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Abstract

We introduce a model for joint texture classification and
segmentation that learns not onlyhow to classify accu-
rately, butwhen to classify efficiently. This model, com-
bined with a complementary efficient feature representation
that we describe, allows us to move beyond naive sliding-
window classification strategies into sub-linear coarse-to-
fine classification of an entire image. Recognition is formu-
lated as a scale-space traversal through the image in which
we can “stop short” at coarse scales, dramatically increas-
ing both the speed and the accuracy of classification. Unlike
other models, ours is constructed such that the classification
produced when stopping-short is exact (that is, equivalent
to the classification produced when not stopping-short), be-
cause coarse-to-fine efficiency is directly incorporated into
the model. Classification is demonstrated on partially- and
fully-annotated datasets of satellite and medical imagery.

1. Introduction

The coarse-to-fine paradigm has long an important part
of efficient classification. Much work has used this ap-
proach for efficient object detection within local windows,
through techniques such as boosted decision trees [1] or hi-
erarchical decompositions of objects [2]. More recent work
[3] has used branch-and-bound for efficient sub-window
object localization. We will build on this tradition to de-
velop an approach towards parsing the entirety of an image,
in which coarse-to-fine efficiency comes not from how we
classify a single sub-region of an image, but from how the
classification of an entire image proceeds — and when it is
terminated.

We will construct a model for efficient recognition and
segmentation within the framework of a hierarchical scale-
space traversal of an image. Building on previous work [4]
in maximum entropy Markov models (MEMMs), we will
introduce a novel model that learns how to terminate the
traversal of an image at coarse scales while still produc-
ing the same results as a complete traversal. This allows

for accurate classification that is, on average, of sub-linear
complexity relative to the size of the image. A quad-tree[5]
is used as a medium for multiresolution inference, and we
features inspired by the integral image technique in [1] for
efficient feature generation. The output of this system is
shown in Figure1, and a cartoon depiction of classification
is shown in Figure2.

Multiresolution models have long been used for compact
image representation[6], motion estimation[7], as well as
classification and segmentation[8]. In [9], multiscale ran-
dom fields are used for belief propagation through a quad-
tree hierarchy over an image. In [10], mixtures of tree-
structured belief networks are used for structural scene de-

Figure 1. The output of our classifier (T = 8, ǫø = 0.25, overlap-
ping windows) on a test image from our “Tumor” dataset. Lumi-
nance is from the input image and colors are from the classifier’s
annotation. Boxes show what regions are observed, and therefore
denote the scale at which inference is terminated. Black edges
separate different classes, white edges do not.
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Figure 2. Efficient classification in our model. We observe the image and then either: label and terminate, or subdivide and recurse.
Branches of the quad-tree are generated as required. Colorsrepresent label assignments, red X’s represent subdivisions, and arrows
indicate steps through scale.

composition. More recent work such as [11] uses hierarchi-
cal Dirichlet process hidden Markov trees to model natural
scenes for the purpose of scene recognition. These works
all have a similar hierarchical motivation as ours, but we
have the fundamentally different goal of directly addressing
efficient inference.

Maximum entropy Markov models have long been used
in natural language processing for topic estimation[4] and
document segmentation[12]. We will consider sequences
in scale, rather than in time. We are not the first to use
such a framework for computer vision applications, though
most such work is based on conditional random fields
(CRFs)[13], a successor to MEMMs. In [14] multiscale
CRFs are used to improve local texture classifiers, and in
[15] hierarchical CRFs are used for contextual image la-
beling and object recognition. Though this work shares
similarities with ours, we are primarily interested in effi-
cient classification, not in modeling context. Additionally,
a CRF-style model seems poorly-suited to our goal, as we
will explain later.

