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Abstract

An Investigation into the Realities of a Quantum Datapath

by

Nemanja Isailovic
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John David Kubiatowicz, Chair

Quantum computing has shown great potential for being able to solve certain
problems which are intractable on classical machines. Peter Shor devised a means
to factor large number in polynomial time on a quantum machine, a feat which
would compromise modern public key cryptosystems. Further, simulation of quan-
tum mechanical systems, which is exponential in both space and time on a classical
machine, is expected to be far faster on a quantum machine. In this work, we present
mechanisms for producing a laid out and scheduled quantum datapath tailored to a
particular target circuit.

We identify two key pieces of support infrastructure in a quantum datapath. First,
some quantum operations require the use of helper qubits known as ancilla qubits
which are not part of the target circuit specification. We introduce and design efficient
ancilla factories to use as basic functional units in our datapath layouts. Second, we
provide designs for the basic components that allow the construction of a teleportation
network, which is necessary for long distance communication on a quantum datapath.

We utilize our basic component designs in proposing a malleable architectural
specification which we call Qalypso. The benefit of the flexibility of Qalypso lies in
the ability to fine tune the various components of the datapath to suit the needs of
a given quantum circuit. Ancilla bandwidth, network resources and interfacing of
support infrastructure to data may all be tailored to fit circuit characteristics.

To complete the process of laying out and scheduling a quantum circuit, we device
heuristics for mapping the circuit onto Qalypso while simultaneously finalizing the
datapath characteristics as appropriate for the circuit. Our methods produce a final
realizable datapath layout and associated scheduling, both optimized for the circuit
in question.

We have implemented these heuristics in a quantum CAD flow toolset currently
tailored to designing architectures in ion trap technology. We conclude this thesis by
demonstrating the application of these heuristics through the automated toolset to
construct a datapath and schedule optimized for Shor’s factorization algorithm.
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Chapter 1

Introduction

Quantum computers will be able to solve a number of important physics and
mathematical problems with interesting asymptotic improvements [67, 2, 54, 29].
The most cited potential use for quantum computing is to factor large numbers based
on Shor’s algorithm [54]. In order for quantum computers to solve these difficult and
interesting problems, they will need to support a larger number of quantum data
bits (qubits) and quantum circuit elements. In order to sufficiently scale a quantum
computer, there are a number of challenges to overcome. We focus on the overall
architecture of the quantum datapath, the design of specialized hardware components
and the process of mapping a quantum circuit onto a datapath.

To get an idea of the scope of the problem, we begin with a back of the envelope
calculation. A typical implementation of Shor’s factorization algorithm [56] requires
3n data qubits to factor an n bit number. Thus, to factor a 1024-bit number, we need
∼3000 qubits. Due to the fragility of quantum state, these qubits must be encoded for
redundancy. A popular code is the Steane [[7,1,3]] CSS code, which encodes each data
qubit into seven qubits, raising the count to ∼21000 qubits. Two pieces of support
infrastructure are needed as well. [55] showed that error correction hardware is likely
to take an order of magnitude more resources than the qubits being corrected, while
[33] showed the same for the communication network. This gives us a final estimate
of 21000 + 210000 + 210000 = 441000 qubits in the system.

In the rest of this chapter, we shall introduce the basics of quantum computing and
the state of the art in quantum computer architecture. In Section 1.1, we introduce
the fundamentals of quantum circuits, which are intrinsically independent of physical
layouts. In Section 1.2, we present the details of the quantum technology we shall be
using throughout this work, the ion trap technology.

Since the management of 100’s of thousands of qubits will require a great deal of
organization, we have constructed a CAD toolset for designing quantum datapaths.
In Section 2.1, we introduce the basics of classical CAD tools upon which we shall
build. We conclude this chapter in Section 1.3 with an overview of the state of the art
in quantum computer architecture, which we shall use as our baseline for comparison.
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1.1 Quantum Circuits

We will later talk about how to automatically synthesize, optimize, and lay out
quantum circuits. First we must understand what a quantum circuit is and how it
differs from the classical circuit model. In order to understand this, we will begin
with individual quantum bits (qubits) and build up from there.

1.1.1 Qubits, Superposition and Measurement

A quantum bit, or qubit, represents the atomic quantity of information in a quan-
tum computer. Unlike a classical bit, which exists in either the 0 or 1 state at any
given time, a qubit exists in a mixture, or superposition, of the 0 and 1 states. This si-
multaneous existence in both states may be exploited by carefully devised algorithms.

The standard Dirac notation [44] describes the state of qubit q0 in the following
form:

|q0 >= α|0 > +β|1 > (1.1)

This means that qubit q0 is in a superposition of the states 0 and 1 with the complex
coefficients α and β describing the extent to which the qubit is in each state.

It is not possible to directly determine the coefficients in a quantum state. In order
to get any useful information out of a quantum system, we perform an operation
known as measurement, which collapses the qubit to either the |0 > or the |1 >
state. Specifically, when we perform a measurement on the qubit in Equation 1.1, we
collapse the state of the qubit to |0 > with probability |α|2 or to |1 > with probability
|β|2. Once the measurement is complete, the qubit is in the new collapsed state and
the previous coefficients are forever gone. The basis of quantum algorithms is to
manipulate the underlying coefficients such that we get a favorable state collapsing
upon measurement.

Multi-qubit systems work in a similar manner. Suppose that we have a second
qubit q1 in the following state:

|q1 >= γ|0 > +δ|1 > (1.2)

Combining these qubits into a single system is done by taking the product of their
states, resulting in the following combined state:

αγ|00 > +αδ|01 > +βγ|10 > +βδ|11 > (1.3)

The upshot is that the two qubit system has a complex coefficient associated with each
possible classical state (in this case, they are 00, 01, 10 and 11). Since the coefficients
determine the probability of collapsing to the associated state upon measurement, the
sum of the squares of the magnitudes of the coefficients must be equal to one. Also,
note that, in general, an n-qubit system requires 2n complex coefficients to properly
describe it, since that is the number of n-bit strings. However, there is no rule against
any of the coefficients being equal to zero.
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Figure 1.1: An example of a quantum circuit on four qubits with five one-qubit gates,
four two-qubit gates and two measurement operations.

1.1.2 Quantum Circuit Model

Classical computers in CMOS technology have spent a lot of time fighting “quan-
tum effects” as feature sizes shrink into the 10s of nanometers range. A quantum
computer, on the other hand, strives to amplify and utilize quantum effects such
as entanglement and superposition as much as possible. One method for expressing
quantum algorithms is via the quantum circuit model. In this model, qubits are repre-
sented by horizontal lines, while operations are represented by sequences of quantum
gates operating on these qubits.

Figure 1.1 illustrates a quantum circuit on four qubits (q0, q1, q2 and q3) with
five one-qubit gates (one H , two Y ’s and two Z’s), four two-qubit gates (the ones
which connect pairs of qubits) and two measurement operations (the M ’s). Note that
since measurement collapses quantum state to a classical value, the qubit ceases to
exist in our circuit and the horizontal line corresponding to that qubit ends at the
measurement. The states of the other two qubits, q1 and q3, still exist at the end of
the circuit.

Quantum circuits, which are superficially similar to classical circuits, will be our
method for expressing quantum logic in this thesis. The basic abstraction of a quan-
tum circuit is a collection of quantum gates connected by wires. This model is similar
to a classical circuit specification but there are two main differences:

• Quantum gates are unitary and therefore reversible [4]. Reversibility typically
requires the use of scratch bits called ancilla qubits, or simply ancillae, in order
to have the same number of inputs and outputs for each gate.

• Due to the no-cloning theorem [66] qubits cannot be duplicated. This prevents
any fan-out of wires in a quantum circuit.
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a) classical XOR b) classical-like CNOT c) entangling CNOT

Figure 1.2: A comparison between a classical XOR and its quantum analog: the
controlled-not or CNOT. The CNOT gate is reversible, thus the additional output.
Figure b) outputs the XOR result to the bottom bit. Figure c) shows the same CNOT
when the input is a quantum superposition. In this case the output is an entangled
qubit state, not representable as independent qubit values for the two outputs.

Figure 1.2a shows quantum and classical XOR gates, the quantum version is
known as a controlled-not (CNOT) gate as shown in Figure 1.2b. If the quantum
inputs are not in a superposition state, the output of the gate is the same as the
classical version (with the addition of another output for reversibility). If the “control”
input to the CNOT gate is allowed to be a superposition, as in Figure 1.2c, things
get more interesting. The resulting output state is an entangled state which has no
classical analog and is thus unique to the quantum realm.

Quantum circuits operate on these entangled superposition states, and these states
provide the key to the power of quantum algorithms. In the end, though, the data
cannot stay in a superposition. In order to read out an answer from the quantum
computer, the qubits must be measured so that the data can be presented to the
classical world. The process of measurement collapses a superposition state into just
one definite bit vector. Measurement also helps us understand the output state from
Figure 1.2c. The entangled state |00 > +|11 > means that when we measure, the
resulting classical bit vector will be 00 or 11 (with equal probability).

1.1.3 Universal Gates

Due to the more complicated structure of quantum superpositions, there is no
single 2-bit universal gate as in the case of the NAND gate in classical logic. Instead,
one can use the reversible 3-bit toffoli gate as a universal gate. Since many quantum
circuit technologies are practically limited to 1 and 2 bit interactions, we can construct
a universal set of 1 and 2 qubit gates as shown in [4]. A standard universal set of
1 and 2 qubit quantum gates comes from [8] and is the CNOT (shown above as a
reversible XOR), the Hadamard or H gate (which converts a bit value to a phase
value and vice versa), the π

4
rotation gate, also known as the T gate, and the phase

gate. These gates are shown in Figure 1.3 along with some additional gates we will
use in the circuits throughout the paper. In reality, different elementary gates are
easier or harder to implement depending on which technology is being used.
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Figure 1.3: Basic gates for quantum circuits: this is a set of gates which supports
a universal quantum computing model. The Hadamard gate converts bit values to
phase values and vice versa. The phase, T and Z gates rotate the phase of the “1”
qubit value by different angles. The CNOT gate is the same as shown in Figure 1.2
and performs the XOR functionality. The measurement “gate” measures a quantum
state, returning a 1 or 0 and collapses any superposition to that value as well. The
X is a bit flip, Z a phase flip, and Y a combination of both. The X, Y, Z, and phase
gates can be generated by the other gates shown here but we include them since they
are often included as physical primitives.

One more “gate” type is needed: measurement. In order to read out data from
a quantum computer, it must be measured. Measurement is also instrumental in
another useful primitive, known as teleportation, which is discussed Section 1.1.6.
Measurement is not a unitary gate, which is why we do not include it in the universal
set, but it is still a necessary quantum operation, at the very least in order to be able
to read the output of a quantum algorithm.

1.1.4 Encoded Qubits

While the power of quantum superposition enables interesting computing, it comes
at a cost. The sensitivity of a quantum superposition state to noise from the environ-
ment cannot be stabilized through noise margins and dynamic feedback as in classical
logic. We must allow a continuum of possible quantum states per qubit instead of two.
For this reason, the error rates of all operations on quantum data are much higher
than operations in classical logic. Errors to quantum states cause what is called quan-
tum state decoherence. Error rates in any quantum computing technology in the lab
right now are in the range of 10−2−0.1 errors per operation. “Realistic” estimates for
error rates in the foreseeable future are said to be around 10−5 − 10−2 errors per op
[60]. Compare this to CMOS transistor error rates which range from 10−20 to 10−15

errors per gate [53].
Typically, quantum errors are abstracted into three different categories:

Gate errors Depending on the physical technology, gates could involve complex
sequences of applications of electrical and/or magnetic fields, current, and/or
EM radiation applied to one or more co-located qubits. These gate processes
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Figure 1.4: Types of errors corrected by quantum error correcting codes: The X error
(EX) flips the bit value, the Z error (EZ) flips the phase difference between 1 and 0
by π radians, the Y error does both these things, flipping the bit and phase of the
qubit.

can introduce errors from apparatus imprecision or tunneling effects between
qubits. The abstraction of this error type is that each qubit involved in a gate
has some probability of an error being introduced immediately after the gate
is finished. Additionally, multi-qubit gates can propagate existing errors from
one qubit to another.

Movement/communication errors Qubit communication can involve either phys-
ical movement of coherent particles or gate-like operations to transfer state
across fixed physical resources. In the former case, kinetic motion of particles
can introduce motional heating and even particle loss. The abstraction often
used is some amount of distance moved introduces a single qubit error with
some probability.

Memory/idle errors Even when a qubit is sitting stationary, interaction with the
environment, either through coupling with stray EM fields or contact with stray
particles, can cause errors. Since there is no physical action the qubit is per-
forming, memory errors are abstracted to a probability of error per unit of time
it is stationary.

Qubit state coherence can quickly decline to unacceptable levels resulting in data
loss if this data is unprotected. As in classical computing, redundancy may be used
to combat high error rates. This can be done by way of Quantum Error Correction
Codes (QECC) [44]. A QECC encodes a data or logical qubit, into an encoded block
of qubits, similar to a classical error correcting code. It was mentioned before that
quantum circuits must preserve a continuum of superposition states, so does this
mean that QECC must correct a continuum of errors? Fortunately, the answer is
no. These quantum codes are designed such that the error can be measured in the
correction process without measuring the data superposition (which would alter the
data by collapsing its state). This aspect of quantum code design means that the
continuum of errors is collapsed to a choice of 3 different error types (vs. one error
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Figure 1.5: On the top, we are encoding a single data qubit into a 7 qubit block code
(the [[7,1,3]] CSS code). The boxes with zeros indicate a preparation of a new qubit
in the |0 > state, if the input qubit is a single physical qubit, this is a level 1 encoder,
producing a level 1 logical qubit. The bottom figure is a level 2 encoder, using a level
one encoder as a building block to produce a level 1 logical zero valued qubit.

in the classical situation, the bit flip) and the correction process then looks a lot like
its classical counterpart. The 3 error types are a bit flip, a phase flip, and both a bit
and phase flip as shown in Figure 1.4. The bit flip (EX) is the same as the classical
bit flip error, the phase flip (EZ)has no classical analogue and is similar to flipping
the relative phase between two interfering EM waves.

Encoded blocks can be hierarchically composed so we refer to the level of concate-
nation as the number of times that a code is recursively applied to the data. Figure
1.5 show a simple recursive encoding scheme using a 7 bit CSS code (explained later
in this section). We refer to the lowest order bits in this encoding scheme as physical
qubits, since these are the bits that correspond to physical two-level quantum systems
in the circuit. The “Level 1 Encoder” from the top of Figure 1.5 takes a single phys-
ical data qubit and encodes it into 7 physical qubits, making a level 1 logical qubit.
Assuming that each gate in this encoder has an analogue for operating on a level 1
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Figure 1.6: Steane-style error correction schemes have the following form: generate
two encoded zero states then perform sequential Z and X correction operations.

logical qubit (7 qubit encoded block), we can recursively encode to get a “Level 2
Encoder”, shown on the bottom of Figure 1.5. This generates a level 2 logical qubit.
The majority of studies into the error correcting abilities of concatenated codes have
focused on the asymptotic properties of concatenation of this 7 bit CSS code.

Since many consider gate operations to be the most error prone operations in a
quantum circuit [65], decoding a qubit to perform a gate is not feasible. The high
error rate of gate operations means that all gates in our quantum circuit must act on
encoded data. We refer to these gates acting on encoded data as encoded gates. A
single encoded or logical gate becomes a set of physical gate operations, dependent
on which QECC is used.

Even while encoded, quantum data is relatively fragile. In the next two sections,
we discuss two key compound operations which are too complex to be performed
directly on encoded data with high probability of success: the QEC operation and
the operation of any non-transversal gate. In each case, most of the complexity
is performed during the creation of encoded ancilla qubits, which are then safely
interacted with encoded data to achieve the desired result.

1.1.5 Performing Quantum Error Correction

Using quantum error correcting codes requires that errors are periodically cor-
rected. In classical ECCs, correction involves computing an error syndrome based
on the data values and then flipping the bit(s) which the syndrome identifies as er-
roneous. In the QECC case, the correction process is complicated by the fact that
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Figure 1.7: Teleporting data qubit D to the target location requires (1) a high-fidelity
EPR pair (E1/E2), (2) local operations at the source, (3) transmission of classical
bits, and (4) correction operations to recreate D from E2 at the target.

we cannot directly measure the data qubits to obtain their values or we will collapse
the superposition and invalidate the computation. Instead, the correction process
uses extra ancilla qubits that interact with the data qubits, the error information is
distilled in these ancilla without transferring any information about the logical data
value. Then, the ancilla is measured to get the error syndrome and bit and phase flip
corrections (X and Z gates respectively) are applied to the data. Figure 1.6 shows
this process.

1.1.6 Teleportation

In order to perform any two-qubit quantum gate, the two qubits must be physically
adjacent. Similar to any other quantum operation, qubit movement could be affected
by high error rates. Drawing on our work in [35], we make a distinction between short
range movement, performed by whatever physical movement primitive is available,
and long range movement performed by teleportation.

Teleportation is a useful circuit primitive for long distance communication. Fig-
ure 1.7 gives an abstract view of teleportation [6]. We wish to transmit the state of
physical data qubit D from the source location to some distant target location without
physically moving the data qubit (since that would result in too much decoherence).

We start by interacting a pair of qubits (E1 and E2) to produce a joint quantum
state called an EPR pair. Qubits E1 and E2 are generated together and then sent to
either endpoint. Next, local operations are performed at the source location, resulting
in two classical bits and the destruction of the state of qubits D and E1. Through
quantum entanglement, qubit E2 ends up in one of four transformations of qubit
D’s original state. Once the two classical bits are transmitted to the destination,
local correction operations at the destination transform E2 into an exact replica of
qubit D’s original state 1. The only non-local operations in teleportation are the

1Notice that the no-cloning theorem is not violated since the state of qubit D is destroyed in the
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Figure 1.8: Circuit representation for the teleportation operation: The first Hadamard
and CNOT gates prepare qubits E1 and E2 in the EPR state. One half of the EPR
pair is CNOTed with the data followed by a Hadamard and measurements. The
measurement results (classical information represented by double bit lines) are used
to apply X and Z gates to adjust the final state.

transport of an EPR pair to source and destination and the later transmission of
classical bits from source to destination (which requires a classical communication
network). Figure 1.8 shows the circuit representation for this operation (note that
E1 and E2 still must be physically separated after the CNOT).

We can view the delivery of the EPR pair as the process of constructing a quantum
channel between source and destination. This EPR pair must be of high fidelity to
perform reliable communication. Purification, which will be discussed in greater detail
in Section 4.1.2, is a process by which multiple low fidelity EPR pairs may be used
to generate a single high fidelity pair which may then be used for the teleportation
operation. Thus, purification permits a trade-off between channel setup time and
fidelity. The trade-off includes extra work to set up the teleportation, but for the
benefit of minimal noise on the data qubit being teleported (since most of the work was
done on the EPR qubits). Since EPR pair distribution can be performed in advance,
qubit communication time can approach the latency of classical communication; of
course, channel setup time grows with distance as well as fidelity.

As discussed in our work in [33], qubits were clustered into regions in which we
used physical transportation for data qubits and then inter-cluster data movement
was done via teleportation. Dedicated teleportation units were used for each cluster
and EPR distribution channels that provided the needed ancilla were set up between
the units. These EPR channels were structured to use only physical movement or a
combination of physical movement and chained teleportation across shorter distances.

1.2 Quantum Computing Technologies

The substrate technology we choose for our study is based on trapped ions [12,
42]. In this section, we will discuss the basic operation of an ion trap quantum
computer and allude to the various issues that arise when trying to control the system.

process of creating E2’s state.
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Figure 1.9: Simplified ion trap technology view. Ions (qubits) are trapped between
electrodes in the trap regions. Ballistic movement of ions is performed by changing
the voltages of the electrodes. A laser is routed to the location of the ions to perform
a gate.

We highlight aspects of the system that will require novel architectural decisions to
control.

1.2.1 Ion Traps at a Glance

The target technology for our toolset will be ion traps, which has shown potential
for scalability [36]. In this technology, a physical qubit is an ion, and a gate is a
location wherein an ion is trapped so it may be operated upon. The ion is both
trapped and ballistically moved by applying pulse sequences to discrete electrodes
which line the edges of ion traps (see the left of Figure 1.9). The ion moves along in
a potential well created by the control electrodes.

Gate operations are performed by precise laser pulses aimed at trapped ions.
Measurement of a qubit is performed by exciting the target ion with a different
frequency laser pulse and then detecting fluorescence using a CCD. Laser beams
can be split and routed by an array of MEMS mirrors to simultaneously fire on
multiple gate locations, thus allowing SIMD gate operation [37] (Figure 1.9 from
[48]). A working ion trap quantum computer will require coordinated control of
trap electrodes, lasers, CCDs, and micro-mirrors to perform the proper concurrent
operations to implement quantum gates. Here is a break down of these components.

1.2.2 Trap Electrodes

In order to properly confine a qubit (ion) in a trap, the electrodes around the
qubit must be precisely controlled to ensure that the ion does not unexpectedly move
into adjacent traps, fly out of the top of the trap channel into the vacuum, or adhere
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to the electrode surfaces. Ballistic movement of qubit ions between traps is likewise
achieved by coordinated application of changing voltages to all the electrodes near the
ion being moved to generate the precise electrostatic attractive and repulsive forces
necessary.

