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Abstract

Systems Theory for Pharmaceutical Drug Discovery

by

Anil Jayanti Aswani

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Claire Tomlin, Chair

Biological networks are comprised of thousands of interacting components, and these networks
have complicated patterns of feedback and feed-forward motifs. It is practically impossible to use
intuition to determine whether simultaneously modifying multiple pharmaceutical targets has a
good therapeutic response. Even when a drug is discovered which is safe in humans and highly-
effective against its target, the medical effect on the disease may be underwhelming. This provides
a strong impetus for developing a systems theory for pharmaceutical drug discovery. This thesis
discusses system theoretic tools which are useful for doing drug discovery. The first class of tools
discussed is system identification tools, and case studies of parametric modeling are given. A new
statistical system identification procedure which exploits the geometric and hierarchical structure
of many biological (and engineering) systems is presented, and this new procedure is applied to
engineering and biological systems. The second class of tools discussed is a new set of target
selection tools. Given mathematical models of biological networks, these tools select a set of
targets for pharmaceutical drugs. The targets are selected to achieve good medical outcomes for
patients by reducing the effect of diseases on pathways and ensuring that the targets do not too
adversely affect healthy cells. The ultimate goal of the work presented in this thesis is to create
a framework which can be used to rationally select new drug targets and also be able to create
personalized medicine treatments which are tailored to the particular phenotypic behavior of an
individual’s disease.
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Chapter 1

Introduction

The discovery of drugs has a long history with ancient beginnings. The first drugs were
herbal substances discovered by hunter-gatherer societies through serendipity and trial-and-error.
Rational drug design would not begin until later in history, and it was fueled by advances in basic
science and biology by people like Antoine van Leeuwenhoek, Charles Darwin, Claude Bernard,
Robert Koch, and Louis Pasteur. Still, many of the early successes such as the smallpox vaccinations
of Edward Jenner (also from Berkeley, though pronounced differently and in another country) or
the antibiotics of Paul Ehrlich were discovered through keen observation or more methodical forms
of trial-and-error.

Rational drug discovery began to grow in the late-19th and 20th century. The creation
of the Food and Drug Administration by Teddy Roosevelt would eventually lead to an increase in
the amount of scientific research and evidence required before a new drug could be legally sold. It
became necessary to show the efficacy and safety of a new drug, and this process was both time-
consuming and expensive. Failures in the approval process, such as thalidomide (though the United
States did not approve the drug), led to even further restrictions on the drug approval process.

Drug targets—molecules within a cell which are affected by the drug in order to cause
an improvement in the disease—were selected through lengthy, microbiology research on single
molecules, their relationship to diseases, and the effect of the interruption or changing of the
molecule. Much of drug design, the process of determining chemical compounds which affect the
target, was (and still is to some extent) conducted through trial-and-error on large libraries of
chemical compounds. Experiments on animal models and clinical trials on humans added to the
length and cost of discovering new drugs.

Drug design, which is the selection of a chemical compound, has begun to change in recent
years. The increasing power of computers has enabled the use of computational tools to help with
this process. Models founded in physical chemistry can be used to predict the chemical properties
of compounds and the ability of existing and novel compounds to bind with or affect a selected
drug target. Chemometric approaches have also been used to varying extents. Such tools have
helped improve the chance that a new drug can successfully pass through the regulatory process.

Yet the pharmaceutical industry is facing increasing difficulties. Discovering new drugs
has become more difficult, and there is a sense in the industry that the “low-hanging fruit” has
been picked. An increasing number of potential drugs never survive the lengthy approval process
due to reasons of safety or efficacy. Even when a drug is discovered which is highly-effective against
its target and safe in humans, the medical effect on the disease may be underwhelming, as has
been the case with Gefitinib which strongly represses its target protein HER2 which is implicated
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in many human cancers. This provides a strong impetus for new approaches and techniques for
drug discovery.

One area that has not been greatly explored by academic and pharmaceutical researchers
is the process of drug target selection. Recent successes in the treatment of cancer and HIV by the
use of so-called “drug cocktails” (the use of multiple drugs, each with a different target) suggest
multi-target therapy as a promising direction for the future. Unfortunately, the pharmaceutical
industry is weary of pursuing such approaches because of the high-perceived risk of novel targets as
opposed to established targets. Some of this discomfort is justified, because the process of target
selection is not done in a rigorous or principled manner.

Biological networks are comprised of thousands of interacting components, and there are
complicated patterns of feedback and feed-forward motifs in these networks. Trying to intuit the
effect of simultaneously modifying multiple (or even one) targets is impossible. Just as was the
case with drug design, the natural progression is the development of computational tools to aid in
this daunting task. There is great cause for optimism in this endeavor because of the successes in
engineering spurred on by computational, systems-theoretic, and statistical tools.

Two tool sets are necessary for developing a unified framework for systems-level drug
discovery: system identification and target selection. System identification is synonymous with
mathematical modeling, and in this context, it is the process of developing a set of equations which
describe the behavior of a biological network. In this thesis, the focus is on networks that are
biomolecular pathways; though nothing precludes the use of these techniques on other networks or
even engineering systems. In contrast, target selection will be the process of taking a mathematical
model of a network, selecting components of this network which affect positive changes when
influenced by a drug, and understanding the behavior of the network with and without the affecting
the selected components.

The real goal of this work is to create a framework which can be used to rationally select
new drug targets and also to be able to create personalized medicine treatments which are tailored
to the particular phenotypic behavior of an individual’s disease. In the first case, which is illustrated
in Figure 1.1a, we would conduct high-throughput experiments, generate a mathematical model,
and use this mathematical model to identify multiple drug targets which can be candidates for
the traditional process of drug discovery. In the second case, which is illustrated in Figure 1.1b,
we would take a sample of diseased tissue from a patient, submit the sample to high-throughput
laboratory tests, and then select an optimal choice of existing drugs to give to the particular patient
based on the manifestation and specific sub-type of the disease.

1.1 System Identification

System identification has its origins in the natural philosophy of individuals like Ibn al
Haytham, Robert Boyle, Galileo Galilei, and Isaac Newton. Developing mathematical models to
describe a natural phenomenon came with increased interest in quantification of said phenomena.
This historically began with classical physics where experimentation was relatively easy because
of the size of objects studied. The quantification and modeling of chemistry began at a later date
because of the increased difficulty in dealing with atomic and molecular objects. Biology would not
begin to be mathematically modeled until recently; one of the earliest such works was the seminal
paper by Alan Turing on morphogenesis.

The increased difficulty in doing biological experiments has stunted growth in the quan-
tification and modeling of biology, but the rapid increase in new technologies presents great op-
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Figure 1.1: The goal of this research is to create a framework which can be used to rationally select
new drug targets and also to be able to create personalized medicine treatments which are tailored
to the particular phenotypic behavior of an individual’s disease.

portunity. High-throughput technologies allow for the gathering of large amounts of quantitative
data, and the question has turned to how to best utilize this data. There is great similarity in
the types of data obtained in this biological context and in engineering projects, and this suggests
the application of engineering techniques and tool sets to modeling biological networks. There is
great variety in the approaches that might be used, and there is the possibility for developing new
computational tools which exploit structure and constraints unique to biological and engineering
systems.

System identification is the process of using experimental data to create a mathematical
model which describes a system, and it has been the focus of significant research in the engineering
community. Broadly speaking, system identification can be classified into either parametric or
nonparametric approaches. Parametric approaches are well suited to when there is substantial
existing knowledge about the system to be modeled, while nonparametric approaches are well suited
to situations in which there is a large amount of experimental data and little existing knowledge
about the system. The existing knowledge can range from physics-based equations like Newton’s
laws to domain-knowledge on a biological pathway generated from gene-knockout experiments.

In parametric system identification, one uses existing knowledge to write down an equation
structure which describes the system. This equation has unknown parameters which are determined
using the experimental data. A very classical example is a mass-spring system in which a mass
is attached to a wall with a spring, and the mass can slide along the floor without the influence
of frictional forces. Newton’s equations and Hooke’s law can be used to write a model for this
system ẍ = −kx, and then experimental measurements of the acceleration ẍ and position x of the
block can be used to determine the parameter k, which is the spring constant. Determining the
parameters can be posed as a regression problem, and there is a well-studied, statistical theory on
this topic (though the issue of convergence to local minima in nonlinear regression is swept under
the rug). Identifiability of the parameters is typically ignored in practice, but in general it requires
Lipschitz continuity of the model with respect to the parameters.
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Nonparametric system identification is less-commonly used, but there is growing interest
in these techniques spurred on by the machine-learning and artificial-intelligence communities. In
this class of techniques, a system is modeled with a truncated series expansion; ostensibly if the
series were infinitely long, then the system would be modeled exactly with the correct choice of
parameter values. The limitations of this technique are with the large amounts of data required to
get accurate parameter values, and the asymptotic amounts of data required have been characterized
by statisticians. Smaller amounts of data lead to inaccurate parameter values, and this leads to
inaccurate models.

In the context of engineering and of modeling biological networks, both techniques have
their uses depending on the system and assumptions made about it. Parametric modeling is
well-studied, and likely only minimal advances in the computational and statistical properties
of these techniques is possible. On the other hand, parametric modeling is undergoing a recent
resurgence in interest spurred on by the exploitation of special structure, such as sparsity or manifold
structure, to improve the performance of such techniques. Such structure is commonly found
in engineering systems and biological systems, so the development of techniques which use this
structure is important.

1.2 Drug Multi-Target Selection

When designing pharmaceuticals for a disease, researchers currently use their intuition and
knowledge about the particular disease modalities to choose which cellular components to target
with pharmaceuticals. Such an approach is limited by intuition, and one can only consider a few
cellular components at a time. In the present situation, the pharmaceutical industry has remained
risk-averse because of the lack of accurate predictions and knowledge afforded by such intuition.

Yet in recent years, there has been a recognition that it can be beneficial to use several
different drugs, so called “drug cocktails”. Unfortunately, simultaneously choosing and designing
drugs to target multiple components of a disease modality is a difficult task. It is difficult to predict
the simultaneous effect of multiple drugs on a large network of cellular components. Furthermore,
it is difficult to choose what combination of drugs provides the best clinical outcome.

An important problem facing the health-care industry is how to systematically do drug
discovery. The first aspect of this is: How should the targets for drugs be chosen? A related
problem is: How can drugs be designed to minimize their adverse effects on healthy cells? These
are challenging problems, but they are also important ones. Computational tools which can select
novel targets for diseases and accurately predict the effect of modifying those targets will enable the
pharmaceutical industry to more strategically take on acceptable levels of risk in the development
of new drugs. Hopefully, this will lead to new drugs, or combinations of existing drugs, which are
effective against diseases. There is the issue of ensuring that the designed drugs only affect the
desired targets and not other parts of the network, but this is one of the things that drug companies
are relatively good at doing.

Attempts to aid with drug discovery using systems tools are relatively recent, and these
tools have not yet been applied in the pharmaceutical industry. One large class of tools solves
the problem of either ensuring viability or ensuring non-viability, and this is useful for when one
would like to kill cancer cells or bacterial pathogens. Another class of tools tries to suitably modify
the steady-state behavior of diseased pathways to make them behave more favorably. These tools
have specific applicability, and this necessitates the development of newer tools which better encode
pharmaceutical and medical effects through appropriate mathematical models and tools.
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1.3 Organization

This thesis is organized into two parts. The first part discusses system identification,
and the second part discusses target selection. For the most part, proofs are relegated to the
Appendix except in a few cases where the proofs are short. The focus of this thesis is on drug
discovery, but much of the content is equally applicable to engineering systems. An application
of our new system identification tools to a real engineering system is given in the Appendix, and
notes are scattered throughout whenever something is applicable to engineering systems. Though
the introduction contains no citations, the appropriate references to earlier work will be given in
each chapter. Lastly, the contributions of this thesis are summarized below.

The first part of the thesis covers system identification. Parametric modeling of biological
systems is the subject of the first two chapters, and some of the insights provided by these models
are discussed. Next, a statistical system identification procedure is given. The novel feature of this
procedure is the development of new statistical tools which consider geometrical and hierarchical
organization in systems in order to improve the estimation and identification of models. Such
structure is commonly found in biological, engineering, and financial systems. This part of the
thesis concludes with a chapter on multi-task learning, and specifically answers the question of how
to combine local models in order to do variable selection and build a picture of global structure.

The second part of the thesis covers pharmaceutical drug target selection. The effect of
pharmaceuticals can be abstracted to a graph-theoretic interpretation, and this provides the content
of the first chapter. The question of selecting drug targets can be posed as a graph-theoretic problem
or as an optimization problem. Algorithms for doing target selection are provided, and these
algorithms are designed to be scalable to large networks and biological pathways. These algorithms
are applied to a particular cancer pathway to demonstrate their ability to select reasonable targets,
and simulations show that drugs which affect the selected targets do indeed meet the desired medical
objectives.
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Part I

System Identification
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Chapter 2

Planar Cell Polarity in Drosophila

melanogaster

Identifying mathematical models of biological systems is important for doing drug discov-
ery, because these models can be used with drug multi-target selection tools which aid with drug
discovery. Though these target selection tools are the subject of the second part of this thesis, this
first chapter and part of the thesis begins with a case study of the identification of a network for
which there is significant prior, biological knowledge. This allows us to use standard parametric
system identification tools in generating the models.

Drosophila embryogenesis is divided into different stages [127, 119] of development, during
which the embryo undergoes the development of particular features. Concentrations of gene prod-
ucts (mRNA or protein) control the physical development of structures such as limbs or nerves, and
this patterning occurs through a complicated network of interactions between proteins, mRNA, and
DNA [127, 119]. These interactions are highly nonlinear because processes such as transcription,
translation, and diffusion lead to complicated biochemical behaviors.

A general system found not only in Drosophila but also in mammals (including humans)
is planar cell polarity (PCP), which is the organization of a planar array of cells. Though it is a
common motif in many organisms, some parts of this phenomenon are still poorly understood. More
importantly, this is an important mechanism because it is involved in certain human conditions,
including: misalignment of cochlear receptor cells, spina bifida, and certain types of cancers.

An interesting example of PCP is the orientation of the direction of hair growth on the
wings of Drosophila melanogaster, and this orientation of wing hairs occurs during the puparium
stage of development. It is worth noting that this species of Drosophila is often referred to as the
common fruit fly. As seen in Figure 2.1, the hair on the wings of Drosophila grows in a uniform
direction, towards the distal side of the wing. This alignment of hair is a robust system. It is able to
function well in the presence of environmental variations or local genetic mutations. This particular
PCP system is well-suited for study: A wide-amount of experimental research has been conducted
to date on this particular system, and it is relatively easy to gather additional experimental data.

The aim of this chapter is to perform system identification on a particular instance of
the PCP system, and this is done using standard tools from parametric system identification. The
hope is that by learning a mechanistic model, we can then use it to help develop treatments for
malfunctioning PCP systems in humans. It may be possible to use these models to gain a better
understanding of the biochemical basis for certain related human diseases. The identified model
can potentially be used to understand the effects of treatments on human variants of this system.
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Figure 2.1: The wing hairs in Drosophila align towards the distal edge of the wing [180].

This work was done in collaboration with the Axelrod Laboratory in the Medical School at Stanford
University.

2.1 Literature Review

A variety of models for PCP on Drosophila wings have been proposed. One class of models
requires the presence of hypothesized diffusible factors, referred to as factor X or Z [1]; however,
such diffusible factors have not been experimentally observed or identified. Another proposed model
[203] incorporates only the currently identified proteins, and the corresponding mathematical model
[5] reproduces all experimentally observed phenotypes.

The mathematical model proposed [5] works very well with reproducing the experimental
data collected to date. However, the model assumes that the proteins involved in PCP move through
diffusion. Recent experimental evidence [180] implies that this is not the case. This newer data
suggests that the proteins Dishevelled (Dsh), Frizzled (Fz), and Flamingo (Fmi) are transported
via microtubules. Microtubules can be thought of as unidirectional railroads inside a cell; they
carry material throughout the cell, along fixed paths.

Experimental and genetic analysis has implicated the proteins: Fz, Dsh, Prickle Spiny-legs
(Pk), Van Gogh (Vang), and Fmi as key players in the establishment of PCP on the Drosophila
wing [205, 23, 193, 203, 26]. Fluorescent tagging of these proteins has shown that in an unmutated
wing cell, Dsh and Fz localize to the distal edge of a single cell—whereas Pk and Vang localize to
the proximal edge of a single cell. Fmi is found at both the proximal and distal edges of a single
cell, but not at the other boundaries. This can be seen in Figure 2.2. Furthermore, the hair on a
single cell has been observed to grow in the direction of greatest Dsh concentration [5].

Dsh has been shown to bind with Pk and Vang [23], and Fmi has been shown to bind
with another copy of Fmi [205]. But, direct reactions between other proteins have not yet been
determined. However, the colocalization of Dsh, Fz, and Fmi has been observed; similarly, a
colocalization of Pk, Vang, and Fmi has been observed [118]. This has led to the hypothesization
of the existence of DshFzFmi and PkVangFmi complexes. Furthermore, the unique localization of
the proteins has led to the hypothesis of an ectodomain (intercelluar) repulsion of Fz with Fz on
an adjacent cell and Pk with Pk on an adjacent cell [5, 118]. The picture of the model is then that
Dsh, Fz, and Fmi organize into a large complex, with a similar organization of Pk, Vang, and Fmi.
These two complexes then form an intercellular complex across cell membranes—a manifestation
of the hypothesized ectodomain interaction.

It has been observed that Pk and Vang inhibit the recruitment of Dsh to a cell edge [5].
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Figure 2.2: Protein localization is important to understanding planar cell polarity (PCP). The
particular localization of Fz, Dsh, Vang, Pk, and Fmi [205, 23, 193, 203, 26] are shown from left to
right and top to bottom.

Figure 2.3: Some sample paths of intracellular transport of Fz [180] show its biased stochastic
nature.

The exact nature of the inhibition is unknown, but what is known is that Dsh can bind with Pk
and Vang. However, this inhibition is not due to competitive binding (i.e., Dsh and Pk bind which
prevents Fz and Dsh from binding) because Dsh is not colocalized with Pk and Vang.

Recent evidence shows that Fz, Dsh, and Fmi move inside the cell along proximal-distal
paths [180]. The motion is fairly chaotic at short time-intervals, but over longer time intervals the
motion is more systematic. Several sample paths are shown in Figure 2.3. Moreover, this movement
was found to be associated with microtubules. Interestingly, the microtubules have been observed
to align on the proximal-distal axis of a cell, as seen in Figure 2.4. Furthermore, a slight bias in
the number of microtubules pointing towards the distal edge, as opposed to pointing towards the
proximal edge, has been observed.

2.2 Mathematical Modeling

The mathematical model developed must be able to reproduce not only the phenotype
(observed, biological behavior) of the correct hair direction for wildtype (unmutated) Drosophila,
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it must also be able to reproduce the correct phenotype for Drosophila with local mutations in
the wings. Ideally, the model would match actual protein concentrations within the cells, but
it is difficult to get such measurements. As a result, the phenotype of hair direction is used to
qualitatively judge the model.

Before the model is presented, it is useful to note the assumptions made. Protein concen-
trations are assumed to be continuous variables. This is not actually the case in real life because only
a discrete number of protein molecules can exist. This assumption can be interpreted as meaning
that our continuous protein concentration represents an average concentration over a small region.
Another simplifying assumption is that inhibition of a reaction is equivalent to no reaction at all.

At the core of the model is a set of protein interactions. These protein interactions are
modeled as the binding of several proteins into larger complexes. It is not known whether these
complexes actually exist, but the logical interaction of the proteins is still maintained by this model.
Another feature of this model is that it has been designed to maintain a high level of generality. In
order to maintain consistency with the experimental observations, the model considers a series of

Figure 2.4: Microtubules preferentially align along the proximal-distal axis [180].
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reactions. Note that the dagger (†) symbol represents proteins in an adjacent cell membrane:

Dsh + Fz
R1−−⇀↽−−
λ1

DshFz

Fz + Pk†
R2−−⇀↽−−
λ2

FzPk†

Pk + Vang
R3−−⇀↽−−
λ2

PkVang

DshFz + Pk†
R4−−⇀↽−−
λ4

DshFzPk†

Dsh + FzPk†
R5−−⇀↽−−
λ5

DshFzPk†

Fz + Pk†Vang†
R6−−⇀↽−−
λ6

FzPk†Vang†

FzPk† + Vang†
R7−−⇀↽−−
λ7

FzPk†Vang†

DshFz + Pk†Vang†
R8−−⇀↽−−
λ8

DshFzPk†Vang†

DshFzPk† + Vang†
R9−−⇀↽−−
λ9

DshFzPk†Vang†

Dsh + FzPk†Vang†
R10−−⇀↽−−
λ10

DshFzPk†Vang†

In this model, the reaction rates (i.e., R1, λ1, etc.) are all constants. This is a depar-
ture from the earlier model [5] which contained reaction rates that were functions of other protein
concentrations, in order to model the inhibition of reactions. In this newer model, the inhibi-
tion of reactions is modeled as the lack of a reaction. For example, it is hypothesized that Fz
inhibits Fz on an adjacent cell. This is modeled as the lack of a reaction involving the creation
of a DshFzFz†Dsh† complex. This greatly simplifies the model, and reduces the numerical and
computational complexity of model.

The most novel feature of this new model is the addition of a model of microtuble transport
of proteins. This transport is modeled as the convection of protein from the cell membrane into
the microtubules. The rate of convection is assumed to be constant, but what varies is the number
of microtubules leading from one edge to another and the rate of endocytosis of DshFz complexes
caused by PkVang† complexes (as seen in Figure 2.5a). Lastly, the motion within the microtubule
is modeled as convection.

The model for the microtubule transport represents three experimentally observed fea-
tures. First, the number of microtubules pointing towards the distal end slightly outnumbers the
number pointing towards the proximal end. This disparity in direction is modeled as different
rates of convection, since it is expected that a larger number of microtubules would lead to faster
transport of proteins. Second, Dsh binds with Pk and Vang, but it also inhibits the recruitment of
Dsh. The hypothesis underlying this model is that Pk and Vang cause the loading of DshFz into
microtubules (technically speaking, vesicles associated with the microtubules) by inducing endocy-
tosis. In other words, the hypothesis is that a larger concentration of PkVang complex leads to an
increase in the rate of DshFz endocytosis, and the asymmetry in protein concentration is due to
the asymmetry in the microtubule distribution as shown in Figure 2.5b.
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(a) (b) (c)

Figure 2.5: (a) PkVang complexes on the membrane of a cell lead to the endocytosis of DshFz
complexes, which then become attached to microtubules and are actively transported. The active
transport along microtubules is mathematically modeled as convection. (b) There is a slight asym-
metry of microtubules which direct vesicles towards the distal edge of the cell. The distal edge is on
the right side of the cell. (c) Some proteins diffuse in the cytoplasm, whereas the membrane-bound
proteins only diffuse on the membrane. Complexes between adjacent cells also diffuse along the
membrane.

Defining the net forward rate of reactions as:

P1 = R1[Dsh][Fz] − λ1[DshFz]

P2 = R2[Fz][Pk†] − λ2[FzPk†]

P3 = R3[Pk][Vang] − λ3[PkVang]

P4 = R4[DshFz][Pk†] − λ4[DshFzPk†]

P5 = R5[Dsh][FzPk†] − λ5[DshFzPk†]

P6 = R6[Fz][Pk†Vang†] − λ6[FzPk†Vang†]

P7 = R7[FzPk†][Vang†] − λ7[FzPk†Vang†]

P8 = R8[DshFz][Pk†Vang†] − λ8[DshFzPk†Vang†]

P9 = R9[DshFzPk†][Vang†] − λ9[DshFzPk†Vang†]

P10 = R10[Dsh][FzPk†Vang†] − λ10[DshFzPk†Vang†]

It is not clear whether or not the complexes diffuse along the cell membrane. In general,
proteins within the membrane are free to diffuse along the membrane; however, certain proteins are
rigidly fixed in the membrane. To allow for maximum generality, the model allows all molecules to
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diffuse, but at different rates. The model along the edge of the cell is:

∂t[Dsh] = − P1 − P5 − P10 −D1∇2[Dsh]

∂t[Fz] = − P1 − P2 − P6 −D2∇2
s[Fz]

∂t[Pk] = − P †
2 − P3 − P †

4 −D3∇2[Pk]

∂t[Vang] = − P3 − P †
7 − P †

9 −D4∇2
s[Fz]

∂t[DshFz] =P1 − P4 − P8 −D5∇2
s[DshFz] + C

∂t[FzPk†] =P2 − P5 − P7 −D6∇2
s[FzPk†]

∂t[PkVang] =P3 − P †
6 − P †

8 −D7∇2
s[PkVang]

∂t[DshFzPk†] =P4 + P5 − P9 −D8∇2
s[DshFzPk†] + C1

∂t[FzPk†Vang†] =P6 + P7 − P10 −D9∇2
s[FzPk†Vang†]

∂t[DshFzPk†Vang†] =P8 + P9 + P10 −D10∇2
s[DshFzPk†Vang†] + C2,

where
C =

∑

b

Rab

(

[Pk]k1 + [Vang]k2 + [PkVang]k3

)

[DshFz*].

The term DshFz* indicates the summation of all DshFz complexes. This summation is over each
edge b and the different values of Rab represent the number of microtubules from edge b to edge a.
The terms C1 and C2 are defined as

C1 = C
[DshFzPk†]
[DshFz*]

C2 = C
[DshFzPk†Vang†]

[DshFz*]
,

and they help ensure that total DshFz amount is conserved. In the cell interior, the model includes:

∂t[Dsh] = −D1∇2[Dsh]

∂t[Pk] = −D3∇2[Pk]

There are two types of diffusion in this model, and this is pictorially represented in Figure 2.5c.
These variables are subject to the boundary conditions that there is no flow of proteins out of the
cells.

2.3 Numerical Implementation

The discretization of the PDE was done using the Finite Volume method [70]. This dis-
cretization method was used because of the unique numerical and mathematical properties which
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allow for the maintenance of numerical conservation of mass. More specifically, this method consid-
ers the flux through the edges of the discretization grid. By discretizing the PDE in this manner,
there is a “telescoping” of fluxes so that the total flux, and hence mass, is conserved.

The grid that was used with this discretization method is shown in Figure 2.6. This
particular grid was chosen for several reasons. First, the general shape of the cells on the wing are
hexagons. So each cell has been modeled as a hexagon. Second, the hexagon is gridded into six
portions, with each portion corresponding to a portion of the membrane and cytoplasm of the cell.

Figure 2.6: Grid of Single Cell

The numerical integration of the discretized PDE was conducted using an embedded
Runge-Kutta method with Dormand-Prince coefficients [60]. An interesting aspect of the current
version of the simulation code developed is that the code simulates an infinitely large array of cells.
This is done by simulating an array of cells in which the neighbors of cells on the boundary are cells
on the opposite boundary [5]. This is a valid technique because an infinite array of cells possesses
translational invariance and as a result, each cell is identical.

The model presented has parameters which must be chosen, and the parameters were
numerically identified using gradient descent on a square-loss function. The gradient was computed
using a simple finite difference scheme [16]. In this case, the square loss was defined as:

∑

k

‖xk − x̂k‖ 2
2 ,

where xk is a vector of the experimentally observed direction of hair on the k-th cell and x̂k is
the simulated direction of the hair on the k-th cell. The direction vector is a unit vector, and the
direction is encoded by its angle. The experimentally observed hair direction of the Vang clone was
used to fit the parameters. The Vang clone is an array in which a center square of cells are lacking
the Vang protein. This distinguishes the parameter identification methods used in [5] which used a
discontinuous loss function coupled with the Nelder-Mead simplex method to identify parameters.
What is remarkable about this model is that it is able to replicate the experimental behavior of the
system after fitting only the Vang clone; in comparison, the model in [5] was fit to four different
clones before it was able to replicate the experimental behavior of the system.

2.4 Simulation Results

To see how well the model fits experimental results, we try several different scenarios. The
first scenario is a wildtype simulation in which there are no genetic mutations on the fly wing. It is
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shown in Figure 2.7a, and all the hairs point towards the distal edge of the fly wing which is to the
right of the figure. The hairs are shown by the triangles, and the colors represent Dsh concentration
which determines hair direction. Greater Dsh concentration is represented by brighter colors closer
to red. The model behaves as expected for the wildtype case.

The next scenarios involve mutations on the fly wing in a square in the middle of the
wing. These mutations respectively remove either Dsh, Fz, Pk, or Vang; corresponding simulation
results are seen in Figures 2.7b, 2.7c, 2.7d, and 2.7e. These results match what is experimentally
observed, and it matches the results of previous mathematical models [5]. As stated earlier, the
benefit of this model is that it encodes new biology learned since [5].
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(a) Wildtype

(b) Dsh Clone (c) Fz Clone

(d) Pk Clone (e) Vang Clone

Figure 2.7: Simulation of the model for an array of cells matches the experimentally observed
behaviors. The wildtype results are cells with no mutations, wheras the other simulations are for
situations in which a rectangular portion of cells in the middle of the array have various mutations
which remove the corresponding protein from the mutated cell.
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Chapter 3

Modeling of Hunchback Pattern
Formation in Drosophila

melanogaster

Chapter 2 discussed parametric identification of a system in Drosophila which is related to
human ailments. Similarly, this chapter provides a case study of performing system identification
on another system in Drosophila by the use of parametric methods. The system of focus in this
chapter is not immediately related to any human diseases, but this case study provides insights
into the process of identifying mathematical models of biological systems.

Hunchback mRNA (hb) forms a pattern in the anterior domain of Drosophila during late
stage 4 of embryogenesis. The formation of this pattern is well studied because of the relative ease
of performing experiments. It is generally accepted that maternal Bicoid protein (Bcd) induces the
transcription of hb in the anterior of the embryo [61, 127, 119]. However, the role of Krüppel (Kr)
protein in hb regulation is less clear. Some suggest Kr represses hb to help establish the posterior
boundary of anterior hb mRNA expression; others suggest Kr does not regulate hb [81, 111, 134,
92, 133]. The wild type patterns in late stage 4 of Bcd, Kr, and hb can be seen in Figure 3.1.

Identifying this network can be posed as a system identification problem solved with
nonlinear regression [16] using experimental measurements collected by Berkeley Drosophila Tran-
scription Network Project (BDTNP) [138, 72]. The general approach is to do nonlinear regression
on a parametric, nonlinear partial differential equation (PDE) model with two spatial dimensions.
This model incorporates planar diffusion, and it contains terms which aggregate the biological pro-
cess of transcription which occur on time-scale that is faster than the entire process of transcription.
The aggregate model terms can be mathematically justify using singular perturbation theory, and
such models have been successfully used in biology [36, 210].

Actual implementation of this nonlinear regression requires the use certain numerical
methods. The regression is posed as a least squares problem which is evaulated by solving a PDE.
The PDE is discretized using the finite-volume method at the cellular level of resolution, and the
forward Euler method is used to numerically integrate the discretized PDE. The regression itself is
performed using a quasi-Newton method, and its results are interpreted in the biological context
and compared to previous work on this system [157, 92].
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Figure 3.1: In late stage 4, Bcd protein has a gradient-like pattern with the bulk of the concentration
occurring at the anterior end of the embryo. Kr has a single-stripe pattern, and hb has a solid
pattern with a sharp boundary in the center of the embryo.
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3.1 Data Collection and Processing

The data used has been collected and processed by the BDTNP [138, 72]. Experimental
measurements of protein and mRNA concentrations are taken by analyzing images of Drosophila
embryos that are fluorescently stained to label expression patterns and nuclear DNA. The embryos
are imaged using two-photon microscopy to produce three-dimensional image stacks. The image
stacks are processed to produce a virtual embryo [138, 72], which can be thought of as an average
of factor concentrations and an average of Drosophila geometry at the cellular level.

The resultant virtual embryo contains average cell geometry, protein and mRNA concen-
tration in each cell (approximately 3000 cells in stage 4), and embryo geometry information. This
includes the location and shape of each cell in the embryo, the neighbors of each cell, and the
distance between neighbors. This data is particularly useful for the numerical discretization of the
PDE via the finite volume method. The data in the virtual embryo is given for several different
points in time—over stages 4 and 5 of the Drosophila embryo development—though only stage 4
is used in the modeling.

Figure 3.1 shows experimental data which has been processed using the approach of Sec-
tions 3.1.1. The virtual embryo has an irregular grid that is generated through a Voronoi tessellation
based on the location of nuclei in the embryo [138]. Because of this irregular grid, exploiting symme-
try to do noise-reduction filter is not straightforward; a filtering strategy which exploits symmetry
in patterns is discussed in Section 3.1.1. Additionally, Kr protein data is not available, and so
Kr mRNA data is used in its place. This is biologically reasonable to do because the mRNA and
protein data for Krüppel has been experimentally observed to be similar with the exception of a
slight time delay [72].

3.1.1 Filtering

A k-nearest-neighbors filter in which the filtered value of a cell is equal to the average
of its k-nearest-neighboring cells is used. This is a two-dimensional filter which is applied to the
surface of the embryo. The filter is applied to all the factors to alleviate the general noise present
in the data, and it is a required compromise due to the limitations of the imaging techniques used
by the BDTNP.

It has been experimentally observed that the patterns of Bcd, Kr, and hb are symmetric
about the dorsal-ventral axis (see Figure 3.1). In other words, the left and right sides of the embryo
are symmetric with respect to each other. This observation suggests the idea of mirroring the data
to reduce noise. Specifically, a modified k-nearest-neighbors filter is used in which the filtered value
of a cell is equal to the average of the k-nearest-neighboring cells on both sides of the embryo. That
is, the data is averaged over all the cells that would be neighbors about a single cell in case of a 2D
projection about the dorsal-ventral axis. To achieve better regression results and to avoid incorrect
local minima, the values of hunchback mRNA are specially filtered: The value of the x-cells near
the anterior and posterior edges is calculated as the y-cells that occur after the x-cells in the same
plane.

