
Virtics: A System for Privilege Separation of Legacy

Desktop Applications

Matt Piotrowski
Anthony D. Joseph

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-70

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-70.html

May 13, 2010



Copyright © 2010, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Virtics: A System for Privilege Separation of Legacy Desktop Applications

Matt Piotrowski
University of California, Berkeley

Anthony D. Joseph
Intel Labs Berkeley

University of California, Berkeley

Abstract
Legacy desktop applications – the applications in use on
most desktops today – often process data from multi-
ple untrusted sources. If an application makes a mistake
when processing this data, the integrity of the applica-
tion, and potentially the entire system, can be compro-
mised. We introduce a new operating system primitive
that enables an application running on a legacy OS to ef-
ficiently create unprivileged virtual machines when deal-
ing with untrusted data. These virtual machines can then
perform all of the complex operations needed to process
and render the application’s data. The resulting win-
dow content is transparently mapped into the window
space of the application. Using this primitive, we built
an evince-based PDF viewer that limits PDF exploits to
controlling an unprivileged virtual machine with file ac-
cess only to the PDF itself. We also built a WebKit-based
web browser which limits browser exploits to controlling
an unprivileged virtual machine with access solely to the
contents of the tab in which the exploit occurred. We fur-
ther show how a whole suite of desktop applications can
use our new primitive to separate privileges when deal-
ing with untrusted data. Moving recursively upwards, we
can view the operating system itself as an application that
needs privilege separation when dealing with untrusted
data from multiple sources (i.e. the different applica-
tions it runs). We describe a prototype implementation
of an operating system that manages its applications in
this way.

1 Introduction
Personal computers can be compromised using a variety
of approaches, including malicious applications unknow-
ingly installed on a system (e.g., spyware or other mal-
ware), malicious documents (e.g., documents that exploit
document processing errors such as buffer overruns or
counter overflows), and network processing errors (e.g.,
carefully crafted network streams that when processed
by the recipient exploit vulnerabilities in a manner sim-

ilar to malicious documents). Preventing malicious ap-
plications, documents, and network flows from reaching
PC’s is challenging, given the large number of applica-
tions and document types and ever increasing applica-
tion code complexities. Even an application thought to
previously be “secure” becomes an attack vector when a
vulnerability is identified. A security hole in the system
exists until the application is patched or removed from
the system. In an in-depth scan of 20,000 personal com-
puters, Secunia found that only 2% of the PC’s were fully
patched, while 30% of PC’s had 1-5 insecure programs,
25% had 6-10 insecure programs, and 46% had 11 or
more insecure programs [1]. Even well-managed enter-
prise PC’s are at risk: referring to the recent targeted
attacks against high-profile US companies (Google, et
al.), a security investigator remarked, “All of the vic-
tims we’ve worked with had perfectly installed antivirus.
They all had intrusion detection systems and several had
Web proxies scan content” [12].

The traditional approach to security and isolation in
operating systems has two serious flaws: a compromised
or malicious application can access any data at the user’s
privilege level, and more sophisticated attacks can use
the wide OS interface exposed to applications to perform
privilege-elevation and compromise the entire system.
Attackers are aware of these flaws and exploit them to
gain administrative access to machines, install rootkits,
access files, and collect sensitive information. Clearly,
a stronger isolation model is needed to prevent these at-
tacks.

One simple way to address these problems would be
for a user to have two laptops, one for “work” and one
for “play”. This would allow the user to do potentially
dangerous things on the “play” laptop and not worry that
the data on the “work” laptop could be affected. How-
ever, on each laptop the user will likely use many appli-
cations and many documents, each of which has vary-
ing levels of sensitivity. If any one of these is mali-
cious, the whole laptop could be compromised. As a

1



paper exercise, consider the following infinite laptop sce-
nario: assume that you have an infinite number of laptops
and you can switch your hands and eyes between them
quickly and seamlessly. You could use this environment
to greatly reduce the threats from malware and spyware
as follows.

First, run each application on a separate laptop. That
way, if an application is spyware or malware, it won’t
be able to interact with files or intercept keystrokes on
other laptops. Furthermore, if a trusted application on
one laptop becomes infected when handling a malicious
document, the damage will be limited to that laptop, not
any other laptops running other applications.

Second, since we have an infinite number of laptops,
we can apply this approach recursively to applications
themselves: when working with a new document, we
give it its own dedicated laptop. So instead of a lap-
top that runs application A opening documents X and
Y, we now have two laptops running application A, with
one dedicated to working with document X and the other
dedicated to working with document Y. Thus, the dam-
age from a malicious document X will be limited to the
laptop dedicated to working with malicious document X
and not any other laptops. This perfect isolation is a huge
increase in security.

However, since some documents need to be accessed
by multiple applications and some applications need to
access multiple documents simultaneously, the third step
is to augment the infinite laptop model to allow us to ex-
plicitly run a cord between two laptops to allow them to
share documents. This added connectivity is a double-
edged sword, since it enables damage to propagate from
one laptop to others, limited by the set of laptops reach-
able from that laptop by cords. Note that for a single ma-
licious document shared between multiple applications,
any damage caused by the document is still limited to
just that document, maintaining perfect isolation. For a
single laptop accessing multiple documents (i.e., some
form of aggregation application), the damage from a ma-
licious document is limited to the set of documents being
aggregated, which is a significant increase in security.

While the infinite laptop model is interesting, it is ob-
viously infeasible. However, recent advances in high-
performance, hardware-based virtualization technology
enable a large number of virtual machines to run simulta-
neously on a single machine, allowing us to approximate
the infinite laptop model. We take advantage of this fact
and the fact that VM’s offer a simple interface for back-
wards compatibility. This simple interface is amenable
to security while the backwards compatibility allows us
to leverage an enormous body of existing code.

1.1 Our Contributions

• We introduce a new primitive for privilege sepa-
ration that enables applications to create efficient,
high-performance unprivileged virtual machines,
perform complex operations on untrusted data in
these virtual machines, and then have the results
transparently mapped into the application’s win-
dows. The ability for an application to spawn a
subapplication and have it render in part of its win-
dows can be achieved using session capabilities in
the EROS Trusted Window System [20]; however,
EROS does not support legacy codebases. Since we
implement our primitive using virtual machines that
run Linux and X11, legacy code runs unmodified in
our unprivileged environment.

• We design “armored” versions of existing applica-
tions that use our new primitive, and we describe the
implementation of two of these, a PDF reader and a
web browser

• We describe how to build a high-performance OS
as a privilege separating application and discuss our
prototype implementation of such a system, which
has been in daily use for over a year. This pro-
totype can run a large number of existing applica-
tions without modification. Although our prototype
is built on Linux for convenience of implementa-
tion, the concepts would allow other commodity op-
erating systems (e.g. Windows and Mac OS X) to
protect themselves without changing existing appli-
cations.

1.2 Roadmap

The core of our work is based on the new primitive we
have developed. After discussing our threat model and
related work, we describe this new primitive. At first, we
only consider applications running as normal processes
that use our new primitive to spawn VM’s to protect
themselves. Later, we look at an operating system that
spawns VM’s whenever it runs applications; in this sys-
tem, no application runs as a normal process outside a
VM. These applications running in a VM could protect
themselves recursively by spawning their own VM’s, but
there is no requirement that they do so. After describing
our designs and implementations, we examine their per-
formance and show that although there is overhead asso-
ciated with our system, it is not unreasonable given the
advances in security, and furthermore, increased efforts
to optimize (in particular, memory sharing) will make it
even smaller. We discuss how our system is very usable
and doesn’t place a heavy burden on the user, relying
on familiar concepts and utilizing existing actions that a
user normally performs in order to make security deci-

2



sions. We wrap up with a discussion of limitations and
some conclusions.

2 Environment
2.1 Threat Model

We assume that the applications installed on the system
are not malicious and want to protect themselves from
compromise. Later, when considering the operating sys-
tem itself as a privilege-separating application, we relax
this assumption and consider malicious applications.

The adversary we are trying to protect against is re-
mote across the Internet and can supply arbitrary mali-
cious data to applications. This may take the form of
a malicious document (e.g., a malicious PDF [13]) or
a malicious network flow (e.g. a malicious HTTP at-
tribute [14]).

What we are trying to protect is the integrity of the
application and the integrity of the system. In protect-
ing the integrity of the application, we want to prevent
malicious code from running with all of the privileges
of the application and instead have it run inside a virtual
machine with only network access and a subset of the ap-
plication’s data (ideally, this would just be the document
or network flow the malicious code was attached to). In
protecting the integrity of the system, we similarly want
to prevent malicious code from running with all of the
privileges of the system and the user of the system.

2.2 Related Work

Previous mechanisms for privilege separation [4] [16] fo-
cus on non-graphical applications. We provide a privi-
lege separation mechanism that at its very core expects
an application to use it to divide itself up graphically.
The closest work in this respect is a full capability system
such as the EROS Trusted Window System [20]. How-
ever, as we mentioned earlier, the EROS system does not
support legacy desktop applications.

