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ABSTRACT
Data centers present many interesting challenges, such as
extreme scalability, location independence of workload,
fault-tolerant operation, and server migration. While many
data center network architectures have been proposed, there
has been no systematic way to compare and evaluate them—
apples-to-apples—in a meaningful or realistic way. In
this paper, we present Ripcord, a platform for rapidly
prototyping, testing, and comparing different data center
networks. Ripcord provides a common infrastructure, and
a set of libraries to allow quick prototyping of new schemes.

We built a prototype of Ripcord and evaluated it in
software and running on a real network of commodity
switches. To evaluate Ripcord, we implemented and de-
ployed several schemes, including VL2 and PortLand. A
key feature of Ripcord is its ability to run multiple routing
applications, side-by-side on the same physical network.
Although our prototype implementation is not production
quality, we believe that Ripcord provides a framework for
both researchers and data center operators to implement,
evaluate, and (eventually) deploy new ideas.

1. INTRODUCTION
The meteoric growth of data centers over the past decade

has redefined how they are designed and built. Today, a large
data center may contain over one hundred thousand servers
and tens of thousands of individual networking components
(switches, routers or both). Data centers often host many ap-
plications with dynamic capacity requirements, and differing
service requirements. For example, it is not uncommon for
the same data center to host applications requiring terabytes
of internal bandwidth, and others requiring low-latency
streaming to the Internet.

Their sheer scale, coupled with application dynamics and
diversity, makes data centers unlike any systems that have
come before. And to construct and manage them, network
designers have had to rethink traditional methodologies. A
prevailing design principle is to use scale-out system design.
Scale-out systems are generally characterized by the use of
redundant commodity components. Managed workloads are
constructed so the system can gracefully tolerate component
failures. Capacity is increased by adding hardware without

requiring new configuration state or system software.
While scale-out design is well understood for building

compute services from commodity end-hosts, it is a rela-
tively new way to build out network capacity while retaining
a rich service model to applications. Other authors have
explained clearly [5,12] how traditional data center networks
stood in the way of supporting highly dynamic applications,
scale-out bandwidth, and the commodity cost model such
systems are suited for.

Due to these limitations, the research community, and the
largest data center operators – those with the deepest pockets
– innovate fast, moving towards new schemes that allow
them to construct systems with the requisite properties for
their operations.

While many schemes remain proprietary and unpublished,
some notable data center network designs have been de-
scribed. VL2 [5] uses Valiant load balancing and IP-in-IP
encapsulation to spread traffic over a network of unmodified
switches. On the other hand, PortLand [12] modifies the
switches to route based on a pseudo-MAC header, and
aims to eliminate switch configuration. Other researchers
have proposed Monsoon [7] and FatTree [1]; Trill [17] and
DCE [4] have been proposed as standards.

Each proposal holds a unique point in the design space,
and subtle differences can have large ramifications on cost
and performance, raising the question: How can we evaluate
which scheme is best for a given data center, or for a given
service? And how can we build on the work of others,
modifying an existing scheme to suit our needs?

In this paper we set out to answer these questions. Specif-
ically, we developed and describe a new platform, called
Ripcord, that is designed so that researchers can quickly pro-
totype new data center network solutions, and then compare
multiple schemes - side by side, apples to apples. Ripcord
includes a collection of library components to facilitate rapid
prototyping (e.g. multi-path routing protocols, topology
mappers, ...). But perhaps most interestingly, Ripcord allows
several data center network schemes to run simultaneously
on the same physical network. We illustrate this later by
running VL2 and Portland at the same time. A researcher
may use this capability to evaluate two schemes side by side;
an experimental data center can host multiple researchers at
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the same time; a multi-tenant hosting service may provide
different customers with different networks; and a multi-
service data center may use schemes optimized for different
services (e.g. one scheme for map-reduce, alongside another
for video streaming).

We evaluate the generality of Ripcord by implementing
multiple data center proposals and running them in tandem
in software, and individually in both software and on a test
data center made from commercial hardware. We present
our results in Section 5.

Contributions: In summary, we believe Ripcord makes
the following contributions:

1. It allows different data center networking schemes to
be compared side by side in the same network.

2. It allows multiple schemes to be run simultaneously in
the same network.

3. It allows a researcher to build and deploy a new data
center network scheme in a few hours; or download
and modify an existing one.

The rest of the paper is arranged as follows: In Section 3
we describe the architecture of Ripcord in detail, and then
in Section 4 we describe our first prototype. Our first
experiences with Ripcord suggest that by reusing existing
technologies, it is possible to meet our goals with a relatively
simple system. In Section 4.8 we describe how we imple-
mented three different schemes on Ripcord: VL2, Portland,
and VL2 with middlebox traversal [10], and compare their
performance in Section 5.

2. OVERVIEW OF RIPCORD
Ripcord’s design follows directly from four high-level

design requirements: The system must allow researchers
to prototype quickly, with minimum interference from the
platform itself. Ripcord must allow experimenters to evalu-
ate a new scheme, and compare it side-by-side with others.
Finally, it must be easy to transfer and deploy a new scheme
to physical hardware.

To help researchers prototype quickly, and to encourage
code re-use, Ripcord is modular and extensible. We chose
a logically centralized design, allowing the experimenter to
create control logic for the entire data center without concern
for how decisions are distributed.

If we are to help experimenters evaluate and compare
different schemes, we need to understand the main criteria
they will use. Based on recent proposals (and the needs of
data centers) the most challenging criteria are:

Scalability.
Large data centers scale to many thousands of servers or

millions of virtual machines (VMs). The experimenter will
need ways to compare topologies, routing and addressing
schemes and their consequences on forwarding tables and
broadcasts. Ripcord’s scalability is discussed in Section 6.

Location Independence.
Dynamic resource provisioning in data centers is much

more efficient if resources can be assigned in a location-
agnostic manner and VMs can migrate without service-
interruption. Ripcord must support routing that operates at
different layers, and novel addressing schemes.

Failure Management.
Scale-out data centers are designed to tolerate network

failures. Ripcord must provide a means to inject failures to
links and switches, to explore how different schemes react.