For instance, the process of moving a qubit around a corner involves a procedure
which uses sequences of five pulses with at least four discrete voltage levels on about 15
different electrodes [24]. Coordinating a large number of physical ion qubits necessary
to do a useful computation (at least in the 100,000s) would require concurrent control
of a million electrodes. As we just mentioned, control of each electrode will be more
complicated than just turning it on and off, as it will have more than two voltage
levels. Due to the need for a million trap electrode controllers to drive the appropriate
voltages, these structures can benefit greatly from logic reuse.

Fortunately, there is substantial regularity in both the trap layouts we use to
design the computer and the ion qubit movement through these regular structures.
We could imagine grouping adjacent sets of traps into blocks, similar to the layout
proposed in [3]. Trap blocks with the same geometry could be controlled by the
same replicated logic block. The block controller could then accept directives like
“turn qubit around corner” or “hold qubit”. Adjacent blocks would then have a
simple handshake that would enable local decisions on when one trap block is done
confining a qubit ion and when its neighbor takes control. In addition to simplifying
global control of electrodes, this could also also eliminate potential skew problems in
a monolithic controller, which could result in qubit ion errors or even total loss of a
qubit.

1.2.3 Gate Lasers

While trap electrodes are all that are needed to move qubit ions, quantum gates
are performed by moving qubit ions to designated traps and then applying laser
pulses to them. [50] and [51] have detailed listings of the laser pulses used in an
experiment to apply a set of one and two qubit gates. From this listing, we note that
each gate could take about 3 or 10 separate consecutive laser pulses, depending on
whether it is a single or double qubit gate. Each of these pulses must be applied for
a precise amount of time. [30] and [51] show the qubit ion energy state transition
curves under laser application. The important thing to note here is that qubit values
are oscillatory in the time evolution under laser application, thus the amount of time
the laser pulse is applied is critical in performing the correct gate. The approximate
oscillation frequency of the ions used in many of these experiments is around 200µs,
thus in order to maintain a gate error of less than 10−4 or so, we would need to control
laser pulse length to a resolution of roughly 200µs × 10−4 = 20ns.

In addition to precise laser pulse length, substantial optics are necessary to suffi-
ciently focus the laser to a narrow enough beam width in order to address individual
ions within the trap. As mentioned in [43], two qubit gates require qubit ions to be
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adjacent in a single ion trap with a distance between them around 7-20µm, leading
to a requirement of a beam width of around 5µm. In this particular experiment, ob-
taining such a resolution was achieved with a rather large Nikon lens. Also mentioned
in [43] is the need for a laser with a very stable frequency, one that is within 1-kHz
of the transition frequency between qubit ion energy levels. This precludes the use of
miniaturized semiconductor laser diodes from any current fabrication technology. 2

Due to the large size (and probably expense) of the gate lasers and focusing optics,
we see a strict resource limitation on the number of laser beams we can produce for
our quantum computer. Additionally, double qubit gates require up to 4 different
frequencies of laser light, so in order to perform a single gate, we may need 4 large
laser apparatuses. The one thing we can miniaturize is an optical system to divert and
split the already focused and stabilized laser beam to deliver them to the particular
trap locations. The technology of electro-mechanical micro mirrors has already been
applied on a large scale to commercial optical routing technologies [7] and is capable
of deflecting beams with over 1000 individually addressed micro mirrors.

For the above reasons, we assume a small number of lasers and a very large and
flexible system for routing and aiming the limited number of actual lasers. This natu-
rally lends itself to a SIMD design with individual laser beams being split and routed
to many trap locations, allowing a single gate type to be applied at many locations
simultaneously using one laser. This imposes a globally synchronous model of opera-
tion at the lowest level where large numbers of physical gates require synchronization
to be performed by a limited number of lasers.

1.2.4 Measurement

A measurement operation consists of the application of another laser frequency,
separate from those needed for gates, and the collection of light fluoresced from the
ion with a CCD camera. If an ion is measured in the one state, it fluoresces, if it is
in the zero state, it does not. Thus, one must observe whether a particular ion trap
location is emitting light when the measurement laser is applied.

[43] shows an apparatus set up to perform this collection via CCD. Following the
SIMD model for all our operations on qubits due to laser scarcity, we assume the
use of a single large, high-resolution CCD camera positioned above the entire ion
trap computer, with a lens between them to resolve the micrometer scale distances
between fluorescing ions. All the measurement lasers are applied synchronously, and
once enough time has passed to collect sufficient photons, we read out the image on
the CCD and process it to determine which sites were fluorescing.

2Semiconductor lasers have beams consisting of multiple frequencies due to a large number of
available modes just above and below the band gap where the electrons and holes recombine. Addi-
tionally, the band structure is highly sensitive to local temperature and current fluctuations, meaning
that even if a single mode could be isolated, that particular mode would fluctuate by an unacceptable
amount [31].
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Figure 1.10: Two architectures from prior work: a) The Quantum Logic Array (QLA)
consists of a mesh grid of tiles linked by routers (R) to implement long distance
communication. Each tile has room for two encoded data qubits and quantum error
correction (QEC) resources for each. b) The Compressed Quantum Logic Array
diversifies into two types of tiles: Memory tiles in which qubits are idle and don’t
need to be error corrected as often and Compute tiles which require relatively more
QEC resources per data qubit.

With this knowledge about ion traps in hand, we can look at how we would build
these physical structures into larger quantum circuits.

1.3 Quantum Computer Architecture

Each qubit is a physical entity in the system, and they must all be managed simul-
taneously. To accomplish this, we need to make intelligent architectural decisions.
Figure 1.10 shows the state of the art in prior work on quantum datapaths, both
of which are logical extensions of classical approaches. The Quantum Logic Array
(QLA) [23] is essentially an FPGA, with each tile being able to perform any one and
two qubit encoded gate, plus the capability to error correct both data qubits. The
tiles are connected by a mesh grid of routers.

The Compressed Quantum Logic Array (CQLA) saves area by exploiting the
fact that circuit parallelism may be limited, and thus not every data qubit needs to
be operated upon simultaneously. CQLA has Compute tiles where data operations
are performed and Memory tiles where data reside when idle. Since operations are
far more error prone than idleness, QEC resources may be significantly reduced in
Memory regions.

Both QLA and CQLA suffer from the drawback that very little reasoning was given
for these architectural choices other than intuition. Encoded ancillae are needed for
error correction, so they are provided uniformly everywhere; a teleport network is
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Figure 1.11: Qalypso is a malleable architecture consisting of components similar to
those in (C)QLA. By allowing the datapath to be varied somewhat while mapping a
quantum circuit, we may better fine tune the end result.

needed, so a basic one is provided, though sizing is never justified; classical machines
have memory regions, so the idea is applied to CQLA; etc. Aside from selecting the
size of memory relative to compute regions in CQLA, these proposals are not tailored
to the circuit in question.

In this work, we propose Qalypso (Figure 1.11), a malleable architecture in which
the individual components may be resized automatically via a computer aided design
flow to better tailor the end result to the circuit in question. Thus, no Memory regions
are preallocated, but different tiles may end up with vastly differing computational
capabilities. This allows us to better size the support infrastructure, both ancilla
factories and the teleport network, such that the hardware resources are more highly
utilized, resulting in less wasted space on the datapath.

1.3.1 Hardware Components

Since quantum programs are specified in terms of low level physical operations,
prior work has viewed the quantum datapath as an isotropic sea of physical gate
locations, akin to a classical datapath consisting of a “Sea of NANDs.” However,
since our objective is to design hardware tailored to a target circuit, we wish to have
specialized units in our datapath. To this end, we identify three basic components of
a quantum datapath.

First, in order to execute the desired circuit, we need areas for data to reside
and to communicate with other data in order to perform multi-qubit operations. In
prior work, these areas of the datapath have been referred to interchangeably as data
regions and compute regions, and we shall continue to use this terminology.

Second, it is generally believed that QEC operation count in a quantum machine
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will dwarf the operation count of the target circuit, and it is known that generation of
encoded helper qubits known as ancilla qubits dominate the process of QEC. Further,
the ancilla generation process, which is performed prior to interaction with the data
qubit being corrected, is identical across QEC steps. Thus, the ancilla generation
subcircuit is duplicated many times during the evaluation of a quantum circuit. For
this reason, in Chapter 3 we tackle in detail the layout and scheduling of the ancilla
generation circuit, culminating in Section 3.3.2 in our design of and justification for
a pipelined ancilla factory, which we then utilize in our Qalypso architecture.

Third, we described in Section 1.1.6 the process of teleportation, which may be
used for relatively low latency and error communication over long distances. This
teleportation setup process allows for a single point to point communication. Pro-
viding for generally available long distance communication channels across the entire
datapath, however, necessitates a teleportation based communication network. We
discuss in Section 4.1 our designs for the basic components of this network as well as
our model for combining these components into a working system.

1.3.2 The Mapping Problem

With support infrastructure components and a malleable architecture in hand,
our final goal in this work is to map the quantum circuit onto Qalypso. The QLA
approach to mapping is to move the target qubit to the source qubit’s location for each
two qubit gate. The CQLA approach is to use the limited compute region locations in
a greedy fashion with idle qubits being knocked out to memory as necessary. In both
cases, the authors assumed ubiquitous QEC ancilla production and a teleportation
network capable of handling all long distance communication, which are unrealistic
assumptions for these major pieces of support infrastructure.

We focus on three areas of problems/opportunities:

1. The support infrastructure (including both ancilla factories and the teleport
network) may be designed at any point along the area-delay trade-off, not
necessarily simply sized to meet all deadlines in a mapping. As the support
infrastructure is much more resource-intensive than the main computation, it
contributes a great deal to our final evaluation of a mapping.

2. The datapath is malleable, which opens up possibilities but also greatly expands
the search space.

3. In the quantum realm, a data qubit remains in a gate location after the gate is
completed, precluding the use of that gate location by other qubits. The data
qubit must be actively moved away in order to “release” the hardware resource.
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1.3.3 Metrics

To evaluate the quality of our results, we need metrics of success on which to
compare our designs. Typically, we are interested in evaluating the quality of circuit
optimization and layout. The final layout of an optimized circuit is what determines
the cost and performance of a device. The metrics to consider here are:

Area The overall size of a layout directly impacts ease and cost of fabrication. Also,
smaller layouts can contribute to lower power usage and less communication
delay due to shorter wires.

Delay In many cases, runtime performance is the most important measure of a
design. Getting more work done in less time is often the driving factor for
new designs and optimizations.

Reliability Device reliability is becoming more of a concern as transistor feature
sizes get closer to atomic scales, since quantum effects as well as fabrication
equipment precision become more of an issue. There are a broad array of
techniques to improve reliability, at all different levels of granularity in the
design. In the end, we are interested in the overall probability that a permanent
or transient fault will corrupt data such that incorrect output is obtained from
the device.

Each of these metrics may be considered individually. However, we would ideally
like a single metric to optimize. Classically, area-delay product is a commonly used
metric. We would like to have a similar metric for our quantum designs which incor-
porates the effect of failure probability on the true latency to a correct result. To this
end, we introduce our own aggregate metric here.

Area-Delay-to-Correct-Result As mentioned earlier, delay and success proba-
bility are closely connected in the evaluation of any quantum circuit, this is because
we are not simply interested in a single run of a circuit on a layout if it does not
produce the correct answer. We would instead like to know the expected time to get
a correct answer:

E(Delay) = Delaysinglerun × E(runs for correct result) (1.4)

= Delaysinglerun ×

∞
∑

n=1

n

Psuccess(1 − Psuccess)n−1
(1.5)

= Delaysinglerun ×
1

Psuccess
(1.6)

Prior work has focused on maximizing the overall success probability Psuccess at all
costs. This might be a suitable sacrifice if we are always on the verge of a catastrophic
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decline in success probability for a design (probably the case in all current laboratory
setups). As the technology matures, it will be more important to evaluate all the
design considerations; if we can reduce a layout’s delay by 10x with only a 10%
reduction in success probability, this is probably a good trade-off. Critical to this
evaluation is a comprehensive evaluation of the overall probability of success of a
design. If we overestimate this probability, we could end up making trade-offs to get
a design that does not work at all.

To evaluate the quality of quantum layouts with a single number, we propose a
composite metric called Area-Delay-to-Correct-Result (ADCR). ADCR is the proba-
bilistic equivalent of the Area-Delay product from classical circuit evaluations:

ADCR = Area × E(Latencytotal) (1.7)

= Area ×

∞
∑

n=1

n · Latencysingle · Psuccess(1 − Psuccess)
n−1 (1.8)

= Area ×
Latencysingle

Psuccess
(1.9)

For ADCR, lower is better. By incorporating potential for circuit failure, ADCR
provides a useful metric to evaluate the area efficiency of probabilistic circuits. It
highlights, for instance, layouts that use less area for the same latency and success
probability or, alternatively, layouts that use the same area for lower latency or higher
success probability.

1.4 Thesis Roadmap

In this work, we present heuristics for the automated generation of a layout and as-
sociated scheduling optimized for a given target quantum circuit. In order to evaluate
our heuristics, we have implemented a CAD flow for quantum circuits. In Chapter 2,
we describe our toolset and how it differs from a classical CAD flow. We demonstrate
in Chapter 3 how our tools may be used to design custom modules of subcircuits which
may then be used hierarchically in larger designs. Specifically, we design ancilla fac-
tories which are necessary for both quantum error correction and for the operation of
certain quantum gates.

In Chapter 4, we investigate the search space of the physical layout and introduce
Qalypso, our microarchitectural model for a quantum datapath. Chapter 5 presents
our heuristics for mapping a quantum circuit onto Qalypso and simultaneously final-
izing the datapath. Finally, in Chapter 6, we put it all together by applying our tools
to practical quantum adder circuits and then to the complete circuit for factorization
of a 1024-bit number, which involves approximately one trillion logical gates. We
demonstrate a 5x improvement in ADCR over the baseline heuristics.
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Chapter 2

Overview of Computer Aided
Design for Quantum Circuits

When building a CAD toolset for quantum computer design, we may leverage
many lessons learned from classical CAD flows. For this reason, we begin this chap-
ter with a high-level overview of classical CAD. Following that, we summarize the
differences between classical and quantum datapath design which must be addressed
by a quantum flow. The remainder of the chapter provides many of the details of our
CAD flow implementation.

2.1 Classical Computer Aided Design Flows

The studies built upon in this work rely on techniques from computer aided design
(CAD) tools for classical circuits [15, 52]. Before we discuss our quantum design flow,
we review some of the parts of a classical CAD flow. A vastly simplified version of a
typical classical circuit CAD flow is shown in Figure 2.1. The purpose of the flow is to
take in some sort of abstract circuit specification and produce a physical design that
can then be fabricated. The abstract spec is usually given in languages like Verilog
[62], VHDL [41], or higher level languages like SystemC [28]. The physical design
depends on the underlying technology but usually consists of some sort of geometric
specification of gate-like and wire-like configurations.

2.1.1 Logic Synthesis and Optimization

The logic synthesis step of a CAD flow is to take a high level specification of the
circuit’s behavior and create a network of basic logic gates and connections between
them that faithfully implements the high level specification. The resulting gate net-
work is typically loosely tied to the basic operations available on the technology we
are synthesizing for.
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Figure 2.1: Simplified view of a classical computer-aided design flow. A user-specified
application circuit specification is first synthesized into some sort of gate network,
then physical components are geometrically mapped to a substrate to make physical
design. Verification steps ensure equivalence between stages.

Since the high level constructs could potentially have many functionally equiva-
lent translations to a gate network, the synthesis and optimization stage can iterate
through many different networks, trying to minimize circuit latency, gate count, etc.

2.1.2 Functional Verification

Due to the potentially complex interactions from different synthesis and opti-
mization methods in the previous step, it is desirable verify that the synthesized gate
network works the same way as the user specification. This step can consist of a
variety of methods including formal verification, where a mathematical models of the
two designs are compared or logic simulation where the designs are simulated with
identical test inputs to make sure they produce the same output.

2.1.3 Placement and Routing

The individual gates in the synthesized network are mapped into physical elements
that are geometrically onto a substrate. The goals of this placement stage is to convert
each gate element into a physical element in the given technology and to place gates
that are directly connected in the network in close proximity to each other. After
this, wires are routed between the physical gates. Since both wires and gates take
up physical space, the placement and routing stages are iterative and converge on a
design where everything fits onto the substrate.
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2.1.4 Physical Verification

Next, this physical design must be verified that it meets requirements imposed by
the fabrication technology. This verification of requirements is typically done through
design rule checking against a detailed set of rules of allowable element geometries. It
also must match the functionality of the gate network from the previous stage. This
verification of functionality is typically done by extracting a more abstract circuit
representation from the physical design and comparing it to the gate network.

2.2 Differences Between Classical and Quantum

CAD Flows

To understand how the classical CAD paradigm must be adapted to suit the
quantum realm, we must first understand some of the differences between classical
and quantum circuits:

Fault frequency Errors are many orders of magnitude more likely in quantum logic
than in classical, this places an additional requirement on a quantum circuit for
very strong fault tolerance.

Classical control Implicit in everything mentioned so far is a network for control-
ling qubit motion and gate operation. We address some of the problems of
classical control synthesis in this CAD flow. Along with any physical layout of
a circuit, we also generate a control schedule to implement the movement and
gate operations on the qubits.

Synchronous Gate Operations Related to the previous item, since a classical con-
trol network is available, all quantum gates can be essentially synchronous. The
ability to classically control these synchronous gates means that we can reuse
physical gate locations in a layout to perform more than one gate in the circuit
specification. Such gate reuse provides the opportunity to reduce movement
(reducing movement error) and reduce the area, making fabrication easier.

Reversibility The reversibility constraint on quantum logic requires the use of many
more ancillary qubits to be created and tracked throughout the course of the
computation.

In addition to the differences in the quantum and classical circuit models, there
are differences in underlying technology used to lay out our circuits. As mentioned
in Section 1.2.1, we focus on ion trap quantum computing in this study and so to
compare ion traps with classical CMOS:
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Bit persistence In ion traps, qubits are physical entities that cannot simply be
created or dissipated after the value on them is no longer useful. Dead physical
qubits must be disposed of or recycled and new qubit values must be allocated a
new physical ion. The requirement for having many ancilla qubits to implement
reversibility has a large impact on this requirement because many qubits are
created and destroyed in a quantum circuit.

Planar wiring Qubit ions are suspended in a vacuum above the electrodes and must
have space to float along surface channels, therefore it is unlikely there will be
more than one layer of ion trap “wiring” on the fabricated chip. Thus, all
wiring crossings are actually 4-way intersections where only one direction can
be operational at a time.

Multiplexing resources Since qubits have a physical extent, different qubit values
can share a channel/wire in a circuit as long as they are spaced far enough apart
to limit unanticipated interactions. Thus, wires can be multiplexed rather easily,
which is important since the number of wires is limited to what we can fit in
the plane.

Communication cost metrics Strict Manhattan distance is not an accurate mea-
sure of wire length because preliminary studies have shown that turning corners
and traversing intersections will be more time consuming and acquire more vi-
brational heating (and errors) than moving straight through a one-way channel
[48, 24].

The quantum electronic design automation (EDA) system we have developed is
modeled after a classical EDA tool flow but accounts for many of these differences
between quantum and classical circuits in general and ion trap quantum computing
in particular. Figure 2.2 shows the currently available components in our CAD flow.

The highlighted components are the focus of this work and will be covered in
great detail. Custom Modules are fully laid out and scheduled designs which may
be used as subcircuits of larger circuits. Ancilla generation is a prime example of a
commonly occurring subcircuit, and Chapter 3 will cover our process for designing
ancilla factories as custom modules which are then used in the rest of this work.

Microarchitectural variations are the subject of Chapter 4, wherein we investigate
the search space for the layout of the datapath of an ion trap quantum machine.
The problem of mapping the operations of a quantum circuit onto a fixed datapath
is somewhat analogous to the problem of Placement in the classical realm. This
mapping problem is the subject of Chapter ??.

The non-highlighted components are required for a complete flow but are not the
focus of this work. They are described in the remainder of this chapter.
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Figure 2.2: A high level view of our computer-aided design flow for quantum circuits.
The highlighted blocks denote the contributions focused on in this work.

2.3 Application Circuit Specification

The primary method for input of application circuits into the CAD flow is the
use of the QASM description language. The original QASM was first introduced in
[3]. QASM is similar to the classical MIPS assembly language [32]. Basic quantum
operations and qubit operands, similar to classical registers, are listed in order in
which they are supposed to be executed.

