
Sparsely Precomputing The Light Transport Matrix for

Real-Time Rendering

Fu-Chung Huang
Ravi Ramamoorthi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-79

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-79.html

May 14, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by NSF CAREER grant IIS-0924968 and
ONR PECASE grant N00014-09-1-0741, as well as equipment and
generous support from Intel, NVIDIA, Adobe, and Pixar.

Sparsely Precomputing The Light Transport Matrix for
Real-Time Rendering

Fu-Chung Huang and Ravi Ramamoorthi

University of California at Berkeley, USA

Abstract

Precomputation-based methods have enabled real-time rendering with natural illumination, all-frequency shad-
ows, and global illumination. However, a major bottleneck is the precomputation time, that can take hours to
days. While the final real-time data structures are typically heavily compressed with clustered principal compo-
nent analysis and/or wavelets, a full light transport matrix still needs to be precomputed for a synthetic scene, often
by exhaustive sampling and raytracing. This is expensive and makes rapid prototyping of new scenes prohibitive.
In this paper, we show that the precomputation can be made much more efficient by adaptive and sparse sampling
of light transport. We first select a small subset of “dense vertices”, where we sample the angular dimensions more
completely (but still adaptively). The remaining “sparse vertices” require only a few angular samples, isolating
features of the light transport. They can then be interpolated from nearby dense vertices using locally low rank
approximations. We demonstrate sparse sampling and precomputation5× faster than previous methods.

1. Introduction

Precomputation-based rendering, or precomputed radiance
transfer (PRT), has enabled real-time image synthesis with
natural lighting, intricate shadows, and global illumination
effects [SKS02, NRH03]. However, the initial precomputa-
tion remains a bottleneck, since the full light transport matrix
needs to first be precomputed, corresponding to each vertex
and light source direction. To include interreflection effects,
exhaustive sampling and ray or path tracing is typically re-
quired. For an all-frequency lighting cubemap resolution of
6× 32× 32, the cost is essentially equivalent to rendering
6144 images, and can take hours to days. This precludes
rapidly prototyping new scenes, and hinders adoption.

The final data structure for real-time rendering is highly
compressed, such as with wavelets or clustered principal
component analysis (CPCA) [SHHS03,LSSS04], but these
methods first require the full light transport to be available.
This paper investigates fast precomputation by adaptive and
sparse sampling of light transport. While our technique is
simple and broadly applicable to almost any PRT system,
we focus on all-frequency relighting of static geometry, in-
cluding interreflection effects, where the precomputationis
by explicit sampling and ray tracing. This includes both the
diffuse geometry relighting of Ng et al. [NRH03], and its
extension to glossy materials with BRDF in-out factoriza-

tion [LSSS04, WTL04]—in the latter case, our method is
simply applied to each view-independent transport term.

We leverage key recent insights about the structure of
light transport. CPCA [SHHS03] is based on assuming
that locally, the response of vertices is similar, and of low
rank [MKSRB07]. Hence, we first compute a small sub-
set of “dense” vertices, where almost all angular direc-
tions are sampled. The remaining “sparse” vertices require
only a few light source directions to be computed, and
can then be reconstructed with a low rank approximation
from their neighbors. We also know that light transport is
sparse [NRH03,PML∗09]. We exploit this idea by focusing
our sampling on those angular directions that correspond to
features, and by using recent sparseL1 minimization meth-
ods [KKL ∗07]. Our algorithm includes simple heuristics to
choose the best candidate “dense” spatial vertices and angu-
lar features.

As shown in Fig.1, we can produce accurate results with
explicit precomputation of only about 11% of the light trans-
port matrix, and with acceptable overheads (wall clock time
is 20% of brute force precomputation). These results poten-
tially enable new capabilities for rapid prototyping of scenes,
or shots for lighting design.

2 F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering

Figure 1: Our method (a) sparsely samples the light trans-
port matrix for precomputation in PRT methods. The ren-
dering results, including diffuse global illumination, are al-
most identical to fully sampled transport (b). In this example,
involving static diffuse geometry, we used only11% of the
samples, and20% of the precomputation time of full sam-
pling. Relighting uses all-frequency6×32×32cubemaps.

2. Related Work

Precomputation-Based Renderinghas a long history, go-
ing back to early work by [NSD94, DAG95]. The seminal
paper by Sloan et al. [SKS02], and the all-frequency exten-
sions of Ng et al. [NRH03,NRH04] have led to increased in-
terest and many applications. We refer to [Ram09] for a sur-
vey of many recent developments. All of these approaches
have focused on real-time functionality, relying on brute
force precomputation of light transport. [NRH03] introduced
a hardware-accelerated rasterization method to precompute
visibility, but only for direct lighting. The alternative ray or
path-tracing approach is needed for global illumination, and
can be very expensive.

Row-Column Sampling: In recent years, many other fields
of rendering have recognized the need for sparsely and adap-
tively computing variants of light transport. For offline ren-
dering, matrix row-column sampling [HPB07] has been pro-
posed, and the Kernel Nystrom method has been developed
for appearance acquisition [WDT∗09]. These methods also
relate to numerical matrix decompositions like Drineas et
al. [DMM08]. We are inspired by these techniques, but con-
sider a different application, to precomputation-based re-
lighting. In that context, we demonstrate better methods to
choose angular samples, reconstruct locally low rank ap-
proximations, and compute clustered principal components
on sparse data. Moreover, we compute each element of the
matrix separately, and so do not use full rows and columns.