Load balancing.
Data centers commonly spread load to avoid hotspots.

Ripcord must enable randomized, deterministic and pre-
defined load-balancing schemes.

Isolation and Resource Management.
If multiple experiments are to run simultaneously - just

as multiple services run concurrently in a real data center -
Ripcord must isolate one from another.

The requirements above led to the following high-level
approach. In the next section, we describe the design in
greater detail.

Logically centralized control.
At the heart of Ripcord is a logically centralized control

platform. Ripcord’s centralized approach reflects a common
trend in recent proposals (e.g., VL2’s directory service,
PortLand’s fabric manager). While logically centralized,
Ripcord can scale by running several controllers in parallel.

Multi-tenant.
In Ripcord, each tenant manages a portion of the data

center and controls routing. A tenant can be an experiment
(e.g. PortLand and VL2). Alternatively, in a production
data center, the tenant is a management and routing scheme
tailored to support a service (e.g. MapReduce or content
delivery). Ripcord supports multiple tenants concurrently
by managing the resources they use in the network.

Modular.
The central platform is modular. It maintains a shared

current view of the topology and the state of each switch;
it enforces isolation between tenants (i.e. controls which
resources they are allowed to view and control). Tenants
can select among a variety of routing schemes, arranged as
modules connected in a pipeline.

2.1 Our Prototype
Our Ripcord prototype builds upon and replaces the de-

fault applications of NOX [8]. NOX is a logically cen-
tralized platform for controlling network switches via the
OpenFlow [11] control protocol. We summarize NOX
and OpenFlow briefly in the appendix. We chose these
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Events Semantics
SWITCH JOIN Switch joined network.
SWITCH LEAVE Switch left network.
PACKET IN Packet without matching flows came in.
STATS REPLY Flow stats are available.

Table 1: Network events expected from switch.

Commands Semantics
FLOW MOD Installs/removes flows.
PACKET OUT Sends out a given packet.
STATS REQUEST Polls flow stats.

Table 2: Expected switch commands.

technologies because they provide a clean vendor-agnostic
abstraction of the underlying network, and NOX provides
a well-defined API to control the network as a whole. Our
prototype could, in principle, be built on any network control
abstraction offering the set of events and commands listed in
Table 1 and Table 2.

3. DESIGN
To help orient the reader we use an example walkthrough

as a a high-level introduction to key components in the
system. The following steps describe how Ripcord handles
incoming flows by passing them to the correct tenant for
routing and setup in the network.

Physical
DC Network Programmable Switches

Authenticator &
Demultiplexer

App Engine

Tenants

Monitor

Topology Engine

Raw
Topo DB

Logical
TopoViews

Routing Engine

Routing Pipelines

Flow
Installer

Flow In

Flow In

Flow Out

SWITCH_JOIN
SWITCH_LEAVEPACKET_IN

SWITCH_JOIN
SWITCH_LEAVE

STATS_REQ
STATS_REP

Event flow
Command

FLOW_MOD
PACKET_OUT

Config &
Policy 

DB

Topo	 Update

Figure 1: Ripcord architecture and event flow diagram

3.1 Example Walkthrough

Configuration.
The first step in the deployment of a Ripcord data center

is to provide the Configuration and Policy Database with

the particulars of the network. This includes topology
characteristics (FatTree/Clos/etc), the tenants, and a map-
ping from the tenants to the available routing applications
(PortLand/VL2/etc).

Startup.
The App, Routing and Topology Engines are instantiated

based on administrative information fed to the Configuration
and Policy Database. At this point, optional network
bootstrap operations (e.g. proactive installation of flows)
are carried out. In addition, the Routing Engine and the
App Engine register to receive notification on each incoming
flow.

Running.
In this state, Ripcord listens for incoming routing re-

quests. These requests are generated as events by switches
each time they receive a packet for which there is no
existing flow table entry. When Ripcord receives the routing
request it makes sure that the packet is either processed by
a responsible (per-tenant) Management App and its routing
pipeline or discarded. The sequence of steps for handling
routing requests is outlined below:

1. When a switch receives a packet for which there is no
matching flow-table entry it creates a routing request
containing the packet and notifies the Authenticator-
Demultiplexer.

2. The Authenticator-Demultiplexer, receives the rout-
ing request, tags it with the identifier of the tenant
that should handle it, and, if the routing request is
legitimate, notifies the App Engine. If the routing
request is not legitimate, e.g., it would result in traffic
between isolated networking domains, it is denied and
the packet is discarded.

3. The App Engine dispatches routing requests to the
point of contact associated with each tenant – its
Management App. The Management App determines
whether it should discard the incoming packet, process
it, e.g. to handle control requests like ARP, or propa-
gate the request to the Routing Engine.

4. When the Routing Engine receives the routing request
it invokes the tenant’s predefined routing pipeline,
which computes a route and then the Routing Engine
informs the Flow Installer.

5. Finally, the Flow Installer sends out commands to
select switches, along the path inserting flow entries
in their tables thus establishing the new flow on the
selected path.

Monitoring.
Under normal operation, the Monitoring module tracks

switches as they join or leave the network. With “always-
on” passive monitoring, the network is constantly supervised
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for abnormalities. If an aberrant behavior is detected, the
operator can invoke active monitoring commands to delve
into the problem and troubleshoot.

3.2 Components
Figure 1 depicts Ripcord’s high-level architecture. It

consists of the following seven components:

1. Config & Policy DB: is a simple storage for platform-
level configuration and data center policy information.
Administrators configure the Database with global
network characteristics as well as tenant-specific poli-
cies. This centralized configuration provides ease of
management. As this module merely stores the config-
uration, the actual policy enforcement is delegated to
other components.

2. Topology Engine: maintains a global topology view
by tracking SWITCH JOIN as well as SWITCH LEAVE
events. This allows for real-time network visual-
ization, expedites fault-detection and simplifies trou-
bleshooting. The component also builds per-tenant
logical topology views which are used by App and
Routing Engines when serving a specific tenant.

