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1. Introduction to the CINEMA CubeSat

CubeSats are small satellites that conform to a standard developed by Stanford and
California Polytechnic University. Their mass can be up to 1 kg for the standard
10x10x10 cm (1U) model, placing them in the large picosatellite/small nanosatellite
range. Other standard CubeSat sizes are 10x10x20 cm (2U) and 10x10x30 cm (3U),

with 2 kg and 3 kg mass limits respectively.

CINEMA is a 3U CubeSat currently under development at the UC Berkeley Space
Sciences Laboratory in partnership with the Imperial College London, Kyung Hee
University, and the Inter-American University of Puerto Rico. Funded by an NSF
grant, its mission is to monitor space weather using newly developed miniaturized
sensors -- a particle detector and magnetometers. This CubeSat is distinguished
from many CubeSats developed by others in two major ways. First, CINEMA will
need to handle large quantities of data due to the potential glut of information
generated by the particle detector, which may approach 2 megabits per second
during peaks of particle flux. Second, CINEMA will gather useful scientific data
despite being built largely by students; many student-built CubeSats have been
technology test platforms or simple radio beacons, built as a learning experience

[Glaser 2009, Thomsen 2009]. CINEMA's projected launch date is in late 2011.

[ joined the CINEMA team near the end of the high-level design phase of the project.
At this point the sensors, form factor, avionics bus, part layout, power supply,
communications link, mission parameters, and software compartmentalization had

been established. However, the processor and the operating system had not yet



been chosen. My task was to assist in these decisions, define the data connections

between components, and begin work on the flight software.

2. Hardware Design

2.1. Peripherals

The most significant pre-established elements of CINEMA's design were the
peripherals with which the processor would need to communicate. Defined by the

mission specification, they are:

e STEIN particle detector, capable of detecting the energy and charge polarity
of incoming particles below 40 keV and energy alone below 100 keV. Using
semiconductor detector pixels, it is an order of magnitude smaller than the
electrostatic analyzer instrument used in the Wind spacecraft. Incorporates
an FPGA, which is communicated with using the SPI bus. Maximum data rate

is 16 bits/particle * 30,000 particles/sec/pixel * 4 pixels = 1.92 Mbps.

* Magnetometers (MAGs) for establishing satellite orientation and taking
scientific data. Three axes per sensor unit, with one unit inside the satellite's
body and one unit on the end of a 1m boom to reduce magnetic interference
from onboard electronics. Only one of the two 3-axis magnetometer units is
read at a time by the controlling FPGA, which connects via the SPI bus. Data
rate is 19 bits/sample * 10 samples/sec/axis * 3 axes = 570 bits/sec, plus one

byte/sec for a temperature reading for a total of 578 bits/sec.

* SD card, providing bulk data storage of scientific and engineering data for

later downlink. Sized 2 GB, the maximum size for a standard SD (as opposed
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to SDHC) card. Can communicate either in SD or SPI mode; SD mode is faster
but has no freely released specifications, so SPI mode was chosen. Data is
manipulated in blocks, with up to 512 bytes in a block. Maximum data rate
varies with the applied clock rate; in SPI mode, one bit is exchanged per clock

cycle. Maximum clock rate for SD cards is 25 MHz in either mode.

Radio uplink, which receives commands from the ground station. Uses a

serial connection with a data rate of 9600 bps.

Radio downlink, which transmits responses to commands including
engineering data and scientific observations. Uses a simple bitstream
connection with a data rate of 1 Mbps, but is interfaced via an internally
designed FPGA which performs Reed-Solomon encoding for data correction,

so any sufficiently capable data connection could be used.

Electrical power system (EPS), a system of batteries and electronics to
provide electricity for all onboard systems. Has a diagnostics/command port
that uses the I2C bus. As an I2C slave device, its data rate is determined by the
master device, which is the processor. Its maximum data rate is 400

kilobits/second.

2.2. Processors

The processor selection was limited to those provided on daughterboards

compatible with the CubeSat Kit Motherboard, a commercially provided foundation

for CubeSats that provides a serial interface, a communications bus, an SD card

connector, a real-time clock, remove-before-launch and deployment switches, and
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other useful components. Only six daughterboards are available from the kit
vendor, which conveniently limited our options from the entire universe of
microcontrollers to a reasonably sized set. The main differences among the

processors were their processing power and their available [/0 ports.

Table 1: Properties of Available Processors

Archi- Instruction

Processor tecture Memory ADC Clock Integrated Peripherals
55KB program memory,

MSP430F1612 16-bit 5KB on-chip SRAM 8-channel 12-bit 7.3728 MHz 2 SCls (UARTO/SPI0/12C & UART1/SPI1)
50KB program memory,

MSP430F1611 16-bit 10KB on-chip SRAM 8-channel 12-bit 7.3728 MHz 2 SCls (UARTO/SPI0/12C & UART1/SPI1)
116KB program memory, 2 USCI_A (UARTAO/SPIAO & UARTA1/SPIAL)

MSP430F2618 16-bit 8KB on-chip SRAM 8-channel 12-bit 7.3728 MHz 2 USCI_B (12CBO/SPIBO & 12CB1/SPIB1)
128KB program memory, 8-channel 8-bit