Compressive Sensing:Another body of work is compres-
sive sensing [CT06,CRT06], that has recently been used for
appearance capture [PML∗09, SD09]. Random patterns are
projected, with sparse minimization. We cannot use these
methods directly, since we must sample individual elements
from the light transport matrix by ray or path tracing—the

cost of computing the projection of a random pattern will be
proportional to the support of the pattern. However, we are
inspired by the sparsity demonstrated, choosing our angu-
lar samples at locations identified as features. We also lever-
age theL1 sparse minimization approach advocated by these
methods, using the recent fast algorithm of [KKL ∗07].

Hierarchical and Sparse Sampling: Methods like irradi-
ance caching and variants allow sparse sampling and inter-
polation of global illumination data over a scene [KG09].
Recent hierarchical approaches to light transport include
Lehtinen et al. [LZT∗08], Kontkanen et al. [KTHS06] and
Hasan et al. [HPB06], which have also been applied for
direct-to-indirect transfer for PRT. We differ in focusing
on all-frequency relighting, where the light transport sig-
nal includes direct illumination, and varies more rapidly in
both spatial and angular domains. Thus, the hierarchical and
sparse sampling methods are not directly applicable (much
as they are rarely used for direct lighting in global illumina-
tion). Our approach can effectively be seen as a hierarchical
sparse precomputation for higher-frequency signals.

Adaptive Remeshing:A closely related work is Krivanek
et al. [KPZ04], who adaptively subdivide a mesh for diffuse
PRT, based on the change in the full transport operator. This
work has similarities to adaptive image sampling [Guo98].
Our method is orthogonal to theirs, in using a fixed geo-
metric mesh, but sparsely precomputing light transport. We
also focus on all-frequency relighting, enable glossy mate-
rials, and integrate our method closely with CPCA. The ap-
proaches could be combined in future to allow sparse pre-
computation along with an adaptive mesh simplification.

3. Overview

Following Ng et al. [NRH03], light transport can be written,

B = TL , (1)

whereB is the outgoing radiance or image,L is the incident
lighting (a vector corresponding to different directions), and
T is the light transport matrix. While the form above may
be used in many contexts, for concreteness we may consider
relighting of diffuse geometry, whereB is a vector of vertex
intensities, and each column ofT corresponds to the inten-
sity of each vertex for a single lighting direction (each row
of T corresponds to the contribution from different incident
lighting directions at a single vertex).

The extension to glossy materials using the in-out BRDF
factorization [LSSS04, WTL04] is straightforward, sim-
ply being a product of view-independent transport factors,
weighted by view-dependent BRDF terms. In these meth-
ods, the BRDFρ is factored inton terms as

ρ(ω,ωo) =
n

∑
i=1

fi(ω)gi(ωo), (2)

whereω is the incident direction, andωo is the outgoing di-
rection. Then, instead of a single transport matixT(x,ω), we
haven transport matricesT i(x,ω), each of which includes
the view-independent incident BRDF factorfi(ω). Our al-
gorithm is run on each of theT i separately, and they can be

F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering 3

Figure 2: Spatial sampling via exploration. Several iterations are used to determine important regions in the scene. Uniform
sampling is used for the first iteration (left), and probabilities are calculated (via local rank) for where to place dense vertices
in the next iteration. The colors in the left two diagrams correspond to these probabilities after that iteration. The closeups show
additional iterations that concentrate samples in the complex light transport (high rank) region near the feet. The local rank for
each vertex is shown rightmost. It is lowest in near-convex regions, where light transport is simplest, and highest in complex
shadowed regions such as the neck, beneath the feet, and waist.

combined at run-time with the view-dependent factors,

B(x,ωo) = ∑
i

gi(ωo)∑
j

T i(x,ω j)L(ω j), (3)

where the inner summation is the standard matrix-vector
multiplication of transport and illumination for relighting,
and the outer summation considers the view-dependent
BRDF factors. We may thus apply our method to each view-
independent transport termT i separately, and so we simply
consider the form of equation1 in the rest of our exposition.
Examples with glossy materials are in Figs.17, 18, 19, 21.

For typical all-frequency relighting applications,L can
involve a 6× 32×32 cubemap, whileB may be evaluated
at 104–105 vertices, so that the precomputed light transport
matrix T is of dimension approximately 105

× 104. While
hardware rasterization is possible for direct lighting, global
illumination requires explicit precomputation of each ele-
ment of T (or equivalently each image pixel or vertex for
a given lighting direction). Our goal is to greatly speed up
precomputation of theT matrix, by sparsely sampling the
spatial locations and angular directions.

Sparse sampling of the PRT matrix requires us to care-
fully choose certain rows (vertices) and columns (angular
directions) to evaluateT. We first define two kinds of scene
vertices:denseandsparse. The light transport of dense ver-
tices is sampled densely in their angular directions. The light
transport of sparse vertices is interpolated from that of dense
vertices, and they require very sparse sampling in the angu-
lar directions:

Phase 1—Sampling for dense vertices:Dense vertices
are sampled in an iterative and adaptive way. At each iter-
ation we decide where to put more dense vertices via local
rank estimation, so that the local light transport information
is sufficient for phase 2. For each dense vertex, we sample
the angular domain in many (a “dense set” of) directions, but
not exhaustively—we start with a sparse angular sampling,
and use local variation to decide where to add more samples.

Phase 2—Interpolation for sparse vertices:Sparse ver-
tices are interpolated from neighboring dense vertices. They

require very little (sparse) angular sampling. We select im-
portant angular directions or “features” to constrain the re-
construction, based on neighboring dense vertices, How to
pick important directions and choose neighboring dense ver-
tices will be discussed in later sections.