SELinux [10] is an alternate sandbox mechanism
which allows resources and executing code to be as-
signed labels. Rules exist for which labels can access
which resources and how to transition from one label to
another. One problem with SELinux is that it does not
support dynamic rulesets or label creation. The set of
rules and labels are static once a system boots. So our
mechanism for protecting user files where applications
are given access dynamically based on user file dialogs
is not directly expressible in SELinux. Another problem
with SELinux is that application policies are expected
to be created by a knowledgeable system administrator.
For example, should the application be able to write to
/usr/lib, or /var/run/foo? This approach works fine when
you have a knowledgeable administrator to make the de-
cision, but in our scenario ordinary users are installing
arbitrary applications from the Internet. The application

developer could write the SELinux policy needed for the
application to run, but we do not trust the developer. The
best one could hope for in this case would be to allow the
application to write to any part of the system files it needs
to but make these changes visible only to the applica-
tion; this would require machinery outside of SELinux to
replicate the functionality provided by our private disks
model (Section 6.2.2). A third problem with SELinux is
that all applications still run on the same kernel and share
the X server. So a vulnerability in, for example, TCP
would compromise the entire system. Exposing the en-
tire X server to a potentially malicious application is also
unwise. Recent efforts by the developers of SELinux to
bring limited sandboxing to graphical applications [26]
have run each application with its own nested X server.
However, this nested X server still has access to the en-
tire trusted X server. Because the nested X server must be
considered compromisable due to its complexity, this ap-
proach does not provide significant extra security. To im-
prove the security substantially, the interface between the
nested X server and the trusted X server must be greatly
narrowed, which is exactly the approach our graphics
system takes. Furthermore, by duplicating functional-
ity like the X server in order to run desktop applications
securely, SELinux loses its appeal as a lightweight sand-
boxing mechanism.

Xax [6] and Native Client [33] are interesting tech-
nologies for running native code in a browser; however,
they are not well-suited for code that requires “direct
file system access or unrestricted access to the network”,
which is a focus of our work.

Terra [8] was a system that ran applications in VM’s
for trusted computing purposes. Their focus was not on
weaving the different VM’s into a coherent desktop as
they do not provide a secure graphics subsystem or an
easy way to securely share files between VM’s.

Polaris [21] is a system that attempts to isolate appli-
cations on Windows by running them in separate user
accounts and requiring file dialogs for the user’s files.
However, each application is still running on Windows
with the wide system interface that entails. Also, Po-
laris does not provide a mechanism for an application to
protect itself when dealing with a potentially malicious
document.

The Tahoma [5] secure web browser utilizes virtual
machines for isolation of different sites. In many ways,
Tahoma is a subset of Virtics and has isolation proper-
ties similar to our Armored WebKit (Section ??). The
Tahoma browser is an example of one of many secure
applications that can be built using the primitive our sys-
tem provides.

Chromium [3] uses processes to partition the web
browser, separating out render processes from the
main browser process for fault tolerance and security.

3



Chromium runs parts of WebKit in the trusted browser
process, which causes it to only be immune to 70% of
the arbitrary code execution vulnerabilities in WebKit in-
stead of being at 100%. Chromium also does not pro-
vide a high level of inter-render process isolation, so if
there is a compromise in a render process, the browser
process may be protected, but one render process could
execute a shatter attack against another. The ability to
access arbitrary cookies is also an avenue of attack avail-
able to a corrupted render process. Chromium’s site in-
stances [17] divide up the web browser in a similar way
to our Armored WebKit’s tabs. Gazelle [27] takes the
isolation in Chromium a step further by isolating sep-
arate domains within a site instance into separate pro-
cesses, solving the cookie problem mentioned above. It
also provides protection within a tab, unlike our Armored
WebKit.

The Qubes [18] operating system utilizes virtual ma-
chines to isolate components, similar to Virtics. Qubes
does a great job of narrowing the VM interface even fur-
ther by moving components like the network subsystem
and the storage subsystem into their own VM’s. In con-
trast, Virtics does not provide VM isolation of OS com-
ponents, instead focusing on VM isolation of applica-
tions and subapplications. Qubes also carries out VM
isolation of applications, but uses a different approach.
In Qubes, a user can create multiple VM’s and label them
with different purposes. These VM’s can each run mul-
tiple applications internally but the label that has been
applied to their VM is clearly visible when the user is
interacting with one of their windows. As a basic ex-
ample, consider a user who has created two VM’s and
labeled them with the purposes “sensitive” and “insensi-
tive”. The user has a PDF reader available in both VM’s.
In the “sensitive” VM they open a PDF on corporate
strategy. In the “insensitive” VM they open a random
PDF they have received from an untrusted source. If the
PDF they opened in the “insensitive” VM causes corrup-
tion of the PDF reader, it is isolated to the “insensitive”
VM and cannot access the contents of the corporate strat-
egy document in the “sensitive” VM. This type of isola-
tion provides strong protection similar to what would be
achieved by opening both PDF’s in our Armored PDF
Reader. The difference is that in Qubes the user has to be
very proactive about creating VM’s with different pur-
poses and has to be careful to work with data only in
the appropriate VM; in Virtics, the user is automatically
working with a separate VM when working with sepa-
rate applications and separate documents. As a further
example of this, assume that the corporate strategy PDF
has a hyperlink embedded in it that points to an external
resource. If the user opens this hyperlink in the browser
of the “sensitive” VM, a compromise of the browser will
allow access to the corporate strategy PDF as well; the

Figure 1: An example of an application that has spawned two
inferiors and screen-granted them to two different windows

content at the external resource does not even have to be
malicious for this to occur; it could be the case that the
content is at an HTTP url instead of an HTTPS url and
someone on the network could lie about the DNS trans-
lation and use this to return malicious content instead of
the legitimate content. On the other hand, the user could
take the initiative to open the hyperlink in the browser
of the “insensitive” VM; this would prevent any browser
exploit from having access to the corporate strategy doc-
ument; however, it is worth noting that if the content in
the external resource is semi-sensitive, we may have just
exposed it to all of the malcode that is running in the
“insensitive” VM from previous actions. In contrast, in
Virtics the hyperlink would be handled by the Armored
Web Browser and it would be opened in its own virtual
machine corresponding to its own tab. If an exploit hap-
pens when processing this external content, the malcode
will not have access to the corporate strategy PDF. An-
other difference between Qubes and Virtics is how files
are shared across VM’s. In Qubes, the user must ex-
plicitly open up a separate explorer-like tool to copy files
from one VM to another. In Virtics, we use the open/save
dialogs that a user normally interacts with in GUI appli-
cations to access files from multiple VM’s.

3 A New VM Primitive
3.1 Design

In this section, we describe the design of our new primi-
tive for privilege separation of desktop applications. The
design centers around the ability to create unprivileged
VM’s (called inferior VM’s) and then screen grant and
input grant them the ability to render to and interact with
a portion of the application’s windows.

3.1.1 Inferior VM

An application can ask the system for an inferior VM to
be created. This VM uses a previously installed disk im-

4



age (see section 3.2.1 for installation details). This disk
image is immutable to the running inferior VM. The im-
mutable nature of the inferior VM’s disk allows multiple
instances to run concurrently using the same image. An
inferior VM is unprivileged in terms of its access to the
rest of the system. In particular, it has no access to any
of the user’s documents. It has only network access and
a set of pipes to the application that created it. The set
of pipes serve as a secure communication channel over
which a custom application/inferior protocol can be de-
fined.

3.1.2 Screen Grant

An application can give an inferior VM the ability to
display in a portion of one of its windows by issuing a
screen grant to the system. The screen grant specifies the
application window to use and the location and dimen-
sions of a rectangle within that window that is to be given
to the inferior. The system transparently maps the out-
put of the inferior VM to this portion of the application’s
window. Figure 1 shows an application that has started
two inferiors and screen-granted them the lower majority
of two windows. This could represent a PDF viewer that
is displaying two documents and is reserving the upper
portion of the windows for a menu bar that it controls
while leaving the complex output generated from han-
dling the PDF’s themselves to the inferior VM’s. If the
inferior VM generates any popup windows, these are re-
stricted to displaying in the area that has been granted.

3.1.3 Input Grant

Inferior windows that are being displayed receive input
events just like normal windows. That is, when a mouse
event occurs on the screen-granted region, it is delivered
to the inferior; and when the screen-granted region has
received the keyboard focus by being clicked, keyboard
events are delivered to the inferior. However, at any time,
the application that started the inferior can issue an Input-
Grant event to transfer the keyboard focus to the inferior
or remove it.

