classes Ci are all mutually disjoint. Second, it tells us that every individual
of type t belongs to one of the classes Ci. We call the set {C1, . . . , Cn} a partitioning. A
domain may expose more than one partitioning of its individuals. Classes from different
partitionings may overlap in arbitrary ways. It would be possible to extend the language to
allow for even more expressive ways of comparing classes, but we have found partitionings
to be sufficient for our purposes.

To permit facts of this form to be exchanged, each domain Di is required to expose an
Assume i function and a Consequences i function. Assume i takes a domain element E and a
fact f of the form above and returns an element that approximates E ∧ f . Consequences i
takes a domain element and returns all the set of facts of the form above that it implies.

The pseudocode in Figure 3.1 shows how facts are propagated. They are accumulated
via Consequences i and then passed to the domains with Assume i. In the example above, at
step Ê, the fact ∀n ∈ C1. P(n) was returned by Consequences2(EA

2) and then propagated to
EA

1 by Assume1. Because the number of predicates and classes in any element is bounded,
this process is guaranteed to terminate.

Repartitioning. Classes are the mechanism by which a domain describes to the other
domain its individuals and the predicates that hold over them. They allow a domain to
finitely describe properties of an unbounded number of individuals. Class names themselves
are arbitrary and ephemeral, like variable names in the lambda calculus. Repartitioning
rewrites class names and may also change how individuals are grouped into classes. This
permits the partial order check to normalize the class names between its two arguments.

Step Ë in the example above was actually made up of two phases. The first phase
matched up the classes C1 and C2 with C3. The second phase used this matching to rewrite

CHAPTER 3. COMBINATION DOMAIN 107

function Saturate(E1, E2):
F := ∅
repeat:

F0 := F
F := F ∪ Consequences1(E1) ∪ Consequences2(E2)
E1 := Assume1(E1, F)
E2 := Assume2(E2, F)

until F0 = F
return 〈E1, E2〉

Figure 3.1: Implementation of combined domain saturation.

both EA
1 and EA

2 . Both phases are handled entirely by the subdomains. However, the
combined domain defines the interface through which they communicate.

Each domain exposes a function MatchClasses i that matches the classes of EA
i to EB

i .
The heap domain matches two classes if they have the same canonical name; we describe
how the integer domain handles this operation later. The result of matching is a relation
R, where (C,C ′) ∈ R if class C in EA matches with class C ′ in EB. In the example,
R = {(C1,C3), (C2,C3)}. In the relation R, we say the the “original” classes are being
mapped to “new” classes. In the example, C1 and C2 are original classes and C3 is the new
class.

MatchClasses i also returns a set F of cardinality and disjointness facts about the new
classes. Knowing size and disjointness information about the new classes can make the
rewriting more precise.

The rewriting is implemented by the subdomain through the Repartitioni(Ei, R, F) op-
eration. Its job is to rewrite the classes according to R, knowing that the facts in F hold
about the new classes.

Pre-Order. The pseudocode in Figure 3.2 shows in detail how to test EA v EB. It is a
three-step process of saturation, repartitioning, and subdomain ordering. We use a simple
utility function, Repartition, whose job is to call Repartition i for each base domain.

First, note that we only saturate EA. The purpose of saturation is to strengthen individ-
ual subdomain components, and there is no point in strengthening EB when we are trying
to prove that EA ⇒ EB.

Next we use the subdomains’ MatchClasses i functions. The relation Ri maps the classes
of EA

i to those of EB
i . Both R1 and R2 are used to repartition EA

1 and EA
2 . This is because

each subdomain can make reference to classes defined by the other subdomain. We do not
repartition EB at all; since Repartition may weaken a domain element, it would be unsound
to do so.

Note that repartition is called only once on each subdomain. This is unlike satura-

CHAPTER 3. COMBINATION DOMAIN 108

function Repartition(〈E1, E2〉, R, F):
E1 := Repartition1(E1, R, F)
E2 := Repartition2(E2, R, F)
return 〈E1, E2〉

function 〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉:

〈EA
1 , E

A
2 〉 := Saturate(EA

1 , E
A
2)

〈R1, F1〉 := MatchClasses1(EA
1 , E

B
1)

〈R2, F2〉 := MatchClasses2(EA
2 , E

B
2)

〈EA
1
′
, EA

2
′〉 := Repartition(〈EA

1 , E
A
2 〉, R1 ∪R2, F1 ∪ F2)

return (EA
1
′ v1 E

B
1) ∧ (EA

2
′ v2 E

B
2)

Figure 3.2: Pseudocode for combined domain’s partial order.

tion, which iterates to a fixed point. As a consequence, the subdomains must make their
repartitioning decisions independent of the other domain’s partitioning.

Join. Join is similar to implies checking, but is symmetric in the two arguments. Figure 3.3
shows the code. Instead of matching the classes of EA to the classes of EB, we allow both
inputs to be repartitioned into a new set of classes that may be more precise than either
of the originals. Thus, we require that domains to expose a MergeClasses i operation that
returns a mapping from either element’s original classes to new classes. Also note in the
code that we saturate both inputs, rather than only EA.

Widening. We must define a widening operation for the combined domain as well. It is
very similar to the join operation. Recall that the purpose of widening is to act like a join
while ensuring that fixed point iteration will terminate eventually. Due to the termination
requirement, we make some changes to the join algorithm.

The typical use of widening is as follows. Suppose we have a sequence of domain element
E1, E2, E3, . . . such that E1 v E2 v E3 v · · · . We would like to find a new sequence E ′i
such that Ei v E ′i and such that the E ′i converges after a finite number of steps. We get the

CHAPTER 3. COMBINATION DOMAIN 109

function 〈EA
1 , E

A
2 〉 t 〈EB

1 , E
B
2 〉:

〈EA
1 , E

A
2 〉 := Saturate(EA

1 , E
B
2)

〈EB
1 , E

B
2 〉 := Saturate(EB

1 , E
B
2)

〈RA
1 , R

B
1 , F1〉 := MergeClasses1(EA

1 , E
B
1)

〈RA
2 , R

B
2 , F2〉 := MergeClasses2(EA

2 , E
B
2)

〈EA
1
′
, EA

2
′〉 := Repartition(〈EA

1 , E
A
2 〉, RA

1 ∪RA
2 , F1 ∪ F2)

〈EB
1
′
, EB

2
′〉 := Repartition(〈EB

1 , E
B
2 〉, RB

1 ∪RB
2 , F1 ∪ F2)

return 〈(EA
1
′ t1 E

B
1
′
), (EA

2
′ t2 E

B
2
′
)〉)

Figure 3.3: Pseudocode for combined domain’s join algorithm.

desired result if we use widening:

E ′1 := E1

E ′2 := E ′1∇E2

E ′3 := E ′2∇E3

...

E ′i+1 := E ′i∇Ei+1

We assume that the base domains already come equipped with widening operations ∇i.
In practice, the heap domain does not require widening since the canonical abstraction
is finite. So widening for the heap domain is a join. In the integer domain, widening is
important and several widening operators are available.

The challenging part of widening is that some widenings that are “obviously correct” may
fail to terminate. Miné [36] describes how this can occur in an integer domain. Widening
typically works by throwing away facts, producing a less precise element, in order to reach
a fixed point more quickly. The problem occurs if we try to saturate the left-hand operand.
Saturation will put back facts that we might have thrown away, thereby defeating the purpose
of widening. So to ensure that a widened sequence terminates, we never saturate the left-
hand operand. The code is in Figure 3.4.

This code is very similar to the code for the join. Besides avoiding saturate on EA, we
also avoid repartitioning EA. Our goal is to avoid any changes to EA that might cause the
widening to fail to terminate. Since we do not repartition EA, we use MatchClasses i instead
of MergeClasses i.

CHAPTER 3. COMBINATION DOMAIN 110

function 〈EA
1 , E

A
2 〉∇〈EB

1 , E
B
2 〉:

〈EB
1 , E

B
2 〉 := Saturate(EB

1 , E
B
2)

〈R1, F1〉 := MatchClasses1(EB
1 , E

A
1)

〈R2, F2〉 := MatchClasses2(EB
2 , E

A
2)

〈EB
1
′
, EB

2
′〉 := Repartition(〈EB

1 , E
B
2 〉, R1 ∪R2, F1 ∪ F2)

return 〈(EA
1 ∇1E

B
1
′
), (EA

2 ∇2E
B
2
′
)〉)

Figure 3.4: Combined domain’s widening algorithm.

3.3 Assignment

To see how assignment works, consider a new example.

1 type T;
2 global data[T]:int;
3 global next[T]:T;
4 global head:T;
5 global count:int;

We assume that T nodes are linked together in a list via next pointers starting at head.
They store integers in their data fields. Our goal is to ensure that count is equal to the
number of T objects reachable from head whose data fields are zero.

To accomplish this task, we define the following instrumentation predicates and functions,
shown along with the domain in which they are defined.

Reach(n:T) := ∃h:T. Head(h) ∧ TC(h, n;x, y). Next(x, y) (heap) (3.2)

Zero(n:T) := data[n] = 0 (integer) (3.3)

P(n:T) := Reach(n) ∧ Zero(n) (heap) (3.4)

NumZero := |{n:T : P(n)}| (integer) (3.5)

Q() := count = NumZero (integer) (3.6)

Now consider the following combined domain element.

C1

Head,Reach
C2

Reach,P,Zero ∧ Q()

count = #C2

CHAPTER 3. COMBINATION DOMAIN 111

This domain element represents a linked list where all nodes except the head have an data
field equal to zero. We assume that Q() is known to hold.

Now we perform the assignment data[head] := 0. We proceed in four steps.

Ê Saturate shared facts. Saturation may increase the precision of the final result. In this
example, it doesn’t, so we ignore the saturation step.

Ë Translate assignment terms. The first problem we face is that data is a function
defined in the integer domain while head is defined in the heap domain. Thus, neither
domain is able to understand this assignment by itself. To solve the problem, we translate
“foreign” terms into classes. So head is translated to C1 and then the integer domain is
asked to assign data to 0 at some heap individual in class C1. Translation is performed
recursively to allow for arbitrary nesting of mixed functions.

Ì Perform initial assignment. The integer domain performs the assignment to data at
C1. It returns a new element that records the fact that data[C1] = 0 (we can say this only
because C1 is a singleton class; if it were a summary class, the assignment would only apply
to some nodes abstracted by the class). Assignment also returns two sets, U and C. U (for
“updates”) is a set of shared facts that hold after the assignment and may not have held
before. C (for “change”) is a set of shared facts that used to hold and may no longer hold.
In this case, U contains the fact ∀o ∈ C1. Zero(o).

Í Propagate updates to shared predicates. The U and C information is now passed
to the heap domain. The P predicate in the heap domain depends on Zero (even though it
doesn’t know what Zero means). When it sees that Zero has gone up at C1, it checks that
elements of C1 also satisfy Reach—which they do—and recognizes that P holds at C1 after
the assignment. So it adds ∀o ∈ C1. P(o) to U .

The new U set is now sent back to the integer domain. Since P has gone up at C1, the
value of NumZero increases by one. Therefore, count = NumZero− 1, and so Q() no longer
holds. Thus, ¬Q() is added to the set U . The new U set is sent back to the heap domain.
It records the new value of Q. At this point no more changes take place and we are done.

So far we have not described C. It contains facts that may have been changed by the
assignment and should no longer be trusted. Elements of C have a simpler form than
elements of U . When we added ∀o ∈ C1. P(o) to U , we add P(C1) to C, saying that this
fact was affected by the assignment. When ¬Q() was added to U , we also add Q() to C
because the old value Q() = 1 stored in the heap domain is no longer correct. If a domain
sees a fact in C, it checks if updated information is available in U . If not, it must “forget”
that fact (or set it to 1/2 in the heap domain).

This example gives a rough overview of how assignment works. Note the importance
of predicates whose definitions depend on other predicates. In the remainder of this sec-
tion we describe how terms are translated to classes and then we show the pseudocode for
assignment.

CHAPTER 3. COMBINATION DOMAIN 112

function TranslateFull1(E1, E2, env, f (e1, . . . , ek)):
if f ∈ D1:

for i ∈ [1..k]: 〈e′i, env〉 := TranslateFull1(E1, E2, env, ei)
return 〈f (e′1, . . . , e

′
k), env〉

else:
for i ∈ [1..k]: 〈e′i, env〉 := TranslateFull2(E1, E2, env, ei)
x := some var not in env
env := env[x 7→ Translate2(E2, env, f (e′1, . . . , e

′
k))]

return (x, env)

function TranslateFull2(E1, E2, env, f (e1, . . . , ek)):
defined similarly to TranslateFull1

Figure 3.5: Pseudocode for term translation.

Term translation. The term translator recursively traverses a term. Its goal is to make
a term understandable to one of the subdomains, say D1. Each time it sees the application
of a “foreign” function from D2, it recursively translates the foreign term to one that D2

understands (since there may be arbitrary nesting of D1 and D2 terms) and then asks D2

to translate that term to a class. The last step happens via a function Translate i that the
subdomain must provide.

As an example, suppose we translate the term f [c] to a D1 term, where f ∈ D1 and c
is a nullary function from D2. Since c is not understood by D1, we replace it with a fresh
variable, say x. This yields the result f [x]. To make sense of x, we ask D2 to translate c
to a class. It should return a class containing the individual that c equals. Suppose it is
returns C. Then we create an environment [x 7→ C] along with f [x]. This is a form that D1

can understand.
We can also translate the f [c] term to D2. We first convert c to a class as before,

yielding the term x and the environment [x 7→ C]. Then we convert f [x] to a term that
D2 understands. We apply Translate1 to f [x], giving it the environment [x 7→ C] as input.
Suppose it returns the class C ′. Then we make a fresh variable y. Our resulting term is
simply y with the environment [y 7→ C ′, x 7→ C].

The function TranslateFull1 implements the procedure above. It converts a given term to
one understood by D1. The related function TranslateFull2 translates to a term understood
by D2. We give the code in Figure 3.5.

Assignment. The assignment operation for the combined domain follows the steps Ê to Í

listed above. It saturates the domain element first. Then, if the assignment is to a function f
that belongs to Di, it translates both sides of the assignment to terms Di understands. Next,
it asks Di to perform the assignment via the subdomain’s Assign i function and return initial

CHAPTER 3. COMBINATION DOMAIN 113

function Assign(〈E1, E2〉, f (e1, . . . , ek), e):
〈E1, E2〉 := Saturate(E1, E2)

if f ∈ D1:
〈l, env〉 := TranslateFull1(E1, E2, [], f (e1, . . . , ek))
〈r, env〉 := TranslateFull1(E1, E2, env, e)
〈E ′1, U, C〉 := Assign1(E1, env, l, r)
E ′2 := E2

else:
〈l, env〉 := TranslateFull2(E1, E2, [], f (e1, . . . , ek))
〈r, env〉 := TranslateFull2(E1, E2, env, e)
〈E ′2, U, C〉 := Assign1(E2, env, l, r)
E ′1 := E1

j := 1
repeat:
〈E ′1, U, C〉 = PostAssign1(E1, E

′
1, j, U, C)

〈E ′2, U, C〉 = PostAssign2(E2, E
′
2, j, U, C)

j := j + 1
until j = num strata

〈R1, F1〉 := EliminateClasses1(E ′1)
〈R2, F2〉 := EliminateClasses2(E ′2)
return Repartition(〈E ′1, E ′2〉, R1 ∪R2, F1 ∪ F2)

Figure 3.6: Pseudocode for assignment transfer function. num strata is the total number of
shared predicates.

U and C sets. Information in U and C is propagated between D1 and D2 via a subdomain
function PostAssign i that must be provided. The full code is shown in Figure 3.6.

First, we take note of the form of U and C. The set U contains standard facts, like the
ones returned by Consequences i. The set C is simpler: its elements are tuples of the form
P(C1, . . . , Ck). If such a tuple belongs to C, it means that the truth of P(a1, . . . , ak) may
change during the assignment if each ai ∈ Ci. If P(C1, . . . , Ck) ∈ C, then a domain must
drop any information it has about P at those classes However, there may be new facts in U
to supercede this information, so the change need not lead to imprecision.

We now discuss the last three lines of the code, which call EliminateClassesi, in the
context of the heap abstraction. Since assignment can affect predicate values, two nodes
may end up with the same canonical name after the assignment. Neither the Assign i or
PostAssign i functions are allowed to change partitioning at all, but we still want to give the

CHAPTER 3. COMBINATION DOMAIN 114

domain an opportunity to merge nodes. Partitioning changes must be delayed until after
all PostAssign i calls are done. Then the EliminateClasses i function, provided by the base
domains, returns a relation from old classes to new classes and Repartition is called. In
the heap domain, EliminateClasses i computes canonical names and returns a relation that
merges nodes with the same canonical name.