The full QASM instruction set that we use is shown in Table 2.1. The instructions
that do not introduce errors are virtual instructions used for bookkeeping of qubit
states or classical information and do not correspond to actual physical quantum
operations. We note that the correct operations are not error prone because they
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Category Name Errors? # of (cla/qu)bits Description

Pure Quantum h yes 1 Hadamard gate, translates be-
tween X and Z basis

x yes 1 Bit flip
y yes 1 Bit and phase flip
z yes 1 Phase flip
s yes 1 Phase gate: phase rotation by

π/2
t yes 1 T gate: Phase rotation by π/4
cx yes 2 CNOT gate: controlled-X

gate, bit flip on target based on
control

cz yes 2 controlled-Z gate, phase flip on
target based on control

cphase yes 2 controlled-phase gate, phase
rotation by π/2 based on con-
trol

xprepare yes 1 prepare input qubit in a partic-
ular state in the X basis

zprepare yes 1 prepare input qubit in a partic-
ular state in the Z basis

correct no 1 logical-only operation repre-
senting a correction step, en-
coded gate implementation is
code dependent

Pure Classical or no variable Set output bits based on logical
or over all input bits

xverify no variable Verify that there are no X er-
rors on the classical syndrome
bits, sets output bit if there
are errors that are not unde-
tectable by the code. Exact
syndrome check is code depen-
dent.

zverify no variable Verify that there are no Z er-
rors on the classical syndrome
bits, sets output bit if there
are errors that are not unde-
tectable by the code. Exact
syndrome check is code depen-
dent.

Quantum-Classical xmeasure yes 2 Sets classical bit based on
quantum bit value in the X ba-
sis

zmeasure yes 2 Sets classical bit based on
quantum bit value in the Z ba-
sis

xcorrect no variable Corrects bit flip (X) errors on
input qubits based on the val-
ues of input classical bits

zcorrect no variable Corrects phase flip (Z) errors
on input qubits based on the
values of input classical bits

(predicate) no variable execute given quantum or clas-
sical operation if list of predi-
cates are all satisfied

Table 2.1: Summary of all the quantum instructions we use.
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q1
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q3
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c3

cx q1, q0;
cx q1, q2;
correct q1;
h q2;
cx q3, q4;
zmeasure q3, c3;
correct q4;
(@c3==1) x q4;

Figure 2.3: A quantum circuit and the equivalent QASM instruction stream repre-
senting it.

only virtual instructions to do actual error state updates and do not correspond to
the entire error correction process which contains many error-prone physical gates.

Figure 2.3 shows an example of a quantum circuit and its QASM specification.
In this example gates/instructions are read from top to bottom in order, thus gates
dependent on the output of earlier gates appear later in the instruction stream. Two
qubit gates like the CNOT or “cx” (controlled-X) take the names of 2 qubit registers,
the first one being the control and the second, the target. Correction gates operate
on a single logical qubit. A measurement gate takes in a qubit and outputs a classical
bit; classical bit register names typically starting with a “c”. In this example “c3” is
a classical bit measurement outcome which then predicates the execution of the last
“x” gate. Predicates only compare classical bits to a constant value (no quantum bits)
and determine whether the gate they are guarding is executed. So in this example, if
the zmeasure outcome sets “c3” to 1, then the “x” gate will be applied to “q4” later.

In a QASM definition of a circuit we explicitly declare qubit state and quantum
gates. Here is an example of a 1-bit quantum adder in QASM:

1 qubit c in ;

2 qubit cout ;

3 qubit a ;

4 qubit b ;

5
6 input c in ;

7 input a ;

8 input b ;

9 t o f f o l i cout , a , b ;

10 cx b , a ;

11 t o f f o l i cout , c in , b ;

12 cx b , c in ;

13 output a ;

14 output b ;

15 output cout ;
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The program starts with a declaration of qubit states or “registers” declared with
the qubit keyword. These states will later be mapped to a physical element that
can represent a 2-level quantum system. The qubit declarations are followed by a
sequence of gate operations on the qubit states. In this example, we use 3 qubit
toffoli gates and 2 qubit cx (CNOT) gates. This circuit takes a carry-in bit, cin and
two input bits, a and b. The sum output is in b and the carry-out is in cout. We also
use the special purpose virtual instructions input and output to specify which qubits
would be set as input/output for the circuit

In addition to simple sequences of gates, we can specify hierarchically structured
programs through use of our added support of modules. We can define a sequence
of qubits and gates as a module and instantiate it in multiple places throughout the
program. For example, here is a circuit for a 4-bit adder made out of 1-bit adders:

1 module car ry cin , a , b , cout {
2 t o f f o l i cout , a , b ;

3 cx b , a ;

4 t o f f o l i cout , c in , b ;

5 } ;

6
7 module car ry inv cin , a , b , cout {
8 t o f f o l i cout , c in , b ;

9 cx b , a ;

10 t o f f o l i cout , a , b ;

11 } ;

12
13 module sum cin , a , b {
14 cx b , a ;

15 cx b , c in ;

16 } ;

17
18 qubit c in0 , c in1 , c in2 , c in3 , cout ;

19 qubit a0 , a1 , a2 , a3 ;

20 qubit b0 , b1 , b2 , b3 , b4 ;

21
22 car ry cin0 , a0 , b0 , c in1 ;

23 car ry cin1 , a1 , b1 , c in2 ;

24 car ry cin2 , a2 , b2 , c in3 ;

25 car ry cin3 , a3 , b3 , b4 ;

26 cx b3 , a3 ;

27 sum cin3 , a3 , b3 ;

28 car ry cin2 , a2 , b2 , c in3 ;

29 sum cin2 , a2 , b2 ;

30 car ry cin1 , a1 , b1 , c in2 ;

31 sum cin1 , a1 , b1 ;

32 car ry cin0 , a0 , b0 , c in1 ;

33 sum cin0 , a0 , b0 ;

Note that when calling modules, the register names must effectively be renamed
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Figure 2.4: Gate networks are represented as linked, modular dataflow graphs. In
this example, the top level graph consists of two nodes that each correspond to a
1-bit full adder. They both refer to the 1-bit full adder module dataflow graph.

so the physical element with the qubit state of b3 must be renamed b in the sum
module. We will discuss this issue later when we discuss tracking qubit error state.

Application Dataflow Graph

Our core data structure representing the input application logic is a hierarchical,
annotated dataflow graph. Figure 2.4 shows an example of such a graph. In this
example, the top level graph that consists of a 2-bit ripple carry adder is implemented
with 2 nodes that both point to the same full adder graph. A modular dataflow graph
will be used to represent it.
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Application level graph

 Level 2 code gate graphs

 Level 1 code gate graphs

Figure 2.5: Hierarchical dataflow graphs are used to represented different levels of
QEC encodings. In this example we have the 2 gate application circuit encoded in
2 levels of codes. Each code has a library of graphs, each graph implementing an
encoded version of one gate type.

We maintain the hierarchy of the dataflow graph through all of the various stages
of the CAD flow. For instance, when we are encoding a quantum circuit in a QECC,
each logical gate is represented by a module pointing to a graph that represents a
specific encoded version of that gate type. If we are concatenating several codes
together to yield more reliability, there might be multiple levels in the hierarchy
for gate implementations in different codes, as shown in Figure 2.5. The modular
representation of a QECed circuit is especially beneficial since fault tolerant subcircuit
substitution introduces orders of magnitude more gates (about 500x for a one level
[[7,1,3]] code, for example). Since most of the subcircuits are the same, mapping all
logical gates of a particular type to a single graph makes our design representation
tractable for large circuits.

Additionally, we may have different elementary gates that can be performed phys-
ically depending on the implementing technology. We enable the technology-specific
translation by providing technology gate libraries to translate logical level gates into
physically implementable gates. Our technology translation currently converts single
logical gates to groups of technology-dependent gates so we utilize the hierarchical
nature of our dataflow graph again to maintain a modular mapping mechanism.

Note that even though only a single instance of a module is created and stored
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for a particular graph, when we traverse the graph, we must re-traverse the single
module dataflow graph for all the nodes of a particular module type. This re-traversal
of subgraphs adds some complexity to the traversal of our modular graphs.

2.4 Quantum Logic Synthesis

As mentioned in Section 2.3, the primary goal of logic synthesis in classical CAD
flows is to derive a technology dependent gate network from a high level circuit
specification. In addition to this goal, our quantum logic synthesizer also must add
additional circuitry to ensure that our circuit is fault tolerant.

2.4.1 Technology Dependent Gates

Since we allow the superset of all interesting quantum gates from quantum com-
puting literature to be used in our QASM definitions, we have a synthesis stage in
which we convert QASM gate operations into gate operations that are supported
natively by the type of quantum computing technology we are designing for. This
corresponds to the Tech-Mapping box in Figure 2.2, or more specifically to the Tech-
Specific Gates portion of that step.

We specify technology libraries to map abstract QASM gates to physically imple-
mentable gates for each technology our CAD flow can target. For example, since we
limit the number of qubits in an ion trap to 1 or 2 per interaction, we cannot physi-
cally implement a toffoli operation, so instead we translate toffolis into a sequence of
1 and 2 qubit gates from the ion trap technology library.

2.4.2 Fault Tolerant Gate Constructions

Once we have a set of physically implementable gates to work with, we must
next make them fault tolerant. We can apply quantum error correcting codes to
the problem, transforming each logical gate from the technology-dependent network
into an encoded subcircuit implementing the same operation fault tolerantly. For
each code our CAD flow supports, we have a library of encoded gates that can be
substituted into the circuit. These libraries are generated automatically using Andrew
Cross’s ftqctools [13].

The selection of QECC to be used in the synthesized circuit is current user-
selected.

2.4.3 Error Correction Circuit Optimization

In the previous section, we discussed the placement of error correction steps in a
quantum circuit. The ratio of the number of gates present in an error correction step
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for a common 7-bit Steane code to the number of gates in an encoded CNOT gate
is about 500/7. Thus, the majority of the gates being performed in any given circuit
are for error correction instead of performing the actual computation. A few other
works have addressed this apparent inefficiency:

Compressed Quantum Logic Array Thaker et. al. [19] proposed converting
encoded qubits between different codes depending on the frequency of operations
performed on it. They proposed a memory-CPU structure where qubits that were
idle in memory were stored in a stronger code and qubits undergoing computation
were stored in a mixture of the same strong code and a weak code. Their reasoning
was that qubits in memory required fewer corrections since they were not subject to
error prone gate operations so it was less expensive to store these qubits in this code
in terms of gate count. Some qubits undergoing computation would then be switched
to a more lightweight code to facilitate faster computation, since both the encoded
gates and the correction steps would be faster. The authors did not investigate the
opposite configuration: put the qubits undergoing computation in a stronger code
because they are more prone to errors while performing gates and put the qubits in
memory in a weaker code because their error rates are lower.

Ancilla Factories Our work in [34] focused on identifying the large, data-independent
portion of a quantum error correcting step, the fault tolerant ancilla generation, in
order to move this circuitry off the critical path. This ancilla generation was then ag-
gregated in ancilla factories which then distributed ancilla to multiple error correction
steps throughout a circuit. By batch processing error correction ancilla, we found we
could drastically reduce the amount of resources necessary for a given computation.

Retiming Based QECC Optimization We note that for any non-trivial circuit,
some qubits will undergo more gates, movement, of idling than others. Thus, different
qubits will have different probabilities of error at different time throughout their life
in the circuit. The previous conservative approaches to error correction call for the
assumption that each logical qubit be corrected after every logical gate. Thus, it
is effectively treating all qubits in the circuit as if they have the same probability of
having an error at all times. Such an assumption is faulty and therefore the treatment
is overly conservative.

Our approach effectively analyzes each qubit at each gate and applies error cor-
rections only when necessary. We draw an analogue between minimizing latency in
synchronous classical circuits and minimizing failures in our quantum circuits. We
use the technique of circuit retiming [40] to “recorrect” the given circuit. Based on an
approximation of how error propagate in a circuit, we can more effectively distribute
error correction steps throughout our circuit.
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Figure 2.6: The basic building blocks of our ion trap layouts. Each macroblock
consists of 3x3 electrodes or spaces to provide functionality as a straight channel, a
gate, a turn, or an intersection.

2.5 Ion Trap Layout

Since experiments in precise ion trap layout and control are ongoing, implemen-
tation details such as electrode sizing and laser and electrode pulse sequence timings
are in flux. However, we may abstract away some of these ion trap intricacies in order
to get area and latency estimates for our designs. Our calculations are done using
the abstraction of ion trap technology [22] described here.

Qubits A single qubit capable of holding one bit of quantum state is an ion. The
physical implementation of a qubit is actually more complicated, but for our purposes,
we may represent each qubit as a single ion.

Movement Electrodes are used to create potential wells in which qubits (ions) are
trapped. Potential wells and the ions within are moved via an application of precise
pulse sequences to the electrodes. Moving an ion around a corner takes more time
than moving straight [24].

Gates A gate is performed by firing precise laser pulses at a trapped ion. We may
abstract away the physics and consider that a gate is performed by arrival at certain
special “gate locations” in the layout.

Macroblocks Since qubit movement is performed by electrodes whose position is
fixed at fab time, certain “channels” for qubit movement are also set at fab time.
The details of electrode structure are still evolving, so determining area in terms of
number of ion traps is a bit ambiguous. For this reason, we use the macroblocks
shown in Figure 2.6 as the basic building blocks of our layouts. Each macroblock has
one or more “ports” through which qubits may enter and exit and which connect to
an adjacent macroblock. To perform a gate operation, all involved qubits must enter
a valid gate location (a black square in our macroblocks) and remain there for the
duration of the gate. Our area numbers are all calculated in terms of macroblock
count.
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Physical Latency Latency Error Error
Operation Symbol (µs) [21] Symbol Rate [20]

One-Qubit Gate t1q 1 p1q 10−6

Two-Qubit Gate t2q 10 p2q 10−6

Measurement tmeas 50 pmeas 10−6

Zero Prepare tprep 51 pprep 10−6

Straight Move tmove 1 pmove 10−8

Turn tturn 10 pturn 10−8

Idle (per µs) N/A 1 N/A 10−10

Table 2.2: Latency values and error probabilities used by our CAD flow for basic
physical operations.

Encoded
Data
Qubit

Interconnection Network

Interconnection Network

Figure 2.7: Layout of a single encoded data qubit.

We may now define latencies and error rates for ballistic movement in terms of our
macroblock abstraction. Table 2.2 shows the latency values and error rates we shall be
using throughout this work for both movement and for the basic quantum operations.
The table also includes the symbolic notation we shall use in our equations.

2.5.1 Data Qubit Area

Over the run of a quantum circuit, encoded data must perform four distinct types
of operations: transversal one-qubit gates, non-transversal one-qubit gates, transver-
sal two-qubit gates and QEC steps. As described in Section 3.1.4, a non-transversal
one-qubit gate may be performed by preparing a specific encoded ancilla and inter-
acting it transversally with the data qubit. Likewise, the data/ancilla interaction
portion of a QEC step involves a transversal two-qubit gate. In the end, the main
operations the encoded data must support are transversal one- and two-qubit gates.

To support these major operations, we use single compute regions as shown in
Figure 2.7. The design consists of a single column of Straight Channel Gate Mac-
roblocks with enough room for a single encoded qubit (seven macroblocks for the
[[7,1,3]] CSS code), with access on either side to whatever interconnect network is
being used. Thus, if we are encoding each qubit into m physical qubits, the total area
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Figure 2.8: A layout and its associated graph. The nodes correspond to macroblocks
and the edges correspond to “qnets” which do not have any associated physical entity
but determine how macroblocks are oriented with respect to each other.

used by data is m × nq, where nq is the total number of data qubits (including data
ancillae) in the circuit.

2.5.2 Layout Graph Representation

Our layouts are represented by a layout graph which contains macroblock nodes
that are linked together with QNets. The QNets hold information on how connected
macroblocks are oriented with respect to one another. Figure 2.8 shows an example of
a layout graph structure. Macroblock nodes specify their location and orientation on
the substrate. They also contain additional information to be used by the scheduler



34

to track ion movement through the macroblocks.
Layout graphs can have a similar modular structure as our dataflow graphs have.

An abstract layout module can refer to a single macroblock or another layout graph.
The embedding of a complex layout module is not as simple as in the dataflow case
since the sublayout must be spatially fit into the higher level design, but layout mod-
ularity again gives us considerable savings in representing the full layout since many
structures are often repeated. Some examples of repeated sublayouts are teleportation
routers and ancilla factories.

Layout Specification

Our layout specification consists of a sequence of layout module instances, all
parameterized by location and a rotation angle, in an XML format. At the lowest
level, everything is made up of macroblocks for the underlying technology, like those
shown in Figure 2.6. Additionally, we can define higher level modules, made out
of macroblocks, which can then have instances placed in the layout. Higher level
modules must define ports where they connect up to adjacent modules so that the
qubit movement scheduler can track movements across module boundaries. Figure
2.9 show an example of such a modular layout.

2.6 Custom Modules

Custom modules play a two-fold part in our design flow. First, in order to facilitate
hierarchical design, fully scheduled and laid out circuits may be recorded and stored
for later use. For example, a 4-bit adder is a common subcircuit of larger adders, so
its complete datapath and schedule may be reused by larger quantum circuits. Such
modules are often available in large circuits which have clear structure and easily
identifiable subcircuits.

Second, certain subcircuits are so common that they warrant hand-scheduling and
optimization. The ancilla generation support infrastructure is a prime example, as
QEC operations are ubiquitous in quantum computation, and the same encoded zero
ancilla preparation subcircuit may be used for each QEC operation. In Chapter 3,
we illustrate the process of hand-scheduling and optimizing the ancilla generation
circuit. We then demonstrate the utility of this process by using our ancilla factory
designs in the remainder of this work.

2.7 Fault Tolerance Verification

The goal of the fault tolerance verification tool is to determine the probability
of an unrecoverable error on the qubits that would yield an incorrect answer to our



35

<de�ne_module>
    <type>horseshoe</type>
    <module>
        <type>straight_channel</type>
        <location>0,0</location>
        <rotation>0</rotation>
    </module>
    <module>
        <type>turn</type>
        <location>30,0</location>
        <rotation>0</rotation>
    </module>
    <module>
        <type>turn</type>
        <location>30,30</location>
        <rotation>90</rotation>
    </module>
    <module>
        <type>straight_channel</type>
        <location>0,30</location>
        <rotation>0</rotation>
    </module>
</de�ne_module>

<module>
    <type>horseshoe</type>
    <location>0,0</location>
    <rotation>0</rotation>
</module>
<module>
    <type>horseshoe</type>
    <location>60,0</location>
    <rotation>180</rotation>
</module>

Figure 2.9: Layouts can consist of placements of single macroblocks or definition and
then instantiation of larger layout blocks. In this example, we define a larger “horse-
shoe” block made up of macroblocks and then instantiate two of them in different
positions and orientations.
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computation. Furthermore, we would like to know at which points in the design are
data most likely to incur errors.

2.7.1 Determining Failure Probability

A circuit is considered to have failed if:

• The circuit is not encoded in an error correction code and one of the output
data qubits incurs an error.

• The circuit is encoded and an encoded output qubit incurs more errors than
the code can correct.

We can either track errors at the circuit level, accounting only for gate errors or at
the layout level, accounting for gate, idle and movement errors.

2.7.2 Fault Tolerance Metrics

Due to the very high prevalence of errors in quantum circuits, overall probability
of success will be one of the most important metrics in the foreseeable future. While
reliability is only beginning to become important in classical CMOS circuits, it must
be addressed as an integral design parameter from the very beginning for quantum
circuits. The relatively high error rates of quantum operations motivate our inclusion
of reliability as a key metric for evaluating our designs.

Since the proposed applications for a quantum computer are all currently in the
complexity class NP (such as factoring, for example), we can verify whether the
answer produced is correct or not fairly easily with a classical computer. This means
that in we have data corrupting errors in a run of our computation, we can just run
it over again until we get a correct answer. For this reason, probability of success is
closely connected to the layout delay metric.

2.8 Benchmarks for Evaluating Quantum CAD

We will be using two types of benchmarks to test our heuristics. First, Shor’s
factorization algorithm is a practical quantum application, so we will be using the
complete circuit for factorization, as well as its two primary subcircuits, an adder
circuit and the Quantum Fourier Transform. Second, we will be using randomized
circuits in order to test the versatility of our methods. We now elaborate on our
circuit generation methodology.
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2.8.1 Factorization and Its Subcircuits

For the final test of our toolset, we present in Chapter 6 our results for Shor’s
factorization algorithm [54]. The two chief subcircuits the factorization circuit are an
adder circuit and the Quantum Fourier Transform (QFT).

We have implemented two versions of the adder circuit, one an analogue of the
classical ripple-carry adder (RCA), the second an analogue of the carry lookahead
adder (CLA). The quantum RCA is based on the circuits described in [16], while the
quantum CLA is from [17]. The QFT is the highly parallel design presented in [26].

2.8.2 Random Circuit Generation

In addition to the real application benchmarks described above, it is convenient to
have benchmark circuits in which we can exert more control over various properties,
such as the number of qubits, gates, or overall communication structure. For this
reason, we also introduce a method for synthesizing random quantum circuits to test
various portions of our tool flow. The generated random circuits have the following
parameters:

Gate count Number of total gates that are in this circuit.

Gate type Types of gates included in the random circuit. Typically, we focus on
the gates that appear most often in our applications, CNOT, Hadamard, and
some non-transversal gate like T are common choices.

Qubit count Number of data qubits that are operated upon in the circuit.

Splitting fraction The splitting fraction is an approximate measure of the locality
of communication in a circuit. It tells us how to group gates when we are de-
termining what gates should connect to each other when generating the circuit.
A fraction of 0.5 will generate a circuit by successively breaking it into 2 equal
sized parts and adding connections within each part, then recursively dividing
each sub-part in half. A fraction of 0.9 will divide the circuit into one with 10%
of the gates and another with 90% of the gates and follow the same recursive
procedure.