3.1.4 Copy and Paste

It is important that an inferior VM does not have carte
blanche access to the clipboard, both for copying and for
pasting. Copying is a concern because malicious code
could copy data to the clipboard with the hopes that it
will be pasted into a vulnerable environment. Pasting
is a concern because there may be sensitive information
in the clipboard that malicious code would like to ob-
tain access to. Instead of blanket access, the system traps
the <ctrl-c> and <ctrl-v> key sequences to discern the
user’s copy and paste intent. When the user types <ctrl-
c>, the system will take note of this sequence and the in-
ferior VM it is intended for; when that inferior VM then
asks to copy data to the clipboard, the request will suc-

ceed; similarly, when the user types <ctrl-v>, the sys-
tem will take note of this sequence and the inferior VM
it is intended for; when that inferior VM then asks to
paste data from the clipboard, the request will succeed.
This model for copy and paste has two main drawbacks:
(1) applications that use those key sequences for opera-
tions other than copy and paste will gain access to the
clipboard at times the user didn’t intend them to, and (2)
other actions that normally would result in a copy oper-
ation, such as selecting edit->copy from a menu, won’t
succeed unless preceded by a <ctrl-c>.

3.2 Implementation

We implement our new primitive using Linux and KVM
virtualization technology. The inferior VM’s run a full
Linux and X11 stack. Our focus in providing this type of
environment for inferior VM’s was on backwards com-
patibility. That is, there is a large amount of code that
knows how to run on Linux and how to display to an
X11 window system. We can run this code unmodified.

3.2.1 Installing an Inferior

All inferior disk images are overlaid on top of a system
base image containing gigabytes of common libraries.
This allows an application to specify an inferior’s disk
image by providing essentially a file diff between the
system base image and the complete set of files needed
to run the inferior code. Once the inferior disk image is
created, it is immutable. An application is free to create
multiple inferior images if it wants.

3.2.2 Running an Inferior

An application starts an inferior VM using the ID it re-
ceived when installing the inferior image. An application
can start multiple instances that use the same inferior im-
age. Each instance gets its own VM with access to the in-
ferior image that is overlaid internally with a RAM disk
to allow writes while the instance is running. An applica-
tion that starts an inferior VM gets back a set of pipes that
it can use to send and receive data to/from the inferior.

3.2.3 Screen Grants and Input Grants

When an application issues a screen grant or input grant,
it goes to a program called the virtual window manager
server. There is a corresponding program called the vir-
tual window manager client that runs in the inferior VM.
This client acts as a window manager for the nested X11
system running in the inferior VM. When window events
happen in the inferior, they are forwarded along by the
client to the virtual window manager server, which can
act on them based on the current status of screen grants
and input grants. Window contents are communicated
through shared memory. This memory can be anywhere
in the memory owned by the inferior VM. The server
simply maps it, reads the raw pixel data, and pushes it

5



Figure 2: An armored PDF viewer with two PDF’s open.

to the screen in the proper location. It is worth repeat-
ing that the inferior does not carry out the full X protocol
with the trusted X server running in the host. Instead, it
carries out a greatly limited protocol via the virtual win-
dow manager client. The general idea of rendering in a
VM for security was discussed in [7].

4 Armored Applications Design
In this section, we discuss how a suite of desktop appli-
cations might “armor” themselves using our new prim-
itive. Each armored app consists of two parts, an ap-
plication part and an inferior part. The application part
runs with the full privileges of the application, while the
inferior part runs with the limited privileges that an in-
ferior VM gets plus any privileges given to it by the
application-specific app/inferior protocol. We try to keep
this app/inferior protocol as simple as possible. We also
try to push as much complexity as possible into the infe-
rior VM, leaving the application part to deal with simple
user interactions (e.g. menus) and simple data manage-
ment (e.g. reading and writing raw bytes from disk). The
idea here is that the complex code that operates on un-
trusted data is the most likely code to be exploited and
we want this code to be running in an inferior so that
when an exploit occurs, it is isolated.

4.1 Armored PDF Viewer

The main job of the application part of our armored PDF
viewer is to control the menu bar (i.e. File, Edit, View).
When a PDF is opened, we create a new window and a
new inferior VM. We screen grant everything below the
menu bar to the inferior VM. We use the pipe we ob-
tained when we created the inferior to send it an Open-
File event followed by a stream of OpenFileBytes events
specifying the content of the PDF that is to be displayed.
The inferior VM performs whatever complex operations
it needs to do to render the PDF to the screen. Because of
the transparent delivery of input events, the user can then
interact with the content of the PDF without interven-

Figure 3: An armored web browser with four tabs.

tion from the application. If the user selects a menu item
from the View or Edit menus (i.e. Find, Find Next, Copy,
Zoom In, or Zoom Out), the appropriate event is sent
from the application to the inferior. If the user chooses
to open a different file, a new window and a new inferior
VM are created. Figure 2 shows an armored PDF viewer
that is displaying two files.

4.1.1 Compromise of an Inferior VM

If one of the PDF’s is malicious and successfully exploits
the rendering engine, it will find itself in an unprivileged
VM. From there it could try to attack the application over
the communication pipe; however, the protocol defined
over the pipe is designed to be simple and in this case is
actually unidirectional from the application to the infe-
rior, so the application will not even be processing events
from the inferior. Another avenue of attack is to go after
the virtual machine environment it is running in. This is
the more likely avenue of attack but the idea is that this
interface can be made simpler than an OS interface and
significant effort can be focused on securing it.

4.2 Armored Web Browser

Our model for the armored web browser centers around
tabs and registry-controlled domain names (e.g. a.com,
b.com, etc.). Each tab in the browser is associated
with a different inferior VM. The application part of the
browser contains the menu bar, the URL bar, the navi-
gation buttons, and the tab headers. The area below the
tab headers is screen-granted to the inferior VM whose
tab is currently selected. Figure 3 shows an armored web
browser currently displaying four tabs.

4.2.1 Registry-Controlled Domain Labeling of Infe-
rior VM’s

The armored web browser labels each inferior VM with
a protocol (e.g. http, ftp, https) and a registry-controlled
domain. This labeling is immutable for the lifetime of
the inferior. If a tab wants to be labeled with a different
protocol or a different registry-controlled domain, it must

6



make a URLRequest to the application, which will create
a new inferior, label it with the new protocol and registry-
controlled domain, and assign it to the tab, discarding
the old inferior. Note that for purposes of implementing
a “back” button we could keep old inferiors around or
dump the state needed to recreate them. We don’t further
consider the design of the back button here.

The labeling of an inferior is significant because it de-
termines not only what is displayed in parts of the URL
bar but also the cookies that the inferior can ask to re-
ceive or set (see Section 4.2.2). To illustrate the flow
of inferiors assigned to a tab, consider a user that starts
browsing http://a.com. A new inferior will be created
and labeled with (http, a.com). This inferior will be as-
signed to the tab and given the screen grant for the area
below the tab headers. The inferior will fetch the doc-
ument, process it, and render the results to the screen.
The user interacts with the contents as normal. If the
user clicks a link to http://a.com/some inner path.html or
http://innerdomain.a.com, the inferior VM will request
that the application change the URL visually and will
then fetch the new document, render it, and allow the
user to interact with it. Since in both cases the registry-
controlled domain was not changed, the label applied to
the tab is not changed. If the user instead clicks a link to
go to http://b.com, the inferior VM will request that the
application fetch the requested URL and send any form
data that goes along with the request. The application
will create a new inferior, label it with (http, b.com), as-
sign it to the tab, and give it the screen grant. The old
inferior that was assigned to the tab will be discarded.
The new inferior will fetch the document at http://b.com
and perform all of the operations needed to render the
document to the screen. The user will then be able to
interact with the contents as normal and the process re-
peats. This tab model is similar to the process-based site
instance model of the Chromium web browser [17].

4.2.2 Cookies

An inferior VM may ask the application to get/set cook-
ies for the registry-controlled domain it is labeled with. It
does not have access to the cookies for any other registry-
controlled domain. This is true even if the document it
is rendering requires the inferior to fetch objects from
other domains. However, an inferior VM will maintain a
temporary set of cookies it receives from other domains.
This set of temporary cookies will be used by the inferior
as long as it is running. After it is discarded, only the
cookies that were set for its labeled registry-controlled
domain will be accessible by other inferiors. An alterna-
tive to our cookie model would be for the application to
perform the HTTP fetches; however, this is more com-
plexity than we wish to add to the application part.

4.2.3 Secure Cookies

An inferior may only get/set the secure cookies for its
registry-controlled domain if it is labeled with the https
protocol. Recall that to switch from http to https, a new
inferior must be used, and similarly, to switch from https
to http, a new inferior must be used. This does not pre-
vent an https document from including http objects or ob-
jects from another domain, which, if malicious, gain ac-
cess to the secure cookies with a successful compromise
of the inferior VM. However, it does prevent a compro-
mised inferior VM that is labeled with (http, a.com) from
accessing the secure cookies for a.com .