3.2 Mathematical Model

The approach to this system identification problem requires having a parametric model,
meaning an equation of motion with unidentified parameters. There are two potential models for
the regulation of the posterior boundary of anterior hb domain.
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It is generally accepted that high concentrations of Bcd protein lead to high concentra-
tions of hb [61, 127, 119], and this is incorporated into both models. Additionally, diffusion and
degradation of hb mRNA are widely accepted facets of behavior [61, 127], and so this is also in-
corporated into both models. The first model (3.1) takes only these effects into account, and it is
given by the equation

∂[hb]

∂t
= a1

[Bcd]a2

[Bcd]a2 + aa2

3

+ a4∇2[hb] − a5[hb]. (3.1)

The first term in (3.1) is a fractal, Michaelis-Menten type reaction [172, 173, 53] which corresponds
to promotion, and it is a common model in biological systems [210, 53, 92]. It has a sigmoidal
shape—approaching 1 as [Bcd] → ∞ and approaching 0 as [Bcd] → 0. The second term is a
diffusion term for hb[61, 127]. The third term is a degradation term, because hb has a finite
lifetime [61, 127].

The second model takes into account the previously described possibility that Kr protein
may repress Hb transcription [81, 111, 134, 92, 133]. The model (3.2) is given by

∂[hb]

∂t
= b1

(

[Bcd]b2

[Bcd]b2 + bb23

)(

1 − [Kr]b4

[Kr]b4 + bb45

)

+ b6∇2[hb] − b7[hb]. (3.2)

The new term in (3.2) is a fractal, Michaelis-Menten type reaction [172, 173, 53] that corresponds
to inhibition. In particular, this term approaches 0 as [Kr] → ∞ and approaches 1 as [Kr] → 0.

3.3 Nonlinear Regression

A nonlinear regression is used to identify the parameters in (3.1) and (3.2), and it can be
framed as a nonlinear optimization:

arg min f(~γ) =
∑

~x∈M

∥

∥

∥[hb]~γ(1, ~x) − ˆ[hb](1, ~x)
∥

∥

∥, (3.3)

subject to:
[hb]~γ(0, ~x) = 0 ∀~x ∈ M, (3.1) or (3.2), (3.4)

where M is the set of points corresponding to the cells in the virtual embryo, ~γ are the parameters
of the model, [hb]~γ(t, ~x) is the solution to the PDE given in (3.1) or (3.2), and m̂(1, ~x) is the set of
experimentally measured hb concentration values from the virtual embryo that has been processed
as described in Section 3.1.

This nonlinear optimization problem is solved using a quasi-Newton method [27], and
the common Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [27] is used to approximate the
Hessian matrix. A relatively large portion of the space of model coefficients (~γ) was used as the
initial parameter values for the quasi-Newton method, in hopes that a good local minima can be
discovered by covering a large portion of this space. Because evaluations of the function f(~γ) are
fast in this case, the gradient can be computed using a naive finite differences method:

∂f

∂γi

∣

∣

∣

∣

~γ∗

≈ f(~γ∗) − f(~γ∗ + δ~ei)

δ
, (3.5)

where ~ei is the standard basis vector in Rg, where g is the number of parameters in the model.



21

Calculating the numerical approximation to the gradient requires evaluation of f(~a), and
this requires solving the PDE given in (3.1) or in (3.2). The finite volume method [70] is used to
spatially discretize the PDE. The discrete cells of the finite volume grid are the cells of the virtual
embryo, and the cells are approximated as polygons that lie upon the surface of the embryo. The
polygonal nature of the biological cells makes them an attractive option for the finite volume grid.
The numerical discretization of the resulting ordinary differential equation (ODE) is performed
using the forward Euler method because the dynamics of the PDE (and the resulting ODE, after
discretization) is simple and does not display complicated behaviors such as chaos or stiffness.

3.4 Regression Results

The parameters returned—after performing the nonlinear regression procedure described
in Section 3.3 using the experimental data shown in Figure 3.1—are shown substituted into the
parametric PDEs. Performing the nonlinear regression for (3.1) gives:

∂[hb]

∂t
= 0.91

[Bcd]5.32

[Bcd]5.32 + 0.145.32
+ 0.65∇2[hb] − 0.067[hb]. (3.6)

The hb concentration predicted by this model with these parameter values is shown in Figures 3.2c
and 3.2d. Similarly, performing the nonlinear regression for (3.2) gives:

∂[hb]

∂t
= 0.90

(

[Bcd]3.23

[Bcd]3.23 + 0.113.23

)

(

1 − [Kr]5.38

[Kr]5.38 + 0.675.38

)

+ 0.65∇2[hb] − 0.0054[hb], (3.7)

and the hb concentration predicted by this model is shown in Figures 3.2e and 3.2f.

3.4.1 Measures of Goodness-of-Fit

The fit of the model to the experimental data can be statistical measured in a variety of
ways. The simplest such measure is mean-squared error (MSE), and here it corresponds to the
value of f(~γ), where ~γ contains the parameters of the model and f(·) is given in (3.3). A lower
value of MSE qualitatively means that the model better fits the experimental data, and the MSE
values of each model are shown in Table 3.1.

The models can also be compared using the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), which are statistical methods for model selection. They give
a numerical result which qualitatively measures the difference between the data and the model
[39] by considering both the predictive-power of the model and the number of parameters in the
model. This makes AIC and BIC more expressive than simply comparing models by their MSE,
and here lower values are better. If the model errors are assumed to be distributed as independent
and identical Gaussians, then AIC and BIC can be more easily computed; these values are given
in Table 3.1.

The model in (3.2) has lower MSE than the model in (3.1). It also qualitatively looks
more like the experimental pattern. The model in in (3.2) also has a lower AIC and BIC value.
Consequently, the system identification results suggest that the model in (3.2) is better than that
given in (3.1).
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Figure 3.2: We can compare the hb patterns generated by each model to both the experimental
data and to themselves.
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Model in 3.1 Model in 3.2

MSE 74.22 41.69

AIC −9.52 × 103 −1.30 × 104

BIC −2.67 × 104 −3.02 × 104

Table 3.1: Measures of Goodness-of-Fit

3.4.2 Biological Interpretation

Note that there is no assertion regarding the biological validity of either model. Rather,
it is only stated that the latter model produces a more accurate pattern than the former model.
This supports the hypothesis that Kr is involved in hb pattern formation, and the fact that model
in (3.1) does not generate the proper pattern (the boundary is too diffuse) supports the related
hypothesis that Bcd alone is not sufficient to generate the hb pattern.

This mathematical modeling effort can be compared to those in [92, 96, 91]. Two-
dimensional data along the surface of the embryo is used here, whereas the experimental data
used in [92, 96, 49] consists of one-dimensional data along the flattened embryo. Additionally, the
mathematical model in [92] is a static input-output model that only considers the effect of Bcd:

[hb] = hbmax
[Bcd]n

[Bcd]n +Kn
, (3.8)

where hbmax,K ∈ R and n is an integer.
The model and experimental data in [92] match well, but this is misleading. Flattening the

embryo and making experimental measurements in one-dimension effectively acts as an averaging
filter, and it is akin to taking the two-dimensional data of Figure 3.1 and averaging along one of the
dimensions to make it one-dimensional. Referring to Figure 3.1, it is not surprising that averaging
hb and Bcd in this manner and then using a mathematical model with just Bcd would be enough
to generate the hb pattern. Considering the full two-dimensional data, it is clear that Bcd alone is
not enough to generate the hb pattern. Additionally, the results of the model presented here show
that the addition of Kr to the model can generate the hb pattern.

The coefficient n is interpreted to be the number of Bcd molecules that cooperatively
bind to generate the hb pattern [92]. In [92], the experimental data was matched to the model to
compute a value of n = 5. In the results here, the model in (3.1) which also uses only Bcd has a
value of n = 5.32. These values are somewhat high, and such situations are biologically infrequent.
However, the model in (3.2) which uses both Bcd and Kr has a value of n = 3.23 which is more
biologically frequent.

The models here can also be compared to that in [157]; this model also found that Kr is
sufficient for the establishment of the posterior boundary of anterior hb mRNA expression. The
models here have three primary differences with [157]. One difference is the form of activation
used in [157] is not a fractal, Michaelis-Menten type reaction. Another difference is that the model
and experimental data used in [157] only had anterior-posterior resolution, and no dorsal-ventral
resolution like the BDTNP data. The results show that fitting a model with Kr to experimental
data with anterior-posterior and dorsal-ventral resolution is still sufficient to reproduce the anterior
hb mRNA expression. The third significant difference is that the model in [157] also had a slight
repression of hb by Knirps protein, which is another protein involved in embryogenesis.
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3.4.3 Future Works

Interpreting the comparison between the two models requires caution. Though one model
was found to be better than the other, this is not sufficient evidence for a biological relationship.
A set of biological experiments to delineate the differences between the two models is needed. The
real benefit of the system identification procedure is that guides the biologist in conducting future
experiments. Because the model in (3.2) produces better results than the model in (3.1), it is
indeed reasonable to conduct future experiments that gauge the role of Kr. Because the model in
(3.1) did not produce satisfactory results, the results suggest that the role of other factors, on hb
pattern formation, should be considered. Additional system identification with new models using
additional factors can be used to guide future, biological experiments.
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Chapter 4

Locally-Linear System Identification

The parametric system identification procedures used in Chapters 2 and 3 require signifi-
cant prior knowledge about the system being modeled. This prior knowledge is used to formulate
a specific functional form of the equations with free tuning parameters that are picked using re-
gression procedures in order to match experimental data. The advantage of this approach is that it
provides models that are highly interpretable, with specific terms of the equations corresponding to
specific phenomenon in the system. The disadvantage is that it does require extensive knowledge
about the system.

An alternative form of system identification is the class of nonparametric techniques [135];
they are sometimes used in the robotics and control communities. The advantage of these techniques
is that they are well-suited for situations in which there is little or no prior knowledge about the
system being modeled. The disadvantage of nonparametric techniques is that they are statistically
not as well behaved as parametric techniques. One purpose of this chapter is to provide a new
statistical technique for nonparametric system identification [12, 14] that has better statistical
performance than existing techniques.

The advantage of requiring limited prior knowledge is important in biological applications,
because there is often little or unreliable knowledge about the large networks being modeled. This
makes nonparametric methods particularly useful for network identification problems in biology.
In such problems, we are interested in learning not only parameter values of the model, but also
the interconnections between different parts of the network. In fact, for some of the drug multi-
target selection tools discussed in the second part of this thesis, it is more important to know the
interconnections than to know the parameter values.

From an informal perspective, systems described well by ordinary differential equations
(ODEs) can be nonparametrically identified by matching trajectory data of the system with an ODE
whose functional form is given by a series expansion. These techniques are useful for situations in
which there is little a priori knowledge about the dynamics of the system. Suppose an engineering
or biological system is described by the following general ODE:

ẋ = f(x) + g(x, u), (4.1)

where f(x) describes the nonlinear, zero-input dynamics and g(x, u) describes the way the system
depends on the inputs. If g(x, u) is known by the designer, as is the case for many engineering
systems, then the problem is simplified into identifying ẋ = f(x). This framework is expressive
enough to identify time-varying systems by choosing an augmented state vector x̃ = (x, t).

Local linearization techniques [135, 209, 22, 200, 109] are an important, special class of



26

nonparametric system identification. The prevalence of control tools which utilize piecewise-affine
models or linear models makes this class of techniques important. The dynamics of the system are
identified for points nearby to point (x0, u0) by linearization

ẋ = f(x) + g(x, u) ≈ Ax+Bu+ c, (4.2)

for all x, u such that ‖x − x0‖2 + ‖u − u0‖2 ≤ h; where h > 0 is small. A picture of the global
dynamics can be gleaned by identifying a model for many different values of (x0, u0).

Nonparametric identification techniques involve solving regression problems of the form

Y = Xβ, (4.3)

where Y ∈ Rn is a vector of noisy response variables, X ∈ Rn×p is a matrix of noisy predictor
variables, and β ∈ Rp is a vector of regression coefficients. The ordinary least squares (OLS) [41]
solution is given by,

βOLS = arg min
β

‖Y −Xβ‖2
2 (4.4)

= (X ′X)−1X ′Y, (4.5)

where X ′ is the matrix transpose of X. Because these problems arise from using data local to
(x0, u0), it is not uncommon for X to be a wide matrix, meaning p > n. This causes problems
because the matrix inverse (X ′X)−1 does not exist. Furthermore, in some systems (e.g., gimbal
lock [158]) the trajectories evolve on a manifold with dimension lower than that of the state-space.
Once again, (X ′X)−1 does not exist.

From a practical standpoint, the two situations are equivalent and are known in the
statistics literature as collinearity (or near-collinearity for ill-conditioned covariance matrix X ′X)
of the predictors. A variety of techniques has been developed to deal with this, including: partial
least squares (PLS) [213, 73], principal components regression (PCR) [144, 73], ridge regression
(RR) [105, 73], Moore-Penrose pseudoinverse (MP) [33, 120], and elastic net (EN) [223]. RR and
EN can handle the collinearity aspect but do not explicitly recognize that the predictors lie on
a lower dimension hyperplane. On the other hand, PLS, PCR, and MP consider the manifold
structure but can have inconsistent performance. There is hope that this inconsistency can be
improved with new estimators. Note that the approach in [33] applies to a more general setup in
which the data lies on a lower dimensional manifold which might not be a hyperplane.

Of techniques that explicitly consider manifold structure (i.e., PLS, PCR, MP), none
of these can take advantage of any sparsity in the system. Sparsity of an ODE using the local
linearization in (4.2) is defined as

p
∑

i=1

1(Aij 6= 0) ≤ c0(p), (4.6)

where c0(p) is an increasing function of p. This equation means that there is an upper bound on
the number of non-zero entries in the matrix A. Strictly speaking, this condition can be somewhat
relaxed [32]. Dynamical systems found in engineering problems are typically sparse because they
are an interconnection of preexisting, engineered components. Biological systems (especially regu-
latory networks) are often sparse as well because the organization of such networks is known to be
hierarchical. It is important to develop identification techniques that take advantage of this special
structure.
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This chapter begins with a formal problem statement of local linearization identification
and an explanation of how this is related to (4.3). A new statistical technique is briefly introduced,
and it is studied in more depth in the next chapter. The regression problem (4.3) is interpreted
as a regression on an embedded submanifold, which is the setup of [33]. Lastly, the overall system
identification procedure is described.

There are two advantages to this interpretation: First, it clarifies the meaning of the
regression coefficients, which is a common source of confusion in the literature. Secondly, it allows
the development of a new technique which can simultaneously exploit sparsity and collinearity in
order to improve the performance of estimating the regression coefficients.

4.1 Problem Statement

Consider the dynamical system given in (4.1) with trajectory given by xe(t) and initial
condition xe(0), where e is an index that enumerates over a set of different trajectories (alternatively,
experiments). Furthermore, suppose that noisy measurements of the states and inputs are made

x[t, e] = xe(t) + z

u[t, e] = ue(t) + η,
(4.7)

for all t = t1, . . . , tT and for all e = 1, . . . , E; where the system is measured at T time-points for E
experiments. If the system identification is done in real-time, then E = 1; however, if a system is
being experimentally characterized, then typically E > 1. Also, z, η are vectors of noise with zero
mean and finite variance σ2, ν2.

The problem of interest is: Given a point (x0, u0), for the system (4.1) with measured
data (4.7), determine the local linearization (4.2) of the system.

4.1.1 Relation to Linear Regression

For now, pretend that there is access to non-noisy measurements of the relevant variables:
xe(t), ue(t), ẋe(t). The situation with noisy measurements will be considered later. Define an
indicator function by

Kh(e, t) = 1(‖xe(t) − x0‖ 2
2 + ‖ue(t) − u0‖ 2

2 ≤ h2). (4.8)

This indicator function is zero if xe(t), ue(t) are far from x0, u0 and is one otherwise. This can be
generalized by choosing Kh(e, t) = 1/hpK(xe(t)/h, ue(t)/h), where K(·, ·) is a general window (e.g.
unit-hold, bicubic, or Epanechnikov kernels). Note that windowing the data and doing a linear
regression is a special case of nonparametric, local polynomial regression [169]. In the present case,
the regression model is given by

W 1/2







ẋ1(t1)
′

...
ẋE(tT )′







′

= W 1/2A







x1(t1)
′

...
xE(tT )′







′

+W 1/2B







u1(t1)
′

...
uE(tT )′







′

+W 1/2c







1
...
1






, (4.9)

where W = diag(Khx,hu(1, 1), . . . ,Khx,hu(E,T )). Solving for A, B, and c effectively identifies the
local linearization.

This regression model can be rewritten in matrix form as

W 1/2Ym = W 1/2XmΞ, (4.10)
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Figure 4.1: In a small ball Bp
x0,µ about the point X0, the predictors form the manifold M. The

response variable is a function of the predictors, which lie on this manifold. Here the manifold is
of dimension d = 1, and the number of predictors is p = 2.

where

Y ′
m =

[

ẋ1(t1) . . . ẋE(tT )
]

(4.11)

X ′
m =





x1(t1) . . . xE(tT )
u1(t1) . . . uE(tT )

1 . . . 1



 (4.12)

Ξ′ =
[

A B c
]

. (4.13)

Solving for Ξ by considering one column of (4.10) at a time is equivalent to (4.3).

4.2 Manifold Interpretation

To solve the regression problem (4.3), the problem is interpreted as a regression on a
manifold which has a locally Euclidean metric; this is the setup of [33]. This sort of situation occurs
if there are constraints on the dynamics of the system which cause it to evolve on a lower-dimensional
manifold. It also occurs if the trajectory is undersampled with respect to the dimensionality of the
system. Suppose there is locally a manifold M ⊆ Rp, where dim(M) = d. Also, suppose there is
a function f(·) : M → R. This situation is seen in Figure 4.1, and only the data points are known
in this regression problem; the manifold M and the function f(M) are unknown.

The gradient (and Jacobian) of a function on a manifold does not always exist, but there
is a generalization of gradients to functions on manifolds. This generalization is known as the
exterior derivative of a function, and the interested reader can refer to [129] for a formal definition.
The exterior derivative of a function is sometimes referred to as a differential or as the exterior
derivative of a 0-form. It is enough to intuitively know that an exterior derivative can be thought
of as a sum of directional derivatives along the directions of the manifold, and it is a well-defined
quantity because directional derivatives are well-defined on manifolds. The exterior derivative at
a point p lies in the cotangent space at p, which is the subspace that is parallel to the manifold
at p; more formally, the tangent space is parallel to the manifold at p, and the cotangent space is
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isomorphic to the tangent space via the Euclidean metric because we are dealing with embedded
submanifolds in an ambient space of Rp.

To understand why gradients do not always exist, consider the following partial derivative

∂f

∂x1
= lim

h→0

f(x1 + h, . . . , xp) − f(x1, . . . xp)

h
. (4.14)

In general, even though (x1, . . . , xp) ∈ M holds, it can happen that (x1 + h, . . . , xp) /∈ M for
arbitrarily small h. Thus, the partial derivative is ill-defined because f(·) is not defined for values
not in M.

The manifold interpretation leads to interpreting the regression coefficients as the exterior
derivative of a function. This is important because it means that the regression coefficients only
give information about the directions that the manifold samples, and these directions are formally
known as the tangent space of the manifold. This has important implications for control because
it says that nonparametric system identification techniques that regularize the regression problem
are unable to learn all the dynamical modes of the system. This is problematic if, for instance, the
unlearned modes are unstable.

The manifold interpretation of the regression problem leads to a new form of regularization
for the regression problem, and this is the focus of Chapter 5. A very brief summary is given here.
The cotangent space is learned by forming a local covariance matrix X ′WX and then computing
its eigenvalue decomposition. Deviations from the cotangent space are penalized by projecting
the regression vector perpendicular to the cotangent space and having a corresponding penalty.
Specifically, the nonparametric exterior derivative estimator (NEDE) is given as

β̂NEDE = arg min
β

‖W 1/2(Y −Xβ)‖2
2 + λ‖Πβ‖2

2. (4.15)

The first term is an OLS setup (4.4), the second term is known as a Tikhonov-type regularization
term, and the W matrix makes this a weighted least-squares. The regularizing matrix Π is a
projection matrix that projects orthogonal to the cotangent space.

This estimator can be suitably modified to exploit sparsity and to handle the “large p,
small n” case. The latter case is when p is on the order of or larger than n; or, asymptotically
speaking: p/n 6= o(1). It is known [143, 115, 114], that in this setting the covariance matrix X ′X
and cross-covariance matrix X ′Y are ill-behaved. Specifically, the eigenvalues and range space of
eigenvectors do not converge to the correct values. The exact details are given in Chapter 5.

Details on our entire class of estimators are also given in Chapter 5. For reference, we
briefly explain the acronyms used to refer our estimators. The manifold regularization used in all
of our estimators is indicated by the stem (-EDE-). Nonparametric forms of our estimators are
indicated with a prefix of (N-), and a lack of this prefix indicates a linear, parametric estimator.
The sparsity-inducing regularization is indicated by the characters (-AL-), and the regularization
for “large p, small n” case is denoted by the suffix (-P).

For the discussion here, it is useful to note that Theorem 5.3.2 shows that the NEDE
estimator is consistent:

‖β̂NEDE − β‖2 = Op(n
−1/(d+4)).

If the relationship between the predictors and response variables is linear, then W can be chosen
to be the identity matrix and the rate of convergence is in fact Op(n

−1/4) as shown by Theorem
5.4.3.
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4.3 Mass-Spring Example

Consider the mass-spring system shown in Figure 4.2, and consider the positions of the
two masses:

ξ(t) =
[

ξ1(t) ξ2(t)
]

. (4.16)

This system is interesting because the motion lies in either two-dimensions or one-dimension de-
pending on the stiffness of the springs. If spring 2 (the spring in between the two masses) is very
stiff, then the spring is basically a rigid rod. In this case, the two masses remain a fixed distance L
from each other, meaning that ξ2(t) = ξ1(t) + L and the motion is one-dimensional. If the spring
in between the two masses is weak, then the two masses vibrate at different rates and the motion
is two-dimensional.

Spring 1 Spring 2

Mass 1 Mass 2

ξ1(t)

ξ2(t)

Figure 4.2: A mass-spring system with two masses and two springs is shown, where the masses slide
on the ground and spring 1 is attached to the wall. We can make measurements of the position
and acceleration of the masses and use these measurements to compute the stiffness of the springs.
In general, the two masses oscillate at different rates related to the stiffness of each spring; this
behavior is two-dimensional. If spring 2 is much stiffer than spring 1, the second spring acts like a
rigid rod; this behavior is one-dimensional.

An interesting problem is to determine the stiffness of the springs based on measurements
of the positions and accelerations of the masses. This can be framed as a regression problem.
Suppose the masses have initial conditions:

[

ξ1(0
−)

ξ2(0
−)

]

=

[

L
2L

] [dξ1
dt (0−)
dξ2
dt (0−)

]

=

[

0.5
0.5

]

.

The equations describing the motions of the two masses can be written using Newton’s law and are
given by:

d2ξ1
dt2

= −k1

m
(ξ1 − L) +

k2

m
(ξ2 − ξ1 − L)

d2ξ2
dt2

= −k2

m
(ξ2 − ξ1 − L),

(4.17)
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where k1, k2 describe the stiffness of the two springs, L is the length of the unstretched springs, and
m is the mass of each block (they have equal masses). If the second spring is very stiff (k2 � k1),
then the equations of motion are approximately given by:

d2ξ1
dt2

= − k1

2m
(ξ1 − L)

ξ2(t) = ξ1(t) + L.

(4.18)

The idea is to make measurements of the relevant variables, and then do a regression to
determine the coefficients. Assume that n = 1250 measurements are made:

y1(t) =
d2ξ1
dt2

(t) + N (0, 0.52)

y2(t) =
d2ξ2
dt2

(t) + N (0, 0.52)

x1(t) = ξ1(t) + N (0, 0.12)

x2(t) = ξ2(t) + N (0, 0.12)

at evenly spaced values of 0 ≤ t ≤ 25. This is a realistic example because accelerometers can
directly measure acceleration, and position is quite easy to measure.

Regressing the predictors x1, x2 onto the response variables y1, y2 will indirectly give the
stiffness of the springs. If the system is well described by (4.17), then the linear model will be given
by

[

d2ξ1
dt2

(t)
d2ξ2
dt2

(t)

]

= B1





1
ξ1(t)
ξ2(t)





B1 =

[

(k1 − k2)L/m −(k1 + k2)/m 0
k2L/m k2/m −k2/m

]

.

(4.19)

On the other hand, if the system is well described by (4.18), then the linear model will be given by

[

d2ξ1
dt2

(t)
d2ξ2
dt2 (t)

]

= B2





1
ξ1(t)
ξ2(t)





B2 =

[

3
2
√

2m
k1L − 1

2
√

2m
k1 − 1

2
√

2m
k1

3
2
√

2m
k1L − 1

2
√

2m
k1 − 1

2
√

2m
k1

]

.

(4.20)

The coefficients take this form because when the model is (4.18), only the exterior derivative, which
takes the above form, can be computed.

Regressions for models (4.17) and (4.18) are done, and then the estimated regression
coefficients are compared to (4.19) and (4.20). For the numerical experiment, the values of k1 =
0.4, k2 = 0.25, L = 1,m = 1 were chosen for model (4.17), and the values of k1 = 0.4, k2 =
10000, L = 1,m = 1 were chosen for model (4.18). The different estimators were compared using
normalized estimation error (nMSE) defined as

nMSE(B̂,B) = ‖B̂ −B‖ 2
F /‖B‖ 2

F . (4.21)

The results over 50 replications of this numerical experiment are tabulated in Table 4.1.
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Model (4.17),

with k1 = 0.4, k2 = 0.25, L = 1,m = 1

nMSE(B̂,B1) nMSE(B̂,B2)

OLS/MP 0.096 (0.011) 1.422 (0.130)
RR 0.091 (0.009) 1.286 (0.115)
EN 0.091 (0.009) 1.286 (0.115)
PLS 0.096 (0.011) 1.422 (0.130)
PCR 0.096 (0.011) 1.422 (0.130)
EDE 0.091 (0.009) 1.286 (0.115)

ALEDE 0.091 (0.009) 1.286 (0.115)
EDEP 0.091 (0.009) 1.286 (0.115)

ALEDEP 0.091 (0.009) 1.286 (0.115)

Model (4.18),

with k1 = 0.4, k2 = 10000, L = 1,m = 1

nMSE(B̂,B1) nMSE(B̂,B2)

OLS/MP 1.000 (0.000) 0.231 (0.162)
RR 1.000 (0.000) 0.118 (0.058)
EN 1.000 (0.000) 0.135 (0.074)
PLS 1.000 (0.000) 0.160 (0.167)
PCR 1.000 (0.000) 0.162 (0.166)
EDE 1.000 (0.000) 0.112 (0.060)

ALEDE 1.000 (0.000) 0.129 (0.077)
EDEP 1.000 (0.000) 0.111 (0.060)

ALEDEP 1.000 (0.000) 0.128 (0.078)

Table 4.1: Averages and standard deviations over 50 replications of normalized mean-squared
estimation error (nMSE) for models (4.17) and (4.18) when compared to the regression coefficients
B1 (4.19) and B2 (4.20).

When the model is (4.17), the predictors lie on a two-dimensional space and the computed
regression coefficients all match B1 (4.19) better than they match B2 (4.20). Because the system
is two-dimensional, each estimator has roughly the same performance.

When the model is (4.18), the predictors lie on a one-dimensional space and the computed
regression coefficients all match B2 (4.20) better than they match B1 (4.19). The best performance
is achieved by the EDE and EDEP estimators, though the other estimators work well. This is
not surprising because the predictors are one-dimensional and the new estimators can improve
estimation in such scenarios. EDEP does improve estimation very slightly in this situation, and
it was one of the few situations where thresholding the covariance matrices provided an actual
improvement in estimation error. This is likely due to the fact that there are n = 1250 data points
and so the bootstrap is more accurate in this case.
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4.4 System Identification Procedure

Our system identification procedure has two steps. The first step is a presmoothing step,
and the second step is the application of the estimators in Section 4.2 to the regression problem
defined in Section 4.1.1. Because the estimators are the focus of the next chapter, in this section
the focus will be on the first step. For simplicity only an informal sketch of the results will be given
on the presmoothing.

Because all variables are measured with noise, a situation known as errors-in-variables,
the estimates must be carefully made. This is challenging because if it is not accounted for,
then the estimates will be incorrect even in the limit of infinite data points (i.e. an uncorrected
estimator is not consistent). Deregularization procedures, total least squares, and deconvolution-
type approaches are common approaches for dealing with errors-in-variables [175, 207, 122].

The general system identification problem has special structure via time-dependence. The
data can be presmoothed in time, and then this presmoothened data can be used with the second
step of our system identification procedure. This procedure will produce consistent estimates in the
errors-in-variables scenario. Presmoothing the data in time is actually a special case of instrumental
variables [156], which is another technique used to deal with errors-in-variables.

Presmoothing in time can be implemented using filters. Electrical engineers are often
partial to FIR and IIR filters [161], particularly the Savitsky-Golay filter [174] or a general low-pass
filter. These filters can have poor transient (boundary) behavior, and local polynomial regression
[169] has better transient behavior. The use of Kalman filters [124] is not possible, because the
system dynamics are not known.

My position on the use of the various filters is as follows: When the identification needs to
be real-time, the use of FIR or IIR filters is recommended because of the computational simplicity
afforded by the FFT algorithm. When the identification is done offline, local polynomial regression
is preferred for its better transient behavior.

The local polynomial regression procedure [169] can be used on the data (x[t, e], u[t, e]) to
produce presmoothened data (x̂e(t), ûe(t)). This procedure fits a polynomial to local windows of
data and uses the fitted polynomial to estimate the trajectory values, input values, and the time-
derivative of the trajectory. There is choice in which order of polynomial r to choose: It should be
neither be too large, to prevent over fitting, nor too low, to prevent under fitting. Choosing orders
r = 2 or r = 3 (i.e. quadratic or cubic) works well in practice.

The statistical justification for presmoothing the data is to deal with errors-in-variables,
and it is actually a special case of using time t as an instrumental variable. To intuitively understand
why leads to consistency, note that under regularity conditions and fixed p, [169] it uniformly holds
that:

‖x̂e(t) − xe(t)‖2
2 = Op(n

−(2r+2)/(2r+3)) (4.22)

‖ûe(t) − ue(t)‖2
2 = Op(n

−(2r+2)/(2r+3)) (4.23)

‖ˆ̇xe(t) − ẋe(t)‖2
2 = Op(n

−(2r+2)/(2r+5)) (4.24)

Applying Slutsky’s theorem [34],

‖X ′WX − X̂ ′Ŵ X̂‖2
2 = Op(n

−(2r+2)/(2r+3)) (4.25)

‖X ′WY − X̂ ′Ŵ Ŷ ‖2
2 = Op(n

−(2r+2)/(2r+5)). (4.26)
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Note that β̃NEDE, which are the estimated coefficients of the NEDE estimator using the noisy data,
has an explicit form

β̃NEDE = (X̂ ′Ŵ X̂ + λN̂N̂ ′)−1X̂ ′Ŵ Ŷ , (4.27)

and let β̂NEDE be the estimator which uses the non-noisy values X, W , and Y . Another application
of Slutsky’s Theorem gives

‖β̂NEDE − β̃NEDE‖2 = Op(n
−(2r+2)/(2r+5)). (4.28)

Using the approach and results in [146, 222], it can be shown that that

‖β̂NEDE − β̂NALEDE‖2 = Op(n
−1/(d+4)) (4.29)

which implies that

‖β̂NEDE − β‖2 = Op(n
−(2r+2)/(2r+5) + n−1/(d+4)) = Op(n

−1/(d+4)) (4.30)

‖β̂NALEDE − β‖2 = Op(n
−(2r+2)/(2r+5) + n−1/(d+4)) = Op(n

−1/(d+4)). (4.31)

This result shows that presmoothing and then using the NEDE or NALEDE estimators leads to
consistent estimates of the parameters. It also shows that the asymptotic rate of convergence is
unchanged by having to first presmooth the data. Of course, the finite sample behavior will have
increased bias and variance when compared to estimates without noisy measurements.

4.5 Applications to Engineering Systems

The interpretation of the regression coefficients as an exterior derivative is important, and
it is common source of confusion. The PLS and PCR techniques also compute the exterior derivative
of the function, but the regression coefficients are often interpreted as a gradient or a Jacobian. The
distinction is important, because the exterior derivative contains derivative information in only the
directions of the tangent space of the manifold. If the true function exists on more than just the
manifold formed by the predictorsX (this case can occur if we do not have sufficient measurements),
then the regression coefficients do not contain information about any directions not spanned by the
tangent space. This also explains why the rate of convergence for the estimators depends on the
dimension of the manifold on which the predictors lie.

The statistical system identification procedure developed in this chapter can be used
to identify engineering systems (in addition to biological systems), and the statistical estimators
developed in Chapter 5 can identify more accurate models than possible with existing estimators.
The mass-spring system provided in this chapter is an example of this. The benefit of this example
is that it is a case in which the manifold structure comes about from real physical properties of
the system, and so the manifold structure can be intuitively visualized. A second example which is
provided in Appendix B uses real data taken from a quadrotor helicopter [106, 107]. This example
suggests that our tools can identify better models of real engineering systems.