3. Authenticator-Demultiplexer: performs admission
control and demultiplexes to the correct application.
Upon receipt of a PACKET IN event, it invokes the
Configuration/Policy Database and resolves the tenant
in charge of the packet. If the packet is not legitimate,
the component drops it. Otherwise, it passes on the
routing request to the App and Routing Engines, as
a FLOW IN event tagged with the packet and tenant
information.

4. App Engine: each tenant can have its own manage-
ment app. Hence, the Management App can be seen as
a centralized controller for a particular tenant. This
component typically inspects incoming packets in a
FLOW IN event and updates its internal state. For ex-
ample, PortLand’s fabric manager can be implemented
as a management app on Ripcord. On receipt of a
FLOW IN event, the App Engine dispatches the event
to a proper app based on tenant information associated
with the event.

5. Routing Engine: this module calculates routes through
a multi-stage process: starting as a loose source route
between the source-destination pair, a path is gradually
filled through each of the routing pipeline stages. One
pipeline stage may consist of zero or more routing
modules. Ripcord does not limit the size of routing
pipeline. It does, however, enforce the order of stages
so as to help verify routing modules’ composability.
Table 3 describes these stages.

This small routing module is far easier to verify and
manage than a larger, all-in-one routing algorithm

package. At the same time, it gives great flexibility as
the routing algorithm is not predetermined, but defined
by the arrangement of the routing modules. Hence,
new routing algorithms can be easily deployed as long
as the underlying topology supports them. One can,
for instance, shift from shortest-path to policy-based
routing merely by replacing one of its routing modules
in the ComputeRoute stage. The routing pipeline for
each Ripcord tenant is configured in the Config/Policy
Database as a list of routing modules. We envision
that open source developers will contribute routing
modules and datacenter administrators will evaluate
new routing algorithms on Ripcord.

6. Flow Installer: is in charge of translating FLOW OUT
event into hardware-dependent control message to mod-
ify the switch flow table. We introduce this indirection
layer to make Ripcord independent of a particular
switch control technology.

7. Monitor: provides support for passive and active
statistics collection from network elements. Passive
collection periodically polls switches for aggregate
statistics, while active collection is targeted to probe
a particular flow in the network.

When a switch joins the network, the component
records its capabilities (e.g., port speeds supported)
and then maintains a limited history of its statistics
snapshots. Snapshots contain aggregate flow statistics
(e.g., flow, packet and byte counts for a switch), sum-
mary table statistics (e.g., number of active flow entries
and entry hit-rates), port statistics (e.g., bytes/packets
received, transmitted or dropped) and their changes
since the last collection.

4. IMPLEMENTATION
Our Ripcord prototype consists of a technology-independent

core library (implementing the seven components explained
in Section 3), and NOX-dependent wrapper code. It totals
6,988 lines of Python code plus NOX’s standard library.

4.1 Configuration & Policy Database
When Ripcord starts, this module reads a directory of

configuration files describing the configuration and policy,
expressed as key-value pairs. The configuration language is
described in JSON because of its ability to richly express
dictionary and array types. New configurations can be
loaded dynamically via command line arguments, for exam-
ple to instantiate a new tenant or debug a running system.
The policy database needs to be quite general: For example,
an administrator might set a policy such as ‘Packets sent from
the host with MAC address A to the host with IP address B
should be routed by tenant Y’. The policy may be based on
any combination of the following fields: the unique ID of
the switch the packet was received at, the incoming port on
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Stage Description
TweakSrcDst The source/destination information is altered at this stage.

This is usually for the purpose of loadbalancing among hosts.
InsertWayPoints This stage inserts particular switches or middleboxes to traverse (e.g. for security reasons)
Loadbalance This stage can alter a loose source route computed so far to loadbalance among switches and links.
ComputeRoute This stage completes route(s). If previous stages generated multiple routes, this stage selects a final one.
TriggerFlowOut This stage triggers Flow Out event with the computed route.

Table 3: Ripcord’s routing pipeline stages. Earlier stages in the table cannot appear later in routing pipeline. Each routing
module should be in one of these stages.

that switch, source MAC and IP addresses, and destination
MAC and IP addresses.

4.2 Topology
When Ripcord starts, this module loads the topology from

a configuration file. We assume the topology is known in
advance, has a regular layered structure (e.g. tree, multi-root
tree, fat-tree, Clos, . . . ), and is relatively static. Each layer is
assumed to consist of identical switches; but the number of
layers, ports and link speeds may vary. The regular structure
makes it quick and easy for the routing engines to traverse
the topology. Routing engines may view the entire topology,
or be restricted t o view only the part of the topology they
control. The module has APIs to filter by layer or power
status, or return the physical port numbers connecting two
switches. See Figure 4 and Figure 5 below for examples of
pre-existing Ripcord topologies.

4.3 Authenticator-Demultiplexer
When Ripcord starts, this module builds a lookup table

from the configuration and policy database, to map incoming
traffic to the correct tenants. The process is triggered by
a new PACKET IN event when a switch doesn’t recog-
nize a flow. The Authenticator-Demultiplexer generates a
FLOW IN event and hands the App Engine an ID identifying
which tenant(s) to alert.

4.4 App Engine and Management Apps
When Ripcord starts this module instantiates the manage-

ment application for each tenant; Figure 2 shows how a man-
agement application is configured. In the example, the App
Engine instantiates a Python class ripcord.apps.PortLand
and assigns it AppID 1. AppID is the demultiplexing key
sent by the Authenticator-Demultiplexer module.

The App Engine is responsible for dispatching FLOW IN
events to the correct tenant management application. The
App Engine instantiates applications without knowing their
internal implementation, and so is independent of the details
of each tenant. A management application is free to imple-
ment whatever it chooses, so long as it provides an event
handler for FLOW IN.