To ensure that the propagation of updates through PostAssign i works, we require that
shared predicates be ordered. For example, the predicates define in Equation 3.2 through
Equation 3.6 are listed in order. A predicate can only depend on a previously listed predicate.
This ensures that there are no cycles in the predicate definitions. We let num strata be the
total number of shared predicates. We pass j, the index of the predicate to be updated, to
PostAssign i so that it knows which predicate to recompute.

3.4 Branching

This section explains how branches are handled in the combination domain. First we
explain how branches are handled in general by abstract interpreters. Consider the following
control-flow graph fragment.

i < n

A

B C

A very conservative way to handle branches would be to ignore them. The domain
element at A would then flow directly to B and C. However, we would like to model the
branch precisely. Somehow, we want γ(C) to be γ(A) but with only states where i < n.
And γ(B) should be γ(A) but excluding states where i < n. We can get this effect by
transforming the graph as follows.

assume ¬(i < n) assume (i < n)

A

B C

We then define a transfer function for the assume statement that filters out states that do
not match the given condition. We already require the base domain to supply a function

CHAPTER 3. COMBINATION DOMAIN 115

Assume i, which is used for saturation. We reuse this function in defining a transfer function
Assume for the combined domain.

The inputs to Assume are a domain element and an atomic formula P(e1, . . . , ek), where
each ei is a closed term, such as next[next[head]]. The predicate P can be a predicate defined
by either of the domains or it can be equality. We demonstrate how Assume works with an
example. Suppose we want to Assume(〈E1, E2〉,P(f [c])), where f ∈ D1 and c ∈ D2. The
steps are as follows.

Ê Translate the term to D1. The first step is to transform f [c] to a form understood
by D1. We already discussed this example in the section on assignment. Assuming that
Translate2 applied to c yields class C, we get back the term f [x] and the environment
[x 7→ C].

Ë Translate the term to D2. We will also translate the term to D2 using TranslateFull2.
We have also seen this example before. The result is the term y in environment [y 7→ C ′, x 7→
C].

Ì Existentially quantify the terms. In D1, we want to assume the fact P(f [x]) in an
environment [x 7→ C]. We translate this to the following quantified fact.

∃x ∈ C. P(f [x])

An existential quantifier is used because the term c corresponds to only one individual in
C, so we can assume the fact at only that place in C. Ideally, the class C returned by
Translate i would be a singleton class, but this is not always possible.

It is easy to convert a term and an environment into this form. For each entry in the
environment, we add an existential quantifier. We can do the same thing for the D2 term,
yielding the following.

∃y ∈ C ′. ∃x ∈ C. P(y)

Í Call Assume in base domains. We call the Assume i function for both base domains.
Typically only one domain will understand the assumption and the other will ignore it.
However, in the case of equalities, both domains may be able to understand the fact in some
way.

In the example, we would make two calls. (The set notation is used because Assume i,
as used in saturation, takes a set of facts as input.)

Assume1(E1, {∃x ∈ C. P(f [x])})
Assume2(E2, {∃y ∈ C ′. ∃x ∈ C. P(y)})

The code for all this is shown in Figure 3.7.

3.5 Base Domain Requirements

This section reviews the requirements that must be satisfied by a base domain. First, a
base domain must be equipped with the usual partial order, join, and widening operations.

CHAPTER 3. COMBINATION DOMAIN 116

function AddExistentials(env, f):
for [x 7→ C] ∈ env: f := (∃x ∈ C. f)
return f

function Assume(〈E1, E2〉,P(e1, . . . , ek)):
env1 := []
for i ∈ [1..k]: 〈e1i, env1〉 := TranslateFull1(E1, E2, env1, ei)
f1 := AddExistentials(env1,P(e11, . . . , e1k))

env2 := []
for i ∈ [1..k]: 〈e2i, env2〉 := TranslateFull2(E1, E2, env2, ei)
f2 := AddExistentials(env2,P(e21, . . . , e2k))

return 〈Assume1(E1, {f1}),Assume2(E2, {f2})〉

Figure 3.7: Pseudocode for assume transfer function.

It also must supply other functions that expose the classes and predicates of a domain
element to the combined domain. We describe these functions here. All these requirements
were stated in the previous section; we consolidate them here as a service to the reader.

We use a few type definitions in the descriptions below. A “fact” is defined in Equa-
tion 3.1; a set of facts is written Set(fact). A “term” has the following form.

t ::= x | f [t1, . . . , tk]

That is, it is either a variable or a function applied to terms. We list a few other type
abbreviations as well.

repartitioning := Set(class× class)

environment := Map(variable→ class)

function Assumei(Ei :Di, F :Set(fact)) : Di

Given a domain element and a set of facts, this function returns a new domain element
where the facts in F are constrainted to be true. As an example, if Ei is the integer domain
element x = 0 and F = {y = x+ 1}, then the result might be x = 0 ∧ y = 1.

function Consequencesi(Ei :Di) : Set(fact)

CHAPTER 3. COMBINATION DOMAIN 117

This function computes all the possible facts of the form given in Equation 3.1 that are
implied by Ei. This set will include facts about classes (their size and disjointness, phrased
using the equality predicate) and facts about predicates exposed by the domain.

function Repartitioni(Ei :Di, R:repartitioning, F :Set(fact)) : Di

This function rewrites the element Ei according to the repartitioning relation R. An
element of R has the form 〈C,C ′〉, meaning that some elements of class C may be elements
of class C ′ in the rewritten element. The set F gives facts about the sizes and disjointness
of the new classes.

function MatchClassesi(Ei :Di, E
′
i :Di) : repartitioning× Set(fact)

This function generates a relation that matches the classes of Ei to the classes of E ′i. It
also returns a set of facts F about the classes of E ′i. This information can be used to rewrite
Ei so that it uses the same set of classes as E ′i.

function MergeClassesi(Ei :Di, E
′
i :Di) :

repartitioning× Set(fact)× repartitioning× Set(fact)

This function is similar to MatchClasses i. However, it generates a new set of classes
rather than using the classes of E ′i. It returns a way to map the classes of both Ei and E ′i
to these new classes.

function Translatei(Ei :Di, env:environment, t:term) : class

This function translates the term t into a class. The individual denoted by the term
should belong to the class that is returned. The term may contain free variables; these
variables are bound in the environment env. The individual denoted by a variable x belongs
to the class env[x].

function Assigni(Ei :Di, env:environment, l:term, r:term) : Di × Set(fact)× changes

This is the transfer function for the assignment l := r. Both l and r are terms whose
free variables are interpreted according to env. That is, each x corresponds to an individual
belonging to the class env[x]. The function returns a new domain element reflecting the
assignment. It also returns sets U and C, where U is a set of facts that are known to
hold after the assignment and C is a set of things whose truth may have been affected by
the assignment. The elements of U are standard facts. The elements of C have the form

CHAPTER 3. COMBINATION DOMAIN 118

P(C1, . . . , Ck), meaning that P may have changed at some (a1, . . . , ak) where ai ∈ Ci for
each i. The work to process an assignment is finished by PostAssign i.

function PostAssigni(Ei :Di, E
′
i :Di, j :int, U :Set(fact), C :changes) :

Di × Set(fact)× changes

This function propagates predicate updates after the initial transfer function for an as-
signment runs. The element Ei is the initial element before the assignment transfer function
ran. The E ′i element is the “current” element reflecting the ongoing progress of processing
the assignment. The integer j tells the domain which predicates have already been processed
in the ordered list of predicates. The sets U and C list the changes to predicate values. A
new element E ′i and new U and C sets are returned after the predicate with index j from
domain i has been processed.

function EliminateClassesi(Ei :Di) : repartitioning× Set(fact)

This function may rearrange the class structure of the element Ei due to the changes
made by an assignment operation. It returns a repartitioning to be applied to the element
and a set of facts about the new classes (size, disjointness, etc.).

3.6 Related Work

There are several approaches to combining numerical reasoning with TVLA. The first
one, by Gopan et al. [23], proceeded in two parts. In one paper, the authors defined the con-
cept of a summarizing numerical domain, which can express quantified numerical properties.
We use many of the ideas from the work in our integer domain, as described in the next
chapter. Next, the authors show how a summarizing numerical domain can be integrated
into TVLA to handle arrays [22]. Our approach is more general than this one. First, their
domain does not support any form of cardinality reasoning. Second, it does not support
integer predicates. Finally, it relies on a hard-coded array abstraction; we use canonical
abstraction to partition arrays, which is much more flexible.

Gulwani et al. [25] introduce a general method for tracking cardinality. Our combined
domain is a generalization of their framework in several ways. Besides cardinality, we support
quantified numerical facts, integer predicates, and cardinality instrumentation functions.

Halbwachs and Péron [26] present a technique to reason about the contents of arrays, and
the relationship between array elements. This technique infers many useful array properties,
but it performs no cardinality reasoning and it cannot reason about recursive data structures.

Many authors [6, 20, 32] have described systems in which pointer analysis is used to
convert a program that manipulates heap and integer values into an integer-only program.

CHAPTER 3. COMBINATION DOMAIN 119

This “reduction-based approach” uses a variety of existing integer analyzers on the resulting
program. For proving simple properties of singly linked lists it was shown by Bouajjani et
al. [6] that there is no loss of precision. However, the technique may lose precision in cases
where the heap and integers interact in complicated ways, including many of the examples
shown in this chapter. Our approach, in which heap and integer reasoning is arbitrarily
interleaved, is more expressive.

Chang et al. [9] describe a separation logic-based analysis in which numerical constraints
are supported inside recursive predicates. Their system supports both cardinality reasoning
and quantified integer facts, which distinguishes it from the other systems above. However,
it does not support instrumentation functions for cardinality, as our system does. Also, the
integer portion of the analysis was never implemented.

Emmi et al. [21] handle reference counting using auxiliary functions and predicates similar
to the ones we describe. As long as only a finite number of sources and targets are updated in
a single transition, they automatically generate the corresponding updates to their auxiliary
functions. For abstraction, they use Skolem variables to name single, but arbitrary, objects.
Their combination of techniques is specifically directed at reference counting; it supports a
form of universal quantification (via Skolem variables) to track the cardinality of reference
predicates. In contrast, we have a parametric framework for combining domains, as well
as a specific instantiation that supports universal and existential quantification, transitive
closure, and cardinality. Their analyzer supports concurrency and ours does not. Because
their method is unable to reason about reachability, their method could not verify our
examples (or thttpd).

The idea to combine numeric and pointer analysis for establishing properties of mem-
ory was pioneered by Deutsch [17, 18]. Deutsch’s abstraction deals with may-aliases in a
rather precise way but loses most of the information when the program performs destructive
memory updates. Venet [48] elaborates on Deutsch’s work.

Yavuz-Kahveci and Bultan [50] present an algorithm for inferring sizes of singly linked
lists. This algorithm uses the fact that the number of uninterrupted list segments in singly
linked lists is bounded. This limits the applicability of the method to showing specific
properties of singly linked lists. Similar restrictions apply to the work of Bouajjani et al. [6]
and Cook et al. [32].

Rugina [44] presents a static analysis that can infer quantitative properties (namely
height and skewness) of tree-like heaps. Rugina does not address the issue of sizes of data
structures and is limited to tree-like heaps.

Calcagno et al. [8] describe a method for analyzing a memory allocator by interpreting
memory segments as both raw buffers and structured data. Their method presents a limited
way of treating sizes of chunks of memory. However, they are limited to contiguous chunks
of memory and cannot handle sizes of recursive data structures.

The seminal paper by Cousot and Cousot in [14] introduces different methods for com-
bining abstract domains and Deutsch [16] elaborates on domain constructors. There are
several methods for implementing or approximating the reduced product [14], which is the

CHAPTER 3. COMBINATION DOMAIN 120

most precise refinement of the direct product. Granger’s method of local descending itera-
tions [24] uses a decreasing sequence of reduction steps to approximate the reduced product.
The method provides a way to refine abstract states ; in abstract transformers, domain el-
ements can only interact either before or after transformer application. The open-product
method [12] allows domain elements to interact during transformer application. However,
the use of classes in our technique expands set of facts that can be shared between domains
beyond what can be expressed in these frameworks. Our technique is consequently more
precise, at least when combining quantified domains.

3.7 Conclusion

In this chapter we presented a technique for simultaneously reasoning about integers
and the heap. Our combined domain is parametric in the heap domain and the numerical
domain. The crux of our approach is that we permit a great deal of sharing between the
domains via predicates and classes of individuals. At the same time, the interface between
the domains is very generic; although our intended target is a combination of heap and
numerical reasoning, our technique supports arbitrary quantified reasoning over two disjoint
sorts.

We have presented examples showing the power of the domain. No other automatic
analysis that we know of is able to prove all the invariants that we do in these examples.
Proofs of these invariants are necessary for establishing the memory safety of typical systems
code. In the final chapter of the thesis, we describe the verification of the cache data structure
of a real-world web server. Every single one of the example invariants must be proved, in
some form, in this server.

CHAPTER 3. COMBINATION DOMAIN 121

3.8 Proofs

This section presents a formal semantics for the combined domain and a proof that it is
sound. It also contains formal correctness requirements for all of the base domain functions.

3.8.1 Meaning of Domain Elements

We formalize the semantics of the base domains in an unusual way. Each domain Di

should supply a meaning predicate γi(Ei, S,M, P), where S, M , and P are as follows. S is a
tuple 〈A1, A2, F 〉, where A1 is the universe of individuals managed by D1, A2 is the same for
D2, and F gives an interpretation to functions: F (f)(a1, a2) = a3 means that f (a1, a2) = a3.
All functions are expected to be total. Functions can have mixed signatures. M is a mapping
from class names to individuals. P is an interpretation of predicates: if P (P)(a1, a2) = true
then P(a1, a2) holds. If the predicate γi(Ei, S,M, P) holds, then the state S satisfies the
constraints of element Ei given the interpretations M and P of classes and predicates.

We define a meaning predicate for the combined domain:

γ′(〈E1, E2〉, S,M, P) := γ1(E1, S,M, P) ∧ γ2(E2, S,M, P).

Example 43 To see how these functions work, consider the following domain element,
which appeared in §3.3.

C1

Head,Reach
C2

Reach,P,Zero ∧ Q()

count = #C2

We want to construct values for S, M , and P so that γ′ is satisfied for this element.
We let S = 〈A1, A2, F 〉. We let the set of heap objects A1 = {o1, o2}. We let A2 contain

the integers (Z). We define the functions as follows.

F (head)() = o1

F (count)() = 1

F (next)(o1) = o2

F (next)(o2) = o2

F (data)(o1) = 1

F (data)(o2) = 0

We map the classes so that M(C1) = {o1} and M(C2) = {o2}. Finally, we give assign-
ments to predicates. We only show the true predicates; everything else is false.

P (Head)(o1), P (Next)(o1, o2), P (Next)(o2, o2), P (Reach)(o1), P (Reach)(o2),

P (Zero)(o2), P (P)(o2), P (Q)()

Given these values, γ′(〈E1, E2〉, S,M, P) holds. 2

CHAPTER 3. COMBINATION DOMAIN 122

We define the predicate M̂i to ensure some well-formedness conditions.

M̂i := (∀C ∈ Ei. M(C) ⊆ Ai) ∧

(⋃
C∈Ei

M(C)

)
= Ai

This predicate tells us that, for each class C defined by Ei, M(C) contains only individuals
managed by Ei. Additionally, every individual belongs to some class. We require that γi
hold only if M̂i hold. Also, we define M̂ ′ to hold if M̂1 and M̂2 both hold.

3.8.2 Meaning of Facts

The facts exchanged between domain elements have the form shown in Equation 3.1.
Here we formalize the meaning of such facts via the function γf . We use the syntax [·]S to
interpret terms containing function applications according to F .

[x]S = x

[f (e1, . . . , ek)]S = S(f)([e1]S, . . . , [ek]S)

γf (F, S,M, P) = ∀f ∈ F. γf (f, S,M, P)

γf ((∀x ∈ C. f), S,M, P) = ∀a ∈M(C). γf (f, S,M, P)

γf ((∃x ∈ C. f), S,M, P) = ∃a ∈M(C). γf (f, S,M, P)

γf (P(e1, . . . , ek), S,M, P) = P (P)([e1]S, . . . , [ek]S)

γf (¬P(e1, . . . , ek), S,M, P) = ¬P (P)([e1]S, . . . , [ek]S)

γf (t : [C1, . . . , Cn], S,M, P) =

(∧
i,j

M(Ci) ∩M(Cj) = ∅

)
∧

(⋃
i

M(Ci) = At

)
In the last equation, At is the universe Ai, where Di is the domain responsible for type t.