4.2.4 URLRequest Parsing Code

In order to protect the security of cookies, we need to
be able to properly handle a URLRequest. That is, we
need to be able to parse a URL and any associated form
data into its components. We note that we do not per-
form request parsing in the application itself. Instead,
we take advantage of the fact that a new inferior is in
a known uncompromised state. Therefore, we can have
the first action of a new inferior be to calculate its own
label from an arbitrary URLRequest made by another in-
ferior and inform us of the result. We can trust this result
as much as we could trust the application doing its own
calculation of the label. The importance of proper re-
quest parsing becomes clear with an example. Suppose
that there were a bug in the parsing code that resulted
in arbitrary code execution for specially formatted paths.
If this were the case, then a malicious website could ask
us to navigate to http://t.com/malicious path where t.com
is an arbitrary registry-controlled domain the malicious
website wants to steal the cookies of. We will create a
new inferior and give it the URL to navigate to; however,
the inferior will mishandle the path information, poten-
tially running arbitrary code; this arbitrary code could
then perform operations while being labeled with (http,
t.com). The best we can do to combat this problem in our
model is to make the parsing code as simple and secure
as possible.

4.2.5 Uploading and Downloading

When an inferior VM wants to upload a file, it sends an
OpenFile event to the application. If the inferior VM
represents the currently selected tab, the application dis-
plays an open file dialog to the user. The inferior VM is
informed of the selected file and can access its contents
through a series of OpenFileGetBytes events to the appli-
cation. Similarly, if an inferior VM wants to save a file, it
sends a SaveFile event to the application. If the inferior
VM represents the currently selected tab, the application
displays a save file dialog to the user. The inferior VM
is informed of the selected file and can set its contents
through a series of SaveFileSetBytes events to the appli-

7



Figure 4: The events in the application/inferior protocol for the
armored web browser.

cation.

4.2.6 Popup Windows

An inferior VM is free to pop up windows within the
screen-granted region. If it wants to open a URL in a
new window outside of its region or in a new tab, it must
indicate this in a URLRequest to the application and thus
cede any control over that content.

4.2.7 Plugins and Extensions

Browser plugins lend themselves well to our model. Plu-
gins that exist to handle new types of objects (e.g., a
Flash plugin, a PDF plugin, or Java plugin) work well.
These plugins just run inside the inferior VM as one
would expect. Browser extensions, on the other hand,
need to hook themselves into the browser in deeper ways
(e.g., an extension that adds a toolbar). In our model,
browser extensions become part of the code base running
in the application part, and therefore need to be trusted.

4.2.8 Compromise of an Inferior VM

If one of the inferior VM’s gets compromised, malicious
code will find itself not running with the privileges of
the browser but rather as an unprivileged VM with ac-
cess to the contents of the tab, access to the cookies of
the registry-controlled domain the tab is labeled with,
and network access. As in the case of the armored PDF
viewer, the malicious code could try to elevate its priv-
ileges by attacking the application/inferior protocol or
the virtual machine environment. Although the applica-
tion/inferior protocol is richer than in the armored PDF
viewer, it is still kept relatively simple. Figure 4 provides
a recap of the events in the application/inferior protocol.

4.3 Armored Movie Player

The main job of the application part of our armored
movie player is to control the menu bar. When a movie
is opened, we create a new window and a new inferior
VM. We screen grant everything below the menu bar to
the inferior VM. The inferior is sent a PlayMovie event
informing it of the size (in bytes) of the movie it is about
to play. The inferior can then issue GetFileBytes events

Figure 5: An armored movie player playing a movie.

to read pieces of the file it is playing. The inferior per-
forms all of the complex decoding of the video and audio
and displays the result to the screen. Since the inferior
has no way of producing sound, it must send Output-
Sound events to the application. These events contain
raw sound data that can be pushed directly to the native
sound system. Figure 5 shows an armored movie player
that is displaying a movie.

4.3.1 Fullscreen Viewing

If the user selects to view the movie in full screen, the
window is resized and a screen grant for the whole win-
dow is given to the inferior. This action carries the risk of
a compromised inferior VM pretending to exit, remain-
ing in fullscreen mode, and then emulating the user in-
terface of the system. The inferior VM could then hope
to trick the user into entering sensitive data. This attack
could be combatted using various methods, including a
small border around even full screen windows.

4.3.2 Compromise of an Inferior VM

If a malicious movie compromises an inferior VM, in
addition to the attack mentioned above, it could try to at-
tack the application/inferior protocol, which is very sim-
ple, or, as with the other armored applications, the virtual
machine environment.

4.4 Armored Email Client

Our model for the armored email client utilizes inferi-
ors in multiple situations. First of all, the preview pane
(see Figure 6) is screen-granted to an inferior, while the
message summary pane and folder/contact pane is con-
trolled by the app. Whenever a new email is being pre-
viewed, a new inferior is created to preview that email.
If an email is opened for reading in its own window, a
new window is created along with a new inferior that is
screen-granted everything below the menu bar. The in-
ferior VM is informed of the email with a DisplayEmail
event and proceeds to obtain the bytes of the email by is-

8



Figure 6: An armored email client previewing one email and
viewing another.

suing EmailGetBytes events to the app. It then performs
whatever complex rendering is necessary to display the
email. If the user goes to compose an email, a new win-
dow and a new inferior are created for the composition.
Everything below the menu bar is screen-granted to the
inferior. When the user chooses to send the mail, the app
issues a series of MailGetBytes events to obtain the mes-
sage to send. Because carrying out popular email pro-
tocols (IMAP, POP, SMTP) is more complex than any
operation we want to run in the app part, we also cre-
ate protocol inferior VM’s. There is one protocol infe-
rior VM for each combination of protocol and server we
communicate with. So in the standard setup of one server
with IMAP and SMTP, there would be one inferior VM
that carries out the IMAP protocol with that server and
another that carries out SMTP with that server. These
inferior VM’s would have no on-screen representation
but would allow us to carry out the protocols without the
privileges of the app.

4.4.1 Compromise of an Inferior VM

If a malicious email were to compromise the rendering
engine, it would find itself in an unprivileged VM with
access to the network and access to the email it used as
a vector. Compromise of an inferior VM used for com-
posing an email (e.g. through rendering of quoted text)
is more serious. The compromised inferior VM could
lie about the recipients and the body of the email and at-
tempt to send spam. This is mitigated by the fact that
the app part must be told to send the message by the
user (thus greatly reducing the rate of propagation). It
is worth noting also that the user must be replying to an
email with malicious content in order for this attack to
work. The most serious of the inferior VM compromises
would be a compromise of a protocol VM. This could
be used to read all of the user’s email from a particu-
lar server or send out volumes of spam. On the bright
side, email from other servers is not automatically com-

Figure 7: An armored office application working on two office
documents.

promised and the integrity of the system remains intact.

4.5 Armored Office

The main job of the application part of armored office is
to control the menu bar. When a document is opened, we
create a new window and a new inferior VM. We screen
grant everything below the menu bar to the inferior VM.
We then send the inferior an OpenFile or NewFile event
informing it of its purpose (i.e. to work on an existing
document or create a new one). For an OpenFile event,
the inferior VM can issue OpenFileGetBytes events to
read the contents of the file. It then performs whatever
complex operations it needs to do to display the file and
is responsible for the creation of any new content. When
the inferior VM wants to save the contents of the docu-
ment it is working on, it issues SaveFileSetBytes events
to the application. A feature like autosave can be sup-
ported in a similar manner. If a document wants to em-
bed another document inside of it, the inferior VM can
issue an IncludeFile event to the application. The appli-
cation will then display a dialog to the user, asking them
which file to embed. The inferior VM is informed of
the selected file and can access the file’s contents with
OpenFileGetBytes events. To keep the included file in
sync, the application would monitor its most recent mod-
ification time and send an OpenFileChanged event to the
inferior VM that has included the file if the file changes.
Figure 7 shows armored office working with two office
documents.

4.5.1 Compromise of an Inferior VM

If malicious code compromised an inferior VM, it would
have access to the document it used as a vector and any
documents that the user chose to embed in that docu-
ment. Other documents opened by armored office and
the system itself would be safe provided that the appli-
cation/inferior protocol and the virtual machine environ-
ment cannot be compromised.

9



Figure 8: Lines of C code in the armored app implementations
as counted by cloc.

5 Armored Applications Implementation
We carried out the implementation of an armored PDF
viewer and an armored web browser.

5.1 Armored Evince

The Evince PDF viewer nicely encapsulates all of its
complex rendering in the library libevview. Therefore,
with a small amount of wrapper code to shuttle events
between the application part and the inferior running
libevview, we are able to isolate all of the complex code
involved in rendering a PDF to running inside an inferior
VM. No libevview code runs in the application VM. The
number of lines of code added is given in Figure 8.