C8051F120 8-bit 8.5KB on-chip SRAM 500ksps External xtal 2 UARTs, 1 SPI, 1 12C
256KB program memory, 32-channel 10/12-

dsPIC33FJ256GP710  16-bit 30KB on-chip SRAM bit 1.1/0.5 Msps 10 MHz 2 UARTSs, 2 SPIs, 2 12Cs, 2ECANs, DMA
256KB program memory, 16-channel 10-bit

PIC24FJ256GA110 16-bit 16KB on-chip SRAM 500ksps 16 MHz 4 UARTs, 3 SPIs, 3 12Cs, Parallel Master Port

My greatest body of microcontroller experience was with PICs, with some brief
contact with the MSP430 series. The latter's claim to fame is their extremely low
power needs; all three MSP430 options would run on 10 mW, an attractive property
when all power must originate from solar panels. However, as long as the 100 mW
power budget for the processor was not exceeded, any option was acceptable. (This
put limits on the speed of the 8051 and dsPIC33 parts, as higher frequencies

demand more power.)

The ultimate processor selection depended on the communication demands of the
peripherals. Due to the high data rates anticipated on both the STEIN-to-processor
and SD card-to-processor links, [ assumed that at least two SPI ports would be

needed, one for each connection during data transfer. The uplink radio had a serial
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output, so clearly a serial UART would be needed. An I2C port to interface with the
EPS would be useful, but not necessary, as the data rate would be sufficiently low to
allow software implementation of the protocol. This eliminated half of the options

immediately; the MSP430F2618 and the PICs were still viable options.

The PICs had two distinct advantages over their competitor. First, there were
modules available in MATLAB to allow the creation of PIC binaries, which was
attractive to the people developing the Attitude Control System (ACS) software that
would detect and reorient the satellite's spin. Second, and more importantly, the
manufacturer of PICs, Microchip Inc, provides a free development environment that
includes a cycle-accurate simulator. With this simulator, the execution speed of the
instructions which comprise the ACS code could be tested, demonstrating that the
PICs were up to the task. [ was also able to use the simulator to demonstrate the
capabilities of the PICs in general, such as serial communication and DMA. These
simulations and demos, in addition to its clearly reduced code and data memory,

removed the MSP430F2618 from consideration.

Finally, a decision had to be made between the two PICs. While the higher clock rate
and three SPI ports on the PIC24 were appealing, I ultimately endorsed the dsPIC33
due to its unique capacity for DMA. I anticipated that the flexibility gained from
DMA would be well worth the loss in speed and I/0. The CINEMA team found no

fault with my assessment, so we incorporated the dsPIC33 into the project design.

The dsPIC33 incorporates some additional features that are useful in a spaceborne

design. For example, it can reprogram itself while running, which permits
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reprogramming after launch. It has automatic brownout-induced reset, which might
save the mission after a power failure or allow it to operate for a little longer as the
batteries wear out. It also has a number of power-saving features, from a selection
of low-activity run modes to the ability to turn off power to unused subsystems on

the chip.

2.3. High-speed data transfer mechanisms

2.3.1. SPI

Not all communications buses are capable of sustaining megabit speeds. I2C, for
example, has a 400 kbps limit in "high-speed” mode. Serial ports on the dsPIC33 are
capable of reaching above 1 Mbps if pushed. The most capable interface available,

however, is SPI [Microchip, 2009].

SPI behaves like a two-word shift register shared between two devices -- with every
pulse on the clock line sent from the master device to the slave device, the MSb of
each device's shift register is moved to the LSb of the other device's shift register.
After as many clocks as there are bits in a word, the two devices have completely

exchanged the contents of their shift registers.
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Figure 1: SPI communication between two devices [Microchip, 2009]

On the dsPIC33, the SPI bit rate is limited to half of the instruction clock rate, and for
CINEMA this limit is 5 Mbps. This is more than enough to support the full 1.92 Mbps
peak input from STEIN, even given significant overhead. It is also well within the

abilities of the SD card, which could reach 25 Mbps if the processor allowed.

2.3.2. DMA

Direct Memory Access is unique to the dsPIC33 among the available processors. It
comprises a set of "DMA channels" which can be configured to automatically move
data from memory to a peripheral's buffer, or vice-versa, as needed without any ill
effect on the CPU's activity. For example, the serial port could be configured to

automatically output the contents of a section of memory. After each byte was sent,
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the DMA channel assigned to the task would move the next byte from memory to the

transmit buffer of the serial port [Microchip, 2009].

Parpheral Indirect Address

DMA Controlier

" 1 OMA
«B OMA Ready
SRAM DMA RAM =E Char Peripheral 3
58 Channels
5
PORT{ PORT 2| CPU  DMA
A A A A A A A
Y :—rxA“.' X8us y Y OMADSBus | Y : Y
‘ CPU Panpheral DS Bus Y Ay A
A A A A
Yoy | v v
CPU  DMA
Non-DMA DMA oA
CcPU Ready Ready Ready
Fenphers Paripharal 1 Penpheral 2

Note: CPU and DMA address buses are not shawn for clarity.