2. Features

Our feature extraction pipeline is shown in Figure3. We
first separate an image into a set ofC grayscale channels
(we use the channels of the YUV colorspace) and then con-
struct an integral histogram[16] for each channel. TheB-
sized vector (whereB is the number of histogram bins,
indexed byb) at locationx, y of channelc’s integral his-
togramHc(x, y, b) contains the sum of all other vectors
above and to the left ofx, y. These integral histograms can
be “queried” similarly to an integral image [17][1], but in-
stead of returning the sum of all values in channelc within
this region, this operation returns ab dimensional histogram

of the values. We concatenate the histograms from allC
channels to make aD-dimensional feature vector for a re-
gion (D = BC). Constructing and querying integral his-
tograms are extremely fast —O(NC) andO(CB) respec-
tively, whereN is the number of pixels in the image. Con-
struction requires no more computations than does naively
computing histograms for the entire image, though signif-
icantly more memory is required to store the integral his-
togram. This means that after minimal preprocessing, we
can generate the intensity/color histogram of a rectangular
image region quickly, regardless of its size. Without this
optimization, we would be forced to repeatedly generate
histograms of overlapping regions — an expensive proposi-
tion.

The histogram binning thresholds are set such that the
distributions of the histograms in our training set are uni-
form. In our tests we setB = 30, though smaller values are
often just as effective.

These integral histograms let us rapidly construct a quad-
tree of the image. We query the rectangular region that is
the entire image, subdivide that region into four same-sized
sub-regions, and repeat until we have a full quad-tree of
some maximum depthT , composed of color/intensity his-
togram features. At test time, the quad-tree is constructed
as-needed, and we only subdivide a region if our trained
model requires it (and if we have not yet reached depthT ).

Our feature representation and extraction method can
easily be extended to richer features such as HOG
descriptors[18] or textons[19]. Similar to [20], we can even
integrate a rigid-object detector into our model. We need
only produce additional channels, such as maps of vector-
quantized texton indices or scored object detections, and use
these channels in the rest of the pipeline. This increases ac-
curacy, but generating elaborate features necessarily slows



Figure 3. The feature extraction pipeline. We separate the image into grayscale channels (in our case, the YUV colorspace), and construct
integral histograms for each channel. This is equivalent to(but faster than) binning each channel and integrating the resulting masks. These
integral histograms can be used during inference to rapidlyconstruct a quad-tree, on-demand.

classification.

3. Model

In Figure2 classification is shown as a traversal through
the quad-tree from coarse to fine. The classifier either
assigns a label and terminates, or sub-divides the image
and recursively classifies its four children. We will con-
struct a model that assigns measures of “confidence” to la-
bels while traversing the tree, and during classification our
model will use that confidence to make decisions regarding
label-assignment and recursion. We use this non-standard
terminology because the intermediate “confidence” distri-
butions over labels do not resemble the output of standard
statistical models (as the confidence over labels only in-
creases). The internal structure of our model should be
thought of as a stochastic automaton that progressively con-
struct a single distribution over labels at the leaves of the
quad-tree.

Consider the model in Figure4. For theK labels in our
dataset, we constructK “label-states”. We defineαt(sk)
as the confidence our model has in labelk at deptht. We
construct an additional state, the “active-state”sa, where all
confidence exists before being assigned to the label states.
Effectively, αt(sa) measures thelack of confidence in the
label-states at deptht. Psa

(s|ot) determines how much con-
fidence is assigned to the label-states and how much stays
put, based onot, the region of the quad-tree being observed.
Confidence ispermanentlyassigned to the label-states —
confidence in the active-state can only decrease and con-
fidence in a label-state can only increase. At each depth,
Psa

(s|ot) and theα’s and are normalized and are between
0 to 1, making this model a stochastic automaton.

A MEMM is a variant of a hidden Markov model
(HMM), where we condition on the observed data instead
building a joint model of observations and states. This is
analogous to the difference between a Markov random field
(MRF) and a CRF. Normally, the hidden states in a MEMM

are fully connected and completely equivalent. We will in-
stead use this stochastic automaton as our hidden states,
dramatically restricting the model. The top-down traversal
through an image pyramid can be thought of as many sep-
arate observation sequences (one of which is rendered in
red in Figure5). In our notation we will first consider only
one of these sequences. We will call an MEMM with this
special structure imposed on the hidden states a “spatial”
MEMM (S-MEMM). A S-MEMM models the assumption
that anything we believe about a region we must also believe
about any subset of that region, which is why confidence is
permanently allocated to labels.