Because the identified system contains exterior derivative information and not gradient
information, the control engineer must be careful in designing and implementing a controller. This
approach and interpretation provides a link between the system identification and geometric control
[170] based on either differential geometry or exterior differential systems. The interplay between
these two areas is an interesting future direction of this work.
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Chapter 5

Regression on Manifolds: Estimation
of the Exterior Derivative

Lasso-type regularization [199, 120, 66, 222] and the Dantzig selector [42] are popular
techniques for variable selection which have gained favor over more classical techniques based on
Akaike or Bayesian Information Criterion or Mallowes-Cp. However, it is well-known that lasso-
type regularization and the Dantzig selector have trouble handling collinearity. This prompted
work on extensions [223], though further improvements are possible.

Collinearity is equivalent to having predictors which lie on lower-dimensional manifolds,
and it suggests that manifold learning may be used to regularize ill-posed regression problems.
This geometric insight has not been fully understood and exploited, though several techniques
[120, 223, 28, 33] have explored this area. It is not strictly necessary to learn the manifold for
prediction [33], but it has been shown that doing so can improve estimation in a min-max sense
[154].

This chapter considers variable selection and coefficient estimation when the predictors
lie on a manifold whose dimension is lower than that of the ambient space [14]. The focus is on
the case where this manifold is nonlinear. Handling a global, linear manifold is a simple extension,
and this extension is briefly discussed. Predicting function values on a nonlinear manifold was first
studied in [33], but the authors did not study estimation of derivatives. The discussion does not
consider global estimation and variable selection on nonlinear manifolds because [86] showed that
learning the manifold globally is either poorly defined or computationally expensive.

Collinearities are interpreted in the language of manifolds, and this provides the two
messages of this chapter. This interpretation suggests a new regularization for regression in the
presence of collinearities or near-collinearities. This interpretation also gives a novel interpretation
of regression coefficients when there is significant collinearity of the predictors.

On a statistical level, the idea is to learn the manifold formed by the predictors and
then use this to regularize the regression problem. This regularization is derived from concepts in
manifold geometry on the exterior derivative [148, 129]. The main idea is to learn the manifold
either locally (in the case of a local, nonlinear manifold) or globally (in the case of a global, linear
manifold). The regression is then posed as a least-squares problem with an additional term which
penalizes for the regression vector lying in directions perpendicular to the manifold.

This manifold interpretation provides a new interpretation of the regression coefficients.
The gradient describes how the function changes as each predictor is changed independently of
other predictors, but this is impossible when there is collinearity of the predictors: The gradient
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does not exist [189]. The exterior derivative of a function [148, 129] tells how the function value
changes as a predictor and its collinear terms are simultaneously changed, and it has applications
in control engineering [170], physics [148], and mathematics [189]. The regression coefficients in the
presence of collinearities are estimates of the exterior derivative of the function, and this concept is
particularly useful in high-dimensional system identification for biological and control engineering
systems [12, 17]. This interpretation is discussed in more detail in Chapter 4.

The exterior derivative interpretation is important because it says that the regression
coefficients only give derivative information in directions parallel to the manifold and give no
derivative information in directions perpendicular to the manifold. If regression coefficients are
computed for only the directions parallel to the manifold, then the regression coefficients are unique
and they are uniquely given by the exterior derivative.

Similar interpretations are found in the literature [144, 73, 77, 120, 218, 78], but the
interpretation give here is novel because of two main reasons. This is the first time the geometry
has been interpreted in the manifold context, and this is important for many application domains.
This interpretation makes it easy to show existing regularization techniques are really estimates of
the exterior derivative.

This has important implications for the interpretation of estimates calculated by existing
techniques. In this chapter, a link is established between the new estimators presented here and to
both principal components regression (PCR) [144, 73] and ridge regression (RR) [105, 120]. Links
between PCR, RR, and other regularization techniques can be shown [104, 87, 98, 77].

Past techniques have recognized the importance of geometric structure in doing regres-
sion. Ordinary least squares (OLS) performs under collinearity of predictors, leading to the de-
velopment of more tools. RR [105, 120] provides shrinkage of the OLS estimator, and elastic net
(EN) [223] combines RR with lasso-type regularization. The Moore-Penrose pseudoinverse (MP)
[120] explicitly considers the manifold, but it is known to be highly discontinuous in the presence
of near-collinearity caused by errors-in-variables. Though, MP works well in the case of a singular
design matrix because the null-space of the covariance matrix is exactly known in that particular
case. PCR [144, 73] and partial least squares (PLS) [213, 73, 6] are other popular approaches which
explicitly consider geometric structure.

Existing techniques assume a global, linear manifold, but they admit simple extensions for
local, nonlinear manifolds. The regression can be posed as a weighted, linear regression problem in
which the weights are chosen to localize the problem [169]. Variable selection in the nonlinear func-
tion context was studied by RODEO [126], but this tool requires a heuristic form of regularization
which does not explicitly consider the manifold.

Producing sparse estimates—which can simultaneously improve estimation and do vari-
able selection—is difficult when the predictors lie on a manifold. Lasso-type regularization, the
Dantzig selector, and the RODEO perform unsatisfactorily in such situations. The EN produces
sparse estimates, but it does not explicitly consider manifold structure; however, EN does provide
shrinkage which is a geometric concept.

The estimators presented must learn the manifold in order to regularize the regression. As
part of the manifold learning, it is important to estimate the dimension of the manifold using either
dimensionality estimators [48, 131, 97] or resampling-based approaches. Though cross-validation
tends to perform poorly when used with PCR [123, 152], numerical examples in Section 5.6 show
that bootstrapping works well with the estimators presented in this chapter. Also, it is worth
noting that these estimators only work for manifolds with integer dimensions.

Learning a local, nonlinear manifold differs from learning a global, linear manifold. In the
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local case, kernels localize the estimators which (a) learn the manifold and (b) do the nonparametric
regression. For simplicity, the same bandwidth is used for both; though, separate bandwidths could
be used. The linear case has faster asymptotic convergence because no localization is done. The
linear case considered has errors-in-variables where the noise variance is identifiable [123, 114], and
this distinguishes the setup from standard ones [199, 120, 66, 223, 222].

5.1 Problem Setup

Consider prediction and coefficient estimation of a function which lies on a local, nonlinear
manifold. For local regression, proving results on the pointwise-convergence of the new estimators
only requires assumptions which hold locally. The number of predictors is kept fixed, and the
the dimension of the manifold can vary at different points in the predictor space. In this setup,
estimation cannot be done at the points where the manifold is discontinuous.

Suppose that derivative information of the function is to be estimated about the point
X0 ∈ Rp, where there are p predictors. The point X0 is the choice of the user, and varying this
allows computing the derivative information at different points. Because the estimation is local,
it is useful to select small portions of the predictor-space. A ball of radius R centered at X in
p-dimensions is defined using the notation: Bp

x,R = {v ∈ Rp : ‖v − x‖ 2
2 < R}1.

Assume that the predictors form a d-dimensional manifold M in a small region surround-
ing X0, and there is a function which lies on this manifold f(·) : M → R. Note that d ≤ p, and
that d is in general a function of X0; however, implicit in these assumptions is that the manifold
M is continuous within the ball. The manifold can be formally defined at point X0 as the image
of a local chart:

M = {φ(u) ∈ Bp
x0,µ ⊂ Rp : u ∈ Bd

0,r ⊂ Rd}, (5.1)

for small µ, r > 0. An example of this setup for p = 2 and d = 1 can be seen in Figure 4.1.
There are n measurements of the predictors Xi ∈ Rp, for i = {1, . . . , n}, where the Xi

are independent and identically distributed. There are also n noisy measurements of the function
Yi = f(Xi) + εi, where the εi are independent and identically distributed with E(εi) = 0 and
Var(εi) = σ2. Let κ,M > 0 be finite constants, and assume the following:

1. The kernel function K(·), which is used to localize the new estimators by selecting points
within a small region of predictor-space, is three-times differentiable and radially symmetric.
These imply that K(·) and K ′′(·) are even functions, while K ′(·) is an odd function.

2. The bandwidth h is the radius of predictor points about X0 which are used by the new
estimators, and it has the following asymptotic rate: h = κn−1/(d+4).

3. The kernel K(·) either has exponential tails or a finite support [33]. Mathematically speaking,

E

[

Kγ((X − x)/h)w(X)1(X ∈ (Bp
x,h1−ε)

c)
]

= o(hd+4),

for γ ∈ {1, 2}, 0 < ε < 1, and |w(x)| ≤M(1 + |x|2).

4. The local chart φ(·) used to define the manifold in (5.1) is invertible and three-times differen-
tiable within its domain. The manifold M is a differentiable manifold, and the function f(·)
is three-times differentiable: ‖∂i∂j∂k(f ◦ φ)‖∞ ≤M .

1In this notation, subscripts are denoted in lower case. For instance, the ball surrounding the point X0 is denoted
in subscripts with the lower case x0.
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5. The probability density cannot be defined in the ambient space because the Lebesgue mea-
sure of a manifold is generally zero. The probability density is defined with respect to a
d-dimensional measure by inducing the density with the map φ(·) [33]:

P(X ∈ S) = Q(Z ∈ φ−1(S)),

where S ⊆ Rp. The density Q(·) is denoted by F (z), and assume that it is three-times
differentiable and strictly positive at (z = 0) ∈ φ−1(X0).

6. The Tikhonov-type regularization parameter λn is non-decreasing and satisfies the following
rates: λn/nh

d+2 → ∞ and hλn/nh
d+2 → 0. The lasso-type regularization parameter µn is

non-increasing and satisfies the following rates: µn(nhd+2)−1/2 → 0 and µn(nhd+2)(γ−1)/2 →
∞.

The choice of the local chart φ(·) is not unique. Suppose a different local chart ψ(·) is
chosen. Fortunately, it can be shown that the results are invariant under the change of coordinates
ψ−1 ◦ φ as long as the measure Q(·) is defined to follow suitable compatibility conditions under
arbitrary, smooth coordinate changes. This is important because it says that the results are based
on the underlying geometry of the problem.

5.2 Change in Rank of Local Covariance Estimates

Kernels, bandwidth matrices, and weight matrices are used to localize the regression
problem. Define a scaled kernel Kh(U) = h−pK(U/h), where h is a bandwidth. Then, the weight
matrix centered at X0 with bandwidth h is given by

Wx0
= diag(Kh(X1 −X0), . . . ,Kh(Xn −X0)),

and the augmented bandwidth matrix is given by H = H1/2H1/2, where

H1/2 =
√
nhd

[

1 0
0 hIp×p

]

.

.
Defining the augmented data matrix as

Xx0
=







1 (X1 −X0)
′

...
...

1 (Xn −X0)
′






, (5.2)

then the weighted Gram matrix of Xx0
is

Ĉn ,

[

Ĉ 11
n Ĉ 12

n

Ĉ 21
n Ĉ 22

n

]

= hp ·H−1/2X ′
x0
Wx0

Xx0
H−1/2. (5.3)

A formal statement is given in the appendix, but the weighted Gram matrix (5.3) converges in
probability to the following population parameters:

C11 = F (0)

∫

Rd

K(duφ · u)du

C21 = C12′ = 0

C22 = F (0)duφ ·
[∫

Rd

K(duφ(0) · u)uu′du
]

· duφ
′.

(5.4)
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Expanding the Ĉ 22
n term from the weighted Gram matrix (5.3) into

Ĉ 22
n =

1

nhd+2−p

n
∑

i=1

Kh(Xi −X0)(Xi −X0)(Xi −X0)
′, (5.5)

it becomes apparent that Ĉ 22
n can be interpreted as a local covariance matrix. The localization

associated with the kernel adds a bias, and this causes problems when doing regression. The
Ĉ 11

n term does not cause problems because it is akin to the denominator of the Nadaraya-Watson
estimator [68] which does not need regularization.

The bias of the local covariance estimate Ĉ 22
n causes problems in doing regression, because

the bias can cause the rank of Ĉ 22
n to be different than the rank of C 22

n . The change in rank found
in the general case of the local, nonlinear manifold causes problems with MP which is discontinuous
when the covariance matrix changes rank [3]. In the special case of a global, linear manifold, a
similar change in rank can happen because of errors-in-variables. It is worth noting that MP works
well in the case of a singular design matrix.

5.3 Manifold Regularization

To compensate for this change in rank, a Tikhonov-type regularization similar to RR and
EN can be used. The distinguishing feature of the new estimators is the particular form of the
regularizing matrix used. The approach is to estimate the tangent plane at X0 of the manifold
M and then constrain the regression coefficients to lie close to the principal components of the
manifold. The idea comes from the intuition on exterior derivatives that was discussed in Chapter
4. An advantage of this regularization is that it is easy to apply lasso-type regularization, and this
combination of two types of regularization is similar to EN.

To constrain the regression coefficients to lie close to the manifold, the problem can be
posed as a weighted least-squares problem with Tikhonov-type regularization:

β̂ = arg min ‖W (Y −Xβ)‖ 2
2 + λ‖Πβ‖ 2

2 . (5.6)

The matrix Π is a projection matrix chosen to penalize β for lying off of the manifold. Contrast
this to RR and EN which choose Π to be the identity matrix. Thus, RR and EN do not fully take
the manifold structure of the problem into consideration.

Stated in another way, Π is a projection matrix which is chosen to penalize the components
of β which are perpendicular to the manifold. The cost function being minimized has the term
‖Πβ‖ 2

2 , and this term is large if β has components perpendicular to the manifold. Components of
β parallel to the manifold are not penalized because the projection onto these directions is zero.

Since the manifold is unknown a priori, it must be learned from the sample local covariance
matrix Ĉ 22

n . This can be done by looking at the principal components of Ĉ 22
n , and so the new

estimators are very closely related to PCR. Consider an eigenvalue decomposition of Ĉ 22
n :

Ĉ 22
n =

[

ÛR ÛN
]

diag(λ1, . . . , λp)
[

ÛR ÛN
]′
, (5.7)

where ÛR ∈ Rp×d, ÛN ∈ Rp×(p−d), and λ1 ≥ λ2 ≥ . . . ≥ λp. Note that the eigenvalue decomposition
always exists because Ĉ 22

n is symmetric. The estimate of the manifold is given by the d most
relevant principal components, and the remaining principal components are perpendicular to the
estimated manifold.
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Because the projection matrix Π should project β onto the directions perpendicular to
the estimated manifold, define the following projection matrices

Π̂ , ÛN ÛN ′

P̂ , diag(0, Π̂)
(5.8)

The choice of d is a tunable parameter that is similar to the choice in PCR. These matrices act as
a regularizer because d can always be chosen to ensure that rank(Ĉ 22

n + λΠ̂n) = p. The following
theorem regarding the full regularizing matrix P̂ concerns the regularization in rank:

Theorem 5.3.1 (Lemma A.0.2, Part (d)). Under the assumptions given in Section 5.1, the fol-
lowing holds with probability one:

rank
(

Ĉn + λnP̂n/nh
d+2
)

= p+ 1. (5.9)

The new estimators can perform better than PCR because of a subtle difference. PCR
requires that the estimate lies on exactly the first d most relevant principal components; however,
the new estimators only penalize for deviation from the d most relevant principal components. This
is advantageous because in practice d is not known exactly and because the principal components
used are estimates of the true principal components. Thus, this regularization is more robust to
errors in the estimates of the principal components. Also, the new regularization easily permits the
addition of lasso-type regularization to potentially improve the estimation. PCR cannot be easily
extended to have lasso-type regularization.

Denote the function value at X0 as f
∣

∣

x0
, and denote the exterior derivative of f(·) at X0

as dxf
∣

∣

x0
. Then, the true regression coefficients are denoted by the vector

β′ =
[

f
∣

∣

x0
dxf

∣

∣

x0

]

. (5.10)

The nonparametric exterior derivative estimator (NEDE) is given by

β̂ = arg min
β̃

{

hp
∥

∥

∥W 1/2
x0

(Y −Xx0
β̃)
∥

∥

∥

2

2
+ λn

∥

∥

∥P̂n · β̃
∥

∥

∥

2

2

}

, (5.11)

where P̂n is defined using (5.8) with Ĉn. Similarly, the nonparametric adaptive lasso exterior
derivative estimator (NALEDE) is

β̂ = arg min
β̃

{

hp
∥

∥

∥W 1/2
x0

(Y −Xx0
β̃)
∥

∥

∥

2

2
+ λn

∥

∥

∥P̂n · β̃
∥

∥

∥

2

2
+ µn

p
∑

j=1

1

ŵ γ
j

∣

∣

∣β̃j

∣

∣

∣

}

, (5.12)

where P̂n is define in (5.8) using Ĉn, ŵ is the solution to (5.11), and γ > 0.
These estimators have nice statistical properties, as the following theorem says:

Theorem 5.3.2. If the assumptions in Section 5.1 hold, then the NEDE (5.11) and NALEDE
(5.12) estimators are consistent and asymptotically normal:

H1/2(β̂ − β)
d−→ C†N (B′, σ2V ),

where B and V are respectively given in (A.3) and (A.4). Furthermore, we asymptotically have
that β̂′ ∈ R × T ∗

PM. The NALEDE (5.12) estimator has the additional feature that

P(sign(β̂) = sign(β)) → 1.
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Note that the asymptotic normality is biased because of the bias typical in nonparametric
regression. This bias is seen in both the NEDE (5.11) and NALEDE (5.12) estimators, but exam-
ining B one sees that the bias only exists for the function estimate f̂x0

and not for the exterior

derivative estimate ˆdxf |x0
. This bias occurs because h is chosen to converge at the optimal rate.

Choosing h to converge at a faster rate would lead to no asymptotic bias, but the estimates would
converge at a slower rate.

It is worth noting that the rate of convergence in Theorem 5.3.2 has an exponential
dependence on the dimension of the manifold d, and these particular rates are due to the assumption
of the existence of three derivatives. As is common with local regression, it is possible to improve the
rate of convergence by using local polynomial regression which assumes the existence of higher-order
derivatives [169, 33]. However, the general form of local polynomial regression on manifolds would
require the choice of a particular chart φ(·) and domain U . Local linear regression on manifolds is
unique in that one does not have to pick a chart and domain.

As a last note, recall that the rate of convergence in Theorem 5.3.2 depends on the
dimension of the manifold d and does not depend on the dimension p of the ambient space. One
might mistakenly think that this means that the estimator converges in the “large p, small n”
scenario, but without additional assumptions these results are only valid for when p grows more
slowly than n. Analogous to other “large p, small n” settings, faster rates of convergence can be
obtained by assuming and exploiting sparsity, which is the subject of the next section.

5.4 Large p, Small n

The key difference in the ‘large p, small n” setting is the need to regularize the covariance
matrix. The NEDE (5.11) and NALEDE (5.12) estimators use the eigenvectors of the sample
covariance matrix, and it is known [128, 32] that the sample covariance matrix is poorly behaved
in the “large p, small n” setting. To ensure the sample eigenvectors are consistent estimates, some
form of covariance regularization [128, 224, 32] must be used.

The new estimators use the regularization technique used in [32] for ease of analysis and
because other regularization techniques [128, 224] do not work when the true covariance matrix is
singular. The scheme in [32] works by thresholding the covariance matrix, which leads to consistent
estimates as long as the threshold is correctly chosen. Define the thresholding operator as

Tt(m) = m1(|m| > t),

and by abuse of notation Tt(M) is Tt(·) applied to each element of M .
The setup and assumptions are nearly identical to those of the fixed p case described in

Section 5.1. The primary differences are that (a) d, p, n increase at different rates towards infinity,
and (b) there is some amount of sparsity in the manifold and in the function. The population
parameters Cn, analogous to (5.4), are functions of n and are defined in nearly the same manner,
except with [C 21

n ]k = F (0)/2
∫

Rd K(duφ · u)∂ijφ
kuiujdu. Their estimates are now defined

Ĉn = H−1X ′
x0
Wx0

Xx0
;

compare this to (5.3). Just as Cn can be interpreted as a local covariance matrix, define a local
cross-covariance matrix:

Rn =

[

R 1
n

R 2
n

]

=

[

C 11
n · f |x0

C 21
n · f |x0

+ C 22
n · dxf |x0

]

,
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and the estimates are given by
R̂n = H−1/2X ′

x0
Wx0

Y.

For the sake of brevity, the other the differences from Section 5.1 are summarized. The following
things are different:

1. The manifold Mn, local chart φn(·), manifold dimension dn, number of predictors pn, and
density function Fn(·) are all functions of n. The subscript n is dropped when it is clear from
the context. These objects are defined in the same manner as in Section 5.1, and assume that
the density F (·) is Lipschitz continuous.

2. The asymptotic rates for d, p, n are given by d = o(log n),

h = o((c4nn/ log p)−1/(4+d))

cn

√

log p

nhd
= o(1);

where cn is a measure of sparsity that describes the number of non-zero entries in covariance
matrices, exterior derivative, etc.

3. The kernel K(·) has finite support and is Lipschitz continuous, which implies that

K

(

φ(hu) − φ(0)

h

)

= K(duφ · u) = 0,

for u /∈ Bdn
0,Ω. Contrast this to the second assumption in Section 5.1.

4. The local chart φn(·), function fn(·), and local (cross-)covariance matrices Cn, Rn satisfy the
following sparsity conditions:

p
∑

k=1

1(Qk 6= 0) ≤ cn and
∣

∣

∣
Qk
∣

∣

∣
≤M, (5.13)

for (derivatives of the local chart; the index k denotes the k-th component of the vector-valued
φ) Qk = ∂iφ

k, ∂ijφ
k, ∂ijmφ

k, ∂ijmnφ
k; for (derivatives of the function) Qk = [dxf ]k, ∂ik(f ◦

φ), ∂ijk(f ◦ φ); and for (local covariance matrices) Qk = [Cn]ik, [Rn]ik.

5. The smallest, nonzero singular value of the local covariance matrix is bounded. That is, there
exists ε > 0 such that

inf
n>0

(

inf
σ(·)>0

σ(Cn)

)

> ε. (5.14)

This condition ensures that the regularized inverse of the local covariance matrix is well
defined in the limit; otherwise there can be a situation with ever-decreasing non-zero singular
values.
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6. The Tikhonov-type regularization parameter λn and the lasso-type regularization parameter
µn have the following asymptotic rates:

λn = Op

(

√
cn

(

nhd

log p

)1/4
)

µnc
3/2

n

(

log p

nhd

)1/4

= o(1)

µn

(

c 3/2
n

(

log p

nhd

)1/4
)1−γ

→ ∞.

7. The threshold which regularizes the local sample covariance matrix is given by

tn = K

√

log p

n
, (5.15)

where log p
n = o(1). This regularization will make the regression estimator consistent in the

“large p, small n” case.

5.4.1 Manifold Regularization

The idea is to regularize the local sample covariance matrix by thresholding. If the true,
local covariance matrix is sparse, this regularization will give consistent estimates. This is formalized
by the following theorem:

Theorem 5.4.1. If the assumptions given in Section 5.4 are satisfied, then

‖Tt(Ĉn) − Cn‖ = Op

(

cn

√

log p/nhd

)

‖Tt(R̂n) −Rn‖ = Op

(

cn

√

log p/nhd

)

.

Given consistent estimates of the true, local covariance matrix; consistent estimators can
be obtained by applying the manifold regularization scheme described in Section 5.3. The non-
parametric exterior derivative estimator for the “large p, small n” case (NEDEP) is given by

β̂n = arg min
β̃

∥

∥

∥
(Tt(Ĉn) + λnP̂n)β̃ − Tt(R̂n)

∥

∥

∥

2

2
, (5.16)

where P̂n is as defined in (5.8) except using Tt(Ĉ
22

n ). The nonparametric adaptive lasso exterior
derivative estimator for the “large p, small n” case (NALEDEP) is given by

β̂ = arg min
β̃

∥

∥

∥(Tt(Ĉn) + λnP̂n)β̃ − Tt(R̂n)
∥

∥

∥

2

2
+ µn

p
∑

j=1

1

ŵ γ
j

∣

∣

∣β̃j

∣

∣

∣, (5.17)

where P̂n is as defined in (5.8) except using Tt(Ĉ
22

n ) and ŵ is the solution to (5.16). These
estimators have nice statistical properties.
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Theorem 5.4.2. If the assumptions given in Section 5.4 are satisfied, then the NALEDE (5.16)
and NALEDEP (5.17) estimators are consistent:

‖β̂ − β‖2 = Op

(

c 3/2
n

(

log p

nhd

)1/4
)

.

The NALEDEP (5.17) estimator is also sign consistent:

P(sign(β̂) = sign(β)) → 1.

A proof of this theorem is not given, because it uses essentially the same argument as
Theorem 5.4.3. One minor difference is that the proof uses Theorem 5.4.1 instead of Theorem 1
from [32].

5.4.2 Linear Case

The new estimators admit simple extensions in the special case where predictors lie on a
global, linear manifold and the response variable is a linear function of the predictors. Specifically
considering the errors-in-variables situation with manifold structure is necessary in order to present
formal results, because: In principle, the new estimators provide no improvements in the linear
manifold case over existing methods when there are no errors-in-variables. In practice, the new
estimators sometimes provide an improvement in this case. Furthermore, they provide another
solution to the identifiability problem [78]; the exterior derivative is the unique set of regression
coefficients because the predictors are only sampled in directions parallel to the manifold, and there
is no derivative information about the response variable in directions perpendicular to the manifold.

Suppose there are n data points and p predictors, and the dimension of the global, linear
manifold is d. Assume that d, n, p increase to infinity, and leaving d fixed is a special case of the
results. Consider a linear model η = Ξβ, where η ∈ Rn×1 is a vector of function values, Ξ ∈ Rn×p

is a matrix of predictors, and β ∈ Rp is a vector.
The Ξ are distributed according to the covariance matrix Σξ, which is also a singular

design matrix in this case. The exterior derivative of this linear function is given by β = PΣξ
β,

where PΣξ
is the projection matrix that projects onto the range space of Σξ. We make noisy

measurements of η and Ξ:

X = Ξ + ν

Y = η + ε.

The noise ν and ε are independent of each other, and each component of ν is independent and
identically distributed with mean 0 and variance σ2

ν . Similarly, each component of ε is independent
and identically distributed with mean 0 and variance σ2. In this setup, the variance σ2

ν is identifiable
[123, 114], and an alternative that works well in practice for low noise situations is to set this
quantity to zero.

The setup of errors-in-variables differs from that of existing tools [42, 146], but it is
important because in practice, many of the near-collinearities might be true collinearities that have
been perturbed by noise. Several formulations explicitly introduce noise into the model [123, 152,
43, 67, 114]. The setting of [123, 114] is used here, because the noise in the predictors is identifiable
in this situation.
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The exterior derivative estimator for the “large p, small n” case (EDEP) is given by

β̂ = arg min
β̃

∥

∥

∥
(Tt(X

′X/n) − σ2
νI + λnP̂n)β̃ − Tt(X

′Y/n)
∥

∥

∥

2

2
, (5.18)

where P̂n is as defined in (5.8) except applied to Ĉ 22
n = Tt(X

′X/n) − σ2
νI. This is essentially the

NEDEP estimator, except the weighting matrix is taken to be the identity matrix and there are
additional terms to deal with errors-in-variables. An adaptive lasso version of this estimator can
also be defined. The adaptive lasso exterior derivative estimator for the “large p, small n” case
(ALEDEP) is given by

β̂ = arg min
β̃

∥

∥

∥
(Tt(X

′X/n) − σ2
νI + λnP̂n)β̃ − Tt(X

′Y/n)
∥

∥

∥

2

2
+ µn

p
∑

j=1

1

ŵ γ
j

∣

∣

∣
β̃j

∣

∣

∣
, (5.19)

where P̂n is as defined in (5.8) except applied to Ĉ 22
n = Tt(X

′X) − σ2
νI and ŵ is the solution to

(5.18). The EDE and ALEDE estimators can also be analgously defined, and they are the EDEP
and ALEDEP estimators without any thresholding.

The technical conditions made are essentially the same as those for the case of the local,
nonlinear manifold. The primary difference is that the conditions in 5.4 hold globally, instead of
locally. This also means that kernels are not used to localize the estimators, and the W matrix
in the estimators is simply the identity matrix. If the theoretical rates for the regularization and
threshold parameters are compatibility redefined, then it can be shown that these estimators have
nice statistical properties:

Theorem 5.4.3. If the assumptions in Sections 5.4 and 5.4.2 hold, then the EDEP (5.18) and
ALEDEP (5.19) estimators are consistent. They asymptotically converge at the following rate:

‖β̂ − β‖2 = Op

(

c 3/2
n

(

log p

n

)1/4
)

.

The ALEDE (5.19) estimator is also sign consistent:

P(sign(β̂) = sign(β)) → 1. (5.20)

This theoretical rate of convergence is slower than that of other techniques [42, 146]
because techniques for local estimation have been applied to global estimation, and the setup of
the global case has not been fully utilized. However, the rate of convergence in the global case is
faster than that of the local case. Furthermore, the model here has errors-in-variables, while the
model used in other techniques [42, 146] assumes that the predictors are measured with no noise.
Applying the various techniques to both real and simulated data shows that the new estimators
perform comparably to or better than existing techniques. It is not clear if the rates of convergence
for the existing techniques [42, 146] would be slower if there were errors-in-variables, and this would
require additional analysis.

5.5 Estimation with Data

Applying the new estimators requires careful usage in practice. The NEDE estimator re-
quires choosing two tuning parameters, while the NALEDE and NEDEP estimators require choosing
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three; the NALEDEP estimator requires even more: four. The extra tuning parameters—in com-
parison to existing techniques like MP or RR—make these methods prone to over-fitting. It is cru-
cial to select the parameters using methods, such as cross-validation or bootstrapping, that protect
against over fitting. It is also important to select from a small number of different parameter-values
to protect against over fitting caused by issues related to multiple-hypothesis testing [153, 166, 165].

Bootstrapping is a good choice for parameter selection with these estimators, because
discontinuity with respect to the dimension d causes some methods to be inconsistent with respect
to model-selection [35, 177, 178, 179]. Additionally, we suggest selecting parameters in a sequential
manner; this is to reduce over fitting caused by testing too many models [153, 166, 165]. Another
benefit of this approach is that it simplifies the parameter selection into a set of one-dimensional
parameter searches—greatly reducing the computational complexity of the estimators. For instance,
first select the Tikhonov-regularization parameter λ for RR. Using the same λ value, pick the
dimension d for the NEDE estimator. The prior values of λ and d are used to pick the lasso-
regularization parameter µ for the NALEDE estimator.

MATLAB implementations of both related estimators and the new estimators can be
found online2. The lasso-type regressions were computed using the coordinate descent algorithm
[74, 214], and the “improved kernel PLS by Dayal” code given in [6] was used to do the PLS
regression. The increased computational burden of the new estimators, as compared to existing
estimators, is reasonable because of: improved estimation in some cases, easy parallelization, and
computational times of a few seconds to several minutes on a general desktop for moderate values
of p.

5.6 Numerical Examples

The first two examples use simulated data, and the third example uses real data. The
examples with simulated data study the estimation accuracy of various estimators as the amount
of noise and number of data points vary. The third example uses a data set with pollution data
and mortality rates [145] accessed from StatLib3. In the example, a regression is used to explain
the mortality rates in terms of the pollution data.

For examples involving linear manifolds and functions, the new estimators are compared
with popular methods. The exterior derivative is locally defined, but in the linear case it is identical
at every point—allowing the regression to be done globally. This is in contrast to the example with
a nonlinear manifold and function where a point is picked at which to do the regression. Though
MP, PLS, PCR, RR, and EN are typically thought of as global methods, these estimators can be
used for local, nonparametric estimation by posing the problem as a weighted, linear regression
which can then be solved using either the new or existing estimators. As a note, the MP and OLS
estimators are equivalent in the examples considered.

Some of the examples involve errors-in-variables, and this suggests that using an estimator
that explicitly takes this structure into account. Total Least Squares (TLS) [207] does exactly this,
but it performed poorly with both the simulated data and experimental data. This was expected
because standard TLS is known to perform poorly in the presence of collinearities [207]. TLS
performed comparably to or worse than OLS/MP, and so the results are not included.

Based on the numerical examples, it seems that the improvement in estimation error of
the new estimators is mainly due to the Tikhonov-type regularization, with lasso-type regulariza-

2http://www.eecs.berkeley.edu/~aaswani/EDE_Code.zip
3http://lib.stat.cmu.edu/
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tion providing additional benefit. Thresholding the covariance matrices did not make significant
improvements, partly because bootsrap has difficulty in picking the thresholding parameter. Im-
provements may be possible by refining the parameter selection method or by changes to the
estimator. The well-known tendency of lasso to overestimate the number of non-zero coefficients
[147] was also observed; using stability selection [147] to select the lasso parameter would likely
lead to better results.

5.6.1 Simulated Data

Data for two different models is simulated and used to compare different estimators. One
model is linear, and global estimation is done in this case. The other model is nonlinear, and hence
local estimation is done in this case. In both models, there are p predictors and the dimension of
the manifold is d = round(3

4p). The predictors ξ and response η are measured with noise:

x = ξ + N (0, σ 2
ν )

y = η + N (0, σ2).

And for notational convenience, let q = round(1
2p). Define the matrix

Fij =























0.3|i−j|, if 1 ≤ i, j ≤ d

0.3, if d+ 1 ≤ i ≤ p ∧ j = q + i− d

0.3, if d+ 1 ≤ i ≤ p ∧ j = q + i+ 1 − d

0, o.w.

The two models are given by:

1. Linear Model: The predictors are distributed ξ = N (0, FF ′), and the function is

η = f(ξ) = 1 +

q
∑

i=1
i is odd

ξi. (5.21)

If w =
[

1 0 1 . . .
]

is a vector with ones in the odd index-positions and zeros elsewhere,
then the exterior derivative of this linear function at every point on the manifold is given by
the projection of w onto the range space of the matrix F .