For example, in our implementation of PortLand, the
management application performs ARPs and maintains the
AMAC-PMAC mapping table. A management application

” apps ” : [
{” i d ” : 1 ,

”name ” : ” r i p c o r d . apps . Por tLand ” ,
” param ” : [ ” f i r e w a l l = f a l s e ” , ” v e r b o s i t y =debug ” ] ,
” r o u t i n g ” : {

” modules ” : [
{”name ” : ” r i p c o r d . r o u t i n g . PLComputeRoutes ” ,

” param ” : [ ” m a x s e l e c t i o n =4” ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . PLPickRoute ” ,

” param ” : [ ” s e l e c t i o n c r i t e r i a =random ” ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . PLOpenFlowTrigger ” ,

” param ” : [ ]}
]}

} ]

Figure 2: App configuration example (PortLand). Each app
is assigned a unique app identifier. It also specifies a name in
the form of a path to Python class and routing pipeline in the
form of a list of routing modules.

” d e f a u l t ” : {
” r o u t i n g ” : {

” e x p a n d a b l e ” : t r u e ,
” modules ” : [
{”name ” : ” r i p c o r d . r o u t i n g . F i x S w i t c h ” ,

” param ” : [ ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . Inser tMB ” ,

” param ” : [ ’ 1 0 . 0 . 0 . 2 ’ , ’ 1 0 . 0 . 0 . 3 ’ ] }
]}

}}

Figure 3: Routing policy example.

may tag an event with additional information for its routing
modules; by default the event is propagated to the routing en-
gine when the management application returns CONTINUE.

4.5 Routing Engine and Per-tenant Routing
Pipeline

The Routing Engine is responsible — for each tenant
— for passing FLOW IN events to the correct sequence of
routing modules (based on the AppID). When Ripcord starts,
the module generates a pipeline for each tenant from the
configuration database. For example, Figure 2 shows how
a pipeline of three routing modules is defined for PortLand.
The name of each routing module is its Python class name
so that the routing engine can correctly locate the module.
The routing pipeline can be of any length, although each
routing module must be in one of the routing stages in
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Table 3 and follows the order of routing stages as described
in Section 3. Each stage invokes associated routing modules
to progressively complete a source route. The last stage
triggers FLOW OUT to convert the computed source route
into a series of flow entries and to program switches.

In addition to per-tenant routing pipelines, the data center
operator may want to impose global routing constraints.
For example, traffic for all tenants may be forced to pass
through a firewall; or, each tenant may be required to run
on isolated paths. Ripcord represents these constraints by a
global routing policy. For instance, the policy represented
in Table 3 means an application can define its own routing
pipeline (i.e., expandable), but is subject to two manda-
tory routing modules.

4.6 Monitoring Implementation
The Monitoring module maintains a snapshot of the state

of switches and flows (see Table 4). The module listens for
switch join/leave events, and periodically collects switch-
level aggregate statistics, flow table statistics, and port
statistics.

Fields Semantics
dpid switch id
collection epoch collection cycle
epoch delta distance from previous cycle
collection timestamp time captured
ports active number of active ports
number of flows flows currently active
bytes in flows size of active flows
packets in flows packets in active flows
total rx bytes total bytes received
total tx bytes total bytes transmitted
total rx packets dropped receive drops
total tx packets dropped transmit drops
total rx errors receive errors (frame,crc)
total tx errors transmit errors
delta rx bytes change in bytes received
delta tx bytes change in bytes transmitted
delta rx packets dropped change in receive drops
delta tx packets dropped change in transmit drops
delta rx errors change in receive errors
delta tx errors change in transmit errors
Table 4: Information included in a monitoring snapshot.

The module keeps snapshot histories - the configuration
file determines the size of the history, the collection fre-
quency, and where old snapshots should be stored. The
module also provides an API for active statistics collection
(Table 5), for detailed metrics of switch and flow perfor-
mance. Hence, it can be used to build high-level modules
to visualize the entire network or for troubleshooting.

4.7 Flow Installer
When the route has been decided, the switches need to

Functions Roles
get all switch stats(swid) returns all snapshots for a switch
get latest switch stats(swid) returns last snapshot for a switch
get all port capabilities(swid) returns the port capability map for SW
get port capabilities(swid,port id) returns capabilities of a specific port
get flow stats(swid, flow spec) returns specific flow statistics

Table 5: API exposed by the monitoring module for active
statistics collection.

be updated. The Flow Installer module takes FLOW OUT
events, and generates binary OpenFlow control packet(s)
which are passed to NOX for delivery to the correct switches.
The FLOW OUT event includes the <header match, action>
pair for each switch the flow traverses.

4.8 Case studies
To illustrate further, we describe how we implemented

three routing engines in Ripcord: Proactive, VL2 and Port-
Land. As a metric of complexity, Table 6 reports the lines of
code needed for each implementation.1

Implementation Lines of code
Proactive 200
VL2 576
VL2 w/ middlebox traversal 616
PortLand 627

Table 6: Lines of code of sample routing implementation

Proactive.
This is the simplest base design. Host addresses and

locations are loaded from the topology database, paths
are chosen using spanning-tree, hashes, or random selec-
tion, and corresponding flow entries are installed into the
switches. This eliminates flow setup time for applications
which cannot tolerate reactive flow installation, at the ex-
pense of more entries in the flow table. As an extension—
although really as a baseline—Ripcord can also learn MAC
addresses, and reactively install flows using the listed path
selection methods, similar to today’s traditional layer-2
networks.

VL2.
Our VL2 routing engine uses a pipeline with three routing

modules. The first module VL2LoadBalancer is in the
Loadbalance stage, and implements the Valiant load
balancing. It picks a random intermediate core router (from
the set that are up), creating a partial route with the source,
intermediary and destination (and optionally other nodes
such as middle boxes, or switches added for QoS). We add
the optional optimization to route flows directly when the
source and destination share a common ToR switch.

1Because we do not have the source code from the authors’
implementations, our versions are from our own implementations
of their schemes.

6



Switch and Direction Match Action
ToR, Up in port, src mac, dst mac replace dst ip with destination’s ToR IP addr

insert coreID into the highest order byte of src ip
ToR, Down in port, src mac, dst mac restore original dst ip and src ip
Aggregation, Up in port, highest order byte of src ip forward to a port
Aggregation, Down in port, dst ip forward to a port
Core, Down dst ip forward to a port

Table 7: OpenFlow entries realizing compact VL2 routing.

