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A Descent Algorithm for the Optimal Control of Constrained

Nonlinear Switched Dynamical Systems: Appendix

Humberto Gonzalez, Ram Vasudevan, Maryam Kamgarpour,

Shankar Sastry, Ruzena Bajcsy, and Claire Tomlin∗

Abstract

This document is an appendix to the paper “A Descent Algorithm for the Optimal Control
of Constrained Nonlinear Switched Dynamical Systems”[3], presented at the 13th International
Conference on Hybrid Systems: Computation and Control (HSCC’10), and contains the proofs
of all the propositions and theorems in Section 4 of that paper. The reader is advised to read
this document after covering the first three sections of the original paper, as the notation and
the problem formulation are not covered in this appendix. The numbering of the equations,
propositions, and theorems is consistent with the numbering used in the original paper.

A Algorithm Analysis

A.1 Continuity of the Cost and Constraints

We must first check that the cost function, equation (12), under Assumptions 1 and 2 is continuous.
We prove the continuity of the cost function by taking a sequence, (ξj)

∞
j=1 converging to limit ξ,

in our optimization space, and proving that the corresponding sequence of trajectories (xj(t))
∞
j=1

converge to trajectory x(t) corresponding to ξ. This result proves the sequential continuity of our
cost function, which implies continuity since X is a metric space.

Throughout this subsection we simplify the notation used for the functions µ, κ, π, and µf .
Given ξj = (σj , sj , uj) ∈ X , we define µj(i) = µ(i; sj), κj(i) = κ(i; sj), πj(i) = π(i; sj), and
µf,j = µf (sj). As usual, when the choice of s ∈ S is clear in context we use our standard notation.

Proposition 1. Let (ξj := (σj , sj, uj))
∞
j=1 be a convergent sequence in our optimization space, X ,

and let ξ := (σ, s, u) be its limit. Let (xj(t))
∞
j=1 be the corresponding trajectories (defined using

Equation 11) associated with each ξj , with common initial condition x0. The sequence (xj(t))
∞
j=1

converges pointwise to the trajectory x(t) associated with ξ, for all t in [0,∞) with initial condition
x0.

Proof. The proof is completed in steps, and employs an induction argument which is applicable
since we assume that the number of switches between non-zero flows is finite. First fix an ǫ in
(0,min{1,mins(i)>0{s(i)/2}}). Since the sequence (ξj)

∞
j=1 converges to ξ, we know there exists

some j0, such that for all j greater than j0, ‖ξj − ξ‖ < ǫ (where we are using the norm induced
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by our metric). Given our choice of ǫ, this means that for all j greater than j0, σj = σ and
|µj(i)− µ(i)| < ǫ for all i. Without loss of generality we assume that j0 = 1. We employ these two
observations to define a partition, τ , of [0,∞) induced by the points, {µj(i), µ(i)}∞i=0 for each j.
This partition divides [0,∞) into two types of intervals:

• Intervals where the modes agree and are constant, but the initial conditions at the start of
the interval differ by a value bounded by ǫ times a constant.

• Intervals where the initial conditions at the start of the interval differ by a value bounded by ǫ
times a constant, the modes disagree but are constant, and the size of the interval is bounded
by ǫ times a constant.

In order to apply the induction step, we need to find a method to bound the final condition of the
trajectory for each of these intervals.

Step 1: Let τk := [a, b] ∈ τ . If πj(t) = π(t), ∀t ∈ τk, and ‖xj(a)− x(a)‖ < Cǫ for some C > 0, then
∃C̄ > 0 such that ‖xj(t) − x(t)‖ < C̄ǫ, ∀t ∈ τk.

Proof of Step 1: We begin by considering the norm difference of trajectories for t ∈ [a, b] under our
assumptions:

‖xj(t) − x(t)‖ ≤ ‖xj(a) − x(a)‖ +

∫ t

a

‖fπj(r)(xj(r), uj(r)) − fπ(r)(x(r), u(r))‖dr (A.1)

Next, we employ the Lipschitz continuity assumption (our Lipschitz constant is called K1 here) as
prescribed by Assumption 1, since πj(t) = π(t), ∀t ∈ τk:

‖xj(t) − x(t)‖ ≤ ‖xj(a) − x(a)‖ +K1

∫ t

a

(

‖xj(r) − x(r)‖ + ‖uj(r) − u(r)‖
)

dr (A.2)

Next, we employ the Bellman-Gronwall Inequality to bound the integral term in the previous
inequality.

‖xj(t) − x(t)‖ ≤ eK1(b−a)

[

‖xj(a) − x(a)‖ +K1

∫ b

a

‖uj(r) − u(r)‖dr

]

(A.3)

We can employ the assumptions given in the our proposition statement to bound the initial condi-
tion. Moreover, we can also bound the integral term by remembering that we are working under
the assumption that ‖ξj − ξ‖ < ǫ:

‖xj(t) − x(t)‖ ≤ eK1(b−a)
[

C +K1(b− a)
]

ǫ (A.4)

Letting C̄ := eK1(b−a)
[

C +K1(b − a)
]

, we have the desired result. (Step 1 )

Step 2: Let τk := [a, b] ∈ τ . If πj(t), π(t) are constant ∀t ∈ τk, |b − a| < C1ǫ for some C1 > 0, and
‖xj(a) − x(a)‖ < C2ǫ for some C2 > 0, then ∃C̄ > 0 such that ‖xj(t) − x(t)‖ < C̄ǫ, ∀t ∈ [a, b].