Figure 2: DMA system in the dsPIC [Microchip, 2009]

DMA is flexible and useful in many ways, particularly when handling multiple
simultaneous data streams, but it is limited by the amount of DMA-capable RAM in
the microcontroller; of the dsPIC33's 30 KB of RAM, only 2 KB is DMA RAM, so it
must be used judiciously by the programmer. Another limitation is that only one
device may access a given word of memory at a time. The CPU has first priority,
followed by the first DMA channel, then the second, and so on down to the eighth.
Data can conceivably be lost if a DMA channel, configured to write a peripheral's
incoming data to RAM, is constantly blocked by other accesses to that location until
another datum arrives at the peripheral and overwrites its buffer. However, this is

very unlikely to happen without intentionally being caused, and should not occur at
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all on CINEMA due to the relative infrequency of activity on any given DMA channel -
at maximum, only one cycle in 16 will trigger the channel, which is the case for an
SPI port. (The SPI ports transfer 8 bits at a time, but at half the rate of the
instruction clock, hence there will be 16 cycles between each DMA read or write on

an SPI buffer.)

2.4. Data flow

As with the processor itself, the connections between the peripherals and the
processor were determined by the peak data rates of the peripherals. The primary
demands on data flow were the STEIN detector, which could emit 1.92 Mbps at
peaks, and the downlink radio, which demanded a constant 1 Mbps during
transmission. These two peripherals would never be active simultaneously, but
both would require the use of the SD card when active. This suggested that one of
the two SPI ports be shared between STEIN and the downlink, and the other SPI

port be dedicated to the SD card.

STEIN STEIN

dsPIC SD dsPIC SD
) Card ) Card
Downlink Downlink

STEIN active Downlink active

Figure 3: Communication through a shared SPI port

The other major peripherals, namely the magnetometers, EPS, and uplink radio,
were simple to add. The MAG FPGA generated only 578 bits per second, which
could be easily multiplexed with STEIN and the downlink on the shared SPI

connection, as its data too would need to be written to the SD card. The EPS was the
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only device using an I2C connection, so it received its own port on the processor.

Similarly, the uplink radio was the only device requiring a serial connection.

At this point the team decided to use a single FPGA to both communicate with STEIN
and operate the MAGs. This was a trivial change, as both STEIN and MAGs would
still use the same SPI port on the processor. The final data flow layout plan was as
follows; the arrows show the primary direction of information transfer, neglecting

most control flow.

EPS
STEIN 2
.| FPGA \D;
MAG 2 G s
7z dsPIC &z
: . w7 Card
Downlink FPGA ez
Z#z  SPIlink
s 2Clink Uplink

Serial link

Figure 4: Data flow layout

3. Software
The overarching design principles of the CINEMA flight software are that it be

flexible, reusable, well written, and debuggable. Besides being good general
practice, flexibility and reusability are required because at least four more CubeSats
are planned to use this software as a base, and the fewer changes and surprises
involved in the modifications, the better. The code must be well written for similar

reasons; because the programmers are students, most or all of the original
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programmers will be gone when the next satellite is being programmed. Ease of
comprehensibility of the code will therefore be significant for future "generations”
of programmers. Finally, the code must be debuggable to speed development and

make it more accessible to non-advanced programmers.

3.1. Operating system

One of the biggest software design questions was whether to use a real-time
operating system (RTOS). A simple RTOS called Salvo was available from the
CubeSat Kit vendor, with a free demo that I was assigned to scrutinize. By using
Microchip's free simulator [ was able to superficially verify that it worked, but I was
concerned about the effects an RTOS might have on debuggability. Having written
multithreaded applications in the past, I presumed that a program using an RTOS,
which includes similar processor-yielding and semaphore mechanisms, would be
similarly more difficult to debug. An alternative scheme was proposed by one of the
more experienced team members. This scheme, used in a previous satellite, allowed

all tasks to execute on a predictable, fixed schedule without the use of an RTOS.

This approach was to divide all of the processor's tasks into background tasks and
foreground tasks. Background tasks would run on a tight, predefined schedule and
would generally be maintenance tasks, such as taking science data and checking the
status of the power supply. Foreground tasks would run in the remaining time with
no particular time constraints and would include lengthy calculations for attitude
adjustment and commands transmitted from the ground. The task types would
have independent schedulers. The foreground scheduler would prioritize uploaded

commands, but run everything else round-robin. The background scheduler would
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be interrupt-driven - every 1/1024th of a second, a timer interrupt would call the

scheduler, which would run the next task in a table of background tasks.

3.1.1. Background task scheduling

Each background task must be executed frequently enough to satisfy the demands of
its peripheral's data flow. For a task like HSK, which samples analog voltages from
the dsPIC33's pins, this is trivial because the task itself controls the creation of data.
However, a task like STE or TX has significant constraints. At peak flux, the STEIN
detector is capable of generating 1.92 megabits per second, which the processor
must absorb and relay to the SD card. The transmitter must be fed 1 megabit per

second to avoid wasting precious downlink time. Are these tasks schedulable?