2.9 ADCR-Optimal

In Section 1.3.3, we described our probabilistic area-delay product metric, ADCR.
When we run a circuit through our CAD flow, what we are seeking is the ADCR-
optimal design, or the set of design parameters which yield the lowest ADCR. Since
ADCR is meant to be a comprehensive metric for all the stages in our CAD flow,
finding the design with the best ADCR takes some amount of iteration and feedback.
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Figure 2.10: For a given input circuit, our CAD flow iterates through various datap-
ath configurations, each of which produces a value for ADCR. The best, or ADCR-
optimal, hardware configuration is selected.

Figure 2.10 illustrates the internal results of our toolset. For a given quantum
circuit, the toolset iterates through varying hardware configurations (which will be
discussed in Chapters 3 and 4), each of which results in some value of ADCR. The
best configuration is automatically selected. Thus, for the remainder of this work, the
ADCR values plotted in our graphs could really be considered to be ADCR-optimal
values.
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Chapter 3

Ancilla Factories

The bulk of both a QEC operation and a fault tolerant non-transversal gate is
a preparation circuit involving the creation of encoded ancillary qubits, or ancillae,
which does not involve the data qubit to be corrected. Consequently, as Chi et al.
point out in [11], the critical path of a quantum circuit could be significantly reduced
if the ancilla preparation work were done in parallel with useful computation. In
particular, the speed of a quantum computation would be limited solely by data
dependencies between encoded qubits. We refer to this fully offline parallelization of
data-independent work as running the circuit at the speed of data.

Figure 3.1a shows a possible execution of a simple series of quantum gates involv-
ing qubits Q0, Q1 and Q2. Each gate involves some encoded ancilla preparation for
the QEC step which must follow it. In addition, the non-transversal gates require spe-
cialized encoded ancilla preparation. Figure 3.1b shows these operations performed
at the speed of data. Chi et al. suggest that these ancilla preparation operations
could be done in advance, but the hardware cost for this parallelization grows quickly
as the critical path is shortened. In this chapter, we address the need for specialized
hardware to produce encoded ancillae at sufficient bandwidth.

3.1 Ancilla Preparation Circuits

In this section, we discuss several ancilla preparation circuits and evaluate them
in terms of complexity and error. Ultimately, we select encoding circuits that will be
used in our layouts in Section 3.3.

3.1.1 Computing on Encoded Data Bits

Since quantum data is very fragile, it must be encoded at all times in an ap-
propriate quantum error correction code. A high-level view of the procedure for
error-correcting an encoded data qubit is shown in Figure 3.2. Both the bit value and
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Figure 3.1: (a) Standard implementation of a circuit involving qubits Q0, Q1 and Q2.
Only the grey blocks represent interactions with actual data. The bulk of the critical
path involves independent ancilla preparation. (b) An optimized version of the circuit
in which ancilla preparation is pulled off the critical path through use of increased
hardware. Here, the speed of the computation is limited only by data dependencies
(grey blocks).
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Figure 3.2: A quantum error correcting (QEC) operation is composed of a bit-flip
correction and a phase-flip correction, corresponding to the two types of errors that
can happen to a qubit. The thick bars represent encoded qubits.

phase must be repaired during the QEC step [44]. Two sets of physical ancilla qubits
are each encoded into the zero state and then consumed during correction.

Gates applied to encoded data may be classified into two types: transversal and
non-transversal. A transversal encoded gate is applied by performing the correspond-
ing physical gate independently on each of the qubits comprising the encoded qubit,
as shown in Figure 3.3a for the Hadamard gate. A non-transversal encoded gate is
decomposed into a more complex set of physical operations, including multi-qubit
physical operations between physical qubits within the same encoded qubit; for ex-
ample, see the Basic Encoded Zero Ancilla Prepare in Figure 3.3b. Since errors are
propagated between physical qubits during the application of non-transversal gates,
such gates must be designed carefully to avoid introducing uncorrectable errors.

A class of quantum codes known as CSS codes [57, 10] allow transversal implemen-
tations of most encoded gates. For this reason, CSS codes are used in most analyses
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between physical qubits within the same encoded qubit.

of the fault tolerance of quantum circuits. Throughout this work, we use the [[7,1,3]]
CSS code [57]. Encoded gates that can be performed transversally on this code in-
clude the two-qubit CX, as well as the one-qubit X, Y, Z, Phase, and Hadamard
gates. In order to have a universal gate set, we also need the non-transversal π/8
gate and the encoding procedure to create an encoded ancilla. We will discuss how
to obtain a fault tolerant version of the π/8 gate in Section 3.1.4.

3.1.2 Circuit Evaluation Methodology

Since encoded ancillae are a major component of error correction, it is critical
to generate clean ancillae to avoid introducing errors during the correcting process.
This ensures fault tolerance during circuit execution, as explained in Section 2.7. In
the following, we will evaluate circuits by using the tools in [64] which allow us to lay
out circuits. The effects of error are then modeled by Monte Carlo simulation where
errors can be introduced at any gate or qubit movement operation. Additionally, we
model the fact that two-qubit gates propagate bit and phase flips between qubits.
This simulation is similar to what was done in [59] except with the addition of qubit
movement error from our detailed layout. We assume an independent error probability
for each gate and movement operation. The gate error rate is 10−4 and the error per
movement op is 10−6. Our gate and movement error rates are consistent with [60].

3.1.3 Encoded Ancilla Preparation

Since the Bit Correct and Phase Correct circuits in Figure 3.2 are fully transversal
(each consisting of a transversal CX, measure and conditional correct [49]), we focus
on the basic zero ancilla preparation circuit, which we introduced in Figure 3.3b. The
probability of an uncorrectable error in the resulting encoded output of this circuit is
1.8× 10−3 based on our evaluation methodology above. We would like to improve on
this basic result.

There are two different circuit-level techniques for removing general errors from an
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“Cat Prep” module corresponds to the preparation of a special 3-qubit state. Thick
bars are encoded qubits (seven physical qubits). The overall error rate of each is given
under each circuit.

encoded qubit: verification and correction. Verification tests a qubit in a known state
for error and discards it if too much error is found. Correction is more complex, but
it corrects a bit or phase error from an encoded qubit in an unknown state, thus it is
more suitable for data qubits in a long-running computation. Encoded zero ancillae
are in known state and may be discarded if necessary, so either method is suitable.

While Figure 3.3b shows the circuit for preparing an encoded ancilla in the zero
state in the [[7,1,3]] CSS code, we would like a more error-free ancilla qubit for in-
teraction with data. Figure 3.4 shows some example zero ancilla preparation circuits
from the literature [61, 49], with the overall error rate for each given under the circuit.
Correction alone (Figure 3.4b) loses to verification alone (Figure 3.4a) in both error
and area. When comparing Figures 3.4a and 3.4c, it is important to note that they
are not to scale. The “Basic 0” module (expanded in Figure 3.3b) is by far the most
complex, so by doing both verification and correction, we get more than an order of
magnitude improvement in error over verification alone for slightly more than three
times the area. Thus, we shall use the circuit in Figure 3.4c in this paper.

Since we are using qubit verification as part of our encoded zero preparation, we
need to know the success rate of verification. Using the same Monte Carlo simulation
used for error probability calculations, we estimate the verification failure rate of the
subunit 3.4a to be 0.2%. We will use this failure rate value in calculations later in
Section 3.3.2.

3.1.4 Fault Tolerant π/8 Gate

It has been shown that no quantum error correcting code has transversal gate
implementations for all the gates in a universal set [68], and indeed, in the [[7,1,3]]
CSS code, we need the non-transversal π/8 gate in order to complete the universal
set. In order to maintain fault tolerance when performing the π/8 gate on a [[7,1,3]]
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Note that the π/8 gate near the far right is transversal but does not implement an
encoded π/8 gate.

encoded qubit, we use a technique developed in [69]. Their approach is to generate an
encoded ancilla qubit encoded in the π/8 state and perform transversal interactions
with the data, as shown in Figure 3.5a, to achieve the overall effect of an encoded
π/8 gate.

To encode the π/8 ancilla qubit, we could try to create a physical π/8 ancilla qubit
and then use the encoding circuit in Figure 3.3b, but this approach would result in
errors on the original physical qubit propagating to each physical qubit in the final
encoded ancilla, which is unacceptable. Thus, we require the far more complicated
circuit shown Figure 3.5b, which consists of an encoded zero ancilla prepare, a 7-qubit
cat state prepare (where a cat state is a specially prepared multi-qubit state) and a
series of transversal encoded gates.

3.1.5 Fault Tolerant π/2k Gates

The Quantum Fourier Transform (QFT) requires controlled phase rotation gates
by small angles (these gates replace the explicit tracking of roots of unity in the
classical FFT algorithm). The amount of precision for these gates scales exponentially
in the number of bits involved in the QFT [44]. A controlled phase rotation by π/2k

can be generated by a CX gate and 3 single qubit π/2k+1 gates [25]. Thus, using
circuit techniques mentioned so far, we can implement every gate in the QFT fault
tolerantly except these single qubit rotation gates. There are two problems with
implementing an arbitrary precision phase rotation fault tolerantly:

• For angles smaller than π/2, there exists no transversal gate implementation
using the [[7,1,3]] code [68]. In fact, this seems likely to be true for all codes.

• Such a gate would require the physical implementation of an arbitrary precision
rotation – a difficult burden on the engineers of these devices.

Due to the above reasons, we adopt a technique by Fowler [25]. To approximate small
angle rotations, we exhaustively search all permutations of T and H gates to find a
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controls both the single qubit X gate and the compound gate involving more ancilla
factories. Each measurement has a equal chance of giving the “correct” state, in
which the remaining circuit is skipped or a “wrong” state in which a larger rotation
has to be done to adjust the state. The actual output data from the circuit connects
to the first quantum bitline associated with a correct measurement.

minimum length sequence for a π/2k rotation gate up to an acceptable error.
We also note that if a π/2k physical gate is available in a given technology, an

exact fault-tolerant π/2k can be implemented as shown in Figure 3.6. In order to be
conservative about the availability of arbitrary precision rotation gates, we do not use
this construction in the circuits in this paper. However, in Section 3.3.3, we briefly
analyze the performance advantages of this technique.

3.2 Benchmark Characteristics: Ancilla Need

We now characterize the runtime properties of some commonly used quantum
circuits, focusing on the impact of encoded ancilla generation. Many quantum al-
gorithms require ancillae to assist in computation. For example, an n-bit Quantum
Ripple-Carry Adder uses two n-bit data inputs plus n+1 ancillae. In addition, shorter-
lived ancillae are needed for QEC and for performing non-transversal encoded gates,
as discussed earlier.

Throughout this work, we refer to the longer-lived ancillae used in the main com-
putation as “data ancillae” and to the shorter-lived ones as “ancillae.” We make this
distinction because data ancillae tend to have long enough lifespans that “discarding”
them and restarting their portion of the computation has a relatively high cost. Our
work focuses on the short-lived ancillae which need to be produced in large quantities
and which may more easily be discarded and re-encoded.

We do most of our analysis in a symbolic fashion so that it may be applied to vary-
ing technologies and assumptions. However, we will also be applying the analysis to a
specific technology, trapped ions [22], in order to make the results of our calculations
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Circuit Qubit Count Gate Count

32-bit QRCA [16] 97 2177
32-bit QCLA [17] 123 2410
32-bit QFT [44] 32 8145

Table 3.1: Total encoded qubit count and total encoded gate count for our bench-
marks, the 32-bit Quantum Ripple-Carry Adder (QRCA), the 32-bit Quantum Carry-
Lookahead Adder (QCLA) and the 32-bit Quantum Fourier Transform (QFT).

more concrete. We use the physical gate latencies shown in Table 2.2, the [[7,1,3]]
CSS code introduced in Section 3.1.1 and the encoded ancilla preparation circuits
shown in Figures 3.4c and 3.5b. Note that the “Zero Prepare” in Table 2.2 refers to
a physical zero prepare, which is the leftmost set of gates in the Basic Encoded Zero
Ancilla Prepare in Figure 3.3b.

In the next section, we discuss the three benchmarks we have chosen to study.
Then in the following section, we characterize various properties of these quantum
circuits, which shall aid us in making design decisions in the remainder of our work.

3.2.1 Benchmarks

For our benchmarks, we use the 32-bit Quantum Ripple-Carry Adder (QRCA) cir-
cuit from [16], the 32-bit Quantum Carry-Lookahead Adder (QCLA) circuit from [17]
and a 32-bit Quantum Fourier Transform (QFT) circuit we derived using methodol-
ogy described in Section 3.1.5. All three are core kernels of a varied array of quantum
algorithms, including Shor’s factorization algorithm. Table 3.1 summarizes the size
of each circuit.

In addition to their common use, these circuits have been chosen because they run
the gamut from largely serial to highly parallel. All three are similar to their classical
counterparts in terms of parallelism. The QRCA is a rather serial circuit, the QCLA
is somewhat more parallel and the QFT is maximally parallel, much like the classical
Fast Fourier Transform.

3.2.2 QEC Circuit Characteristics

We study our benchmark circuits at two extremes of the latency-area trade-off:
1) No overlap of QEC and computation (high latency, but low area), and 2) in-
finitely fast encoded ancilla production, resulting in an execution limited only by
data dependencies (low latency, but potentially much higher area for encoded ancilla
generation).

Table 3.2 shows for each benchmark the latency of the critical path in the ab-
sence of movement (Column 2), as well as latencies for the data-dependent and data-
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Data Op Data QEC Interact Ancilla Prep
Circuit Latency (µs) Latency (µs) Latency (µs)

(% of total) (% of total) (% of total)

32-Bit QRCA 29508 (5.2%) 95641 (16.7%) 447726 (78.2%)
32-Bit QCLA 3827 (5.3%) 11921 (16.7%) 55806 (78.0%)
32-Bit QFT 77057 (5.0%) 365792 (23.7%) 1097376 (71.2%)

Table 3.2: Relative latency of useful data operations, interaction of data with en-
coded ancillae for QEC and encoded ancilla preparation for QEC for various circuits,
assuming no overlap between them.
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Figure 3.7: Encoded zero ancilla needs for the QRCA (left), the QCLA (middle) and
QFT (right) to run at the speed of data.

independent (Columns 3 and 4) portions of QEC steps, assuming a QEC operation
must be performed after each useful gate. The minimal running time is the sum of
Columns 2 and 3, since these involve data qubits. Column 4 corresponds to encoded
ancilla generation time. Clearly, there is much to be gained in overall execution time
by taking ancilla preparation off the critical path.

Figure 3.7 shows the number of encoded ancillae consumed as a function of time
for QEC in order to keep the circuit operating at the speed of data, which means that
adequate hardware resources exist to generate and distribute the needed ancillae in

Avg Bandwidth Needed Avg Bandwidth Needed
Circuit for QEC for Non-Transversal Gates

(Encoded Zero Ancillae / ms) (Encoded π/8 Ancillae / ms)

32-Bit QRCA 34.8 7.0
32-Bit QCLA 306.1 62.7
32-Bit QFT 36.8 8.6

Table 3.3: Average bandwidth of encoded zero ancillae needed for QEC and average
bandwidth of encoded π/8 ancillae needed for non-transversal one-qubit gates if each
circuit is to be executed at the speed of data. Note that bandwidth is given per
millisecond.
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Figure 3.8: The execution time of the QRCA (left), the QCLA (middle) and the QFT
(right) as a function of a steady throughput of encoded zero ancillae. The vertical
line in each shows the average bandwidth for that circuit from Table 3.3.

time, but the interaction with data during each QEC step is still on the critical path
of execution. Table 3.3 summarizes this figure by giving the average encoded ancilla
bandwidth necessary for each.

These averages do not take into account the handling of peak periods. In reality,
the encoded ancilla bandwidth necessary to run a circuit optimally may be higher than
the average bandwidth. Figure 3.8 shows for our benchmarks the circuit execution
time assuming a steady throughput of encoded ancillae being generated, as specified
on the x-axis. These graphs show us the sustained ancilla bandwidth necessary to run
each circuit at near-optimal speed, but these are only estimates since they lack the
details of movement and layout. In Section 3.3, we examine the associated hardware
needs.

3.2.3 Non-Transversal One-Qubit Gates

The encoded ancilla bandwidth discussed in Section 3.2.2 included only zero an-
cillae needed for error correction. Non-transversal one-qubit gates account for 40.5%,
41.0% and 46.9% of our QRCA, QCLA and QFT benchmarks circuits, respectively,
when using the [[7,1,3]] encoding. As explained in Section 3.1.4, the execution of
a non-transversal encoded gate is performed with the use of a π/8 encoded ancilla
qubit. Column 3 in Table 3.3 shows the corresponding π/8 ancilla bandwidth needed
for each benchmark to achieve a runtime limited only by the speed of data (the sum
of Columns 2 and 3 in Table 3.2).

3.3 Ancilla Factory Layout

In this section, we shall explore the design space of possible ancilla factories and
determine the hardware resources necessary to produce encoded ancillae at the band-
widths calculated in Sections 3.2.2 and 3.2.3 in order to take ancilla generation off
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Figure 3.9: An ancilla factory for the circuit in Figure 3.4c. Each row of gates
generates and verifies one of the three encoded zero ancillae, then bit and phase
correction are performed.

the critical path of execution. We will use the ion trap macroblock layout scheme
introduced in Section 2.5.

3.3.1 Simple Ancilla Factories

We now focus on designing an ancilla factory, a concept first proposed in [58]. An
ancilla factory is a portion of the layout which consumes stateless physical ancillae
and produces a steady stream of encoded ancillae at some rate. Figure 3.9 shows a
simple ancilla factory to execute the circuit in Figure 3.4c. Each row of gates has
room for ten physical qubits, seven to be encoded and three for verification. The
adjacent rows are used for communicating. When all three are encoded and verified,
the middle one is bit-corrected by the top one and phase-corrected by the bottom one.
Using a hand-optimized schedule, the total latency of a single ancilla preparation is
approximately: tprep + 2 × tmeas + 6 × t2q + 2 × t1q + 8 × tturn + 30 × tmove.

Substituting in the ion trap latencies from Table 2.2, the layout in Figure 3.9 has
a total latency of 323µs with a throughput of 3.1 encoded ancillae per millisecond
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Figure 3.10: A fully pipelined encoded zero ancilla creation unit implementing the
circuit in Figure 3.4c.

and an area of 90 macroblocks. Using this simple ancilla factory, we could produce
any desired bandwidth of encoded ancillae by replicating the layout as many times
as necessary. Unfortunately this design is inefficient in that the verification qubits
needlessly take up space during the seven-qubit zero encoding procedure. To combat
this inefficiency we instead consider a pipelined approach.

3.3.2 Encoded Zero Ancilla Factory

Classically, pipelining a circuit is done by inserting synchronization points (regis-
ters) into the circuit’s datapath to enable logic reuse, thereby increasing throughput
with a small increase in latency. We can apply a similar technique to our ancilla
factory layout in an effort to improve area utilization. Due to the precise electrode
and laser pulse sequences needed to implement movement and gates, ion trap layouts
are by definition synchronous without additional synchronization elements. Instead,
we must add a set of communication channels between pipeline stages allowing qubit
movement for maximum gate location occupancy.

We consider the entire circuit for fault tolerant encoded zero ancilla creation (Fig-
ure 3.4c). Figure 3.10 shows a fully pipelined microarchitecture for this circuit, which
consists of four stages. Each stage contains a number of functional units for its subcir-
cuit such that the output bandwidth of one stage is matched to the input bandwidth
of the next. Adjacent stages are separated by a crossbar (Figure 3.11a), which con-
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Functional Unit Symbolic Latency

Zero Prep tprep + t1q + 2 × tturn + tmove

CX Stage 3 × t2q + 6 × tturn + 5 × tmove

Cat State Prep 2 × t2q + 4 × tturn + 2 × tmove

Verification tmeas + t2q + 2 × tturn + 2 × tmove

B/P Correction tmeas+2×t2q+6×tturn+8×tmove

Table 3.4: The symbolic latency for each functional unit in Figure 3.10.

sists of two vertical columns, fully connected horizontally, one for upwards movement,
the other for downwards. In this way, each qubit may move from one stage to the
next without worrying about congestion, since qubits moving in opposite directions
won’t impede each other.

Stage 1 consists of preparing a junk physical qubit into the zero state with an
optional Hadamard gate at a single gate location (Figure 3.11b). Even though only
some of these qubits need the Hadamard, we group them all into the same set of
functional units.

Stage 2 consists of two types of units. Looking at the CX portion of the ancilla
prepare circuit in Figure 3.3b, we see that the first three CX’s can be performed in
parallel, as can the next three, followed by the final three. Thus, we may use the
pipelined layout in Figure 3.11c for this functional unit, with three sets of qubits
(each performing three CX’s with one idle qubit) in this functional unit at a time.
The Cat Prep units (Figure 3.11d) create a three-qubit cat state out of three physical
zero ancillae by performing two CX’s in succession.

Verification of the encoded zero ancillae using the cat states is performed in Stage
3 and involves performing three CX’s in parallel and then measuring the cat state
qubits to determine success or failure of the encoded ancilla. Since the encoded ancilla
qubits must wait for the measurement to complete, we need 10 macroblocks, one for
each qubit as shown in Figure 3.11e. When this stage is complete, the three qubits
of the cat state are recycled immediately, as well as the other seven qubits if the
verification failed.