5.2 Armored WebKit

The WebKit library nicely encapsulates all of the com-
plex code needed to handle modern webpages. It pro-
vides hooks allowing the code using it to make decisions
about what to do before loading a new page and how
cookies should be accessed. We created an Armored We-
bKit where no WebKit code runs outside of inferiors. In
addition to the glue code needed to shuttle events back
and forth, we made two slight modifications to the We-
bKit library; one modification was to contact the appli-
cation when cookies for the labeled registry-controlled
domain were being accessed; another modification was
to stream uploads and downloads to/from the application
instead of the local file system. The number of lines of
code added is given in Figure 8.

6 OS as a Privilege-Separating Application
Design

So far, we have assumed that applications themselves are
not malicious and that they will actively try to protect
themselves using our new security primitive. However,
if we want to address malicious applications or an appli-
cation that gets compromised, we can view the operat-
ing system itself as a privilege-separating application that
uses our new primitive. Other work has explored run-
ning applications in VM’s for isolation, notably [23], [8],
and [7] using L4Linux. However, these systems did not
have our primitive at their disposal.

In our model for the OS as a privilege-separating ap-
plication, each application is run in its own inferior VM.
This ensures that no application runs with the full privi-
leges of the system and furthermore no application runs

Figure 9: Screenshot of the user interface.

with the full privileges of the user. To distinguish an infe-
rior VM created by the operating system to run an appli-
cation from an inferior VM created by an application to
protect itself, we’ll call the former an app VM. We refer
to our operating system design as Virtics.

6.1 Screen Grants to App VM’s

To implement windowing, we do the following: when
an application wants to display a new window, it sends
an event to the OS; if the application currently has the
focus, a new window with the standard title bar, “min-
imize”, “maximize”, and “close” window decoration is
created and the area below this window decoration is
screen-granted to the application. Just as with the infe-
rior VM’s, the app VM is free to render whatever content
it wants within this screen-granted region and can pop up
windows within this region. A windowing system imple-
mented like this has many of the same properties of prior
secure GUI’s described in [20] [7]. This includes:

• Keyboard input cannot be sniffed or spoofed; all
input flows through the operating system, which
makes sure it only comes from input devices and
is only directed to the application with the current
focus

• Screen content cannot be scraped; an application
cannot read the content of a window that has been
screen-granted to another application

• Window non-interference; an application cannot
cause a window to pop up when another applica-
tion has the focus; if it does so, the request will be
delayed until the application gains the focus and a
small visual indicator will be placed next to the ap-
plication’s icon in the application bar (see next bul-
let)

• The application that currently has the focus is
clearly indicated to the user; we accomplish this

10



with two bars at the bottom of the screen (see Fig-
ure 9). The lower bar is called the application bar
and contains one entry for each currently running
application. The upper bar is called the window bar.
There is one window bar per running application,
and only windows associated with a given applica-
tion appear in its window bar. A visual link is made
between an application in the application bar and its
window bar. As can be seen in Figure 9, when an
application’s window bar is showing, its icon is sur-
rounded by the same color as the window bar and
the two bars flow together.

6.2 Persistent Storage

6.2.1 VM Image

Unlike a typical inferior VM whose image is immutable,
an app VM must be allowed to make persistent changes
to its image. To accomplish this, we allow an app VM to
issue WriteBlock events in addition to ReadBlock events.
Because an app VM’s image is not immutable, Virtics
only allows one instance of each app VM to be running
at any time.

6.2.2 User’s Files

In addition to its own image, an app VM must be able
to access the user’s files. Instead of allowing an app VM
to have access to all of the user’s files, by default it has
access to none of these files. If it wants to gain access,
it must carry out the standard open/save dialog window
that user’s are used to. Instead of the file dialog coming
from the app VM, which we do not trust, it is displayed
by the operating system and made to appear as if it came
from the application so that the user knows which appli-
cation to associate the dialog with. This is similar to the
Powerbox [19] used to grant access in other operating
systems [34] [21]. When a user selects a file or folder,
the following access control decisions are made:

1. If the dialog is an OpenFile(s) dialog, the applica-
tion is given read and write access to each of the
chosen files, modulo file extensions.

2. If the dialog is an OpenDirectory(s) dialog, the ap-
plication is given read and write access to the cho-
sen directories and read and write access to all files
and directories within those directories; it is worth
noting that the root directory holding all of the
user’s documents is not something that can be cho-
sen; at the highest level, the user only sees the files
and directories within this root directory; there is
no way to navigate up to its parent and then select
it; this means that giving access to all files requires
a concerted effort.

3. If the dialog is a SaveFile dialog, the application is

given read and write access to the chosen filename
modulo file extensions.

6.3 Sound and Microphone

To output sound, an app VM must send an event con-
taining the raw contents of the sound to output. To read
from the microphone, an app VM must request access.
An app VM must have the focus when it requests access
and a small window asking to confirm the request ap-
pears under the cursor; if the user confirms, access to the
microphone is given; this access persists when the appli-
cation no longer has the focus.

6.4 Printer

To print a document, an app VM must send events spec-
ifying a document to be passed directly to the printer.

6.5 USB Storage, CD-ROM’s, Network Drives

File systems exterior to the main hard drive can be made
available to app VM’s as mount points in the file dialog
hierarchy. This allows the same access control to apply
to these files as files on the main hard drive. If the file
systems themselves may be malicious [32], the operat-
ing system could consider running them in their own file
system inferior VM’s.

6.6 Other Hardware

Gaining access to other hardware (e.g. write access to
the CD-ROM for burning) could be accomplished using
the same guiding principles we used to share the hard-
ware above; that is, don’t expose the hardware directly
and make the application do the hard work of converting
data into a raw form that can be output directly or the
hard work of reading a raw form and converting it into
something intelligible.

6.7 Installation

In the Virtics system, the fundamental unit is the appli-
cation. There is no notion of installing a library or part
of an application. A Virtics package contains exactly one
application. A system base containing gigabytes of com-
mon libraries is provided on a read-only basis to all ap-
plications. A Virtics package, then, is essentially the diff
between the files in the system base and the files needed
to run the application. This type of self-contained pack-
aging system has some nice properties:

1. the user knows that everything needed to run the ap-
plication is contained in the package; if an applica-
tion needs a library that is not in the system base
or a newer or older version of a library in the sys-
tem base, it must include this library in its package;
thus, ”dependency hell” is avoided

2. a programmer knows exactly what to expect from
the software environment they are programming

11



Figure 10: A Virtics package.

for; thus, if it works on their system, it’ll work on
the end user’s

3. maintaining backwards-compatibility is easier since
Virtics 2.0 can provide the system base from Virtics
1.0 to allow applications packaged for that system
to be run on the newer one

In Virtics, only the user can install an application. An-
other application has no way of doing so. The system can
distinguish between the actions of a user and the actions
of an application because all user input flows through
the system and there is no way for an application VM
to spoof this input.

A more detailed look at a Virtics package can be found
in Figure 10. The first four fields are known as the ver-
ification header. Its purpose is to let Virtics know if the
package is an upgrade of an existing application already
installed on the system. A package is an upgrade if it
has the same name and was packaged by the same public
key. Otherwise, the package represents a new applica-
tion. It is important to distinguish between an upgrade
and a new application (and to verify this cryptographi-
cally) because an upgrade inherits all of the access the
user has given the old version (e.g. see Section 6.2.2).

Once the package is verified, the signed part of the
package is used to perform the installation. For a new
application, the user is presented with a simple set of (up
to) four dialogs. The first displays the name of the ap-
plication, its version, and its icon and asks the user to
either continue or cancel. If the user decides to continue
and the application has requested to be run at startup,
the user is asked if they want the application to be run
whenever the system starts. After making their choice
and choosing to continue, the user is presented with a
third dialog asking if they want to associate the appli-
cation with the file types the application has requested.
For each file type, the currently associated application
is displayed in order for the user to make an informed
decision. After making their choices and choosing to

continue, the user is presented with a fourth and final
dialog showing the progress of the installation. For an
upgrade, the user is presented with a simple set of two
dialogs. The first displays the name of the application,
the old version, the new version, and the icon and asks
the user to either continue or cancel. If the user decides
to continue, they are presented with a dialog showing the
progress of the installation. It is worth noting that for
both a new install and an upgrade, if the user decides to
cancel before reaching the dialog showing the progress
of the installation, no changes are made to the system.

The files in the package’s tarballs are installed to a pri-
vate disk specific to the application. This disk is overlaid
on top of the read-only system base. The application is
free to make any changes it wants to its private disk, as
it is the only one that will see these changes. For the
purposes of installing a new application, there is no dif-
ference between the files in the program files tarball and
the files in the settings files tarball; both are untarred to
the private disk. For an upgrade, however, the two sets
of files are treated differently: files that appear in the set-
tings files tarball but are already on the private disk are
ignored. The idea is that the upgrade should not clob-
ber any configuration changes the user made to the old
version.