Proof of Step 2: We begin by considering the norm difference of trajectories for t ∈ [a, b] under
our assumptions, but also add and subtract a term to be able to immediately apply a Lipschitz
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argument in the next step:

‖xj(t) − x(t)‖ =
∥

∥

∥
xj(a) − x(a)+

+

∫ t

a

(

fπj(r)(xj(r), uj(r)) − fπj(r)(x(r), u(r)) + fπj(r)(x(r), u(r)) − fπ(r)(x(r), u(r))
)

dr
∥

∥

∥
(A.5)

Next, we employ the Lipschitz continuity assumption (our Lipschitz constant is called K1 here) as
prescribed by Assumption 1 and the triangle inequality simultaneously:

‖xj(t) − x(t)‖ ≤ ‖xj(a) − x(a)‖ +K1

∫ t

a

(

‖xj(r) − x(r)‖ + ‖uj(r) − u(r)‖
)

dr+

+

∫ t

a

∥

∥fπj(r)(x(r), u(r)) − fπ(r)(x(r), u(r))
∥

∥ dr (A.6)

At this point, we want to employ an affine Lipschitz continuity argument. First, recall that we
assume ‖u(t)‖ ≤ M, ∀t. Second, recall that since x(t) is the solution to a differential equa-
tion, it is continuous. Therefore over a compact domain, [0, µf ], we know ∃M̄ < ∞ such that
maxt∈[0,µf ] ‖x(t)‖ ≤ M̄ . Thus, if we define K3 = K1(M̄ +M) + ‖fπ(t)(0, 0)‖, which is bounded by
assumption, then we have:

‖fπ(t)(x(t), u(t))‖ ≤ K3, ∀t ∈ τk (A.7)

An identical result holds for fπj(r)(x(r), u(r)), thus continuing with equation (A.6), we have:

‖xj(t) − x(t)‖ ≤ ‖xj(a) − x(a)‖ + 2K3(b− a) +K1

∫ t

a

(

‖uj(r) − u(r)‖ + ‖xj(r) − x(r)‖
)

dr (A.8)

Next, we employ the Bellman-Gronwall Inequality to bound the integral term in the previous
inequality.

‖xj(t) − x(t)‖ ≤ eK1(b−a)

[

‖xj(a) − x(a)‖ + 2K3(b− a) +K1

∫ b

a

‖uj(r) − u(r)‖dr

]

(A.9)

We can employ the assumptions given in the our proposition statement to bound the initial condi-
tion. Moreover, we can also bound the integral term by remembering that we are working under
the assumption that ‖ξj − ξ‖ < ǫ:

‖xj(t) − x(t)‖ ≤ eK1C1ǫ
[

C2 + 2K3C2 + C2ǫ
]

ǫ (A.10)

Letting C̄ := eK1C1ǫ
[

C2 + 2K2C2 + C2ǫ
]

, we have the desired result. (Step 2 )

Now we must prove that the intervals in our partition where the modes disagree have a bounded
size.

Step 3: Let τk := [a, b] ∈ τ . If πj(t) 6= π(t), ∀t ∈ τk, then |b − a| < 2ǫ.

Proof of Step 3: Recall that |ξj(i) − ξ(i)| < ǫ, which implies that both σj(i) = σ(i) and |µj(i) −
µ(i)| < ǫ, ∀i. If s only contained nonzero entries until it reached the end of its switching sequence (i.e.
∃k such that ∀i < k, s(i) > 0, and ∀i ≥ k, s(i) = 0), then µj(i) < µ(i)+ǫ ≤ µ(i)+s(i+1)/2 < µ(i+1).
This immediately gives our desired result.
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For a general s, we do not have the bound µj(i) ≤ µ(i + 1) since s(i + 1)/2 maybe equal to
zero. However, we do know that |µj(m(i))−µ(m(i))| < ǫ and |µj(n(i))−µ(n(i))| < ǫ, which taken
together imply that |µj(n(i)) − µj(m(i))| < 2ǫ, or more clearly the length of any switch in the
convergent sequence is bounded by 2ǫ, if n(i) −m(i) > 0. This result taken in tandem with the
result in the previous case gives our required result. (Step 3 )

Given these three steps we can now apply our induction argument as follows. Since we assume
a common initial condition, during the first interval in our partition, τ , we can employ step one
to bound the norm difference in final condition at the end of the interval by ǫ times a constant,
which then serves as the bound on the norm difference in initial condition for the next element in
our partition.

For a general element in our partition, we assume that the norm difference in initial condition
is bounded by ǫ times a constant. For this element, either the modes agree in which case we can
apply step one to bound the norm difference in final condition, or the modes differ but the interval
length is bounded by ǫ times a constant by step three, and we can immediately apply step two to
bound the norm difference in final condition by ǫ times a constant. This again serves as the bound
on the norm difference in initial condition for the next element in our partition.