Finally, in Stage 4, a verified encoded zero ancilla A is first bit-corrected by a
verified encoded zero ancilla B and then phase-corrected by a verified encoded zero
ancilla C. Since we need storage room for A plus room to measure both B and C
in parallel (allowing us to overlap these measurements in time), each such functional
unit needs space for three encoded ancillae, as shown in Figure 3.11f.

Table 3.4 shows the symbolic latency breakdown for each stage of the pipeline,
while Table 3.5 shows various numeric characteristics for each functional unit under
our ion trap assumptions. Note that Stages 3 and 4 have input bandwidth different
from output bandwidth due to the fact that some qubits are used up and recycled
in these stages. To achieve high resource utilization, we determine unit count by
matching bandwidth between successive stages. The results are shown Table 3.6.
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Latency BW (qubits/ms) Area
Functional Unit (µs) Stages In Out

Zero Prep 73 1 13.7 13.7 1
CX Stage 95 3 221.1 221.1 28
Cat State Prep 62 2 96.8 96.8 6
Verification 82 1 122.0 85.2 10
B/P Correction 138 1 152.2 50.7 21

Table 3.5: The numeric characteristics for each functional unit in Figure 3.10 using our
ion trap assumptions. “Stages” is the number of pipeline stages within the functional
unit itself, and “Area” is given in number of macroblocks.

Unit Total Total
Functional Unit Count Height Area

Zero Prepare 24 24 24
CX Stage 1 4 28
Cat State Prepare 1 2 6
Verification 3 30 30
B/P Correction 2 42 42

Table 3.6: The functional unit counts and stage characteristics for the encoded zero
ancilla factory in Figure 3.10. The CX and Cat Prepare units in Stage 2 are bandwidth
matched to a ratio of 7 to 3 (which is appropriate for verification), and then the other
stages are sized to match the resultant bandwidth.

For the crossbars, we use a two-column design, one column for upwards movement,
the other for downwards, in order to avoid congestion. However, physical qubits
exiting Stage 1 are funneled inward to the much smaller Stage 2, so we use a single
column crossbar since bi-directionality is likely unnecessary. The total crossbar area
is thus 24 + 2 * 30 + 2 * 42 = 168 macroblocks, and the total functional unit area is
24 + 34 + 30 + 42 = 130 macroblocks, resulting in a total area of 298 macroblocks.

For overall throughput, we take the minimum throughput among the stages. The
bottleneck in the factory is the CX Stage. Each seven physical qubits out of this
stage correspond to an encoded zero ancilla. Approximately 99.8% of these qubits
are successfully verified (using the results of our Monte Carlo simulations mentioned
in Section 3.1.3), and two-thirds of them are then used to correct the other third.
Thus, the overall throughput of our zero ancilla factory is: 221.1

7
× 0.998 × 1

3
= 10.5

encoded ancillae / ms.
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Stage Symbolic Latency

Cat State Prepare 7 × t2q + 14 × tturn + 8 × tmove

Transversal CX/CS/CZ/π/8 3 × t2q + 2 × tturn + 3 × tmove

Decode (plus Store) 7 × t2q + 14 × tturn + 8 × tmove

H/M/Transversal Z tmeas+2×t1q+2×tturn+2×tmove

Table 3.7: The symbolic latency for each stage in the encoded π/8 ancilla generation
circuit.

Stage Latency In BW Out BW Area

Cat State Prepare 218 32.1 32.1 12
Transversal CX/CS/CZ/π/8 53 264.2 264.2 7
Decode (plus Store) 218 64.2 36.7 19
H/M/Transversal Z 74 108.1 94.6 8

Table 3.8: The numeric characteristics for each stage in the encoded π/8 ancilla
generation circuit under our ion trap assumptions.

3.3.3 Encoded π/8 Ancilla Factory

In Section 3.2.3, we showed that a non-trivial supply of encoded π/8 ancillae are
also needed by our circuits. The circuit in Figure 3.5b shows how to turn a zero
ancilla generated by our pipelined ancilla factories into an encoded π/8 ancilla. We
pipeline this circuit as well, not merely for the benefit of input/output ports, but
also because the different number of qubits involved at various points in the circuit
means that resources would be idle if this were done “in place.” This circuit may
be divided into four stages: 1) Cat State Prepare, 2) Transversal Controlled-Z/S/X,
plus Transversal π/8, 3) Decode, 4) One-qubit H, One-qubit Measure, Transversal Z
conditional on measurement.

Table 3.7 shows the symbolic characteristics of each of these stages, while Table 3.8
shows the numeric values. Note that bandwidths here are in physical qubits, which is
why Stages 1 and 3 have differing bandwidths despite having the same latency. We

Unit Total Total
Stage Count Height Area

Cat State Prepare 4 24 48
Transversal CX/CS/CZ/π/8 1 7 7
Decode (plus Store) 4 52 76
H/M/Transversal Z 2 16 16

Table 3.9: The functional unit counts and characteristics for each stage of our final
π/8 ancilla factory.
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Figure 3.12: a) Ancilla production proposed in prior work: Each data qubit location is
adjacent to an In-Place Ancilla Generator which produces encoded ancillae exclusively
for that location. b) Multiplexed Ancilla Factories: Data qubits are more tightly
packed together, with ports to Ancilla Factories at the edges of the Compute Region.
(not to scale)

now match bandwidths just as we did for the zero ancilla factory in order to get close
to full utilization. Table 3.9 shows the the final unit counts of our π/8 ancilla factory.
Note that only half the qubits consumed by Stage 2 come from Stage 1 (the others
come from an encoded zero ancilla factory).

The total stage heights are different enough that an exact layout would likely
require partially folding some stages into others and simulating execution to determine
exact crossbar sizes needed to avoid congestion. For our purposes, we will allocate
two columns to each crossbar, since qubits must be able to move in both directions
at the same time. Thus, the total crossbar area is 2 * 24 + 2 * 52 + 2 * 52 =
256 macroblocks, and the total functional unit area is 48 + 7 + 76 + 16 = 147
macroblocks, resulting in a total area of 403 macroblocks. We note, however, that
this is merely the area for turning an encoded zero into an encoded π/8. This factory
needs to be supplied by zero ancilla factories in order to function, which we account
for in Section 3.4.

The bottleneck of this ancilla factory is the Cat State Prepare stage. Each seven-
qubit cat state produced by this stage results in one encoded π/8 ancilla produced by
the factory, so the throughput of the factory is equal to the throughput of this stage:
18.3 encoded π/8 ancillae / ms.

As mentioned in Section 3.1.5, we build up smaller angle π/2k rotations from
combinations of π/8 and H gates instead of building ancilla factories for them. It is
worthwhile to note that if physical gates with adequate precision are available, the
critical path for the data can be decreased further. From Figure 3.6 we see that
the critical path for the data through such a factory would on average consist of
∑k−2

i=0 1/2k CX gates and one fewer X gates.
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Figure 3.13: By bringing data qubits closer together within a Compute Region and
confining multiplexed ancilla factories to the edges, the multiplexed approach results
in slightly better success probability than the hand optimized, one ancilla generator
per data qubit approach.

3.3.4 Qubit Fidelity When Multiplexing

In [23], the authors propose ancilla production as illustrated in Figure 3.12a. Each
data qubit location has an In-Place Ancilla Generator next to it. All necessary ancillae
for that location must be produced by that Generator, as there is no multiplexing.
In [39], the authors optimize this approach by carefully hand scheduling all ballistic
movement for a QEC operation, including interaction with the data.

Figure 3.12b shows our approach introduced in this chapter, wherein the data are
more tightly packed to reduce distances between data in a single Compute Region.
Pipelined, multiplexed ancilla factories are placed at the edges of the Compute Region,
then encoded ancillae are brought to the data locations as needed.

We have already illustrated the area and latency benefits of our approach. Multi-
plexing reduces wasted area as ancilla factories may be sized according to the ancilla
need of a target circuit, thus minimizing idle ancilla generation hardware. Likewise,
in the former approach, imbalanced gate location use results in execution stalls due
to a few overburdened ancilla generators, while many others remain idle. With multi-
plexed factories, execution is less likely to stall since the load on the ancilla generation
resources is more evenly distributed.

However, qubit fidelity is a potential drawback when using the latter approach.
The data qubits are closer together and thus theoretically don’t need to move as
far ballistically. However, the encoded ancillae generated at the output ports of the
factories now need to move further to reach the data.

We evaluate this trade-off by running random graphs of 100,000 logical gates using
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Figure 3.14: A quantum layout microarchitecture may be considered to consist of
three components: generators of encoded ancillae, data qubit computation regions
and interconnect. (a) The (C)QLA microarchitecture dedicates an ancilla generation
unit to each data qubit. (b) Our general microarchitecture redirects encoded ancillae
to wherever they’re needed on the chip, thus avoiding idle generators. (c) In order
to run at the speed of data, the ancilla generation portion of the chip needs far more
hardware than the data regions, as shown in Table 3.10.

the two different approaches. In each test, the datapath is a single Compute Region
with just enough gate locations to fit the data qubits. Figure 3.13 shows the results
for varying numbers of data qubits. The benefit of bringing the data qubits in closer
proximity to each other outweighs the detriment of having to bring encoded ancillae
to data in the non-multiplexed approach. Thus, we will henceforth use multiplexed,
pipelined ancilla factories in our designs.

3.4 Architectural Trade-offs

We now bring our analyses together to draw quantitative conclusions about run-
ning a quantum circuit at the speed of data and to compare against proposed archi-
tectures from prior work. Following that, we present a more qualitative discussion of
some conclusions we’ve drawn from this work.

3.4.1 Matching Production to Need

We divide the microarchitecture of a quantum layout into three components: 1)
hardware resources for generation of encoded ancillae; 2) hardware resources for data
operations, including operations involving data ancillae and the data/ancilla interac-
tion portion of a QEC step; and 3) an interconnection network for moving around
both encoded data and ancillae. Figure 3.14a shows the (C)QLA microarchitecture
[23, 19] using these components, with each data qubit (whether in a compute region
or memory) having an associated ancilla generation unit for QEC. Figure 3.14b shows
an ancilla factory-based microarchitecture wherein encoded ancillae are being gener-
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Data Area QEC Ancilla Factories π/8 Ancilla Factories
Quantum Circuit (% of total) Area (% of total) Area (% of total)

32-Bit QRCA 679 (33.6%) 986.9 (48.8%) 354.7 (17.6%)
32-Bit QCLA 861 (6.8%) 8682.2 (68.4%) 3154.4 (24.8%)
32-Bit QFT 224 (13.2%) 1043.5 (61.3%) 433.7 (25.5%)

Table 3.10: Area breakdown to generate encoded ancillae at the QEC bandwidths
shown in Table 3.3. The π/8 ancilla bandwidth is computed to match. The last
column includes area for both π/8 encoding and the zero ancilla factories supplying
these encoders.

ated across the chip and distributed to data as need dictates. For these results, we
assume that a QEC step is performed after each data qubit operation.

Table 3.10 gives the relative areas of two of the three components of the microar-
chitecture in Figure 3.14b when running our benchmarks at (or near) the speed of
data under our ion trap assumptions. We depict our microarchitectural components
to scale for the 32-bit QCLA in Figure 3.14c. The encoded zero ancilla bandwidth
for error correction is the average bandwidth required for each circuit (Table 3.3).
A corresponding encoded π/8 ancilla bandwidth is computed (but not shown in the
table) to run the circuit at that speed. Column 4 includes only those zero ancilla
factories producing for QEC. Column 5 includes both π/8 encoding factories and
sufficient encoded zero ancilla factories to supply the π/8 encoding factories.

We see that even the most serial of the benchmarks, the Quantum Ripple-Carry
Adder, requires a substantial portion of the chip (two-thirds) dedicated to encoded
ancilla generation in order to take this generation off the execution’s critical path,
while the more parallel QCLA requires more than 90%.

3.4.2 Latency/Area Evaluation

The proposals for both QLA and CQLA specify space for only serial production
of ancillae at each encoded data qubit location. We generalize these architectures
to GQLA and GCQLA, in which we replicate the ancilla area at each data qubit to
allow parallel production of ancillae. CQLA has additional flexibility in that different
numbers of data units can be present in the compute region. We wish to quantify the
efficiency of ancilla production in each microarchitecture by studying area needed for
a given execution time.

Methodology: Using dataflow graphs of our benchmarks and the estimates in Ta-
bles 3.4-3.9, we implemented an event-based simulation of ancilla factory production
and data qubit gate consumption. Simulation of the QLA [23] microarchitecture
assumes that each data qubit in the computation has a dedicated cell with ancilla
production. Data qubits are always moved back to their home base to do the error
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Figure 3.15: Execution time as a function of total area of encoded ancilla factories.
(Left) 32-bit QRCA, Data qubit area = 679 macroblocks; (Middle) 32-bit QCLA,
Data qubit area = 861 macroblocks; (Right) 32-bit QFT, Data qubit area = 224
macroblocks.

correction after each encoded gate. We simulate dataflow execution taking into ac-
count latency of the ancilla production and encoded gate execution, using latencies
from Tables 3.5 and 3.8.

CQLA [19] optimizes the QLA design by adding a central compute region of data
qubits that are in the current working set. To simulate this specialization of resources,
we added tracking of which qubits are in the compute region and account for data
qubit fetch and expunge latencies. This simulation has an implementation similar to
that of sim-cache in SimpleScalar [9]. We used the same basic ancilla production and
data gate latencies as for QLA.

Results: Figure 3.15 shows overall circuit execution time as a function of total area
dedicated to ancilla factories (of both types) for the different microarchitectures being
tested for QRCA (left), QCLA (middle) and QFT (right). Total data qubit area is
given in the caption for each.

We notice that CQLA takes about half an order to an order of magnitude longer
to execute than Fully-Multiplexed Ancilla Distribution. The chief cause of this is the
incurrence of cache misses in CQLA, whereas Fully-Multiplexed always distributes
encoded ancillae to data when necessary. CQLA also plateaus half an order to an
order of magnitude higher than Fully-Multiplexed since, even with very fast encoded
ancilla production, cached misses are still incurred to bring ancillae to data.

QLA requires two orders of magnitude more area for ancilla production to match
execution time with Fully-Multiplexed, which is logical since many ancilla generators
are idle much of the time in QLA when they could be used to feed nearby data need.
On the other hand, QLA eventually plateaus at a similar execution time as Fully-
Multiplexed, which makes sense since it has no concept of cache misses. QLA simply
needs very high encoded ancilla production at each data qubit in order to run at the
speed of data.
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Figure 3.16: (a) Qalypso: our proposed microarchitecture. (b) A single tile consists
of a dense data region surrounded by ancilla factories funneling encoded ancillae as
need arises. Ancilla distribution is fully multiplexed within each tile, with factory
output ports placed physically close to the data region.

3.4.3 Qalypso: Microarchitectural Implications of Pipelined
Ancilla Factories

The simple encoded zero ancilla factory in Figure 3.9 has an area of 90 macroblocks
and a throughput of 3.1 encoded ancillae per millisecond. The pipelined encoded
zero ancilla factory designed in Section 3.3.2 has an area of 298 macroblocks and
a throughput of 10.5 encoded ancillae / ms. These two designs produce virtually
the same encoded zero ancilla bandwidth per unit area. Since classically, pipelining
improves the bandwidth of a design for a fixed area, this seemingly negates some of
the benefits of pipelining1.

Nonetheless, we conclude that pipelined ancilla factories provide significant ben-
efit in having concentrated input and output “ports.” We propose Qalypso, a tiled
microarchitecture shown in Figure 3.16a using the tile shown in Figure 3.16b, with
ballistic movement being used within a tile and teleportation of data between tiles [33].
The central data region consists of a dense packing of encoded data qubits and chan-
nels for local ballistic movement. The ancilla factories each have an output port
physically near the data region so encoded ancillae do not have far to travel. This
port is beneficial both in reducing aggregate movement error on encoded ancillae and
in avoiding congestion problems from having encoded ancillae generated uniformly
throughout an ancilla factory. Meanwhile, since the limiting factor on move speed in
ion traps is state decoherence rather than control of the electrodes, stateless qubits
may be recycled to factory input ports much more quickly, allowing the input ports
to be far from the data.

This architecture differs from (C)QLA in two significant respects. First, our data

1We do not gain in bandwidth per unit area due to the facts that the technology is inherently
synchronous and that individual gate locations are multi-purpose.



60

regions consist of data alone. In CQLA, the compute regions consist of both data and
ancilla generation units, meaning that data are physically quite a bit further apart
even within one compute region and generally require teleportation for movement.
Even if QEC were performed as part of teleportation [5], we would require twice as
many encoded ancillae as a straightforward QEC step. Thus, we suggest that our data
regions be made as large as possible to allow data qubits to reach each other using
ballistic movement instead of teleportation as much as possible. Though ballistic
movement is somewhat error prone, the area of a data region consisting of nothing
but encoded data qubits is still quite small, so teleportation is only necessary between
data regions.

Second, ancilla factories surrounding a data region in our design are shared by
all data qubits within that region. In Figure 3.14a, which represents the (C)QLA
microarchitecture, each ancilla generator is dedicated to a single data qubit (location),
so imbalances in encoded ancilla need cause some generators to go idle while others
cannot meet need. By having a full crossbar between generators and consumers (data
qubits), as in Figure 3.14b, fresh ancillae go where they are needed within a single
data region. Further, as shown in Section 3.3.4, the consolidation of ancilla generation
into factories surrounding data regions produces a more fault tolerant design than the
architecture of (C)QLA.

We now have a microarchitectural structure for our datapath, as well as detailed
pipelined ancilla factories. We still need a model for our teleportation based intercon-
nect, and we need a means of finalizing a datapath that is tailored to a given circuit.
These two points are the topic of the next chapter.
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Chapter 4

Datapath Variations

In this Chapter, we examine the specifics of the Qalypso microarchitecture by
designing the compute regions and support infrastructure around these compute re-
gions. In the next Chapter, we will see how to divide large quantum circuits among
a series of compute regions.

The Qalypso microarchitecture contains three types of subcomponents:

1. Compute Regions, where data qubits reside

2. Ancilla Factories

3. a teleportation-based interconnect network

Ancilla factories were designed and analyzed in Chapter 3, so we now investigate
the other two types of components. We first introduce the network model and compo-
nents that we’ll be using for the remainder of this work. Following that, we investigate
some Compute Region layout variations, then our method for automatically sizing
the support infrastructure. Section 4.4 will summarize our findings.

4.1 Network Model

The three datapath organizations in Figures 1.10 and 1.11 each contain a high-
level view of the network as a grid of teleporters. We now elaborate on how the
network is modeled in order to fairly account for both congestion in the teleport
network and the area consumed by network components.

4.1.1 Network Components

The circuit for quantum teleportation from Figure 1.8 is depicted more accurately
spatially in Figure 4.1. It consists of three steps: EPR Pair Generation, EPR Pair
Distribution and Data Teleportation.
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Figure 4.1: The process of teleportation is done in three steps: 1. An EPR pair
is created by applying the Generator circuit to two stateless qubits, E1 and E2;
2. E1 and E2 are moved to the source and destination, respectively, of the desired
teleportation; 3. The Teleporter circuits are executed, which includes the transfer of
two classical bits from source to destination.

EPR Pair Generation An EPR pair is generated by taking as input two qubits,
E1 and E2, in unknown state and performing the following steps:

1. Move qubits E1 and E2 into two separate gate locations

2. Prepare both E1 and E2 in the zero state

3. Perform H gate on qubit E1

4. Move qubit E2 into E1’s gate location

5. Perform CX gate on qubits E1 and E2

Thus, the hardware for an EPR Pair Generator consists of two Macroblocks
(Straight Channels with Gate Location), though channels into and out of the Gener-
ator must still be accounted for. The latency for an EPR pair generation is:

tgen = t0 + t1q + t2q = 122µs (4.1)

EPR Pair Distribution During EPR pair generation, the qubits of the EPR pair
must be in proximity to one another. For the data teleportation to occur, one qubit of
the pair must be at the source, the other at the target. Thus, during this step, qubit
E1 is physically moved from the generator to the source of the desired teleportation,
while qubit E2 is moved from the generator to the target. No gate locations are
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needed during this step, but some means for qubit movement is required, such as
ballistic channels.

Data Teleportation The procedure to teleport the data qubit from the Input at
the source to the Output at the destination is accomplished as follows:

1. Perform the CX and H gates at the source, similar to how they were performed
(in reverse order) for the Generation step above

2. Measure both qubits at the source, collapsing their state and getting two clas-
sical bit values as a result

3. Transfer the classical bit values from source to target using classical wires

4. Perform a corrective Pauli gate on qubit E2 to set its state at the Output to
match the state that used to be on the Input qubit

The source location requires two Macroblock gate locations, much like the Gener-
ator does, while the destination location requires only a single one for the corrective
Pauli gate. The latency for this compound operation is:

ttprt = t2q + t1q + tmeas + t1q = 122µs (4.2)

Note that an X gate followed by a Z gate on the same qubit is the equivalent of
a Y gate, so we need only account for the latency of a single Pauli gate on qubit E2.