6.8 File Associations

During installation, an application can request that it be
associated with specific file extensions or URL protocols.
If an application is granted association with a file exten-
sion, it is not given carte blanche access to files with that
extension; rather, it simply becomes the application that
is called upon when a file with that extension needs to
be handled. A file needs to be handled in two circum-
stances:

1. the user launches a document while browsing
through their documents in the documents explorer

2. another application asks for a file to be handled and
the user confirms this need through a dialog

Handling a URL protocol is similar, except a URL proto-
col will never be encountered in the documents explorer.

If the application needed to handle a file or URL pro-
tocol is not currently running, it is started. Once started,
the application is informed of the file or URL it is to han-
dle. If the item needing handling is a file and it exists
in the user’s documents, the application is given access
to this file. If it is a file but is located on the private
disk of another application, it is transparently mapped to
a temporary documents directory on the private disk of
the handling application. If the item needing handling is
a URL, the handling application need only be informed
of what the URL is.

12



6.9 Running Applications

An application can only be run through an action of the
user. There are four such actions:

1. explicitly selecting an application to be run

2. allowing an application to be run at system startup
(see Section 6.7)

3. explicitly selecting a document to open, causing the
application associated with that type of file to be run
(see Section 6.8)

4. allowing one application to ask another application
to handle a file of a specific type (see Section 6.8)

Each running application runs in a separate virtual ma-
chine. This virtual machine is isolated from the other
applications running in their own virtual machines and
from the system by the hypervisor. In order for the ap-
plication to be useful to the user, however, it must be
allowed some communication with the overall system.
This is done with narrow protocols between the applica-
tion VM and the system:

Disk a running application VM is given the ability to
read and write blocks on its private disk; this is done
through a driver whose frontend runs in the applica-
tion VM and communicates with the corresponding
backend that runs in the system; an application can
also work with the user’s documents by communi-
cating with the documents server running in the sys-
tem; this server does not provide carte blanche ac-
cess to the user’s documents, but rather tightly con-
trolled access based on the application making the
request (Section 6.2.2)

Network an application VM is given the ability to read
and write packets on its private network adapter;
this is done through a driver whose frontend runs
in the application VM and communicates with the
corresponding backend that runs in the system; the
network adapter is given a local IP address and is
NAT’ed to multiplex it over the real connection; a
small amount of filtering is done to ensure that the
IP address on packets coming out of the private net-
work adapter is the same as that assigned for its use
and to ensure that an application VM cannot directly
send packets to the local IP of another application
VM

Screen an application VM is responsible for all of the
rendering that must be done; in the end, the system
only cares about bitmaps representing the contents
of windows; the application VM informs the sys-
tem of the memory location of these bitmaps and
the system simply pushes the raw pixel contents to

the screen; informing the system of the bitmaps as
well as negotiating the placement of windows and
receiving user input takes place through the virtual
window manager server (Section 7.1.4)

7 OS as a Privilege-Separating Application
Implementation

Figure 11 gives an overview of the interactions between
an app VM and the system in our prototype. Most of
these interactions follow directly from the fact that an
app VM is an inferior VM. The virtual window manager
client/server interaction was described in Section 3.2.3.
The disk front/back driver is the virtio blk driver in the
Linux kernel, providing block-level access to the VM im-
age. The net front/back driver is the virtio net driver in
the Linux kernel, providing packet-level network access.
The network adapter has a local IP address and NAT is
used to multiplex onto the real connection.

Unique to app VM’s is the ability to access the user’s
files. This takes place through the documents client and
documents server. Together they act as a network file
system between the app VM’s and the system. The doc-
uments server maintains all the prior access control deci-
sions of the user and only allows access to the appropri-
ate app VM’s. The documents client is implemented as a
FUSE file system that communicates with the documents
server. For the user’s files that an app VM already has
access to, they will automatically appear under a mount
point on the app VM’s private disk and will be accessible
to the app VM without interaction with the user. For the
user’s files that an app VM doesn’t have access to, they
will not appear under the mount point and it will be as if
they didn’t exist. To gain access to these files, the appli-
cation must initiate a system-mediated file dialog. This is
implemented as a patch to common widget libraries such
as GTK and Qt. The patch transparently turns a request
to display a file dialog locally into a request to the docu-
ments server to display a file dialog on behalf of the ap-
plication. Since the documents server owns this window
and not the application, it can observe the user’s choices
and update the access control on files accordingly. These
files will then appear under a mount point on the app
VM’s private disk. Since the vast majority of graphical
applications rely on popular widget libraries to display
file dialogs, we are able to modify a few libraries while
leaving application code untouched. The size (in terms
of lines of code) of various components in the prototype
are listed in Figure 12.

Since our prototype provides a standard Linux and X
Window stack to applications running in an app VM,
it can run many popular applications without modifica-
tion. This includes (but is not limited to), Firefox, Open
Office, Mplayer, Evince, The Gimp, Evolution, Pidgin,
Gedit, Kate, and Inkscape.

13



Figure 11: Interactions between an app VM and the system

Figure 12: Lines of C code in the OS implementation as
counted by cloc.

7.1 Virtics Clients and Servers

Most of Virtics is implemented as client and server pro-
cesses that run in userspace. The clients usually run
inside the application VM’s while the servers run in
the privileged system domain, although sometimes the
servers running in the privileged system domain can be
clients of each other.

7.1.1 Application Database Server

An application database server runs in the system domain
and keeps track of all the installed applications and infe-
riors and their properties.

7.1.2 Installation Client and Server

The installation server runs in the system domain and has
two main jobs: the installation of applications and the
installation of inferiors. It is worth noting that a Virtics
package is not parsed inside the system domain in order
to minimize the attack surface for this piece of untrusted
data. The most important step in installing the package
is signature verification. To do this, a separate signature-
checking VM is created with access only to the package
to install. The sole goal of this VM is to read the name
and public key from the verification header and verify
that the signature on the package is correct. Although
this operation runs in a separate VM, it is important for
the security of the system that it not be compromised.

Otherwise, a package could pretend to be the upgrade
of an existing installed application and gain access to its
private disk and any files the application may have been
given access to. Once signature verification is complete,
a different VM is created with access to the application’s
private disk. It is the job of this VM to parse the rest
of the package and populate the private disk. It is worth
noting that this VM is completely untrusted and corrup-
tion of its operation (for example, providing a malicious
tar file) would not really gain the attacker anything. The
second job of the installation server is installing inferi-
ors. This job is considerably easier since we know which
application the request comes from and do not have to
perform any signature checking. In this case, we pro-
ceed directly to the second step of launching a VM to
populate the private disk.

7.1.3 Run Client and Server

The run server runs in the system domain and is respon-
sible for creating and keeping track of all application and
inferior VM’s. The Virtics UI can make requests to start
applications. Application VM’s can request that inferiors
be run or that files be handled.

7.1.4 Virtual Window Manager Client and Server

Each application and inferior VM runs its own copy of
the X server. Inside these VM’s, a program known as the
virtual window manager client acts as a window man-
ager for the dummy X server. This client listens for
window events (creations, configures, mappings, prop-
erty changes, etc.) and passes them on to the virtual
window manager server running in the system VM. The
client utilizes the Composite and Damage X extensions
to learn when the the contents of windows change and
conveys this information to the server. Because we want
all application VM to system protocols to be as sim-
ple as possible for security purposes, communicating the
contents of a window is a matter of specifying memory
pages. These memory pages are mapped by the virtual

14



window manager server and are considered to represent
a raw rectangular texture. This texture is mapped onto
the appropriate window using OpenGL. If the client has
specified garbage as the content of the window, garbage
will appear as the content of the window; we place no
interpretation on this data.

7.1.5 Virtics UI

The virtual window manager server does not itself dis-
play the UI of Virtics. Instead, it makes requests to map
windows on behalf of virtual window manager clients,
and it is the Virtics UI that decides whether these win-
dows get mapped and where. These decisions are made
based on which application currently has the focus. The
virtual window manager server labels the windows it cre-
ates, and this allows the Virtics UI to place them ap-
propriately in the window bar/application bar hierarchy
shown previously in Figure 9.

7.1.6 Documents Client and Server

Files outside of an application’s private disk (i.e. the
user’s documents) are accessed from the documents
client, which is a FUSE file system running inside the
application VM that forwards operations on to the docu-
ments server, running in the system domain. The docu-
ments server makes a decision to carry out the operation
or deny it based on the permissions it has for the appli-
cation making the request. The documents server itself
overlays these permissions on a normal Linux file sys-
tem.

7.1.7 Documents Dialog Client and Server

To change its permissions on the user’s documents, an
application sends a request to the documents dialog
server. This server displays an open/save dialog that ap-
pears to come from the requesting application. Once the
user makes their choice, the documents dialog server in-
forms the documents server to change its permissions
and informs the documents dialog client of the choice. In
order to achieve backwards compatibility with existing
applications, the documents dialog client is implemented
as a patch to common widget libraries such as GTK and
Qt.