The tasks with the largest data rates must interact with the SD card, and every
transaction with the SD card has some overhead. To minimize this, we use the
maximum SD data block size, which is 512 bytes. At 1.92 Mbps, STEIN generates
469 blocks per second. Only one block can be sent in a time-slice of 1/1024th of a
second, so STEIN's handler task STE must occupy at least 469 of 1024 time-slices.
This is rounded up slightly, such that half of all time-slices belong to the STE task.
Similarly, in order to send 1 Mbps to the downlink transmitter, the TX task must
handle 245 blocks per second. TX must therefore occupy 245 of 1024 time-slices,

which is rounded up to one-fourth of all time-slices.

3.1.2. Scheduling the command handler
Compared to STEIN's 1.92 Mbps, the uplink radio's 9600 bps seems trivial.

However, the microcontroller's link to STEIN incorporates an FPGA, which buffers
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data until an entire data block is ready. The uplink's serial connection has no such
luxury; there is a buffer built into the dsPIC33's serial port, but it holds only 4 bytes.
A 9600 bps connection will fill this 300 times per second, so it must be emptied at
300 Hz. However, STE already has half of the 1024 time-slices, and TX has one-
quarter. The task table cannot accommodate an additional task requiring 300 of

1024 slices.

There are a few ways to fix this problem. Commands might be handled in the
scheduler, which runs at 1024 Hz. However, this would take time away from every
task, including tasks such as STE, which has little time to lose. Alternatively,
because STEIN and the downlink are never used simultaneously, their tasks STE and
TX might be joined into one. This would leave half of the time-slices available, but

also present a new problem:

| | STE/TX | | STE/TX | | STE/TX

The STE/TX composite task runs in every other slice.

| | | CMD | | | CMD

The command handler task runs in every third slice.

| | STE/TX | CMD | STE/TX | 27777

A conflict exists!

The conflict might be resolved by running CMD in every other slice instead of every
third, but then there would be no time left for any other tasks. The other tasks
would need to be incorporated into CMD, at the cost of the predictable timing of the

task table.
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My solution was to use DMA to replace the existing 4-byte buffer with a buffer in
memory. Specifically, a DMA channel is configured to move each incoming serial
byte to a section of DMA RAM. The destination address automatically increments
with each byte moved; when the end of the buffer region is reached, the destination
address returns to the beginning automatically. In this way, DMA emulates the data-
storing half of a ring buffer, leaving the data-retrieving duty for the command
handler. Because the DMA channel operates independently of the CPU, it's as
independent of the current task as the original 4-byte buffer. All that is necessary is
to make the DMA buffer large enough to store as much information as might arrive
between executions of the command handler; if the handler runs at 16 Hz (one slot
in the above table), the buffer must be at least 75 bytes long, which is only a small

portion of the 2 KB of DMA RAM available on the dsPIC33.

Table 2: Table of Background Tasks

BKG Module 1024 Hz Table

0 1 2 3 4 5 6 7
0 STE X STE STE X STE
8 HSK STE X STE STE X STE
16 ™ STE X STE STE X STE
24 CMD STE X STE STE X STE
32 STE X STE STE X STE
40 PWR STE X STE STE X STE
48 SSR STE X STE STE X STE
56 MAG STE X STE STE X STE

This table describes .063 seconds and is repeated 16 times per second.

BKG Module Function Calls Distributed in Time Phase
FN FREQ | Description
X 256 Transfer data from SDCARD to Transmitter
STE 512 Transfer data from STEIN to SDCARD
MAG 16 Transfer data from MAG to SDCARD
HSK 16 Housekeeping A/D Sampling
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CMD 16 Uploaded Command Handling

PWR 16 Power Monitoring 16-bit timing
SSR 16 Solid State Recorder Manager
™ 8 Packet Multiplexing

BKGO 8 Available for future use

BKG1 32 Available for future use

BKG2 128 | Available for future use

3.2. Development platform

For ease of development and insurance
against accident, two sets of the CubeSat
Kit development board and dsPIC33
daughterboard were purchased. The

development board is electrically

identical to the flight motherboard, but

with additional components built in to
simplify development, such as indicator
LEDs, a standard 9-pin RS-232 serial
port, and additional lateral space for

peripheral boards. One set of hardware

Figure 4: CubeSat Kit Development Board

[Pumpkin Inc, 2010]

Figure 5: CubeSat Kit Flight Motherboard
[Pumpkin Inc, 2010]

was used for development of the ACS

software, while I used the other set to begin system software development.

One foible of the dsPIC33 is that it possesses three different pin pairs that may be

used for in-circuit debugging (ICD). Although it may be programmed using any of

the three pairs, it will only accept ICD commands from one pair during execution.

This increases flexibility (what if the functionality you wanted to test used a port

-19-



that shared the only provided ICD pins?), but it came as a surprise to me. Naturally,
the default pin pair was not the pair connected to the programming header on the
dsPIC33 daughterboard, and therefore the "run" command I tried to issue fell on
deaf ears. [ had to investigate several datasheets in order to discover, first, the
nature of the problem, and second, the line of C code needed to make the compiler

activate the correct pin pair.