3.8.3 Soundness

Saturation

The conditions for the Consequences i function are that it return true facts.

∀S,M, P. γi(Ei, S,M, P)⇒ γf (Consequencesi(Ei), S,M, P)

The conditions for Assume i say that if a state satisfies the initial domain element and
the branch predicate, then it should also satisfy the domain element returned by Assume i.
That is, for any set of facts F , the following must hold.

∀S,M, P. γi(Ei, S,M, P) ∧ γf (F, S,M, P)⇒ γi(Assumei(Ei, F), S,M, P)

Lemma 1 Let Saturate be applied to input 〈E1, E2〉, producing output 〈E ′1, E ′2〉. Then,

∀S,M, P. γ′(E1, E2, S,M, P)⇒ γ′(E ′1, E
′
2, S,M, P).

2

The proof is immediate from the properties above.

CHAPTER 3. COMBINATION DOMAIN 123

Repartition

The correctness condition for a subdomain’s Repartition i is somewhat unintuitive. We
tend to think of classes as having an interpretation, so it might seem reasonable that some
mappings R between classes are illegal because they break our intuitive interpretation. In
fact, any R is legal as long as it does not “lose” individuals. For example, an R that fails to
map an original class to any new classes is illegal, since it does not account for all individuals.

We formalize this notion here. Let Repartitioni(Ei, R, F) = E ′i. If a state S,M, P satisfies
Ei, then we require that any new partitioning M ′ that “conforms” to R and F (in a sense

to be defined in R̂ below) must satisfy E ′i. We can write this logically as follows.

∀S,M,P,M ′. (γi(Ei, S,M, P) ∧ R̂i(Ei, R, S,M,M ′) ∧ γf (F, S,M ′, P))⇒ γi(E
′
i, S,M

′, P)

We can think of R as describing which original classes the individuals of a new class can
be drawn from. This motivates the definition of R̂: M ′ conforms to R if M ′(C) contains

only individuals that come from classes C where R(C,C ′). We also check M̂ , because we
want to ensure that M ′ does not lose any individuals.

R̂i(Ei, R, S,M,M ′) := M̂i(Ei, S,M
′) ∧

∀C ′.M ′(C ′) ⊆
⋃

C:R(C,C′)

M(C)


As before, we assume that R̂′ checks R̂1 and R̂2.

Lemma 2 Let S,M, P be an arbitrary state and let M ′ be any class interpretation. Let
〈E ′1, E ′2〉 be the result of applying Repartition to tupleE1, E2 over R and F . Then the follow-
ing holds.

(γ′(E1, E2, S,M, P) ∧ R̂′(E1, E2, R, S,M,M ′) ∧ γf (F, S,M ′, P))⇒ γ′(E ′1, E
′
2, S,M

′, P) 2

The proof follows directly from the restrictions on Repartition i.

Class Matching

The soundness requirements on MatchClasses i mirror the assumptions needed to apply
Repartition i. They are fairly lax, meaning that MatchClasses i can choose almost any R
as long as every class maps to something. Let MatchClassesi(E

A
i , E

B
i) = (R,F). Then we

require the following.

∀S,M,P. γi(E
A
i , S,M, P)⇒ ∃M ′. R̂i(E

A
i , R, S,M,M ′) ∧ γf (F, S,M ′, P)

Note that EB
i does not even appear!

We put similar restrictions on MergeClasses i. We write the restriction for EA
i but a

similar one applies for EB
i .

∀S,M, P. γi(E
A
i , S,M, P)⇒ ∃M ′. R̂i(E

A
i , R

A
i , S,M,M ′) ∧ γf (F, S,M ′, P)

CHAPTER 3. COMBINATION DOMAIN 124

Pre-order

First we state correctness restriction on the subdomains’ partial orders.

∀S,M, P. EA
i vi EB

i ⇒ (γi(E
A
i , S,M, P)⇒ γi(E

B
i , S,M, P))

Now we can prove that the combined domain partial order is correct according to γ′.

Theorem 5 If 〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉 is true and S,M,P satisfy γ′(EA

1 , E
A
2 , S,M, P), then

γ′(EB
1 , E

B
2 , S,M

′, P) holds for some M ′. 2

Proof After saturation, S,M, P continue to satisfy 〈EA
1 , E

A
2 〉. We then call MatchClasses i,

which guarantee that R and F are such that a call to Repartition is permitted. The post-
condition for Repartition tells us that S and P now satisfy 〈EA

1
′
, EA

2
′〉 for some M ′. Then if

v1 and v2 return true, then S,M ′, P satisfy 〈EB
1 , E

B
2 〉. �

Additional properties of v are desirable. We prove that, given some monotonicity and
transitivity properties on operations MatchClasses i, Repartition i, Consequences i, and As-
sume i, our implies relation is both transitive and reflexive. It is not anti-symmetric because
there are different abstract elements that have the same denotation. Thus, it is a pre-order.

Transitivity. To ensure that v is transitive, we need some restrictions. Assume that A,
B, and C are elements of the combined domain. Let A = 〈A1, A2〉 and the same for B and C.
Let A′ = Saturate(A1, A2) and the same for the others. In the ensuing paragraphs, we use
the notation that MatchClasses∗(A,B) = 〈MatchClasses1(A1, B1),MatchClasses2(A2, B2)〉.
We use a similar convention for other domain functions.

To begin, we need to restrict MatchClasses∗. Assume that

MatchClasses∗(A,B) =MAB

MatchClasses∗(B,C) =MBC

MatchClasses∗(A,C) =MAC .

We define the notation that, when M = 〈〈R1, F1〉, 〈R2, F2〉〉,

M(E) = Repartition(〈E1, E2〉, R1 ∪R2, F1 ∪ F2).

We also define the notation that A v∗ B when A1 v1 B1 and A2 v2 B2.
Our first requirement is that for any A, B, and C, the results of MatchClasses∗, when

fed to Repartition, are transitive.

MAC(A) v∗MBC(MAB(A)).

Additionally, we place a monotonicity requirement on repartitioning, that for any M,

A v∗ B ⇒M(A) v∗M(B).

CHAPTER 3. COMBINATION DOMAIN 125

Another pair of monotonicity properties is also needed. For any E,

B v∗ C ⇒MAB(E) v∗MAC(E)

A v∗ B ⇒MAC(E) v∗MBC(E).

We also need saturation to commute with repartitioning. To ensure this, we require,

M(Assume∗(E,F)) = Assume∗(M(E), F).

Finally, we need a monotonicity condition on Assume∗ and Consequences∗.

Ai vi Bi ⇒ Consequencesi(Bi) ⊆ Consequencesi(Ai)

Ai vi Bi ∧ F ⊆ F ′ ⇒ Assumei(Ai, F
′) vi Assumei(Bi, F)

Using these conditions, we prove transitivity. We begin by proving a lemma.

Lemma 3 If A′ v∗ B then A′ v∗ B′. 2

Proof We first note the following.

A′1 = Assume1(A′1,Consequences2(A′2))

By the monotonicity of Consequences2, Consequences2(B2) ⊆ Consequences2(A′2). The by
the monotonicity of Assume,

Assume1(A′1,Consequences2(A′2)) v1 Assume1(B1,Consequences2(B2)).

Therefore,
A′1 v1 Assume1(B1,Consequences2(B2)).

We can prove a similar fact about A′2. Let B1 be the result of one round of saturating B.
Then A′ v∗ B1. We can use a similar argument to prove that if A′ v∗ Bi, then A′ v∗ Bi+1.
So by induction, A′ v∗ B′. �

Now we can prove transitivity.

Theorem 6 If A v B and B v C then A v C. 2

Proof Using the definition of the combined domain’s order, v, we can rewrite A v B as
MA′B(A′) v∗ B. We can also rewrite B v C as MB′C(B′) v∗ C. We know that B′ v∗
B by monotonicity of Assume i. Therefore, by monotonicity of matchings, MA′B′(A′) v∗
MA′B(A′). If we use monotonicity of repartitioning and apply MB′C to both sides of this,
we get

MB′C(MA′B′(A′)) v∗MB′C(MA′B(A′)).

CHAPTER 3. COMBINATION DOMAIN 126

By transitivity of matchings, we know

MA′C(A′) v∗MB′C(MA′B′(A′)).

Combining this with the last fact (since v∗ is transitive),

MA′C(A′) v∗MB′C(MA′B(A′)).

Now we take the fact MA′B(A′) v∗ B and apply commutativity of saturation and reparti-
tioning to getMA′B(A)′ v∗ B. By the lemma we proved above,MA′B(A)′ v∗ B′. Applying
commutativity again, MA′B(A′) v∗ B′. Finally, we apply MB′C to both sides, getting
MB′C(MA′B(A′)) v∗ MB′C(B′). Then using transitivity of v∗ along with the initial as-
sumption that MB′C(B′) v∗ C, we get MB′C(MA′B(A′)) v∗ C. From above, this means
that MA′C(A′) v∗ C, which is the definition of A v C. �

Reflexivity. We need only one condition on MatchClasses i to guarantee reflexivity: that
MAA(A) = A. Then since A′ v∗ A, we use monotonicity to get MA′A(A) v∗ A. Then we
use a different monotonicity property to get MA′A(A′) v∗ A, which is the desired result.

Join

First we state the correctness conditions for the subdomains’ ti operations. (We write
the restriction for EA

i but a similar one applies for EB
i .)

∀S,M,P. γi(E
A
i , S,M, P)⇒ γi(E

A
i ti EB

i , S,M, P)

Now we prove soundness for the combined domain.

Theorem 7 If a state S satisfies 〈EA
1 , E

A
2 〉 (or 〈EB

1 , E
B
2 〉) then S satisfies 〈EA

1 , E
A
2 〉 t

〈EB
1 , E

B
2 〉. 2

Proof Assume we are given a state S that satisfies 〈EA
1 , E

A
2 〉. S also satisfies the saturated

element. The calls to MergeClasses i guarantee the invariants needed to satisfy the pre-
condition for Repartition; its post-condition guarantees that S satisfies 〈EA

1
′
, EA

2
′〉. Using

the property of ti above for both domains, we realize that S satisfies 〈(EA
1
′ t1E

B
1
′
), (EA

2
′ t2

EB
2
′
)〉. �

Widening

To prove soundness, we really just need to show that widening is an upper bound oper-
ator. First, assume we are given a state S so that element 〈EA

1 , E
A
2 〉 is satisfied. Since EA

1

and EA
2 are passed to the subdomains’ widening operators unchanged, it is clear that we S

also satisfies the result of our widening.
What if S satisfies 〈EB

1 , E
B
2 〉 instead? After calling MatchClasses i, R and F satisfy the

pre-conditions for Repartition; its post-condition tells us that S satisfies 〈EB
1
′
, EB

2
′〉. Since

EB
1
′

and EB
2
′

are passed to the subdomains’ widening operators, S also satisfies the result
of our combined widening.

CHAPTER 3. COMBINATION DOMAIN 127

Assume

To prove soundness, we first need to define the semantics of Translate i. To do so,
we define an auxiliary predicate, T=, that determines whether two expressions containing
variables can be equal when their variables are interpreted in an environment. (The first
argument to T= is an environment mapping xi to Ci.)

T=([x1 7→ C1, . . . , xn 7→ Cn],M, e, e′)⇔ ∃x1 ∈M(C1). · · · ∃xn ∈M(Cn). e = e′

Now we can put conditions on Translate i. Assume C = Translatei(Ei, env, f(e′1, . . . , e
′
k)).

Let env be an environment and x any variable not in env.

∀S,M,P. γi(Ei, S,M, P) ∧ ∀j. T=(env,M, [ej]S, [e
′
j]S)⇒
T=(env[x 7→ C],M, [f(e1, . . . , ek)]S, x)

Lemma 4 Assume that TranslateFulli(E1, E2, env, e) returns (e′, env′). Then

∀S,M, P. γ′(E1, E2, S,M, P)⇒ T=(env′,M, [e]S, [e
′]S).

Additionally, if FV(e′) = V1 and dom(env) = V2, then V1∩V2 = ∅ and dom(env′) = V1∪V2.2

Proof First consider the case that f ∈ Di. Then we make a recursive call on each of
the subterms. We can use the invariant we are trying to prove about TranslateFulli here,
inductively. It tells us that for all arguments j, T=(env,M, [ej]S, [e

′
j]S), and additionally,

each invocation on ej adds a distinct set of variables to env. Thus, we can merge all of these
statements under a single set of quantifiers to obtain

T=(env,M, [f(e1, . . . , ek)]S, [f(e′1, . . . , e
′
k)]S).

The properties on variables from the recursive calls imply the variable properties for the
main call.

Now assume f 6∈ Di. We get the same properties of the arguments e′j as before. Then
we can use the property of Translate to get

T=(env[x 7→ C],M, [f(e1, . . . , ek)]S, x),

assuming C is the result of Translate. Since the variable properties are also satisfied, we
have proved the goal for TranslateFulli. �

Now we prove the soundness of Assume.

Theorem 8 Let 〈E1, E2〉 be the inputs to Assume, along with P (P)([e1]S, . . . , [ek]S). Let
〈E ′1, E ′2〉 be the output. Then the following holds.

∀S,M,P. γ′(E1, E2, S,M, P) ∧ P (P)([e1]S, . . . , [ek]S)⇒ γ′(E ′1, E
′
2, S,M, P) 2

CHAPTER 3. COMBINATION DOMAIN 128

Proof The calls to TranslateFulli generate an environment and set of expressions such that
T=(envi,M, [eij]S, [e

′
ij]S). TranslateFulli uses each variable at most once, so we can combine

the quantified equalities together to get the following (assuming envi = [x1 7→ C1, . . . , xn 7→
Cn]).

∃x1 ∈M(C1). · · · ∃xn ∈M(Cn). P (P)([ei1]′S, . . . , [e
′
ik]S)

Thus, the fact that we get in return from AddExistentials satisfies γf (fi, S,M, P). Then the
soundness condition on Assumei shows that the goal holds. �

Assign

We prove that if a state initially satisfies 〈E1, E2〉, then the same state, updated via
f (e1, . . . , ek) := e, satisfies the result of Assign.

The main requirement is that the shared predicates must be ordered. We assume that
they are divided into numbered strata, written Tj. Each stratum Tj should include all the
predicates from previous strata before j. For convenience we define T0 = ∅. We assume that
there is some j such that all predicates are contained in Tj, and we let num strata = j.

Intuitively, Tj is the set of predicates that are interpreted correctly after a call to
PostAssigni(Ei, E

′
i, j, U, C). We expect that Di is responsible for defining Tj − Tj−1 and

that the definitions of these predicates depend only on predicates in Tj−1. The ordering re-
quirement thus means that we cannot have predicates that are defined recursively. However,
the possibility for constructs like transitive closure mostly negates the need for recursively
defined predicates.

To begin, we make an addendum to the definition of γi. We allow the set of predicates
passed to γi to be a partial function. If γi requires some predicate P to have a particular
truth value, and if P is not defined by P , then the requirement should be treated as if it
were satisfied. We can state this more formally as follows, for any Ei.

∀S,M, P, P ′. (∀P ∈ dom(P). P (P) = P ′(P)) ∧ γi(Ei, S,M, P ′)⇒ γi(Ei, S,M, P)

That is, if P ′ is an extension of P , and γi holds over P ′, then it must hold over P as well.
An unusual facet of the proof is that we also require each subdomain to provide an

invariant, Ii(Ei, E
′
i, j), which describes how E ′i changes as it is updated by PostAssign i.

Typically, this invariant will say that E ′i makes the same statements as Ei about predicates
that have not been considered yet (those not in Tj).

We define some additional notation as well. We write Tj,i to mean Tj ∩ Preds(Di),
where Preds(Di) is the set of predicates that Di is responsible for defining. For a given
interpretation of predicates P , we write P ↓ S to mean P with its domain restricted to
the set of predicates S. That is, (P ↓ S)(P) = P (P) if P ∈ S and otherwise is undefined.
Finally, we write Similar(P, P ′, C) to mean that P and P ′ are equal except at places where

CHAPTER 3. COMBINATION DOMAIN 129

a change has occurred according to C. More formally, Similar(P, P ′, C) holds when

∀P. ∀a1, . . . , ak.

(
¬∃C1, . . . , Ck.

∧
i

ai ∈M(Ci) ∧ P(C1, . . . , Ck) ∈ C

)
⇒

P (P)(a1, . . . , ak)⇔ P ′(P)(a1, . . . , ak)

We make some assumptions about Assign i. We use the notation A(S) to model how the
assignment changes the state. If S = 〈A1, A2, F 〉, then A(S) = 〈A1, A2, F

′〉 where

F ′ = F [f 7→ F (f)[([e1]S, . . . , [ek]S) 7→ [e]S]].