2. Nonlinear Model: The predictors are distributed ξ = sin (N (0, FF ′)), and the function is

η = f(ξ) = 1 +

q
∑

i=1
i is odd

sin(ξi). (5.22)

Consider local regression about the point x0 =
[

0 . . . 0
]

. If w =
[

1 0 1 . . .
]

is a vector
with ones in the odd index-positions and zeros elsewhere, then the exterior derivative of this
nonlinear function at the origin is given by the projection of w onto the range space of the
matrix F .
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Table 5.1 shows the average square-loss estimation error ‖β̂ − β‖ 2
2 for different estima-

tors using data generated by the linear model and nonlinear model given above, over different
noise variances and number of data points n. One-hundred replications—of generating data and
doing a regression—were conducted, and this helped to provide standard deviations of square-loss
estimation error to show the variability of the estimators.

One curious phenomenon observed is that the estimation error goes down in some cases
as the error variance of the predictors σ 2

ν increases. To understand why, consider the sample
covariance matrix in the linear case Ŝ = X ′X with population parameter S = FF ′ + σ 2

ν I. Heuris-
tically, the OLS estimate will tend to (FF ′ + σ 2

ν I)−1X ′Y , and the error in the predictors actually
acts as the Tikhonov-type regularization found in RR, with lower levels of noise leading to less
regularization.

The results indicate that the new estimators are not significantly more variable than
existing ones, and they perform competitively against existing estimators. Though they are closely
related to PCR, RR, and EN; the new estimators performed comparably to or better than these
estimators. PLS also did quite well, and the new estimators did better than PLS in some cases.
Increasing the noise in the predictors did not seem to significantly affect the qualitative performance
of the estimators, except for OLS as explained above.

Section 5.4.2 discussed how the convergence rate of the new linear estimators is of order
n−1/4 which is in contrast to the typical convergence rate of n−1/2 for lasso-type regression [146].
We believe that this theoretical discrepancy is because the model has errors-in-variables while the
standard model used in lasso-type regression does not [146]. These theoretical differences do not
seem significant in practice. As seen in Tables 5.1, the new estimators can be competitive with
existing lasso-type regression.

5.6.2 Pollution Data

A well-known data set [145], accessed from StatLib4, can be used to build a model to
predict age-adjusted mortality rates in different U.S. metropolitan areas based on weather, demo-
graphic, and pollution variables. The data set is interesting because it has significant collinearity in
the predictors, there are some outliers, and there is the potential to do some nonlinear transforma-
tions on the data [145, 104, 100]. The collinearity of the data suggests that there is an underlying
manifold on which the predictors lie, suggesting the possibility of better estimates by exploiting
this manifold structure.

To compare the different estimators, 100 replications of the following experiment were
conducted: The data (n = 60 data points) was split into a training set nt = 45 and validation
set nv = 15, the training set was used to calculate a model using different estimators, and then
these models were used to predict the mortality rates of the validation set. Because there is some
subjectivity in the removal of outliers and in the use of nonlinear transformations, this process
was repeated four times. The first time included all of the untransformed data, the second time
included the untransformed data with outliers removed, the third time included all of the data and
with a logarithmic transformation applied to the pollution variables, and the fourth time included
the transformed data with outliers removed.

The logarithmic transformation of the pollution variables was proposed by [145], but they
did not use it in their analysis; this transformation was used by [100] in their models. Furthermore,
[145, 100] have identified outliers. These outliers correspond to the California areas, which had

4http://lib.stat.cmu.edu/
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Linear Model: σ 2
ν = 0.01, σ2 = 1.00

σ2
ν = 0.52

n = 10 n = 100 n = 1000

OLS/MP 4.048 (2.134) 7.212 (4.255) 0.526 (0.337)
RR 2.658 (1.076) 0.408 (0.250) 0.158 (0.076)
EN 2.674 (1.138) 0.147 (0.276) 0.018 (0.009)
PLS 2.522 (0.586) 0.540 (0.254) 0.030 (0.011)
PCR 3.409 (0.892) 1.680 (0.136) 1.572 (0.047)
EDE 2.658 (1.077) 0.402 (0.227) 0.158 (0.076)

ALEDE 2.694 (1.143) 0.140 (0.250) 0.015 (0.006)

Linear Model: σ 2
ν = 0.10, σ2 = 1.00

σ2
ν = 0.52

n = 10 n = 100 n = 1000

OLS/MP 3.481 (1.436) 1.185 (0.554) 0.168 (0.054)
RR 2.641 (1.042) 0.880 (0.348) 0.252 (0.047)
EN 2.668 (1.085) 0.648 (0.530) 0.065 (0.015)
PLS 2.558 (0.617) 0.668 (0.196) 0.139 (0.057)
PCR 3.442 (1.095) 1.690 (0.177) 1.576 (0.051)
EDE 2.642 (1.043) 0.826 (0.297) 0.247 (0.047)

ALEDE 2.669 (1.086) 0.584 (0.471) 0.051 (0.014)

Nonlinear Model: σ 2
ν = 0.01

σ2
ν = 0.52

n = 20 n = 100 n = 1000

OLS/MP 885.8 (2118) 3.902 (1.976) 0.331 (0.179)
RR 2.078 (0.655) 1.197 (0.301) 0.281 (0.127)
EN 2.047 (0.685) 1.115 (0.401) 0.153 (0.087)
PLS 2.127 (0.569) 0.998 (0.281) 0.146 (0.074)
PCR 2.746 (0.398) 1.736 (0.252) 0.122 (0.043)

NEDE 2.075 (0.652) 1.146 (0.303) 0.271 (0.113)
NALEDE 2.041 (0.687) 1.047 (0.412) 0.134 (0.061)

Nonlinear Model: σ 2
ν = 0.1

σ2
ν = 0.52

n = 20 n = 100 n = 1000

OLS/MP 308.4 (935.9) 2.862 (1.449) 0.442 (0.088)
RR 2.700 (2.882) 1.643 (0.258) 0.718 (0.154)
EN 2.684 (2.876) 1.635 (0.265) 0.586 (0.229)
PLS 2.434 (0.723) 1.446 (0.433) 0.753 (0.143)
PCR 2.907 (0.372) 1.967 (0.391) 0.469 (0.262)

NEDE 2.696 (2.882) 1.590 (0.293) 0.666 (0.124)
NALEDE 2.681 (2.876) 1.579 (0.309) 0.457 (0.134)

Table 5.1: Averages and standard deviations over 100 replications of square-loss estimation error
for different estimators using data generated by the linear model and nonlinear model given in
Section 5.6.1, over different noise variances and number of data points n.
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I II III IV

OLS/MP 2491 (1451) 2192 (823.4) 2520 (1087) 1989 (788.0)
RR 1917 (675.1) 2041 (848.5) 2332 (3801) 1948 (838.1)
EN 1926 (675.5) 2041 (849.3) 2663 (2879) 1951 (840.8)
PLS 2643 (3536) 2567 (2284) 6.7e5 (2.4e5) 2475 (1340)
PCR 2374 (810.0) 2273 (807.6) 4125 (1581) 1938 (748.9)
EDE 1901 (631.5) 2029 (821.5) 2331 (3801) 1890 (800.0)

ALEDE 1907 (632.9) 2030 (823.0) 2664 (2878) 1894 (801.6)

Table 5.2: Averages and standard deviations over 100 replications of validation set prediction
error for different estimators using the pollution data [145]. I = All of the untransformed data;
II = Untransformed data with outliers removed; III = All of the data and with a logarithmic
transformation applied to pollution variables; IV = Transformed data with outliers removed.

abnormally high pollution levels in the 1960s. However, these outliers were not removed in [104];
so the resultant predictive power of models generated both with and without these outlier values
was considered.

Table 5.2 gives the prediction error of the models generated by different estimators on the
validation set. The specific quantity provided is ‖Xvβ̂−Yv‖ 2

2 /nv, where Xv, Yv are respectively the
predictors (with possibly a nonlinear transformation applied) and mortality rates of the validation
set. The results from this real data set shows that the new estimators can provide improvements
over existing tools, because they have the lowest prediction errors in various cases. The best models
are provided by removing outliers and making the nonlinear transformation of data, though the
models generated by EDE and ALEDE when no data is removed or transformed is nearly as good.

5.7 Future Directions

By interpreting collinearity as predictors on a lower-dimensional manifold, a new regular-
ization, which has connections to PCR and RR, was developed for linear regression and local linear
regression. This viewpoint also allows interpretation of the regression coefficients as estimates of
the exterior derivative. The consistency of these new estimators was proved in both the classical
case and the “large p, small n” case and this is useful from a theoretical standpoint.

Numerical examples using simulated and real data show that the new estimators can
provide improvements over existing estimators in estimation and prediction error. Specifically,
the Tikhonov-type and lasso-type regularizations provided improvements, and the thresholding
regularization did not provide major improvements. This is not to say that thresholding is not a
good regularization, because as showed: From a theoretical standpoint, thresholding does provide
consistency in the “large p, small n” situation. This leaves open the possibility of future work on
how to best select this thresholding parameter value.

There is additional future work possible on extending this new set of estimators. There
is some benefit provided by shrinkage from the Tikhonov-type regularization which is independent
of the manifold structure. Exploring more fully the relationship between manifold structure and
shrinkage will likely lead to improved estimators.
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Chapter 6

Statistical System Identification in
Drosophila embryogenesis

Inferring regulatory networks in animals is challenging because of the large number of
genes and the presence of redundant and indirect interactions. To build the highest quality models,
it will be necessary to use multiple data sets, including: gene expression, genome wide binding, and
network perturbation data. However, combining multiple data types to infer regulatory networks
is still an open problem.

An intermediate problem is to use only gene expression data to infer regulatory networks.
The relationships between the expression levels of transcription factors and target genes are used
to predict which genes are regulatory. While much work has been done in this area, it is critical
to understand the maximum amount of information that can be obtained about the network using
this strategy.

Typical approaches for inferring regulatory networks have been to assume a model for-
mulation and have then fitted the data to this formulation [25, 142]. This is the parametric
system identification of Chapters 2 and 3. Many models have been proposed, including coexpres-
sion networks [63, 194, 31], information-theoretic [40, 191, 165], regression onto dynamical systems
[59, 190, 37, 55, 160], and graphical models (including Bayesian networks) [75, 219, 215, 76, 212].

The primary differences between these models lie in the trade-off between statistical and
interpretational issues. Techniques like Bayesian networks, graphical models, and information-
theoretic models have protections against over-fitting (i.e., fitting models with many parameters to
a small amount of experimental data); however, these techniques do not provide dynamical models
which can generate new biological insights. On the other hand, techniques such as nonlinear
regression networks and regression onto dynamical systems provide more biologically interpretable
models, but sometimes suffer from inaccurate assumptions or over-fitting of the model to the data.

There is disagreement on the necessity of dynamical [59, 190, 37, 55, 160, 165, 75, 219, 215,
76, 212] as opposed to static [63, 40, 191, 194, 31, 72, 182, 79, 9] models. Dynamical models are
more philosophically pleasing because regulatory networks contain temporal characteristics: For
example, a protein binds to DNA and initiates transcription, which eventually leads to transport
of the mature mRNA to the cytoplasm. Yet the argument is often made that static models provide
a quasi-steady-state interpretation of the network that may provide a sufficient approximation.
Rigorous comparison of the two approaches is lacking.

Dynamical modeling of animal regulatory networks has a long history [204, 24, 59, 210,
190, 112, 37, 151]. It is a powerful approach in which researchers hypothesize a set of nonlinear,
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(a) (b)

Figure 6.1: (a) A three-dimensional plot of the Drosophila embryo showing the experimentally
measured pattern of eve mRNA as it appears in late stage 5. There are seven distinct stripes
located along the anterior-posterior axis of the embryo, the stripes being symmetric about the left-
right axis. (b) A two-dimensional cylindrical projection of a stage 5 Drosophila embryo provides
an easier visualization of the details of the eve mRNA patterns.

differential equations to describe the network, but it requires significant prior knowledge about the
network. If there is insufficient biological knowledge about the network, then the structure of the
equations can be incorrectly chosen. And if the model is not carefully chosen, it will have a large
number of parameters, possibly leading to weak biological effects being erroneously identified as
strong effects. Furthermore, it is sometimes shown that a wide range of different parameter values
can reproduce the biological behavior of the network, which could be taken as evidence for either
network robustness or over-fitting [210].

The purpose of this chapter is to discuss the application of local linearization system
identification described in Chapter 4 using the NEDE estimator from Chapter 5 to a network
found in Drosophila embryos [17]. The particular network which is studied here is the formation
of eve mRNA stripes during stage 5 of embryogenesis, and this work was in collaboration with
Mark Biggin and the Berkeley Drosophila Transcription Network Project (BDTNP). Their pattern
during this stage is shown in Figure 6.1. Because of the ubiquity of static models in mathematical
modeling of biology, a comparison between similar dynamical and static models is provided. The
biological insights of the local linearization modeling is also given.

6.1 Experimental Data

The BDTNP [138, 72] experimentally measured protein and mRNA concentrations in cells
of a Drosophila melanogaster embryo. The embryos are fluorescently stained, to label expression
patterns and nuclear DNA, and mounted on slides. The embryos to be imaged are visually exam-
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ined to determine their developmental stages. After staging the embryos, three-dimensional image
stacks of the embryos are taken using two-photon microscopy. The image stacks are processed
algorithmically to produce a virtual embryo [138, 72], which is essentially an average of factor
concentrations and of the Drosophila geometry at cellular resolution.

The virtual embryo contains an average number of nuclei, factor concentrations in each
cell, and embryo geometry information. The geometry data includes the location and shape of the
cells in the embryo, the neighbors of each cell, and the distance between neighbors. Each of cells
in the virtual embryo (there are E = 6078) can be thought of as a different experiment on the
regulatory network, though these are not independent experiments in an absolute sense because
neighboring cells are bathed in the same transcription factors. Different cells can be regarded as
experiments which provide information on fluctuations around locally average effects. This data
is given at six different points in time (T = 6) which correspond to six intervals during stage 5
of the Drosophila embryo development. To apply our technique to this data, we assume that the
regulatory network does not spatially vary and that any variation in the spatial patterns is due to
a difference in the species concentrations in each cell. We use the biologically accepted assumption
that the original spatial variations are caused by maternal influences [127].

6.2 Dynamical Model

The locally linear ODE system identification method described in Chapter 4 was used to
generate a model of eve mRNA pattern (Figure 6.1) formation during stage 5 of embryogenesis,
and the other states in the model were the five factors which are agreed to affect the eve pattern:
Krüppel (KR), Giant (GT), Knirps (KNI), Hunchback (HB) and Bicoid (BCD) [182, 79, 9]. The
model was computed in 7 hours, and only data from the first two time points were used to generate
the model. Denoting eve mRNA concentration as [eve], it is worth noting that the time derivative
of eve mRNA concentration does not depend on [eve]; more specifically, the local model is assumed
to be

d[eve]

dt
= a[bcdP ]

(

[bcdP ] − [bcdP ]
)

+ a[gtP ]

(

[gtP ] − [gtP ]
)

+ a[kniP ]

(

[kniP ] − [kniP ]
)

+ a[hbP ]

(

[hbP ] − [hbP ]
)

+ a[KrP ]

(

[KrP ] − [KrP ]
)

, (6.1)

where the overline notation indicates the operating point of the linearization. This model is a
set of nonparametric ordinary differential equations (ODE) which are fit using the nonparametric
exterior derivative estimator (NEDE) [12, 14]. For these reasons, we call the resulting model the
NODE (an amalgamation of NEDE and ODE) model. The NODE model specifically refers to the
collection of models given in (6.1) for operating points defined by the concentrations of factors in
each cell at each point in time.

The eve mRNA pattern generated by the model in (6.1) matches the behavior of the
experimental pattern well. The experimental and simulated eve patterns are compared in Figure
6.2a. The black lines on each of the maps in Figure 6.2a show the boundaries of the experimental
measurements of the eve mRNA stripes, and how they change location during Stage 5. The
stripes narrow in extent, and eve concentration in the stripes becomes stronger. The stripes also
shift anteriorly. The simulation matches this experimental behavior, and captures the changing
boundaries of the eve stripes particularly well.

To quantify the accuracy of the model, the simulation error is also shown in Figure 6.2a.
The model is able to accurately predict the eve pattern at time points corresponding to Stages
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5:9-25, 5:26-50, and 5:51-75. Its predictions are less accurate for Stage 5:76-100 in some regions,
especially in stripe 1. This is not unexpected because at the end of Stage 5 a new set of factors
begin to regulate eve expression [94], something which could not be learned using only data taken
from early Stage 5. If expression data from all time points is used to learn the model, the simulation
better matches the experimental data (Figure 6.3).

6.3 Comparison to Static Model

Static models are often used to model biological systems. The most common of these is
the spatial-correlation model [72, 141, 182, 79, 9], and they are often implicitly used to interpret
experiments. Mathematically speaking, a locally linear variant of the spatial-correlation model is

[eve] = a[bcdP ]

(

[bcdP ] − [bcdP ]
)

+ a[gtP ]

(

[gtP ] − [gtP ]
)

+ a[kniP ]

(

[kniP ] − [kniP ]
)

+ a[hbP ]

(

[hbP ] − [hbP ]
)

+ a[KrP ]

(

[KrP ] − [KrP ]
)

, (6.2)

and the coefficients of this model can be fit in a manner analogous to that described in Chapters
4 and 5.

There has been little work on understanding the applicability of static versus dynamic
models for specific systems. In this particular instance, this is the question of whether the spatial-
correlation model is more accurate and useful. To understand this, a spatial-correlation model was
generated using the first two time points of data; the model was then used to predict the eve pattern
at later points in time. The experimental and simulated patterns, along with simulation error, is
shown in Figure 6.2b. This model much more poorly predicts the pattern at later stages (compare
to Figure 6.2a). The dynamical ODE model predicts an eve pattern that is 22% more accurate
than the pattern predicted by the spatial-correlation model. Thus, in a direct comparison of a
static (spatial-correlation) model and a dynamical (NODE) model, the dynamic model is superior.

6.4 Factor Activity

Factor activity is a quantitative measure of the impact of a factor on the target gene
expression, and it is a particular scaling of the coefficients of the model. It takes into account the
concentration of the factors and the coefficients of (6.1), which describe the amount of influence of
the factors on the target expression. Without loss of generality, consider the equation for factor
activity of GT on the expression of eve mRNA

a[gtP ]

(

1

n

[

X ′
xWXx

]

[gtP ]

)1/2

, (6.3)

where Xx is given in (5.2).
The first term is the coefficient from (6.1), and the second term in parenthesis is a measure

of average GT concentration within cells whose factor concentrations are similar to the operating
point x0. The second term in parenthesis is a measure of average concentrations because it is a
measure of the mean difference about the baseline concentration of x0. To clarify the notation,
suppose the i-th value of the state vector x denotes: x[gtP ], which is GT concentration. Then the
term [X ′

xWXx][gtP ] denotes the i-th value along the diagonal of the matrix X ′
xWXx.
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(a) Dynamical Model (b) Static Model

Figure 6.2: Cylindrical projections of the measured pattern of eve mRNA concentrations (left
column), the NODE model simulated pattern of eve mRNA (center column), and the simulation
error (right column) at six successive time points during blastoderm stage 5 (rows). The eve mRNA
concentration values have been normalized to range from 0 to 1 and the simulation error shown is
the absolute value of the difference between experimental and simulated eve concentration in the
embryo. Plots are given for both a dynamical model (a) and a static model (b).
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Figure 6.3: A comparison is provided between the experimental eve pattern and the simulated
pattern generated by a locally linear ODE model which uses expression data from all time points
to generate the model. The labels are the same as in Figure 6.2, and the match is better than that
shown in Figure 6.2a which was generated using only the first two time points of data.
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Figure 6.4: Cylindrical projections of the correlation between each factor and the change in target
expression over time. The intensity of the factor activity values is the product of the coefficients of
the model in Equation 4 and the average, local factor concentration. The mathematical definition
of factor activity is given in Methods and Models.

The model generated by the technique in in Chapter 4 can be visualized as spatio-temporal
maps of factor activities. An example of a spatial map for Stage 5:9-25 is shown in Figure 6.4,
and it shows how the five factors (directly or indirectly) affect eve mRNA pattern formation. Blue
values correspond to predicted repression (i.e., an anticorrelation between factor expression and
the rate of change of target expression) and yellow/red values correspond to predicted activation
(i.e., a positive correlation between factor and the change in target).

6.5 Concentration-Dependent Effects

It is known that individual stripes are often controlled via a single cis-regulatory module
(CRM). Furthermore, current computational models generally assume that a given factor acts only
as an activator or a repressor on a given CRM [210, 112, 113, 176, 65]. However, both our NODE
model and our variant of the spatial-correlation model predict concentration-dependent effects in
which a factor has both repressing and activating effects around a single stripe. For example, KR
is predicted to repress at the posterior portion of eve stripe 2, but the model shows that it is
an activator just anterior of this in cells where KR concentrations are lower (Figure 6.4). Such
cases could represent spurious correlations, perhaps due to other factors having dominant effects
on targets in cells where the factor under study is expressed at lower levels. However, there are
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sign
(

a[gtP ]

)

sign (d[eve]/dt)

Type I Repression − −
Type II Repression − +

Type I Activation + +

Type II Activation + −

Table 6.1: Mathematical Definition of Factor Activity Classification

a number of cases where factors, including KR, have been shown to switch from activating to
repressing the same target as their concentrations increase [162, 171]. Thus, the predictions of both
our NODE model and our variant of the spatial-correlation model suggest that gene regulation
might involve multiple mechanisms of factor action that should be considered.

The NODE model can distinguish between multiple regions of the embryo where target
mRNA either increases or decreases over time, whereas spatial-correlation models, by definition,
cannot. This allows the NODE model to provide more subtle distinctions of factor activity. The
factor activities can be subdivided into four categories of behavior. Without loss of generality,
mathematical definitions for four categories of GT activity on eve mRNA are given. At a given
concentration x0, if the GT coefficient from (6.1) is negative (i.e., a[gtP ] < 0 ) and eve concentra-
tion is decreasing (i.e., d[eve]/dt < 0), then GT is formally a Type I repressor when the factor
concentrations are x0. A summary of the other mathematical definitions is given in Table 6.1.
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Chapter 7

Learning Global-Sparsity Structure

Lasso-type regularization [199, 120, 222] has been immensely successful with inducing
sparsity in a multitude of applications which can be reformulated as linear regression. These
regularization procedures assume that different models have decoupled sparsity structures. But,
this can be a restrictive framework. In some applications, such as optical character recognition and
genetic network inference, there is a coupling between the models, and there is interest in learning
this global-sparsity structure.

In the biological context, this global-sparsity structure corresponds to learning the topol-
ogy of the network. Biological networks (and many engineering systems) are known to be quite
sparse and have a hierarchical organization with little feedback between different hierarchical levels.
For the system identification of biological networks and the resultant target identification problem,
learning the sparsity structure and associated topology of the network is extremely important. It
is particularly important because not only can it help improve the quality of identified models, but
as will be discussed in the second part of this thesis: The topology of the network can be used to
intelligently select pharmaceutical drug targets.

As an application of learning global-sparsity structure, consider the problem of variable
selection in local linear regression. Local linear regression is a nonparametric approach which does
regression in small regions of the predictors (see Figure 7.1), because the response looks linear in
small regions [169, 126]. One can do variable selection for each of these blocks of predictors using
lasso-type regularization or exploiting properties of local linear regression [126].

However, there is a coupling between the regression coefficients of each block of the predic-
tor space. One expects that globally, over all chunks of predictor space, there is a common sparsity
structure. This corresponds to a situation in which a set of predictors are globally unrelated to
the response variable. This is despite the fact that locally, in each individual block, the sparsity
structure might deviate by being a superset of the global-sparsity structure.

It has been recognized that one can gain improvements in learning this global-sparsity
structure by posing the problem as a multi-task learning problem [202, 221, 155, 8]. Unfortunately,
these techniques are computationally expensive. One class of techniques require solving non-convex
optimization problems [202, 221]. A set of convex optimization based approaches [155, 8] are essen-
tially variations of group-lasso-type regularization [220] for calculating the regression coefficients
β(u).

These group-lasso approaches [155, 8] are computationally difficult when there are a large
number of coupled tasks. They require the solution of a linear regression problem with group-lasso-
type regularization in which the matrix has m2p2 entries, where m is the number of tasks and p
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is the number of features. These problems involve sparse matrices, but they are still difficult to
solve because of the coupling between the different problems [220]. Coordinate descent approaches
[220, 74] and the algorithms of [155, 8] seem to be susceptible to a growth in complexity by a factor
of m2.

In light of these difficulties, two new approaches to learning the global-sparsity structure
are proposed in this chapter [13]. The first approach is to solve a regression problem which can be
thought of as an average of the regression problems at u1, . . . , um, with a lasso-type regularization
term to induce sparsity. The second approach is to solve a regression problem which can be thought
of as an average of the square of the regression problems at u1, . . . , um, with a group-lasso-type
regularization term to induce sparsity. The first approach makes more assumptions about the
distribution of β(u) and is computationally easier, when compared to the second approach.

First, the global-sparsity problem in the context of linear regression is formally defined.
The two approaches are posed as optimization problems, and the problems are made tractable by
making convex relaxations. Algorithms are given which can efficiently solve these convex optimiza-
tion problems, and these algorithms are used to do variable selection for simulated data taken from
a nonlinear function.

7.1 Global-Sparsity Structure Problem

Consider a collection of models A, that are indexed by u ∈ A. Furthermore, suppose that
u is distributed with mixed density fU (u). Then, for each u ∈ A, there is a linear model

y(u) = x(u)′β(u) + ε(u), (7.1)

where ε(u), y(u) ∈ R, x(u), β(u) ∈ Rp, and ε(u) is a zero-mean random variable. In the example
of piecing together local linear regressions: The u are points in a metric space, and the separate
linear models for each u correspond to different local linear regressions.

Assume that covariances are finite. The noise variance σ2(u), covariance matrix C(u),
and the cross-covariance matrix R(u) are given by:

σ2(u) = E(ε2) (7.2)

C(u) = E

(

(x(u) − x(u))′(x(u) − x(u))
)

(7.3)

R(u) = E

(

y(u)(x(u) − x(u))
)

, (7.4)

where vectors are taken to be column-vectors. Without loss of generality, assume that C(u) � 0 is
positive definite. If this is not the case, then Tikhonov-type regularization [105, 223] can be used to
ensure this rank condition holds. For local linear regressions, the C(u) is a local covariance matrix
that can vary as u changes.

T sparsity structure of a model is defined as a vector whose i-th entry is: 0, if the i-th
predictor is always irrelevant; and 1, if the i-th predictor is potentially relevant. Also, assume that
the regression coefficients obey a local-sparsity structure K(u) ∈ Rp, that is

Ki(u) = 1(βi(u) 6= 0). (7.5)

Additionally, assume that the regression coefficients obey a global-sparsity structure K ∈ Rp, that
is

Ki = 1(∃Si : µ(Si) > 0 ∧ βi(u) 6= 0,∀u ∈ Si), (7.6)
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where µ(Si) denotes the measure of set Si. For local linear regressions, there is additional structure
which couples the β(u), and this is not captured by the global-sparsity structure K. Though the
global-sparsity structure is adequate for the purposes of variable selection, it might be possible to
get better performance by fully considering this additional structure.

Global-Sparsity Structure Problem: Consider the collection of models A defined in
Section 7.1. Suppose that the following quantities have been calculated: the sample covariance
matrix Ĉ(u) and the sample cross-covariance matrix R̂(u) at points u = u1, . . . , um, where the ui

are independent and identically distributed with mixed density fU (u). The problem is: Learn the
global-sparsity structure K.

7.2 Problem Solutions

Two approaches to solving this problem are given, and these approaches can be posed
as optimization problems. The first approach makes additional assumptions on the distribution of
β(u), but is considerably simpler from a computational standpoint when compared to the second
approach. The second approach does not make additional assumptions on the distribution of β(u),
but it requires a relaxation of the optimization problem to make it tractable.

7.2.1 Averaged Lasso

The idea is to calculate the average of the regression vectors, meaning calculate

β = E(β(u)). (7.7)

The intuition behind this is that if Ki = 0, then βi = 0; whereas, if Ki 6= 0, then it is expected
that βi 6= 0. Assuming that Ki = 0 if and only if βi = 0, then the intuition becomes exact. This
additional assumption is need because, in general, a particular coordinate of the regression vector
might have a non-zero distribution but have a zero-mean.

Recall that under the additional assumption, solving for K is equivalent to solving for
β. So one approach would be to solve for β̂(u) at u = u1, . . . , um and then average them over u.
The difficulty with this approach is that the average will typically not be sparse. Sparsity can be
induced by thresholding the average, using cross-validation to choose the threshold level. It can be
shown that this estimator of β is both sign- and norm-consistent.

However, it is known that when doing regression problems with sparse regression vectors,
using lasso-type regularization can provide better performance than simply thresholding [199, 120,
223, 222]. This can be used to construct a better estimator of β. Begin by solving the normal
equations

β̂(u) = arg min
β

‖Ĉ(u)β − R̂(u)‖2, (7.8)

where ‖ · ‖ is the standard `2 norm. It is well-known that (7.8) has an analytic solution:

β̂(u) = (Ĉ(u))−1R̂(u). (7.9)

Next, consider the following problem

βave = arg min
β

∥

∥

∥

∥

∥

1

m

m
∑

i=1

Ĉ(ui)β − 1

m2

m
∑

i=1

m
∑

j=1

Ĉ(ui)β̂(uj)

∥

∥

∥

∥

∥

2

. (7.10)
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By construction, the solution to (7.10) is given by

βave =
1

m

m
∑

i=1

β̂(ui), (7.11)

and make the following identifications

Cave =
1

m

m
∑

i=1

Ĉ(ui) (7.12)

Rave =
1

m2

m
∑

i=1

m
∑

j=1

Ĉ(ui)β̂(uj) (7.13)

= Caveβave. (7.14)

Thus, (7.10) represents a regression problem whose covariance matrix Cave is an average of the
sample covariance matrices. The cross-covariance matrix Rave of (7.10) is simply the product of
Cave and βave. More importantly, it is useful to think of (7.10) as an averaged regression problem.

By posing the problem of estimating β as a regression problem, lasso-type regularization
can be introduced to induce sparsity in the solution:

βlasso = arg min
β

∥

∥

∥Caveβ −Rave
∥

∥

∥

2
+ λ

p
∑

i=1

wi|βi|, (7.15)

where wi = |βave
i |−γ are weights [222], λ ≥ 0, and γ > 0. Then, K̂i = 1(βlasso 6= 0).

7.2.2 Square-Averaged Lasso

Suppose that the assumption—Ki = 0 if and only if βi = 0—does not hold. Then,
the averaged Lasso approach (7.15) cannot be used. However, the problem can be solved in an
alternative manner. Define the quantity

Π = E
(

E[β(u)(β(u))T |u]
)

. (7.16)

The intuition for the importance of this term is that if Πii = 0, then by definition of expectation:
βi(u) = 0 almost everywhere and Ki = 0; alternatively, if Πii > 0, then Ki = 1.

Note that (7.8) is equivalent to solving the linear equation: Ĉ(u)β̂(u) = R̂(u). This linear
equation can be “squared” and rewritten, similar to the idea of the lifting procedure [137, 51], as
a quadratic equation

Ĉ(u)β̂(u)(β̂(u))T (Ĉ(u))T = R̂(u)(R̂(u))T . (7.17)

This can be rewritten as a semidefinite program (SDP) with nonconvex constraints:

Π̂(u) = arg min
Π

∥

∥

∥
Ĉ(u)Π(Ĉ(u))T − R̂(u)(R̂(u))T

∥

∥

∥

2

subject to: Π � 0 (7.18)

rank(Π) = 1,
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where ‖ · ‖ is the Frobenius norm. These constraints are equivalent to saying that there exists β̂(u)
such that Π̂(u) = β̂(u)(β̂(u))T . It is important to note that (7.17) is a linear equation in Π, and it
has a unique, analytic solution [198]:

vec(Π) = (Ĉ(u) ⊗ Ĉ(u))−1vec(R̂(u)), (7.19)

where ⊗ denotes the Kronecker product. It is interesting to note that this linear problem is nearly
identical to the discrete-time Lyapunov equation [41], which is also a linear problem.

Whereas (7.15) was the average of linear equations, similarly consider an average of
quadratic equations with

Πave = arg min
Π

∥

∥

∥CaveΠ(Cave)T − CaveΠave(Cave)T
∥

∥

∥

2

subject to: Π � 0

Π =

p
∑

i=1

Πi

rank(Πi) = 1, for i = 1, . . . , p.

(7.20)

By construction, Πave = 1
m

∑m
i=1 Π̂(ui). This optimization problem is nonconvex, but a convex

relaxation can be made by dropping the rank constraint [51]. Since the goal is to induce sparsity,
solve the following problem:

Πsql = arg min
Π

∥

∥

∥
Cave(Π − Πave)(Cave)T

∥

∥

∥

2
+ λ

p
∑

i=1

wi

√

S(i)

subject to: Π � 0

S(i) =

p
∑

j=1

(

(Πji)
2 + (Πij)

2
)

,

(7.21)

where

wi =

∣

∣

∣

∣

∣

∣

p
∑

j=1

(

(Πave
ji )2 + (Πave

ij )2
)

∣

∣

∣

∣

∣

∣

−γ

(7.22)

are weights [211], γ > 0, and λ ≥ 0. Then, K̂i = 1(Πsql
ii 6= 0).