These operations correspond to a fine-grained row-
column sampling strategy, in that we choose rows (vertices)
carefully, and then columns (angular directions) adaptively
for each row. Unlike previous work [HPB07,WDT∗09] we
have the freedom (and requirement) to sample each matrix
element separately. Thus, ours is not a strict row-column
method. In particular, even dense rows (vertices) do not re-
quire exhaustive evaluation across all columns (angular di-
rections). Moreover, the same columns (directions) are not
required to be used for different sparse rows (vertices). We
also show how to integrate our method with CPCA.

4. Sampling Dense Vertices

There are two problems for sampling dense vertices: where
to sample vertices in the spatial domain, and how to reduce
the cost of sampling them (in the angular domain). In terms
of the T matrix, this corresponds to which rows to sample
densely, and how to reduce the number of columns to sample
for each dense row.

The first problem is mainly for phase 2 interpolation, and
the general idea is to choose more vertices for complex light
transport regions; this requires us to determine the rank of
that region. The second problem is simpler: since we already
know certain directions are completely occluded or empty, it
is wasteful to put samples there; this results in accelerated
sampling for dense vertices.

4.1. Adaptively Sampling the Spatial Domain

We gather information about the scene by exploration in
several iterations, as seen in Fig.2. The initial iteration as-
sumes an isotropic importance in vertices (spatial domain),
and we randomly choose a small number of dense initial
vertices (typically 5%). After each iteration, updates assign

4 F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering

1st pass regular grid samples 2nd pass feature samples

Figure 3: Two pass angular sampling for dense vertices.
Left: Samples (in blue) are taken at1/4 of the resolution.
For each unsampled direction, a window is used to check the
variances.Right: If variance is nonzero, then new samples
(in red) are drawn in the second pass. Samples will accu-
mulate near high frequency edges, such as the boundary be-
tween blocked (black) and visible (white) regions. For the re-
maining unsampled directions, the value is directly obtained
from their neighbors without explicit sampling.

new weights to other unsampled vertices, and we perform
weighted random sampling to choose new vertices.

The weights for vertices are their rank, in terms of
the local light transport matrix. As shown in Mahajan et
al. [MKSRB07] and exploited in CPCA methods, while light
transport is globally complex, it is of low rank in a local area.
The density of sampling (and hence vertex weight) in each
spatial region depends on this rank.

For each vertex, a local light transport matrix is built us-
ing radius-restricted k nearest-neighbors [AMN∗98] from
nearby vertices that have already been sampled densely. The
rank of this matrix is used to determine the complexity of
local light transport. The intuition is that for regions close
to objects, their shadows and hence light transport tends to
vary significantly, and is thus of high weight. Conversely, as
seen in Fig.2, the local rank will be low for regions far away
from objects, where the cast shadows correspond to a small
solid angle, and light transport otherwise varies smoothly.

4.2. Adaptively Sampling the Angular Domain

For each dense vertex, we can exhaustively sample angular
directions, but some saving is obtained by adaptive angular
sampling (Fig.3)—our approach also bears some similari-
ties to adaptive image sampling methods [Guo98].

As shown in Fig.3(left), we first use a regular grid (on
a cubemap), with 1/2 of the resolution in each direction
(1/4 the total number of samples). For every unsampled
direction, we then use a window to inspect the variance
from sampled directions in that window (we use 7×7 win-
dows as in Fig.3(left)). This variance guides us in adding
more samples, similar to adaptive pixel rendering methods
(Fig. 3(right)). While we could use multiple iterations as in
spatial sampling, we found a single iteration adequate.

Given some angular samples, the remaining directions
need to be interpolated. We tried a number of radial basis

function scattered data interpolation schemes, but the recon-
struction cost did not justify the savings. Instead, we apply
simple heuristics, given the nature of the transport function.
Light transport is a product of the BRDF and visibility for
direct lighting. Since we assume a diffuse surface, the visi-
bility term has the most significant variation. However, visi-
bility is a binary function, so we can determine the value of
a pixel by borrowing if all its neighbors are the same (un-
less there is an extremely high-frequency feature, which isa
rare case (moreover, these high-frequency errors do not sig-
nificantly affect the final image, since they will be integrated
out against the lighting anyway.) In summary, our angular
sampling algorithm for direct lighting is:

1. Sample the angular domain with a regular grid pattern,
sending 1/4 samples. For every unsampled direction, cal-
culate the variance from sampled directions within a
small window.

2. If the variance for the unsampled direction is non zero,
we mark it as a feature and sample it directly. Otherwise
use the value from its neighbors.

The (diffuse) global illumination is generally much
smoother and low-frequency, so sparsely sampling it is even
simpler. We directly use the low-resolution grid, or 1/4 the
total number of samples.

5. Interpolation for Sparse Vertices

Since light transport is locally low rank [SHHS03,
MKSRB07], we can use dense vertices in a local neigh-
borhood (i.e. a few rows) to interpolate and reconstruct the
transport for the remaining vertices. This interpolation re-
quires some examples (from local neighboring dense ver-
tices) and constraints (newly sampled angular directions or
columns at sparse vertices).