4.1.2 Purification

As described in the previous section, a Teleportation channel is constructed from
a single EPR pair by sending half of the pair to the source of the communication and
the other half to the destination. Unfortunately, this prescription ignores the errors
accumulated by the EPR pair during transportation. In this section, we introduce
“purification,” a process for producing a single noise-free EPR pair at source and
destination of a channel by combining a number of noisy EPR pairs. In order to
understand the need for purification, we first define the concept of qubit fidelity.

Fidelity measures the difference between two quantum bit vectors. Because of
quantum entanglement, each of the 2n combinations of bits in a vector of size n are
physically separate states. For a given problem, one particular vector is considered
a reference state that other vectors are compared against. For example, if we start
with a bit vector of zeros [0000], and we send the bits through a noisy channel in
which bit 3 is flipped with probability p, we would end up with a probabilistic vector
of ((1 − p)[0000] + p[0010]). The fidelity of the final state in relation to the starting
(“error-free”) state is just 1−p. So, in the case of an operational state vs. a reference
”correct” state, the fidelity describes the amount of error introduced by the system
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on the operational state [44]. A fidelity of 1 indicates that the system is definitely in
the reference state. A fidelity of 0 indicates that the system has no overlap with the
reference state.

We characterize errors by calculating the fidelity of qubits traversing the various
quantum channels and gates necessary to route and move bits around a communica-
tion network. We will combine models of the individual communication components
so that we get an overall fidelity of communication as a function of distance and
architecture.

In ballistic movement, the fidelity of a bit after going through the ballistic channel
over D cells is:

Fnew = Fold(1 − pmv)
D (4.3)

since each hop introduces a probability of error. The time to perform ballistic move-
ment is given in time per cell moved through:

tballistic = tmv × D (4.4)

The fidelity of a qubit teleportation is more complicated because it involves a com-
bination of single and double qubit gates (p1q, p2q) and qubit measurement (pms) [18]:

Fnew =
1

4

(

1 + 3(1 − p1q)(1 − p2q)
(4(1 − pms)

2 − 1)

3

×
(4Fold − 1)(4FEPR − 1)

9

)

(4.5)

The fidelity after a teleportation involves the fidelity of the data before teleportation
(Fold) and the fidelity of the EPR pair used to perform the teleportation (FEPR).

As shown by Equation 4.5, the fidelity of the EPR pairs utilized in teleporta-
tion (FEPR) has a direct impact on the fidelity of information transmitted through
the teleportation channel. Since EPR pairs accrue errors during ballistic movement,
teleportation by itself is not an improvement over direct ballistic movement of data
qubits unless some method can be utilized to improve the fidelity of EPR pairs.

Purification combines two lower-fidelity EPR pairs with local operations at either
endpoint to produce one pair of higher fidelity; the remaining pair is discarded after
being measured. The purification process can be repeated in a tree structure to obtain
higher fidelity EPR pairs. Each round of purification corresponds to a level of the
tree in which all EPR pairs have the same fidelity. Since one round consumes half of
the remaining pairs, resource usage is exponential in the number of rounds.

We could implement tree purification naively at each possible endpoint by in-
cluding one hardware purifier for each node in the tree. However, as the tree depth
increases, the hardware needs quickly become prohibitive. Additionally, this mech-
anism provides no natural means of recovering from a failed purification (loss of a
subtree).
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Figure 4.2: Robust tree-based purification: Incoming qubits are purified once at L0,
representing the lowest level of the purification tree. Successfully purified qubits are
moved on to L1 and purified there, representing the second lowest level, and so on.

A more robust queue-based purifier implementation is shown in Figure 4.2. There
are three advantages of this implementation. First, a tree structure of depth n is
implemented with n purifiers (rather than 2n − 1, as in a naive implementation).
Second, movement between levels of purification is minimized, lessening the impact
of movement. Third, no special handling for lost subtrees due to failed purifications
is necessary as they’ll be rebuilt naturally.

The primary drawback of this implementation is the latency penalty. If x purifi-
cations are needed at level L0, then they must necessarily be done sequentially. This
problem may be alleviated by including more queues, however, since each logical com-
munication requires multiple high-fidelity EPR pairs, depending upon the encoding
used. For these reasons, we use Queue Purifiers in our simulations.

4.1.3 Teleportation Channel

The problem of communicating quantum information across a large layout can be
viewed (somewhat simplistically) as a matter of distributing EPR pairs to the end-
points of each desired communication, followed by performance of the teleportation
operations. In this section, we examine the process of EPR distribution in greater
detail.

One option for EPR pair distribution is to generate EPR pairs at generator (G)
nodes in the middle of the path and ballistically transport them to purifier (P) nodes
that are close to the endpoints, as shown in Figure 4.3. Purification combines two
EPR pairs to produce a single one of higher fidelity. For each qubit in the left
purification (P) node, its entangled partner is in the right P node undergoing the
same operations. For each purification performed, one classical bit is sent from each
end to the opposite one. Discarded qubits are returned to the generator for reuse.

By performing this process of generation and purification continuously, we create
a clean teleportation link between two endpoints. We next describe how to use these
links to build a large and manageable teleportation network.
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Figure 4.4: Chain Teleportation Distribution Methodology: EPR qubits generated
at the midpoint generator are successively teleported until they reach the endpoint
teleporter nodes before being ballistically moved to corrector nodes and then purifier
nodes.

4.1.4 Chain Teleportation

Another option for distributing EPR pairs over long distances is to generate an
EPR pair and perform a sequence of teleportation operations to transmit these pairs
to their destination. Correction information from a teleportation (two classical bits)
can be accumulated over multiple teleportations and performed in aggregate at each
end of the chain. This process is depicted in Figure 4.4. A T’ node contains units that
perform the local operations to entangle qubits but no correction capability. Instead,
each T’ node updates correction information and passes it to the next hop in the
chain.

The path consists of alternating G nodes and T’ nodes, with a C node and a P
node at each end. Each G node sends EPR pairs to adjacent T’ nodes. The EPR
pairs generated at the central G node are moved ballistically to the nearest T’ nodes,
then successively teleported from T’ node to T’ node using the EPR pairs generated
by the other G nodes. Since the EPR pairs along the length of the path can be pre-
distributed, this method can improve the latency of the distribution if the T’ nodes
are spaced far enough apart.

Between each pair of “adjacent” T’ nodes (as defined by network topology) is a
G node continually generating EPR pairs and sending one qubit of each pair to each
adjacent T’ node. Thus, each T’ node is constantly linked with each neighboring T’
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node by these incoming streams of entangled EPR qubits. Each G node is essentially
creating a virtual wire which connects its endpoint T’ nodes, allowing teleportation
between them.

To permit general computation, any functional unit must have a nearby T’ node
(although they may be shared), necessitating a grid of T’ nodes across the chip,
which are linked as described above by virtual wires. The exact topology is an
implementation choice; one need not link physically adjacent or even nearby T’ nodes,
so long as enough channels are included to allow each G node to be continuously
linking the endpoint T’ nodes of its virtual wire with a steady stream of EPR qubits.
Thus, any routing network could be implemented on this base grid of T’ nodes, such
as a butterfly network or a mesh grid.

There are two primary benefits for using Chain Teleportation over purely ballistic
distribution of EPR Pairs. First, by performing purification as part of link setup
(Figure 4.3), we are achieving a form of link amplification that is off the critical path
of execution. Second, this structure will facilitates network sizing for our automated
datapath designs, since the G and P nodes may be sized automatically to accommo-
date the T’ nodes.

4.1.5 Structuring Global Communication

The process of moving quantum bits ballistically from point to point presents a
challenging control problem. Designing control logic to move ions along a well-defined
path appears tractable. However, controlling every electrode to select one of many
possible paths becomes much more complex. Thus, we can benefit from restricting
the paths that ions can take within our quantum computer. Such a tractable control
structure will involve a sequence of “single-path” channels (much like wires in a
classical architecture) connecting router-like control points.

We assume a mesh grid of routers as a reasonable first-cut at a general purpose
routing network [1, 14]. Under the Ballistic Movement Distribution Methodology
(Figure 4.3), a routing channel is a straight sequence of ion traps, while a router
is at the intersection. Under the Chained Teleportation Distribution Methodology
(Figure 4.4), a router is a T’ node, and a routing channel is the pre-generated link
between two T’ nodes. In either case, there must be G nodes distributed across the
chip to generate EPR pairs.

Route Planning High-level classical control views the quantum datapath at the
logical level. It tracks the current location of each logical qubit but knows nothing
of the actual encoding used (i.e. number of physical qubits per logical qubit). This
control takes the sequence of logical operations that comprise the program and identi-
fies all logical communications that need to occur. It then begins routing them while
maintaining program order.
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direction). Bold arrows are ion movement within router. Thin arrows are classical
data. CC is the classical control including cumulative correction information and
further routing.

Once a path has been determined, EPR pairs need to be generated and routed
to the endpoints for purification. A G node near the middle of the path is given
instructions by the high-level control to generate and name EPR pairs. These EPR
qubits are then sent from router to router (whether intersection or T’ node) along
the routing channels (whether ion traps or teleportation links) until the endpoints are
reached, at which point they are locally routed to the purifiers. Thus, under either
methodology, the routers need only be able to make local routing decisions based on
a qubit’s destination.

Local Routing Control Each router and G node needs local classical control to
determine how it handles qubits, which requires a means of identifying qubits. Thus,
each qubit is associated with a classical message which travels alongside the qubit in a
parallel classical network. The node control for the G node which generates a pair also
generates their accompanying messages. A qubit’s message contains the ID assigned
by the G node, the destination of this qubit, the destination of its partner (which is
necessary for the purification steps at the endpoints), and space for the cumulative
correction information that will be used at the endpoint. A router forwards a qubit
on to the appropriate routing channel or to a local corrector at the destination.

Figure 4.5 shows one possible implementation for a router. The router receives
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a constant stream of EPR pairs (from G nodes) linking it to its neighbor routers.
During an incoming teleportation, a qubit enters the Storage area to wait for the
operations at the teleportation source to complete. Classical data in the form of
the teleporting qubit’s ID packet and the two classical bits used in the teleportation
enter the adjoining classical control (CC). The cumulative correction information is
updated in the ID packet, and the destination information is used to route the qubit
to the correct set of teleporters (or to a purifier if an endpoint has been reached). For
an outgoing teleportation, a qubit from the G node stream bypasses the Storage area
and moves directly to the appropriate teleporter.

In this router design, the teleporters are divided into two sets. One set handles all
traffic moving in the X direction, the other handles traffic moving in the Y direction.
For a turn, an EPR qubit must be ballistically moved between the teleporter sets (as
shown by the bold-headed arrows). It is evident from the crossing arrows in the figure
that streams of qubits may need to cross. However, even with stalling, movement time
is so much faster than teleportation (Table 2.2) that crossing will not be a limiting
factor.

4.2 Compute Region Layout

In this section, we are going to switch gears and examine the structure of the
compute regions. We will have to address both the internal structure of compute
regions as well as the interaction between compute regions and the rest of the system
(both ancilla generators and networking). We start with the internal structure.

4.2.1 Designing the Interior of a Compute Region

Figure 4.6 shows three styles of layout for Compute Regions. Figure 4.6a contains
a vertical channel for communication by ballistic movement. Each qubit can reach
the location of exactly one other qubit without performing any turns and can reach
any of the other qubits in the Region with exactly two turns. Note that these are
logical qubits, so if we’re using the Steane [[7,1,3]] code, each represents seven physical
qubits and the layout is actually seven times taller than it appears. Variations on
this design include changing the number of rows and changing the number of vertical
channels to alleviate congestion problems, but the number of columns of qubits is
fixed at two.

If we want to have more than two columns of qubits in a single Compute Region,
we need horizontal channels for movement within the Region. Figure 4.6b shows
such a design. Exterior channels increase the size of the Region but do not push the
qubits within the Region further apart from one another. Interior channels provide
a more direct route for movement, but they separate the qubits. Variables in this
design include both vertical and horizontal channels, as well as qubit count in both
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Figure 4.6: Three Compute Region layouts: a) Two columns of logical qubits. Data
qubits use the central pathway; connections to ancillae and network are all around the
perimeter. b) With more than two columns, data qubits need horizontal channels for
communication within the Region, with either interior or exterior horizontal channels.
c) Cross-based layout to give groups of qubits more options to avoid turns. Note that
the physical qubits of a single logical qubit must be separated, so this figure depicts
a physical layout.

directions.
Something that both these designs have in common is that qubits are always an

even number of turns apart. Figure 4.6c shows a layout in which each qubit can reach
two other qubits with zero turns, two more qubits with one turn each, and the rest
with two or more turns. The catch is that since data qubits interact transversally, the
corresponding physical qubits of the two interacting logical qubits must be next to each
other. Thus, Figure 4.6c shows a physical level layout, so the physical qubits of each
logical qubit are spaced apart. The result is slightly more complicated distribution
paths for encoded ancilla qubits and encoded EPR pair sets.

4.2.2 Interfacing with the Network

Having designed the Compute Regions, we now examine how they interface with
ancilla generation and the network. The specifics may be varied since Qalypso is a
malleable microarchitectural specification, but Figure 4.7 gives a good idea of the
extent of the design space.

The Compute Region (CR) is sized to accommodate the desired number of logical
data qubits. The number of available interface ports (black rectangles in the figure)
are determined by the perimeter of the Compute Region. The components of the
support infrastructure are allocated ports as necessary. Note that, depending on the
characteristics of the circuit, not all ports need be used. In Figure 4.7, the top two
ports are not used by any of the support infrastructure.

In the case of ancilla factories, the output ports are connected to the Compute
Region. In the case of the teleport network, the output of each Queue Purifiers must
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Figure 4.7: The Compute Region (CR) is surrounded by the various components
of the support infrastructure. The black rectangles are interface ports for encoded
qubits to move ballistically between datapath regions.

be attached to a Compute Region port. Since a great deal of congestion can occur
at Teleport Routers as links are being established, we size the Generators and Queue
Purifiers associated with each Router to be capable of sustaining maximum possible
bandwidth. Thus, the problem of sizing the teleport network is reduced to simply
sizing the Teleport Routers.

Thus, a finalized Qalypso datapath requires that the following be specified:

1. Compute Region size and structure

2. Ancilla Factory counts and port allocations

3. Teleport Router sizing (and accompanying sizing for Generators and Queue
Purifiers)

4. Queue Purifiers port allocations

With our design space clearly defined, we may now explore the problem of determining
an optimal datapath for a target circuit. We handle Compute Region layout first,
followed by support infrastructure sizing.

4.2.3 Choosing Between Layouts

To choose between possible compute region organizations, we map a large ran-
dom circuit and examine ADCR as a function of organization. We first investigate
variations of the layout in Figure 4.6b. Figure 4.8 shows the results of running a 256
qubit, 1 million gate circuit on various such layouts. Note that the plotted points
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Figure 4.8: Random graphs of 1 million gates on 256 qubits run on varying versions
of the Compute Region in Figure 4.6b. Having two unidirectional Interior Channels is
key, while Exterior Channels help a little bit. (Col = Number of Columns of Qubits,
Ext = Exterior Channel, Int = Interior Channel, Int Uni = Unidirectional Interior
Channel)

are ADCR-optimal, meaning that the network and ancilla factories are sized as will
be discussed in Section 4.3. Our only variable in these tests is the internal Compute
Region structure.

From the data in Figure 4.8, we see that two matters are key. First, Unidirectional
Interior Channels make a big difference, largely due to the fact that local routing
becomes more organized. When ancilla qubits and encoded EPR pairs are included
along with data qubits, there are simply an immense number of qubits moving around.
Qubits taking arbitrary shortest paths along Bidirectional Interior Channels result in
more erratic communication patterns and more stalls. Second, while the 2 Ext, 2 Int
Uni layout does provide the optimal point by a small margin, the data points on the
plot are averaged over the runs of 1000s of random graphs, meaning that we cannot
declare a single optimal layout for all graphs. The solution is to have the mapper
actually try different layouts and pick the optimal one for the target circuit.

We next investigate variations of the layout in Figure 4.6c. Figure 4.9 shows
the results of running a 256 qubit, 1 million gate circuit on various such layouts.
The optimal point occurs at 12 qubits per Compute Region, as opposed to 16 in
Figure 4.8. The reason is that encoded qubits in this layout style do not always move
transitively, making stalls from collision avoidance occur more frequently in larger
Compute Regions.

Figure 4.10 compares the best versions of each of the three designs in Figure 4.6
for random graphs of 1 million gates on 256 qubits. Option a is a restricted version
of Option b, so the flexibility of b wins out. Option c suffers from the difficulty of
effective automated pathfinding on a physical qubit level. Thus, given adequate time
and resources, the most thorough mapper would search over variations of Option b
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Figure 4.10: Random graphs of 1 million gates on 256 qubits run on the layout in
Figure 4.6a and the winners from Figures 4.8 and 4.9. The layout design in Figure 4.6b
results in the best ADCR.

to find the best Compute Region layout for a given circuit.

4.3 Sizing Ancilla Factories and the Teleport Net-

work

A first approach to sizing the support infrastructure might be to initialize it to
zero area, then to allow resizing as necessary during a single mapping pass through
the graph. This online resizing is ill advised for two reasons. First, it would likely
result in imbalanced node sizes in the final datapath, which results in empty wasted
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Figure 4.12: By fixing support infrastructure size on each mapping pass and perform-
ing a search for optimal sizing, we achieve a 5x improvement in ADCR. This gain is
due to the fact that a balanced support infrastructure significantly reduces wasted
space on the datapath.

space within the datapath. Figure 4.11 shows that the useful area of the datapath is
a poor metric of success, as wasted space could cause the actual bounding box area
of the datapath to be more than an order of magnitude larger.

Second, resizing ancilla factories and the teleport network in the middle of a single
graph traversal often results in the weakening of earlier decisions. Resizing downwards
may result in previous choices having insufficient resources, while resizing upwards
may make previous choices less optimal.

The solution is to place a hard limit on support infrastructure size per node on
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each mapping pass and perform a search to determine optimal sizing. In this way, we
get the benefit that decisions made throughout each mapping pass remain valid since
the datapath is not changing, but we search over multiple datapath configurations
to find the best. Figure 4.12 shows that we gain significant benefit over the naive
approach of resizing during a single mapping pass.

4.4 Summary and Findings

In this chapter, we have investigated several key pieces of infrastructure. We
have concluded that while no single optimal compute region necessarily exists for all
circuits, the key to avoiding congestion problems within compute regions is to pro-
vide sufficient unidirectional channels. The latency gain from the smoother ballistic
movement overwhelms the increased area required by the channels.

Further, we have concluded that the sizing of the support infrastructure, both
ancilla generation units and the teleport network, is best done by doing complete
ADCR evaluation on each prospective datapath. That is, rather than attempting to
adjust support resources while mapping the quantum circuit, we should make multiple
mapping passes, each time on a different fixed datapath, until we find the best sizing
for each datapath component.

For the remainder of this thesis, we will use these techniques. It remains for us to
decide how best to partition large quantum circuits across a series of compute regions,
while at the same time sizing the ancilla regions, network components and compute
regions. That is the topic of Chapter 5.
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Chapter 5

Mapping Quantum Circuits to
Qalypso

The goal in mapping a quantum circuit, as shown in Figure 5.1, is to produce
a finalized datapath and associated mapping onto that datapath, both of which are
optimized for the target circuit. The circuit corresponds to a dataflow graph, with
each vertex representing a one or two qubit logical gate. The datapath consists of sets
of multi-purpose logical gate locations in Compute Regions, which are supported by
ancilla factories and a teleport network. The datapath specification may also include
pre-designed components, such as ancilla factories (Chapter 3) and queue purifiers
(Section 4.1.2).

A finalized datapath refers to a realizable layout with sizing and placement for gate
locations, channels for ballistic movement and all necessary support infrastructure.
The mapping specifies for each dataflow graph vertex the logical gate location where
that vertex (gate) will be executed. It does not specify exact timing, as timing
may be affected by unpredictable online events such as purification failures, however
simulation of the mapping (including errors) can provide more exact timing and
overall success probability. Combined with the calculated area of the final datapath,
we may evaluate the mapping using the ADCR metric introduced in Section 1.3.3.

In addition to desiring a low latency and high resource utilization, which are
standard goals for mappers, the complexity in this problem arises from two sources.
First, the support infrastructure dwarfs useful computation in terms of resource needs.
Both encoded ancilla preparation and EPR pair creation and distribution require
significant advance work to be done, and each may stall program execution if resources
are insufficient. Likewise, the interaction of data with ancillae and EPR pairs requires
a measurement operation (which is on the critical path), for which the latency is
several times the latency of a useful two qubit gate. Thus, a poorly mapped gate
could result in penalties far greater than the cost of the gate itself.

Second, the datapath is malleable and may be tailored to fit the circuit. This
flexibility is beneficial, however it also expands the search space considerably. The
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Figure 5.2: The bounding box area of this imbalanced datapath is drastically different
from its useful area. An accurate evaluation of ADCR using a datapath should use
the bounding box area, which penalizes wasted space.
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final datapath may be adjusted for the target circuit, but it must also be realizable.
The datapath in Figure 5.2 is imbalanced, resulting in different values for bounding
box area and useful area. In Figure 4.11, we showed that blind evaluation of ADCR
using useful area is a significant cheat.