Next, in the ComputeRoute stage, the
VL2ComputeRoute module completes the route by iden-
tifying the shortest path from source to intermediary, and
intermediary to destination. If there are multiple shortest
paths, one is chosen at random (but only if the switches are
up). If a switch is marked down (e.g. for maintenance) it is
not used.

Finally, VL2Open-FlowTrigger, calculates the flow
entries to realize the chosen route. We use the design
described in [16] because it is simple, and supports middle-
box traversal (see Table 7).

Comparing VL2 as defined by its authors with VL2
implemented on Ripcord, we make the following obser-
vations. VL2 uses double IP-in-IP encapsulation to route
packets from the source to the core switch (anycast and
ECMP), and then onto the destination ToR. In Ripcord,
our implementation simply overwrites the destination IP
address with the IP address of the destination’s top-of-rack
switch (ToR), and explicitly routes it via a randomly chosen
core switch. In VL2, the destination’s ToR decapsulates
the packet to restore its original form, whereas we directly
instruct the destination’s ToR to overwrite the IP addresses
with original values. The implementation is different, but
the outcome is identical.

Just as in VL2, ARP packets are not broadcast to the
whole network, but are forwarded to the controller; the
management application handles them and replies directly
to the source host. Unknown broadcast types can be rate
limited, or sent to a host to be satisfied.

PortLand.
PortLand routes traffic by replacing the usual flat MAC

destination address (AMAC) with a source-routed pseudo-
MAC (PMAC). The PMAC encodes the location of the
destination. The source server is “tricked” into using the
PMAC when it sends an ARP — a special fabric manager
replies to the ARP with the PMAC instead of the AMAC.
The egress ToR switch converts the PMAC back into the
correct AMAC to preserve the illusion of transparency for
the unmodified end host.

Portland’s fabric manager is centralized, and is naturally
implemented as a Ripcord management application. The
application assigns each AMAC a PMAC based on its ToR
switch. Like in PortLand, ARP requests are intercepted
and the management application replies (without routing the

ARP request).
PortLand routes flows with a pipeline of three rout-

ing modules: PLComputeRoutes, PLPickRoute and
PLOpenFlowTrigger. Although the modules are suffi-
cient to implement the PortLand’s routing, we allow it to
be extended with other routing modules (e.g., middlebox
interposition module or load balancer). Hence,
PLComputeRoutes, which belongs to the ComputeRoute
stage, first examines loose source routes computed by the
previous routing stages. If no route is given, it takes
a pair of ingress switch and the ToR switch of desti-
nation address as a loose source route. Then, it com-
pletes each loose source route by computing a shortest
path between each two consecutive hops in the source
route. Hence, this routing module results in a list of
complete source routes. PLPickRoute is also in the
ComputeRoute stage and it randomly selects a route
among those computed by PLComputeRoutes. Finally,
PLOpenFlowTrigger converts the selected route into a
sequence of flow entries to be installed in switches along the
path.

The ingress ToR replaces the source AMAC with the
source PMAC for the return journey. Aggregate switches
and core switches route solely based on the destination
PMAC. Because our OpenFlow implementation does not
support longest prefix matching on MAC addresses, we
currently match full destination address. A flow entry in the
egress ToR switch is to restore the destination PMAC back
to AMAC.

4.9 Additional Capabilities
Because of its fine-grained control over routing, Ripcord

can do many things a current data center network cannot.
We describe some examples below.

Middle-box Traversal..
Flows can easily be routed through arbitrary middle-boxes

by inserting a waypoint in a loose source route (in the
InsertWayPoints routing stage). In the ComputeRoute
stage, the complete path is calculated to traverse the way-
points. As an experiment, we implemented a routing module
VL2MiddleBoxInserter to insert a random middle-
box (specified in a configuration file) into the VL2 routing
pipeline. Thus, the complete VL pipeline becomes:

If the middle box doesn’t modify the packet header,
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VL2MiddleBoxInserter
=⇒VL2LoadBalancer

=⇒VL2ComputeRoute
=⇒VL2OpenFlowTrigger

our implementation handles an arbitrary number of middle-
boxes per path. If the packet header is changed, the portion
of the route after the middle-box needs to be recomputed.
Alternatively, we could define a model for each middle-box
class. While out of the scope of this paper, [10] indicates
that this approach has potential.

Seamless fail-over..
Topology changes are detected by the Topology Database

and any management application affected by the change is
notified, so it can take remedial action.

4.10 Development Tools
Although Ripcord is designed to be easy to port to

physical hardware, a large scalable data center is beyond
the budget of most researchers. Scale limitations may only
expose themselves in larger topologies, therefore we need
tools to test designs at scale — if only functionally. The
development of Ripcord led to two new tools to address these
issues, which may have value outside of data center network
development.

4.10.1 Mininet
Emulating large networks is not easy. Existing solutions

for emulating OpenFlow networks typically uses one VM
per switch interconnected by Virtual Distributed Ethernet.
Each VM consumes a lot of memory (32MB for a re-
duced Debian kernel), and realistically only about fifty VMs
(switches) can be emulated per server. Added to the time to
reboot a VM, it is hard to emulate reasonably sized networks.

To help Ripcord users develop new tenants, we used
Mininet - a new tool for emulating large networks on a single
PC. Mininet can support thousands of OpenFlow switches
on a single Linux server (or VM), using a combination of
Linux network namespace virtualization and Linux virtual
ethernet pairs [15]. Each virtual host can have its own
IP and ethernet port, while each software switch can have
its own ethernet connections. Mininet builds this virtual
topology from a Ripcord topology description by creating
Ethernet pairs, then moves each endpoint into the correct
namespace. The standard OpenFlow Linux reference switch
supports multiple kernel datapaths, so packets sent across
multiple network hops remain in the kernel. As a result,
Mininet cross-section bandwidth exceeds 2 Gb/s on a well-
provisioned machine. Hosts and switches share the same
code, and so the incremental cost of an additional switch
or host is small. A new topology or routing engine can be
booted in seconds (rather than minutes). Mininet is available
for Ripcord users to develop new tenants. It also proved
invaluable for developing Ripcord itself.

Of course Mininet uses software-based switches and so

does not provide performance fidelity. For valid perfor-
mance results, you need hardware.