Since the number of switches is finite by assumption, we can sum these various bounds and arrive
at an ǫ times constant bound on the final condition. In fact, we can apply this same argument for
any instant in time in our trajectory. Therefore, we have that (xj(t))

∞
j=1 converges pointwise to the

trajectory x(t) for t ∈ [0,∞), as required.

In fact, we have a stronger condition on the convergence.

Proposition 2. Let (ξj := (σj , sj, uj))
∞
j=1 be a convergent sequence in our optimization space, X ,

and let ξ := (σ, s, u) be its limit. Let (xj(t))
∞
j=1 be the corresponding trajectories (defined using

Equation 11) associated with each ξj , with common initial condition x0. The sequence (xj)
∞
j=1

converges uniformly to the trajectory x associated with ξ, on [0,
∑∞
i=1 s(i)] with initial condition x0.

Proof. Fix an ǫ > 0. Observe that ∃j0 such that for all j > j0, µf,j ≤ µf + ǫ. Without loss of
generality assume that j0 = 1. Let Dǫ := [0, µf + ǫ]. Consider ηj(t) := supt∈Dǫ

‖xj(t)− x(t)‖ since
Dǫ is compact we in fact have ηj = maxt∈Dǫ

‖xj(t) − x(t)‖. Since limj→∞ ηj = 0, we have that
xj → x uniformly on [0,

∑∞
i=1 s(i)] by Theorem 7.9 in [7].

Given Proposition 2, we can now check the continuity of the cost function.

Proposition 3. The function J as defined in equation (12) is continuous.

Proof. Let (ξj := (σj , sj , uj))
∞
j=1 be a convergent sequence in our optimization space, X , and let ξ :=

(σ, s, u) be its limit. If we show that limj→∞ J(ξj) = J(ξ), then since sequential continuity implies
continuity in a metric space, we arrive at the required result. Let (xj(t))

∞
j=1 be the corresponding

trajectories (defined using Equation 11) associated with each ξj , with common initial condition x0,
which converges to the trajectory x(t), for each t in [0,∞] with initial condition x0. Again we prove
the result in steps.

Step 1: limj→∞ φ(xj(µf,j)) = φ(x(µf ))

Proof of Step 1: First, we apply the triangle inequality:

lim
j→∞

‖φ(xj(µf,j))−φ(x(µf ))‖ ≤ lim
j→∞

‖φ(xj(µf,j))−φ(x(µf,j))‖+ ‖φ(x(µf,j))−φ(x(µf ))‖ (A.11)
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Since limj→∞ µf,j = µf , xj → x uniformly on [0, µf ], and φ is continuous, we have

lim
j→∞

‖φ(xj(µf,j)) − φ(x(µf,j))‖ = 0. (A.12)

Since φ, x are continuous, we have

lim
j→∞

‖φ(x(µf,j)) − φ(x(µf ))‖ = 0. (A.13)

Combining these two steps, we have our result. (Step 1 )

Step 2: limj→∞

∫ µf,j

0
L(xj(t), uj(t))dt =

∫ µf

0
L(x(t), u(t))dt

Proof of Step 2: First, fix an ǫ > 0. Recall by Proposition 2, ∃j0 such that ∀j > j1, ‖xj(t)−x(t)‖ < ǫ,
∀t ∈ [0, µf ]. Without loss of generality, assume that j0 = 1. In order to prove this result, we want
to apply to apply the Dominated Convergence Theorem. First, observe that each L(xj(t), uj(t))
belongs in L1, ∀j. Second, observe that L(xj(t), uj(t)) → L(x(t), u(t)) almost everywhere, since L
is continuous.

Finally, we construct a nonnegative g : R
1 → R

1, g ∈ L1 such that |L(xj(t), uj(t))| ≤ g(t),
almost everywhere, ∀j:

g(t) = max
y∈Bn(x(t),ǫ)
v∈Bm(0,M)

L(y, v) (A.14)

where Bn(x(t), ǫ) denotes a ball in R
n of radius ǫ centered at x(t), and Bm(0,M) denotes a ball in

R
m of radiusM centered at the origin. Since L is continuous and we are considering maximums over

compact sets, g is well-defined, belongs in L1, and dominates each |L(xj(t), uj(t))|, ∀j, as required.
Thus, the Dominated Convergence Theorem immediately gives the desired result. (Step 2 )
Finally, combining the result of the previous two steps gives us sequential continuity which imme-
diately implies continuity as desired.

Finally, we must check that {ξ ∈ X | ψ(ξ) ≤ 0} is a closed set in order to apply Theorem 1.
Since we are employing inequality constraints, showing that ψ is continuous gives us the required
result.

Proposition 4. The function ψ as defined in equation (14) is continuous.

Proof. Using Lemma 5.6.7 together with Theorem 4.1.5 from [5] the result immediately follows.

A.2 Optimality Function

In this section, we prove the convergence of Algorithm 1. Our algorithm works by inserting a new
mode, α̂, in a small interval of length λ ≥ 0 centered at a time, t̂, with input û. We begin by
defining this type of insertion.