The summation term is actually a group-lasso-type regularization term. The reason for
using group-lasso is that there is a relationship between the different variables in the matrix Π. If
Πii = 0, then βi(u) = 0 almost everywhere. Therefore,

Πij = Πji = E(βi(u)βj(u)) = 0, (7.23)

where j = 1, . . . , p. This is a situation for which group-lasso is well-suited. One can compare
this use of group-lasso to the use of lasso in a similar situation [51]. The lasso is computationally
simpler, but does not preserve the full structure of the situation.
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7.3 Consistency Results

There are two levels of measurements that are made. The first measurement is a value
of u = u1, . . . , um, for ui ∈ A. The second level of measurement is that for each value of ui, a
total of Ei measurements of y and x are used to calculate the value of the sample covariance and
cross-covariance matrix. Thus, a total of n =

∑

iEi measurements are made.
Consequently, computing expectations has to average given ui and then average over u.

Averaging over u means

Ξ
ave

=
1

m

m
∑

i=1

Ξ(ui), (7.24)

for Ξ = C, β,Π, and R
ave

= C
ave
β

ave
. Additionally, define the limits as: C = E(C(u)) and

R = E(C(u))E(β(u)), and recall the definitions of β and Π.
Averaging given ui means that for increasing Ei:

‖Ĉ(ui) − C(ui)‖ = Op(an) (7.25)

‖R̂(ui) −R(ui)‖ = Op(an), (7.26)

for all ui ∈ A, where an = op(1). This operational definition for average given ui allows flexibility
to consider different techniques for computing the sample (cross-)covariance matrix, such as the
standard approach or a sparsity-inducing approach applicable to “large p, small n” scenarios [224,
51, 32]. Furthermore, assume that the linear-least squares estimate is consistent:

‖β̂(ui) − β(ui)‖ = Op(an). (7.27)

This has been proved under many situations.
This setup of making two levels of measurements can be used to prove both norm- and

sign-consistency. To simultaneously achieve both types of consistency, use a two-step regression
procedure [146]. Adaptive lasso and adaptive group-lasso [222, 211] are such a two-step procedure
that seems to work well in practice. To prove consistency, it is first shown that the linear models
of the averaged equations are a consistent estimator of the averaged regression vectors. Then, the
triangle inequality and existing theorems on the consistency of adaptive lasso and group-lasso can
be applied. The theorems are given below, and proofs can be found in the appendix.

Theorem 7.3.1 (Consistency of Averaged Lasso). Recall the assumptions of Sections 7.1, 7.2.1,

and 7.3. The estimator given in (7.15) is norm-consistent: βlasso p→ β and sign-consistent:
P(sign(K̂i) = sign(Ki)) → 1.

Theorem 7.3.2 (Consistency of Square-Averaged Lasso). Recall the assumptions of Sections

7.1 and 7.3. The estimator given in (7.21) is norm-consistent: Πsql p→ Π and sign-consistent:
P(sign(K̂i) = sign(Ki)) → 1.

7.4 Numerical Algorithms

Implementing the averaged lasso (7.15) is straight-forward, because the averaged lasso is
simply a linear regression problem with lasso-type regularization. So, the averaged lasso can be
implemented using any of the existing techniques to do lasso regression [62, 74]. These techniques
are known to be computationally efficient.
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Techniques for lasso regression can be used to solve the square-averaged lasso (7.21), if
additional relaxations are made to the problem. By removing the constraint Π � 0 and replacing
the group-lasso-type term with the lasso-type term 1T |Π|1 [51], the problem is equivalent to a lasso
regression. So, the relaxation can be solved fairly easily.

The unmodified, square-averaged lasso (7.21) is somewhat more difficult to implement.
Coordinate descent cannot be used because coordinate descent algorithms are not guaranteed to
converge in the situation [74] where the variables Πij appear in multiple group-lasso-type regular-
ization terms.

To solve the unmodified, square-averaged lasso problem (7.21), consider the related prob-
lem,

Πsql = arg min
Π

∥

∥

∥CaveΠ(Cave)T −Rave(Rave)T
∥

∥

∥

2

subject to: Π � 0
p
∑

i=1

wi

√

S(i) ≤ µ

S(i) =

p
∑

j=1

(

(Πji)
2 + (Πij)

2
)

,

(7.28)

where wi, γ are as defined for (7.21), and µ > 0. As shown in Section 2.3.g of [4], the constraints
involving the summations can be rewritten as linear and conic inequalities. Thus, we can solve
this problem using existing semi-definite programming approaches. However, the solver must be
carefully chosen because this reformulation introduces on the order of p2 constraints. Interior-point
solvers might have difficulties with the problem size, and so one might consider using a bundle
method [99], though these often convergence slowly.

There is another way to solve the rewritten form of the square-averaged lasso problem
(7.28). Dropping the constraint Π � 0 leads to a much simpler problem that can be solved using
a Majorization-Minimization (MM) algorithm [110]. These algorithms are first-order methods and
have very simple iterations. Though they require more iterations to converge to the solution than
second-order methods, the increased simplicity of each iteration leads to performance improvements
for large problems such as (7.28).

7.5 Numerical Experiments

These approaches are used to solve the variable selection problem, which can be reformu-
lated as a global-sparsity problem. To make the variable selection problem interesting, here the
focus is on response variables which are nonlinear functions of the predictor variables. Variable
selection for linear functions is well-studied, and the global-sparsity approach would not perform
better.

Consider the predictor variables: Xk ∼ Uniform[0, 2π], for k = 1, . . . , 11. Define the
response variable

Y =

5
∑

k=1

5 sin(Xk)

k
+ ε, (7.29)

where ε ∼ N (0, 0.1). The variable selection problem is: Given measurements of Xi and Y , choose
the Xi upon which Y (or more accurately E[Y |X]) depends.
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As shown in Figure 7.1: Doing local linear regressions [169, 126] at several points in the
support of the Xk’s, the variable selection problem is equivalent to learning the global-sparsity
structure of the local linear regressions. There is a subtle issue regarding whether the regression
problems for different blocks of the predictor are independent. Of course, in the finite sample
regime, there will be some dependence between the regression problems. However, this variable
selection procedure can be theoretically justified by noting that in the limit of increasing data
points, the windowing separates the regression problems and makes them independent.

One-hundred sample points were generated, and 22 local linear regressions were performed
at randomly chosen points within the range of the predictors. The tunable parameters for the local
linear regressions were chosen using V -fold cross-validation [32]. Then, the averaged lasso (7.15)
and square-averaged lasso (7.21) were used to learn the global sparsity structure. The β(ui) used in
(7.15) and (7.21) were calculated without the use of lasso-type regularization; it may be possible to
improve the performance of the global-sparsity learning by using lasso-regularized values of β(ui).
Fixing γ = 5, the remaining tunable parameters were chosen using V -fold cross-validation with
empirical loss function defined as:

` =
1

N

N
∑

ν=1

‖βtrain − βave
validate‖. (7.30)

The results of 50 trials using the averaged lasso and square-averaged lasso are shown in
Figures 7.2c and 7.2d, respectively. Pure black corresponds to not selecting the variable 100% of
the time, whereas pure white corresponds selecting the variable selected 100% of the time. Shades
of gray indicate intermediate rates of selection. Also, note that β0 refers to the value E[Y |X]; it is
an artifact of local linear regression [169, 126].

It is instructive to examine the results of one trial in detail, and a typical example is shown
in Figure 7.3. Two methods were used to compute βave: using local linear regression and local
linear regression with lasso-type regularization. Thresholding the βave values, using the empirical
loss function given in (7.30), yields the results shown in Figures 7.3c and 7.3d. These results
are not as good as those produced by the averaged lasso or the square-averaged lasso, shown in
Figures 7.3e and 7.3f. Part of this discrepancy is due to the empirical loss function: It would be
fairer to choose the thresholding levels by cross-validating against prediction error in each block of
predictors, but this requires significant computational effort. The global-sparsity structure methods
use a computationally simpler cross-validation scheme that seems to give good results.
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Figure 7.1: One expects that the regression vectors computed using local linear regression at the
centers of the balls—in which the ‘x’ markers indicate predictor values and the ‘.’ markers indicate
corresponding response values—obey a global-sparsity structure corresponding to the relevant and
irrelevant predictors. Consequently, the problem of variable selection for a nonlinear function can
be solved by learning the global-sparsity structure of the regression vectors.
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(a) K̂k from thresholding regular βave
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(b) K̂k from thresholding lasso βave
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(c) K̂k from averaged lasso
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(d) K̂k from square-averaged lasso

Figure 7.2: We calculated K̂ using different approaches over 50 trials and averaged the results.
Note that “regular βave” means that the values of β̂(ui) were calculated using regular local linear
regression, whereas “lasso βave” means that the values of β̂(ui) were calculated using a local linear
regression with lasso-type regularization.
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(c) K̂k from thresholding regular βave
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(d) K̂k from thresholding lasso βave

k
0 1 2 3 4 5 6 7 8 9 10 11

(e) K̂k from averaged lasso
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(f) K̂k from square-averaged lasso

Figure 7.3: For a typical trial, we calculated K̂ using different approaches. Note that “regular βave”
means that the values of β̂(ui) were calculated using regular local linear regression, whereas “lasso
βave” means that the values of β̂(ui) were calculated using a local linear regression with lasso-type
regularization.
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Part II

Drug Multi-Target Selection
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Chapter 8

Topology-Based Control

Control theory has traditionally focused on a core group of goals: to stabilize a plant, to
improve plant performance, to robustify a plant, to track a reference, or to perform motion planning.
In engineering systems, these goals have been achieved through an analysis-design flow; this flow is
rarely linear—there is often a need to go back to previous steps and incorporate things that were
missed in earlier attempts. Beginning with design specifications, we write mathematical models
for the engineering system, analyze these models, and devise a controller. We also implement the
controller on actual hardware.

The traditional control scheme has been to input a signal into a plant, using either an
open-loop or a closed-loop controller. Such a control strategy is possible if the plant is able to
accept inputs or can be modified to do so. However, this situation is not always true in biological
genetic networks; in these systems, there is often no input or obvious modification to allow inputs.
Instead of inputs, genetic networks are more easily influenced through large-scale modifications.
Genetic networks are different from traditional engineering systems and require a new paradigm
for control.

It is often easier to change the topology of a genetic network than it is to either change
the states or elements of the network. For instance, a state could be the concentration of a protein
within a cell, something which is difficult to affect to within any order of precision. Additionally, it
is sometimes difficult or not feasible to modify or insert pathways by adding elements [168, 164, 56].
Thus, for genetic networks it is important to develop a theory of control based on making large-
scale changes (e.g. genetic changes or pharmaceutical drugs) to the topology of the genetic network.
Fundamentally, medical treatments seek to change how a cell operates and go beyond modifying
the cellular environment.

Genetic networks can be modified in a variety of ways. The most basic is the use of
pharmaceutical drugs, many of which prevent certain reactions from occurring or remove a state
from a network. Biotechnology techniques allow for the insertion of genetic material into bacteria,
and are commonly used for alternative energy and pharmaceutical applications [85, 197]. In another
technique, the genetic material of a virus is replaced with useful, genetic material. Next, the host
is infected with the virus, and this inserts the useful, genetic material into the host. This control
technique is being studied for use in pharmaceutical applications such as cystic fibrosis [85, 197].
Biologists continue to develop new techniques, amongst which include the use of microRNA and
single interfering RNA.

Though many of these techniques are established and used in practice, there is a lack of a
systematic theory or methodology to determine which modifications to make or what to target with
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pharmaceutical drugs. Biological research often involves the use of intuition or trial-and-error to
determine which changes are or are not beneficial for the purposes of controlling a biological system.
This chapter proposes the idea of abstracting the effect of pharmaceutical drugs as modifying the
topology of the biological network, and it also proposes how this abstraction might be used to do
control by identifying drug targets [19].

Piecewise-affine (PWA) hybrid systems and ordinary differential equation (ODE) models
of biological systems are considered in this chapter. Two different types of models are used for
reasons of analysis: The simpler, hybrid systems models are easier to analyze for global behavior,
and the more detailed, ODE models are easier to analyze for local behavior of small components of
the network. Results related to hybrid systems theory are discussed, controllers using ODE theory
are defined and analyzed, and these approaches are used to analyze and build a controller for the
p53 pathway—a pathway that is related to cancer.

This topological control changes the topology of the network by applying a pharmaceutical
drug or other chemical, and the topology remains changed only in the presence of this pharma-
ceutical. As soon as it degrades away, the topology of the network goes back to an uncontrolled,
unchanged state. Since the control is topological, it is crucial to have a correctly identified network.
The approach described is unable to deal with latent variables that are unidentified, because the
presence of latent variables can drastically change the behavior of the system.

8.1 Preliminaries

The PWA hybrid systems considered here have rectangular guards, and are a simplification
of general hybrid systems [140, 201]. In order to define them, consider the following preliminary
definitions. Define some operations on sets; formal definitions can be found in [103]. Denote the
boundary of set S as ∂S. The closure of a set is the union of a set and its boundary, and the closure
of S is denoted S. The interior of set S is denoted int(S).

Define a hyperrectangle as

C = {x : li < xi < ui,∀i ∈ {1, . . . , n}}, (8.1)

where li, ui are constants, n is the dimension of the state-space, and xi denotes the i-th component
of x. Similarly, define a hyperedge as

E = {x : li < xi < ui,∀i ∈ I ∧ xj = γj ,∀j ∈ {1, . . . , n} \ I}, (8.2)

where γj is a constant and I ⊆ {1, . . . , n} is a set of indices. Let ei refer to the standard basis
vector in Rn. If dim(E) = n− 1, then the normal to E is the vector ej , where j /∈ I.

By construction, the hyperrectangle is an embedded submanifold of dimension n and the
hyperedge is an embedded submanifold of dimension |I|. For the q-th hyperrectangle Cq, associate
a total of (3n−1) hyperedges Eq

k , by defining li, ui, γj , and I for each k—such that
⋃3n−1

i=1 Eq
i = ∂Cq

and Eq
i ∩Eq

j = ∅ for i 6= j. The set Eq
k is the k-th hyperedge of the q-th hyperrectangle. Examples

in R2 of these sets are shown in Figure 8.1.

8.1.1 Definition of PWA Hybrid System

Define a PWA system on a domain D as a collection of hyperrectangles Ci, with ẋ = Aix+bi

for x ∈ Ci, such that D = int(
⋃

i>0 Ci) and Ci ∩ Cj = ∅ for i 6= j. A trajectory of this system is a
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C1 = {x : 0 < x1 < 1 ∧ 0 < x2 < 1}

E1

1
= {x : 0 < x1 < 1 ∧ x2 = 1}

dim(E1

1
) = 1

E1

2
= {x : x1 = 1 ∧ x2 = 1}

dim(E1

2
) = 0

Figure 8.1: A simple example of a hypercube and its associated hyperedges in R2 is shown. Only
two of the associated hyperedges are labeled; there are eight hyperedges associated to C1.

solution of the vector field f(x) in the sense of Filippov [71], where f(x) = Aix+ bi if x ∈ Ci and is
undefined otherwise. Specifically, a trajectory of this system with initial condition x ∈ D is given
by an absolutely continuous function ψt(x) ∈ D such that

dψt(x)

dt
∈
⋂

δ>0

⋂

µ(N)=0

co(f(B(x, δ) \N)) (8.3)

almost everywhere, where B(x, δ) = {y : ‖x − y‖ 2
2 < δ} and the intersection is taken over all sets

N with measure zero. For initial condition x ∈ D, define Tx = [0, tf ) as the maximal interval such
that ψt(x) ∈ D. Note that tf can be +∞. And, tf can be interpreted as the escape time at which
ψtf (x) /∈ D.

8.1.2 Trajectory Cycles

The notion of trajectory cycles will be defined to describe the type of trajectories pos-
sible in a system. Intuitively, a forward trajectory cycle is defined as a forward trajectory of the
continuous states of the hybrid system, such that the trajectory makes an infinite number of visits
to a particular hyperrectangle. Similarly, a backwards trajectory cycle is defined as a backwards
trajectory of the continuous states, such that the trajectory makes an infinite number of visits to a
particular hyperrectangle. Note that implicit in both intuitive definitions is the inclusion of Zeno
behavior.

8.1.3 Promotion-Inhibition Networks

A promotion-inhibition network is a signed, directed graph N = (V,E, S); where V =
{v1, . . . , vn} is the set of vertices, E ⊆ {(u, v) : u, v ∈ V } is the set of directed edges, and S :
E → {−1,+1} is a function that gives the sign of an edge. For an edge e = (u, v): u is the
direct predecessor of v, and v is the direct successor of u. A feedback loop is a directed cycle
L = {e1 = (u1, v1), . . . , em = (um, vm)}, where ui = vi−1 for i = 2, . . . ,m; and vm = u1. A negative
feedback loop is a feedback loop L such that

∏m
i=1 S(ei) = −1. A monotone loop is an undirected

cycle M = {e1 = (u1, v1), . . . , em = (um, vm)}, where either vi = ui−1 or ui = vi−1 for i = 2, . . . ,m;
and vm = u1 or v1 = um. A negative monotone loop is a monotone loop such that

∏m
i=1 S(ei) = −1.
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8.1.4 Relation to Biological Genetic Networks

Genetic networks are often elucidated in the form of a promotion-inhibition network, and
examples are shown in Figure 8.2. Intuitively, a positively (negatively) signed edge between two
vertices means that an increase in the direct predecessor leads to an increase (decrease) in the direct
successor, and biologists term this as promotion (inhibition). These networks do not describe the
underlying biological mechanism of an edge, but this information will be important when designing
controllers.

A PWA hybrid system model can be generated from a promotion-inhibition network, using
the techniques of [54, 84, 185, 90, 11, 83, 29]. Similarly, an ordinary differential equation model
can be generated [125, 187] from these networks. There are various advantages and disadvantages
to the two types of models, and this is discussed this below.

8.2 Existence of Trajectory Cycles

An important class of results in the hybrid and monotone systems theories relates the
topological structure of a system to the global behavior of trajectories of the system, independent
of any coefficients in the system. One useful theorem concerns a PWA hybrid system derived from
a promotion-inhibition network, in the manner of [54, 84, 185, 90, 11, 83, 29]. Under technical
assumptions on the PWA hybrid system, if there are no negative feedback loops in the promotion-
inhibition network, then there are no trajectory cycles [18].

Under the given conditions, these systems are stable and trajectories converge to an equi-
librium point in a node-like manner; that is, trajectories qualitatively look like the trajectories of
a stable, linear system with purely real eigenvalues. Moreover, the presence of negative feedback
is a necessary condition for the presence of limit cycles, centers, and foci. The shortcoming of
this theorem is that it does not apply to many systems with self-inhibition, and this is common in
biological systems.

An similar result holds for ODE systems. Under technical conditions, if the promotion-
inhibition network has no negative monotone loops, then the system is a monotone system [125, 7].
Consequently, the trajectories of the system converge to an equilibrium and there are no stable
oscillations [102]. These theorems apply to systems with self-inhibition, but they are stricter because
negative monotone loops are stricter than negative feedback loops.

8.3 Controllers

Through the use of results stated in Section 8.2, several different topology based controller
schemes become apparent. The basic idea is to use operations, such as removing edges or vertices
in the promotion-inhibition network, to change the topology of the genetic network. The genetic
network needs to be forced into a situation such that it has no negative feedback. Because this will
ensure that the system does not oscillate and has simple dynamics, it will be easier to move the
system into a desired state. Such control is quite crude in relation to traditional control techniques,
but it can be used to achieve useful results in certain situations.

It is important to keep in mind that the fundamental ideas of the controllers are contained
within the basic topological examples given below. Though these are examples, the examples are
general since the equations model two broad classes of reactions. Based on existing biological
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techniques [85, 197], the controller examples that are given are hypothetically feasible. However, it
is not always possible to implement the controller.

Despite this, the reason that the fundamental ideas are topological is that there are mul-
tiple, biological ways to achieve the described effects. For instance, a vertex removal can be accom-
plished via compounds or pharmaceuticals that bind to a protein and remove its function, instead
of the antisense RNA example that is given [85]. The controller used to remove an edge or a vertex
must correspond to the biological mechanism behind the edge or vertex, otherwise the controller
will fail.

8.3.1 Inhibition Edge Removal Example

Gene therapy techniques can add genetic material, but they cannot remove genetic mate-
rial. Competitive binding can be used to remove an inhibition edge. The basic idea for the control
is to add a high number of copies of a gene and its promoter region to a cell. This negates the
effect of any inhibitors.

Suppose that the promotion-inhibition network has an edge e = (A,B) with label S(e) =
−1, and the control enforces [D0] � [A0], where the subscript 0 is used to denote initial concentra-
tions and the square brackets [·] denote concentration. One model for this is the set of reactions

A+D
k1−−−⇀↽−−−
k−1

AD (8.4)

D + Ei

k2,i−−−⇀↽−−−
k−2,i

DEi
k4,i−−→ B +D + Ei (8.5)

D + Fi

k3,i−−−⇀↽−−−
k−3,i

DFi, (8.6)

where Ei are proteins which promote the production of protein B, D is the DNA which codes for
protein B and has the accompanying promoter region, and Fi is a protein which binds to DNA D
but does not begin transcription. Note that i indexes over multiple proteins and complexes. In
these reactions, AD, DEi, AP , and DFi are intermediate complexes. The effect of the inhibitors A
and Fi is to prevent the formation of the DEi complex, that is either A or Fi cannot simultaneously
bind with either Ei or D. Note that (8.5) describes the aggregate process of activators and enzymes
producing a protein and (8.4) and (8.6) describe an inhibitor binding to DNA.

These reactions can be written as a set of fractal reaction equations [172, 173, 216] as

d[AD]

dt
= k1[A]α1 [D]α2 − k−1[AD] (8.7)

d[DEi]

dt
= k2,i[D]α3,i [Ei]

α4,i − k−2,i[DEi] (8.8)

d[DFi]

dt
= k3,i[D]α5,i [Fi]

α6,i − k−3,i[DFi] (8.9)

d[B]

dt
=
∑

i

k4,i[DEi]
α7,i , (8.10)
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with the following constraints:

[A0] = [A] + [AD] (8.11)

[D0] = [D] + [AD] +
∑

i

[DEi] +
∑

i

[DFi] (8.12)

[Ei,0] = [Ei] + [DEi] (8.13)

[Fi,0] = [Fi] + [FEi]. (8.14)

The constraints assume fixed initial concentrations. In these fractal equations, each k is a reaction
rate, each α is an exponent that relates concentration to the speed of the reaction, and the brackets
denote concentration.

From the positivity of concentrations and (8.11), it is clear that 0 ≤ [AD] ≤ [A0], which
implies that

[D0] − [A0] − [DE] ≤ [D] ≤ [D0] − [DE]. (8.15)

However, since [D0] � [A0], it approximately holds

[D] = [D0] − [DE]. (8.16)

Consequently, if [Fi,0] ∼ [D0] then the system is approximately the same as if reaction
(8.4) did not occur. In the special case of α3,i = α5,i = 1, solving for the rate of production, using
standard assumptions, gives

d[B]

dt
=
∑

i

k4,i

(

k2,i

k−2,i
([D0]/H)[Ei]

α4,i

)α7,i

, (8.17)

where

H = 1 +
∑

i

k2,i

k−2,i
[E]α4,i +

∑

i

k3,i

k−3,i
[F ]α6,i . (8.18)

Through the use of the controller, the inhibitory effect of A on B was eliminated. This effectively
breaks the inhibition edge in the promotion-inhibition network.

8.3.2 Vertex Removal Example

In a vertex removal controller, a vertex is removed from the promotion-inhibition network.
Antisense RNA can be used to prevent translation of protein through competitive binding with
mRNA[85, 197]. The control is to add a high number of copies of the antisense RNA. This removes
the effect of the vertex.

Suppose that the promotion-inhibition network has edge e = (A,B) with label S(e) = +1,
and the control enforces [P0] � K, where [mAP ] ≤ K. One model for this is the set of reactions

D + Ei

k1,i−−−⇀↽−−−
k−1,i

DEi
k3,i−−→ DEi +mA (8.19)

mA
k4−→ mA+A (8.20)

mA
k5−→ Z1 (8.21)

A
k6−→ Z2 (8.22)

mA+ P
k2−−−⇀↽−−−
k−2

mAP (8.23)
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(a) Normal p53 Pathway (b) Abnormal p53 Pathway (c) Abnormal p53 Pathway with
Controller

Figure 8.2: When a portion of the normal p53 pathway [95, 167, 196, 130] becomes abnormal, such
as loss of p19 ARF function [167], the system behaves unfavorably by underexpressing p53. Using
a controller, certain edges and vertics of the pathway can be removed to make the system behavior
more favorably.

where Ei are proteins which promote the production of protein A, D is the DNA which codes for
protein A and has the accompanying promoter region, P is the control of added antisense RNA.
Also, Z1 and Z2 are the aggregate products of degradation. Note that i indexes over multiple
proteins and complexes. In these reactions, mA is the translated mRNA for protein A, DEi is an
intermediate complex, and mAP is the complex of mRNA bound with the antisense RNA. Note
that (8.19) describes the aggregate process of activators and enzymes translating the DNA for a
protein into mRNA, (8.20) describes the aggregate process of translation of mRNA into protein,
and (8.23) describes the binding of a mRNA with the added antisense RNA. Since P is the antisense
RNA of the mRNA, this prevents translation of the mRNA into protein when P is bound to mA.
Also, (8.21) and (8.22) describe the degradation of mA and A, respectively.

These reactions can be written as a set of fractal reaction equations [172, 173, 216] as

d[DEi]

dt
= k1,i[D]α1,i [E]α2,i − k−1,i[DEi] (8.24)

d[mA]

dt
= k3,i[DEi]

α3,i − k4[mA]+ (8.25)

− k2[mA]α5 [P ]α6 + k−2[mAP ]

d[A]

dt
= k5[mA]α4 − k6[A] (8.26)

d[mAP ]

dt
= k2[mA]α5 [P ]α6 − k−2[mAP ] (8.27)
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with the following constraints:

[D0] = [D] +
∑

i

[DEi] (8.28)

[Ei,0] = [Ei] + [DEi] (8.29)

[P0] = [P ] + [mAP ] (8.30)

[DEi] ≤ Ki (8.31)

[mA] ≤ K. (8.32)

The last two inequalities come about through standard arguments involving nullclines. In these
fractal equations, each k is a reaction rate, each α is an exponent that relates concentration to the
speed of the reaction, and the brackets denote concentration.

Typically, the reversible reactions are much faster than the irreversible reaction, that is the
reactions corresponding to k1,i, k2, k−1,i, k2 are much faster than those corresponding to k3,i, k4, k5

[172]. Under this assumption, the quasi-steady state assumption can be applied to get

[DEi] =
k1

k−1
[D]α1,i [Ei]

α2,i (8.33)

[mAP ] =
k2

k−2
[mA]α5 [P ]α6 . (8.34)

Combining (8.28) and (8.34) gives

[mA] =

(

k−2[mAP ]

k2[P ]α6

)1/α5

(8.35)

≤
(

k−2K

k2([P0] − [mAP ])α6

)1/α5

. (8.36)

Because the controller enforces that [P0] � K, it roughly means that [mA] = 0. Conse-
quently, it approximately holds that

d[A]

dt
= k5[mA]α4 − k6[A] ≤ 0. (8.37)

Through the use of the controller, the concentration of protein A was reduced to zero. Thus, vertex
A we effectively removed from the promotion-inhibition network.

8.4 p53 Pathway

The p53 protein is an important tumor suppressor, which reacts to stress signals and
induces an appropriate cellular response [95, 80, 10, 208]. These stress signals include DNA damage,
heat shock, cold shock, and spindle damage. These stress signals lead to a post-translational
modification of p53, causing the p53 to trigger downstream pathways involved with cell cycle
arrest, cell senescence, or apoptosis [95]. The inactivation of p53 can lead to tumor development
[10].

A promotion-inhibition network for a portion of the p53 pathway is shown in Figure 8.2a.
In roughly 10% of human tumors, p53 is inactivated through overexpression of MDM2 [80]. MDM2
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can be overexpressed through an inactivation of p19 [167], and this is shown in Figure 8.2b. MDM2
works to reduce expression of p53 [95, 80, 10, 208] by increasing the degradation rate of p53 and
facilitating the nuclear export of p53 [10, 208]. Thus, inhibition of MDM2 has been considered as
a possible strategy for cancer treatment [208, 80].

In designing a controller for the abnormal p53 pathway, the underlying biological mecha-
nisms for the edges in the network must be considered. Here, the inhibition edge between MDM2
and p53 is due to protein-protein interaction, and so the controller given in Section 8.3.1 cannot be
used. However, the controller given in Section 8.3.2 can be used to remove the vertex correspond-
ing to MDM2. The controller is shown in Figure 8.2c, and is implemented through the addition of
antisense RNA that binds with the mRNA for MDM2. Based on existing techniques [85, 197], the
controller is hypothetically feasible.

Time course concentrations of p53, cyclin A, and MDM2 are shown in Figure 8.3a for the
normal p53 pathway, Figure 8.3b for the abnormal p53 pathway, and Figure 8.3c for the abnormal
p53 pathway with controller. These simulations come from an ODE model of the network, and in
the simulations the edges between either MDM2 and p53 or MDM2 and cyclin A are not removed.
In the normal p53 pathway, concentrations of p53 and cyclin A are high, and concentrations of
MDM2 are low. In the abnormal p53 pathway, p53 and cyclin concentrations are low, whereas
MDM2 is in high concentration. In the abnormal p53 pathway with controller, the controller is
used at times t = 200, t = 250, and t = 300. The controller causes cyclin A and p53 concentrations
to increase to higher levels, and reduces MDM2 concentrations. The controller must be used at
multiple times, because the cyclin A promoter is modeled to decay. So, the effect of the controller
wains as time goes on. If the controller is not applied again, the system returns to an abnormal
state.

8.5 Future Directions

Steps towards a new paradigm for the control of biological genetic networks through
topology based controllers was presented in this chapter. Such techniques may also be useful for
understanding the effects of pharmaceuticals. The basic idea of the controller is two-fold. First, the
use of pharmaceuticals was abstracted to a graph-theoretical interpretation. Secondly, the dynamics
of the system was simplified by removing negative feedback, and then the simplified dynamics
steered the system towards a desirable state. Derivations were given for two possible controllers
to remove edges or vertices of a network, and one of these was used to treat abnormalities in the
cancer-related p53 pathway.

What is needed is an understanding of the biological mechanisms behind interactions, and
a library of controllers to deal with and eliminate such interactions. Additionally, algorithms are
needed to identify what the optimal edges or vertices to remove are. This is the topic of the next
chapters, though there is still more work to be done in this area. Reach set algorithms from hybrid
systems may also be useful for this. In fact, PWA hybrid systems were used to analyze global system
behavior because efficient algorithms for system analysis exist for such systems [29, 45, 54, 18, 11].
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(c) Abnormal p53 Pathway with Controller

Figure 8.3: The time course plots for the different pathways displays the effect of the abnormality
and the controller. Note that p53 is solid, cyclin A is dashed, and MDM2 is dash-dotted.
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Chapter 9

Monotone Piecewise-Affine Systems

Monotone systems are order-preserving systems: given a partial order on any two initial
conditions, the trajectories of the monotone system preserve this partial order through time. There
is a rich theory of strong results about the dynamics and stability of monotone systems with
continuous vector fields [183, 101, 64]. Though the previous work on monotone systems has largely
been theoretical, from an applications point of view there is growing interest in monotone systems
due to the realization that many systems are monotone [187, 58, 57].

Piecewise affine (PWA) systems have found application in systems biology [90, 54, 84, 185],
traffic engineering [88, 57], and multi-robot systems [58]. Understanding which conditions are
sufficient for a PWA system to be monotone is useful, both for understanding the dynamics and for
designing controllers for qualitative, reference tracking [19, 57]. Unfortunately, the existing results
on monotone systems do not apply to PWA systems, which have discontinuous vector fields.

In the biological context, sufficient conditions for monotonicity can be used to design
controllers, as discussed in Chapter 8. Yet, many system identification procedures, such as the
one discussed in Chapters 4 and 5 or in [55, 160], identify PWA models. Therefore, the prevalence
of such PWA models makes it important to develop tools and analyses which handle such PWA
models. Extending monotone systems theory to PWA systems allows for the formal extension of
the topological control techniques described in Chapter 8.

This chapter contains sufficient conditions for monotonicity of PWA systems with hyper-
rectangular invariants, which are a particular restriction on the form of the vector field [20]. In
particular, proofs are given for analogs of the Kamke-Müller theorem [183, 101] and the graph the-
oretical theorem of [125], both of which provide sufficient conditions for a system with continuous
vector field to be monotone. Though the definitions and sufficient conditions described herein bear
a strong similarity to those in the existing literature [183, 101], the analysis is modified to deal
with the discontinuous vector fields. The main difference with PWA systems is that solutions of
the vector field are not unique on certain sets of measure zero; so to have a well-defined notion
of monotonicity, the focus needs to be on the behavior of the system almost everywhere. Finally,
these results are used to aid with drug discovery by designing controllers for genetic regulatory
networks.
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9.1 Preliminaries

Recall the definitions of set operations, hyperrectangles, and hyperedges given in Section
8.1. Next, consider the affine ordinary differential equation (ODE)

ẋ = Ax+ b (9.1)

with an embedded submanifold of final conditions X ⊂ Rn of dimension d ≤ n − 1. Assume d
strictly less than n, because in later sections the interest will be in computing the backward reach
sets of hyperedges. Let M be an open subset of Rd, and define a smooth embedding h : M → X .
The reach map R : M× R → Rn is defined as

R(u, t;A, b) = eAth(u) +

∫ t

0
eA(t−τ)bdτ , (9.2)

and the backward reach set of X is the image of the reach map R applied to the whole manifold
M × R−: R(X ;A, b) , R(M,R−;A, b). Note that, depending on the properties of A and b, it is
possible for the Lebesgue measure of the backward reach set to be non-zero when d = n − 1. If
d ≤ n− 2, then the Lebesgue measure of the backward reach set can be characterized:

Lemma 9.1.1 (Lee [129, Lemma 10.3]). For the affine ODE defined in (9.1) with embedded
submanifold of final conditions X , if d ≤ n− 2, then µ(R(X ;A, b)) = 0.