5.1. Reconstruction

More formally, each sparse vertex is considered a linear
combination of its nearby dense vertices. In the following,
let T(x) correspond to the transport row we seek to recon-
struct,

T(x) ≈
n

∑
k=1

αkT(xk), (4)

where xk are the local neighboring dense vertices,T(xk)
are the corresponding dense transport functions, andαk are
unknown weights. To determineαk, we need constraints,
and therefore sampleT(x) at some sparse set of directions
(columns)T(x,ω j),

∀ j : T(x,ω j) =
n

∑
k=1

αkT(xk,ω j). (5)

Equation5 is a system of linear equations for unknownαk
with constraintsT(x,ω j). Typically, the number of dense
verticesn is small (usually 10–40), so it can be solved effi-
ciently by least squares. Once theαk are known, equation4
is used to reconstruct the sparse vertex transportT(x).

F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering 5

While the least squares method solves equation5 well, the
solutions are sometimes not appropriate for reconstructing
the transport. Since we only use a small number of angular
samples, the least squares solution tends to over-fit the con-
straints, causing large positive/negative weights, with mostly
non-zero values. Following [MKSRB07], if the local light
transport is of low dimensionality, then a few samples should
be sufficient to form the bases and to describe the interpola-
tion, leading to a sparse weighting vectorα.

Inspired by the compressive sensing literature, we have
observed that better results can actually be obtained using
sparseL1 minimization (rather than least squares), using the
fast algorithm in Kim et al. [KKL ∗07]. L1 reconstruction
preserves the sparse structure of light transport better, and
leads to lower errors (results are shown later in Fig.6).

In order for the reconstruction to be good with a sparse
set of directionsω j , it is crucial to sample useful angular
directions, and also choose appropriate local neighborsxk.

5.2. Choosing Angular Direction Samples (Columns)

Choosing sparse angular direction samples is analogous
to determining which columns to pick in row-column ap-
proaches. They need to be meaningful, and make the linear
system in equation5 well-posed. We describe a heuristic that
considers two properties. First, what the variance among the
dense vertices is in that angular direction (directions where
all the dense vertices agree do not provide meaningful con-
straints). Second, for a given angular direction, in how many
of the dense vertices it was a feature (the red dots in Fig.3).
We then choose the best angular directions, using a weight
based on the product of these two metrics.

This method is illustrated in Fig.4 for a single sparse ver-
tex. Figure4(a) shows the cubemaps for light transport at
representative dense vertices. The angular features shownin
Fig.4(b) lie close to boundaries between blocked and visible
regions. The bottom row shows the two properties we focus
on. Figure4(d) shows the variance for each angular direc-
tion among dense vertices, while Fig.4(e) shows the union
of features from (b). Our final selection considers a combi-
nation of these two aspects, and picks the most important
angular directions in (f). Finally, Fig.4(c) shows the high-
fidelity reconstruction of light transport that we achieve.

Comparison: We briefly compare our angular sam-
pling method to previous techniques for choosing the best
columns. Resulting images, using reconstruction with the
same number of columns, are shown in Fig.5, and clearly
indicate the benefit of our approach. Our method makes fun-
damentally different assumptions, and benefits from the fact
that different columns (angular directions) can be selected
for each row, to focus on local angular features.

The matrix row-column method [HPB07] uses weighted
k-clustering to choose feature columns on a reduced row set
(sampled from the entire scene). However, their method does
not apply well to local regions, especially since there are
many zero or low-energy columns in a local area, that are
an issue for their error metric. Both [WDT∗09] (that uses

Figure 4: Picking angular features (columns) to reconstruct
light transport for a sparse vertex v.(a) Light transport for
representative neighboring dense vertices around v.(b) The
angular features for each dense vertex, which lie close to
boundaries between visible and blocked.(c) Final recon-
struction result, using our method for picking angular fea-
tures. The bottom row shows the weight given to each an-
gular direction: (d)The variance for a particular direction
among dense vertices.(e)The union of features from neigh-
boring dense vertices.(f)The chosen angular directions.

Figure 5: Comparison of our method (with the same number
of angular features or columns) to Hasan et al. 2007 and
Wang et al. 2009. All three methods use 25% of the vertices
(rows) and 6% of the angular directions (columns).

k-means) and [HPB07] must choose the same columns for
all sparse vertices in a region, and cannot easily adapt to lo-
cal angular features. Performance is also important for us to
minimize overhead, and clustering can be expensive, espe-
cially if needed for each group of sparse vertices.

5.3. Choosing Local Neighbors

The local dense neighbors chosen at a sparse vertex affect
the angular features, and hence accuracy of the reconstruc-
tion. We follow a very simple heuristic, wherein dense ver-
tices within some spatial radius of the sparse vertex are used.
In general, if the radius defining local neighbors is too large,
then we could include too many feature directions that are
not important at the sparse vertex under consideration. A ra-
dius that is too small could result in an insufficient number
of feature directions and an ill-posed system.

Figure6 shows the effects of increasing the radius (this is
for the ground plane in Fig.1 where the total extent is 4 units,
from −2 to +2). The error initially decreases as expected,
but then increases. As we increase the radius (and hence also

6 F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering
0

.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

0
.2

0
.2

1

0
.2

2

0
.2

3

0
.2

4

0
.2

5

0
.2

6

0
.2

7

0
.2

8

0
.2

9

0
.3

0
.3

1

R
M

S
 E

rr
o

r

Radius

RMS Error vs Radius

Least Squares L1 FULL

Figure 6: As expected, the error first decreases, and then in-
creases with the radius used for choosing local dense neigh-
bors. Sparse L1 minimization performs better than least
squares. The green “Full” curve is a control, with dense an-
gular sampling. Note that for many radii, the error of the L1
reconstruction with a sparse set of angular directions (red)
is very close to using all the directions (green).

the number of bases), we have more features to select from—
in the limit every angular direction is a feature, and we have
no good way to choose the best directions or columns. In
addition, the ratio between the number of constraints and the
number of bases, or coefficientsαk (unknowns), also gets
smaller, so the problem changes from a well-posed system
to an ill-conditioned or ill-posed system.