We require the subdomain to provide an Assign i operation satisfying the following. If the
result of Assigni(Ei, env, l, r) is 〈E ′i, U, C〉, then the following should hold.

∀S,M,P. γi(Ei, S,M, P) ∧ T=(env,M, [e]S, [r]S) ∧ T=(env,M, [f (e1, . . . , ek)]S, [l]S)⇒
∃P ′. γi(E ′i, A(S),M, P ′) ∧ Ii(Ei, E ′i, 1)

∧ Similar(P, P ′, C) ∧ γf (U,A(S),M, P ′) ∧ T1 ⊆ dom(P ′)

We also place conditions on PostAssign i. Let (E ′′i , U
′, C ′) = PostAssigni(Ei, E

′
i, j, U, C).

Then,

∀S,M, P, P0. γi(Ei, S,M, P0) ∧ γi(E ′i, A(S),M, P ↓ Tj−1)

∧ γf (U,A(S),M, P) ∧ Similar(P0, P, C)

∧ Tj ⊆ dom(P) ∧ Ii(Ei, E ′i, j)⇒
∃P ′. γi(E ′′i , A(S),M, P ′) ∧ Ii(Ei, E ′′i , j + 1)

∧ γf (U ′, A(S),M, P ′) ∧ Similar(P0, P
′, C ′)

∧ Tj+1,i ⊆ dom(P ′)

∧ P = P ′ ↓ (dom(P ′)− Tj+1,i)

With these conditions in place, soundness follows directly.

130

Chapter 4

Domain Adaptations

The previous chapter described a framework for combining together two abstract do-
mains, such as a heap domain and an integer domain. Our combination framework places
additional requirements on the base domains beyond what is normally needed (see §3.5). It
is very easy to satisfy these requirements in a trivial way: a domain need not expose any
classes or predicates and it can ignore information from the other base domain. However,
such a domain will get no benefit from our combination framework; the analysis results
would be the same if the domain were used independently.

Consequently, this chapter describes adaptations to the heap and integer domains so that
they work well together. These adaptations are required in order to be able to analyze the
examples from §3.1. We start with the heap domain from Chapter 2 and make some simple
changes. Then we describe the domain of difference-bound matrices, which reasons about
integer variables. We make more significant additions to this domain so that it supports
classes, predicates, and cardinality reasoning.

4.1 Heap Domain Modifications

This section deals with two fundamental issues regarding the heap domain that we have
not yet addressed.

• Our description of the heap domain in Chapter 2 did not discuss how the domain
handles all the features of the PBJ language. The next section describes how objects
with different types are handled, how the domain reasons about null and undefined
values, and how PBJ map variables are interpreted as TVLA predicates.

• The heap domain assumes that any two nodes in a three-valued structure represent dif-
ferent objects. In the combined domain, we allow base domains to expose classes that
are not mutually disjoint. Since we model these classes as nodes in the heap domain,
we must now deal with the fact that nodes may not represent disjoint individuals.

CHAPTER 4. DOMAIN ADAPTATIONS 131

4.1.1 Types and Functions

First we discuss how we deal with types and uninterpreted functions (i.e., map variables)
in the heap domain. §1.1 provides some background on PBJ map variables.

Types. When we first described the heap domain, we treated all nodes homogenously.
However, the individuals modeled by these nodes have distinct types in a PBJ program.
The first change we make to the heap domain is to annotate each heap node with the type
of the individuals it represents. Formally, if a heap element E = 〈U, ρ, ι〉, we now say that
U is a mapping from classes to their types. We include the type in the canonical name of a
node so that nodes with different types are never merged together.

We also add type annotations to bound variables in predicate definitions, as in the
following.

BufferShared(b:Buffer) := ∃n1 :Map. ∃n2 :Map. Next(n1, n) ∧ Next(n2, n) ∧ n1 6= n2

In some places in the thesis we already included types for explanatory purposes. But these
types also have semantic significance. When we evaluate a quantifier (universal, existential,
or transitive closure) we only consider nodes of the correct type.

Partial functions and special nodes. Every PBJ type except int contains a special
null value. We allow this value because it is such a common feature of imperative languages.
TVLA handles null by modeling a node whose next field is null as having no outgoing Next
edge. This corresponds to treating functions as partial.

However, our PBJ semantics in §1.1 already uses partial functions to model undefined
variables. We found dual uses of partial functions to be confusing. Our solution is to treat all
functions as total and to introduce special null and undef individuals to each type to model
null and undefined variables. These individuals satisfy the abstraction predicates Null and
Undef respectively. Each one has its own node in the three-valued structure. When a new
variable map comes into scope, its value is undef at every point in its domain. Assigning
null to it causes it to point to the null node.

We also use a special “ur” node to handle allocation. The ur node is a summary node
whose cardinality is unbounded. When a new node of a given type is allocated, we split
an arbitrary singleton node from the ur node. This interpretation of allocation means that
our universe of individuals is fixed, which simplifies the semantics of formula evaluation
(concretely, it means that individuals cannot appear and disappear over time).

Function translation. Consider the following code.

1 type T;
2 global map[T]:T;
3 global term:T;

CHAPTER 4. DOMAIN ADAPTATIONS 132

The heap domain stores the map variable using a core predicate Map. Our convention is
that Map(x, y) = 1 if map[x] = y. We require that all instrumentation predicates refer to
variables like map using their core predicates. However, it is easier for the user to use the
function syntax directly, as in the following.

P(x:T) := map[x] = term

We would like to translate the uses of map and term into uses of core predicates Map and
Term automatically.

One way of performing the translation is to introduce existential quantifiers, as in the
following.

P(x ::T) := ∃y:T. ∃x:T. Map(x, y) ∧ Term(z) ∧ y = z

This translation can be done very mechanically. Suppose e is an expression containing a func-
tion application somewhere. We write this as e(f (a, b, c)). We translate it to ∃d. F(a, b, c, d)∧
e(d). The type annotation we put on d is determined by the signature of the map f . We
also require that the new quantifier be placed deep enough that a, b, and c are already in
scope.

However, an alternate translation using universal quantifiers is possible. We could trans-
late e(f (a, b, c)) to ∀d. F(a, b, c, d) ⇒ e(d). Both translations are valid because all of our
functions are total: for any tuple (a, b, c), there will be exactly one d satisfying F(a, b, c, d).
From this perspective, it would seem that we can choose arbitrarily between the universal
and existential interpretations.

However, it turns out that the distinction does matter. Consider the following structure,
where edges denote a predicate E and X and Y represent the variables x and y .

u1

X?
u2

X?

u3

Y

Now suppose we have the formula E(x, y) to evaluate. If we use the existential interpretation,
we will evaluate

∃x. ∃y. X(x) ∧ Y(y) ∧ E(x, y).

This will evaluate to 1/2. However, this value is imprecise. No matter whether x = u1

or x = u2, x has an edge to y . So the answer 1 is correct. And indeed, the universal
interpretation below will evaluate to 1.

∀x. ∀y. X(x)⇒ Y(y)⇒ E(x, y)

The problem here is that the existential interpretation does not encode the fact that x
is a total function. It considers the possibility that x is undefined, in which case there may
be no node satisfying X.

There are also situations where the universal interpretation is imprecise. Consider the
following similar structure.

CHAPTER 4. DOMAIN ADAPTATIONS 133

u1

X?
u2

X?

u3

Y

When we make the same query, E(x, y), the existential interpretation yields 0, the correct
value. The universal interpretation evaluates to 1/2.

We can solve this problem by using both interpretations simultaneously. That is, we
convert to the following query.

(∃x. ∃y. X(x) ∧ Y(y) ∧ E(x, y)) u (∀x. ∀y. X(x)⇒ Y(y)⇒ E(x, y))

Here, u is the meet operator over the lattice of truth values. Given two truth values, it
picks the most precise one. It should never be applied to values that disagree (like 0 and
1). We can modify our derivative algorithm to handle such formulas. Given a meet formula,
returns the meet of the derivatives of the operands.

Our current implementation uses the existential translation. We have seen cases in
practice where the universal translation would be more precise. Eventually we would like to
switch to the translation that uses meet, but we have not yet done so.

4.1.2 Class Representation

As we mentioned earlier, there is a one-to-one relationship between combined domain
classes and nodes in the heap structure. Integer classes are treated no differently than the
heap domain’s own classes. This approach allows us to effortlessly handle functions and
predicates with mixed signatures, like x[T]:int, since the X predicate can link a heap class
to an integer class.

However, classes as defined in the combined domain are more general than heap domain
classes. Classes in the heap domain are mutually disjoint. The combined domain, on the
other hand, allows classes to overlap.1 Information about how classes overlap is given in
the form of partitionings, which were explained in §3.2. A partitioning is a set of classes.
Two classes from the same partitioning must be mutually disjoint. Classes from different
partitionings may overlap. Additionally, every individual must be abstracted by some class
in a given partitioning; consequently, we say that the partitioning is exhaustive. Thus, a par-
titioning is an exhaustive collection of mutually disjoint classes. We write t : [C1 | · · · | Cn]
to describe a partitioning of individuals, of type t, containing the classes C1, . . . , Cn.

Since we model classes as heap nodes, we must eliminate our assumption that heap nodes
are mutually disjoint. Doing so requires a few changes.

1This flexibility is important for the integer domain. As we show later, the user is allowed to divide up
the integers in multiple ways simultaneously. For example, when reasoning about several arrays, it can be
useful to use a different partitioning of the integers for each one.

CHAPTER 4. DOMAIN ADAPTATIONS 134

• First, we must change how equality is handled.

• Second, we change the way that quantifiers are handled when evaluating formulas.

Equality. Chapter 2 described how we use the Eq predicate to track whether a node is a
singleton or a summary node. If Eq(n, n) = 1, it is a singleton. If Eq(n, n) = 1/2, then it is
a summary node. And for two distinct nodes n and n′, we always have Eq(n, n′) = 0. This
last fact follows from the property that all heap classes are mutually disjoint.

Since integer classes may not be mutually disjoint, it is possible that Eq(n, n′) 6= 0
for two distinct integer classes n and n′. We set up the equality predicates according to
partitionings. Given two distinct integer classes C and C ′, we say the following.

Eq(C,C ′) =

{
1/2 if C and C ′ are in different partitionings

0 if C and C ′ are in the same partitioning

We define Eq(C,C) based on whether C is a singleton class or a summary class.

Quantifiers. Consider the following example. Suppose that there are two integer parti-
tionings, int : [C] and int : [C ′]. This means that C contains all the integers and so
does C ′. Suppose that P(C) = 1/2 and P(C ′) = 1. Imagine that we wish to evaluate the
query ∀x:int. P(x).

Using our existing query evaluation algorithm, we will consider all integer classes, com-
puting the answer as P(C) ∧ P(C ′). This will give us 1/2. However, since we know that
C ′ covers the entire set of integers, we could simply evaluate P(C ′), which gives the more
precise answer 1.

In general, let there be k partitionings, P1, . . . , Pk, where Pi = {C1, . . . , C|Pi|}. Each
partitioning’s classes, taken together, cover the entire universe of individuals. Therefore,
it is sound to quantify over only the classes in any one partitioning. But which one do
we choose? When we evaluate the query, we separately evaluate the quantifier for each
partitioning and then take the most precise answer among them all. Writing this formally,
for a given formula ϕ and a universal quantifier,(∧

C∈P1

ϕ(C)

)
u · · · u

(∧
C∈Pk

ϕ(C)

)
.

We evaluate existentials in the same way.(∨
C∈P1

ϕ(C)

)
u · · · u

(∨
C∈Pk

ϕ(C)

)

We have ignored the effect of ρ here, but it must of course be factored in.

CHAPTER 4. DOMAIN ADAPTATIONS 135

4.1.3 Matching, Merging, and Repartitioning

The functions MatchClasses1 and MergeClasses1 are fairly simple in the heap domain.
They rely entirely on the canonical names of nodes. When applied to elements EA and EB,
the MatchClasses1 function is supposed to find a repartitioning R that rewrites the class
names of EA to the class names of EB. It iterates through every heap class C in EA. For
each one, it looks for a node in EB with the same canonical name. If it finds a match C ′, it
adds the pair (C,C ′) to the repartitioning R. Otherwise, it generates a new node name C ′′

and adds (C,C ′′) to R. The second case is necessary if EA has more nodes than EB.
The MergeClasses1 function is very simple. For arguments EA and EB, its job is to find

repartitionings RA and RB that, when applied to their respective elements, generate two
resulting elements that use the same class names. For RA, we simply call MatchClasses1.
For RB, we generate the identity repartitioning: RB = {(C,C) : C ∈ EB}. The result is
that the rewritten elements will use the same class names as EB. Using a richer set of class
names might produce a more precise result, but so far we have not seen a need to do so.

The Repartition1 function is also straightforward. Suppose we are given a structure
S = 〈U, ρ, ι〉 and a repartitioning R. We return the following new structure. The notation
C : (C,C ′) ∈ R means to consider every C such that (C,C ′) ∈ R.

U ′ = {C ′ : ∃C. (C,C ′) ∈ R}

ρ′(C ′) =
∨

C:(C,C′)∈R

ρ(C)

ι′(P)(C ′1, . . . , C
′
k) =

⊔
C1:(C1,C′

1)∈R

· · ·
⊔

Ck:(Ck,C
′
k)∈R

ι(P)(C1, . . . , Ck)

The EliminateClasses1 function is very simple. It computes the canonical name of ev-
ery node. All nodes with the same canonical name are mapped to the same node in the
repartitioning that is returned.

4.1.4 Assignment

This section describes the implementation of the assignment f [e1, . . . , ek] := e. Recall
that in the combined domain, the work is split between Assign1 and PostAssign1. In the
heap domain, Assign1 is responsible for updating core predicates and PostAssign1 updates
instrumentation predicates via finite differencing. We first describe Assign1 through several
examples, since there are a number of complications that can occur due to overlapping
classes.

Example 44 The simplest case is an assignment such as f [x] := y in the following structure.
The edge shows the existing F predicate and X and Y model the x and y variables.

CHAPTER 4. DOMAIN ADAPTATIONS 136

nx
X

ny
Y

nz

In this case, we set F(nx, nz) = 0 and set F(nx, ny) = 1. 2

Example 45 A problem arises if e (in this case y) cannot be resolved to a single class.
Consider the following.

nx
X

ny
Y?

n′y

Y?
nz

In this case, we set F(nx, nz) = 0 and set F(nx, ny) = F(nx, n
′
y) = 1/2.

The same problem occurs in the following example.

nx
X

ny

Y?
nz

Again, we are forced to set F(nx,ny) = 1/2. 2

The situation shown above, where we were forced to set a predicate value to 1/2 instead
of 1, is called a weak update. When we are allowed to set a predicate value to 1, we call the
update a strong update.

Example 46 A worse problem happens when a function argument ei cannot be unambigu-
ously determined, as in the following with x.

nx
X?

ny
Y

nz

n′x
X?

In this case, we are unable even to set the old value of f to zero. Consequently, we end up
with the following state after the assignment.

CHAPTER 4. DOMAIN ADAPTATIONS 137

nx
X?

ny
Y

nz

n′x
X?

Typically the focus operation avoids such problems. 2

Example 47 The addition of integer classes makes assignment more difficult. The problem
is that, while the integer domain may translate a term to a singleton class, there may be
other classes that contain the same individual as that class. This is possible because integer
classes are allowed to overlap. We rely on the equality predicate to tell us where there is
overlap

As an example, suppose we want to assign f [i] := y , where i is an integer variable.
Consider the following heap structure.

n1 n2 n3

ny
Y

nz

Assume that the term i is translated by the integer domain to class n2. Additionally, suppose
that Eq(n2, n3) = 1 and that Eq(n2,n1) = 1/2.

In this situation, we can make strong updates to n2 and n3. We must make a weak
update to n1.

n1 n2 n3

ny
Y

nz

Situations like this are fairly common in the integer domain when there are multiple parti-
tionings of the integers. 2

The examples above show how we change the predicate F in response to an assignment
to f . Besides updating the abstract element, Assign1 is also required to return sets U and
C, detailing changes to shared predicates. Since the heap domain shares all its predicates,
we return changes to the F predicate in these sets.

More precisely, if we update the value of F(C1, C2, C3), then we add F(C1, C2, C3) to C.
This registers the fact that a change to F has taken place there. Additionally, if we set
F(C1, C2, C3) = 1, then we add the following to U .