Definition 2. Given ξ = (σ, s, u) ∈ X and η = (α̂, t̂, û) ∈ Q × [0, µf ] × Bm(0,M), we define the
function ρ(η) : [0,∞) → X as the perturbation of ξ after the insertion of mode α̂, at time t̂ using û
as the control, for a time interval of length λ. Let λ̄ = min{i:|µ(i)−t̂|>0}

1
2

∣

∣µ(i) − t̂
∣

∣, then we write
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ρ(η)(λ) =
(

ρ
(η)
σ (λ), ρ

(η)
s (λ), ρ

(η)
u (λ)

)

, whenever λ ∈ [0, λ̄],

ρ(η)
σ (λ) =



















(α̂, σ(1), σ(2), . . .) if t̂ = 0

(σ(1), . . . , π(t̂− λ̄
2 ), α̂, . . .) if t̂ = µf

(σ(1), . . . , π(t̂− λ̄
2 ), α̂, π(t̂+ λ̄

2 ), . . .) if t̂ 6= µ(i)

(σ(1), . . . , π(t̂− λ̄
2 ),m(κ(t̂)) + 1, . . . , n(κ(t̂), α̂, π(t̂+ λ̄

2 ), . . .) if t̂ = µ(i)

(A.15)

ρ(η)
s (λ) =































(λ, s(1) − λ, s(2), . . .) if t̂ = 0

(s(1), . . . , s(κ(µf )) − λ, λ, 0, . . . ) if t̂ = µf

(s(1), . . . , t̂− λ
2 − µ(κ(t̂− λ̄

2 ) − 1), λ, µ(κ(t̂+ λ̄
2 )) − t̂− λ

2 , . . .) if t̂ 6= µ(i)

(s(1), . . . , t̂− λ
2 − µ(κ(t̂− λ̄

2 ) − 1), s(m(i) + 1), . . . ,

. . . , s(n(i)), λ, µ(κ(t̂ + λ̄
2 )) − t̂− λ

2 , . . .) if t̂ = µ(i)

(A.16)

ρ(η)
u (λ) =











u(t) +
(

û− u(t)
)1[0,λ](t) if t̂ = 0

u(t) +
(

û− u(t)
)1[µf−λ,µf ](t) if t̂ = µf

u(t) +
(

û− u(t)
)1[t̂−λ

2 ,t̂+
λ
2 ](t) otherwise

, (A.17)

and ρ(η)(λ) = ρ(η)(λ̄) whenever λ > λ̄.

Note that ρ, in addition to being a function of λ and η, is also a function of ξ, but we do not
make this dependence explicit for notational convenience. If the dependence of ρ with respect to

ξ is not clear, then we make the declaration explicit. Importantly, observe that ρ
(η)
u is a needle

variation (or strong variation) of the control u(t) (as defined in Chapter 2, Section 13 of [6]). Figure
2 illustrates a pair (σ, s) after they are modified by the function ρ(η).

Proposition 5. Given η ∈ Q× [0, µf ] × Bm(0,M), the function ρ(η) is continuous.

Proof. Note that ρ
(η)
σ (λ) = ρ

(η)
σ (0) for each λ > 0, hence ρ

(η)
σ is trivially continuous. Since the

dependence on λ is affine for ρ
(η)
s , it is continuous. Finally, ρ

(η)
u can be proven continuous by

considering a convergent sequence (λi)
∞
i=1, λi → λ as i → ∞, and checking that ρ

(η)
u (λi) converges

to ρ
(η)
u (λ) as i → ∞. For values of λ such that λ > λ̄ the function is continuous since it is

constant.

The previous proposition helps us understand the variation of the cost with respect to an
insertion. We begin by studying the variation of the trajectory, x(ρ(λ)), as λ changes. Note that
x(ξ)(t) = x(ρ(0))(t) for each t ≥ 0, so a first order approximation of the trajectory is characterized
by the directional derivative of x(ρ(λ)) at λ = 0. To reduce the number of cases we need to consider
in the future propositions, we define for a given x : [0,∞) → R

n, u : [0,∞) → R
m, and η = (α̂, t̂, û):

∆f(x, u, η) =















fα̂(x(t̂), û) − fπ(t̂+λ̄)(x(t̂), u(t̂)) if t̂ = 0

fα̂(x(t̂), û) − fπ(t̂−λ̄)(x(t̂), u(t̂)) if t̂ = µf

fα̂(x(t̂), û) − 1
2

[

fπ(t̂+λ̄)(x(t̂), u(t̂)) + fπ(t̂−λ̄)(x(t̂), u(t̂))
]

otherwise

(A.18)

where λ̄ = min{i:|µ(i)−t̂|>0}
1
2

∣

∣µ(i) − t̂
∣

∣. Observe that π(t̂ + λ̄) = π(t̂ − λ̄) whenever t̂ /∈ {µ(i)}i∈N.