3.3. The SD Card

After the microcontroller and operating system were decided upon, [ became leader
of the students developing the flight software. I took it upon myself to write the
interface for the SD card, as it would most likely be among the most timing-critical
pieces of code due to the high data rates involved. [ was experienced in writing
assembly for PICs, so [ could write code at the lowest level if the SD card's timing

made it necessary.

Secure Digital (SD) flash memory cards are a favorite of electronics hobbyists
because they present a simple physical interface with few electrical connections
while providing gigabytes of available storage. They also have a freely available
interface protocol specification for the SPI mode [SD Group, 2006]. For the same
reasons, the CubeSat Kit motherboard incorporates a slot for an SD card and a buffer

amplifier to isolate it from the processor [Pumpkin, 2009].

3.3.1 5D cards in space

For an electronic item to travel safely into space, it must be resistant to vibration,

shock, extreme temperatures, and radiation. I sought a high-durability SD card from
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a mainstream manufacturer, so that we could purchase and test multiple units
without costing more than a few hundred dollars. Eventually I discovered the
SanDisk Extreme III line of cards, which SanDisk claims will keep operating under
vibration, shock, and temperatures from -25°C to 85°C [Amazon.com, 2010]. Oddly,
nobody seems to know how modern SD cards behave when bombarded with
radiation. Nguyen et al. measured radiation's effects on flash RAM, but used cards
from 1999 with a capacity of 128 MB. More modern cards with smaller features and
higher bit densities may be more vulnerable than the tested cards, which exhibited a
significant (0.7 milliamp) increase in standby current and functional failure after
receiving a cumulative dose of 8000 rad(Si) while powered on [Nguyen et al., 1999].
In a low Earth orbit with high inclination (20 to 85 degrees), which is the type of
orbit CINEMA is intended to inhabit [Curtis, 2008], typical radiation doses are 1000-
10,000 rad(Si) per year [NASA, 1996]. Assuming that modern flash RAM is twice as
vulnerable as the flash tested in 1999, [ conjecture that CINEMA's solid-state
memory should be viable for at least 2/5 of a year (~21 weeks) in the worst case.
This is on the same order of magnitude as CINEMA's expected mission time of one
year, and should be more than enough time to demonstrate the viability of the
concept and take scientific data, barring some unforeseen calamity that must be

handled.

3.3.2. SD card basics

The freely available specification provided the details of initializing, commanding,
reading, and writing the SD card. The card uses the SPI interface in a half-duplex

manner; despite the full-duplex nature of SPI, the processor and SD card never
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transmit valid information simultaneously. After a command, the processor must

repeatedly transmit null bytes with all bits set until the SD card returns its response.

from
host

to wrd\

from
card
to host

Dataln

command |

DataOut

from
host
to card

N

command

response

from
card

to host

response

Figure 6: SD Card Command Interaction [SD Group, 2006]

The command format is fairly simple. It consists of six bytes, the first of which

contains a two-bit header and a six-bit command number. The middle four bytes

compose the argument of the command, and the last byte contains the seven-bit CRC

(cyclic redundancy check) of the previous 5 bytes with a one-bit trailer.

Bit position 47 46 [45:40] [39:8] [7:1] 0
\Width (bits) [1 1 6 32 7

\Value 1) 1’ X X X 1’
Description [start bit [ftransmission bit command index jargument CRC7 end bit

Figure 7: SD Card Command Format [SD Group, 2006]

My first concern was to find out how much overhead existed in reading and writing,

as the overhead might limit how much could be done in a scheduled time-slice. As

SPI could transfer a given number of bytes in a time-slice, | measured time in bytes.

Table 3: Time Requirements of SD Card Data Retrieval and Storage

Read phase

Time/data

Write phase

Time/data

Command

6 bytes

Command

6 bytes
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Response delay | 0-8 bytes Response delay | 0-8 bytes
Response 1 byte Response 1 byte

Access time 1 byte + taccess Pause 1 byte min.

Start block 1 byte Data 512 bytes

Data 512 bytes CRC of data 2 bytes

CRC of data 2 bytes Data response 1 byte + tusy
Total (max) 531 bytes + taccess Total (max) 531 bytes + tgusy

A single time-slice is 5,000,000 21 x Yt sec _ 61035Vt
sec 8 bits 1024 time - slices time - slice

long, which means that there is a maximum of 610 - 531 = 79 bytes left for other
activities in a time-slice. For example, after a write is completed, it is good practice
to make sure there were no errors by using another command to find out how many
bytes were just written. However, as long as the access and busy times weren't too

large, I wasn't very worried about running out of time in a slice.

3.3.3. CRC in limited time

What did worry me were the CRC fields in the command and data operations. A
command was given for disabling the data's CRC16, but it didn't mention the
commands' CRC7. Arbitrary commands had to be possible to allow arbitrary
read/write addresses, which meant a CRC7 routine had to be made. Standard CRC
algorithms operate on a single bit at a time, XORing or not XORing a given value to
the evolving CRC value depending on the state of the input bit. This was not

acceptable for CINEMA, as each bit was transferred in two instructions' worth of
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time, and the standard algorithm could not be reduced to two instructions on the
PIC architecture. Ilooked for faster CRC7 algorithms online, but found nothing
useful excepting a demonstration of CRC5 for an FPGA that used nibbles of input
together with the entire current CRC to form a parallel-computable expression for
bits of the next CRC [Evgeni, 2009]. I figured that I could use similar techniques to

produce a lookup table-based version of CRC7.

data out

pruw% eiae

data m

Figure 8: CRC7 Equivalent Generator [SD Group, 2006]

Observing the diagram of a CRC7 generator provided with in the SD card
specifications, I noticed that the CRC bytes move in a loop -- all the bits move up by
one, and bit 7 is XORed with the input bit to create the new bit 1 (and affect bit 4).