4.10.2 Virtual-to-Physical Mapping
When we have a working implementation (verified with

Mininet), we need to transfer it to hardware. Ideally, we
would have access to a huge network of switches each with
large numbers of ports. Given this is unlikely, we can slice
a physical switch into multiple “virtual” switches. Some
OpenFlow switches can be sliced by physical port. For
example, a k=4 three layer Fat Tree, which requires twenty
4-port virtual switches, can be emulated by two 48-port
physical switches and a number of physical loopback cables.
Unfortunately, not every OpenFlow switch supports slicing.

Instead, we chose to slice switches at the controller, by
implementing a virtual-to-physical mapping layer between
Ripcord components and the NOX API. Since in Ripcord
the base topology is known in advance, the mapping can be
statically defined. The result is that Ripcord routing engines
and applications use virtual addresses, while NOX sees
physical addresses. For example, when a switch connects,
it has an ID that must be translated from physical to virtual,
which may cause one physical switch join event to become
multiple virtual switch join events. Almost every OpenFlow
message type must undergo this virtual-physical translation
in both directions, including flow modifications, packet ins,
packet outs, and stats messages. In many ways the slicing
layer resembles FlowVisor [14] which also sits between the
switch and controller layers.

Ripcord’s slicing layer has been used to build k=4, 80-port
Fat Trees from a range of hardware configurations, including
two 48-port switches, one 48-port switch and two 24-port
switches, and even from eight 4-port switches combined
with a 48-port switch, for the testbed described in Section 5.

5. EVALUATION
We evaluate Ripcord against its intended purpose, to

evaluate and compare different approaches in a consistent
way. With this goal in mind, we demonstrate three routing
engines (All Pairs Shortest Path [APSP], PortLand, VL2)
and an application, Middlebox Traversal. We evaluate each
one on the Mininet software emulator, and then deploy it
on a hardware testbed. We evaluate relative differences
between implementations, looking at how flow setup delays
and switch state requirements vary.

5.1 Software testbed
The software testbed is an instance of Mininet running

inside a Debian Lenny virtual machine, allocated one CPU
core and 256MB of memory. Mininet spawns kernel-mode
software OpenFlow reference switches, running version
0.8.9r2. The controller is NOX 0.6, with Ripcord core
components and applications on top. NOX runs on a Debian
VM on an Ubuntu 8.04 machine with 4GB of RAM and an
Intel Q6600 quad-core 2.4 GHZ CPU.
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5.2 Hardware testbed
The hardware testbed implements a k=4 three-layer Fat

Tree running at 1Gb/s. Aggregation and core switches
are implemented by slicing a 48-port 1GE switch (Quanta
LB4G) running OpenFlow. Eight 4-port NetFPGAs act as
edge switches. The OpenFlow implementation on the NetF-
PGAs can rewrite source and destination MAC addresses at
line-rate (required for PortLand) and can append, modify
and remove VLAN tags to distinguish multiple simultaneous
routing engines.

5.3 Experiments on Software Testbed
Our first topology is the k=4 Fat Tree in the left-hand side

of Figure 4. The graph on the right hand side show a CDF
of the ping times from the left-most host in our topology
to all other hosts, sending one ping at a time. The graph
contains curves from all four routing engines: APSP, VL2,
MBT (Middle Box Traversal using VL2), and PortLand. We
further break up VL2, MBT, and PortLand into two separate
configurations. In the first configuration (Hot) permanent
flow entries are pre-installed into switches, resulting in no
trips to the controller. In the second configuration (Cold)
the ARP caches are filled, but no flow entries are pre-
installed into the switches. When a packet arrives at an
edge switch and there is no matching flow, it heads for the
controller, where its trip through the routing engine pipeline
may generate flow entries for multiple switches. The APSP
routing engine only supports Hot operation. It does no
reactive lookups and simply pushes out all possible paths
directly to the switches.

APSP experiences slightly higher delay compared to Port-
Land (Hot) and VL2 (Hot), due to the higher number of
wildcard flow entries in the software switch, which are
scanned linearly to determine a match. PortLand (Hot) and
VL2 (Hot) both show similar curves, and since they leverage
topology information to reduce flow state, switch traversal
is faster. MBT (Hot) is roughly one and a half times worse
than VL2 (Hot) because it must traverse a middle box in
both directions, and experiences delays from our repeater
agent running on the middle box. VL2 (Cold), MBT (Cold),
and PortLand (Cold), as expected, trail by over two orders
of magnitude, because both the ping request and response
must pass up to the controller and back. Note that these
numbers are from an unoptimized Python implementation,
running on a single thread, with a worst case traffic pattern.
The specific ping time of 10 ms is unimportant; our goal here
is functional correctness. For example, we can see from the
graph that our PortLand implementation is slower than the
VL2 implementation in the Cold setting, possibly because of
its unoptimized memory accesses (PMAC-AMAC mapping
table) and the latency to install more entries at core switches
and aggregation switches.

Our second topology is a Clos network shown on the
left-hand side of Figure 5. The graph shows a CDF of
ping times from the left-most host in the topology. This

is the topology used in the VL2 paper’s evaluation, except
instead of a mix of 10 Gb/s and 1 Gb/s links, we have
one link speed of whatever the CPU will support. The
general trends are the same; flow setups are two orders
of magnitude more expensive than forwarding. Middlebox
traversal has an unexpected knee. Our hunch is that the
additional flow entries required by multiple hops exceeds the
CPU cache, which given linear lookups, would cause poor
cache locality. These graphs are useful for comparing the
different routing engines, but clearly CPU overheads from
running in software result in low performance fidelity.

(Note to reviewer: APSP is not present; it will be added
in the final version of the paper.)

5.4 Experiment on Hardware Testbed
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Figure 6: CDF of 1 to many host ping delays on a Quanta
48x1GE switch + NetFPGA topology

The hardware testbed described in Section 5.2 implements
a k=4 Fat Tree, with twelve core and aggregation switches
and eight NetFPGAs for edge switches. Individual vir-
tual switches are connected together via physical loopback
cables, and all packets are processed in hardware at line-
rate. Both switch types use the OpenFlow 0.8.9 reference
distribution.