As Fig. 6 shows, if we use all angular samples as con-
straints (the green “Full” line), we obtain the best reconstruc-
tion. This is stable and the error decreases consistently with
increasing radius/number of bases as expected. If we use a
smaller set of angular samples with least squares, the error
decreases initially as we add more neighbors. However, at an
inflection point, the system starts to over-fit the constraints
and error increases. Finally, theL1 solver maintains the spar-
sity of the solution, so it achieve a much lower error, often
comparable to the “Full” line.

6. Compression and Clustered PCA

After precomputation, PRT algorithms compress the light
transport matrix for relighting. Our method could be used
to efficiently reconstruct light transport, followed by any
compression scheme. However, even greater benefits can be
obtained by more tightly integrating the sparse precompu-
tation with compression, and we describe one approach to
directly compute a CPCA representation. Note that while
Sloan et al. [SHHS03] targeted low-frequency spherical har-
monics, we use CPCA for all-frequency relighting from
high-resolution cubemaps, as in Mahajan et al. [MKSRB07].

The original paper [SHHS03] proposed incrementally
adding bases, besides the LBG iterations for clustering.
Computing the projected distance to each cluster scales lin-
early with the number of samples, and thus is the bottleneck
of the system. Since the light transport for sparse verticesis
a linear combination of that for their local dense neighbors,
it is a great saving to simply compute CPCA on dense ver-
tices, and then utilize that information to assign sparse ver-
tices to clusters. Our modification to CPCA has two passes:
the dense pass on dense vertices, and the re-clustering pass
on all vertices (see Fig.7).

Figure 7: Integrating CPCA with sparse precomputation.
(a): The dense pass does standard CPCA on dense vertices
(b): The re-clustering pass assigns sparse vertices to the
nearest cluster and then reclusters. Final cluster assignment
is smooth, and the desired CPCA representation is directly
and efficiently computed.

The dense pass works after the sampling for dense ver-
tices. Standard CPCA is performed on the dense vertices
only, by incrementally adding bases to avoid local minima,
as described in Sloan et al. [SHHS03]. Since dense vertices
are only about 25% of the original data set, computation
times are significantly reduced (Fig.11).

Once we obtain dense clustering information, sparse ver-
tices are simply assigned their nearest neighboring cluster.
The final re-clustering pass is done after all sparse vertices
are assigned. This pass does not increment bases but only
performs LBG iterations.

Note the premise of CPCA is that vertices in a local cluster
have transport that is a linear combinations of a few bases.
In fact, this is the same premise made for sparse vertices,
that their transport is a linear combination of that for dense
neighbors. Therefore, performing CPCA for dense vertices
in the standard way, followed by a final re-clustering step,
is adequate and in effect directly computes the compressed
representation.

7. Results

While the methods in this paper are simple, and can be inte-
grated into a variety of PRT systems, we focus most of the
discussion in this section on relighting diffuse geometry.As
noted in the overview, the extension to glossy materials is
simple, and we also show a number of examples of view-
dependent reflectance using four terms of the BRDF in-out
factorization. Our baseline method precomputes transportof
both direct and indirect lighting, using a raytracer for the
former and a path tracer for the latter. Each element of the
T(x,ω) matrix needs to be separately evaluated in software.
We extend the precomputation phase with the algorithms de-
scribed earlier, where only some elements ofT are sampled,
and the full matrix is then reconstructed using our technique.

Scenes and Parameters:For experiments with diffuse ge-
ometry, we considered three scenes: the dancer in Fig.1, the
horse in Fig.15and bunny in Fig.16. We will report later in
the section on results for glossy scenes, shown in Figs.17, 18
and19. All scenes have a model with 10k–35k vertices on
a ground plane with 30k vertices, and produce all-frequency
shadow effects in contact regions and the ground plane. In

F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering 7

Scene Mesh Num.

Vert.

Dense

Vert.

Radius Num.

Feat.

Num.

Clusters

Num

Basis

Dancer Model 9,971 2500 0.2 350 50 24

Ground 29,241 6000 0.2 350 100 24

Horse Model 8,431 2100 0.2 350 50 24

Ground 29,241 6000 0.2 350 120 24

Bunny Model 35,103 8850 0.2 350 70 24

Ground 29,241 6000 0.2 350 120 24

Figure 8: Scenes used in the paper for diffuse geometry re-
lighting, and algorithm parameters.

Dense Ver�ces Sparse Ver�ces Total

Scene Mesh Spa�al

Sampling

Rate

Angular

Sampling

Rate

Total

Sampling

Rate

Spa�al

Sampling

Rate

Angular

Sampling

Rate

Total

Sampling

Rate

Dancer Model 25% 31.06% 7.76% 75% 5.7% 4.275% 12.04%

Ground 20.52% 30.78% 6.32% 79.48% 5.7% 4.53% 10.85%

Horse Model 24.9% 31.26% 7.78% 75.1% 5.7% 4.28% 12.06%

Ground 20.52% 31.32% 6.42% 79.48% 5.7% 4.53% 10.95%

Bunny Model 25.2% 29.87% 7.53 74.8% 5.7% 4.26% 11.79%

Ground 20.52% 29.31% 6.01% 79.48% 5.7% 4.53% 10.54%

Figure 9: The number of sparse samples used. Approxi-
mately 25% of the vertices are chosen as dense, but only
a third of their angular directions are sampled. Only about
6% of the directions for the remaining sparse vertices are
sampled, for a net sampling rate of only 10–12%.