This suggested that bit-shifting by 4 might play a significant role in my algorithm.

Calculating 4 generations of the CRC7 generator resulted in the following (Dx

represents the value on the data input immediately before generation x):
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generation
0

1

cells

1

D1~7

D276

D375

D4/ 4

2 3
1 2
D1i~7 1
D276 D177
D3~5 D276

4 5 6
3~D1~7 4 5
27°D276 32D17~7 4
1~D3~5 2~D2”~6 3/~D177

Di~r7~D4a”4 1~D3~5 27~D276

Table 4: The State of a CRC7 Generator Over 4 Generations

3~D1~7

[ noticed that the values of bits 1, 2, and 3 could be shifted to their position in the

4th generation, but as for the rest I initially followed the example of the CRC5

generator, making a table for all potential values of bits D1-D4 and bits 7-4. The

tables were identical, pointing out the inherent pairings: D4 was always XORed with

bit 4, D3 with bit 5, D2 with bit 6, and D1 with bit 7. This is especially convenient

because D1 and bit 7 are both the most significant bits of their categories, so the two

highest nibbles can be XORed in place. The final algorithm for CRC7ing one byte at a

time is as follows; all variables are actually registers, and the initial value of crc is 0.

—_

. temp = XOR(input,crc)

2. temp = AND(temp,0xf0)

3. temp2 = RIGHT SHIFT(temp,3)

4. temp = XOR(temp,temp2)

5. crc = LEFT SHIFT(crc,4)

6. crc = XOR(crc, temp)

// begin high nibble

// four bit-pair XOR values ready

// eight bit-pair XOR values ready

// unpaired values positioned

// new CRC7 complete
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7. temp = LEFT SHIFT(input,4) // begin low nibble

8. temp = XOR(temp,crc)

9. temp = AND(temp,0xf0) // four bit-pair XOR values ready

10.temp2 = RIGHT SHIFT (temp,3)

11. temp = XOR(temp,temp2) // eight bit-pair XOR values ready
12. crc = LEFT SHIFT(crc,4) // unpaired values positioned
13. crc = XOR(crc, temp) // new CRC7 complete

Listing 1: CRC7 Algorithm (dsPIC33 Assembly Language)

The least significant bit in the output byte is always 0, which is perfect for SD card

purposes. Set that bit, and the result is the final byte of the SD command format.

The algorithm is 13 instructions long, leaving 3 instructions for getting the "input
byte from memory, copying it to the SPI port for sending, and reading the the SPI
port's most recently received byte to prevent overflow. It just barely fits. This

algorithm is made possible by the dsPIC33's multiple working registers; ['m not sure
that it would be possible with only one working register, which was the case on PICs

like the PIC16F84 I cut my teeth on.

Flush with success, I decided to try optimizing CRC16 as well, so that data

transactions might also be verified. CRC16's generator is a bit more complex:
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Figure 9: CRC16 Equivalent Generator [SD Group, 2006]

cells
1 2 3 4
D4~13 D37~14 D2~15 D1~16

D8~9~D4~13 D7~10nD3~14 D67117~D27~15 D5712~D1716

cells
5 6 7
1 2°"D4~13 3~2D3714
D4~13 D3~14~"D87~9"D4"N13 D27M15~D77M107D37MN14
cells
8 9 10 11
47D21715 5~AD1/~16 6 7

D1~16~D6711AD2/15 1AD57~12~AD1~16 27D4N13 3~D3714

cells
12 13 14
8 9rD4~N13 10~D3714

4~D27~15 5~D17~16~D879”~D4"~13 67D77~107°D3714

cells
15 16
11~D2/~15 12~AD1/~16

7~°D6711~D2~15 8~D57~127~D1716

Table 5: The State of a CRC16 Generator at 0, 4, and 8 Generations

As with CRC7, CRC16's bits move in a loop, and the bit pairs appear as expected; D1

is always XORed with bit 16, D2 with 15, and so on. Because there are more than 8
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bits in CRC16, the computation can move on to the byte level and make even more
bit pairs than at the nibble level. Using similar principles to CRC7, after an 8-bit shift
all of the unpaired bits are in the right place. The remaining elements are in two
continuous, unbroken groups: {D1716 ... D849} and its subset {D1”16 ... D4"13}. 1
brought this line of thought to fruition, resulting in a 13-instruction algorithm as
before. [ then perused some CRC websites I found before making CRC7, and noticed
an algorithm that took my results one step further [ckielstra, 2005]. There was
really only one continuous group: {D1*16 ... D4*13,D5*12~D1”16 .. D829*D4"13}.
This group appeared three times (once hanging off the most-significant edge), and

made possible a 10-instruction algorithm. Again, all variables are actually registers.