9.2 Defining Monotonicity for Piecewise Affine Systems

Definition 9.2.1. Define a PWA system on a domain D as a collection of hyperrectangles Ci, with
ẋ = Aix+ bi for x ∈ Ci, such that D = int(

⋃

i>0 Ci) and Ci ∩ Cj = ∅ for i 6= j. A trajectory of this
system is a solution of the vector field f(x) in the sense of Filippov [71], where f(x) = Aix+ bi if
x ∈ Ci and is undefined otherwise. Specifically, a trajectory of this system with initial condition
x ∈ D is given by an absolutely continuous function ψt(x) ∈ D such that

dψt(x)

dt
∈
⋂

δ>0

⋂

µ(N)=0

co(f(B(x, δ) \N)) (9.3)

almost everywhere, where B(x, δ) = {y : ‖x − y‖ 2
2 < δ} and the intersection is taken over all sets

N with measure zero. A solution in the sense of Filippov is not necessarily unique; this property
is unfortunate, because the non-uniqueness of solutions can lead to a lack of global monotonicity.
For initial condition x ∈ D, define Tx = [0, tf ) as the maximal interval such that ψt(x) ∈ D. Note
that tf can be +∞, and tf can be interpreted as the escape time at which ψtf (x) /∈ D.

It is interesting to derive conditions under which such PWA systems are monotone. Fix
m = (m1, . . . ,mn), with mi ∈ {0, 1} for i ∈ {1, . . . , n}, and define

Km = {x ∈ Rn : (−1)mixi ≥ 0,∀i ∈ {1, . . . , n}}. (9.4)

Note that Km is a cone that defines a partial ordering: x ≤Km y ⇔ y − x ∈ Km. Also, denote
x�Km y ⇔ y − x ∈ int(Km).

Definition 9.2.2. A PWA system is a “type-Km almost everywhere” (type-Kma.e.) monotone
system if there exists Z ⊂ D with µ(Z) = 0, such that for all x, y ∈ D \ Z, where x ≤Km y, it
follows that ψt(x) ≤Km ψt(y) for all t ∈ Tx ∩ Ty.
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Remark 9.2.1. This definition is nearly identical to that given in [183], except the definition says
that the system is monotone except on a set of points of measure zero. Both definitions are global
in nature, and so the existing results for monotone systems [183, 101] can easily be extended to
type-Kma.e. systems.

Definition 9.2.3. A PWA system is a “type-Locally Km almost everywhere” (type-LKma.e.)
monotone system if there exists Z ⊂ D with µ(Z) = 0, such that for all x, y ∈ D \ Z, where
x ≤Km y, there exists δ > 0 such that ψt(x) ≤Km ψt(y) for all t ∈ [0, δ).

Remark 9.2.2. This definition is local in nature: it asks that the system be monotone for short
intervals. This distinction between local and global monotonicity does not occur with continuous
vector fields and is unique to PWA systems. Consequently, not all existing results for monotone
systems [183, 101] can be extended to type-LKma.e. systems.

These are natural definitions to make because the non-uniqueness of Filippov solutions
leads to a destruction of monotone properties; these definitions are made in order to have a mean-
ingful notion of a monotone PWA system. This destruction of monotone properties because of
non-uniqueness of solutions can be demonstrated with a simple example: C1 = (0, 1) × (0, 1),
b1 = [−1 0]T ; C2 = (0, 1) × (1, 2), b2 = [1 0]T ; where A1 = A2 = diag(0, 0). Choosing m = (0, 0),
it follows that for all fixed i ∈ {1, 2}: if x, y ∈ C1 ∪ C2, xi = yi, and x ≤Km y, then f(x)i ≤ f(y)i.
By analogy to monotone system theory for continuous vector fields [183, 101], it is expected this
system to be type-Km monotone. Yet choosing x = (0.25, 1) and y = (0.75, 1), then a set of feasible
trajectories is ψt(x) = (0.25 + t, 1) and ψt(y) = (0.75 − t, 1). At t = 0.3, the monotone property is
violated because ψ0.3(x) ≥Km ψ0.3(y). This occurs because initial conditions x, y ∈ C1 ∩ C2 do not
have a unique trajectory.

9.3 Reach Sets of Measure Zero

In general, PWA systems do not have unique solutions along hyperedges of dimension
d ≤ n− 2 [90]; trajectories along these hyperedges are unique only under special cases [71]. Under
suitable conditions, a PWA system will be monotone on a set of points which excludes the set
of initial conditions with non-unique trajectories. If the trajectories are locally unique, then the
system is type-LKma.e. monotone; whereas, if the trajectories are globally unique, then the system
is type-Kma.e. monotone.

This section contains sufficient conditions that distinguish between a) locally unique so-
lutions and b) globally unique solutions. Also given are sufficient conditions for the set of initial
conditions with globally non-unique solutions to have zero measure. The following lemma charac-
terizes the intersections of backward reach sets with hyperedges of dimension n− 1.

Lemma 9.3.1. Consider a set of final conditions X with dimension d ≤ n − 2, and recall that
X = h(M). Suppose that for some hyperedge E it holds that X ∩ E 6= ∅. If dim(E) = n − 1 and
eTk (A · h(u) + b) 6= 0 for all normals ek to E , then either R(X ;A, b) ∩ E = ∅ or R(X ;A, b) ∩ E is an
embedded submanifold of dimension d.

For brevity, define two hypotheses. Note that these hypotheses are not the full set of
sufficient conditions for a PWA system to be monotone; there are more general conditions that are
given in Corollary 9.4.1.

Hypothesis 9.3.1. For all fixed k ∈ {1, . . . , n}, let m = (0, . . . , 0) and assume that ∀x, y ∈ ⋃q>0 Cq,
where x ≤Km y and xk = yk, it holds that f(x)k ≤ f(y)k.
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C1 = {x : 0 < x1 < 1 ∧ 0 < x2 < 1}

E1

1
= {x : x1 = 1 ∧ 0 < x2 < 1}

dim(E1

1
) = 1

E1

2
= {x : x1 = 0 ∧ x2 = 1}

dim(E1

2
) = 0

C2

E2

1
= {x : x1 = 1 ∧ 0 < x2 < 2}

Figure 9.1: A simple example of hyperrectangles and the associated hyperedges in R2 is shown.
Only two of the associated hyperedges of C1 are labeled; there are eight hyperedges associated to
C1. Also, in this example we have that E1

1 <1 E2
1 .

Remark 9.3.1. For this particular choice of m, the cone Km is the positive-orthant Rn
+, and so

x ≤Km y means that xi ≤ yi, for all i ∈ {1, . . . , n}. The hypothesis applies to vector fields that are
monotone with respect to the positive-orthant.

Denote Eq
i <j Er

k , if for two (n−1)-dimensional hyperedges with normal ej, the following
holds

sup
x∈Cq

(eTj x) < sup
y∈Cr

(eTj y). (9.5)

A example of this notation is shown in Figure 9.1.

Hypothesis 9.3.2. Assume that ∀x ∈ Eq
i ∩ Er

k , where Eq
i <j Er

k , dim(Eq
i ) = dim(Er

k ) = n− 1,
and for the common normal ej to the hyperedges, it does not hold that: a) eTj (Aqx+ bq) ≥ 0 and

eTj (Arx+ br) ≤ 0; b) eTj (Aqx+ bq) = 0; or c) eTj (Arx+ br) = 0.

Remark 9.3.2. The hypothesis applies to vector fields that do not have sliding modes, as this
is prohibited by assumption (a). Additionally, degenerate vector fields that are parallel to the
hyperedges of dimension n− 1 are prohibited by assumptions (b) and (c).

Define a series of sets on which the dynamics have the same qualitative behavior. The first
set is the union of the hyperrectangles, WI =

⋃

i>0 Ci. The next sets involve (n − 1)-dimensional
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hyperedges,

W qr
II = {x ∈ Eq

i ∩ Er
k : Eq

i <j Er
k∧ (9.6)

eTj (Aqx+ bq) > 0 ∧ eTj (Arx+ br) > 0}
W qr

III = {x ∈ Eq
i ∩ Er

k : Eq
i <j Er

k∧ (9.7)

eTj (Aqx+ bq) < 0 ∧ eTj (Arx+ br) < 0}
W qr

IV = {x ∈ Eq
i ∩ Er

k : Eq
i <j Er

k∧ (9.8)

eTj (Aqx+ bq) ≥ 0 ∧ eTj (Arx+ br) ≤ 0} \ WV

WV =
⋃

q>0

⋃

r>0

{x ∈ Eq
i ∩ Er

k : Eq
i <j Er

k∧ (9.9)

eTj (Aqx+ bq) ≤ 0 ∧ eTj (Arx+ br) ≥ 0}.
Note that the sets (9.6)—(9.9) do not depend on (i, k), because there is only one pair (i, k) that
produces a nonempty set for a given pair (q, r). The last set is a union of hyperedges with dimension
d ≤ n − 2, WV I =

⋃

q>0

⋃

i>0 E
q
i . It will be shown that the set of points on which uniqueness of

solutions is not guaranteed is given by

Z0 = WV ∪WV I . (9.10)

As alluded to, the dynamics have the same qualitative behavior in each of these sets. The
dynamics are PWA on the set of the hyperrectangular invariants WI . The sets W qr

II and W qr
III are

sometimes called transparent walls [90], because trajectories pass through the hyperedges contained
in these edges. The sets W qr

IV can be referred to as black walls [90], because trajectories that hit
the hyperedges in this set become stuck and move along the hyperedges. The set WV is sometimes
known as the union of white walls [90], because trajectories emanate from the hyperedges in this
set. Figures with examples of these sets can be found in [90].

Note that the vector field f(x) is only defined for x ∈ WI . Extend this vector field by
defining:

f̂(x) ,































f(x), if x ∈ WI

Arx+ br, if x ∈ W qr
II

Aqx+ bq, if x ∈ W qr
III

α(Aqx+ bq)+

(1 − α)(Arx+ br),
if x ∈ W qr

IV

, (9.11)

where α = eTj (Aqx+ bq)/(eTj (Aqx+ bq) + eTj (Arx+ br)), and f̂(x) is defined for x ∈ D \ Z0.

Lemma 9.3.2. If Hypothesis 9.3.1 holds, then ∀x, y ∈ D \ Z0, where x ≤Km y and xk = yk, it
holds that f̂(x)k ≤ f̂(y)k.

It is said that right uniqueness holds at point x0 if for x = x0 and y = x0, if for any two
solutions of the PWA system, there exists a δ such that ψt(x) ≡ ψt(y), for t ∈ [0, δ]. Similarly, left
uniqueness holds at point x0 if for x = x0 and y = x0, it holds that for any two solutions of the
PWA system with modified vector field f̃(x) = −f(x), there exists a δ such that ψ̃t(x) ≡ ψ̃t(y), for
t ∈ [0, δ]. Note that left uniqueness corresponds to uniqueness of trajectories running backwards
in time, because time reversal of a time-invariant system is identical to negating the vector field of
the system and then solving the equations forward in time.

With these definitions, the following lemma characterizes the set of points which exhibit
left and right uniqueness.



85

Lemma 9.3.3. If Hypothesis 9.3.1 holds, then right uniqueness holds for x ∈ D \ Z0, and also
f̂(ψs(x)) = d

dtψt(x)|t=s+ . If Hypothesis 9.3.2 also holds, then left uniqueness also holds for x ∈
D \ Z0.

Define the set Z = {x : ∃t ∈ Tx, s.t. ψt(x) ∈ Z0}. Uniqueness of solutions is not
guaranteed by Lemma 9.3.3 for points in Z0. So, Z0 can be thought of as an unsafe set and Z as
the backward reach set of this unsafe set [149]. The following lemma characterizes the Lebesgue
measure of the set Z.

Lemma 9.3.4. If Hypothesis 9.3.1 and Hypothesis 9.3.2 both hold, then µ(Z) = 0.

9.4 Sufficient Conditions for Monotone PWA Systems

Theorem 9.4.1 and Corollary 9.4.1 are analogs of the classical Kamke-Müller theorem
[183, 101]. Theorem 9.4.2 is an analog of the graph theoretical sufficient conditions of [125]. Our
results generalize this previous work to PWA systems.

9.4.1 Kamke-Müller Analogs

This section provides sufficient conditions for a system to be monotone for m = (0, . . . , 0).
With this established, a change of variables can be used to relate sufficient conditions for arbitrary
m to sufficient conditions for m = (0, . . . , 0).

Theorem 9.4.1. If Hypothesis 9.3.1 holds, then the PWA system is type-LKma.e. monotone. If
Hypothesis 9.3.2 also holds, then the PWA system is also type-Kma.e. monotone.

For m = (m1, . . . ,mn), with mi ∈ {0, 1} for i ∈ {1, . . . , n}, associate the change of
variables matrix Pm = diag(−1m1 , . . . ,−1mn).

Corollary 9.4.1 (Smith [183, Lemma 2.1]). If there exists m = (m1, . . . ,mn), with mi ∈ {0, 1}
for i ∈ {1, . . . , n}, such that

(i) f̃(x) satisfies Hypothesis 9.3.1 for x ∈ PmD, then the PWA system is type-LKma.e. monotone;

(ii) f̃(x) also satisfies Hypothesis 9.3.2 for x ∈ PmD, then the PWA system is also type-Kma.e.
monotone;

where f̃(x) = Pmf(Pmx).

9.4.2 Graphical Conditions

Theorem 2 provides an easy, graphical method to check if a PWA system satisfies Corollary
9.4.1. The conditions of this theorem are stricter than the conditions of the corollary, precisely
because this theorem is a set of sufficient conditions which implies the hypothesis of the corollary.

Defining

x(ξ; j, ν) = (ξj + ν)ej +
∑

i6=j

ξiei, (9.12)

the expression f(x(ξ; j, ν))i can be intuitively thought of as an analog of the partial derivative of
the i-th component of f with respect to xj . Furthermore, if ∀i, j ∈ {1, . . . , n} and ∀ξ ∈ WI it holds
that f(x(ξ; j, ν))i does not both increase and decrease for increasing ν, then a signed, directed graph
(V,E, S) can be associated to the PWA system. An example of a PWA system and its associated
graph is given in Section 9.5.1.
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Here, the vertices V = {v1, . . . , vn} correspond to the state variables x1, . . . , xn; a directed
edge from vi to vj is given by (vi, vj) ∈ E; and the edges are signed S((vi, vj)) ∈ {−1,+1}.
Construct the associated signed, directed graph as follows:

• ∀ξ ∈ WI , f(x(ξ; j, ν))i is constant for all ν, then there is no edge from vj to vi;

• ∀ξ ∈ WI , f(x(ξ; j, ν))i is non-decreasing for increasing ν, then (vj , vi) ∈ E and S((vj , vi)) =
+1;

• ∀ξ ∈ WI , f(x(ξ; j, ν))i is non-increasing for increasing ν, then (vj , vi) ∈ E and S((vj , vi)) =
−1;

Moreover, define an undirected cycle:

L = {u1, . . . , um, um+1 = u1; e1, . . . , em}, (9.13)

where for i = 1, . . . ,m it holds that ui ∈ V and either ei = (ui, ui+1) ∈ E or ei = (ui+1, ui) ∈ E. A
negative, undirected cycle is defined as a cycle L such that

∏m
i=1 S(ei) = −1.

Theorem 9.4.2. Assume that ∀i, j ∈ {1, . . . , n} and ∀ξ ∈ WI , f(x(ξ; j, ν)) does not both increase
and decrease for increasing ν. If the associated signed, directed graph (V,E, S) has no negative,
undirected cycles, except for negative, self-cycles which are allowed, then the PWA system is type-
LKma.e. monotone. If additionally the graph (V,E, S) has no negative, self-cycles and conditions
(b) and (c) of Hypothesis 9.3.2 hold, then the PWA system is also type-Kma.e. monotone.

Remark 9.4.1. The results in [69, 84] concern the existence of a stable periodic orbit in PWA
systems whose associated graph consists of a negative, simple cycle. Monotone systems do not have
stable periodic orbits [101], but [69, 84] do not contradict these results: these sufficient conditions
for type-Kma.e. monotonicity prohibit the case of a negative, simple cycle.

9.5 Example: Genetic Regulatory Networks

Monotone PWA systems arise in a number of systems of interest to controls engineers;
such areas include genetic regulatory networks (GRNs) and traffic engineering. This section focuses
on biological applications.

9.5.1 Associated Graph of a PWA System

As a simple example of a GRN, consider the following PWA system: C1 = (0, 1) × (0, 1),
b1 = [2 0]T ; C2 = (0, 1) × (1, 2), b2 = [0 0]T ; C3 = (1, 2) × (0, 1), b3 = [2 2]T ; C4 = (1, 2) × (1, 2),
b4 = [0 2]T ; where A1 = A2 = A3 = A4 = diag(−1,−1), and the states x1, x2 correspond to the
concentrations of protein A and protein B. Using the procedure of Section 9.4.2, a graph can be
associated to this PWA system. The associated graph is shown in Figure 9.2a. This GRN can be
thought of as a negative feedback loop between protein A and protein B, because the associated
graph is a negative, simple cycle. Consequently, the sufficient condition of Theorem 9.4.2 is not
met. In fact, the results of [69, 84] can be used to show that this system is not monotonic.
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(a)

(b)

Figure 9.2: (a) The graph associated to the system given in Sect. (9.5.1) is a negative feedback loop.
Note that a +1 (−1) signed edge has a “→” (“a”). (b) The effect of applying a pharmaceutical,
which removes the dashed elements of the network, to the cancer-related p53 pathway [95, 167,
196, 130] can be viewed as converting the pathway into a network whose associated PWA system
is type-Kma.e. monotone.

9.5.2 Qualitative Reference Tracking

A promotion-inhibition network is a signed, directed graph N = (V,E, S), and it is a
common, qualitative model for GRNs. An example is shown in Figure 9.2b. Intuitively, a positively
(negatively) signed edge between two vertices means that an increase in the direct predecessor leads
to an increase (decrease) in the direct successor. There are methods that convert a promotion-
inhibition network into a PWA system by suitably choosing a vector field [90, 54, 84, 185].

IfN has no negative, undirected cycles—except for negative, self-cycles—then by Theorem
9.4.2 the associated PWA system is type-LKma.e. monotone. IfN additionally has no negative, self-
cycles, then the vector field can be chosen to enforce Hypothesis 9.3.2 [90, 54, 84, 185]; consequently,
the associated PWA system is type-Kma.e. monotone by Theorem 9.4.2. Further results, such as
convergence of trajectories to equilibrium points, can be shown under additional assumptions, such
as the positive-invariance of D [183].

These results can be used for the control of GRNs [19] whose dynamics are given by PWA
systems. These controllers are open-loop and apply to both classical and PWA monotone systems.
In [19], it was shown that the chemical effect of pharmaceuticals and gene therapy on a GRN can be
abstracted as the removal of edges or vertices from N . Consequently, qualitative, reference tracking
control objectives can be posed as a related problem: remove edges and vertices of N to make the
system into a type-Kma.e. monotone system [19]. This can be done because monotone systems
have well-defined input-output behaviors [187]. The control action is then described in terms of
potential targets for pharmaceuticals or gene therapy to act on.

The protein p53 has important cellular functions, and low concentrations of p53 are cor-
related with cancerous cells. An example of a mutated p53 pathway which leads to low p53



88

concentrations, in the presence of DNA damage, is shown in Figure 9.2b; the mutated pathway
consists of both the black and dashed elements. A qualitative, reference tracking objective would
be to have high p53 concentration in the presence of DNA damage. Removing the dashed elements
of Figure 9.2b from the network via a pharmaceutical causes the system to become type-Kma.e.
monotone. Furthermore, this system satisfies the qualitative, control objectives: p53 concentration
is high in the presence of DNA damage.

9.6 Traffic Engineering

The Lighthill-Whitham-Richards (LWR) model is a partial-differential equation model of
traffic flow [88, 195]. The Godunuv scheme can be used to convert an LWR model of a single
freeway into the cell transmission model (CTM), a discrete time model for N sections of a freeway.
In the CTM, each section has one on- and one off-ramp. Let x be a N -dimension vector of vehicle
counts on each section of the freeway, then the CTM model is given by x[n + 1] = g(x[n]), where
g is a PWA function and satisfies our Hypothesis 9.3.1 [88], since this results also hold for E which
are arbitrary, embedded submanifolds which divide D. One can also use a semi-discrete Godunuv
scheme to spatially, but not numerically, discretize the LWR model. This gives the model ẋ = g(x),
and by Theorem 9.4.1 this system is type-LKma.e. monotone. Showing that the system is type-
Kma.e. monotone requires extending the results presented in this chapter and then performing
additional computations. We suspect that it is indeed type-Kma.e. monotone, but this needs to
be checked.
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Chapter 10

Graph-Theoretic Topological Control

A common theme repeated throughout the second part of this thesis is that biological
genetic networks contain features that make it difficult to do traditional control. Measuring the
states of a system for the purposes of feedback control can be prohibitively difficult or even not
feasible with current technologies. Moreover, such genetic networks do not typically have inputs
that can be changed to do control. In light of these difficulties, a new framework was proposed in
[19] for doing the topological control for such networks. A related line of research that has been
developed concurrently is [150].

In the framework considered here, the affect of drugs, pharmaceuticals, and gene therapy
are abstracted to having a graph theoretic interpretation. It is common for biologists to abstract
genetic networks, which are dynamical systems, to a signed, directed graph which qualitatively
describes the influence of a state on another state. This graph is often referred to as a promotion-
inhibition network. Using a quasi-steady-state approximation, it can be shown that drugs and
pharmaceuticals can be interpreted as modifying the signed, directed graph by removing vertices
or edges of the graph [19].

If pharmaceuticals are interpreted as modifying a graph, then control can be accomplished
by intelligently modifying the topology of the genetic networks. The topology of a network will
remain modified only in the presence of the pharmaceutical: As soon as the pharmaceutical de-
grades, the topology of the network will return to an unmodified nature, and the system will go
back to being uncontrolled. The control that is chosen also depends on having correct knowledge
of the genetic network.

Topological control can be done by using theorems that relate the topology of the network
to the dynamical behavior of the network. A big class of results concerns monotone systems
[184, 187, 125], systems with no undirected, negative cycles within the graph of the network.
These systems do not have any stable oscillations, and all trajectories converge to equilibrium
points. A related class of results concerns systems with no directed, negative cycles within the
graph of the network. If the graph is also strongly connected, then all trajectories of the system
converge to equilibrium points and there are no stable oscillations [121]. Similar results are found
in [159, 89, 47, 188]. These results can be extended to prove that all systems with no directed,
negative cycles have the same behavior. The particular case of piecewise-affine hybrid systems with
no self-inhibition was proved in [18, 11], and the more general case of arbitrary smooth vector fields
was proved in [187].

Directed, negative cycles correspond to the intuitive notion of negative feedback in a
system. Undirected, negative cycles, which are a superset of directed, negative cycles, do not



90

always match the intuitive notion of negative feedback. Certain control objectives can be satisfied
by removing the negative feedback of the system, which removes the oscillations of the system.
This is the goal of the current chapter: How can negative feedback be removed from the system,
so that the system trajectories do not have stable oscillations and converge to equilibrium points?
The goal is: What should pharmaceuticals be designed to target, so that the concentrations in the
genetic network converge to equilibria?

This is a crude level of control, but returning to the biological example in Chapter 8 of
the p53 pathway—which is implicated in cancer—shows that it can generate useful controllers.
This type of control is related to the work in [108, 50]; however, the difference is that removing
undirected, negative cycles is a more restrictive condition, because negative feedback is a subset of
undirected, negative cycles.

An influence graph (also known as a promotion-inhibition network) is a signed, directed
graph G = (V,E, S), where V = {v1, . . . , vn} is the set of vertices, E ⊆ {(u, v) : u, v ∈ V } is the
set of directed edges, and S : E → {−1,+1} is a function that gives the sign of an edge. For an
edge e = (u, v): u is the direct predecessor of v, and v is the direct successor of u. Edges labeled
−1 are called inhibition edges, while edges labeled maps to 1 are called promotion edges. A simple
directed cycle l = (e1, e2, · · · en) with all ei ∈ E is called a negative feedback loop if and only if it
contains an odd number of inhibitory edges; in other words:

∏

e∈l

γ(e) = −1.

Consider the problem of modifying an influence graph to eliminate such cycles: Given
an influence graph G and a weighting function ω : E ∪ V 7→ R, find the minimum weight subsets
(possibly empty) E′ ⊂ E and V ′ ⊂ V such that removal of both of these subsets from the influence
graph causes the graph to have no negative feedback. As mentioned before, this problem, while
similar to the problem of balancing signed directed graphs discussed in [108, 50], is different in that
directed, as opposed to undirected, feedback cycles are considered here. This problem is also similar
to that in [186], but there are differences in: the weights used in the problem, the application of
the problem, and the algorithm used to solve the problem.

The weights ω can be interpreted as the cost of removing an edge or vertex, and there are
many biological interpretations of the weight. For instance, if an existing drug can remove an edge,
then the weight of that edge can be set low, because there is a lower cost to removing that edge.

This chapter begins by proving that the decision version of the negative feedback edge-
vertex deletion problem is in NP by demonstrating a polynomial time algorithm to check whether a
given influence graph has negative feedback or not. Then, using results from [132], it is shown that
the node deletion problem—and thus the node/vertex deletion problem—for negative feedback is
NP-hard. An integer linear program (ILP) for eliminating negative feedback in an arbitrary graph is
proposed [15]. Trivial modifications of efficient approximation algorithms for the directed multicut
problem [44, 93] are used to solve this ILP. Lastly, this approach is used on a few biological examples
and on the p53 pathway, a pathway involved in human cancers.

10.1 Negative Feedback Edge/Vertex Removal is NP-Hard

10.1.1 Decision Version of Negative Feedback Edge/Vertex Removal is in NP

To show that the decision version of the negative feedback problem lies in NP, a polynomial
time algorithm is demonstrated which determines if a given influence graph has negative feedback
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Figure 10.1: Influence graph G and γ(G)

cycles. Though this fact was stated without proof in [186], it is useful to formally prove this,
because the proof will provide the intuition behind the algorithm presented in this chapter. To
do this, first define the operation δ : G → G′ that maps an influence graph G = (V,E, S) to a
directed graph G′ = (V ′, E′). Define the operation δ(G) = (η(V ), τ(E,S)) = (V ′, E′) by defining
the two functions η(·) and τ(·). Specifically, define a bijection η : V → P that makes a clone of
every vertex. Here, P = {η(v) : v ∈ V } is a clone of every vertex V . Also, define the vertices of
the graph G as V ′ = V ∪ P .

Next, define a function that doubles every edge. If the edge is an promotion edge, make
two edges: one of which stays within V and one of which stays within P . If the edge is an inhibition
edge, make an edge that crosses from V to P and an edge that crosses from P to V (see Figure
10.1). This is done using a one-to-two correspondence τ which maps each edge in E to two edges
in δ(G). In particular,

τ((u, v)) =

{

{(u, v), (η(u), η(v))} if γ((u, v)) = 1

{(u, η(v)), (η(u), v)} if γ((u, v)) = −1

E′ =
⋃

e∈E

τ(e).

Note that τ−1 is a function. Note that this construction, illustrated in Figure 10.1, superficially
resembles the embedding construction in [187]. A closer examination reveals that these two con-
structions are quite different in terms of operations, and they serve different purposes.

For a path in δ(G), it has a preimage in G. The preimage of a path is obtained by mapping
τ−1 onto each edge in the path. Additionally, for every path p in G, a corresponding path in δ(G)
can be constructed by choosing an appropriate edge from τ(e)—for each edge e in p—for the new
path.

The existence of a path in G′ from any vertex x to its duplicate η(x) implies the existence
of a negative feedback loop in the original influence graph G, and that any negative feedback loop
in G that contains x implies the existence of a path from x to η(x) in G′. This can be formalized
with the theorem given below. A proof can be found in the appendix.

Theorem 10.1.1. The existence of a negative feedback cycle in G at vertex v implies the existence
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Figure 10.2: Vertex before and after splitting

of a path in δ(G) from v to η(v), and the existence of a path in δ(G) from v to η(v) implies the
existence of a negative feedback cycle in G.

Using these ideas, the question of whether or not G has negative feedback cycles can
be rephrased as a question about connectivity in δ(G). This allows checking for the existence of
negative feedback cycles by checking if there exists a path between any v ∈ V and η(v) ∈ P in
δ(G). One easy way to do this is by performing n = |V | depth first searches in δ(G)—a polynomial
time operation.

10.1.2 Negative Feedback Edge/Vertex Removal is NP-Hard

Using the results of [132], it can be shown that the node-deletion problem for negative
feedback is NP-hard. In [132], the authors prove that for any graph property Π, which is “nontrivial”
and “hereditary”, the node-deletion problem is NP-hard. Nontrivial properties are true for infinitely
many graphs and false for infinitely many graphs, while a hereditary property is true on all vertex-
induced subgraphs of a satisfying graph. For purposes of the presentation here, take Π(G) to mean
that G has no negative feedback cycles.

Theorem 10.1.2. Π = “no negative feedback”, is a nontrivial property.

Proof. It is easy to see that Π is nontrivial. Consider the directed cycle graphs Cn (Cn is an n-
vertex graph that consists of a single, directed cycle) with each edge inhibitory; when n is odd, Cn

is clearly a negative feedback loop, and when n is even, Cn must have no negative feedback. Both
of these sets are infinite, so Π must be nontrivial.

Theorem 10.1.3. Π = “no negative feedback”, is a hereditary property.

Proof. Proof by contradiction. Assume Π(G). If Π is not hereditary, then for some G, there is
some vertex-induced subgraph S of G that contains a negative feedback loop. If S is a subgraph
of G, any feedback loop in S is also in G, thus G has a negative feedback loop. Contradiction.

Appealing to Theorem 7 of [132], the conclusion is that the node deletion problem for
negative feedback is NP-hard. By appropriate choice of the weighting function ω, the edge-node
deletion problem for negative feedback can also be shown to be NP-hard.

10.2 Heuristic Algorithm

The operation δ(G) provides an interesting way to pose the problem of negative feedback
removal: By Theorem 10.1.1, the problem is equivalent to disconnecting each pair v, η(v) in δ(G).
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(a) Normal p53 Pathway (b) Abnormal p53 Pathway (c) Abnormal p53 Pathway with
Controller

Figure 10.3: When a subsegment of the normal p53 pathway [95, 167, 196, 130] becomes abnormal,
such as loss of p19 ARF function [167], the system behaves unfavorably by underexpressing p53.
Using a controller, the grayed edge can be removed to make the system behavior more favorably.

This would ensure no negative feedback in the original influence graph. This rephrased problem is
very nearly an instance of the directed multicut problem discussed in [46].

The directed multicut problem takes a directed graph and a list of source/sink pairs
([(s1, t1)...(sk, tk)]) to be separated. An optimal solution to multicut finds the minimum weight
subset of edges that must be cut in order to separate each source from its corresponding sink.
The directed multicut problem is NP-hard, and a short description of the multicut integer linear
program (ILP) solution is given here.

Each edge is assigned a variable xe that is either zero or one. If xe is high in the solution,
then cut e. In formulating the constraints, these variables are interpreted as lengths on each
edge. Intuitively, the constraints specify that the minimum distance between a source and its
corresponding sink be at least one. This ensures that they cannot be connected once a cut is made.

To achieve this, each vertex is assigned k variables dv,i, with i ∈ [1, k]. The optimization
variable dv,i is the distance between the i-th source and the vertex v. Each distance is required
to be consistent with the edge lengths. Specifically, if vertex u is connected by an edge with zero
length to vertex v, each dv,i is at most du,i. If they are connected by an edge with length one, each
dv,i is at most du,i + 1. Formally, the solution is given by:

Directed Multicut ILP

min
∑

e∈E

ω(e) · xe

s.t. for all i ∈ [1, k]

dti,i − dsi,i ≥ 1

dv,i ≤ du,i + xe for all e = (u, v) ∈ E

xe ∈ {0, 1} for all e = (u, v) ∈ E

Unfortunately, there are two problems with simply running multicut on δ(G) with each v,
η(v) pair as a source/sink pair. The first problem is that the multicut problem deals exclusively with
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cutting edges. Therefore, the edge/node deletion problem must be reduced into the edge deletion
problem in order to take advantage of known approximations of multi-terminal cuts [44, 93]. The
reduction is fairly intuitive and can be applied to the unmodified influence graph G (with some
modification to the sign function) or to the altered digraph δ(G). To do the reduction, split each
vertex in two to create an in-terminal and an out-terminal for the node. All incoming edges to the
vertex are connected to the in-terminal, and all outgoing edges are connected to the out-terminal.
Then connect the two terminals with an edge that is equivalent to the original vertex (see Figure
10.2). More formally, transform δ(G) = (V,E) into G′ = (V ′, E′) where

V ′ = {vin, vout : v ∈ V }
E′ = {(uout, vin) : (u, v) ∈ E} ∪ {(vin, vout) : v ∈ V }.

Then, reassign the weights for the vertices to the new edges that connect each in/out
vertex pair. The new edges can be considered equivalent to the original vertices. Coincidentally,
this manipulation can be used to show that the edge-deletion problem is also NP-hard. From
here on, only the edge-deletion variant of the problem will be considered because, as shown, the
node/edge deletion problem is equivalent.