In standard MEMM notation (similar to that of [12]), be-
lief propagation is defined as follows:

αt+1(s) =
∑

s′∈S

αt(s
′)Ps′ (s|ot) (1)

Whereαt(s) is the probability of being in states at time
t given a sequence of observations〈o1, o2, · · · , ot〉, andS
is the set of all hidden states.αt(s) still corresponds to
confidence, andot is still the region of the quad-tree at depth
t in our sequence. We will now revise this model to reflect
the previously-described restrictions placed on the hidden
states in our stochastic automaton.

α0(s) =

{

1 s = sa

0 o.w.
(2)

αt+1(s) =

{

αt(sa)Psa
(s|ot) s = sa

αt(sa)Psa
(s|ot) + αt(s) o.w.

(3)

Additionally, we fixPsa
(sa|oT ) = 0, which means that at

the leaves of the quad-tree the active-state has no confidence
and the alpha values over just the label states are normal-
ized.

We now define the transition probabilities for the active-
state:

Psa
(s|ot) =

1

Z(t)
exp

(

~wst · ~f(ot)
)

(4)



Figure 4. Our model, shown as a HMM / CRF trellis —not as a graphical model. All confidence initially sits at the active-statesa at
the top of the quad-tree. As we traverse the tree from coarse to fine, that confidence either stays put or is permanently assigned to the
label-states (highlighted). This continues until the maximum depthT . The transition probabilitiesPsa

(s|ot) are generated fromot, the
observed sub-region at deptht. This is one of many sequences through the quad-tree, which we formally describe separately.

This is the standard maximum-entropy classifier, or the
“softmax” activation function in neural-network nomencla-
ture. ~f(ot) is theD-dimensional feature vector we have for
observationot (the intensity/color histograms computed by
queryingHc(i, j, d) for all C channels with the bounding
box of ot), and ~wst is theD-dimensional vector of corre-
sponding weights for states, at scalet. Z(t) is a normaliz-
ing term.

Our quad-tree hasN = 4T−1 leaves. We represent the S-
MEMM’s predicted distributions over label-states for each
leaf with anα vector:

~α
(i)
T =

[

α
(i)
T (s1), α

(i)
T (s2), · · · , α

(i)
T (sK)

]T

(5)

Here we have indexed theN leaves of the quad-tree with
(i). Because we fixedPsa

(sa|oT ) = 0, these vectors
are normalized even though we do not includeαT (sa).
From our ground-truth annotation we can constructN cor-
responding label vectors:

~ℓ
(i)
T =

[

ℓ
(i)
T (s1), ℓ

(i)
T (s2), · · · , ℓ

(i)
T (sK)

]T

(6)

Where ℓ
(i)
T (sk) is the fraction of pixels in leafi in the

ground-truth annotation that are labeledk. Because some
pixels may be unlabeled, these~ℓ

(i)
T vectors may not be nor-

malized.

4. Training

Though we needed to describe the internal workings of
the S-MEMM with non-traditional terms (allocating confi-
dence, etc), at this point we can effectively ignore this inter-
nal structure and consider the model as simply producing a

set of distributions over labels at the leaves of the quad-tree,
given a quad-tree. The~α(i)

T vectors are the predicted label

distributions, and the~ℓ(i)
T vectors are the ground-truth label

distributions whose likelihood we wish to maximize. Mini-
mizing KL-divergence would be a sensible way to minimize
the difference between the two, but should not be used as,
~ℓ
(i)
T may not be normalized. We therefore construct what

we call “partial” KL-divergence:

DpKL

(

~ℓ
(i)
T ||~α

(i)
T

)

=

K
∑

k=1

ℓ
(i)
T (sk) log

(

max

(

1,
ℓ
(i)
T (sk)

α
(i)
T (sk)

))

(7)

Partial KL-divergence only penalizesunder-predictingthe
label distribution, and does not penalize the model forover-
predictingany label. In practice, partial KL-divergence be-
haves nearly identically to KL-divergence when our anno-
tation is complete, while giving us robustness to partial an-
notations.

Our loss function is the sum of the partial KL-divergence
of each~α-~ℓ pair, plus a regularizing term:

L =

N
∑

i=1

(

DpKL

(

~ℓ
(i)
T ||~α

(i)
T

))

+ λ

√

√

√

√

T
∑

t=1

(||~wst||22)
2 (8)

Rather than having a single Gaussian prior over the weights
at all scales, we take theL2 norm of the sum of squared
weights at each scale. The former strategy encourages all of
the weights at certain scales to be set to zero, while our strat-
egy evenly penalizes the weights at each scale. This pre-
vents overfitting while allowing all scales of the S-MEMM
to contribute to classification.