With an abuse of notation, we denote x(ρ(λ)) by x(λ).
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Proposition 6. The directional derivative of x(λ) for λ positive, evaluated at zero, is:

dx(λ)

dλ

∣

∣

∣

∣

λ=0

(t) =

{

Φ(t, t̂)∆f(x(ξ), u, η) if t ∈ [t̂, µf ]

0 otherwise
, (A.19)

where Φ : [0,∞) × [0,∞) → R
n×n is the solution of the matrix differential equation:

Ẋ(t, t̂) =
∂fπ(t)

∂x

(

x(ξ)(t), u(t)
)

X(t, t̂), X(t̂, t̂) = I. (A.20)

Proof. The vector fields corresponding to ξ and ρ(η)(λ), λ > 0, are equal everywhere except in a
small interval of length λ. Without loss of generality we assume that t̂ ∈ (0, µf ), since the proof for
the cases when t̂ ∈ {0, µf} is completely analogous and the case t̂ > µf is trivial given the fact that
the flows are null. Let ∆xλ(t) = x(λ)(t) − x(0)(t), and let g(x(t), t) be its vector field. Recalling
that x(0)(t) = x(ξ)(t) for each t ≥ 0:

g(x(ξ)(t), t) = fα̂(x(ξ)(t), û) − fπ(t)(x
(ξ)(t), u(t)) (A.21)

whenever t ∈ [t̂− λ
2 , t̂+ λ

2 ], and g(x(t), t) = 0 otherwise. Since x(λ) and x(0) have the same initial

condition, ∆xλ(t) = 0 for each t ∈ [0, t̂ − λ
2 ). Therefore, as λ ↓ 0 we have the desired result for

t ∈ [0, t̂).
For t ≥ t̂− λ

2 , using equation (7) from [1] together with the conditions stated in Assumption 1,
we know there exists K > 0 such that

∥

∥

∥

∥

∆xλ(t) −

∫ µf

0

Φ(t, s)g
(

x(ξ)(s), s
)

ds

∥

∥

∥

∥

≤ Kλ2 (A.22)

, or
∥

∥

∥

∥

∥

∆xλ(t)

λ
−

∫

R

Φ(t, s)g
(

x(ξ)(s), s
)
1[t̂−λ

2 ,t̂+
λ
2 ](s)

λ
ds

∥

∥

∥

∥

∥

≤ Kλ. (A.23)

If we split the interval in two at t̂, the integral in equation (A.23) can be written as the sum of two

convolutions between Φ(t, s)g(x(ξ)(s), s) and ϕλ(s) = 1
λ
1[0, 12 ](

s−t̂
λ

). Since both Φ(t, ·)g(x(ξ)(·), ·)

and ϕλ are functions in L1, we can apply Theorem 8.14 from [2] and the triangular inequality to
get

lim
λ↓0

∆xλ
λ

(t) = Φ(t, t̂)∆f(x(ξ), u, η) (A.24)

whenever t ∈ [t̂, µf ]. In this last step, we used the fact that π(t̂± λ
2 ) = π(t̂±λ̄) for each λ ∈ (0, λ̄].

Given this variation of the state trajectory, we can now consider variations of the cost and
constraint functions, which allows us to define our optimality function θ in a manner that guarantees
if there are no feasible mode insertions which lower the cost then θ(ξ) = 0.

Proposition 7. Let J be the cost function defined in equation (12). Then the directional derivative
of J(ρ(η)(λ)) evaluated at λ = 0 is

dJ(ρ(η)(λ))

dλ

∣

∣

∣

∣

λ=0

=
(

p(ξ)(t̂)
)T

∆f(x(ξ), u, η) +
[

û− u(t̂)
]T ∂L

∂u

(

x(ξ)(t̂), u(t̂)
)

(A.25)
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where p(ξ), can be identified with the costate, and is the solution to the following differential equation

ṗ(t) = −
∂fπ(t)

∂x

T
(

x(ξ)(t), u(t)
)

p(t) −
∂L

∂x

(

x(ξ)(t), u(t)
)

p(µf ) =
∂φ

∂x

(

x(ξ)(µf )
)

.

(A.26)

Proof. Without loss of generality, assume t̂ ∈ (0, µf ). The case when t̂ ∈ {0, µf} is completely

analogous. Let ρ
(η)
u (λ) from equation (A.17) be denoted by uλ. Also, denote x(0) by x. Consider

J(ρ(η)(λ)) − J(ρ(η)(0))

λ
=

=

∫ µf

0

1

λ

[

L
(

x(λ)(t), uλ(t)
)

− L
(

x(t), u(t)
)

]

dt+
1

λ

[

φ
(

x(λ)(µf )
)

− φ
(

x(µf )
)

]

. (A.27)

Since L and φ are differentiable, we can apply the Mean Value Theorem; thus, there exists functions
sx, su : [0, µf ] → (0, 1) such that

L(x(λ)(t), uλ(t)) − L(x(t), u(t)) = gx,λ(t)∆xλ(t) + gu,λ(t)∆uλ(t), (A.28)

and there exists a constant sy ∈ (0, 1) such that

φ(x(λ)(µf )) − φ(x(µf )) =
∂φ

∂x

T
(

x(µf ) + sy∆xλ(µf )
)

∆xλ(µf ), (A.29)

where ∆xλ(t) = xλ(t) − x(t), ∆uλ(t) = uλ(t) − u(t), and

gx,λ(t) =
∂L

∂x

T
(

x(t) + sx(t)∆xλ(t), u(t) + su(t)∆uλ(t)
)

(A.30)

gu,λ(t) =
∂L

∂u

T
(

x(t) + sx(t)∆xλ(t), u(t) + su(t)∆uλ(t)
)

. (A.31)

Abusing notation, we denote ∂L
∂x

T
(x(t), u(t)) and ∂L

∂u

T
(x(t), u(t)) by gx,0(t) and gu,0(t), respectively.