1. SWAP(crc) // exchange bytes; works like rotate left by 8,

which is what's needed

2. crc = XOR.BYTE(crc,temp) // high byte of crc must stay the same; [ build

my XOR group in crc's low byte

3. temp = RIGHT SHIFT(crc,4) // no byte-only form exists, hence the next

instruction

4. temp = AND(temp,0x000f)

5. crc = XOR.BYTE(temp,crc) // the low byte is now the magic XOR group,

and is in the right place once

6. temp = ZERO EXTEND(crc) // thatis, temp = AND(crc,0x00ff), which

isn't an available instruction
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7. temp = LEFT SHIFT(temp,5)

8. crc =XOR(temp,crc) // XOR group is in the right place twice

9. temp = LEFT SHIFT (temp,7)

10. crc = XOR(temp,crc) // XOR group is in the right place three times

Listing 2: CRC16 Algorithm (dsPIC33 Assembly Language)

(I'later discovered that the SD command that makes data CRCs optional also applies
to commands, so the entire exercise could have been skipped. I'm glad that I didn't
know that, though, because I probably would have dropped the idea if I didn't think

it had to work. Now that the algorithm exists, CINEMA can use it to resist errors.)

3.3.4. SD first contact

Using the specification, I designed routines to write the appropriate values to the
SPI port to output the first command for SD card initialization and read back the
response. Nothing happened, so [ hooked up the oscilloscope to verify that the
waveforms being emitted were as [ expected. Nothing seemed wrong, but [ knew
my information was limited, so I looked for reference waveforms online. Two
people had documented the SD card initialization process with included waveforms
[ChaN, 2008; ESawdust, 2008], so [ learned to change the idle state of the bus to a

high state and to emit 10 bytes of high bits to properly initialize the SD card.

Proceeding in the card initialization sequence, I discovered that the SPI port on the
dsPIC33 was very serious about error detection -- if a byte arrived before the

previously received byte had been read by the program, the port set an overflow
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flag and refused to accept any more bytes until the flag was manually cleared. This
was generally unnecessary, as the SD card never returns valid data while the
processor is sending a command, but it did make me a better programmer by
pointing out when I insufficiently understood how my code was interacting with the

SPI port.

The SD card has two main states: initializing and ready. Initialization must be done
with a lower speed SPI clock, as the card operates in an open-drain mode until
initialization is complete [SanDisk, 2002]. Up to this point, I had been driving the SD
card at 312 kHz. Once full speed became available, commands and data were
transferred at the dsPIC33's full speed of 5 Mbps. This immediately caused a rash of
SPI port overflows, as the input buffer filled up more than 10 times faster, leading to
a corresponding rash of improved code. Also, it had become possible to read from
and write to the SD card, determining the values of the access time during a read

and the busy time following a write.

3.3.5. SD write busy time

Starting with single-block writes to various locations, I discovered a surprising
trend. When [ set my program to write to a new address, the SD card was busy for
20 to 30 thousand bytes after the write. If [ reran the program, the busy time
dropped to between 650 and 900 bytes. This was distressing, as not only did it
imply some sort of states existing within the SD card between operations, it also
endangered the 1.92 Mbps minimum data rate we needed. Naively speaking,
ignoring the constraints imposed by the background task table, the SD card could be
busy for 851 bytes, maximum, and still sustain 1.92 Mbps.
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[ decided that a more accurate simulation of CINEMA operating conditions was
needed. When I tried writing to a sequence of adjacent addresses, the first address
caused a busy period of 20,000-30,000 bytes as before, but subsequent writes were
busy for less than 600 bytes. Even better, rewriting the same set of addresses

reduced the startup busy period to around 3000 bytes.

The data showed an interesting pattern, visible only when making multiple writes.
After the initial twenty-thousand-byte busy delay, all writes had short busy periods
except for one write in every 64, which had a busy delay 2800-4000 bytes long.
Presumably this was caused by some internal element of the SD card, such as a 32
KB write buffer, but it had to be dealt with by the processor. To understand this
pattern's effect on writing [ took 490 data points from writes to two disparate
address sequences and modeled their effects if all incoming STEIN data were stored
in a single buffer. The simulated system checked the SD card's status at 512 Hz, and
if the card were not busy and there were at least 512 bytes in the buffer the system

would send a block from the buffer to the SD card.
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Figure 10: Busy Times Experienced in 490 Write Attempts
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Figure 11: Contents of Simulated Buffer Following 490 Write Attempts

This simulation modeled the behavior of a potential addition to the actual CINEMA
system, and produced encouraging results. In the buffer contents graph, the buffer
only exceeds 2000 bytes due to an unusually long busy delay caused by switching to
a new address region, and recovers steadily from even that. The large sawteeth are
due to the one-every-64 long delays, and the small sawteeth occur when the buffer

contains less than 512 bytes so there is no 512-byte block to send to the SD card. An
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8 KB buffer was sufficient to deal with a 18,562 byte busy period; some busy periods
slightly exceed 30,000 bytes, so a 12 KB buffer should be able to handle even those
peaks. This buffer might be in the microcontroller, in the FPGA, or shared between
the two; the FPGA will contain at least 1 KB of buffer in its present design. The
dsPIC33 contains 30 KB of memory; whether or not a third of that can be spared for
STEIN buffering is unknown because much of CINEMA's code is unwritten at this
time. Also in question is whether it should be spared, as 1.92 Mbps is STEIN's peak
rate, which we never expect to see and could never relay to the ground if it were

frequent. Ultimately, if the memory is available, it will most likely be used.