8 Evaluation
8.1 Performance

Most of the development effort for virtual machines has
been focused on providing highly-efficient CPU utiliza-
tion, memory access, disk I/O, and network I/O [2]. Be-
cause of this effort, the impact of virtualization on these
resources is minimal. Thus, in this section, we examine
those aspects of performance that are more unique to our
use of virtualization, namely VM startup time, memory
overhead of using a VM, and graphics performance.

Figure 13: Startup times in seconds (rounded up to the near-
est second). The VM times are for applications starting in a
VM using pre-execution. Non-VM times are for applications
started as native OS processes. Cold start times are computed
after caches have been cleared, and warm start times are com-
puted after a previously successful start has already warmed
the cache. The variation in these times across multiple runs
was minimal.

8.1.1 Startup Time

One of the challenges of using a VM as a fundamen-
tal primitive is that booting a VM and running code in
it takes significantly longer than forking and executing
the same code in a process. Starting an application in
a VM booting an unoptimized kernel from scratch takes
about 20 seconds, while starting an application as a pro-
cess takes at most a few seconds.

Clearly, this is an unacceptable wait time for even
the most patient of users. By optimizing the configu-
ration of the kernel, stripping out unused modules and
drivers, changing the start order of the remaining mod-
ules, and reducing the number of started processes, other
researchers have managed to reduce this time to 5 sec-
onds [11]. However, this boot time is still greater than
we want the entire boot and application load process to
take.

The solution Virtics uses is to pre-execute VM’s to the
point of application launch and then suspend the VM,
creating an image file that is typically less than 64MB.
Then, when Virtics needs to start an application, it simply
loads the pre-executed image, resumes it, and loads the
application code immediately. This technique was used
in [24].

Our measurements show that creating an inferior VM
and jumping into the custom code takes approximately
800 milliseconds. For cases where this amount of time is
prohibitive, an application could create inferiors before
they are needed.

We also performed measurements when our OS is act-
ing as a privilege-separating application using our new
primitive. We measured the times to start an applica-
tion using a pre-executed VM versus the same applica-

15



tion running outside a VM as a native OS process (see
Figure 13). All of the Virtics times are within a second
or two of the native ones.

8.1.2 Memory Overhead of Running in a VM

Running code in a VM instead of a process means that a
large amount of code and data on the system that would
otherwise be shared with other code is now duplicated
inside each VM. Virtics mitigates the memory overhead
of this duplication by utilizing the Linux KVM beta im-
plementation of content-based page sharing. Content-
based page sharing examines the contents of individual
pages (as opposed to the way sharing is typically done
through mapping the same file) and coalesces identical
pages both within a VM and across VMs [25]. Vir-
tics only shares zero pages using this technique, since
otherwise a malicious VM could combine a brute force
search with careful timing measurements to determine
if other VM’s on the system have pages with the same
data. Using zero page sharing, Virtics reduces the size of
an empty VM with its own private kernel, its own private
X server, and its own private copy of support processes,
down to about 48MB.

To illustrate the minimal memory overhead, we simul-
taneously opened the Alexa Top 40 websites in 40 in-
stances of WebKit that were native OS processes and 40
instances of WebKit that were inferior VM’s. The We-
bKits running inside inferior VM’s used 48 more MB of
RAM per instance than the WebKits running as native
OS processes.

It is worth noting that the memory overhead could be
reduced further by using sub-page level sharing [9]. And
it likely could be reduced much further by using a copy-
on-write delta virtualization scheme as described in [24].
This scheme does not suffer from the same zero page
limitation as content-based page sharing since it would
only share inferior VM pages in their initial state, not af-
ter they were written with sensitive data. Copy-on-write
delta virtualization has been implemented in a general
manner for Xen [22]; in that work, up to 70% of memory
was shared when child VM’s involved web browsing and
PDF viewing.

8.1.3 Graphics Performance

Virtics copies rendered window contents from VM’s onto
the screen, imposing a penalty on graphics performance.
To evaluate the impact of copying, we tested the perfor-
mance of streaming video using the Flash plug-in in Fire-
fox and the kmplayer application. We were able to watch
a full screen (1440 x 900) movie at a normal frame rate
with no noticeable difference between the applications
running as native OS processes and running as VM’s.

We also measured sdlquake running at 640x480. The
program’s internal timedemo demo1 command measured

168 frames per second when running quake as a native
OS process and 128 frames per second when running it
in an app VM.

8.2 Usability

Although we have not conducted a formal usability
study, we have put a large amount of thought and effort
into designing a usable system. A user of our system
would very likely have no idea that they are using multi-
ple virtual machines. From their perspective, the system
is just a set of applications and documents, which are
concepts we think a user understands.

File sharing is a great example of how we approached
the problem of security and usability. Obviously, if a
user couldn’t access files they created with one appli-
cation from another application, the fact that they were
using a VM would be apparent and would be a barrier
to usability. Instead, we leverage file open/save dialogs
to provide security and usability. They provide security
because by default, applications don’t have access to the
user’s documents and must gain access through dialogs.
They provide usability because file open/save dialogs are
a common paradigm in GUI applications, so the user will
be familiar with them, and the user doesn’t have to do any
extra work of answering an annoying security popup.

Our windowing system reuses the familiar concepts of
a window bar and window focus. We introduce a new
GUI element known as the application bar, with one en-
try for each running application, but each application is
represented by its icon; the icon should be familiar to
the user because it is the same icon they used when they
installed the application.

Although our armored application implementations
are not production quality commercial applications, there
is strong evidence that armored applications can be made
just as usable as their unarmored counterparts. This
comes both from our own design experiences, which
could be implemented, and similar applications imple-
mented by other people. For example, the Chrome [3]
team has done a great job of creating a browser that uses
privilege separation but that does not provide a subpar
user experience.

8.3 Security Analysis

The security approach of Virtics is to isolate all applica-
tions and documents a priori in case they are malicious
and to maintain this isolation throughout their lifetime,
only granting small amounts of permission when the sys-
tem observes the user taking certain actions. The classes
of attacks prevented and not prevented by our approach
are listed below, followed by a discussion of the virtual
machine interface as a security interface.

16



8.3.1 Attacks Prevented

In general, the class of attacks we prevent results from
our ability to separate the privileges of the user from the
privileges of a single application, and then to further sep-
arate the privileges of an application from the privileges
of a document it is working on. A taxonomy of these
attacks follows:

• Document exploit resulting in application compro-
mise Example: Malformed HTML resulting in ex-
ploit of HTML renderer, resulting in compromise of
entire browser.

• Application compromise resulting in total user com-
promise Example: PDF exploit resulting in ex-
ploiting PDF application, resulting in access to all
files/programs of the user.

• Spyware/Trojan Horse compromising privacy of
user Example: Game that gets installed, pretending
to be a harmless application, then proceeds to hook
all keyboard events.

• Spyware/Trojan Horse resulting in total user com-
promise Example: Music player that gets installed,
pretending to be a harmless application, then pro-
ceeds to access all files/programs of the user.

8.3.2 Attacks Not Prevented

The class of attacks not prevented includes attacks on the
mechanisms that enforce privilege separation. It also in-
cludes attacks that result from allowing code in VM’s to
carry out arbitrary computation and network communi-
cation. A taxonomy of these attacks follows:

• Attacks against the hardware Example: Using a
cache race condition to write an arbitrary value to
a cache line.

• Attacks against the hypervisor Example: Tricking
the hypervisor into mapping a page into an applica-
tion that the application does not own.

• Attacks against the application part of an applica-
tion/inferior separated application. Example: Ma-
licious website running in an inferior that asks the
application part to open a malicious URL for which
it mishandles the parsing.

• Intra-inferior security Example: Enforcement of
the same origin policy among the frames in a sin-
gle tab of a web browser.

• Spyware/Trojan Horse tricking user Example: Pic-
ture application that gets installed, pretending to be
a harmless application, and then tricks the user into
opening sensitive files with it or typing sensitive in-
formation into it.

• Joining a Botnet Example: Weather application that
gets installed and then acts as part of a botnet, ac-
cepting commands from a remote attacker and car-
rying out attacks on other machines.

• Denial of Service Example: Chat application that
gets installed and then proceeds to monopolize the
CPU.