Recall by Proposition 6, the limit of
∆xλ(µf )

λ
exists as λ ↓ 0. Also, by Proposition 1, ∆xλ(t) → 0

as λ ↓ 0 for each t ∈ [0, µf ]. Since ∂φ
∂x

is continuous, equation (A.29) becomes

lim
λ↓0

φ(x(λ)(µf )) − φ(x(µf ))

λ
=
∂φ

∂x

T
(

x(µf )
)

Φ(µf , t̂)∆f(x, u, η). (A.32)

The computation of the limit of the integral term in equation (A.27) is carried out in two steps,
one for each term in equation (A.28). First note that

lim
λ↓0

∫ µf

0

gu,0(t)
∆uλ(t)

λ
dt =

[

û− u(t̂)
]T ∂L

∂u

(

x(t̂), u(t̂)
)

(A.33)

which is the result of first writing the integral as a convolution between gu,0(t) and ϕλ(t) =
1
λ
1[− 1

2 ,
1
2 ](

t−t̂
λ

) and then using Theorem 8.14 from [2]. Since gu,λ(t) → gu,0(t) for each t ∈ [0, µf ],
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(gu,λ − gu,0) ∈ L∞, and ∆uλ

λ
∈ L1 for each λ > 0, we apply Hölder’s inequality to obtain the

following bound
∫ µf

0

∥

∥

∥

∥

[gu,λ(t) − gu,0(t)]
∆uλ(t)

λ

∥

∥

∥

∥

dt ≤ ‖gu,λ − gu,0‖∞

∥

∥

∥

∥

∆uλ
λ

∥

∥

∥

∥

1

→ 0 (A.34)

as λ ↓ 0. Therefore, using the triangular inequality together with equations (A.33) and (A.34) we
get the desired result for the second term in equation (A.28).

For the first term in equation (A.28), we employ a similar argument via Hölder’s

∫ µf

0

∥

∥

∥

∥

gx,λ(t)
∆xλ(t)

λ
− gx,0(t)

dxλ
dλ

(t)

∥

∥

∥

∥

dt ≤

∫ µf

0

∥

∥

∥

∥

gx,λ(t)

[

∆xλ(t)

λ
−
dxλ
dλ

(t)

]∥

∥

∥

∥

dt+ (A.35)

+

∫ µf

0

∥

∥

∥

∥

[gx,λ(t) − gx,0(t)]
dxλ
dλ

(t)

∥

∥

∥

∥

dt (A.36)

≤ ‖gx,λ‖∞

∥

∥

∥

∥

∆xλ
λ

−
dxλ
dλ

∥

∥

∥

∥

1

+ ‖gx,λ − gx,0‖∞

∥

∥

∥

∥

dxλ
dλ

∥

∥

∥

∥

1

(A.37)

where gx,λ ∈ L∞ for each λ > 0 (since ∂L
∂x

is continuous), the space of acceptable controls is

bounded, the trajectories are continuous, and the domain is compact. Also, dxλ

dλ
∈ L1 since it is a

piecewise-continuous function over a compact domain, and ∆xλ

λ
∈ L1 since both x(λ) and x(0) are

continuous over a compact domain. Hence, by the pointwise convergence of ∆xλ

λ
to dxλ

dλ
, we have

lim
λ↓0

∫ µf

0

gx,λ(t)
∆xλ(t)

λ
dt =

∫ µf

0

∂L

∂x

T
(

x(t), u(t)
)

Φ(t, t̂)dt ∆f(x, u, η). (A.38)

Finally, if we sum equations (A.32), (A.33), and (A.38), and note that the solution to the
differential equation (A.26) is

p(ξ)(t) = ΦT (µf , t̂)
∂φ

∂x
(x(µf )) +

∫ µf

0

ΦT (t, t̂)
∂L

∂x
(x(t), u(t))dt (A.39)

we get the desired result.

In order to define our optimality function, we must also consider variations of the constraint
function after the mode insertion procedure.

Proposition 8. Let ψ be the constraint function defined in (14). The directional derivative of
ψ(ρ(η)(λ)) evaluated at λ = 0 is

dψ(ρ(η)(λ))

dλ

∣

∣

∣

∣

λ=0

= max
j∈Ĵ (ξ)

max
t∈T̂j(ξ)

∂hj
∂x

(

x(ξ)(t)
) dx(λ)

dλ

∣

∣

∣

∣

λ=0

(t) (A.40)

where

Ĵ (ξ) =

{

j ∈ {1, . . . , R}
∣

∣ max
t∈Tj

hj
(

x(ξ)(t)
)

= ψ(ξ)

}

(A.41)

T̂j(ξ) =

{

t ∈ [0, µf ]
∣

∣ hj
(

x(ξ)(t)
)

= max
t̄∈[0,µf ]

hj
(

x(ξ)(t̄)
)

}

(A.42)
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Proof. Using Theorem 5.4.6 and the proof of Theorem 5.4.7 in [5], we get that

dψ(ρ(η)(λ))

dλ

∣

∣

∣

∣

λ=0

= max
j∈Ĵ (ξ)

max
t∈T̂j(ξ)

dh
(

x(λ)
)

dλ

∣

∣

∣

∣

∣

λ=0

(t). (A.43)

The result is clear from this equation by using the chain rule.