Sparsely Sampling Full Sampling Comparison

Scene Mesh Dense

Time

Sparse

Time

Dense+

Sparse

Total

Time

Sampling Total

Time

Time

Ra!o

L2

Error

Dancer Model 16m

32s

8m 24m

32s

1h15m

18s

2h13m

35s

5h40m

19s

20.95% 7.43%

Ground 22m

40s

28m

6s

50m

46s

3h26m

44s

1.72%

Horse Model 10m

29s

6m

26s

16m

55s

54m

9s

1h46m

7s

4h2m

22s

22.35% 10.2%

Ground 15m

55s

21m

18s

37m

14s

2h16m

15s

1.61%

Bunny Model 1h32m

18s

56m 2h28m

18s

3h25m

55s

9h52m

47s

13h7m

57s

26.14% 2.86%

Ground 26m

31s

31m

6s

57m

37s

3h15m

10s

0.79%

Figure 10: Timings for various aspects of the precomputa-
tion. Our method requires only 20–25% of the cost of dense
sampling.

addition, we consider diffuse shading and global illumina-
tion. All timings were run on a Dell T7400 workstation with
a 2.5GHz processor and using a single thread. Since the fo-
cus of this paper is on precomputation, we do not directly re-
port on relighting performance, that is comparable with that
for fully sampled precomputations.

There are a few parameters for our algorithm, reported
in Fig. 8. In particular, approximately 25% of vertices are
used as “dense” vertices. Neighbors for sparse vertex recon-
struction are chosen within a range of 0.2 units (the extent
of the ground plane is from−2 to+2 units). In all cases, we
use 350 angular directions or features for constraining sparse
vertices, which is about 6% of the full set of 6144 directions.
The number of clusters for CPCA is chosen in the range of
50–120, with 24 basis functions in each cluster.

Scene Model Our Method Standard CPCA Speed Up

Time Total Time Total

Dancer Model 32s 3m37s 6m47s 45m31s 12.6x

Ground 3m5s 38m44s

Horse Model 27s 4m6s 5m40s 51m48s 12.6x

Ground 3m39s 46m8s

Bunny Model 2m37s 6m20s 38m3s 1h20m57s 12.8x

Ground 3m43s 42m54s

Figure 11: Time for our method compared with standard
CPCA. For all scenes, our method enables a12× speed up.

Sampling Rate: Figure9 lists the number of total samples
of the transport matrix we use for reconstruction. Our results
require an average of only 11% of the transport matrix, lead-
ing to an order of magnitude savings for precomputation. We
choose 25% of vertices as “dense” vertices, but need only
about a third of the angular samples even in those cases. For
the remaining 75% sparse vertices, only about 6% of the an-
gular samples suffice.

Precomputation Time: Ultimately, we care about how
much the wall clock precomputation time has been reduced.
Timings are shown in Fig.10, and compared to brute force
reconstruction of the transport matrix. Our method requires
only 20–25% of the running time. The above results do not
include the cost of CPCA compression. Timings are shown
in Fig. 11 and indicate that integrating our sparse sampling
approach with CPCA, as in Sec.6, results in a substantial
speedup of 12× on all scenes.

Details of time spent in various stages are given in Fig.12.
In general, ray or path tracing dominates the cost with about
90% of the total time. The overhead for reconstruction is
only about 10% and mostly involves theL1 solver for sparse
vertex interpolation and the rank estimation. Note that al-
though we compute only 10–11% of total samples, it takes
up to 20% of the time for a full brute force precomputation.
This result indicates that while we require many fewer rays
or paths, our samples focus on the difficult regions where
they are somewhat more expensive—a similar observation
is made for ray tracing environment maps by Ben-Artzi et
al. [BARA06]. However, the additional cost is manageable,
and our method yields a precomputation speedup of 4×–5×.

Dense Vertex Distributions: Figure 13 shows the distri-
bution of dense vertices, and ranks, on the horse and bunny
scenes (data for the dancer have already been presented in
Fig. 2). As can be seen, many more dense vertices are used
in difficult regions, such as the contact between figure and
ground. As expected, fewer dense vertices are needed in
smoother areas like the ground plane, especially the near-
convex parts far from the occluding model.

Quality of Results: We evaluate the error quantitatively in
the rightmost column of Fig.10. In all three examples, the
ground plane has negligible error. However, there can be sig-
nificant RMSL2 errors in small parts of the more complex
models, as shown in Fig.14. We believe this is largely un-
related to our method. The bunny model is finely tessellated
from a range scan, so that errors are evenly distributed. In

8 F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering

Bench M.

Bench G.

Armad. M.

Armad. G.

Buddha M.

Buddha G.

Dragon M.

Dragon G.

Horse M.

Dense Rays

Angular Sampling

Local Rank Estimation

Spatial Sampling

SparseRay L1 Solver

System Time

M: Model

G: Ground
(a) Timing in seconds (b) Percentage Breakdown

50% 100%2000 4000 6000

Figure 12: Detailed timing breakdown. (a) Each stage mea-
sured in wall clock time. (b) The percentage breakdown.

Figure 13: Distribution of dense vertices (white dots). In-
sets show a closeup of the contact region for the horse, and
the rank image for the bunny (compare with Fig.2 for the
dancer). Colors indicate the probability for adding dense
vertices, clearly showing more complex light transport near
contacts and highly shadowed areas.

contrast, the horse and dancer are hand-designed, and the
vertices are biased towards features of interest to the artist,
at the cost of fewer vertices in some locations of complex
light transport. In practice, these are very small regions,and
the visual errors are not very noticeable. In the future, mesh
refinement algorithms, building on [KPZ04], could be com-
bined with our approach to add additional samples in those
regions, based on our prediction of high local rank.