∀x1 ∈ C1. ∀x2 ∈ C2. ∀x3 ∈ C3. P(x1, x2, x3)

CHAPTER 4. DOMAIN ADAPTATIONS 138

Similarly, if we set F(C1, C2, C3) = 0, we add the following.

∀x1 ∈ C1. ∀x2 ∈ C2. ∀x3 ∈ C3. ¬P(x1, x2, x3)

PostAssign. The operation of the PostAssign1 function is similar. Given a set of values
in the U and C sets, it converts them to derivatives. For each entry P(C1, . . . , Ck) ∈ C, we
check if there is a corresponding positive entry in U . If there is, we let P+(C1, . . . , Ck) =
1 and P−(C1, . . . , Ck) = 0. If there is a negative entry, we let P−(C1, . . . , Ck) = 1 and
P+(C1, . . . , Ck) = 0. If there are no corresponding U entries, we let P+(C1, . . . , Ck) =
P−(C1, . . . , Ck) = 1/2.

After setting up the initial derivates based on U and C, we evaluate the derivative
formulas for the predicate who update is requested (via the j parameter). We add the
computed derivatives to U and C using the same rules as above and return these new sets.

4.2 Integer Domain

So far we have discussed our integer domain only at a very high level. This section fills in
the details. The domain is based on the existing domain of difference-bound matrices [36],
which is a compromise between the imprecision of interval arithmetic and the exponential
complexity of polyhedra [2]. §1.4 gives a more detailed overview of why we chose this domain.

We begin with an overview of the domain, which was first described by Miné [36]. Next,
we add new kinds of dimensions to the domain, such as the cardinality dimensions #C. We
then add integer predicates, which behave in much the same way as instrumentation predi-
cates in the heap domain. Integer predicates are the basis of our integer abstraction, which
divides up the integers into a finite set of classes. Then we describe cardinality functions,
which were used to reason about reference counting in §3.1.5. Finally, we explain func-
tions like Consequences2, which allow us to integrate the integer domain with the combined
domain.

4.2.1 Overview

The domain of difference-bound matrices is designed to analyze programs with simple,
integer-valued variables. To avoid confusing these variables with the more complex ones
used in PBJ programs, we call them dimensions. We give the dimensions names like x and
y. The purpose of the domain is to infer constraints on the dimensions like x ≤ 3 or y ≥ 7
or x − y ≤ 12. We write the constraints in the form of a matrix, which we denote as M .
Consider the following matrix. 

0 x y

0 0 0 5
x 10 0 5
y 10 −5 0



CHAPTER 4. DOMAIN ADAPTATIONS 139

We read the constraints out of this matrix. If the entry at the row labeled vi and the column
vj is cij, then we have the constraint vi − vj ≤ cij. For example, we have the following.

0− y ≤ 5 x− 0 ≤ 10

x− y ≤ 5 y − x ≤ −5

The special 0 dimension allows us to express constraints of the form v−0 ≤ c and 0−v ≤ c,
which means we can bound the range of a dimension. Using more convenient notation, the
matrix above represents the constraints x ∈ [0, 10] ∧ y ∈ [−5, 10] ∧ x = y + 5.

Saturation. The most important operation in the integer domain is called saturation. This
form of saturation should not be confused with the saturation performed by the combined
domain (although they are similar). We saturate a matrix by adding constraints to it that
are implied by existing constraints. For example, in the matrix above, we have the following
two constraints.

x− 0 ≤ 10 y − x ≤ −5

When we sum these constraints together, we get the implied constraint y− 0 ≤ 5. However,
the entry in the matrix says only that y − 0 ≤ 10. Whenever the implied constraint is
stronger than the constraint in the matrix, we enter the implied constraint into the matrix,
getting the following. 

0 x y

0 0 0 5
x 10 0 5
y 5 −5 0


In general, the saturation procedure looks for entries u− v ≤ c and v − w ≤ c′. It adds

the implied entry u− w ≤ c+ c′ if it is stronger than the one already in the matrix.
This procedure very similar to the all-pairs shortest path problem in a graph. We treat

the dimensions as nodes in a graph and the constraints as edges between them. For example,
the original matrix has the following graph representation.

0

x

y

0
10

5 −5

5
10

CHAPTER 4. DOMAIN ADAPTATIONS 140

It’s fairly clear that the shortest path from y to 0 in this graph has weight 5, which justifies
putting that value in the matrix.

To fully saturate the graph, we use the Floyd-Warshall algorithm. It is a very simple
cubic algorithm for computing all-pairs shortest paths.

function Floyd-Warshall(V,E):
for v ∈ V :

for u ∈ V :
for w ∈ V :

E[u,w] := min(E[u,w], E[u, v] + E[v, w])

A nice benefit of this algorithm is that it can be used to detect negative-weight cycles.
After the algorithm runs, we look for negative values along the diagonal entries of the
matrix, which signal the presence of negative-weight cycles. In the context of our domain, a
negative-weight cycle means that the set of constraints is unsatisfiable. In other words, an
abstract element with a negative cycle is equivalent to ⊥ because it does not abstract any
concrete states.

Assignment. Saturation forms the basis of the assignment transfer function. Given a
domain element, we want to approximate the effect of an assignment x := e. We do so
in three steps. First, we saturate the element. Then we remove any existing information
about the variable x. Any constraint of the form x − v ≤ c (or v − x ≤ c) is replaced by
x− v ≤ ∞ (or x− v ≤ ∞). The one exception is x− x ≤ 0, which we leave alone. Then we
add the new constraint x = e. We may have to perform some syntactic manipulation to get
the new constraint in the right form. For example, if e = y + 1, then we convert x = e into
x− y ≤ 1 ∧ y − x ≤ −1.

Example 48 Suppose we have the original matrix above, before saturation. We perform
the assignment x := 20. The first step is to saturate, which we have already explained. Next
we remove x constraints, giving us the following matrix.


0 x y

0 0 ∞ 5
x ∞ 0 ∞
y 5 ∞ 0


Finally, we add the constraints x− 0 ≤ 20 and 0− x ≤ −20.


0 x y

0 0 −20 5
x 20 0 ∞
y 5 ∞ 0



CHAPTER 4. DOMAIN ADAPTATIONS 141

Note that if we had failed to saturate the matrix beforehand, we would have gotten the
following matrix instead. 

0 x y

0 0 −20 5
x 20 0 ∞
y 10 ∞ 0


At this point, the fact that y ≤ 5 has been irretrievably lost. No amount of saturation will
recover it. As a consequence, we must always do our best to saturate the matrix before
assignment. 2

Partial order. The partial order for this domain is easy to compute. Given two domain
elements E and E ′, our job is to see if the constraints in E imply the constraints in E ′

(because in that case, every state abstracted by E is abstracted by E ′, so γ(E) ⊆ γ(E ′)).
We begin by saturating E. The rationale is that to prove E ⇒ E ′, we first want to make

E as strong as possible. Next, we check to see if the constraints in E imply the constraints
in E ′, component-wise. For example, if there is a constraint x− y ≤ c in E and x− y ≤ c′

in E ′, we check that c ≤ c′. Treating the domain elements as matrices, this amounts to
checking that E ≤ E ′. If this holds, the partial order relationship is satisfied.

Join. To join elements E and E ′, we first saturate them both. Then we generate a new
matrix E ′′. If E contains the constraint x− y ≤ c and E ′ contains x− y ≤ c′, then we add
x− y ≤ max(c, c′) to E ′′. Based on our partial order, this ensures that E ′′ is the strongest
element implied by both E and E ′.

4.2.2 Dimensions

A typical integer domain creates one dimension for every program variable. Since our
variables are maps, we may need to use many dimensions. Consider the following code.

1 type T;
2 global val[T]:int;

The variable val is managed by the integer domain. Suppose the heap domain contains two
nodes, n and n′, of type T. Then we store the value of val across two dimensions: val[n] and
val[n′].

If we have a constraint val[n]−0 ≤ 10, it is fairly easy to understand what this means. But
for the summary node, the interpretation is more complex. The constraint val[n′]− 0 ≤ 10
is implicitly quantified. Logically, it means

∀u ∈ n′. val[u]− 0 ≤ 10.

Each occurrence of a summary class (even the same class appearing more than once) intro-
duces a new quantifier.

CHAPTER 4. DOMAIN ADAPTATIONS 142

Besides dimensions for maps, we introduce some other dimensions. We have already
described cardinality variables: for any class C, the dimension #C holds the cardinality of
C. Note that cardinality dimensions do not introduce any implicit quantifiers.

For integer classes, we also create value dimensions written [C]. A value dimension
describes the values of the integers contained in the class. For example, suppose class
C = {5, 6, . . . , 20}. Then the constraints [C] − 0 ≤ 20 and 0 − [C] ≤ −5 are valid. These
constraints are interpreted logically as follows.

∀u ∈ C. u− 0 ≤ 20 ∀u ∈ C. 0− u ≤ 5

Clearly these dimensions introduce implicit quantifiers.
We call dimensions of the form f [C1, . . . , Ck] and of the form [C] quantified dimensions

since they introduce implicit quantifiers in constraints. They can be constrasted with car-
dinality dimensions.

Saturation. The use of implicit quantifiers in an integer domain is not new. It was first
presented by Gopan et al. [22]. The crux of their work is that reasoning about quantified
dimensions is no different than reasoning about program variables; they behave exactly the
same. However, they did not consider the problem of classes that are potentially empty.
Their analysis was designed to operate alongside TVLA, which normally does not support
empty classes.

Unfortunately, classes that are potentially empty introduce problems in the saturation
algorithm. As an example, suppose we have three functions, f , g , and h. Suppose that f
and h take no arguments while g takes one argument. Let E be a domain element with a
class C and the following constraints.

f − g [C] ≤ 0 g [C]− h ≤ 0

If we saturate this element, then we will infer a new constraint, f − h ≤ 0. Unfortunately,
this inference is invalid. To see why, consider the logical interpretation of these constraints.

∀u ∈ C. f − g [u] ≤ 0 ∀u ∈ C. g [u]− h ≤ 0

The inferred constraint has no implicit quantifiers, so it is interpreted logically as f −h ≤ 0.
The problem occurs if C is empty. Then the two quantified constraints simplify to true,
which does not imply f − h ≤ 0.

The solution to this problem is to infer a fact only when it has more implicit quantifiers
than the facts it was derived from. Given two constraints θ and π, suppose the Floyd-
Warshall algorithm infers the (supposedly) implied constraint ω. For a given constraint, let
the classes that we implicitly quantifier over be given by the function classdeps(·). Then it
is safe to infer ω if

classdeps(θ) ∪ classdeps(π) ⊆ classdeps(ω).

CHAPTER 4. DOMAIN ADAPTATIONS 143

The classdeps function finds all classes occurring in the constraint except in dimensions of
the form #C, since these do not create implicit quantifiers.

classdeps(f [C1, . . . , Ck]) := {C1, . . . , Ck}
classdeps([C]) := {C}
classdeps(#C) := ∅

We overload the function to operate over constraints by unioning the classdeps of each
dimension in the constraint.

This solution above is sound (i.e., all inferred constraints are correct) but incomplete. A
better solution would be to explicitly tag every constraint with a set of quantifiers. When
inferring ω, as above, we would tag it with the union of the tags of the θ and π. Unfortunately,
this technique has a problems. The existing integer domain has the useful property that
given two constraints, x − y ≤ c and x − y ≤ c′, one always dominates over the other.
Thus, for each matrix entry, we only need to store a single number. If we tag constraints
with quantifiers, we lose this property. Given the constraints ∀u ∈ C. x − y ≤ 0 and
x− y ≤ 10, which do we keep? The two are incomparable: if C is empty, then the second is
stronger; otherwise the first is stronger. Due to this problem, we do not take this approach.
Although we are sacrificing precision for simplicity, we have never witnessed any imprecision
in practice.

4.2.3 Predicates

The heap domain shares information about where its predicates hold with the integer
domain. As we will see later, the integer domain uses this information for reasoning about
the number of objects satisfying a given predicate. All the heap information comes through
as facts, of the form ∀x1 ∈ C1. · · · ∀xn ∈ Cn. P(x1, . . . , xn), to Assume2. The integer
domain records this information in much the same way as does in the heap domain: for each
predicate, it stores an interpretation ι(P)(C1, . . . , Ck) that can be 0, 1/2, or 1.

We write an integer domain element as a tuple, E = 〈U, ι,M〉. Like in the heap domain,
U is a mapping from classes to their types and ι gives predicate interpretations. M is the
difference matrix. We have no need for the ρ component of the heap domain because that
information is stored via cardinality dimensions in M .

Integer predicates. As mentioned in Chapter 3, the integer domain can define its own
predicates. They have the following form.

formula ::= term ≤ term | term = term | term ≥ term

term ::= constant | x | map[x1, . . . , xn] | #x

The x variables must be bound as arguments to the predicate. One purpose of integer
predicates is to share information with the heap domain, as we saw in §3.1. Another purpose,

CHAPTER 4. DOMAIN ADAPTATIONS 144

to be described soon, is to allow us to distinguish between integer classes using canonical
abstraction.

Given a domain element, we can evaluate an integer predicate P(x1, . . . , xk) somewhere
by substituting classes for the variables xi and then checking if the given constraint is implied
by the element. Since predicates definitions do not contain quantifiers, evaluating them is
easy and fast.

Example 49 Let P(x:int, y :T) := x < f [y]. Suppose we want to evaluate P(C,C ′). Then
we substitute the classes into the formula. Although we did not mention it above, a bare
variable appearing in a formula is converted to a value dimension. So we get the constraint
[C] < f [C]. Then we simply see if this constraint is implied by the difference matrix. 2

Assignment. When an assignment takes place, integer predicates must be updated to
account for the change. In the heap domain, we used finite differencing to update predicates.
Since integer predicates do not contain quantifiers, updating them is much easier. We do
a simple test to determine which predicates may have changed and where they might have
changed; we re-evaluate them at these places.

Example 50 Consider the assignment f [x] := 0, where x is translated by the heap domain
to class C. In the Assign2 function, we perform the assignment to the dimension f [C] as
described in the overview. Suppose that P(x) := f [x] ≤ 0. In PostAssign2, we will need to
update P. To do so, we look inside the predicate definition and see that it depends on f [x],
which is updated by the assignment when x = C. Therefore, we need to re-evaluate P(C)
after the assignment. We do so by checking if f [C] ≤ 0 is implied by the new difference
matrix. It is, so we set ι(P)(C) = 1.

Note that if f [C] ≤ 0 had not been implied, we would have checked if its negation,
f [C] > 0, was implied. If it had been, we would have set ι(P)(C) = 0. Otherwise we would
have set ι(P)(C) = 1/2 (since we know that f [C] changes somehow). Based on the changes
to ι(P), PostAssign2 would update the U and C sets to reflect the change to P. 2

Sharpening. Just as the heap domain has a sharpening operation, the integer domain has
one as well. Sharpening runs at the same time as heap domain sharpening. We illustrate
sharpening with an example.

Example 51 Suppose that P(x) := f [x] ≤ 0. To sharpen P, we iterate over every class C
in the predicate’s domain. Suppose that ι(P)(C) = 1. Then we add the constraint f [C] ≤ 0
to the difference M . On the other hand, if ι(P)(C) = 0, then we add the negation, f [C] > 0.

We can also go in the other direction. We check if f [C] ≤ 0 is implied by the difference
matrix. If it is, then we set ι(P)(C) = 1. If f [C] > 0 is implied, then we set ι(P)(C) = 0. In
both these cases, we can share the new information about P with the heap domain (via the
Consequences2 function). 2

There is one problem with the discussion above. Consider the following example.

CHAPTER 4. DOMAIN ADAPTATIONS 145

Example 52 Suppose now that P(x) := f [x] ≤ g [x]. Let ι(P)(C) = 1 for some summary
class C. Following the development above, we should add f [C] ≤ g [C] to the difference
matrix M . However, this is incorrect. The logical interpretation of ι(P)(C) = 1 is

∀x ∈ C. P(x) ≡ ∀x ∈ C. f [x] ≤ g [x].

On the other hand, the logical interpretation of f [C] ≤ g [C] is

∀x ∈ C. ∀y ∈ C. f [x] ≤ g [y].

The second fact is stronger than the first. Therefore, it is incorrect to add the second fact
based on the first fact. 2

To fix this problem, we only perform the first kind of sharpening (adding a constraint
to M based on a fact in ι) if all the classes involved are singletons. Technically, we could
use a weaker restriction: that all the summary classes involved appear exactly once in each
constraint in the definition of P. However, we have not encountered any imprecision resulting
from the simpler restriction.

Note that the second kind of sharpening (adding a fact to ι based on information in M)
is always valid because the information in M is “stronger” than the information in ι, as the
example shows.