Figure 5. The learning procedure for a single image. The traversal
through the quad-tree is decomposed into a series of sequences,
one of which is highlighted in red. We do belief propagation down
to the leaves of the quad-tree, and compare the predicted label dis-
tributions to the ground-truth label distributions with partial KL-
divergence. The gradient of the divergence is backpropagated up
through the quad-tree, and then onto the weights ofPsa

(s|ot).

Minimizing partial KL-divergence implicitly optimizes
for efficiency by encouraging the assignment of confidence
at coarse scales to prevent errors at fine scales. This coin-
cides with “label bias” [13], which describes the MEMM’s
tendency to favor states with few outgoing transitions be-
cause of the per-state normalization of transition probabili-
ties. In most uses of MEMMs, this is aproblem, but here it
is exactly what we want. Our label-states have only one out-
going transition, so our model favors them over the active-
state, thereby favoring classification at coarse scales. Since
CRFs are meant to prevent label bias, they should be poorly-
suited to this sort of learned efficiency.

To encourage efficiency when it isnot necessary for ac-
curacy, we can impose a fixed bias on the transition proba-
bilities from the active-state to the label-states, which damp-
ens the transitions probabilities to the active-state:

Psa
(s|ot) =

{

1−β(t)
Z(t) exp(~ws · ~f(ot)) s = sa

1−β(t)
Z(t) exp(~ws · ~f(ot)) + β(t)

K
o.w.

(9)

β(t) = (ǫø) 4t−T (10)

Whereβ(t) is a bias towards label-states at heightt, which
is weighted byǫø. ǫø can range from0 (no bias) to1
(where the transition probabilities at the leaves are com-
pletely defined by the bias). The4t−T multiplier reflects
the exponential growth in the number of observations ast
grows, and accordingly adjusts the transition probabilities
such that the total number of observations required is evenly
minimized. During learning, the model compensates for
this bias by assigning confidence to the label states at more

coarse scales. This term can be thought of as an “efficiency
bias”, a method for biasing the model towards efficiency.

We optimizeL using the conjugate gradient method.
This requires efficient calculation ofL and∂L/∂ ~wst, both
of which can be done with dynamic programming, in the
manner of the forward part of the forward-backward algo-
rithm [21]. Learning is demonstrated in Figure5. We set
λ to maximize accuracy on the validation set. Theǫø pa-
rameter should be considered “user-defined”, and can be set
according to the desired tradeoff of accuracy for efficiency.
T can be selected a-priori based on the desired granularity
of the segmentation — though we will demonstrate that our
model is inherently robust toT being too large.

Training a S-MEMM on8 training images (T = 7 )
usually takes about20 minutes on a 2008 Macbook Pro.
Though not necessary, it is faster to first learn one set of
weights for all scales, and use those weights to initialize the
weights at each scale.

5. Inference

Once we have learned a set of weights, we can infer the
distribution of label-states at the leaves of the quad-treeby
calculating all~α(i)

T . We choosês(i) to be the label with the
highest probability:

ŝ(i) = arg max
s

~α
(i)
T . (11)

The fundamental strength of the S-MEMM is that we
need notalways compute~α(i)

T to exactly determinês(i). By
the construction of our model, we know that:

α
(i)
t (s) ≤ α

(i)
t+1(s) ≤ α

(i)
t (s) + α

(i)
t (sa) ∀s 6= sa (12)

α
(i)
t (sa) ≥ α

(i)
t+1(sa). (13)

If we assume that

α
(i)
t (ŝ) > max

s′ 6={ŝ,sa}

(

α
(i)
t (s′)

)

+ α
(i)
t (sa) (14)

then by the previously stated inequalities, it must follow that

α
(i)
t+1(ŝ) > max

s′ 6={ŝ,sa}

(

α
(i)
t+1(s

′)
)

+ α
(i)
t+1(sa) (15)

and therefore, by induction, we have

α
(i)
T (ŝ) > max

s′ 6={ŝ,sa}

(

α
(i)
T (s′)