Our results in Figs.1, 15 and 16 show little visual dif-
ference between relighting with sparsely sampled and fully
sampled transport matrices, indicating we obtain a high qual-
ity approximation. The accompanying video also indicates
there are no temporal artifacts.

Glossy Materials: While the results so far have focused on
relighting diffuse geometry, the BRDF in-out factorization
and equation3 allow us to easily extend our method to view-
dependent reflectance and glossy highlights. We use 4 terms
in the BRDF factorization, showing examples in Figs.17, 18
and19. It can be seen that the images closely match the fully
sampled versions.

Figure 20 shows timing numbers for the glossy scenes,

Figure 14: L2 error comparison across different scenes.

Figure 15: Comparison of sparsely and fully sampled trans-
port for the horse. Our method reconstructs an accurate ap-
proximation.

Figure 16: We compare sparse and full light transport re-
construction for the bunny scene. Our method has little vi-
sual difference with the ground truth, and accurately repro-
duces complex shadows.

analogous to our earlier results for diffuse scenes. Since we
simply apply our algorithm to each view-independent trans-
port term, the speed-ups are about 5×, and almost identical
to those for relighting diffuse geometry.

More Complex Scene: Finally, Fig. 21 shows the bench
scene from [OBARG06], which includes several objects,
some of which have fairly complicated light transport. The
street lamps also include glossy reflectance. As such, this
example is a stress test for our method. As with any sparse
reconstruction approach, slight blurring can result with our
method, and some of the highest-frequency shadows, such
as from the seams of the bench, are blurred over.

The light transport and shadows are more complex in this
scene than our other examples. Hence, we do require some-
what more samples, as indicated in Fig.20. Our method still
produces very similar results to the fully sampled version,
and results in a nearly 4× speedup in precomputation time.

F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering 9

Figure 21: The bench scene includes several objects with difficult shadows and glossy reflectance. While we do slightly overblur
some of the bench shadows, our method still produces an accurate result, comparable to the fully sampled version.

Figure 17: Buddha with Ashikhmin-Shirley Anisotropic
BRDF (4 terms BRDF in-out factorization).

Figure 18: Armadillo with Ashikhmin-Shirley Anisotropic
BRDF (4 terms BRDF in-out factorization).

Figure 19: Dragon with Phong BRDF.

Scene Mesh Num.

Vert.

Sampling Rate Timing

Dense

Spatial

Dense

Angular

Dense

Total

Sparse

Total

Total Sparsely Fully Speed

Up

Armadillo Model 25002 25.0% 31.1% 7.8% 4.3% 11.43% 2h

17m

10h

7m

4.75x

Ground 29241 20.5% 31.0% 6.4% 4.5%

Buddha Model 24975 25.0% 29.7% 7.4% 4.3% 11.11% 2h

36m

13h

22m

5.12x

Ground 29241 20.5% 29.6% 6.0% 4.5%

Dragon Model 25474 24.5% 30.3% 7.4% 4.3% 11.16% 2h

1m

10h

31m

5.22x

Ground 29241 20.5% 29.8% 6.1% 4.5%

Bench

Scene
Model 19780 40.4% 39.9% 16.2% 3.4% 18.54% 1h

56m

7h

7m

3.67x

Ground 29241 41.0% 35.4% 14.5% 3.3%

Figure 20: Detailed results and timing for glossy objects,
including the more complex bench scene.

8. Conclusions and Future Work

Most research in precomputation-based rendering has fo-
cused on adding real-time functionality. However, the pre-
computation itself is often the bottleneck, especially when
considering global illumination. In this paper, we have taken
a significant step towards addressing this drawback to PRT
methods. We adaptively and sparsely precompute the light
transport matrix, choosing well-placed “dense” vertices,
and solving a simple linear system to reconstruct “sparse”
vertices from a few angular samples. We also show how
the method can be integrated with common compression
schemes like clustered PCA. We demonstrate visually nearly
identical results with an order of magnitude fewer samples,
and a wall clock speedup in precomputation of 4×–5×. This

10 F. Huang & R. Ramamoorthi / Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering

has the potential to enable new approaches to rapid prototyp-
ing of scenes for lighting design or gaming environments.

In the future, we would like to leverage recent advances
in GPU-based global illumination, to develop a hardware-
accelerated precomputation pipeline. We envisage a system
where the precomputation phase is interactive or takes only
a few seconds, greatly reducing the barrier to PRT methods.
We would also like to gain a deeper theoretical understand-
ing into what samples of the transport matrix enable the best
reconstructions, and how these vary for different types of
scenes. Finally, estimation of variants of the transport ma-
trix is also a challenge in offline many-light rendering and
appearance acquisition, and we believe the insights in this
paper hold promise for those domains as well.

Acknowledgements

This work was supported in part by NSF CAREER grant
IIS-0924968 and ONR PECASE grant N00014-09-1-0741,
as well as equipment and generous support from Intel,
NVIDIA, Adobe, and Pixar.

References

[AMN ∗98] ARYA S., MOUNT D., NETANYAHU N., SILVER-
MAN R., WU A.: An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions.Journal of the ACM 45,
6 (1998), 891–923.

[BARA06] BEN-ARTZI A., RAMAMOORTHI R., AGRAWALA
M.: Efficient shadows from sampled environment maps.Journal
of Graphics Tools 11, 1 (2006), 13–36.