We discussed the security of individual armored appli-
cations in Sections 4.1.1, 4.2.8, 4.3.2, 4.4.1, and 4.5.1.
In general, these security analyses boil down to attacks
on the application/inferior protocol, which we aim to
keep as simple as possible, and attacks on the virtual
machine environment. The argument is not that the vir-
tual machine environment is perfect. Indeed, attacks
against virtual machines have been carried out in the
past [15]. CPU errata are also a concern since we allow
inferior VM’s to run arbitrary code. The argument is that
VM’s provide the simplest interface for easy backwards-
compatibility with legacy code and that if we can reduce
the security of large amounts of code down to the secu-
rity of virtual machines, then a large amount of effort
can go into scrutinizing and verifying them. Some of the
foremost experts in attacking systems at the virtual ma-
chine layer [31, 29, 30] have recently stated that systems
using virtual machines for isolation are our best option
for a secure desktop, and in recent work [18], they have
gone a long way toward making the interface between
the system and untrusted code running in VM’s very nar-
row. Other recent work [28] has looked at assuring the
control-flow integrity of a running hypervisor; they have
developed techniques that work on commodity hypervi-
sors, such as Xen [2].

9 Limitations
9.1 Applications in a VM

Some classes of applications are not well-suited to run-
ning in an app VM. Applications that want to easily scan
the entire hard disk (e.g. desktop search) are not well-
suited. Applications that rely on reading the content of
other application’s windows (e.g. a screenshot appli-
cation) are not well-suited. Applications that rely on
hardware-accelerated 3-D graphics are not well-suited
since an app VM has no access to the 3-D hardware.
However, if 3D developers return to software-based ren-
dering on massively multicore desktops, this particular
limitation would go away.

9.2 Reliance on the User

When running the OS as a privilege separating applica-
tion, we allow the user to install any application and give
any application access to any file. If a user installs a ma-
licious application, we attempt to protect the system in-
tegrity and all of the user’s files by default, but no attempt

17



is made to prevent the user from typing sensitive infor-
mation directly into the malicious application or opening
sensitive files with it. Similarly, with a benevolent appli-
cation, we do not prevent the user from telling it to open
a malicious document, but we do provide the ability for
an application to protect itself using inferiors.

9.3 Semi-Local Adversary

Right now, we assume the adversary is remote across the
Internet, but we’d also like to deal with a semi-local ad-
versary; that is, an adversary on the same physical net-
work as us. With a remote adversary across the network,
they are limited to IP and higher network stack attacks.
An adversary on the local network could carry out physi-
cal layer attacks, trying to compromise the system’s net-
work driver. Future Directed I/O technology could allow
us to assign the network card and its driver to a separate
VM, potentially mitigating this type of attack.

10 Conclusion
Now is the time to deploy desktop operating environ-
ments that can protect applications and users from ma-
licious applications, documents, and network flows. In
this work, we introduce Virtics as such a system. We
demonstrate that replacing traditional process-based ap-
plication isolation with high-performance virtualization-
based isolation, where every user application and docu-
ment executes in a separate virtual machine can be done
in an efficient manner.

Virtics has been in daily use for over a year and it sup-
ports both unmodified applications and applications that
provide internal isolation of documents. Performance us-
ing applications running in Virtics is comparable to that
of native OS process-based applications, and the startup
time and memory overheads are not unreasonable given
the gain in security.

One direction for future work would be applying our
design to other operating systems, such as Microsoft
Windows. There is nothing fundamental that limits the
concepts we have developed to one particular operating
system or another.

References
[1] BALLE, J. 1.91% of all PCs are fully patched!, Dec. 2008.

http://secunia.com/blog/37/.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 2003), ACM, pp. 164–177.

[3] BARTH, A., JACKSON, C., REIS, C., AND TEAM, T. G. C.
The security architecture of the Chromium browser, Dec. 2008.
http:crypto.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

[4] BRUMLEY, D., AND SONG, D. Privtrans: automatically par-
titioning programs for privilege separation. In SSYM’04: Pro-

ceedings of the 13th conference on USENIX Security Symposium
(Berkeley, CA, USA, 2004), USENIX Association, pp. 5–5.

[5] COX, R. S., HANSEN, J. G., GRIBBLE, S. D., AND LEVY,
H. M. A safety-oriented platform for web applications. In In
IEEE Symposium on Security and Privacy (2006).

[6] DOUCEUR, J. R., ELSON, J., HOWELL, J., AND LORCH, J. R.
Leveraging legacy code to deploy desktop applications on the
web. In Proceedings of the Symposium on Operating Systems
Design and Implementation (2008).

[7] FESKE, N., AND HELMUTH, C. A Nitpicker’s guide to a
minimal-complexity secure GUI. In ACSAC ’05: Proceedings
of the 21st Annual Computer Security Applications Conference
(Washington, DC, USA, 2005), IEEE Computer Society, pp. 85–
94.

[8] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: A virtual machine-based platform for trusted
computing. In Proceedings of the 19th Symposium on Operating
System Principles(SOSP 2003) (October 2003).

[9] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,
A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.
Difference engine: Harnessing memory redundancy in virtual
machines. In Proceedings of OSDI (2008).

[10] LOSCOCCO, P., AND SMALLEY, S. Integrating flexible support
for security policies into the Linux operating system. In Proceed-
ings of the FREENIX Track of the 2001 USENIX Annual Techni-
cal Conference (2001).

[11] MARTI, D. LPC: Booting Linux in five seconds, Sept. 2008.
http://lwn.net/Articles/299483/.

[12] MCMILLAN, R. Security industry faces at-
tacks it cannot stop, Mar. 2010. http:
//www.itworld.com/security/100320/
security-industry-faces-attacks-it-cannot-stop.

[13] NATIONAL VULNERABILITY DATABASE. CVE-2008-1693.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2008-1693.

[14] NATIONAL VULNERABILITY DATABASE. CVE-2010-1349.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2010-1349.

[15] ORMANDY, T. An empirical study into the security exposure to
hosts of hostile virtualized environments.

[16] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
privilege escalation. 12th USENIX Security Symposium (August
2003), 11.

[17] REIS, C., AND GRIBBLE, S. D. Isolating web programs in
modern browser architectures. In EuroSys ’09: Proceedings of
the fourth ACM european conference on Computer systems (New
York, NY, USA, 2009), ACM, pp. 219–232.

[18] RUTKOWSKA, J., AND WOJTCZUK, R. Qubes OS architec-
ture, Jan. 2010. http://qubes-os.org/files/doc/
arch-spec-0.3.pdf.

[19] SEABORN, M. The powerbox: a GUI for granting authority, Mar.
2009. plash.beasts.org/powerbox.html.

[20] SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZ-
MADIA, D. Design of the EROS trusted window system. In
SSYM’04: Proceedings of the 13th conference on USENIX Secu-
rity Symposium (Berkeley, CA, USA, 2004), USENIX Associa-
tion, pp. 12–12.

[21] STIEGLER, M., KARP, A. H., PING YEE, K., AND MILLER, M.
Polaris: Virus safe computing for Windows XP. Tech. rep., HP,
2004.

18



[22] SUN, Y., LUO, Y., WANG, X., WANG, Z., ZHANG, B., CHEN,
H., AND LI, X. Fast live cloning of virtual machine based on
xen. In 11th IEEE International Conference on High Perfor-
mance Computing and Communications (2009).

[23] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces:
making trust between applications and operating systems config-
urable. In OSDI ’06: Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation (Berke-
ley, CA, USA, 2006), USENIX Association, pp. 20–20.

[24] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scal-
ability, fidelity, and containment in the potemkin virtual honey-
farm. SIGOPS Oper. Syst. Rev. 39, 5 (2005), 148–162.

[25] WALDSPURGER, C. Memory resource management in VMware
ESX server. In Fifth Symposium on Operating Systems Design
and Implementation (Dec. 2002).

[26] WALSH, D. Introducing SELinux sandbox. In Linux Plumbers
Conference (2009).

[27] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The multi-principal OS
construction of the Gazelle web browser. In Proceedings of the
18th USENIX Security Symposium (Montreal, Canada, August
2009).

[28] WANG, Z., AND JIANG, X. Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In Proceed-
ings of the IEEE Symposium on Security and Privacy (2010).

[29] WOJTCZUK, R. Adventures with a certain Xen vulnera-
bility, Oct. 2008. http://invisiblethingslab.com/
resources/misc08/xenfb-adventures-10.pdf.

[30] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking SMM
memory via Intel CPU cache poisoning, Mar. 2009.
http://invisiblethingslab.com/resources/
misc09/smm_cache_fun.pdf.

[31] WOJTCZUK, R., RUTKOWSKA, J., AND TERESHKIN, A. Xen
0wning trilogy. In Black Hat USA (2008).

[32] YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER,
D. Automatically generating malicious disks using symbolic ex-
ecution. In SP ’06: Proceedings of the 2006 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 2006), IEEE
Computer Society, pp. 243–257.

[33] YEE, B., SEHR, D., DARDYK, G., CHEN, B., MUTH, R., AND
ORMANDY, T. Native client: A sandbox for portable, untrusted
x86 native code. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (2009).

[34] YEE, K.-P. User interaction design for secure systems. In In
Proceedings of the 4th International Conference on Infor mation
and Communications Security (2002), Springer-Verlag, pp. 278–
290.

19