4.2.4 Class Abstraction

We described integer classes in §3.1. This section explains how they work. Unlike the
heap domain, integer classes need not be disjoint. We group them into partitionings. Classes
in the same partitioning are necessarily disjoint, while classes from different partitionings
may overlap.

The default partitioning contains one class that holds all the integers. We always keep
this partitioning around to ensure that that every integer belongs to some class. The user
is responsible for defining other partitioning via program annotations.

Within a given partitioning, we use the canonical abstraction to distinguish integer
classes. Two classes are merged if they satisfy the same abstraction predicates. Other-
wise they are kept separate. The feature that distinguishes the integer domain abstraction
from the heap abstraction is that each partitioning has its own set of abstraction predicates.
When the user defines a new partitioning, he specifies the set of abstraction predicates for
it.

Integer classes are typically used for reasoning about arrays. An integer class represents
a range of array indexes. Consider a loop iterating over an array. The purpose of the loop
is usually to establish some property at each element. It is typically beneficial to break up
the elements into three groups: the elements before the current one, the current element,
and the elements after the current element. Then the first group of elements all satisfy

CHAPTER 4. DOMAIN ADAPTATIONS 146

the property and the last group all do not. The current element is kept materialized in a
singleton class to guarantee strong updates.

Suppose that we use the variable i to loop over array elements. To organize the classes
according to the intuition above, we define three integer predicates.

P<(x:int) := x < i

P=(x:int) := x = i

P>(x:int) := x > i

These three predicates will keep the three groups of integers above in separate classes. We
can also use additional predicates to segregate integers less than zero and greater than the
size of the array.

We typically use one partitioning for each index variable. Suppose that a program
contains two arrays. The first array is accessed via the index variable i and the other
array by the variable j. We would define two partitionings. The first one would use the
three predicates above as abstraction predicates. The other partitioning would use similar
predicates, but with j in place of i. That way, an analysis would use six classes: three for
the first array and three for the second.

Note that without support for overlapping classes, we would have to use a single ab-
straction for both i and j. Often we won’t know whether i or j is larger, so we would have
to introduce many spurious disjunctions to deal with all the possible orderings. Although
overlapping classes add a lot of complexity to our analysis, analyzing arrays without them
would be impractical.

Splitting classes. Just as the heap domain has a focus operation to materialize a summary
node, the integer domain has an operation called split. Given an integer class C and a specific
integer x, its job is to split C into three classes: C<, C=, and C>. The first class contains
the integers from C that are less than x. The second contains those equal to x, and the
third contains those greater. Any one of these classes may be empty.

The user is required to annotate the places in the program where a split should happen.
Here is an example.

1 procedure init(n:int)
2 array[int]:int;
3 i:int;
4

5 predicate Ppos(x:int) := x >= 0;
6 predicate Plt(x:int) := x < i;
7 predicate Peq(x:int) := x = i;
8 predicate Pgt(x:int) := x > i;
9 partitioning PartitionI = Plt, Peq, Pgt;

10 {
11 i := 0;

CHAPTER 4. DOMAIN ADAPTATIONS 147

12 while (i < n) {
13 a[i] := 0;
14 split(PartitionI, i+1);
15 i := i+1;
16 }
17 }

Before the split on line 14, there are four integer classes in the PartitionI partition. We
call them C1, C3, C3, and C4. We use value dimensions to track the integers contained in
these classes (e.g., [C3] = i). We also record facts about the array values (e.g., a[C2] = 0).
Finally, we store predicate values for Ppos and the like in ι. The following diagram shows
everything.

[C1] < 0 0 ≤ [C2] < i
Ppos,Plt

a[C2] = 0

[C3] = i
Ppos,Peq
a[C3] = 0

i < [C4]
Ppos,Pgt

The split annotation causes us to split each class C in PartitionI into three separate
classes, (C)<, (C)=, and (C)>. One class contains the elements of the original class less
than i + 1, another contains the elements equal to i + 1, and the last contains the elements
greater than i + 1. Theoretically, we would get 4× 3 classes total. However, all the elements
of C1 are less than i + 1. Therefore (C1)< = C1 while (C1)= and (C1)> are empty. We
don’t bother to create the empty classes, so essentially no splitting of C1 takes place. The
same thing holds true for C2 and C3. At C4, no elements are less than i + 1, but there is
one element equal to i + 1 and the others are greater. So out of the 12 possible classes, only
5 are non-empty. After the split we get the following.

[C1] < 0 0 ≤ [C2] < i
Ppos,Plt

a[C2] = 0

[C3] = i
Ppos,Peq
a[C3] = 0

[C ′4] = i + 1
Ppos,Pgt

i + 1 < [C′′4]
Ppos,Pgt

The last two classes, C ′4 and C′′4 , have the same canonical name, but we do not apply the
canonical abstraction after the split operation. When we analyze the i := i + 1 statement,
we must update the constraints involving i and the predicates as follows.

[C1] < 0 0 ≤ [C2] < i − 1
Ppos,Plt

a[C2] = 0

[C3] = i − 1
Ppos,Plt
a[C3] = 0

[C ′4] = i
Ppos,Peq

i < [C′′4]
Ppos,Pgt

At this point we apply the canonical abstraction. Since C2 and C3 now have the same
canonical name, we merge them into a single node, getting the following.

CHAPTER 4. DOMAIN ADAPTATIONS 148

[C1] < 0 0 ≤ [C′2] < i
Ppos,Plt

a[C2] = 0

[C ′4] = i
Ppos,Peq

i < [C′′4]
Ppos,Pgt

If we execute the assignment a[i] := 0 on this structure, we get back the one we started
with. Thus, we have found a loop invariant.

Future work. The split operation is quite similar to the focus operation used in the
heap domain. Its job is to materialize a summary node before it is used by the analysis.
However, the focus operation is simpler because there is no need to worry about multiple
partitionings. Focus operations can almost always be inferred syntactically; in the thttpd

code, no focus annotations are necessary. Currently we do not infer split operations, so they
must be specified manually by the user.

Eventually, we would like to move away from the canonical abstraction for the integer
domain. All of the abstraction predicates we use currently are of the form “x < i,” or some
variation. It would be much easier to define a partitioning by specifying the “dividing lines”
between classes. For example, the partitioning above would be written as “0 | i | i + 1.”
Then the analysis would automatically perform a split operation on a partitioning whenever
one of its variables was updated. This would eliminate the need for writing the boilerplate
predicates like Peq above as well as the split annotations.

Translate. We are required to supply a Translate2 function to the combined domain so
that it can translate integer terms into classes that are understood by the heap domain.
Our implementation is very simple. Given an integer term t, we search through all integer
classes C, looking for a class where [C] = t is implied by the difference matrix. If we find
one, we return it. Otherwise we return the default class containing all integers.

4.2.5 Cardinality Functions

This section describes cardinality instrumentation functions. These are like instrumen-
tation predicates except that they evaluate to an integer instead of a boolean. Here is an
example.

F[x:S] := |{y:T : E(x, y)}|

Given an S object, this function counts up the number of outgoing E edges to T objects.
In general, a cardinality function can take any number of parameters x1, . . . , xk. The sum-
mation body is fairly restricted. It must have the form |{xk+1 : t : P(· · ·)}|, where each
argument to P must be drawn from x1, . . . , xk+1.

We use integer dimensions to record the values of an instrumentation function. For the
predicate above, we might have dimensions F[C1] and F[C2], where C1 and C2 are classes
of type S. Instrumentation functions play a role in the analysis in two ways. We define a

CHAPTER 4. DOMAIN ADAPTATIONS 149

new form of sharpening that links their values with class sizes and predicate values. We also
augment the assignment function to update instrumentation functions when the predicates
they depend on have changed.

Sharpening. There are two forms of sharpening for instrumentation functions. The fol-
lowing example illustrates the first form.

Example 53 Suppose we have the function above, F[x :S] := |{y :T : E(x, y)}|. Consider
the following heap structure. Classes of type S are on top and classes of type T are on the
bottom. Edges show the E predicate.

S1 S2

T1 T2 T3 T4

If we are asked to sharpen the F instrumentation function, we can add several constraints
to the difference matrix. At node S1, observe the classes satisfying E(S1, ·). Classes T1 and
T3 definitely satisfy E while T2 maybe satisfies E. Therefore, the number of edges out of S1

is #T1 plus #T3 plus, possibly, #T2. We state this as follows.

#T1 + #T3 ≤ F[S1] ≤ #T1 + #T2 + #T3.

We would like to add these constraints to the difference matrix. Unfortunately, we cannot
represent them directly. However, we know that #T1 = 1. Therefore, we can at least add
#T3 − F[S1] ≤ −1.

We also sharpen at S2. We add the following constraints.

0 ≤ F[S2] ≤ #T4

We can also sharpen in the other direction. Suppose the difference matrix implies the
constraint F[S1] ≤ #T1 + #T3. In that case, we can sharpen E(S1,T2) to zero. 2

The general technique is as follows. We iterate over classes that match the signature
of F (S1 and S2 above). For each one, we compute two sums: the number of individuals
that definitely satisfy the predicate and the number that may satisfy the predicate. One
complication here is that we must compute one pair of sums for each partitioning, since
classes from different partitionings may not be disjoint and so we cannot add their sizes.
Once we have the two sums, for any given partitioning, we add constraints as above.

CHAPTER 4. DOMAIN ADAPTATIONS 150

Assignment. All of the work of updating instrumentation functions is handled by PostAs-
sign2. When it is time to update a function like F, it checks U and C, counting up the
number of places where E has changed, and increments or decrements F by that amount.
The following example illustrates the process best.

Example 54 Consider same situation as the previous example, with the same heap struc-
ture and F[x:S] := |{y:T : E(x, y)}|.

S1 S2

T1 T2 T3 T4

Suppose that E(S1, T1) goes down. This is transmitted to the integer domain as follows.

U = {(∀s ∈ S1. ∀t ∈ T1. ¬E(s, t))}
C = {E(S1, T1)}

We compute the changes to F[S1] and F[S2] separately. For each one, we add up the
“size” of the change, called Σ. We do so by iterating over all T classes C. If E goes up at
that class, we add #C to the change size. If it goes down, we add −#C. In the case of
F[S1], Σ = −#T1. Then we update the function as if the assignment F[S1] := F[S1] + Σ
had taken place. In this case, F[S1] := F[S1]−#T1.

In practice, we can only handle the change precisely if Σ is a constant. Luckily, since the
change typically happens at a materialized node, the change size is always 1 or −1, as it is
here. 2

As in sharpening, when we add up the size of the change, we only consider the classes in
a given partitioning. Out of all the partitionings, we choose the one that gives us the most
precise estimate of the change size.

4.2.6 Consequences

The Consequences2 function exposes a number of pieces of information to the combined
domain.

• For each class C, it tries to find bounds on #C. If #C ≤ 1, then it returns the fact
∀n ∈ C. ∀n′ ∈ C. n = n′. If #C ≥ 1, it returns ∃n ∈ C. n = n. #C = 0, then it
returns ∀n ∈ C. n 6= n.

• For each partitioning, it returns the set of classes in that partitioning as the fact
int : [C1 | · · · | Cn].

• For any two classes in different partitionings, it uses value dimensions to see if they
might be disjoint. If either [C1] < [C2] or [C2] < [C1] is implied by the difference
matrix, then we return the fact ∀n ∈ C1. ∀n′ ∈ C2. n 6= n′.

CHAPTER 4. DOMAIN ADAPTATIONS 151

4.2.7 Partial Order and Join

Partial order. The partial order for the integer domain needs a few modifications in the
context of the combined domain. First, since domain elements now carry around predicate
information, we use the same partial order check on ι as is used in the heap domain. Second,
we make a few modifications to the partial order check on the difference matrix.

Recall that the standard difference-bound matrices domain, on inputs MA and MB,
saturates MA and then checks if its entries are ≤ the entries of MB. This check remains
correct, but we make one change to deal with classes of size 0. In pseudocode, we write the
following. Recall the classdeps function defined in §4.2.2.

for x, y ∈ dimensions:
cA := MA[x, y]
cB := MB[x, y]
D := classdeps(x) ∪ classdeps(y)
if (cA ≤ cB) ∨ (∃C ∈ D. MA ⇒ #C = 0):

continue
else:

return false
return true

The second disjunct is the crucial one. If any classes mentioned in the constraint are
empty in EA, then the constraint simplifies to true in EA because of the implicit quantifiers.
Therefore, we can assume in EA that x − y ≤ c for any c, and so certainly it is true that
x− y ≤ cB, which is what we require for the partial order to hold.

Example 55 Suppose we have an element EA where #C = 0. We also have an element
EB where f [C] − 0 ≤ 100. According to the algorithm above EA v EB. Even though EA

does not directly imply f [C]−0 ≤ 100, the fact that class C is empty in EA means that any
fact about elements of C is indirectly implied by EA. In particular, the fact f [C]− 0 ≤ 100
from EB is implied. 2

Join. The join algorithm uses a similar test except that it is more symmetric. We show
the pseudocode below; the output matrix is M .

for x, y ∈ dimensions:
cA := MA[x, y]
cB := MB[x, y]
D := classdeps(x) ∪ classdeps(y)
if ∃C ∈ D. MA ⇒ #C = 0 then c := cB

else if ∃C ∈ D. MB ⇒ #C = 0 then c := cA

else c := max(cA, cB)
M [x, y] := c

return M

CHAPTER 4. DOMAIN ADAPTATIONS 152

4.2.8 Repartitioning

This operation is the most complicated of the integer domain. When we repartition
classes, we need to deal with two issues:

• Dimensions of the form #C must be updated to deal with the new class sizes.

• Dimensions of the form f [C1, . . . , Cn] and [C] must be rewritten to use the new class
names.

Since both steps are complicated, we handle them independently. The first repartitioning
step fixes up the cardinality dimensions and the second step rewrites class names in quan-
tified dimensions. An additional step is to rewrite the predicate values in ι using the same
technique as we did for the heap domain.

Recall that the Repartition2 function is called with two arguments. The first, a relation
R, describes how “original classes” are rewritten to “new classes.” It is a set of tuples of
the form (C,C ′), where C is an original class and C ′ is a new class. The other argument is
a set of facts F . It gives cardinality and disjointness information about the new classes.

In the rest of the section, we assume that R preserves partitionings. That is, if C1 and C2

are original classes belonging to the same partitioning, and if (C1, C
′
1) ∈ R and (C2, C

′
2) ∈ R,

then C ′1 and C ′2 must be in the same partitioning. We make the same requirement in the
other direction: if C ′1 and C ′2 are new classes from the same partitioning, and if (C1, C

′
1) ∈ R

and (C2, C
′
2) ∈ R, then C1 and C2 must be in the same partitioning. Both the heap domain

and the integer domain preserve these properties.

Cardinality dimensions. The first step is to rewrite cardinality dimensions based on the
repartitioning R and the facts F . Consider the following example.

Example 56 Suppose that R = {(C1, C
′
1), (C2, C

′
1), (C3, C

′
2), (C3, C

′
3)}. We draw this be-

low.

C1 C2 C3

C ′1 C ′2 C ′3

Suppose that all the original classes are in the same partitioning. Also suppose that
#C2 = 1. Let F = {(∀x ∈ C ′2. ∀y ∈ C ′2. x = y), (∃x ∈ C ′2. x = x), int : [C ′1 | C ′2 | C ′3]}.

Using F and R, we can generate a set of constraints that describe the new cardinality
dimensions. From F , we get that #C ′2 = 1. From R, we get a more complex set of
constraints. First we note that every individual in C1 or C2 (which are disjoint) must flow
into C ′1. Therefore, #C1 + #C2 ≤ #C ′1. By the same reasoning, #C3 ≤ #C ′2 + #C ′3.

CHAPTER 4. DOMAIN ADAPTATIONS 153

We can go in the other direction as well. Every individual in C ′1 must come from C1

or C2, so #C ′1 ≤ #C1 + #C2. And every individual in C ′2 and C ′3 must come from C3, so
#C ′2 + #C ′3 ≤ #C3.

Putting these four constraints together, we get:

#C ′1 = #C1 + #C2

#C ′2 + #C ′3 = #C3

#C2 = #C ′2 = 1

We add these constraints to M , saturate, and then eliminate all constraints involving
the original cardinality dimensions. In the example, this amounts to replacing occurrences
of #C1 with #C ′1− 1 and replacing #C3 with #C ′3 + 1. Now we are done repartitioning the
cardinality dimensions. 2

The general technique presented in the example is to add constraints based on R and F ,
saturate, and then eliminate occurrences of the old dimensions.