[CRT06] CANDES E., ROMBERGJ., TAO T.: Stable signal recov-
ery from incomplete and inaccurate measurements.Communica-
tions of Pure and Applied Mathematics 59, 8 (2006), 1207–1223.

[CT06] CANDES E., TAO T.: Near optimal signal recovery from
random projections: Universal encoding strategies?IEEE Trans-
actions on Information Theory 52, 12 (2006), 5406–5425.

[DAG95] DORSEY J., ARVO J., GREENBERG D.: Interactive
design of complex time-dependent lighting.IEEE Computer
Graphics and Applications 15, 2 (1995), 26–36.

[DMM08] D RINEAS P., MAHONEY M., MUTHUKRISHNAN S.:
Relative-error CUR matrix decompositions.SIAM J. Matrix
Anal. Appl. 30, 2 (2008), 844–881.

[Guo98] GUO B.: Progressive radiance evaluation using direc-
tional coherence maps. InSIGGRAPH 98(1998), pp. 255–266.

[HPB06] HASAN M., PELLACINI F., BALA K.: Direct to indirect
transfer for cinematic relighting.ACM Transactions on Graphics
(SIGGRAPH 06) 25, 3 (2006), 1089–1097.

[HPB07] HASAN M., PELLACINI F., BALA K.: Matrix row-
column sampling for the many-light problem.ACM Transactions
on Graphics (Proc. SIGGRAPH 07) 26, 3 (2007), Article 26.

[KG09] KRIVANEK J., GAUTRON P.: Practical Global Illumina-
tion with Irradiance Caching. Morgan and Claypool, 2009.

[KKL ∗07] KIM S., KOH K., LUSTIG M., BOYD S.,
GORINEVSKY D.: An interior-point method for large-scaleL1
regularized least squares.IEEE Journal on Selected Topics in
Signal Processing 1, 4 (2007), 606–617.

[KPZ04] KRIVANEK J., PATTANAIK S., ZARA J.: Adaptive mesh
subdivision for precomputed radiance transfer. InSCCG 04: Pro-
ceedings of the 20th spring conference on Computer graphics
(2004), pp. 106–111.

[KTHS06] KONTKANEN J., TURQUIN E., HOLZSCHUCH N.,
SILLION F.: Wavelet radiance transport for real-time indirect
lighting. In EuroGraphics Symposium on Rendering 06(2006),
pp. 161–172.

[LSSS04] LIU X., SLOAN P., SHUM H., SNYDER J.: All-
frequency precomputed radiance transfer for glossy objects. In
EuroGraphics Symposium on Rendering 04(2004), pp. 337–344.

[LZT∗08] LEHTINEN J., ZWICKER M., TURQUIN E., KONTKA-
NEN J., DURAND F., SILLION F., AILA T.: A meshless hierar-
chical representation for light transport.ACM Transactions on
Graphics (Proc. SIGGRAPH 08) 27, 3 (2008), Article 37, 1–9.

[MKSRB07] MAHAJAN D., KEMELMACHER-SHLIZERMAN I.,
RAMAMOORTHI R., BELHUMEUR P.: A theory of locally low
dimensional light transport. ACM Transactions on Graphics
(Proc. SIGGRAPH 07) 26, 3 (2007), 62.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM Transactions on Graphics (Proc. SIGGRAPH 03) 22,
3 (2003), 376–381.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
product wavelet integrals for all-frequency relighting.ACM
Transactions on Graphics (Proc. SIGGRAPH 04) 23, 3 (2004),
475–485.

[NSD94] NIMEROFF J., SIMONCELLI E., DORSEYJ.: Efficient
re-rendering of naturally illuminated environments. InEuro-
Graphics Workshop on Rendering 94(1994), pp. 359–373.

[OBARG06] OVERBECK R., BEN-ARTZI A., RAMAMOORTHI
R., GRINSPUNE.: Exploiting temporal coherence for incremen-
tal all-frequency relighting. InEuroGraphics Symposium on Ren-
dering(2006), pp. 151–160.

[PML∗09] PEERS P., MAHAJAN D., LAMOND B., GHOSH A.,
MATUSIK W., RAMAMOORTHI R., DEBEVEC P.: Compressive
light transport sensing.ACM Transactions on Graphics 28, 1
(2009), Article 3, pages 1–18.

[Ram09] RAMAMOORTHI R.: Precomputation-Based Rendering.
NOW Publishers Inc, 2009.

[SD09] SEN P., DARABI S.: Compressive Dual Photography.
Computer Graphics Forum (EUROGRAPHICS 09) 28, 2 (2009),
609 – 618.

[SHHS03] SLOAN P., HALL J., HART J., SNYDER J.: Clustered
principal components for precomputed radiance transfer.ACM
Transactions on Graphics (Proc. SIGGRAPH 03) 22, 3 (2003),
382–391.

[SKS02] SLOAN P., KAUTZ J., SNYDER J.: Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency
lighting environments. ACM Transactions on Graphics (SIG-
GRAPH 02) 21, 3 (2002), 527–536.

[WDT∗09] WANG J., DONG Y., TONG X., L IN Z., GUO B.:
Kernel nystrom method for light transport.ACM Transactions
on Graphics (Proc. SIGGRAPH 09) 28, 3 (2009).

[WTL04] WANG R., TRAN J., LUEBKE D.: All-frequency re-
lighting of non-diffuse objects using separable BRDF approx-
imation. In EuroGraphics Symposium on Rendering(2004),
pp. 345–354.