Prior work in the quantum realm has involved analogues of fixed classical datap-
aths. QLA is akin to a quantum FPGA, while CQLA adds the concept of a memory
hierarchy to the design. Both are logical but fail to exploit the possibilities inherent
in a malleable datapath, which is why we use the Qalypso framework for the mapping
step. The mapping heuristic used by CQLA is a basic greedy heuristic, which is the
baseline approach upon which we improve in this work.

5.1 Overview of Mapping Techniques

We investigate two primary types of mapping techniques. We first adapt clas-
sical priority list scheduling to the problem of mapping a quantum circuit, using a
greedy approach to gate allocation. Following that, we introduce the more advanced
technique of defining qubit Homes, which allow us to better control localization of
operations involving critical qubits.

List Scheduling For our baseline, we use classical priority list scheduling to map
the quantum circuit onto our datapath. The two primary variables which need to be
defined are as follows:

• Vertex Priorities: These determine the order in which logical gate operations
are mapped.

• Objective Function: This is the function used to determine optimal mapping
location for each logical gate operation.

Both of these will be investigated in Section 5.2.

Home-Based Mapping A more advanced technique that we will examine in this
chapter is the use of qubit Homes. Each qubit is assigned a Home where it performs
its operations and to where it moves if it is expunged from another location. Qubits
are ranked by criticality (total gate count). In the case of two qubit operations, the
gate is performed at the Home of the more critical qubit.

There are a few reasons why Homes may be beneficial. First, the most critical
qubits will have other qubits brought to them. While network setup may be done
without stalling data, the actual teleport operation is on the critical path of the data
qubit. In order to execute the second CX gate in Figure 5.3a, qubits Q0 and Q2 must
be brought together. Since Q0 is involved in the first gate, teleporting Q0 to Q2 must
be done after completion of the first gate (Figure 5.3c) while teleporting Q2 to Q0
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Figure 5.3: We wish to execute the two gates in a) on the datapath below them, with
qubits Q0 and Q1 in one Compute Region and Q2 in another. Teleporting Q0 to Q2
must be done serially with the first gate (b), while teleporting Q2 to Q0 may be done
in parallel. Times are not to scale.
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Figure 5.4: List scheduling involves keeping a priority-order list of unscheduled tasks
whose dependencies have been fulfilled. One by one, the tasks are polled from the list
and scheduled. After each step, the list is updated to account for any newly fulfilled
dependency.

may be done in parallel (Figure 5.3b). Thus, the most critical qubit will sit in place
and have a stream of other qubits brought to it, decreasing the latency of the critical
path and thus execution latency.

Second, well-assigned Homes insure that there is room for critical qubits in the
middle of the datapath. Without Homes, a few unfortunate non-critical gate map-
pings could result in clogged central Compute Regions, pushing critical qubits far
apart. Third, Home assignment can be used to hold together highly interactive sets
of qubits, which we call clicks. If these can be identified by graph analysis, they can
be positioned together rather than relying on the hope that greedy gate mapping will
keep them in close proximity.

5.2 Priority List Scheduling

The most efficient heuristic algorithms for scheduling are based on list schedul-
ing [27]. The basic structure of a list scheduling algorithm is shown in Figure 5.4.
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The Ready List contains the set of tasks available to be scheduled at the moment,
which is restricted by the dependencies in the task dependency graph.

The Ready List is initialized to contain all tasks which have no input dependen-
cies, i.e. the source nodes of the graph. As long as any task remains unscheduled,
the highest priority task in the Ready List is scheduled. Then, the Ready List is
updated by removing the newly scheduled tasks and adding to the List any tasks
whose dependencies have now been fulfilled.

List schedulers differ in two key components:

1. Task priorities: While the Ready List is not empty, the highest priority task
is removed to be scheduled. The prioritization of tasks must be clearly defined
and likely impacts the final scheduling.

2. Objective function for scheduling a task: The process of scheduling a task re-
quires specification of the hardware onto which we’re scheduling and an objec-
tive function for selecting the optimal resource for task assignment.

In the remainder of this section, we introduce and evaluate a few basic approaches
to these two components for the problem of scheduling a quantum circuit onto our
Qalypso architecture.

5.2.1 Vertex Priorities

In Figure 5.4, the “Select a Task from Ready List” step sets vertex processing
order, which determines prioritization of vertices as they are mapped onto the data-
path. We now investigate prioritization of vertices by three criteria: qubit criticality,
dataflow order and critical paths. Below are summarized the most successful priori-
tizings involving these criteria.

Greedy By Qubit: Qubit criticality is equal to the qubit’s total gate count over
the full run of the program. Sort all data qubits from most critical to least. Map all
gates for the most critical qubit first (in dataflow order). Next, map the next most
critical qubit, and so on until all vertices have been mapped.

Greedy By Centered Start Times: Set the end time for each sink vertex to time
0. Perform a reverse traversal of the graph. Schedule each vertex to occur as late
as possible, ignoring both communication latency and ancilla needs (all times will be
≤ 0). Upon completion, keep only the start times for source vertices. Add a constant
to each source vertex start time such that the earliest source vertex starts at time 0
(while the rest start at a time ≥ 0). Perform a forward traversal of the graph using
these start time. Schedule each vertex to occur as early as possible, again ignoring
communication and ancillae. This process serves to center the graph. In the absence
of communication and ancillae, these are the optimal start times for all vertices such



81

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1000  10000  100000  1e+06

A
D

C
R

Gates in Random Circuit

Greedy By Qubit
Greedy By Successive Crit Paths

Greedy By Crit Path First
Greedy Centered

Figure 5.5: Vertex prioritization order based on qubit criticality or critical paths
suffer from the drawback of not having full system state information available when
each vertex is mapped. The Centered Start Times approach makes decisions based
on complete knowledge of the utilization of the support infrastructure, which makes
it the most successful.

that no stalls occur and qubit are in existence for the shortest time possible (which
is beneficial due to idle errors).

Greedy By Critical Path First: Find a critical path through the graph. Map
this critical path in dataflow order. Then use Greedy By Centered Start Times on
the rest of the graph.

Greedy By Successive Critical Paths: Find a critical path through the graph.
Map this critical path in dataflow order. Remove all vertices on this path from
the graph. Find a critical path through this (possibly disconnected graph). Map
this critical path in dataflow order, then remove all these vertices. Repeat until all
vertices have been mapped.

Figure 5.5 shows the effectiveness of the vertex prioritization metrics described
above. Greedy By Qubit suffers from two drawbacks. First, by handling vertices
by qubit, it consistently maps over the full program run on each step, not getting
a full picture of the system state at any given moment until the end, meaning that
utilization of the support infrastructure is short-sighted and often quite imbalanced.
Second, in both random graphs and in the adders, many qubits vie for nearly equal
criticality. This approach might have benefits if qubit criticality was truly distributed,
but none of the benchmarks exhibit this behavior, nor do any proposed quantum
algorithms in the literature.

Greedy By Successive Critical Paths likewise suffers from the drawback of making
mapping decisions on insufficient knowledge of system state. Greedy By Critical
Path First performs better, primarily due to the superiority of Greedy By Centered



82

Start Times. By mapping only a single critical path, it localizes all the gates along
that path, which may not be a good idea due to a corresponding heavy ancilla need.
However, the rest of the vertices are then mapped with better knowledge of system
state.

Greedy by Centered Start Times maps the vertices in what would be the ideal
ordering in the absence of communication and ancillae. While the true ordering may
vary slightly due to congestion and limited hardware, the estimate of system resource
utilization at the time of vertex mapping is highest in this case, which gives the
mapper the best shot at making a good decision.

5.2.2 Options for “Best” Gate Location

The “Schedule Selected Task” box in Figure 5.4 determines the location on the dat-
apath to which a vertex corresponding to a two qubit gate will be mapped given cur-
rent knowledge about system state, including the location(s) of any involved qubits.
(Single qubit gates and QEC steps are simply performed at the qubit’s current loca-
tion.) We investigate some options for quantifying the value of “best.”

Four factors are key to selecting a gate location for a vertex V . First, if a lo-
cation currently contains a qubit not involved in V , then that qubit would have to
be expunged from that location in order to perform V there, which involves extra
communication. Thus, empty gate locations receive preference.

Second, based on the gates currently being executed, we can determine qubit
criticality. Since we have the complete dataflow graph available to us, we can look
into the “future” to estimate which qubits will be needed sooner rather than later.
These qubits are given preference in not being expunged.

Third, if the next operation for either qubit will be a QEC step or a non-transversal
gate, then the corresponding ancilla will be required. In this case, the demand on
ancilla production at that Compute Region must be considered.

Fourth, communication cost is a concern. If either qubit needs to be teleported,
then that not only involves considerable work by the network to prepare the telepor-
tation link, but the data interaction required impacts the latency of execution even
if the link is successfully prepared in time. Ballistic movement cost is also included,
but generally as a tiebreaker since teleport latency and link setup cost are far greater
penalties.

We now compare a few different approaches to gate location selection. Note that
when determining a gate location for a two qubit gate involving qubits q0 and q1, a
gate location is considered “empty” if it contains no qubits other than q0 and q1. For
example, if q0 is alone in a gate location, that location is considered empty for the
purposes of scheduling this instruction.

Move Only One Qubit: The designers of (C)QLA suggest always performing a
gate at the current location of one of the involved qubits, specifically the source qubit
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in a two qubit operation. This simple approach involves minimal processing time to
make a decision.

Empty Loc “Between” the Qubits: Search over all empty gate locations on
the datapath and pick a random one that is within the bounding box created by
the current positions of the qubits, if possible. This simple approach attempts to
minimize network use but does not take ancilla production into account.

Best Empty Loc When Penalizing SI: Search over all empty gate locations
within the bounding box created by the current positions of the qubits, but penalize
based on support infrastructure (SI) usage. Given knowledge of current and past
resource usage in the network, compute how long the qubits would have to stall for
the network to set up the desired link, if at all. (If network resources are available to
set up the link in time, there is no penalty.) Further, if the next gate for either qubit
required an ancilla, compute how long that gate would be stalled based on ancilla
availability, assuming nothing else stalls. Take the maximum of these two as the stall
penalty for this gate location.

Best Compute Region When Penalizing SI: Perform the same stall penalty
calculations as above, but do so for each Compute Region rather than for each empty
gate location, which is possible since each Compute Region has fully multiplexed
ancilla factories and a single port to the network. When the best Compute Region
is chosen, pick an empty gate location. If none are empty, expunge the least critical
qubit from its gate and send it to an empty gate location at the nearest edge of the
datapath.

Results: Selecting a random empty gate location between the two qubits involved
performs marginally better than always using the location of the source qubit. The
reason is that it gives highly active qubits a chance to move together rather than
forcing them to adhere to the initial placement. However, both of these suffer from the
fact that failing to take the support infrastructure into account results in unexpected
stalls and an imbalanced datapath with wasted space.

Significant speedup is achieved by accounting for limited resources in the network
and ancilla factories. It also turns out that expunging qubits is not worthwhile since
the cost of the extra teleport setup outweighs any gains in gate mapping.

5.2.3 Issues with Naive Mapping

The primary drawback of the approaches shown so far is that there is no consider-
ation for the business of a qubit in the near future. Gates are scheduled largely based
on their criticality in the dataflow graph, meaning that when a gate is to be scheduled,
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Figure 5.6: A comparison of four different definitions for “best” gate location. The
best result occurs when both components of the support infrastructure (SI) are ac-
counted for and when empty gate locations are used (so qubits don’t need to be
expunged).

Compute Region Size Local Movement Inter-CR Movement
of Critical 50% Set of Critical 50% Set

4 data qubits 3.1 96.9
8 data qubits 6.8 93.2
16 data qubits 12.7 87.3

Table 5.1: Using the basic list scheduling approach outlined in this chapter, we find
that critical qubits (the minimal set that accounts for at least 50% of total gate count)
experience very high inter-Compute Region (CR) communication, which results in a
larger or heavily delayed teleport-based interconnect.

the relative importance/business of the two qubits involved is not incorporated into
the decision process. As a result, critical qubits could end up teleporting arbitrarily
and repeatedly across the datapath.

For the moment, let us consider the minimal subset of data qubits which account
for at least 50% of gate operations in the graph. Let us call these the Critical 50%
Qubits. For random graphs on 100 qubits and 20000 gates, Table 5.1 shows that the
amount of inter-Compute Region movement for these qubits is unacceptably high,
thus putting extreme strain on the network, which results in ballooned area or latency
or both.

Ideally, we wish to avoid having critical qubits teleporting willy-nilly across the
full diameter of the datapath due to poor planning for the near future. To this end,
we explore in the next section various means to encourage the most critical qubits to
remain near the center of the datapath and have less critical qubits brought to them.
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Quantum Program

1) CX Q0, Q1
2) CX Q2, Q3
3) CX Q0, Q2
4) CX Q0, Q3
5) CX Q0, Q4

Qubits By
Criticality

Q0
Q2, Q3
Q1, Q4

Q2 Q3

Q0 Q1

Q4

Q0 Q3

Q4

Q1Q2

Good Home Assignment Poor Home Assignment

1

2
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4
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Q4

Q0

Q1
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Q3

Figure 5.7: This quantum program involves five qubits, Q0 being on the longest
critical path, Q1 and Q4 on the shortest. In home-based mapping, each two-qubit
gate is performed at the “home” of the more critical qubit involved. Shown are good
and poor home assignments for this particular program.
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Figure 5.8: Assigning and enforcing random Homes is worse than not assigning them
at all. More intelligent means need to be devised.

5.3 Home Assignment By Circuit Analysis

Figure 5.7 shows examples of good and poor Home assignment for a simple circuit.
In the good assignment (center of the Figure), the most critical qubit, Q0, is placed
centrally and the first two gates may be performed without any turns. In the poor
assignment, congestion would stall the run because the first two gates collide with
each other and because Q0’s Home is less accessible.
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5.3.1 Random Home Assignment

Figure 5.8 compares a mapping heuristic which uses randomly assigned homes
against the best heuristic from the previous section, which is referred to as No Homes.
These results show that enforcing Homes without intelligently assigning them has a
detrimental effect on the mapping. Thus, we next investigate deterministic methods
for assigning qubit Homes.

5.3.2 Critical Qubit-Based Home Assignment

Mapping decisions for critical qubits have a greater chance of impacting the final
metrics than those for less critical qubits. For this reason, we investigate the effec-
tiveness of assigning Homes based on qubit criticality. In all cases, qubit criticality is
defined by its total gate count (the higher the count, the more critical the qubit).

• Home Crit Qubit Together: Assign Homes to qubits in order of descending
criticality. Assign Homes for critical qubits as close to each other as possible (in-
corporating the penalties for teleportation). Thus, the most critical qubits will
be assigned Homes in the center of the datapath (the most accessible region),
with successively critical qubits assigned Homes progressively outward.

• Home Crit Qubit Separate: Assign Homes to qubits in order of descending
criticality. Assign successive qubits to different Compute Regions in order to
distribute congestion and ancilla needs. Homes are assigned starting in a central
Compute Region and moving outward, but each Region is assigned an nth Home
before any Region is assigned an (n + 1)st Home.

5.3.3 Interaction-Based Home Assignment

Ideally, we want groups of highly interactive qubits grouped together and non-
interactive qubit pairs in separate Compute Regions. We now investigate heuristics
based on identifying interactive qubit groups, which we refer to as clicks. For each of
these heuristics, we begin by recording the number of interactions between each pair
of qubits in the quantum circuit.

• Exhaustive Search: For very small problem sizes, we may exhaustively search
all possible groupings of qubits to find the optimal Home assignment. While
thorough, this approach has a factorial running time, so it is only practical on
small circuits.

• Home Interaction By Critical Qubit: Start by assigning the most critical
qubit Q0 to a central Compute Region in the datapath. Fill in the rest of
this Compute Region with qubits having the highest interaction count with Q0.
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Figure 5.9: Intelligent assignment of Homes does in fact beat the basic Greedy ap-
proach, however past a certain circuit size, changing communication patterns over
the course of a run makes a single assignment of Homes inadequate.

Repeat this process with unassigned qubits until all qubits have been assigned
a Home.

• Home Interaction By Sums: Select the two qubits, Q0 and Q1, with the
highest interaction count. Assign them Homes in the most central Compute
Region CR. Next, add the qubit Q2 with the highest interaction count with
all qubits in CR (the sum of Q2’s interaction counts with all qubits already
assigned to CR). Repeat until CR is filled. Once CR is filled, repeat this
process for successive Compute Regions until all Homes have been assigned.

5.3.4 Comparison Between Deterministic Techniques

Figure 5.9 compares the various Home assignment heuristics introduced in this
section as applied to random graphs. The baseline for comparison is the “No Homes”
heuristic, refers to the best Greedy heuristic in Figure 5.6. Home Interaction By Sums
wins overall and provides a significant improvement in ADCR over No Homes.

However, all Home assignment heuristics start failing for larger graphs due to the
fact that the communication clicks change over the course of a longer run, so no single
Home assignment can encapsulate the entire graph. This deficiency will be addressed
in Section 5.5.

Exhaustive search of Home placements allows us to determine how good these
results are. Unfortunately, it’s only feasible to exhaustively search small problem
spaces. Figure 5.10 shows a small datapath with room for eight qubits. Figure 5.11
compares the Home Interaction By Sums heuristics against the optimal Home assign-
ment (as determined by exhaustive search) on random graphs on eight qubits. Home
Interaction By Sums is within 1% of optimal for these problem sizes.
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Figure 5.10: This datapath, with room for eight logical data qubits, is used to obtain
the exhaustive search results in Figure 5.11. Not to scale.
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Figure 5.11: An exhaustive search of home placements for random graphs on eight
data qubits shows that the Home Interaction By Sums heuristic provides a near
optimal home placement (within 1% in all cases) for small graphs.
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Figure 5.12: In addition to failing at large graph sizes, Home assignment fails for
circuits with high Rent value because small clicks of highly interacting qubits simply
don’t exist. In this case, it is better not to enforce Homes.

Finally, Figure 5.12 shows the impact of the Rent parameter of the graph on our
choice of heuristic. At very high Rent, qubit communication is so distributed and
varied that small clicks of highly interacting qubits cannot be found. In this case,
enforcing Homes is a bad idea, and it’s better to allow qubits to roam across the
datapath as they need to.

5.4 Home Assignment By Simulated Annealing

Deterministic mapping heuristics have the advantage of being relatively fast, while
exhaustive search techniques become intractable very quickly as problem size grows.
Between these two extremes lie probabilistic methods which perform some random
and some deterministic traversal of the search space. Simulated annealing is a success-
ful classical methodology which may be applied to our problem of Home assignment.
We begin by explaining simulated annealing in the classical realm, then we apply it
to our task.

5.4.1 Classical Simulated Annealing

Simulated annealing is an optimization heuristic based on an adaption of the
Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of
thermodynamic systems. It was first introduced by Kirkpatrick et al. in 1983 [38].

Simulated annealing is a global optimization approach that is used to find the
optimum of some objective over large design spaces. The inspiration behind simu-
lated annealing came from annealing in metallurgy, a technique involving heating and
subsequent cooling of metals to allow metal structures to attain their lowest internal
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energy states. By analogy with this process, simulated annealing starts with an initial
state in the design space, and initially allows for near-random transitions to “nearby”
states. This simulates the behavior of metals when heated to high temperatures.
As time proceeds, the transitions become more restricted to states that improve the
optimization criteria. The restriction of the transitions is defined by a control param-
eter, called the temperature. As temperature decreases, it is more likely that only
transitions that improve the objective be allowed.

5.4.2 Quantum Simulated Annealing

A valid state sk for our problem consists of the assignment of a distinct Home
gate location to each of the logical data qubits in our circuit. We now describe the
key characteristics of simulated annealing as applied to our problem.

Objective Function: The Objective Function specifies the value of the optimiza-
tion objective for a given complete assignment of Homes. We perform a full mapping
and use the computed ADCR as our evaluation metric.

Temperature Function: The Temperature Function describes the temperature as
a function of the iteration number. Common temperature functions include geometric
and fractional schedules [46]. In this work, we use the function described by Koch [47]
and tested extensively in [45]:

Temp(i) =







Temp(i−1)

1+δ Temp(i−1)
σi−L,i

(i mod L) = 0

Temp(i − 1) otherwise
(5.1)

where
σi−L,i = stddev{ObjectiveFunc(sk)|i − L ≤ k ≤ i} (5.2)

According to this function, the temperature only changes once every L steps. The
extent of the temperature decrease is determined by two factors: δ, which is a constant
multiplicative factor (set to 0.3 as in [45], and σi−L,i, which accounts for the standard
deviation in the makespans produced in the last L steps. A high standard deviation
means that the annealing has not stabilized yet, hence the temperature is only slightly
decreased. When stabilization occurs, the temperature drops to near zero and the
annealing procedure ends.

Probability Function: The Probability Function determines whether or not a
cost-increasing transition is accepted. A normal probability function uses an increas-
ing function of the − ∆c

Temp
ratio. We use the following function from [45]:

Prob(∆c, T emp) = exp(−
∆c

Temp
) (5.3)
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This function leads to lower acceptance probabilities as either the cost difference ∆c
rises or as the Temp gets lower.

Move Function: The Move Function defines adjacency in the search space and
thus the valid transitions which may occur. We define a single move in the annealing
process to be a swap of two qubits’ Homes on the datapath. Since the number of
qubits in the circuit need not be a power of two, nor even for that matter, the number
of Home locations on our regular datapath may slightly exceed the qubit count. Once
all qubits have been assigned a Home, the rest of the Home locations are filled in with
dummy qubits. A swap between a data qubit and a dummy qubit is a valid move,
but the rare instances of swaps between two dummy qubits are disregarded, as they
do not change the value of the Objective Function.