The second problem with directed multicut stems from the fact that τ relates each edge
in G to two edges in δ(G). So, the two edges could be separately cut. To get around this problem,
the directed multicut ILP is modified slightly by having each edge variable correspond to two edges
instead of one,. This leads to the final formulation of the edge deletion negative feedback problem:

Negative Feedback ILP

min
∑

e∈E

ω(e) · xe

s.t. for all i ∈ [1, |V |]
dvi,i − dη(vi),i ≥ 1

dvi,i ≤ dui,i + xe for all excitatory edges,

dη(vi),i ≤ dη(ui),i e = (u, v) ∈ E

dvi,i ≤ dη(ui),i + xe for all inhibitory edges,

dη(vi),i ≤ dui,i + xe e = (u, v) ∈ E

xe ∈ {0, 1} for all e ∈ E

The approximation algorithms for directed multicut given in [44, 93] can be used to solve
the negative feedback ILP. As a substep, these algorithms require the solution of the linear program
(LP) formed by relaxing the integer constraints in the directed multicut ILP. These approximation
algorithms can be trivially modified to solve the negative feedback ILP by relaxing its integer
constraints to form a LP. If this change is made to the approximation algorithms in [44, 93], then
this gives a heuristic algorithm for solving the negative feedback ILP. We conjecture that is an
approximation algorithm for the negative feedback ILP, but the necessary calculations have not
been made.
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Table 10.1: Number of edge deletions for monotonicity and number of edge deletions required to
eliminate negative feedback

Network Vertices Edges Monotone No Negative Feedback Time (min.)

EGFR 330 885 210 45 6.5

Yeast 690 1082 41 1 6

Macrophage 678 1582 374 74 12.5

10.3 Results

This algorithm was implemented in Python, using the PuLP library to interface with the
COIN LP solver [136]. All tests were run on a 2.4 GHz Intel Core 2 Duo MacBook Pro with 2 GB of
RAM. The edge-deletion variant of this algorithm was evaluated on the three regulatory networks
used in [108]: Macrophage, EGFR, and Yeast. Table 10.1 provides the size of each network, the
number of edges that need to be deleted in order to make the system monotone, and the results
of the LP relaxation of the negative feedback ILP. For the EFGR and Yeast networks, the optimal
LP solutions were integer, but for the Macrophage network the solution was fractional. Rounding
up increased the value of the objective function from 66 to 74.

It is interesting to compare the results of removing negative feedback versus the results
of removing monotone feedback. Since negative feedback is a subset of monotone feedback, it is
expected that less edges would be removed than the approach of [108]. This is what is seen in
Table 10.1. The number of edges required to remove negative feedback is significantly less than
the number of edges required to remove monotone feedback. This is also interesting, because this
approach is a heuristic approach that is not guaranteed to give the true minimum number of edges
to remove; [108] uses an algorithm that computes the optimal solution.

10.3.1 p53 Pathway

Returning to the p53 pathway considered in Chapter 8, it is interesting to see the results
of this algorithm on this network. After using the heuristic algorithm on the mutated p53 pathway
10.3b, the algorithm suggests cutting the grayed edge shown in Figure 10.3c. The results are simple,
but they are interesting. This is because the edge told to be cut is an edge that biologists have
studied in detail and devised chemicals to cut [208, 80]. It is also interesting to compare the results
of this algorithm to the control of the same system in [19], because the two controllers superficially
look the same but have different behaviors and modalities. In the present chapter, the control
removes an edge; whereas in [19], the control removes a vertex. The behaviors of the controlled
system are also different, and this can been seen by comparing Figure 10.4 to Figure 8.3.

The effect of the control of cutting the grayed edge shown in Figure 10.3c can be seen in
Figure 10.4. Time course concentrations of p53, cyclin A, and MDM2 are shown in Figure 10.4a
for the normal p53 pathway, Figure 10.4b for the abnormal p53 pathway, and Figure 10.4c for
the abnormal p53 pathway with controller. These simulations come from an ODE model of the
network, and in the simulations the edge between MDM2 and p53 is removed, but the edge between
MDM2 and cyclin A is not removed. In the normal p53 pathway, concentrations of p53 and cyclin
A are high, and concentrations of MDM2 are low. In the abnormal p53 pathway, p53 and cyclin
concentrations are low, whereas MDM2 is in high concentration. In the abnormal p53 pathway
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(c) Abnormal p53 Pathway with Controller

Figure 10.4: The time course plots for the different pathways displays the effect of the abnormality
and the controller. Note that p53 is solid, cyclin A is dashed, and MDM2 is dash-dotted.

with controller, the controller is used at times t = 200, t = 250, and t = 300. The controller causes
p53 concentrations to increase to higher levels, and reduces MDM2 concentrations. The cyclin A
concentration stays at a reduced level. The controller must be used at multiple times, because the
controlling drug is modeled to decay. So, the effect of the controller wains as time goes on. If the
controller is not applied again, the system returns to an abnormal state.

10.4 Future Problems

A heuristic algorithm for removing the negative feedback from a promotion-inhibition
network was presented. This is an important problem because it is an abstraction of the question
of which drugs to design to remove stable oscillations from a biological genetic network to a graph-
theoretic problem of edge and vertex deletions. Such a method of control is crude, that is it cannot
perform specific control actions. However, as seen in the p53 example, the results of the algorithm
can be interesting and biologically relevant.

The heuristic algorithm is required because the original problem of edge and vertex re-
moval to remove negative feedback from a promotion-inhibition network is NP-hard. Solving the
problem in a reasonable amount of time for large networks requires either the use of heuristic or
approximation algorithms. By recognizing that this problem is similar to the directed multicut



97

problem (which is also NP-hard), existing approximation algorithms [44, 93] — for solving the
directed multicut problem — could be modified to solve this problem. We conjecture that this
heuristic is an approximation algorithm because it is based on approximation algorithms for a
similar problem.

Future works include two aspects. First of all, it would be interested to formally prove
whether this algorithm is an approximation algorithm. It will likely be a straight-forward extension
of the results of [44, 93]. Second of all, it will be interesting to use this algorithm to study other
interesting biological networks.
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Chapter 11

Computer-aided Drug Discovery for
Pathway and Genetic Diseases

When designing pharmaceuticals for a disease, researchers currently use their intuition
and knowledge about the particular disease modalities to choose which cellular components to
target with pharmaceuticals. Such an approach is limited by intuition, and only a few cellular
components can be considered at a time. In recent years, there has been a growing recognition on
the importance of using multiple drugs, so called “drug cocktails”. Unfortunately, simultaneously
choosing and designing drugs to target multiple components of a disease modality is even more
difficult because of the difficulty in predicting the simultaneous affect of multiple drugs on a large
network of cellular components.

This has prompted work on systems theoretic tools for doing drug multi-target selection,
such as those presented throughout this second part of the thesis. An important problem facing
the health-care industry is how to systematically do drug-discovery. The first aspect of this, is:
How should the targets for drugs be chosen? A related problem is: How can drugs be designed to
minimize their adverse effects on healthy cells?

Attempts to aid with drug-discovery using a systems-view are relatively recent. Some
existing techniques [2, 150, 163] use a biological modeling approach known as flux balance analysis
[116]. These approaches identify genes to knock out using gene-therapy, and they typically involve
solving the problem of either ensuring viability or ensuring non-viability [2, 163]. The approach in
[150] tries to make reactions in a treated, mutated cell occur at the same rate as reactions in an
untreated, healthy cell. Other techniques focus on fixing the steady-state behavior of the network
[181, 52, 217] by knocking out genes.

There are certain trade-offs inherent in the approaches of [2, 150, 163, 181, 52, 217]. They
do not simultaneously consider the impact of the drug treatment on both mutant- and wild-type
cells. This is important because real treatments cannot distinguish between healthy and diseased
cells. Additionally, these techniques focus on the steady-state behavior of the pathways. Some
biological pathways are known to display complicated transient and oscillatory behaviors. Moreover,
these approaches cannot deal with the effects of removing a reaction between species without having
to manually modify the models; it cannot be done in an automated manner. Though biologically
accomplishing this is difficult, some pharmaceutical drugs do this. The approaches in [2, 150, 163]
consider reaction rates and not species concentrations. For the function of the cell, the latter is
often more important than the former. It can be overly restrictive to ask that the reaction rates
between the two types of cells be the same.
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(a) Healthy p53 Pathway (b) Diseased p53 Pathway (c) Diseased p53 Pathway with Con-
troller

Figure 11.1: When a subsegment of the healthy p53 pathway [95, 167, 196, 130] becomes diseased,
such as loss of p19 ARF function [167], the system behaves unfavorably by underexpressing p53.
Using a drug (abstracted as a controller), the grayed portions of the network can be removed to
make the system behave more favorably.

In parallel to the efforts of [2, 150, 163, 181, 52, 217], there has been work on similar
problems but for pathway-dependent diseases. In [19], it was shown that pharmaceuticals and
genetic-therapy are mathematically equivalent to either removing a species from the cell or removing
an interaction/reaction between two species. Mathematical theory relating the topology of the
pathway with the behavior of the system was used to develop methods to tell which species and
interactions to target with drugs in order to make the network behave in a specific manner [19,
12, 17]. The level of control afforded by these techniques is crude, and this has prompted the
development of a newer technique which gives a finer level of control on the pathway [21].

This approach requires a researcher to choose what the inputs to and the outputs from a
pathway are. The outputs of the pathway can be biomarkers for disease; for instance, in the p53
network shown in Figure 11.1, high MDM2 and low p53 concentration are correlated with cancerous
cells [95, 167, 196, 130]. The inputs of the pathway can be triggers of diseases or a direct signal of
a negative event; as shown in the p53 pathway in Figure 11.1, L26 is an indicator of DNA damage.

Having chosen inputs and outputs, the desire is to make the diseased pathway with drugs
behave similarly to the healthy pathway. The notion of “closeness” is defined by asking that the
healthy and diseased pathways have similar input-output behaviors. The benefit of this definition
of closeness is that it can be rigorously quantified using a variant of the L2 norm of the error
dynamics. Additionally, there is a desire to make the healthy network with drugs behave similarly
to the healthy network with no drugs. In this manner, drugs can be chosen to make a trade-off
between adverse effects on healthy cells and positive effects on diseased cells.

This chapter begins with a description of this new computational drug discovery approach.
The approach is based on mathematical theory from the field of multivariate control and optimiza-
tion, and it consequently requires a good mathematical model of the pathway. Choosing the optimal
drug-targets can be posed as a combinatorial optimization problem. Scalable approaches for solving
this problem, through the use of Monte-Carlo based resampling techniques, are presented. Lastly,
examples are given of this approach used on biological examples.
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11.1 Problem Setup

11.1.1 Preliminaries

Let x ∈ Rp, where p is the dimension of the state-space, and let y ∈ Rw, where w is the
number of outputs. The outputs of the pathway are given by the relationship

y = Cx, (11.1)

where C ∈ Rw×p. Also, u(t) ∈ (L2[0, T ])v is the set of v-dimensional, square integrable functions
with support on [0, T ]. Furthermore, refer to the i-th component of a vector x as xi.

Define a slight variation on the notion of the L2 norm [206, 117]. In particular, define the
T -time L2 gain of the following nonlinear system

ẋ = f(x, u)

y = h(x),
(11.2)

as the solution of the following (nonconvex, in general) optimization problem: L2,T,ε = inf γ, subject
to

inf
‖u‖2≥ε
x0∈X

∫ T

0

(

γ2‖u‖2 − ‖y‖2
)

dt ≥ 0, (11.3)

where X is the set of initial conditions. The difficulty with the standard L2 norm [206, 117] is
that if a system is not stable then its L2 norm is infinite. By (a) defining a cutoff time T (granted
this cutoff is somewhat arbitrary), (b) defining a minimum input norm ε, and (c) not defining a
system operating point, the T -time L2 gain can distinguish between different levels of instability.
The notion of decay rate [38] can be used to distinguish between different levels of instability, but
it is a cruder notion for the purposes of drug discovery: Two systems with the same decay rate can
have different T -time L2 gains.

11.1.2 Pathway and Pharmaceutical Model

Let x ∈ Rp be a vector of species concentrations and u ∈ Ru be a vector of inputs. The
i-th component of this vector is denoted xi, and it always refers to the same species. Subscripts
are used to differentiate amongst different conditions (e.g., healthy, diseased, etc.) on the pathway.
Recall that the output of the pathway is given by y = Cx, and the output is the same regardless
of the conditions on the pathway. This is because C is a matrix which reads out certain species
concentrations, and it has the form that each row of C is all zeros except for one column (this
column is different for different rows) which is one. An example of a C matrix is

C =

[

0 1 0 0
0 0 1 0

]

. (11.4)

Differentially weighting the importance of certain outputs is a simple extension that requires weight-
ing the rows of C.

Assume that the healthy pathway obeys the dynamics

ẋh = fh(xh, u), (11.5)

where the subscript h denotes that the quantities are those of the healthy pathway. Similarly,
suppose that the diseased pathway obeys the dynamics ẋd = fd(xd, u), where the subscript d
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denotes that the quantities are those of the diseased pathway. Denote the dynamics of the diseased
pathway with drug treatments as ẋs = fs(xs, u), and the error is given by

es(t) = yh(t) − ys(t). (11.6)

Similarly, the dynamics of the healthy pathway with drug treatments is denoted as ẋr = fr(xr, u),
and the error is given by

er(t) = yh(t) − yr(t). (11.7)

Following the approach in [19], abstract the effect of genetic therapy and pharmaceuticals
as removing species or reactions from the network. From a biochemistry standpoint, most phar-
maceuticals remove species from the network. This is because it is easier to prevent a species from
being created than it is to prevent a reaction between two species from occurring. This is not to
say that there are no drugs which prevent reactions, just that their biochemical design could be
exceedingly difficult.

Mathematically speaking, a drug that removes a species from the network can be modeled
in two ways. The first way is to enforce an algebraic constraint on the system. For instance,
removing the i-th species using a pharmaceutical is algebraically represented as x i

r = 0. The
second way is to modify the dynamics of the network by adding a new term to the vector field:

ẋ i
r = fd(xr, u)

i − λx i
r , (11.8)

where λ is a very large value. In this equation, the vector field ẋr = fr(xr, u) is represented in
terms of the vector field fd(xr, u).

The second way of modeling the removal of a species from the network is essentially the
same as enforcing an algebraic constraint on the system, but it enables posing the drug-discovery
problem in a more natural optimization framework. Let v be a p-dimensional vector whose entries
are either 0 or 1. For a p-dimensional vector-field f(x, u), define the operator R(·) as:

R(f(x, u))i = f(x, u)i − λxi, (11.9)

where λ is a very large value. The drug-discovery problem can be posed as selecting the values of v
subject to a minimization objective. Note that species i can be disallowed from removal by forcing
the constraint vi = 0.

11.1.3 Interaction Removal

Removing an interaction (typically a reaction) between two species is biologically more
difficult. It is not surprising that it is also difficult to do this in a general norm minimization
framework. The most general method for doing this is to add more states to the system and then
accordingly modifying the ODE model. By carefully adding states to the system, allowing reactions
to be removed is equivalent to removing species from the network. This can be best explained with
an example. In this example, the added state has a biological basis; however, it is not necessary to
have a biological basis for adding these additional states.

Consider the p53 pathway from Chapters 8 and 10, which is shown in Figure 11.1. It is
known [208] that MDM2 and p53 bind to form a complex (for the purposes of the discussion here,
this will be called MDM2p53). This complex then signals p53 to be degraded by the cell. Instead
of directly modeling this inhibition of p53 by MDM2, an additional state can be added. Figure
11.2a shows the simplest model in which these interactions are modeled as being direct. On the
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MDM2 p53

(a) Direct Interaction

MDM2 MDM2p53 p53

(b) Appended Interaction

Figure 11.2: The interaction between MDM2 and p53 can be modeled either by a direct interaction
or with an appended interaction which adds a state to model the reaction that forms the MDM2p53
complex.

other hand, Figure 11.2b shows a model in which the complex MDM2p53 is added to model the
interaction between MDM2 and p53. If the species MDM2p53 is removed from the network, then
this removes the interaction going from MDM2 to p53; the interaction from p53 to MDM is not
removed by removing MDM2p53.

11.1.4 L2 Norm Minimization Problem

The problem of choosing the optimal targets for drugs can be written as a non-convex
optimization problem. For a given weight α ∈ [0, 1] and value of T > 0, solve:

inf
v

αγr + (1 − α)γs, (11.10)

subject to:

1. ẋh = fh(xh, u) and yh = Cxh

2. ẋd = fd(xd, u) and yd = Cxd

3. ẋr = R(fh(xr, u)) and yr = Cxr

4. ẋs = R(fd(xs, u)) and ys = Cxs

5. x0 ∈ X

6. u(t) ∈ (L2[0, T ])v and ‖u(t)‖ > ε

7. inf
∫ T
0

(

γ2
r‖u‖2 − ‖yh − yr‖2

)

≥ 0

8. inf
∫ T
0

(

γ2
s‖u‖2 − ‖yh − ys‖2

)

≥ 0

9. vi ∈ {0, 1} for i ∈ V

10. vi = 0, for i /∈ V
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where V ⊆ {1, . . . , p} are the indices of the species that can be removed by a pharmaceutical and
‖ · ‖ is the `2 norm.

The optimization problem given in (11.10) means minimizing a weighted sum of (a) T -time
L2 norm of the error between a healthy pathway and a diseased pathway with drug-treatment, and
(b) T -time L2 norm of the error between a healthy pathway and the healthy pathway with drug
treatment. This provides a trade-off between adverse effects on healthy cells and positive effects on
diseased cells, because the L2 norm of the error dynamics gives a measure of the deviation between
the input-output behavior of the healthy cell and the diseased cell with drug-treatment. As stated
earlier, the minimization in (11.10) is achieved by selection of the values of the vector v which
indicate which species to remove from the network.

11.2 Solving the L2 Norm Minimization Problem

The optimization problem defined in (11.10) is a difficult problem to solve because it is
a combinatorial optimization problem with non-convex constraints. Because biological pathways
can be large, it is important that any method used to solve the problem be scalable. In order to
solve the problem efficiently, Monte-Carlo-based heuristics can be used; there are two approaches
to take. The first approach is a brute-force, exhaustive-search approach, and this is best-suited
for the “optimal drug cocktail selection” problem when the cardinality of V is small. The second
approach is a greedy-search approach, and it is best suited for the “drug-discovery” problem when
the cardinality of V is large.

11.2.1 Infeasibility of Linearization-Based Approaches

Before discussing heuristic methods for solving L2 norm minimization problem, it is worth
discussing one approach which will not work well. Imagine trying to linearize the error dynamics
ėr = C(ẋh − ẋr), and then using linear theory to compute a norm of the error-dynamics. The most
common norms for linear systems are the H2 and Hinf (for linear systems this is equivalent to the
L2 norm), but a problem is that both norms require that the system be asymptotically stable. This
is not true in general because the operator V changes the dynamics to

R(f(x, u))i = aix
i + bi − λ(xi − x i

0 ), (11.11)

where x0 is the operating point of the linearization.
The second approach is to use the notion of decay rate [38] (as opposed to L2 norm) to

compute the size of the error. If er(t) is the error term, then the decay rate α is defined as

inf α, such that lim
t→∞

e−αter(t) = 0. (11.12)

This is a quasi-convex optimization for systems with linear dynamics, and efficient algorithms exist
for solving this [38]. Imagine using this notion of distance in the norm minimization problem, and
the optimal v of species to remove with drugs could then be computed using an algorithm similar
to the µ−K iterations ubiquitous to multivariate linear control. The problem with this approach
is that the nonlinear system is stable for all values of v (this can be shown using an argument
involving positively invariant regions). Thus, the decay rate for all values of v is identically α = 0,
even though the size of the error could be uniformly smaller for some values of v. This situation is
even worse for the linearized case where the decay rate calculated will be an upper bound on the
true value: The decay rate will have no relation to the size of the error.
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Algorithm 1: Brute-Force Search for Optimal Drug Cocktail Selection

input : V ,α, X ⊂ Rp, U ⊂ Rv, n ∈ R+

output: γ, I ⊆ V

1 foreach j = 1, . . . , n do

2 set xj :=random vector from X ;
3 set uj :=random vector from U ;

4 end

5 foreach I ⊆ V do

6 vi = 1,∀i ∈ I;
7 calculate γr(I) subject to

8 γr = maxj={1,...,n}
∫ T
0 ‖yh,j − yr,j‖ 2

2 /‖uj‖ 2
2 dt;

9 end

10 calculate γs(I) subject to

11 γs = maxj={1,...,n}
∫ T
0 ‖yh,j − ys,j‖ 2

2 /‖uj‖ 2
2 dt;

12 end

13 end

14 set γ := minI αγr + (1 − α)γs;
15 set I := arg minI αγr + (1 − α)γs;
16 return γ, I

11.2.2 Optimal Drug Cocktail Selection Problem

Recall that in the “optimal drug cocktail selection” problem, the cardinality of V is small.
A biological example of this problem is the treatment of a cancer in which there are 10 drugs whose
effects on a pathway are known, and a researcher would like to choose the subset of drugs that
provides the best clinical outcome. Since the cardinality of V is small in such problems, we can use
an exhaustive-search to choose the optimal set of drugs as shown in Algorithm 1.

The basic idea is to randomly sample points from X ⊂ Rp which contains all possible
initial conditions and randomly sample from a subset U ⊂ Ru which contains all possible input
values. These randomly sampled points uj for j = 1, . . . , n are used as inputs to the system, and
the T -time L2 gain of the system errors are computed for each value of uj.

11.2.3 Drug Discovery Problem

Recall that in the “drug discovery selection” problem, the cardinality of V is large. A
biological example of this problem is the treatment of a cancer in which a researcher would like to
determine a best set of targets for drugs, such that the clinical outcome of the cancer is positive.
Since the cardinality of V is large in such problems, exhaustive-search cannot be used. However, a
backwards greedy-search can be used. This is shown in Algorithm 2. The basic idea is to remove
one species or interaction at a time, until there is no improvement in the weighted sum of the
T -time L2 norms. This heuristic method allows for the computations to scale up on very large
pathways.
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Algorithm 2: Greedy-Search for Drug Discovery Problem

input : V ,α, X ⊂ Rp, U ⊂ Rv, n ∈ R+

output: γ, I ⊆ V

1 foreach j = 1, . . . , n do

2 set xj :=random vector from X ;
3 set uj :=random vector from U ;

4 end

5 set I := {∅};
6 repeat

7 set Ṽ := V \ I;
8 foreach a ∈ Ṽ ∪ {∅} do

9 vi = 1,∀i ∈ I;
10 va = 1;
11 calculate γr(a) subject to

12 γr = maxj={1,...,n}
∫ T
0 ‖yh,j − yr,j‖ 2

2 /‖uj‖ 2
2 dt;

13 end

14 calculate γs(a) subject to

15 γs = maxj={1,...,n}
∫ T
0 ‖yh,j − ys,j‖ 2

2 /‖uj‖ 2
2 dt;

16 end

17 set γ := mina αγr + (1 − α)γs;
18 set a := arg mina αγr + (1 − α)γs;
19 set I := I ∪ a;
20 end

21 until a = {∅};
22 return γ, I

11.3 Example: p53 Pathway

Returning to the p53 pathway considered in Chapters 8 and 10, it is interesting to see
the results of this algorithm on this network. This subsystem of the p53 pathway is small enough
that Algorithm 1 can be used to generate new strategies for the treatment of the mutated pathway.
Algorithm 2 can also be used to do drug discovery. In the presence of no constraints on V , the
results of Algorithm 1 will always be better than or equal to those of Algorithm 2. In these
experiments, α = 0.1 was picked to ensure that the healthy, normal pathway with drug treatment
did not deviate too much from the normal pathway with no treatment. The input controls the
species concentration of L26, and the outputs are the concentrations of MDM2, p53, and cyclin A.

The effect of the control of cutting the grayed edge shown in Figure 11.1c can be seen in
Figure 11.3. Time course concentrations of p53, cyclin A, and MDM2 are shown in Figure 11.3a for
the normal p53 pathway, Figure 11.3b for the abnormal p53 pathway, Figure 11.3c for the abnormal
p53 pathway with controller, and Figure 11.3d for the normal p53 pathway with controller. These
simulations come from an ODE model of the network, and in the simulations with controllers, the
species Ras is removed from the pathway through the use of a hypothetical, pharmaceutical drug.
In the normal p53 pathway, concentrations of p53 and cyclin A are high, and concentrations of
MDM2 are low. In the abnormal p53 pathway, p53 and cyclin A concentrations are low, whereas
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Figure 11.3: The time course plots for the different pathways displays the effect of the disease
and the pharmaceutical drug controller. Note that p53 is solid, cyclin A is dashed, and MDM2 is
dash-dotted.

MDM2 is in high concentration. The controller causes p53 concentrations to increase to higher
levels, and reduces MDM2 concentrations. The cyclin A concentration stays at a reduced level.
In the normal p53 pathway with controller, the network is not as well behaved as the normal p53
pathway; however, it is also not as poorly behaved as the abnormal p53 pathway.
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Chapter 12

Conclusion

This thesis presents systems theoretic tools for doing pharmaceutical drug discovery. The
first class of tools is used to identify mathematical models, and these models are then used in
conjunction with the second class of tools which selects potential drug targets in order to achieve
good therapeutic outcomes for patients.

The technical implications of the tools and potential future works were, for the most
part, presented at the end of each chapter, including a fairly clear path for the refinement of the
technical aspects of this systems theory. Yet, these tools will need to be extended to deal with
larger and more complex data sets. Newer techniques of statistical system identification will need
to be developed which can incorporate different types of experimental data (e.g., expression levels,
protein-DNA binding, etc.) and varying levels of prior knowledge about the biological network.
Drug multi-target identification tools will need to be extended to be able to handle more realistic
models of the effects of drugs on their targets, and this will itself involve doing system identification.
A tighter integration between the identification and target selection is also needed, meaning the
target selection tools should be able to somehow compensate for the limitations of identified models.

The tools presented in this thesis also have applications to engineering systems, and this
is another avenue for future work. The statistical system identification work and the estimators
presented have applications to diverse areas such as the social sciences, computer vision, robotics,
and autonomous systems. The area of robotics and autonomous systems is particularly interesting
to a systems theorist, and discovering how to handle the limitations of learning techniques, as
identified by our theoretical analysis, will be necessary for being able to push learning in robotics
significantly beyond the state of the art. On the other hand, the topology control tools used for
drug multi-target identification might have applications to engineering systems such as in traffic
engineering or multi-robot systems. Extending these tools to engineering systems will be challenging
because of the specialized nature of topological control, but it seems promising because of the
similarity in mathematical structure and organization of these systems with respect to biological
networks.

Going beyond this, the real challenge will be in applying these techniques to real, bio-
logical disease networks. The innovative and open culture in academic and research institutions is
ideal for doing this, because application will require collaborations between engineers, statisticians,
biologists, medical doctors, and others. Such application will be the true driver for the development
of a full systems theory for doing pharmaceutical drug discovery.
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Appendix A

Proofs for Theorems on Exterior
Derivative Estimation

In this appendix chapter, proofs are given for the theorems on exterior derivative estima-
tion. A few lemmas not stated in the text are also given; they are needed for the proofs.

Lemma A.0.1. If the assumptions in Section 5.1 hold, then

a)
∥

∥

∥E(Ĉ 22
n ) − C22

∥

∥

∥

2

2
= O(h4);

b)
∥

∥

∥E

[

(Ĉ 22
n − C22)(Ĉ 22

n − C22)′
]∥

∥

∥

2

2
= O(1/nhd);

c) Ĉn
p−→ C.

Proof. This proof follows the techniques of [169, 33]. We first prove part (c). Note that

Ĉ 11
n =

1

nhd−p

n
∑

i=1

Kh(xi − x0),

and consider its expectation

E

(

Ĉ 11
n

)

= E

(

1

hd−p
Kh(xi − x0)1(X ∈ (Bp

x,h1−ε))

)

+

E

(

hp

hd
Kh(xi − x0)1(X ∈ (Bp

x,h1−ε)
c)

)

=

∫

Bd
0,h1−ε

1

hd
K

(

φ(z) − φ(0)

h

)

F (z)dz + o(h2+p)

=

∫

Rn

K(duφ · u)F (0)du +O(h2).

where we have used the assumption that K(·) is an even function, K ′(·) is an odd function, and
K ′′(·) is an even function.

A similar calculation shows that for

Ĉ 21
n =

1

nhd+1−p

n
∑

i=1

Kh(xi − x0)(xi − x0),
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we have that the expectation is

E

(

Ĉ 21
n

)

= O(h) = o(1).

And, a similar calculation shows that for

Ĉ 22
n =

1

nhd+2−p

n
∑

i=1

Kh(xi − x0)(xi − x0)(xi − x0)
′,

we have that the expectation is

E(Ĉ 22
n ) = F (0)duφ ·

[∫

Rd

K(duφ(0) · u)uu′du
]

· duφ
′ +O(h2).

The result in part (c) follows from the weak law of large numbers. The last calculation also proves
part (a).

Next, we prove part (b). For notational simplicity, let

Ti = Kh(xi − x0)(xi − x0)(xi − x0)
′.

The variance is

Var(Ĉ 22
n ) =

1

n2h4+2d−2p
Tr
(

n(E(TiT
′
i ) − E(Ti)E(Ti)

′)+

n(n− 1)(E(TiT
′
j) − E(Ti)E(Tj)

′)
)

.

Since Ti and Tj are independent, it follows that E(TiT
′
j) − E(Ti)E(Tj)

′ = 0. Next, note that

E(TiT
′
i ) = h−2p

(

∫

Bd
0,h1−ε

(

K

(

φ(z) − φ(0)

h

))2
[

φ(z) − φ(0)
]

×
[

φ(z) − φ(0)
]′[
φ(z) − φ(0)

][

φ(z) − φ(0)
]′
F (z)dz

+ o(hd+2)

)

= hd+4−2p
(

F (0)

∫

Rd

(K(duφ · u))2duφ · uu′ · duφ
′·

duφ · uu′ · duφ
′ · du+O(h2)

)

.

Thus, the variance is given by

Var(Ĉ 22
n ) =

1

nhd
Tr
(

F (0)

∫

Rd

(K(duφ · u))2duφ · uu′ · duφ
′·

duφ · uu′ · duφ
′ · du+ op(1)

)

.

Lemma A.0.2. If the assumptions in Section 5.1 hold, then the matrices Ĉn, C22, Π, Π̂n, P̂n, and
P have the following properties:

a) rank(C22) = d and R(C22) = TpM;
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b) R(Π) = N (C22), N (Π) = R(C22), and N (Π) ∩ N (C22) = {0};

c) ‖P̂n − P‖ 2
2 = ‖Π̂n − Π‖ 2

2 = Op(1/nh
d);

d) P(rank(Ĉn + λnP̂n/nh
d+2) = p+ 1) → 1.

Proof. To show property (a), we first show that for M ∈ Rd×d, where

M =

∫

Rd

K(duφ(0) · u)uu′du,

we have that rank(M) = d. To prove this, choose any v ∈ Rd \ {0} and then consider the quantity

v′Mv =

∫

Rd

K(duφ(0) · u)v′uu′vdu.

By construction, v′uu′v > 0 almost everywhere. Additionally, since φ is three times differentiable,
we have that K(duφ(0) · u) > 0 on a set of non-zero measure and K(duφ(0) · u) ≥ 0 elsewhere.
Thus, v′Mv > 0 for all v ∈ Rd \ {0}. It follows that M is symmetric and positive definite with
rank(M) = d. Since M is a d-dimensional manifold, we have that rank(duφ) = d by Corollary 8.4
of [129]. The Sylvester Inequality [170] implies that

rank(C22) = rank(duφMduφ
′) = d,

and this implies that
R(C22) = R(duφMduφ

′) = R(duφ).

However, R(duφ) = TpM, where we take p = x0. This proves the result.
We next consider property (b). We have that

σ1, . . . , σd 6= 0 and σd+1 = . . . = σp = 0,

because rank(C22) = d by property (a). Thus, the null-space of C22 is given by the column-span of
UN ; however, the construction of P implies that the column-span of UN is the range-space of P .
Ergo, R(P ) = N (C22). Note that the column-span of UR belongs to the null-space of P , because
each column in UR is orthogonal—by property of the SVD—to each column in UN . Thus, we have
the dual result that N (P ) = R(C22). The orthogonality of UR and UN due to the SVD implies
that N (P ) ∩ N (C22) = {0}.

Now, we turn to property (c). For h = κn−1/(d+4), Lemma A.0.1 says that ‖Ĉ 22
n −

C22‖ 2
F = Op(1/nh

d). The result follows from Corollary 3 of [115], by the fact that I − PX is the
projection matrix onto the null-space of X, and by the equivalence:

‖PX − PZ‖ 2
2 ≡ ‖ sin Θ[R(X),R(Z)]‖,

where PX is a projection matrix onto the range space of X [192].
Lastly, we deal with property (d). Lemma A.0.1 shows that

Cn
p−→ C =

[

C11 0
0 C22

]

.
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Since F (0) 6= 0 by assumption, C11 6= 0; thus, rank(C) = 1+rank(C22). Since N (P )∩N (C22) = {0},
we have that rank(C22 + λnP/nh

d+2) = p. Consequently, rank(C) = p + 1. Next, consider the
expression

∥

∥

∥Cn + λnP̃n/nh
d+2 − C − λnP̃ /nh

d+2
∥

∥

∥

2

2

≤
∥

∥

∥Ĉn − C
∥

∥

∥

2

2
+

λn

nhd+2

∥

∥

∥P̃n − P̃
∥

∥

∥

2

2

≤ Op(h
2) +Op

(

λn

n2h2d+2

)

≤ op(h)

Weyl’s theorem [30] implies that

∥

∥

∥σi(Cn + λnP̃n/nh
d+2) − σi(C + λnP̃ /nh

d+2)
∥

∥

∥

2

2
≤ op(h). (A.1)

Note that σi(C + λnP̃ /nh
d+2) is non-decreasing because λn/nh

d+2 is non-decreasing. Define

η = min
(

σi(C + λnP̃ /n
2/(d+4))

)

,

and consider the probability

P(rank(Cn + λnP̃n/nh
d+2) = p+ 1)

≥ P(|σi(Cn + λnP̃n/nh
d+2)+

− σi(C + λnP̃ /nh
d+2)| ≤ η,∀i)

≥
p+1
∑

i=1

P(|σi(Cn + λnP̃n/nh
d+2)+ (A.2)

− σi(C + λnP̃ /nh
d+2)| ≤ η) − p

The result follows from equations (A.1) and (A.2).