Now we can prove that if θ(ξ) as defined in equation (19) is less than zero, then there exists
a feasible mode insertion which reduces the overall cost (i.e. our optimality function captures the
points of interest).

Theorem 2. Consider the function θ defined in equation (19). Let ξ ∈ X and η = (α̂, t̂, û) ∈

Q× [0, µf ] × Bm(0,M) be the argument which minimizes θ(ξ). If θ(ξ) < 0, then there exists λ̂ > 0

such that, for each λ ∈ (0, λ̂], J(ρ(η)(λ)) ≤ J(ξ) and ψ(ρ(η)(λ)) ≤ 0.

Proof. First, we show that the functions J ◦ ρ(η) and ψ ◦ ρ(η), in addition to being differentiable
at λ = 0 are also differentiable in a neighborhood around zero and their derivatives are upper
semicontinuous in that same neighborhood. Consider λ ≥ 0 sufficiently small (i.e. λ < λ̄, with λ̄ as
in Definition 2), then using an argument analogous to the one presented in the proof of Proposition
7 we get

d(J ◦ ρ(η))

dλ
(λ) =

(

p(λ)(t̂+λ)
)T

∆f
(

x(λ), u, ηλ
)

+
[

û− u(t̂+ λ)
]T ∂L

∂u

(

x(λ)(t̂+λ), u(t̂+λ)
)

(A.44)

where ηλ = (α̂, t̂ + λ, û). Note that the proof of Proposition 2 can also be applied to prove the
uniform convergence of p(λ) to p(ξ) as λ ↓ 0. Therefore, together with Assumption 3, we get that

for any sequence {λi}
∞
i=1 such that λi ↓ 0, d(J◦ρ)

dλ
(λi) → d(J◦ρ)

dλ
(0), which proves the continuity of

d(J◦ρ)
dλ

at zero.
Similarly, using an argument analogous to the one presented in the proof of Proposition 8, we

get that for λ sufficiently small,

d(ψ ◦ ρ(η))

dλ
(λ) = max

j∈Ĵ (ρ(η)(λ))
max

t∈T̂j(ρ(η)(λ))

∂hj
∂x

(

x(λ)(t)
)dx(λ)

dλ
(t) (A.45)

where Ĵ and T̂ are defined in (A.41) and (A.42), respectively. Following the proof of Proposition
6, the directional derivative of x(λ) with respect to λ, for λ small enough, is

dx(λ)

dλ
(t) = Φ(t, t̂+ λ)∆f

(

x(λ), u, ηλ
)

(A.46)

if t ∈ [t̂ + λ, µf ], and dx(λ)

dλ
(t) = 0 otherwise. Then d(ψ◦ρ(η))

dλ
is upper semicontinuous since the

functions being maximized are continuous on λ and t, both set-valued maps Ĵ and T̂ are outer
semicontinuous, and for each ξ ∈ X the sets Ĵ (ξ) and T̂ (ξ) are compact, hence satisfying the
assumptions of Theorem 5.4.1 in [5].

Recall that for any η, J(ρ(η)(0)) = J(ξ) and ψ(ρ(η)(0)) = ψ(ξ). Then, by the Mean Value
Theorem, given λ > 0 sufficiently small there exists s1, s2 ∈ (0, 1) such that

J(ρ(η)(λ)) − J(ξ) =
d(J ◦ ρ(η))

dλ
(s1λ) · λ (A.47)

ψ(ρ(η)(λ)) − ψ(ξ) =
d(ψ ◦ ρ(η))

dλ
(s2λ) · λ. (A.48)
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As a consequence of the derivatives being upper semicontinuous, for each ǫ1, ǫ2 > 0 there exists a
λ̂ > 0 such that for each λ ∈ [0, λ̂),

d(J ◦ ρ(η))

dλ
(λ) <

d(J ◦ ρ(η))

dλ
(0) + ǫ1 (A.49)

d(ψ ◦ ρ(η))

dλ
(λ) <

d(ψ ◦ ρ(η))

dλ
(0) + ǫ2 (A.50)

It is immediate from the definition of θ that if θ(ξ) < 0 then

d(J ◦ ρ(η))

dλ
(0) < 0 and ψ(ξ) +

d(ψ ◦ ρ(η))

dλ
(0) < 0. (A.51)

Using ǫ1 = − 1
2
d(J◦ρ(η))

dλ
(0) in equation (A.49), there exists a λ̂1 > 0 such that for each λ ∈ [0, λ̂1)

the following bound for equation (A.47) holds

J(ρ(η)(λ)) − J(ξ) <
1

2

d(J ◦ ρ(η))

dλ
(0) · λ ≤ 0. (A.52)

In order to produce a similar bound for (ψ◦ρ(η)), we consider two cases. First, suppose ψ(ξ) < 0.