The difficult part is adding constraints based on R. We proceed in two steps. First, for
any subset S ′ of new classes, we find all the original classes S that they might derive from.
For example, if S = {C ′1}, we get S ′ = {C1, C2}. If S ′ = {C ′2}, we get S = {C3}. If all the
classes in S ′ are mutually disjoint, we add the following constraint:∑

C′∈S′

#C ′ ≤
∑
C∈S

#C.

This is because every individual in any S ′ class must come from an S class.
Similarly, if we let S be any subset of original classes, and let S ′ be all the classes that

their elements flow into, and if the classes in S are mutually disjoint, then we add the
following inequality. ∑

C∈S

#C ≤
∑
C′∈S′

#C ′

This is because every individual from an original class in S must flow into some class in S ′.
Once these constraints are added, we can saturate and eliminate the old dimensions.

Quantified dimensions. Now we have an element where cardinality dimensions have
been rewritten. We must deal with the other dimensions.

Example 57 Suppose we have an element with two classes, where f [Cx] ≤ 10 and f [Cy] ≤
20. That is, M [f [Cx], 0] = 10 and M [f [Cy], 0] = 20. We repartition this element with
R = {(Cx, C ′), (Cy, C ′)}, thereby merging the two classes into C. Then we want to compute
M ′[f [C ′], 0].

The basic process is to find all the original constraints of the form f [C] − 0 ≤ c, where
(C,C ′) ∈ R. Out of all the bounds c, we take the maximum to be conservative. In this case,
since M [f [Cx], 0] = 10 and M [f [Cy], 0] = 20, we get the values 10 and 20 for c. Their max
is 20, so we set M ′[f [C ′], 0] = 20. 2

CHAPTER 4. DOMAIN ADAPTATIONS 154

The following equation generalizes this process. When computing M ′[x′, y′], we use
classdeps to find the quantified classes in x′ and y′ and then we search for all the original
classes that might flow into them. We form original dimensions using these classes and take
the max over all the matrix bounds there.

M ′[x′, y′] := max
C1:(C1,C′

1)∈R
· · · max

Cn:(Cn,C′
n)∈R

M [x′[C ′1 7→ C1, . . . , C
′
n 7→ Cn], y′[C ′1 7→ C1, . . . , C

′
n 7→ Cn]]

(where classdeps(x′) ∪ classdeps(y′) = {C ′1, . . . , C ′n})

Notice the similarity between this equation and the one for repartitioning quantified facts
in the heap domain.

4.2.9 Related Work

The work by Gopan et al. [22] shows how to handle quantified dimensions in a sound
way. However, it omits discussion of empty classes, which introduces additional complexity
as we have described. It describes the repartitioning operation for quantified dimensions,
although its explanation is different. It considers only a few special cases for the relation R;
however, it explains the correct semantics for many possible integer domains, while we only
explain difference-bound matrices.

155

Chapter 5

Experiments

We have applied Deskcheck to the cache module of the thttpd web server [39]. We
chose this data structure because it relies on several invariants that require combined integer
and heap reasoning. We believe this data structure is representative of many that appear in
systems code, where arrays, lists, and trees are all used in a single composite data structure,
sometimes with reference counting used to manage deallocation.

The thttpd cache maps files on disk to their contents in memory. Figure 5.1 displays
an example of the structure. It is a composite between a hash table and a linked list. The
linked list of cache entries starts at the maps variable and continues through next pointers.
These same cache entries are also pointed to by elements of the table array. The rc field
records the number of incoming pointers from external objects, represented by circles. This
reference count is allowed to be zero.

Invariants

Figure 5.2 shows excerpts of the C code to add an entry to the cache. Besides the data
structures already discussed, the variable free maps is used to track unused cache entries (to

null nulltable

[0] [1] [2] [3]

rc = 2

index = 3

rc = 0

index = 1

maps

Figure 5.1: thttpd’s cache data structure.

CHAPTER 5. EXPERIMENTS 156

1 Map * map(...)
2 { /* Expand hash table if needed */
3 check_hash_size();
4 m = find_hash(...);
5 if (m != (Map*)0) {
6 /* Found an entry */
7 ++m->refcount;
8 ...
9 return m;

10 }
11 /* Find a free Map entry
12 or make a new one. */
13 if (free_maps != (Map*)0) {
14 m = free_maps;
15 free_maps = m->next;
16 } else {
17 m = (Map*)malloc(sizeof(Map));
18 }

19 m->refcount = 1;
20 ...
21 /* Add m to hashtable */
22 if (add_hash(m) < 0) {
23 /* error handling code */
24 }
25 /* Put m on active list. */
26 m->next = maps;
27 maps = m;
28 ...
29 return m;
30 }
31 static int add_hash(Map* m)
32 { ...
33 table[i] = m;
34 m->index = i;
35 ...
36 }

Figure 5.2: Excerpts of the thttpd map and add hash functions.

avoid calling malloc and free). Our goal is to verify that this code, as well as the related
code for releasing and freeing cache entries, is memory-safe. One obvious data-structure
invariant is that maps and free maps should point to acyclic singly-linked lists of cache
entries. However, there are two other invariants that are more complex but required for
memory safety.

Inv1: When a cache entry e is freed, thttpd nulls out its table entry via table[e.index]

= null. If the wrong element were overwritten, then a pointer to the freed entry would
remain in table, later leading to a segfault when accessed. Inv1 guarantees that if table[i] = e,
where e is the element being freed, then e.index = i, so the correct entry will be set to null.
§3.1.4 shows a small example of how this invariant is proved.

Inv2: This invariant relates to reference counting. The two main entry points to the
cache module are called map and unmap. The map call creates a cache entry if it does not
already exist and returns it to the caller. The caller can use the entry until it calls unmap.
The cache keeps a reference count of the number of outstanding uses of each entry; when
the count reaches zero, it is legal (although not necessary) to free the entry. Outstanding
references are shown as circles in Figure 5.1. The cache must maintain the invariant that
the number of outstanding references is equal to the value of an entry’s reference count (rc)
field—otherwise an entry could be freed while still in use. §3.1.5 shows an example of how
this invariant is proved.

CHAPTER 5. EXPERIMENTS 157

Entry-point Analysis time
map 28.23 s
unmap 9.08 s
cleanup 76.81 s
destroy 5.80 s
Total 123.47 s

Table 5.1: Analysis times of thttpd analysis.

Verification

The cache library has four entry points. The map procedure checks if a file is already in
the cache. If not, it loads the file from disk into a new cache entry. It returns a reference to
the entry, incrementing its reference count. The unmap procedure is called when the server
is finished with the cache entry. The entry’s reference count is decremented but it remains
in the cache. The cleanup procedure frees the data associated with entries whose reference
count is zero and adds the entries to the free list. It may leave allow some recently used
entries to remain if there is sufficient memory. In low memory situations, it frees entries on
the free list. Finally, the destroy procedure is called when the server is shut down. It frees
all reachable data.

This functionality corresponds to 531 lines of C code, or 387 lines of PBJ. The translation
from C to PBJ was done manually. The PBJ code is shorter because it elides the system
calls for opening files and reading them into memory; instead, it simply allocates a buffer
to hold the data. It also omits logging code and comments. We show the PBJ code on 160.

Our goal is to check that the cache does not contain any memory errors. That is, it does
not access freed memory or fail to free unreachable memory. We also check that all array
accesses are in bounds, that unassigned memory is never accessed, and that null is never
dereferenced. We found no bugs in the code.

We verify the cache in the context of a client test harness (see the client procedure
starting at line 73). This client keeps a linked list of simulated HTTP connections. Each
connection stores a pointer to data retrieved from the cache. In a loop, the client calls either
map, unmap, or cleanup. When the loop terminates, it calls destroy. At any time, many
connections may share the same data.

Table 5.1 shows the performance of the analysis. The total at the bottom is slightly
larger than the sum of the entry-point times because it includes analysis of the client code
as well. Information about the number of disjunctions used at each program was already
presented in §2.6.4.

We analyze procedure calls by inlining them. This is possible only because there is no
recursion. Since some procedures are called in multiple contexts, we analyze some code many
times. Finding a more efficient way to handle procedures is the key to finding a scalable
analysis. As the program becomes larger, inlining ceases to be a practical strategy.

CHAPTER 5. EXPERIMENTS 158

Invariant type Number of predicates
Linked list properties 11
Buffer reachability and sharing 2
Integer partitioning 3
Inv1 2
Inv2 2
Total 20

Table 5.2: Breakdown of predicates used in thttpd analysis.

We review the code, which starts on page 160. First we define maps corresponding to the
fields and global variables for the cache. The linked list headed by connections contains
the simulated HTTP connections; it is used by the test harness and is not part of the cache
data structure itself.

Next we define a series of global predicates starting on line 25. Each one is annotated to
say whether it is a heap domain predicate or a numeric domain predicate. Some predicates
are annotated as being abstraction predicates. We use all, ex, and tc to expression ∀, ∃,
and transitive closure. We summarize the predicates in Table 5.2.

Most of the global predicates (11 of 20) are used to define typical linked list properties for
the maps, free maps, and connections lists. These predicates are essentially “boilerplate;”
their definitions could be shortened significantly or even eliminated. The buffer predicates
(BufferReach and BufferShared) essentially say that each buffer object is accessible from
exactly one map object; these two are boilerplate. The Nlo, Nok, and Nhi define a default
integer abstraction for the hash table array; these three could be eliminated by moving
away from the canonical abstraction in the integer domain.

The interesting predicates are the ones for Inv1 and Inv2. We have already described
them both in §3.1.4 and §3.1.5. We need two predicates to express Inv1. For Inv2, we use
two predicates and an instrumentation function in the integer domain.

Most of the code, which starts in line 133, is straightforward. In a few procedures, we
define local predicates and local partitionings. Most of these are to maintain the array
abstraction. As we discussed in §4.2.4, moving away from canonical abstraction would
eliminate the need for most of these. We also define a few local reachability predicates in
functions that traverse linked lists. We suspect these could be inferred by searching for data
structure traversals syntactically.

There are two kinds of annotations in the code itself. We have already discussed split

annotations (§4.2.4), of which there are 14. Moving away from canonical abstraction would
eliminate the need for these. The enable and disable annotations, of which there are 10,
add or remove a predicate from the set of abstraction predicates, as discussed in §2.6.3. It
would not be difficult to infer these annotations syntactically (adding them around blocks
of code that traverse a given data structure).

We also note two places where we had to change the code. The check hash size proce-

CHAPTER 5. EXPERIMENTS 159

dure is responsible for resizing the hash table if it is too small. The C code expands the hash
table by doubling its size. Our integer analysis cannot reason precisely about the assignment
hash size := hash size*2, so we changed it to the simpler hash size := hash size +

100.
Additionally, the hash table uses a bit mask operation to compute its hash function. Our

integer domain does not understand bit masking, so we changed the operation to a modulus,
of which it has limited understand.

Conclusion

To sum up, we are able to prove all the invariants about thttpd listed in Chapter 1.
The time to analyze the program is not unreasonable and the annotation burden is fairly
low. Given the expressive power of the analysis—its ability to prove the memory safety of
a complex data structure—we feel that the costs are worth the benefit.

CHAPTER 5. EXPERIMENTS 160

5.1 The Code

1 type Map;
2 type Buffer;
3 type Conn;
4

5 /* Field declarations */
6 global Map_key[Map]:int;
7 global Map_refcount[Map]:int;
8 global Map_addr[Map]:Buffer;
9 global Map_hash_idx[Map]:int;

10 global Map_next[Map]:Map;
11

12 /* Global variables */
13 global maps:Map;
14 global free_maps:Map;
15 global hash_table[int]:Map;
16 global hash_size:int;
17

18 /* Fields and local variables for client */
19 global Conn_next[Conn]:Conn;
20 global Conn_key[Conn]:int;
21 global Conn_addr[Conn]:Buffer;
22

23 global connections:Conn;
24

25 /*** Beginning of predicate declarations ***/
26

27 /* Used for array abstraction */
28 predicate(numeric, abstraction) Nlo(x:int) = x < 0;
29 predicate(numeric, abstraction) Nok(x:int) = x >= 0 && x < hash_size;
30 predicate(numeric, abstraction) Nhi(x:int) = x >= hash_size;
31

32 /* These constrain the linked list of connections */
33 predicate(heap) ConnTC(n1:Conn, n2:Conn) = tc(n1, n2) Conn_next;
34 predicate(heap, abstraction) ConnReach(n:Conn) =
35 n = connections || ConnTC(connections, n);
36 predicate(heap) ConnShared1(n:Conn) =
37 ex(n1:Conn) ex(n2:Conn) Conn_next[n1] = n && Conn_next[n2] = n && n1 != n2;
38 predicate(heap) ConnShared2(n:Conn) =
39 connections = n && ex(n2:Conn) Conn_next[n2] = n;
40 predicate(numeric) ConnPosKey(n:Conn) = Conn_key[n] >= 0;
41

42 /* These constrain the linked lists of maps (free_maps and maps) */

CHAPTER 5. EXPERIMENTS 161

43 predicate(heap) MapTC(n1:Map, n2:Map) = tc(n1, n2) Map_next;
44 predicate(heap, abstraction) MapReach(n:Map) = n = maps || MapTC(maps, n);
45 predicate(heap, abstraction) MapReachFree(n:Map) =
46 n = free_maps || MapTC(free_maps, n);
47 predicate(heap) MapShared1(n:Map) =
48 ex(n1:Map) ex(n2:Map) Map_next[n1] = n && Map_next[n2] = n && n1 != n2;
49 predicate(heap) MapShared2(n:Map) = maps = n && ex(n2:Map) Map_next[n2] = n;
50 predicate(heap) MapShared3(n:Map) =
51 free_maps = n && ex(n2:Map) Map_next[n2] = n;
52

53 /* These constrain the buffers of data that maps point to */
54 predicate(heap) BufferReach(b:Buffer) =
55 ex(n:Map) Map_addr[n] = b;
56 predicate(heap) BufferShared(b:Buffer) =
57 ex(n1:Map) ex(n2:Map) Map_addr[n1] = b && Map_addr[n2] = b && n1 != n2;
58

59 /* Predicates for Inv1 */
60 predicate(numeric) MapHasIdx(n:Map, i:int) = Map_hash_idx[n] = i;
61 predicate(heap) MapIndexGood(i:int) =
62 all(n:Map) hash_table[i] != n || MapHasIdx(n, i) || n = null;
63

64 /* Predicates for Inv2 */
65 predicate(heap) MapConnMatch(c:Conn, m:Map) =
66 Map_addr[m] = Conn_addr[c] && Map_addr[m] != null;
67 function(numeric) MapRC(n:Map) = card(c:Conn) MapConnMatch(c, n);
68 predicate(numeric, abstraction) MapRCGood(n:Map) = MapRC[n] = Map_refcount[n];
69

70 /* Partitioning for array abstraction */
71 partitioning(numeric) Phash = Nlo, Nok, Nhi;
72

73 /*** Beginning of client test harness ***/
74

75 procedure client():int
76 key:int;
77 {
78 hash_size := 0;
79 maps := null;
80 free_maps := null;
81 connections := null;
82

83 while (*) {
84 if (*) {
85 havoc key : key >= 0;
86 open_connection(key);

CHAPTER 5. EXPERIMENTS 162

87 }
88 if (*) {
89 close_connection();
90 }
91 if (*) {
92 mmc_cleanup();
93 }
94 }
95 mmc_destroy();
96 return 0;
97 }
98

99 procedure open_connection(key:int):int
100 c:Conn;
101 addr:Buffer;
102 {
103 addr := mmc_map(key);
104 c := new Conn;
105 Conn_key[c] := key;
106 Conn_addr[c] := addr;
107 Conn_next[c] := connections;
108 connections := c;
109 return 0;
110 }
111

112 procedure close_connection():int
113 b:Buffer;
114 c:Conn;
115 tmp:Conn;
116 {
117 c := connections;
118 if (c != null) {
119 tmp := Conn_next[c];
120 connections := Conn_next[c];
121 Conn_next[c] := null;
122 tmp := null;
123

124 b := Conn_addr[c];
125 mmc_unmap(b, Conn_key[c]);
126 Conn_addr[c] := null;
127 delete c;
128 c := null;
129 }
130 return 0;

CHAPTER 5. EXPERIMENTS 163

131 }
132

133 /*** Beginning of mmc.c code ***/
134

135 procedure mmc_map(key:int):Buffer
136 m:Map;
137 b:Buffer;
138 {
139 check_hash_size();
140

141 m := find_hash(key);
142 if (m != null) {
143 Map_refcount[m] := Map_refcount[m]+1;
144 b := Map_addr[m];
145 return b;
146 }
147