For notational convenience, we define

Bn = hp(f(X) − βXx)′Wx0
XxH

−1/2,

and

M =
1

2

[

∂i∂j(f ◦ φ) − dxf · ∂i∂jφ
]

.

Then, we have the following result concerning the asymptotic bias of the estimator:

Lemma A.0.3. If h = κn−1/(d+4), then Bn
p−→ B, where

B =
[

κF (0)
∫

Rd K(duφ · u)uu′duM ′ Op×1

]

. (A.3)

Proof. First, recall the Taylor polynomial of the pullback of f to z:

f(φ(z)) = f(φ(0)) + dxf · duφ · z +
1

2
∂i∂j(f ◦ φ) · zz′ + o(‖z‖2),
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where we have performed a pullback of dxf from T ∗
xM to T ∗

xU . In the following expression, we set
z = hu:

f(φ(z)) − f(x0) − dxf ·
[

φ(z) − φ(0)
]

=
h2

2

[

∂i∂j(f ◦ φ) − dxf · ∂i∂jφ
]

uu′ + o(‖hu‖2)

= h2Buu′ + o(‖hu‖2).

Because β =
[

f(x0) dxf
]′

, we can rewrite the expectation of the expression as

E(Bn) = E

(

hp−dKH(x− x0)(f(x) − xx0
β)′xx0

[

1 0
0 1/h2I

])

H1/2

=
(

∫

Rd

{

K(duφ · u)h2u′uM ′ [1 1
hduφ · u+ 1

2∂i∂jφ · uu′
]

×

(F (0) + hduF (0) · u)
}

du+ o(h2)
)

H1/2

=
√
nhdh2

[

F (0)
∫

Rd K(duφ · u)uu′duM ′ + o(1) O(
√
h2)
]

,

where the last line follows because of the odd symmetries in the integrand. Since h = κn−1/(d+4),
this expectation becomes

E(Bn) = B + o(1)11×(p+1).

The result follows from application of the weak law of large numbers.

Let

V = F (0)

∫

Rd

(K(duφ · u))2
[

1 0
0 duφ · uu′ · duφ

]

du, (A.4)

then the following lemma describes the asymptotic distribution of the error residuals.

Lemma A.0.4. If h = κn−1/(d+4), then

hpε′Wx0
XxH

−1/2 d−→ N
(

0, σ2V
)

.

Proof. Since E(ε) = 0 and ε is independent of x, we have that

E

(√
nhpεKH(x− x0)xx0

H−1/2
)

= 0.

The variance of this quantity is

Var
(

hp√nεKH(x− x0)xx0
H−1/2

)

= E

(

(

hp√nεKH(x− x0)xx0
H−1/2

)′ (
hp√nεKH(x− x0)xx0

H−1/2
)

)

= nh2pσ2E

(

(KH(x− x0))
2
[

1 (x− x0)
′]′H−1

[

1 (x− x0)
′]
)

= σ2

{

∫

Rd

(K(duφ · u))2
[

1 (duφ · u+ h
2∂i∂jφ · uu′)′

· duφ · uu′ · duφ

]

(F (0)

+ hduF (0) · u)du+ o(h2)

}

= σ2(V + o(h)I).
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Thus, the central limit theorem implies that

hp√nε′Wx0
XxH

−1/2

√
n

d−→ N (0, σ2V )

Proof of Theorem 5.3.2. This proof follows the framework of [120, 222] but with significant
modifications to deal with our estimator. For notational convenience, we define the indices of β
such that: β0 = f(x0) and

[

β1 . . . βp

]

= dxf . Let β̃ = β +H−1/2u and

Ψn(u) = hp
∥

∥

∥
W 1/2

x0
(Y −Xx0

(β +H−1/2u))
∥

∥

∥

2

2
+ λn

∥

∥

∥
Pn · (β +H−1/2u)

∥

∥

∥

2

2
.

Let û(n) = arg min Ψn(u); then β̂(n) = β +H−1/2û(n). Note that Ψn(u) −Ψn(0) = V
(n)

4 (u), where

V
(n)

4 (u) = u′H−1/2(hpX ′
x0
Wx0

Xx0
+ λnPn)H−1/2u

+ 2(hp(Y −Xx0
β)′Wx0

Xx0
+ λnβ

′Pn)H−1/2u.

If λn/nh
d+2 → ∞ and hλn/nh

d+2 → 0, then for every u

λnβ
′PnH

−1/2u = λnβ
′Pu/

√
nhd+2Op(1) + λnh/nh

d+2Op(1),

where we have used Lemma A.0.2. It follows from the definition of β (5.10) and Lemma A.0.2 that
β′P ≡ 0; thus, λnβ

′PnH
−1/2u = λnh/nh

d+2Op(1) = op(1). For all u ∈ N (P ), we have

λn/nh
d+2u′Pnu = λn/nh

d+2Op(1/nh
d) = oP (hλn/nh

d+2),

and for all u /∈ N (P ), we have

λn/nh
d+2u′Pnu = λn/nh

d+2u′PnuOp(1) → ∞.

Let W ∼ N (0, σ2V ). Then, by Slutsky’s theorem we must have that V
(n)

4 (u)
d−→ V4(u)

for every u, where

V4(u) =

{

u′Cu− 2u′(W +B), if u ∈ N (P )

∞, otherwise

Lemma 5 shows that V
(n)

4 (u) is convex with high-probability, and Lemma 5 also shows that V4(u)
is convex. Consequently, the unique minimum of V4(u) is given by u = C†(W + B), where C†

denotes the Moore-Penrose pseudoinverse of C. Following the epi-convergence results of [82, 120],

we have that û(n) d−→ C†(W + B). This proves asymptotic normality of the estimator, as well as
convergence in probability.

The proof for the NALEDE estimator comes for free. The proof formulation that we have
used for the consistency of nonparametric regression in (5.11) allows us to trivially extend the proof
of [222] to prove asymptotic normality and consistency.

Lemma A.0.5. Consider An, Bn ∈ Rpn×pn that are symmetric, invertible matrices. If ‖An −
Bn‖2 = Op(γn), ‖A−1

n ‖2 = Op(1), and ‖B−1
n ‖2 = Op(1), then ‖A−1

n −B−1
n ‖2 = Op(γn).
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Proof. Consider the expression

‖A−1
n −B−1

n ‖2 = ‖A−1
n (Bn −An)B−1

n ‖2

≤ ‖A−1
n ‖2 · ‖An −Bn‖2 · ‖B−1

n ‖2,

where the last line follows because the induced, matrix norm ‖ · ‖2 is sub-multiplicative for square
matrices.

Proof of Theorem 5.4.3. Under our set of assumptions, the results from [32] apply:

∥

∥

∥Tt(X
′X/n) − (Σξ + σ2

νI)
∥

∥

∥

2
= Op

(

cn

√

log p

n

)

(A.5)

∥

∥

∥Tt(X
′Y/n) − Σξβ

∥

∥

∥

2
= Op

(

cn

√

log p

n

)

. (A.6)

An argument similar to that given in Lemma A.0.2 implies that
∥

∥

∥P̂n − Pn

∥

∥

∥ = Op

(

cn
√

log p/n
)

.

Consequently, it holds that

∥

∥

∥Tt(X
′X/n) − σ2

νI + λnP̂n − (Σξ + λnPn)
∥

∥

∥

2
= Op

(

cn(λn + 1)

√

log p

n

)

. (A.7)

Next, observe that

Σξ + λnPn =
[

UR UN

]

diag(σ1, . . . , σd, λn, . . . , λn)
[

UR UN

]′
.

Recall that we only consider the case in which d < p. We have that

a)
∥

∥

∥
(Σξ + λnPn)−1

∥

∥

∥

2
= O(1), because of (5.14);

b)
∥

∥

∥
Σ†

ξ − (Σξ + λnPn)−1
∥

∥

∥

2
= Op(1/λn).

Weyl’s theorem [30] and (A.7) imply that
∥

∥

∥(Tt(X
′X/n) − σ2

νI + λnP̂n)−1
∥

∥

∥

2
= Op(1).

Additionally, Lemma A.0.5 implies that

∥

∥

∥
(Tt(X

′X/n) − σ2
νI + λnP̂n)−1 − (Σξ + λnPn)−1

∥

∥

∥
= Op

(

cnλn

√

log p

n

)

.

Note that the solution to the estimator defined in (5.18) is:

β̂ = (Tt(X
′X/n) − σ2

νI + λnP̂n)−1Tt(X
′Y/n).

Next, we define

β(n) , (Tt(X
′X/n) − σ2

νI + λnP̂n)−1Σξβ,
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and note that the projection matrix onto the range space of Σξ is given by PΣξ
= Σ†

ξΣξ. Thus,

β = PΣξ
β = Σ†

ξΣξβ. Consequently, we have that
∥

∥

∥β̂ − β
∥

∥

∥

2
(A.8)

≤
∥

∥

∥β̂ − β(n)
∥

∥

∥

2
+
∥

∥

∥β(n) − β
∥

∥

∥

2

≤
∥

∥

∥(Tt(X
′X/n) − σ2

νI + λnP̂n)−1
∥

∥

∥

2
·
∥

∥

∥Tt(X
′Y/n)

− Σξβ
∥

∥

∥

2
+
∥

∥

∥(Tt(X
′X/n) − σ2

νI + λnP̂n)−1

− Σ†
ξ

∥

∥

∥

2
·
∥

∥

∥Σξβ
∥

∥

∥

2
,

where the inequality comes about because ‖ · ‖2 is an induced, matrix norm and the expressions
are of the form Rp×p(Rp×pRp). Recall that for symmetric matrices, ‖A‖1 = ‖A‖∞; ergo, ‖A‖2 ≤
√

‖A‖1‖A‖∞ = ‖A‖1. Because of (5.13), we can use this relationship on the norms to calculate
that ‖Σξ‖2 = O(cn) and ‖β‖ = O(cn). Consequently,

(A.8) ≤ Op

(

cnλn

√

log p

n

)

+Op(c
2
n/λn).

The result follows from the relationship

λn = O

(

√
cn

(

n

log p

)1/4
)

.

We can show that the bias of the terms of the nonparametric exterior derivative estimation
goes to zero at a certain rate.

Lemma A.0.6. Under the assumptions of Section 5.4, we have that
∣

∣

∣E

(

[Ĉn ]ij

)

− [Cn ]ij

∣

∣

∣ = O(h2c2n(2Ω)2d)
∣

∣

∣E

(

[R̂n]ij

)

− [Rn]ij

∣

∣

∣ = O(h2c2n(2Ω)2d),

where i, j denote the components of the matrices. Similarly, we have that

Var
(

[nĈn ]ij

)

= O
(

1/hd
)

Var
(

[nR̂n]ij

)

= O
(

1/hd
)

.

Proof. By the triangle inequality and a change of variables

Bias(Ĉ 11
n ) =

∣

∣

∣

∣

∣

∫

Bd
0,Ω/h

1

hd
K

(

φ(z) − φ(0)

h

)

F (z)dz −
∫

Bd
0,Ω

K(duφ · u)F (0)du

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

Bd
0,Ω

[

K

(

φ(hu) − φ(0)

h

)

−K(duφ · u)
]

F (hu)du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Bd
0,Ω

K(duφ · u) [F (hu) − F (0)] du

∣

∣

∣

∣

∣

= T1 + T2
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The Taylor remainder theorem implies that,

K

(

φ(hu) − φ(0)

h

)

= K(duφ · u) + ∂kK(duφ · u)

× (h∂ijφ
k|0uiuj/2 + h2∂ijmφ

k|wuiujum/6)

+ ∂klK(v)/2 × (h∂ijφ
k|0uiuj/2

+ h2∂ijmφ
k|wuiujum/6) × (h∂ijφ

l|0uiuj/2

+ h2∂ijmφ
l|wuiujum/6),

where w ∈ Bd
0,Ω and v ∈ Bd

duφ·u,h∂ijφk|0uiuj/2+h2∂ijmφk|wuiujum/6
, and

F (hu) = F (0) + h∂iF |0ui + h2∂ijF |vuiuj/2,

where v ∈ (0, hu).
The odd-symmetry components of the integrands of T1 and T2 will be equal to zero, and so

we only need to consider even-symmetry terms of the integrands. Recall that K(·), ∂kK(·), ∂klK(·)
are respectively even, odd, and even. By the sparsity assumptions, we have that

T1 = O(h2d6c2n(2Ω)d)

T2 = O(h2d2(2Ω)d).

Consequently, T1 + T2 = O(h2d6c2n(2Ω)d) = O(h2c2n(2Ω)2d).
We can compute the variance of nĈ 11

n to be

Var(nĈ 11
n ) =

∫

Bd
0,Ω/h

h−2d[K ((φ(z) − φ(0))/h)]2(F (z))2dz

− (E(nĈ 11
n ))2

= h−d

∫

Bd
0,Ω

[K ((φ(hu) − φ(0))/h)]2(F (hu))2dy

− (E(nĈ 11
n ))2

= O(1/hd).

The remainder of the results follow by similar, lengthy calculations. Note that for the
variance of terms involving Yi, a σ2 coefficient appears, but this is just a finite-scaling factor which
is irrelevant in O-notation.

Proof of Theorem 5.4.1. The key to this proof is to provide an exponential concentration in-
equality for the terms in Ĉn and R̂n. Having done this, we can then piggyback off of the proof in
[32] to immediately get the result. The proofs for Ĉn and R̂n are identical; so we only do the proof
for Ĉn.

Using the Bernstein inequality [139] and the union bound,

P

(

max
i,j

∥

∥

∥

∥

[

Ĉn

]

ij
− E

[

Ĉn

]

ij

∥

∥

∥

∥

> t

)

≤ 2p2 exp









− nt2

2Var

(

n
[

Ĉn

]

ij

)

+ max

(∣

∣

∣

∣

n
[

Ĉn

]

ij
)

∣

∣

∣

∣

)

2t/3









.
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Since the i-th component of X obeys: |[X]i| ≤M , it follows that

max

(∣

∣

∣

∣

n
[

Ĉn

]

ij
)

∣

∣

∣

∣

)

= 2M/hη ,

where η ∈ {0, 1, 2} depending on i and j. Using this bound and Lemma A.0.6 gives

max
i,j

∣

∣

∣

∣

[

Ĉn

]

ij
− E

[

Ĉn

]

ij

∣

∣

∣

∣

= Op(
√

log p/nhd).

Recall that

max
i,j

∣

∣

∣
[Ĉn]ij − [Cn]ij

∣

∣

∣
≤ max

i,j

∣

∣

∣
[Ĉn]ij − E[Ĉn]ij

∣

∣

∣
+ max

i,j

∣

∣

∣
E

(

[Ĉn]ij

)

− [Cn]ij

∣

∣

∣
.

However, this second term is o(
√

log p/nhd). Consequently,

max
i,j

∣

∣

∣

∣

[

Ĉn

]

ij
− [Cn]ij

∣

∣

∣

∣

= Op

(

√

log p/nhd

)

. (A.9)

Using (A.9), we can follow the proof of Theorem 1 in [32] to prove the result.
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Appendix B

Statistical System Identification of a
Quadrotor Helicopter

A free body diagram of a quadrotor helicopter is seen in Figure B.1. Its dynamics are
complicated and much specialized, aerodynamics knowledge is used to generate accurate models
[106, 107]. Additionally, the true system can be subject to wind-based disturbances. Local lin-
earizations can be a useful modeling technique because it does not require the use of aerodynamics
knowledge and it can take into account wind-based disturbances as a time-dependent component
of the system dynamics.

Though this system is does not explicitly have a manifold structure, the statistical identifi-
cation tools given in Chapters 4 and 5 provide better identified models [12]. This is likely due to the
inability to fully sample the state-space of high-dimensional systems leading to a situation where
the system trajectories look as if they lie on a low-dimensional manifold. Arguments about high
sampling rates in engineering systems negating the usefulness of manifold structure are specious
because the amount of data needed grows exponentially with dimension; high sample rates will
never be able to generate enough data to overcome this curse-of-dimensionality.

Forty seconds of flight data sampled at 10Hz was taken from the STARMAC quadrotor
helicopter [106, 107]. The quadrotor was flown using a feedback linearization controller which
was given reference inputs to execute a dynamic trajectory in which it changed both height and
horizontal position. The quadrotor was also subject to dynamic wind-disturbances.

Though the dynamics of the quadrotor do not lie on a low dimensional manifold, this
data set can be used to numerically study the performance of different estimators in the case of
relatively few data points. Such situations display similar problems with collinearity and near-
collinearity, and these are the situations under which the new estimators are designed to perform
better. Examples of robotic systems for which the local linearization identification benefits from
explicit consideration of data collinearity can be found in [209]; however, that approach uses PLS,
which the new estimators outperform in the example below.

To compare the accuracy of the new estimators with that of other estimators, one-step
prediction errors were computed. A real-time learning process was simulated by calculating the
one-step prediction error at time t = t0 using only data from t < t0. One-step prediction error, as
opposed to n-step prediction error, is calculated because in a real-time system with feedback the
practitioner will not know the exact controller inputs ahead of time.

The one-step prediction errors, at given values of t, are shown in Table B.1. The bold value
in each row is the lowest prediction error for the corresponding time. Examining the values in the
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Figure B.1: The free body diagram of a quadrotor helicopter has several components: The roll,
pitch, and yaw angles are φ, θ, and ψ. There are four motors with thrust Ti and moments Mi, for
i = 1, . . . , 4. The force due to gravity is mg and the drag forces Db are opposite to the free stream
velocity eV . This image is courtesy of [106, 107].

table, it is clear that no estimator is “best”. PCR performs comparably to PLS, and PCR performs
comparably to NEDE. This is not surprising, because NEDE tends towards PCR as λ → ∞. The
NALEDE, NEDEP, and NALEDEP perform well as a group, especially NALEDE and NALEDEP
which are the estimators with the adaptive lasso terms. RR, EN, and MP perform decently, but
do not significantly outperform the other estimators. EN also has an adaptive lasso term, and it
does quite well.

time (s) PLS EN MP PCR RR NEDE NALEDE NEDEP NALEDEP

2.0 1.0473 0.9721 2.0444 1.0517 0.9708 1.0514 1.0642 0.9271 1.0550
5.0 3.3119 3.2018 3.2154 3.1635 3.1883 3.1645 3.1593 2.8583 2.8427

10.0 2.2564 2.5515 2.1614 2.2832 2.9637 2.2832 1.9388 2.3030 2.0213
20.0 6.0661 6.2586 5.9916 5.9800 6.6051 5.9799 5.9584 6.0128 6.0140
30.0 3.3076 2.5578 3.0163 3.0606 2.6917 3.0606 3.2345 2.8776 2.9005
37.8 0.0184 0.1264 0.0145 0.0381 0.1338 0.0381 0.0394 0.0105 0.0100

Table B.1: Euclidean Norm-Squared of One-Step Prediction Error
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Appendix C

Proofs for Theorems on
Global-Sparsity Structure

Proof of Theorem 7.3.1. By construction, the solution to the linear averaged model Caveβ =
Rave is given by βave. However, the solution to the limiting linear equation Cβ = R is not
immediately clear. Recall that C(u) � 0 for all u ∈ A. Thus, for an arbitrary vector ζ ∈ Rp \ {0}
it holds that

ζT E(C(u))ζ =

∫

U

[

ζTC(u)ζ
]

µ(du) > 0; (C.1)

because we are integrating a strictly positive value over a set of non-zero measure. So, C =
E(C(u)) � 0. Thus, the solution to Cβ = R is given by β.

All that is left to prove consistency of the linear averaged model is whether ‖Xave −X‖ =
Op(an) for X = β,C,R. Note that (7.27), (7.25), and the triangle inequality imply that

‖βave − β
ave‖ ≤ ‖β̂(u) − β(u)‖ = Op(an) (C.2)

‖Cave − C
ave‖ ≤ ‖Ĉ(u) − C(u)‖ = Op(an). (C.3)

For increasing m, Markov’s inequality implies that

‖βave − β‖ = Op(m
−1/2
n ) (C.4)

‖Cave − C‖ = Op(m
−1/2
n ). (C.5)

Therefore, ‖Rave −R‖ = O(m
−1/2
n ) by Slutsky’s theorem and the triangle inequality. Applying the

triangle inequality again gives:

‖Ξave − Ξ‖ = Op(an +m−1/2
n ), (C.6)

for Ξ = β,C,R. This proves the consistency of the linear averaged model.
The remainder of the proof follows by consistency of the adaptive lasso [222].

Proof of Theorem 7.3.2. By construction, the solution to the linear squared averaged model

CaveΠ(Cave)T = CaveΠave(Cave)T (C.7)

is given by Πave. However, the solution to the limiting linear equation CΠ(C)T = CΠ(C)T is not
immediately clear. Note that the limiting linear equation can be rewritten as

(C ⊗ C)vec(Π) = vec(CΠ(C)T ). (C.8)
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In Theorem 7.3.1, we proved that C � 0. Thus, the matrix C ⊗ C is invertible [198]. Thus, the
solution to CΠ(C)T = CΠ(C)T is given by Π.

All that is left to prove consistency of the linear squared averaged model is whether
‖Xave −X‖ = Op(γn) for X = Π, C,R. Note that (7.27) and Slutsky’s theorem imply that for fixed
u ∈ A:

‖β̂(u)(β̂(u))T − β(u)(β(u))T ‖ = Op(an), (C.9)

which combined with the triangle inequality yields

‖Πave − Π
ave‖ = Op(an). (C.10)

It follows from Markov’s inequality that

‖Πave − Π‖ = Op(an +m−1/2
n ). (C.11)

Similar arguments show that

‖Ξave − Ξ‖ = Op(an +m−1/2
n ), (C.12)

for Ξ = Π, C,CΠ(C)T . This proves the consistency of the linear squared averaged model.
The remainder of the proof follows by consistency of the adaptive group-lasso [211].
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Appendix D

Proofs for Theorems on Monotone
Piecewise-Affine Systems

Proof of Lemma 9.3.1. Define the smooth map g(·, ·) : M×R− → R, g(u, t) = eTj R(u, t;A, b)−
γj , and note that R(g−1(0);A, b) defines a level set which lies on the same hyperplane as E . If there
does not exist a (u, t) ∈ M × R− such that g(u, t) = 0 and R(u, t;A, b) ∩ E = R(u, t;A, b), then
R(X ;A, b) ∩ E = ∅.

Otherwise, consider the Jacobian

Du,tg(u, t) = eTj
[

eAt A ·R(u, t;A, b) + b
]

×
[

Duh(u) 0
0 1

]

. (D.1)

By hypothesis, eTj (A · R(u, t;A, b) + b) 6= 0, and so it follows that rank(Du,tg(u, t)) = 1. From

Theorem 8.8 of [129] — a variant of the Implicit Function Theorem — it follows that g−1(0) ⊆
M×R− is an embedded submanifold of dimension d. From Corollary 8.4 of [129], there is a smooth
embedding φ : Rd → M× R− such that g−1(0) = φ(Rd).

Next, observe that the Jacobian of the smooth map ζ(ν) = (R ◦ φ)(ν) is given by

Dνζ(ν) =
[

eAφ(ν)t A · R(φ(ν);A, b) + b
]

×
[

Duh(φ(ν)u) 0
0 1

]

Dνφ(ν), (D.2)

where φ(ν)u denotes the first d components of φ(ν) and φ(ν)t denotes the (d+ 1)-th component of
φ(ν). Recall two facts from linear systems theory: A and eAt commute and

∫ t
0 Ae

−Aτdτ = I−e−At.
Using these facts, we can rewrite (D.2) as

Dνζ(ν) = eAφ(ν)t
[

Duh(φ(ν)u) A · h(φ(ν)u) + b
]

Dνφ(ν). (D.3)

Recall that the matrix on the left has rank n by the Spectral Mapping Theorem [41] applied to the
matrix exponential. Furthermore, it holds that rank(Dνφ(ν)) = d since φ is a smooth embedding
and rank(Duh(φ(ν)u)) = d since h is also a smooth embedding.

Note that the hypothesis condition h(u) ∈ E , with ej normal to E , implies that ∂hj/∂um =
0, for m = {1, . . . , d}; however, by hypothesis we have that eTj (A · h(u) + b) 6= 0. This implies that
A · h(φ(ν)u) + b is linearly independent of the column space of Duh(φ(ν)u), and so the rank of
the middle matrix is (d + 1). Thus, the Sylvester Inequality [41] implies that rank(Dνζ(ν)) = d,
which means that R ◦ φ is a smooth embedding on g−1(0). Theorem 8.3 of [129] implies that
R(g−1(0);A, b) is an embedded submanifold of dimension d. Because E is connected by construction
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and R is a smooth embedding, the definition of embedded submanifold implies that R(X ;A, b)∩E =
R(g−1(0);A, b) ∩ E is an embedded submanifold of dimension d.

Proof of Lemma 9.3.2. There are sixteen possible cases, because there are four different cases
for which f̂(x) is defined. Let I, II, III, and IV correspond to the respective cases of (9.11), and for
convenience we denote a case A-B, if x falls in case A and y falls in case B. For case I-I, the result
trivially follows by Hypothesis 9.3.1.

For case II-III, suppose that the claim were false. Then there exists x ∈ W qr
II and

y ∈ W su
III , such that x ≤Km y and xk = yk, but f̂(x)k > f̂(y)k. Let ej be normal to Eq and em

be normal to Es. If ej 6= em, then we can define x̃ = x + δej − εem and ỹ = y + δej − εem. For
small δ, ε > 0, we have x̃ ∈ Cr, ỹ ∈ Cs, x̃ ≤Km ỹ, and x̃k = ỹk. Thus, (Arx̃ + br)k ≤ (Asỹ + bs)k
by hypothesis. Since all of these quantities are continuous, taking the limit as δ, ε → 0 gives that
(Arx + br)k ≤ (Asy + bs)k, which is a contradiction. If ej = em and xj 6= yj, then we can define
x̃ = x + δej and ỹ = y − δej and follow the same procedure to reach the same contradiction. If
ej = em and xj = yj, then we can define x̃ = x+δej and ỹ = y+δej and follow the same procedure
to reach a contradiction on Hypothesis 9.3.1.

The proofs for the remaining fourteen cases are simple modifications of the proof for case
II-III.

Proof of Lemma 9.3.3. Left and right uniqueness of solution holds for x ∈ Cq because of the
Lipschitz continuity of f(x) in these sets. Right uniqueness of solution holds for x ∈ Eq

i \ Z0, by

Theorem 2, §10 of [71]. Corollary 1, §10 and Lemma 3, §10 of [71] also imply that f̂(ψs(x)) =
d
dtψt(x)|t=s+ . Under the additional hypothesis, left uniqueness follows from Theorem 2, §10 of [71]

applied to the system with vector field f̃(x).

Proof of Lemma 9.3.4. We construct the set Z as follows: Let the set Z0 be as given in (9.10).
We define the backward reach set of Z0 as

Z1 =
⋃

q>0

(

⋃

i>0

R(Eq
i ;A

q, bq) ∩ Cq

)

, (D.4)

where the hyperedges Eq
i are of dimension d ≤ n − 2. Notice that for x ∈ D \ Z0, a necessary

condition for ψt(x) ∈ WV is that ψt−(x) ∈ WV I ; if this statement were not true, we would reach
an obvious contradiction with (9.9). This means that the backward reach set of WV is a subset of
WV I . Next, we recursively define the reach set of Zm as

Zm+1 =
⋃

q>0

(

⋃

i>0

R((Zm ∩ Eq
i ) \ ZV ;Aq, bq) ∩ Cq

)

, (D.5)

where we now use the hyperedges Eq
i of dimension n − 1. Repeated application of Lemma 9.1.1

and Lemma 9.3.1 gives µ(Zm) = 0, for all m.
Note that (Zm ∩ Eq

i ) \ WV ⊂ D \ Z0, where the hyperedges Eq
i are of dimension n − 1.

Using Lemma 9.3.3, left and right uniqueness holds for points in this set, and Lemma 1, §10 of [71]
allows us to continue backwards trajectories on Eq

i \ WV , exactly in the manner defined in (D.5).
Also, points in (Zm ∩Eq

i )∩WV , already lie on Z0. Thus by construction, Z ⊆ ⋃∞
m=0 Zm; it follows

that µ(Z) = 0.



139

Proof of Theorem 9.4.1. This proof follows the structure of Theorem 3.2 in [101]. Let x, y ∈
D \ Z0, where x ≤Km y. By definition, µ(Z0) = 0. Let v �Km 0 be fixed and define yε = y + εv
and fε(x) = f(x) + εv. By hypothesis, Lemma 9.3.3 holds, and so there exists δ > 0, such that
trajectories are unique for t ∈ [0, δ]. Thus, it follows from Corollary 1, §8 of [71] that Φt(yε) —
which solves the PWA system (9.3), with initial condition yε and vector-field fε(x) — is continuous
with respect to ε, for small ε > 0. Recall that by construction x �Km yε, and suppose that there
exists s ∈ (0, δ) such that ψs(x) � Φs(yε) for all t ∈ [0, s), ψs(x)i = Φs(yε)i, and ψs(x) ≤Km Φs(yε).

In our present situation, we have

[

d

dt
ψt(x)i −

d

dt
Φt(yε)i

]

t=s+

≥ 0, (D.6)

which leads to
f̂(Φs(yε))i < f̂ε(Φs(yε))i ≤ f̂(ψs(x))i. (D.7)

However, combining ψs(x) ≤Km Φs(yε) and Lemma 9.3.2 leads to the conclusion f̂(ψs(x)) ≤Km

f̂(Φs(yε)), which is a contradiction of (D.7). Hence, for all small ε > 0 it must be that ψt(x) �Km

Φt(yε), for all t ∈ [0, δ). Because Φt(yε) is continuous with respect to ε, taking the limit gives
limε→0 Φt(yε) = ψt(y). Therefore, ψt(x) ≤Km ψt(y), for all t ∈ [0, δ).

Under the additional hypothesis, we consider x, y ∈ D \ Z, where x ≤Km y. Note that
Lemma 9.3.4 implies that µ(Z) = 0. Using Lemma 9.3.3 and (9.10), we have left and right
uniqueness for all points in the trajectory. It follows from Corollary 1, §8 of [71] that Φt(yε) is
continuous with respect to ε, for small ε > 0. We suppose that ∃s ∈ int(Tx ∩ Tyε), such that
ψs(x) �Km Φs(yε) for all t ∈ [0, s), ψs(x)i = Φs(yε)i, and ψs(x) ≤Km Φs(yε). The proof proceeds
exactly the same as the latter hypothesis.

Proof of Theorem 9.4.2. Under these assumptions, Theorem 1 of [125] implies that there exists
Pm such that part (i) of Corollary 9.4.1 holds. Under the additional hypothesis, we have that
f(x(ξ; j, ν))j is non-decreasing for increasing ν. Because Pm is diagonal and (Pm)jj = ±1, it is
easy to show that (Pmf(x(Pmξ; j, ν)))j is non-decreasing for increasing ν. Thus, condition (a) of
Hypothesis 9.3.2 is satisfied for f̃(x) = Pmf(Pmx). Consequently, the second part of Corollary
9.4.1 holds.
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Appendix E

Proofs for Theorems on Negative
Feedback Removal

The first lemma shows that paths that cross an odd number of inhibitory edges are equiv-
alent to paths in δ(G) that cross from V to P .

Lemma E.0.7. A path in δ(G) that begins in V and ends in P has a preimage in G that crosses
an odd number of negative edges, and the converse is also true.

Proof. 1. By definition of τ , any edge that crosses between V and P must be the image of an
inhibitory edge in G - and any inhibitory edge in G must map to two edges that cross between
V and P .

2. As V and P form a set cover for δ(G) and are disjoint sets, any path that crosses between V
and P must cross between V and P an odd number of times.

3. Following from 1 and 2, a path in δ(G) crosses between V and P if and only if the preimage
of the path in the G cross an odd number of inhibitory edges.

Our second Lemma considers the parity of paths with specific start and end vertices.

Lemma E.0.8. The existence of a path in δ(G) that begins at v ∈ V and ends at p ∈ P implies
the existence of a path in G from v to η−1(p) that crosses an odd number of negative edges, and
the converse is also true.

Proof. 1. By Lemma E.0.7, if we have a path in δ(G) from v ∈ V to p ∈ P , the preimage of that
path — which goes from v to η−1(p) — must cross an odd number of inhibitory edges.

2. Furthermore, if we have a path in G from v to η−1(p) that crosses an odd number of inhibitory
edges, we can construct a path starting at v in δ(G) — for each edge e in the path, we choose
the edge in τ(e) such that the path is consistent. Because the original path crossed an odd
number of inhibitory edges, by Lemma E.0.7 our new path must end at p ∈ P .

Proof of Theorem 10.1.1. By definition, a negative feedback cycle in G is a path that crosses
an odd number of inhibitory edges. Thus the proof follows directly from Lemma E.0.8.