Since both ψ and ρ are continuous functions, there exists λ̂2 > 0 such that for each λ ∈ [0, λ̂2),

ψ(ρ(η)(λ)) < 0. Second, suppose ψ(ξ) = 0, then equation (A.51) implies that d(ψ◦ρ(η))
dλ

(0) < 0.

Choosing ǫ2 = − 1
2
d(ψ◦ρ(η))

dλ
(0) in equation (A.50), there exists a λ̂2 > 0 such that for each λ ∈ [0, λ̂2)

the following bound for equation (A.48) holds

ψ(ρ(η)(λ)) <
1

2

d(ψ ◦ ρ(η))

dλ
(0) · λ ≤ 0. (A.53)

Finally, by choosing λ̂ = min{λ̂1, λ̂2}, both inequalities (A.52) and (A.53) hold.

This result proves that the vanishing points of our optimality function for Algorithm 1 contain
solutions to our optimal control problem. We now address the validity of Assumption 4. First, recall
that ρ is a needle variation; therefore, as a result of the previous theorem, if θ(ξ) < 0 then we are
not at a minimum in the sense of Pontryagin [4]. Unfortunately, numerical methods for optimiza-
tion cannot implement these types of variations since that task would require the approximation
of arbitrarily narrow discontinuous functions. This means that any practical algorithm using a
numerical method would find minima that do not necessarily coincide with the minima prescribed
by our θ function. If we were uninterested in constructing a practical algorithm, then Assumption
4 would be trivially satisfied by any of the theoretical algorithms proposed by Pontryagin.

However, we can construct a practical algorithm based on the following proposition.

Proposition 9. If the vector fields {fq}q∈Q are affine with respect to the control and the running
cost L is convex with respect to the control, then the optimality condition calculated via vector-space
variations (variations that take the form of directional derivatives) and the optimality condition
calculated via needle variations are equivalent.

Proof. This proposition is proven in Section 4.2.6 in [5].
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Under the hypotheses of the proposition above, there are many algorithms that satisfy Assump-
tion 4, among them the algorithms described in Section 4.5 in [5]. Importantly, we can transform
any nonlinear vector field into a new vector field that is affine with respect to its control using the
following transformation:

(

ẋ(t)
ż(t)

)

=

(

fπ(t)(x(t), z(t))
v(t)

)

, (A.54)

where (x(t), z(t))T in R
m+n becomes the new state variables, and v(t) ∈ R

m becomes the new
control input. After the transformation those same algorithms would guarantee the validity of
Assumption 4.

Finally, we can show that Algorithm 1 has the sufficient descent property with respect to our
optimality function.

Theorem 3. Algorithm a : X → X , as defined in Algorithm 1 has the sufficient descent property
with respect to the function θ : X → R.

Proof. Note that given ξ = (σ, s, u) and η = (α̂, t̂, û), the result of algorithm a when applied to
ξ can be written as a(ξ) =

(

ρσ, â(ρs, ρu)
)

, where â is the algorithm that solves Stage 1 in our

Bi-Level Optimization Scheme and (ρσ, ρs, ρu) ∈ X is the element resulting from the function ρ(η)

evaluated at λ = 0. Since X is a metric space, we can assume without loss of generality that the
neighborhoods are of the form BX (ξ, ǫ) = {ξ′ ∈ X | d(ξ, ξ′) < ǫ}. Similar definitions follow for the
neighborhoods of S and U .

In order to prove the result, we must show that for each ξ ∈ X with θ(ξ) < 0 there exists
constants ǫ > 0 and δξ > 0 such that for each ξ′ ∈ BX (ξ, ǫ) the following inequality holds

J
(

a(ξ′)
)

− J(ξ′) ≤ −δ. (A.55)

Let ξ ∈ X such that θ(ξ) < 0. By Assumption 4, we know that there exists ǫ1 > 0 and δ1 > 0 such
that for each s′ ∈ BS(s, ǫ1) and u′ ∈ BU(u, ǫ1) the following inequality holds

J
(

σ, â(s′, u′)
)

− J(σ, s′, u′) ≤ −δ1. (A.56)

Since the function ρ(η) evaluated at λ = 0 makes a modal insertion on an interval of time of length
zero, if a pair s1, s2 ∈ S satisfies ‖s1−s2‖l1 < ǫ, then ‖ρs1−ρs2‖l1 < ǫ. Similarly, if a pair u1, u2 ∈ U
satisfies ‖u1 − u2‖2 < ǫ, then ‖ρu1 − ρu2‖2 < ǫ.

Let ǫ > 0 such that ǫ < min{ǫ1, 1}, and consider ξ′ ∈ BX (ξ, ǫ1). Since ǫ < 1, the modal
sequences of ξ and ξ′ are equal, hence denote ξ′ as (σ, s′, u′). By the inequality in equation (A.56),
we have that

J
(

ρσ, â(ρs′ , ρu′)
)

− J(ρσ, ρs′ , ρu′) ≤ −δ1 (A.57)

Finally, note that J(ρσ, ρs′ , ρu′) = J(σ, s′, u′) since the modal insertion made by ρ(η) has no effect in
the solution of the differential equation at λ = 0. Therefore we get the desired result for δ = δ1.

Using this fact and Theorem 1, we have that our algorithm converges to points that satisfy our
optimality condition as desired.
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