In the name of science I tried increasing the address gap between writes. It
appeared that there was a roughly logarithmic relation between busy period
duration and proximity to the previous write (see figure). However, even moving to
every-other-block writing pushes the maximum busy time up to 900 bytes, so

CINEMA is effectively limited to writing adjacent memory locations.
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Figure 12: Relation of Busy Period Duration to Write Address Separation
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Finally, I tried writing to two address sequences alternately, e.g. 10, 1000, 11, 1001,
12,1002, ... to simulate a pair of ring buffers. Fortunately, there was no significant
increase in busy period after these writes; it was indistinguishable from writing all
the addresses in one sequence, then writing all the addresses in the other sequence.
As a result, CINEMA can safely maintain a buffer for diagnostic data and records that
is independent from the buffer for scientific data. In order to avoid the long busy
delay that accompanies the first write to a memory region, the first addresses of
both buffers should be written with dummy data well before the buffers are likely to

be used.

3.3.6. SD read access time

After the complexities of the SD card's write behavior, [ was bracing myself for
strange fluctuations in the access times that occur during reads. Because they are
present in the middle of reading instead of the end, long access delays might
significantly complicate sending data to the transmitter. Desiring to see the worst
possible case, | made randomized reads across the entire 2 GB address space. The
result was a pleasant surprise. There were two long access delays in the beginning
of the process, always exactly 484 and 480 bytes long respectively. (Usually they
occurred on the first and second random reads, but once on the first and fifth.) All
other access times were in the 72-76 byte range, with the occasional access time in

the 52-56 byte range with no obvious distribution.

Because no access delay exceeds 484, any read operation can be handled in a single
610-byte-long time-slice if the initial read request is made in the first hundred bytes

of time, but it will require the use of DMA to maintain the transfer after the time-
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slice ends. This has an upside for foreground tasks, in that short access times can
use the same DMA mechanism to end the background task early, leaving hundreds

of bytes of time available for foreground task work. The algorithm is as follows:

1. Ifthe downlink FPGA can hold another block, send SD read command.

2. Setup DMA channel 1: read from single DMA RAM location, write to SD card,

move 514 bytes. /*The single location contains 0xFF, SD card's "null" byte.*/

3. Set up DMA channel 2: read from SD card, write to 514 bytes of DMA RAM,

move 514 bytes.

4. Setup DMA channel 3: read from 514 bytes of DMA RAM, write to downlink

FPGA, move 512 bytes. /*The downlink FPGA doesn't care about the CRC.*/

5. Manually send one OxFF byte to the SD card.

6. If the response isn't the "block start" byte, go to 5.

7. Enable DMA channels 1, 2, and 3.

8. Activate DMA channel 1. SD card will begin sending the data block, which

will be moved into DMA RAM by DMA channel 2.

9. After the first byte arrives via DMA channel 2, activate DMA channel 3.

10. Return from interrupt. All DMA channels will auto-disable when finished.

Listing 3: DMA-Driven Read From SD Card (Pseudocode)
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3.3.7. SD read busy time

Something not mentioned in the SD card specification was the busy period that
followed the read operations. Every single random read was followed by a delay of
exactly 172 bytes. Their origin is uncertain but irrelevant, as they occur after the
DMA mechanism finishes moving the data. However, the algorithm above sends no
bytes to the SD card after the data block and its CRC16 are received; the SD card
may require a clock input to finish whatever it's doing during the 172 bytes. If this
is the case, a solution is to increase the number of bytes transferred by DMA channel
1to 686 (514 + 172). This will cause a receive overflow on the SPI port connected
to the SD card, but the only data lost will be "busy" bytes from the SD card. It will,
however, be important to clear the overflow flag before the next communication

with the SD card, as otherwise the incoming bytes will be dropped.

4. Conclusion

In my time at the Space Sciences Laboratory at UC Berkeley, | have chosen a
processor, designed data flows, determined task frequencies, worked around
constraints using DMA, and heavily interfaced and characterized an SD card. My
work has been integral to the progress of the CINEMA project, and [ leave it at a
good break point. Future work in these areas might include radiation bombardment
of a more modern SD card, and will certainly involve a higher-level interface to my

SD card routines.
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Appendix: Products Used

Flight motherboard: Pumpkin P/N 710-00484 Rev. D
Development board: Pumpkin P/N 710-00297 Rev. D
Processor daughterboard: Pumpkin P/N 710-00528 Rev. A
EPS: Clydespace 3U EPS, 30 Wh lithium batteries

Uplink radio: Helium 100

Downlink radio: Emhiser EDTC-01DEA

SD card: SanDisk 2 GB Extreme III SD Memory Card (SDSDX3-002G-A21)
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