Figure 6 confirms our expectation of lower variance in
hardware than in software — overall we can expect greater
performance fidelity. PortLand (Hot) and Proactive show
identical delay curves, with minimal variation. (PortLand
(Cold) exposes a limitation of our edge switch implementa-
tion, and needs to be corrected).

Next, we attempt to gain insight into tradeoffs between
state management and flow setup delay.

5.5 Flow Table Size
To test our implementation and to illustrate the conse-

quences of choosing different flow entry timeout intervals,
we preformed the following two tests. First, we run our VL2
Ripcord application on the Clos topology on the software
testbed, with permanent flow entries, and perform an all-
to-all ping. After the test, we query all the switches and
record the number of flows entries in each switch. Table 8
presents the data. The choice of a CRC-based hash function
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Figure 4: Fat Tree topology and CDF of 1-to-many host ping delays on Mininet using the topology. Leaf nodes in the topology
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represent end hosts.
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to pick a path, combined with a symmetric test and topology,
yields evenly distributed flow entries at each level. The ToR
switch has many entries because it keeps per flow state. As
discussed in section 6, one way to solve this problem is
to move the per-flow packet manipulation functionality to
the hosts. Indeed, [5] performs the IP-in-IP encapsulation
at the host. In the context of OpenFlow, this solution can
be best realized by running an Open vSwitch [13] at the
hosts. Ripcord would control it just like any other OpenFlow
switch.

The second experiment is the same as the first one, except
that the idle flow timeout interval is set to 3 seconds. Every
10 ms, we poll the switches and record the number of flow
entries. Table 9 shows the average, maximum, and 95th
percentile of the number of flow entries in each switch.
As the table shows, because only a few entries are actively
used at any given time, expiring the idle ones dramatically
reduces the table size.

Switch Type # Instances # Entries (per instance)
Core 2 4
Aggregation 4 10
ToR 4 2780

Table 8: The number of flow entries installed at each switch
by VL2 implementation with no flow idle timeout.

Switch ID Type Avg # Entries Max 95th percentile
0 Core 3.88 4 4
1 Core 3.86 4 4
2 Aggr 7.61 10 8
3 Aggr 7.50 10 9
4 Aggr 7.73 10 9
5 Aggr 7.75 10 9
6 ToR 142.78 336 74
7 ToR 140.00 292 190
8 ToR 141.40 294 64
9 ToR 143.69 325 154

Table 9: The number of flow entries installed at each switch
by VL2 implementation with flow idle timeout of 3 sec.

5.6 Running Simultaneous Ripcord Applica-
tions

To test Ripcord’s ability to run multiple management ap-
plications simultaneously, we run several experiments with
both VL2 and Portland controlling a subset of traffic. We
randomly divided the hosts into two groups and configured
the hostmanager to classify the traffic within the first group
as belonging to VL2 and the traffic within the second group
as belonging to Portland. In each experiment, we run pings
between hosts in each group and repeated the experiments
on both Clos and FatTree topologies.

Figure 7 illustrates a simplified scenario and shows the
informaton flow. Hosts H1 and H3 belong to VL2 and

H1 H2 H3 H4

Authenticator
-Demultiplexer

App Engine
VL2

PortLand

ToR

Aggr

Core

Routing Engine

PKT_IN

FLOW_IN
FLOW_IN

Flow
Installer

Flow Table

DST_IP

DST_MAC

FLOW_OUT

FLOW_MOD

OutPort1

OutPort2

Match Action

Figure 7: Diagram illustrating simultaneous running of
multiple Ripcord Management Applications

hosts H2 and H4 belong to Portland. H1 is sending pack-
ets to H3 (path is shown in bold), and H4 is sending
packets to H2 (path is shown with a dashed line). When
the first packets from these flows hit the first hop ToR
switches, the switches do not have any matching entry and
hence they forward the packets to the controller. There
Authenticator-Demultiplexer classifies the traffic and deliv-
ers the FLOW IN event to the appropriate application, which
eventually installs the necessary entries in all switches on the
path.

As the figure shows, some switches can be common to
both paths. These switches will contain flow entries for
both applications. Hence it is critical to make sure that
applications do not install conflicting entries. In general,
this separation can be achieved by tagging traffic belonging
to different applications with distinct VLAN IDs. In our
case, because of the specifics of Portland’s and VL2’s imple-
mentations, their flow entries could not possibly collide and
we did not implement VLAN tagging because our hardware
testbed did not support this optional functionality.

6. SCALABILITY
A primary goal of Ripcord is to provide a research plat-

form for data center network architecture experimentation.
To this end, a fundamental requirement for the platform is
that it not hinder experiments with reasonable network sizes
or limit the experimentation to artificially small data center
networks, which would have little value for the community.
After all, many of the challenges in data center networking
stem directly from their scaling requirements.

We consider two of the primary scalability concerns with
dynamic state in the network and introducing centralization
into the architecture: a) the number of concurrent, active
flows may exceed the capacity of the switches, and b) a
single controller may become overwhelmed by the number
of flow setup requests. We consider each of these cases in
turn.

While it is our experience that long-lived, any-to-any
communication in a data center is rare, there still exists the
potential for exhausting switch sate in the network. We
first point out that for most approaches, this problem is
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limited to the ToR switches as aggregation and core layers
can often handle flows in aggregate. Secondly, if per-
transport flow policy is not required, flows can be set up on
a per-source/destination pair basis which is limited by the
number of servers attached to the switch. Today chipsets
are available which can support tens of thousands of flows,
which is suitable for moderate to large size workloads.

Another approach described in [13] proposes pushing
network switching state into the hypervisor layer on end
hosts to overcome the hardware limitations of ToR switches.
With such a software-based switch, the issue of exhaustion
at first-hop switch can also be alleviated.