)

+ α
(i)
T (sa) (16)

which is equivalent to

ŝ(i) = arg max
s

~α
(i)
T . (17)

What we have demonstrated is that, at any time in inference,
if the difference between the confidence of the most-likely



“Tumor” dataset
T = 4 T = 5 T = 6 T = 7 T = 8 T = 9

Naive 83.3% / 64 88.5% / 256 90.4% / 1024 90.0% / 4096 88.4% / 16384 86.8% / 65536
S-MEMM (ǫø = 0) 83.7% / 81 88.8% / 310 91.1% / 1220 91.6% / 1719 91.9% / 2742 92.0% / 4193
S-MEMM (ǫø = 0.1) 83.6% / 81 88.5% / 310 90.5% / 635 91.6% / 1271 91.8% / 2145 91.9% / 3190
S-MEMM (ǫø = 0.25) 80.4% / 71 85.8% / 170 89.3% / 444 90.7% / 767 91.7% / 1731 91.9% / 2426

Naive (overlap) 81.3% / 64 86.7% / 256 90.3% / 1024 91.5% / 4096 90.5% / 16384 88.6% / 65536
S-MEMM (overlap,ǫø = 0) 82.3% / 84 87.5% / 321 91.5% / 1244 92.6% / 3697 92.9% / 5295 93.1% / 9207
S-MEMM (overlap,ǫø = 0.1) 83.6% / 81 88.5% / 309 90.4% / 626 91.6% / 1268 91.8% / 2147 92.0% / 3136
S-MEMM (overlap,ǫø = 0.25) 77.7% / 75 83.9% / 204 88.1% / 487 91.4% / 1437 92.2% / 1972 91.9% / 2404

“Gmaps” dataset
T = 4 T = 5 T = 6 T = 7 T = 8 T = 9

Naive 81.0% / 64 82.2% / 256 82.1% / 1024 81.4% / 4096 80.5% / 16384 79.4% / 65536
S-MEMM (ǫø = 0) 78.4% / 76 81.3% / 261 83.7% / 622 84.4% / 1358 83.8% / 2003 83.8% / 1972
S-MEMM (ǫø = 0.1) 80.2% / 73 81.6% / 176 82.8% / 464 83.1% / 761 84.0% / 1518 83.8% / 1844
S-MEMM (ǫø = 0.25) 78.8% / 49 80.7% / 126 81.6% / 259 83.0% / 597 83.2% / 834 83.7% / 1736

Naive (overlap) 79.1% / 64 82.7% / 256 83.1% / 1024 82.8% / 4096 81.8% / 16384 80.6% / 65536
S-MEMM (overlap,ǫø = 0) 78.9% / 85 81.0% / 301 83.5% / 881 84.0% / 1510 84.1% / 5359 84.0% / 6015
S-MEMM (overlap,ǫø = 0.1) 78.7% / 78 81.7% / 209 83.1% / 534 83.6% / 1198 83.6% / 2432 83.8% / 4962
S-MEMM (overlap,ǫø = 0.25) 76.4% / 52 79.2% / 130 81.0% / 339 83.0% / 672 83.6% / 1488 83.7% / 2332

Table 1. A comparison of our model against a naive model, withoverlapping and non-overlapping windows, as the maximum quad-tree
depthT increases. The format is: “accuracy / number of classifications”. Bold-face indicates the most accurate model for that value ofT .

label-state and that of the second-most-likely label-state is
greater than the confidence of the active-state, immediately
terminating inference will still yield the same label estimate
that complete inference would. Therefore, we always ter-
minate whenever this condition is satisfied, dramatically in-
creasing the efficiency of classification while never affect-
ing accuracy. This ability to terminate early is a direct con-
sequence of our decision to permanently allocate confidence
to the label states. Since this technique requires per-state
normalization (the lack of which is a defining feature of
CRFs) there appears to be no real analogue for CRFs.

6. Results

We experimented on two new datasets. One is20 im-
ages from an H&E stained histology slide of a tumor taken
from [22], and the other is20 satellite images of earth
taken from [23]. Each dataset is divided into8 training,
4 validation, and8 test images. The “Tumor” annotations
are hand-drawn and partial (some pixels are unlabeled),
and labels correspond to “connective tissue”, “cancer”, and
“background”. The annotations for the “Gmaps” dataset
(see Figure6(b)) are a function of the Google Maps “map”
layer[24], and are therefore complete (every pixel is anno-
tated). The label roughly correspond to “water”, “urban”,
and “park”. Images are512 × 512 pixels.