148 @enable(free_maps);
149 if (free_maps != null) {
150 m := free_maps;
151 free_maps := Map_next[m];
152 Map_next[m] := null;
153 } else {
154 m := new Map;
155 Map_next[m] := null;
156 }
157 @disable(free_maps);
158

159 Map_key[m] := key;
160 Map_refcount[m] := 1;
161 b := new Buffer;
162 Map_addr[m] := b;
163

164 add_hash(m);
165

166 Map_next[m] := maps;
167 maps := m;
168

169 return b;
170 }
171

172 procedure mmc_unmap(addr:Buffer, key:int):int
173 m:Map;
174

CHAPTER 5. EXPERIMENTS 164

175 predicate(heap) Reach_m(n:Map) = MapTC(m, n);
176 {
177 m := find_hash(key);
178 if (m != null) {
179 if (Map_addr[m] != addr) {
180 m := null;
181 }
182 }
183

184 if (m = null) {
185 m := maps;
186 while (m != null) {
187 [<loop>]
188

189 if (Map_addr[m] = addr) goto loop_exit;
190

191 m := Map_next[m];
192 }
193 [<loop_exit>]
194 }
195

196 @assert(m != null);
197 Map_refcount[m] := Map_refcount[m]-1;
198

199 return 0;
200 }
201

202 procedure check_hash_size():int
203 m:Map;
204 i:int;
205

206 predicate(heap) Reach_m(n:Map) = MapTC(m, n);
207 predicate(numeric) Ni(x:int) = x = i;
208 predicate(numeric) Nlti(x:int) = x < i;
209 partitioning(numeric) Phash_i = Nlo, Nok, Nhi, Ni, Nlti;
210 {
211 @split(Phash_i, 0);
212 @split(Phash_i, hash_size + 100);
213 @split(Phash, hash_size + 100);
214

215 hash_size := hash_size + 100; // FIXME
216

217 i := 0;
218 @split(Phash_i, i);

CHAPTER 5. EXPERIMENTS 165

219 while (i < hash_size) {
220 [<null_loop>]
221 hash_table[i] := null;
222 @split(Phash_i, i+1);
223 i := i+1;
224 }
225

226 m := maps;
227 while (m != null) {
228 [<add_loop>]
229 add_hash(m);
230 m := Map_next[m];
231 }
232

233 return 0;
234 }
235

236 procedure add_hash(m:Map):int
237 h:int; he:int; i:int;
238

239 predicate(numeric) Ni(x:int) = x = i;
240 partitioning(numeric) Phash_i = Nlo, Nok, Nhi, Ni;
241 {
242 @split(Phash_i, 0);
243 @split(Phash_i, hash_size);
244

245 h := Map_key[m] % hash_size;
246 he := (h + hash_size - 1) % hash_size;
247 i := h;
248 while (0 = 0) {
249 [<loop>]
250

251 @split(Phash_i, i);
252 if (hash_table[i] = null) {
253 hash_table[i] := m;
254 Map_hash_idx[m] := i;
255 return 0;
256 }
257 if (i = he) goto loop_exit;
258 i := (i+1) % hash_size;
259 }
260 [<loop_exit>]
261 Map_hash_idx[m] := 0;
262 return -1;

CHAPTER 5. EXPERIMENTS 166

263 }
264

265 procedure find_hash(key:int):Map
266 m:Map;
267 h:int; he:int; i:int;
268

269 predicate(numeric) Ni(x:int) = x = i;
270 partitioning(numeric) Phash_i = Nlo, Nok, Nhi, Ni;
271 {
272 @split(Phash_i, 0);
273 @split(Phash_i, hash_size);
274

275 h := key % hash_size;
276 he := (h + hash_size - 1) % hash_size;
277 i := h;
278 m := null;
279 while (0 = 0) {
280 [<loop>]
281

282 @assert(0 <= i && i < hash_size);
283 @split(Phash_i, i);
284 m := hash_table[i];
285 if (m = null) goto loop_exit;
286 if (Map_key[m] = key) return m;
287 if (i = he) goto loop_exit;
288 i := (i+1) % hash_size;
289

290 m := null;
291 }
292 [<loop_exit>]
293 return null;
294 }
295

296 procedure really_unmap(m:Map, prev:Map):Map
297 rm:Map;
298 b:Buffer;
299 n:int;
300

301 predicate(heap) Reach_rm(n:Map) = MapTC(rm, n);
302 predicate(numeric) Nnlo(i:int) = i < n;
303 predicate(numeric) Nn(i:int) = i = n;
304 partitioning(numeric) Ptable = Nlo, Nok, Nhi, Nn, Nnlo;
305 {
306 b := Map_addr[m];

CHAPTER 5. EXPERIMENTS 167

307 delete b;
308 b := null;
309 Map_addr[m] := null;
310

311 @split(Ptable, 0);
312 @split(Ptable, hash_size);
313 n := Map_hash_idx[m];
314 @split(Ptable, n);
315 hash_table[n] := null;
316

317 rm := Map_next[m];
318

319 if (prev = null) maps := Map_next[m];
320 else Map_next[prev] := Map_next[m];
321

322 @enable(free_maps);
323 Map_next[m] := free_maps;
324 free_maps := m;
325 @disable(free_maps);
326

327 return rm;
328 }
329

330 procedure mmc_destroy():int
331 m:Map;
332 {
333 m := maps;
334 while (m != null) {
335 m := really_unmap(m, null);
336 }
337

338 @enable(free_maps);
339 while (free_maps != null) {
340 m := free_maps;
341 free_maps := Map_next[m];
342 delete m;
343 m := null;
344 }
345 @disable(free_maps);
346

347 return 0;
348 }
349

350 procedure mmc_cleanup():int

CHAPTER 5. EXPERIMENTS 168

351 head:Map;
352 m:Map;
353 prev:Map;
354

355 predicate(heap) Reach_m(n:Map) = MapTC(m, n);
356 {
357 @disable(MapRCGood);
358 m := maps;
359 head := m;
360 prev := null;
361 while (m != null) {
362 if (Map_refcount[m] = 0) {
363 m := really_unmap(m, prev);
364 if (prev = null) head := m;
365 } else {
366 prev := m;
367 m := Map_next[m];
368 }
369 }
370

371 prev := null;
372 head := null;
373

374 @enable(free_maps);
375 while (free_maps != null) {
376 m := free_maps;
377 free_maps := Map_next[m];
378 delete m;
379 m := null;
380 if (*) goto loop_exit;
381 }
382 [<loop_exit>]
383 @disable(free_maps);
384 @enable(MapRCGood);
385

386 return 0;
387 }

169

Chapter 6

Conclusion

In §1.5 of the introduction, we summarized the goals of this thesis. One goal is to design
a heap domain based on TVLA that is capable of analyzing the thttpd code easily and
efficiently. Another goal is to make a working combined domain to reason effectively about
the invariants of interest to us. The final goal is to augment the integer domain to the point
that it can reason about complex cardinality and reference counting invariants. This final
chapter reviews our progress on these goals.

In Chapter 2, we presented several major changes to the TVLA heap analysis to make it
faster and easier to use. To speed up the analysis, we built a query optimizer and an efficient
query execution engine. These two pieces increased query performance by three orders of
magnitude. We also developed an improved abstraction that reduces the number of disjuncts
that appear in analysis results from 18 to 2 in the median. Eliminating disjuncts increases
scalability by an exponential factor. It also makes the analysis results easier for users to
understand. Our new sharpening algorithm also improves on TVLA’s ease-of-use. Since
it is more precise than TVLA’s algorithm, users do not have to manually specify integrity
constraints for the predicates they define. This reduces the overall annotation burden.

We chose TVLA over analyses based on separation logic because TVLA is a better fit
for our combined domain. However, we believe that the changes we have made in our heap
domain make it competitive with separation logic in almost every respect—performance,
scalability, and ease of use. However, we did not address the important issue of interproce-
dural analysis.

Chapter 3 presented the combined domain, which allows us to infer invariants requiring
mixed heap and integer reasoning. The most salient feature of our combined domain is
its generality. We use it to reason about indexing, cardinality, and reference counting, all
of which require communication between the heap and the integer domain. However, the
combined domain is oblivious to these specific properties because they can all be expressed
in the language of predicates and classes. The generality of the combined domain is useful
for implementers because new features can be added to the base domains without affecting
the combined domain at all. Despite the wide range of invariants we support, the combined
domain is expressible in fewer than 500 lines of ML code.

CHAPTER 6. CONCLUSION 170

Finally, Chapter 4 presents an integer domain augmented with additional features for
quantification, predicates, and cardinality. We are not aware of any other automated anal-
ysis that supports these features with the same level of generality that we do. For example,
several tools perform cardinality reasoning [25, 31], but we know of no tool that can do quan-
tified cardinality reasoning (i.e., reasoning about the cardinality of a set that is parametrized
by a quantified variable).

To conclude, we have developed a precise, efficient analysis for real-world systems code
and implemented it in the Deskcheck system. Since the invariants needed for these systems
are beyond the power of existing analyses, we developed an abstract domain that combines
the power of a heap domain and an integer domain while still allowing the reasoning in
these domains to be compartmentalized. We improved the state of the art for both heap
domains and integer domains to make them more precise, more efficient, and easier to use.
Finally, we tested Deskcheck on the cache module of the thttpd web server and were able
to verify its memory safety in two minutes.

171

Bibliography

[1] Gilad Arnold. Specialized 3-valued logic shape analysis using structure-based refinement
and loose embedding. In SAS, 2006.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Science of Computer Programming, 2008. To appear.

[3] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite data structures. In
CAV, 2007.

[4] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with
separation logic. In In APLAS, pages 52–68. Springer, 2005.

[5] Igor Bogudlov, Tal Lev-Ami, Thomas W. Reps, and Mooly Sagiv. Revamping TVLA:
Making parametric shape analysis competitive. In Werner Damm and Holger Her-
manns, editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 221–
225. Springer, 2007.

[6] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and Tomás
Vojnar. Programs with lists are counter automata. In CAV, pages 517–531, 2006.

[7] Franois Bourdoncle. Efficient chaotic iteration strategies with widenings. In In Pro-
ceedings of the International Conference on Formal Methods in Programming and their
Applications, pages 128–141. Springer-Verlag, 1993.

[8] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic. In SAS, pages
182–203, 2006.

[9] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In POPL
’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 247–260, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 172

[10] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. Effective interactive proofs for higher-order imperative programs. In ICFP ’09:
Proceedings of the 14th ACM SIGPLAN international conference on Functional pro-
gramming, pages 79–90, New York, NY, USA, 2009. ACM.

[11] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C.
Necula. Dependent types for low-level programming. In Rocco De Nicola, editor,
ESOP, volume 4421 of Lecture Notes in Computer Science, pages 520–535. Springer,
2007.

[12] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains
for logic programming. SCP, 38(1–3):27–71, 2000.

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[14] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL,
pages 269–282, 1979.

[15] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In POPL,
pages 238–252, 1977.

[16] A. Deutsch. On determining lifetime and aliasing of dynamically allocated data in
higher-order functional specifications. In POPL, pages 157–168, 1990.

[17] A. Deutsch. Operational Models of Programming Languages and Representations of
Relations on Regular Languages with Application to the Static Determination of Dy-
namic Aliasing Properties of Data. PhD thesis, LIX, The Comp. Sci. Lab of École
Polytechnique, 1992.

[18] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
PLDI, pages 230–241, 1994.

[19] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based
on separation logic. In In TACAS, pages 287–302. Springer, 2006.

[20] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting
all buffer overflows in C. In PLDI, pages 155–167, 2003.

[21] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference counting imple-
mentations. In TACAS, 2009.

BIBLIOGRAPHY 173

[22] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Mooly Sagiv. Numeric
domains with summarized dimensions. In TACAS, pages 512–529, 2004.

[23] Denis Gopan, Thomas W. Reps, and Mooly Sagiv. A framework for numeric analysis
of array operations. In POPL, pages 338–350, 2005.

[24] P. Granger. Improving the results of static analyses programs by local decreasing
iteration. In FSTTCS, 1992.

[25] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework for tracking
partition sizes. In POPL, pages 239–251, 2009.

[26] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple
programs. In PLDI, pages 339–348, 2008.

[27] Jesper G. Henriksen, Ole J.L. Jensen, Michael E. Jrgensen, Nils Klarlund, Robert Paige,
Theis Rauhe, and Anders B. Sandholm. MONA: Monadic second-order logic in practice.
In TACAS ’95, LNCS 1019. Springer-Verlag, 1995.

[28] Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv. A relational ap-
proach to interprocedural shape analysis. ACM Trans. Program. Lang. Syst., 32(2):1–
52, 2010.

[29] Shuvendu Lahiri and Shaz Qadeer. Back to the future: Revisiting precise program
verification using SMT solvers. In POPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 171–
182, New York, NY, USA, 2008. ACM.

[30] K. Rustan M. Leino. This is boogie 2. Available at http://research.microsoft.

com/en-us/um/people/leino/papers/krml178.pdf.

[31] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for reasoning about shape
and arithmetic. In CAV, 2008.

[32] Stephen Magill, Josh Berdine, Edmund M. Clarke, and Byron Cook. Arithmetic
strengthening for shape analysis. In SAS, pages 419–436, 2007.

[33] R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis by
graph decomposition. In In 13th TACAS, pages 3–18. Springer, 2007.

[34] Roman Manevich, Mooly Sagiv, G. Ramalingam, and John Field. Partially disjunctive
heap abstraction. In Roberto Giacobazzi, editor, Proceedings of the 11th International
Symposium, SAS 2004, volume 3148 of Lecture Notes in Computer Science, pages 265–
279. Springer, August 2004. Available at http://www.cs.tau.ac.il/∼rumster/sas04.pdf.

BIBLIOGRAPHY 174

[35] Scott McPeak and George C. Necula. Data structure specifications via local equality
axioms. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of
Lecture Notes in Computer Science, pages 476–490. Springer, 2005.

[36] Antoine Miné. A new numerical abstract domain based on difference-bound matrices.
In PADO ’01: Proceedings of the Second Symposium on Programs as Data Objects,
pages 155–172, London, UK, 2001. Springer-Verlag.

[37] Anders Moller and Michael I. Schwartzbach. The pointer assertion logic engine. In PLDI
’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 221–231, New York, NY, USA, 2001. ACM Press.

[38] George C. Necula, Scott McPeak, and Westley Weimer. Ccured: type-safe retrofitting
of legacy code. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 128–139, New York, NY, USA,
2002. ACM.

[39] J. Poskanzer. thttpd - tiny/turbo/throttling http server. http://acme.com/software/
thttpd/.

[40] Thomas W. Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of logical
formulas for static analysis. In ESOP, pages 380–398, 2003.

[41] Thomas W. Reps, Mooly Sagiv, and Alexey Logonov. Finite differencing of logical
formulas for static analysis. ACM TOPLAS, 32(4), 2010.

[42] Noam Rinetzky, Jörg Bauer, Thomas W. Reps, Mooly Sagiv, and Reinhard Wilhelm. A
semantics for procedure local heaps and its abstractions. In In POPL, pages 296–309,
2005.

[43] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis for
cutpoint-free programs. In 12th International Static Analysis Symposium (SAS), 2005.

[44] Radu Rugina. Quantitative shape analysis. In SAS, pages 228–245, 2004.

[45] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems
in languages with destructive updating. In POPL ’96: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 16–31,
New York, NY, USA, 1996. ACM.

[46] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[47] Mooly Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. ACM TOPLAS, 24(3):217–298, 2002.

BIBLIOGRAPHY 175

[48] Arnaud Venet. Automatic analysis of pointer aliasing for untyped programs. Sci.
Comput. Program, 35(2):223–248, 1999.

[49] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter O’Hearn. Scalable shape analysis for systems code. In CAV ’08:
Proceedings of the 20th international conference on Computer Aided Verification, pages
385–398, Berlin, Heidelberg, 2008. Springer-Verlag.

[50] Tuba Yavuz-Kahveci and Tevfik Bultan. Automated verification of concurrent linked
lists with counters. In SAS, pages 69–84, 2002.

[51] Greta Yorsh, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Logical characteri-
zations of heap abstractions. ACM Trans. Comput. Logic, 8(1):5, 2007.

[52] Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. Symbolically computing most-
precise abstract operations for shape analysis. In Kurt Jensen and Andreas Podelski,
editors, TACAS, volume 2988 of Lecture Notes in Computer Science, pages 530–545.
Springer, 2004.

[53] Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of linked
data structures. In ACM Conf. Programming Language Design and Implementation
(PLDI), 2008.

[54] Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof language for im-
perative programs. In ACM Conf. Programming Language Design and Implementation
(PLDI), 2009.