Max and Min Temperature: An annealing procedure must start with a high ini-
tial probability of acceptance of transitions pmax and a low final acceptance rate pmin.
We should choose the initial and final temperatures to achieve these probabilities.
Using the Probability Function above, the temperature t for a fixed probability p is:

t =
∆c

ln(1
p
)

(5.4)

Assuming that we expect a minimum cost change of ∆cmin and a maximum of ∆cmax,
the initial temperature is set to:

tinit =
∆cmin

ln(1
p
)

(5.5)

and the final temperature is set to:

tfinal =
∆cmax

ln(1
p
)

(5.6)

Both ∆cmin and ∆cmax are dependent on the size of the circuit in question.

5.4.3 Comparison with Previous Techniques

Figure 5.13 shows that Home Assignment by Simulated Annealing does as much as
1.4 times better on small random graphs than Home Interaction By Sums. However,
since each step in the simulated annealing process requires that a full mapping be
done in order to evaluate the objective function, it takes much longer to converge and
doesn’t achieve as much improvement.

Figure 5.14 shows the same data as Figure 5.13, but with a shorter x-axis for
better resolution. For small enough problems, simulated annealing may be worth
using in order to squeeze out a bit more performance out of the mapping.
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Figure 5.13: Simulated annealing wins by a factor of 1.4 on small graphs, but its
longer running time causes it to do worse as graph size increases.
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Figure 5.14: Same data as in Figure 5.13, but with a shorter x-axis for better resolu-
tion.
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Figure 5.15: Simulated annealing starts failing on random graphs as qubit count goes
past 150. Number of gates = 100 * number of qubits.
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Figure 5.16: Simulated annealing works similarly on the QCLA as on random graphs,
but the heuristic approach does relatively better on the highly structured adder, so
the crossover point is lower. Number of gates = 100 * number of qubits.

While increasing the graph size increases the time to compute the objective func-
tion for simulated annealing, increasing the qubit count increases the size of the
design space and thus has a much more drastic effect. As shown in Figure 5.15, the
design space gets too large for feasible convergence past around 150 qubits. Thus, for
problems with a few hundred qubits, the deterministic approach wins.

Figure 5.16 compares simulated annealing against the deterministic approach
when applied to the Quantum Carry-Lookahead Adder, which is more structured
in its communication pattern than random graphs. In this case, the crossover point
is at fewer qubits since the data analysis approach has more regularity available to
detect. The performance gain from simulated annealing on small problems is also
slightly less than the 1.4 times gain on random graphs.

5.5 Reassigning Homes for Longer Runs

From Figure 5.9, we see that all Home-based algorithms start failing past a certain
graph size. The reason is that communication patterns change, so a single Home
assignment is inadequate for an entire program run. The solution is to reassign
Homes periodically during the run.

Reassign Homes Every N Dataflow Graph Vertices: A simple solution is to
pick a constant N and divide the overall graph into subgraphs of N vertices based
on the centered graph priorities. Then we compute Home assignments individually
for each subgraph. Figure 5.17 shows that the optimal value of N changes as qubit
count changes. In each case, a period that is too large causes the algorithm to start
performing poorly, as discussed earlier. However, a period that is too small results in
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Figure 5.17: When reassigning Homes very N gates, the total qubit count affects the
optimal period N. The gate count is varied simply to separate the lines, but it doesn’t
affect the optimal points.

unnecessary reshuffling of qubits and thus unnecessary use of the network, resulting
in a worse ADCR.

Algorithm 1 Intelligent Home Reassignment Partitioning

1: set window size Ws

2: assign initial Homes based on the first Ws two-qubit gates
3: initialize Interaction Counts
4: initialize Future counters to account for interactions in the first Ws two-qubit

gates
5: initialize graph traversal Tf (future) and advance it Ws two-qubit gates (without

mapping)
6: begin mapping (any methodology)
7: for each mapped gate G do
8: if G is a two-qubit gate then
9: adjust interaction counts for G

10: if Tf not complete then
11: poll Tf for next gate Gf

12: adjust Future interaction counts for Gf

13: end if
14: end if
15: use counts to determine whether to reassign Homes
16: end for

Reassign Homes By Detecting a Change in Clicks: Alternatively, we could
detect a change in the communication pattern and reassign Homes when it becomes
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substantially changed according to some metric. Algorithm 1 outlines the approach.
As we perform the mapping, we keep a tally of interaction counts between each pair
of qubits in a Future Window of size Ws gates. We set the window size equal to the
optimal value from Figure 5.17 according to qubit count.

We perform our primary traversal of the dataflow graph as part of the mapping.
We simultaneously perform an additional Future Traversal, Tf , which is Ws two-qubit
gates ahead of the primary traversal. When a gate is mapped, its qubit interaction
(if it is a two-qubit gate) is removed from the Future Window by decrementing the
appropriate counter.

Using this information, we need to devise conditions under which to reassign
Homes. For each qubit q, we compute each its click as follows:

1. Initialize the click C to the empty set

2. Sort the other qubits by interaction count with q within the Future Window:
call this list L

3. If the sum of the interaction counts with qubits in C accounts for over 80% of q’s
total interaction count in the Future Window or if no qubits remain in L with
interaction count with q that is greater than one, then we’re done computing C

4. Otherwise, add to C the set of qubits in L with the highest interaction count,
then remove them from L

5. Repeat Steps 3 and 4 until either condition in Step 3 is met

Interaction counts of one are ignored because they do not represent a significant
enough impact on the communication pattern. Note that it is possible to devise a
communication pattern such that q0 is in q1’s click, but q1 is not in q0’s, which is
perfectly fine. Most of the time, however, the relationship is mutual.

We now define a couple of terms:

• Future Same (FS): The percentage of interactions in the Future Window in
which the qubits are in each other’s click. If the relationship is not mutual, it
counts as half an interaction.

• Future Diff (FD): The percentage of interactions in the Future Window in which
the qubits are not in each other’s click.

Clicks are recomputed only when Homes are assigned. FS and FD are updated
after each two-qubit gate is mapped, not just when Homes are reassigned. After
each such update, Homes are reassigned if FD is greater than some percentage of
FS, signifying that the communication pattern has changed sufficiently to warrant
recomputation of Homes.
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Rent Parameter Optimal %

0.1 21
0.2 29
0.3 55
0.4 64
0.5 70
0.6 89
0.7 112
0.8 N/A
0.9 N/A

Table 5.2: Homes are reassigned when FD is great than some % of FS. The optimal
value of % is highly dependent on the Rent parameter of the graph.
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Figure 5.18: For Rent parameter 0.5, reassigning Homes when FD > 70% of FS gives
a 1.07 improvement over reassigning after every 4000 gates.

It turns out that the optimal value for this percentage parameter is independent
of gate and qubit count but highly dependent on the Rent parameter of the dataflow
graph. Table 5.2 shows optimal values for varying Rent values. At low Rent values,
communication patterns tend to remain static, thus highly effective Homes may be
assigned. At higher Rent values, it’s not worth imposing the overhead of Home
reassignment as often, since communication is more evenly distributed. At the highest
Rent values, enforcement of Homes is detrimental, as shown in Figure 5.12.

We can now use these results to compare the FD/FS approach against periodic
Home reassignment. From Table 5.2, we see that the optimal percentage for a Rent
parameter of 0.5 is 70%. From Figure 5.17, we choose 4000 gates as the period for
periodic reassignment. Figure 5.18, shows that we get an improvement in ADCR of
1.07 times under these conditions.

Figure 5.19 shows a similar comparison for Quantum Carry-Lookahead Adder
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Figure 5.19: On the QCLA, Home reassignment using the FD/FS method with the
optimal percentage value gives us more than 1.1 times improvement due to the cir-
cuit’s less random communication patterns.

circuits of varying size. The static period is set based on qubit count, while the
percentage value in the FD/FS method is set according to the Rent parameter. Due
to the more structured communication patterns (than those found in random circuits),
the adaptive method achieves up to a 1.15 times improvement over the static period
method.

5.6 Summary of Mapping Techniques

The lessons learned in this chapter are threefold. First, assignment of Homes to
qubits assists in localizing the movement of critical qubits, thus reducing the amount
of expensive, teleportation-based communication on the critical path of execution.
The end result is a significantly improved ADCR and thus a better final design for
our datapath.

Second, reassignment of Homes is necessary as circuit size grows, since changing
communication patterns necessitate reevaluation of qubit clicks. Reassignment done
periodically works quite well, but in order to find the optimal reassignment period,
we must consider the communication frequency and thus the Rent parameter of the
target circuit. Third, assignment of Homes by simulated annealing provides a slight
improvement over the deterministic approach at an extremely high cost in compu-
tation time. However, if this computation time is not a factor, simulated annealing
does in fact provide the best result.
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Chapter 6

Mapping Large Circuits

In previous chapters, we designed the basic components of our Qalypso architec-
ture, including sample ancilla factories, the structure of compute regions and the basic
subcomponents of the teleportation-based interconnect. We further developed tools
to automatically map a circuit onto the malleable Qalypso datapath while optimizing
our primary metric, ADCR. We are now ready to put all the heuristics together to
map a very large, practical quantum circuit: factorization of a 1024-bit number.

Figure 6.1 shows a high level schematic of n-bit quantum factorization, which con-
sists of two primary subcircuits: Modular Exponentiation and the Quantum Fourier
Transform. The bulk of the circuit (over 99% of the gates) is in Modular Exponenti-
ation, which has at its core an n-bit quantum adder. For this reason, we study n-bit
quantum adder circuits first, which we will then use to fully implement factorization.

The purpose of this chapter is to demonstrate the overall contribution of this thesis
as applied to a large practical circuit. We first describe the unoptimized mapping
heuristic derived from prior work, followed by our fully optimized heuristic derived
from the results in this work. We then apply the two heuristics to the adder circuits
to find optimized adders. Finally, we apply the two heuristics to Shor’s factoring
algorithm to demonstrate our overall gain.

6.1 Unoptimized and Optimized Mappers

Our baseline mapper, hereafter referred to as Unoptimized Mapper, is the “Empty
Loc Between the Qubits” algorithm introduced in Section 5.2.2. In summary, it
is a direct application of classical priority list scheduling, with vertex priorities set
according to the Centered Graph method and optimal gate location being any location
with minimized Manhattan distance for communication. This baseline is a naive
implementation of list scheduling assumed in prior quantum work.

Our fully optimized mapper, hereafter referred to as Fully Optimized Mapper, in-
cludes the optimizations illustrated in this work. Specifically, it involves the following:



99

n-bit
Adder

QFT

Modular Exponentiation

Multiply mod N
Adder mod Nn-bit Number

to Factor

Figure 6.1: Shor’s Factorization Algorithm: The majority of the work in Shor’s fac-
toring algorithm for an n-bit number is modular exponentiation, which has at its core
repeated applications of quantum n-bit addition.

• Homes are assigned through the Interaction By Sums approach, which is the
winning heuristic from Section 5.3.3 (since the circuits discussed in this chapter
are far too large for the simulated annealing approach from Section 5.3.3).

• Homes are reassigned periodically according to the FD/FS heuristic described
in Section 5.5.

• With Homes assigned, the Best Empty Loc When Penalizing SI evaluation
metric from Section 5.2.2 is used to select a gate location for each logical gate.

The Fully Optimized Mapper cycles through the various Compute Region layout
options discussed in Section 4.2 and varies support infrastructure as described in
Section 4.3. For each such fixed datapath, it performs the mapping described above.
The overall ADCR-optimal datapath and mapping is selected.

6.2 Quantum Addition Circuits

The quantum adder subcircuit comprises the bulk of Shor’s factorization algo-
rithm. For that reason, we will now evaluate our mapping heuristics on addition
circuits before we tackle the larger factorization circuit.

6.2.1 Quantum Ripple Carry Adder

We evaluate the quantum ripple-carry adder (QRCA) [16] and the quantum carry
look-ahead adder (QCLA) [17], constructing larger adders from smaller adder mod-
ules, similar to what is done with classical bit-serial adders, although we can have
more than one instance of the smaller adder in the datapath. Figure 6.2 shows how
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Figure 6.3: The Fully Optimized Mapper shows consistent improvement over the
Unoptimized Mapper for Quantum Ripple-Carry Adder (QRCA) circuits of varying
sizes.

an n-bit QRCA is constructed with multiple passes through a single m-bit sub-adder.
Since we don’t need dedicated memory regions in our datapath, the registers in Fig-
ure 6.2 represent idle qubits in gate locations, while the adder block represents active
use of gate operations.

Figure 6.3 shows the impact of the mapping optimizations introduced in this
work over the baseline direct implementation of classical priority list scheduling (the
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Unoptimized Mapper) on QRCA circuits ranging from the 128-bit adder to the 1024-
bit adder. The Fully Optimized Mapper shows a consistent improvement of more
than a factor of four over the base case for these adders.

6.2.2 Quantum Carry Lookahead Adder

Similar to the QRCA in Figure 6.2, Figure 6.4 shows how an n-bit QCLA is
constructed with smaller modules. The modular approach allows us to trade area for
parallelism thus allowing us to construct optimal adder configurations. With both
adders, the chief difference from the classical equivalent is that quantum circuits must
necessarily be reversible, thus in each case there is a disentangling step at the end of
each cycle.

The comparison between the Fully Optimized and Unoptimized Mappers for these
circuits is shown in Figure 6.5. In this case, the Fully Optimized Mapper shows a gain
of more than a factor of five across the range of circuit sizes, which is slightly greater
than the gain achieved for the QRCA circuits, likely due to the greater parallelism
inherent in the circuit and thus greater potential gain from good mapping decisions.



102

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 100  1000

A
D

C
R

Qauntum Ripple-Carry Adder Size

Unoptimized Mapper
Fully Optimized Mapper

Figure 6.5: The Fully Optimized Mapper shows consistent improvement over the Un-
optimized Mapper for Quantum Carry Lookahead Adder (QCLA) circuits of varying
sizes.

Random
Number
Generate

Zero
Init

One
Init

Swap

2ia

N
init

n
 b

it

sw
ap

sw
ap

QFT
Modular Exponentiation

Multiply mod N

Adder mod N

0
init

cat
prep

cat
prep

i/2
phase

i/4
phase

i/n
phase

Controlled Phase

ad
d

e
r

Figure 6.6: Shor’s factorization consists of two major phases: modular exponentiation
and Quantum Fourier Transform. The modular exponentiation circuit comprises the
bulk of the execution time for Shor’s factoring.



103

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 10  100  1000

La
te

nc
y 

in
 S

ec
on

ds

Bits Factored

Shor’s with QRCA, Unopt Mapper
Shor’s with QCLA, Unopt Mapper

Shor’s with QRCA, FulOpt Mapper
Shor’s with QCLA, FulOpt Mapper

Figure 6.7: The Fully Optimized
Mapper gains approximately a 3.0x
speedup in latency on QCLA and 2.7x
on QRCA for all sizes.

 1

 10

 100

 1000

 10000

 100000

 10  100  1000

A
re

a 
(m

m
2 )

Bits Factored

Shor’s with QCLA, Unopt Mapper
Shor’s with QCLA, FulOpt Mapper
Shor’s with QRCA, Unopt Mapper

Shor’s with QRCA, FulOpt Mapper

Figure 6.8: The Fully Optimized Map-
per gains approximately 1.8x area re-
duction on QCLA and 1.6x on QRCA
for all sizes.

6.3 Shor’s Factorization Algorithm

We are now ready to compute the latency and area of optimal Shor’s factoring
circuits1. Figure 6.6 shows a block-diagram of our target circuit. It consists of
two main components: modular exponentiation and the quantum Fourier transform
(QFT). For the modular exponentiation circuit, we rely on the work done in [63] and
for the QFT, [26]. We implement and simulate two different versions of Shor’s, one
of which uses the 1024-bit QRCA (from Section 6.2.1) and the other of which uses
the 1024-bit QCLA (from Section 6.2.2).

Figure 6.7 shows the overall gain in latency when using the mapper optimizations
on both implementations of Shor’s. In both cases, the speedup is approximately a
factor of three. The greater parallelism and complexity of the Carry Lookahead Adder
circuit (over the Ripple-Carry circuit) make room for slightly greater gain in latency.

Figure 6.8 shows a similar comparison with datapath area as the metric. The Fully
Optimized Mapper provides an area gain of more than a factor of 1.5 in all cases, with
slightly greater gain being achieved for the more complex QCLA implementation of
Shor’s, since there exists more opportunity for good (and poor) mapping choices.

6.4 Future Work

The simulation, optimization and layout techniques developed in this work get us
closer to building realistic, tailored designs for quantum applications such as Shor’s
factorization algorithm. However, there are still many avenues for improvement that

1Our failure probability simulation is not yet up to handling circuits of the size of Shor’s factoring.
We leave that for future work.
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require further investigation and development.

6.4.1 Laser Limitations

In ion trap technology, gate operations are performed by firing precisely timed
and tuned laser pulses at the one or two qubits involved. Unfortunately, lasers are
expensive and (relatively) large. As mentioned in Section 1.2.3, the proposed solution
is to use an array of MEMS mirrors to redirect beams appropriately and to split
beams to allow for SIMD application of gates. For the purposes of this work, we have
assumed unlimited availability of lasers for gate operations.

A true implementation of this mechanism would require careful design of the
mirror array and the associated control, as well as taking into account practical hin-
drances such as mirror realignment latency and accuracy. Further, there is ongoing
study in the physics community concerning the number of different qubits which may
be operated upon by a single laser beam. The intensity of the beam is the limiting
factor, which could result in less available parallelism due to these laser restrictions.

6.4.2 Classical Control Hardware for Ballistic Movement

Another practical matter with an ion trap datapath is the application of pulse
sequences to electrodes to achieve ballistic movement. While this process has been
thoroughly demonstrated in laboratories, simultaneously controlling the movement of
100’s or 1000’s of physical qubits is another matter entirely.

Clearly, there is a great potential for SIMD application of such pulses since there
are a limited number of different types of move operations (straight move along a
channel, straight move through a 4-way intersection, etc.). Not only does the con-
trol circuitry need to be able to implement the ballistic movement specified by the
mapping, but it needs to adapt to unexpected stalls, such as from a failed EPR pair
purification, for instance.

6.4.3 Alternative Technologies

We have focused on ion trap quantum computers in this work because this technol-
ogy has been studied and demonstrated adequately enough (on a small scale) to allow
us to produce relatively realistic area and latency estimates for our designs. However,
other technologies are still in contention, and it may be that different technological
characteristics will be desirable for different applications.

Superconductor-based quantum operations are significantly faster than the same
operations in ion traps, which provides good latency improvement potential but sig-
nificantly exacerbates the control problem, since the control circuitry must operate at
a much faster rate. Limitations imposed by this fact would need to be incorporated
in the mapping and datapath design.
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Qubits implemented in Liquid Helium-based technology suffer substantially more
error during gate operations than during movement and idleness (even more so than
in ion traps), suggesting that a teleport-based interconnect might be completely un-
necessary in such a datapath. Other options worth exploring include solid state NMR
and optical lattices.

6.4.4 Irregular Network Topologies

Throughout this work, we have assumed a uniform mesh grid teleport-based in-
terconnect. This limitation of the design space has allowed us to more readily explore
other variations, such as the mapping problem and Compute Region layout. How-
ever, we make no assertions that a mesh grid is the optimal network structure, and
we leave this question open to further study.

6.5 Conclusion

In this work, we have presented a comprehensive toolset for laying out and schedul-
ing a quantum datapath optimized for execution of a target quantum circuit. We have
used this toolset to automatically construct and schedule such a datapath for Shor’s
factorization algorithm, with a resulting improvement in area-delay product of a fac-
tor of 5.4 over prior work.

We consider the quantum datapath to consist of three major components: the
ancilla generation resources, the data qubit regions and the teleportation-based long
distance interconnect. As an alternative to the simple ancilla generators assumed in
previous approaches, we have presented designs for pipelined ancilla factories capable
of producing a steady stream of encoded ancilla qubits at one or more designated
output ports. These output ports allow us to reduce the movement of encoded ancillae
as they travel to reach data qubits, thus eliminating both unnecessary error and
congestion in ballistic channels.

We have presented the basic structure of data regions, which require gate loca-
tions and channels for ballistic movement, and we have also presented our network
model which includes hardware designs of the basic components of the network. We
have put these three datapath components together into our proposed architectural
model, Qalypso, which includes some hand-crafted designs (such as for the ancilla
factories), while not fully specifying each characteristic of the datapath. The chief
benefit of Qalypso is that it reduces the layout design space to a manageable size
while maintaining a sufficient degree of flexibility to allow us to tailor our quantum
datapath to the circuit in question.

Finally, we have presented heuristics for finalizing a datapath from the Qalypso
model to meet the needs of the target circuit while simultaneously optimizing the
mapping of the circuit onto the datapath. We adapted priority list scheduling to this
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mapping problem and then improved upon this naive approach by introducing the
notion of data qubit Homes, which discourage thrashing of critical qubits by localizing
their movement as much as possible, resulting in a datapath and mapping appropriate
for the target circuit.
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