Flow setups can become a scalability bottleneck of the
platform in terms of flow setup latencies and throughput.
We’ll discuss the scalability of setup latency first. While
many of the data center applications like MapReduce toler-
ate delays on the order of tens of milliseconds, applications
that have strict latency requirements may not tolerate any
extra delay incurred by setting up flow entries. For such
demanding applications, assuming a large enough flow table
at the ToR switch either in hardware or software, Ripcord
can pre-install flow entries towards all possible network des-
tinations into the switch. In this proactive mode, therefore,
the network virtually behaves as if MPLS-tunneled, and
applications are not exposed to additional latency for flow
setup. If the luxury of large flow tables is not available,
additional decision hints such as application priorities or
communication pair likelihood can be used to select pre-
loaded flows. In our current prototype, such information
could be stored in the configuration database module and/or
topology database module.

Scaling flow setup throughput beyond the limits of a
single controller requires that the platform support multi-
ple controller instances. However, before diving into the
details, it is worthwhile to explicitly differentiate between
the scalability requirements research and production quality
platforms for data center networks.

The goal of Ripcord, at least in its current incarnation,
is not to provide a researcher with a production quality
implementation. The implementation lacks in many aspects,
such as in efficiency, robustness, and importantly Ripcord is
built around a simple, centralized, single-host state sharing
mechanism. If subjected to the extreme scalability and avail-
ability requirements of data center networks in production,
this mechanism is clearly insufficient.

In research experiments the lack of extreme scalability
and availability properties is a non-issue as long as the
programming abstractions offered for the application devel-
opers are similar to the ones, which would be provided in
systems designed to scale for production use. To this end, we
briefly overview the scalability approaches of both Portland
and VL2:

• Portland centralizes all state sharing into a fabric
manager component, which manages the switch mod-
ules over OpenFlow. As such, the fabric manager

corresponds directly with a single Ripcord controller
instance.

• VL2 assumes no single, centralized controller instance,
but uses a distributed directory system to share state
among multiple controllers (agents). The directory
system is essentially a strongly-consistent, reliable and
centralized store, which has an eventually consistent
caching layer for reads on top.

The descriptions above suggest that the design of Ripcord
is well aligned with the scalability approaches of these
individual proposals. In particular, Ripcord can provide
the platform for centralized single-controller designs like
PortLand, while for VL2 like designs, which rely on a
distributed state sharing mechanism, Ripcord can provide
a single-host configuration database with the identical se-
mantics. This is clearly not scalable (nor highly-available),
but the programming abstractions within the controllers
connected to the database will be the same as if a distributed
state sharing mechanism were used. Eventually, as Ripcord
matures, it could also replace this centralized, single-host
configuration database with a distributed database.

It is still an open question to what extent the platform
should scale to provide value to different communities.
The research community, which principally targets devising,
rapidly developing, and evaluating new ideas, could be
an immediate beneficiary, even with networks on smaller
scales. For those networks, even our current Ripcord proto-
type can be an ideal vehicle since it is capable of emulating
a 100-node data center on a modern laptop computer and
it supports seamless porting from software emulation to real
hardware testbeds. For a designer of a production data center
seeking radically new approaches to improve networking
performance, or trying to introduce competitive features,
Ripcord may also prove valuable, as long as the size of the
testbed is not on the order of the production network.

7. RELATED WORK
Ripcord is built on top of programmable switches and

a logically centralized control platform. In our prototype
we use OpenFlow [11] switches and NOX [8], an open-
source OpenFlow controller. While NOX was designed
to be a general controller platform applicable to many
environments, Ripcord was designed around needs specific
to the datacenter. This includes providing infrastructure for
managing structured topology, location independence, and
service quality as well as exposing higher-level abstractions,
such as tenants.

While we chose NOX in large part due to our familiarity
with it, Ripcord could also have been implemented within
other centralized network control platforms such as Tesser-
act [6] or Maestro [3]. Like NOX, both of these projects
provide centralized development platforms on top of which
network control logics can be implemented.
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The use of OpenFlow was similarly a matter of familiarity
and convenience. However, other than the table and port
abstractions, no low-level details of OpenFlow are exposed
through Ripcord. Therefore, the Ripcord design should be
compatible with other programmable datapath technologies
that maintain table-entry level control of the network.

Having described related technologies for programmable
switches and controllers we now discuss Ripcord in the
context of recent data center networking proposals (e.g.,
VL2 [5], Monsoon [7], BCube [9], PLayer [10], and Port-
Land [12]). We note that each of these networking proposals
presents a solution based on specific requirements, some
of which overlap across solutions, but may be prioritized
differently in each solution. As a consequence specific
architectural choices are made that may make it difficult
to accommodate new requirements, changes to data center
environments or modifications to the solution that attempt to
tailor/tweak it for another data center environment.

Ripcord is not in direct competition with any of these
networking proposals, rather it provides a platform that
allows network administrators to experiment with one or
more of data center networking proposals (side-by-side if
necessary), make modifications and evaluate the proposal
in their own data center environments. Further, whereas
Ripcord does not include or propose any novel distributed
algorithms for managing data center networks, we posit that
it provides a suitable platform for experimentation in this
space based on its modular design.

Ripcord is also similar in spirit to the broad testbased
work which allows multple experiments to share the same
infrastructure. Notable recent proposals include VINI [2],
and FlowVisor [14]. Ripcord differs from these and similar
proposals in that our goal is to construct a modular platform
at the control level which provides primitives useful in
the data center context. To this end, we have designed
multiple components (such as the topology and monitoring
interfaces) which aid (and limit!) the applications suitable
for running on Ripcord.
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APPENDIX
NOX and OpenFlow OpenFlow is a vendor-agnostic interface to
control network switches and routers. In particular, it provides an
abstraction of the flow-tables already present in most devices - they
were originally placed there to hold firewall rules. OpenFlow allows
rules to be placed in a table, consisting of a ¡header pattern, action¿
pair. If an arriving packet matches the header pattern, the associated
action is performed. Actions are generally simple, such as forward
to a port or set of ports, drop, or send to the controller. NOX is a
network-wide operating system that controls a collection of switches
and routers using the OpenFlow protocol. NOX provides a global
view of the topology, and presents an API to hosted applications to
both view and control the network state. A hosted application might
reactively respond to new flows, choose whether to allow them and
then install rules to determine their path. Or it could proactively add
rules to define how new flows will be routed.
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