We defineaccuracyas the fraction of labeled pixels that
a model classifies correctly. We define a “naive” model,
which is a sliding-window model with non-overlapping
windows, or a model that only has access to the leaves of the
quad-tree (see Figure6(c)). A model’sefficiencyis the ratio

of the number of classifications that a naive model makes
to the number that the model makes. The naive model has
an efficiency of1×. In this quad-tree framework, the S-
MEMM’s efficiency has a lower bound of34×. For compari-
son against sliding-window models in which windows over-
lap, we constructed additional S-MEMM and naive models
in which the region used to generate features is twice as
large as the region being labeled. The classifications pro-
duced by these “overlapping” models (both naive and S-
MEMM) appear more “smooth” (labels tend to be contigu-
ous) while having less spatial resolution.

In Table 1, we demonstrate the performance of the S-
MEMM against the naive model on both datasets, with
overlapping and non-overlapping windows. Figure6 shows
some segmentations produced by these models. AsT
increases, the naive model’s accuracy improves and then
worsens, while the S-MEMM’s accuracy saturates at a
higher value. The S-MEMM is less accurate than the naive
model at very small values ofT (when neither model per-
forms well), but performs much better at medium and large
values ofT . WhenT = 9, the S-MEMM is consistently
4−5% more accurate than the naive model, while requiring
an order of magnitude fewer classifications. When using
overlapping windows this saturation occurs at a largerT ,
but is at a higher accuracy. This is because overlapping win-
dows make it harder to distinguish textures at coarse scales,
but do capture additional information.

Our improved accuracy can be attributed to two causes:
The S-MEMM is able to adapt classification to coarse scales
(both for efficiency and to avoid mistakes at fine levels),
while still using fine scales for a detailed and accurate



(a) A image from the“Gmaps”test-set (b) The image with itsground-truth annotation (c) Naive model: 79.522% / 16384

(d) S-MEMM, ǫø = 0:82.322% / 7205 (e) S-MEMM,ǫø = 0.1:81.835% / 2993 (f) S-MEMM, ǫø = 0.25:81.145% / 2069

Figure 6. Images and classification results (T = 8, overlapping windows) for a “Gmaps” test-image. The formatis: “accuracy / number
of classification”. Accuracy and number of classifications are for this image only. Boxes denote observations, and therefore show when
inference is terminated.

segmentation. This is why our model asymptotically ap-
proaches a high accuracy that the naive model cannot pro-
duce. The improved accuracy also comes from how our
model is capable of using coarse image patches to bias the
inference at finer scales. This can be thought of as a shal-
low model of context. Both of these causes contribute to the
difference between Figures6(c)and6(d).

Even without the efficiency bias, the S-MEMM’s effi-
ciency is often10× to15× that of the naive model. At small
values ofT the hierarchical model often requires more clas-
sifications than the naive model, but efficiency increases
dramatically asT grows. Given giga- or tera-pixel images
(such as the images that our datasets were taken from)T
would probably be in the range of10 − 15, and it would
not be unreasonable to expect efficiencies on the order of
hundreds. The efficiency bias often causes a slight drop in
accuracy. Further investigation as to how to encourage effi-
ciency while preserving accuracy is warranted.

7. Conclusion

We have introduced a feature-extraction method, a corre-
sponding scale-space image representation, and a comple-
mentary machine learning model for performing exact and
efficient classification within this image representation.We
have demonstrated how features can be efficiently generated
as needed, and how image classification can proceed such
that not all features in the scale-space representation of the
image need to be observed. We have provided a set of pa-
rameters through which the characteristics of classification,
in regards to accuracy and efficiency, can be manipulated.
The model can easily be extended to richer feature-sets, or
more elaborate tree-like image representations, while still
being orders of magnitude faster than a model that is igno-
rant to coarse-to-fine structure. Our model increasesboth
the accuracyand the efficiency of texture classification,
rather than being forced to sacrifice one for the other.
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