
Analysis and Lessons from a Publicly Available

Google Cluster Trace

Yanpei Chen
Archana Sulochana Ganapathi
Rean Griffith
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-95

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-95.html

June 14, 2010



Copyright © 2010, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Analysis and Lessons from a Publicly Available Google Cluster Trace

Yanpei Chen, Archana Ganapathi, Rean Griffith, Randy H. Katz
RAD Lab, EECS Dept., UC Berkeley

Abstract

System designers in industry are often overwhelmed by
large scale data, while researchers in academic often con-
front a lack of publicly available production data. In
this paper, we analyze a large scale production workload
trace recently made publicly available by Google. We
offer a statistical profile of the data, with several interest-
ing discoveries regarding job arrival patterns, CPU and
memory consumptions, task durations, and others. We
further perform k-means clustering to identify common
groups of jobs, with several methodological departures
and different findings compared with prior work on sim-
ilar data. We also do correlation analysis between job
semantics and job behavior, leading to helpful perspec-
tives on capacity planning and system tuning. Our key
finding is that while the limited dataset size prevents us
from generalizing the trace behaviors observed, the ana-
lytical methods we describe nonetheless allow us to ex-
tract many system design insights.

1 Introduction

The computing industry has witnessed an explosion of
system log data. Monitoring tools are improving and
storage costs are decreasing. The sheer volume of
data is often overwhelming, ranging from gigabytes to
petabytes per day. System designers often describe ana-
lyzing such data as the “needle in a haystack” problem.
There is a dire need for scalable data mining techniques
that extract insights without “adding more hay”.

In contrast, researchers in academia face a severe
shortage of data. There have been few repositories of
publicly accessible data. Notwithstanding anonymiza-
tion tools, organizations hesitate to share more data due
to the risk of reverse engineering trade secrets (e.g., data-
center scale and location) and the leakage of private user
data. The public repositories available, such as the Com-
puter Failure Data Repository [10], typically contain lim-

ited information. Efforts at developing innovative and
scalable data mining algorithms are rarely accompanied
by evaluation on realistic, large scale datasets. The alter-
natives, synthetic data or research workloads, are neither
as rich nor as diverse as industry datasets [6].

Many researchers have successfully accessed indus-
try datasets through non-disclosure agreements or em-
ployment relationships. Such collaboration models often
place many restrictions on publication. Thus, there are
few opportunities for data comparisons across organiza-
tions. Without such comparisons, we would not know
whether each project is solving “one of a kind” problems
or whether there are general system design insights to be
extracted. Additionally, researchers cannot amortize the
high overhead of building good system monitoring and
data processing tools across multiple projects.

Recently, Google released limited system traces from
one of their production clusters. The data is highly
anonymized. We show in this paper that the traces
nonetheless reveal many insights about the particular
workload represented. We describe our tools and share
our insights from a statistical analysis of this Google
cluster trace. We discuss what can and cannot be done
with the quantity and quality of data released. Our pri-
mary contributions are:
• We report on publicly available traces and validate

their usefulness.
• We give a statistical profile of the trace showing

both behavior across time and aggregate distribu-
tions (Section 4.1).

• We identify groupings of common jobs using k-
means clustering analysis and compare our method
and results with that in prior work (Section 4.2).

• We perform correlation analysis between job se-
mantics and job behavior to enhance capacity plan-
ning and system tuning (Section 4.3).

• We discuss the system design implications from our
findings (Section 5).

In the remainder of this paper, we begin with a re-



view of related work (Section 2) and an overview of the
Google cluster data (Section 3). This is followed by our
statistical analysis (Section 4) and discussion of design
and methodological implications (Section 5). Our key
finding is that while this limited dataset prevents us from
generalizing the trace behaviors observed, the analytical
methods we describe enable us to extract many system
design insights regardless of dataset size.

2 Related Work

There is much prior work on characterizing trace data
to derive design and operational insights for systems.
Notably, there is a strong history of file system trace
analysis to understand storage subsystem design implica-
tions [1, 6], database workload analysis to inform query
performance optimization [12, 7, 3], and more recently,
web server workload characterization to monitor trends
and evolving access patterns [11].

There have been concerted efforts to make data pub-
licly available to researchers to amortize the cost of data
collection. The Computer Failure Data Repository [10]
is an example repository of system failure data made
available for analysis. The statistical machine learning
community has also created several interesting public
data repositories. Several companies have individually
released traces, such as web server logs collected during
the world cup in 1998 [5]. In all these cases, the data has
already been cleansed of potential sensitive information,
removing the need for per-user legal agreements.

Recently, Google followed suit by releasing
anonymized log data from one of their clusters [4].
Our work is a successor of [9], in which authors from
Google analyzed a similar dataset. We briefly outline the
prior work there in Section 3, with a detailed comparison
between the methods and results in Section 4.2.

This paper is also a direct successor of [2], in which
we analyze MapReduce traces from two Internet services
to build a workload replay mechanism. In contrast to
our prior work, the Google dataset spans a much shorter
timespan and contains highly anonymized data, as we
will describe below.

3 Google Data Overview
3.1 Data format and content

The trace data we use comes from [4]. The dataset is a
trace of production workloads running on Google clus-
ters collected over 6 hours and 15 minutes. The work-
load consists of a set oftasks, where each task belongs to
a singlejob. A job may have multiple tasks.

Each row in the dataset represents the execution of a
single task during a five minute interval and contains the

following features. For details see [4]:

• Time - time in seconds (int)
• JobID - unique job identifier
• TaskID - unique task identifier
• JobType - job type, an integer in [0, 1, 2, 3], a rep-

resentation of job semantics
• Normalized Task Cores - Normalized number of

CPU cores used
• Normalized Task Memory - Normalized value of the

average memory consumed by the task

The dataset was anonymized in a number of ways.
Task and job names have been replaced with numeric
identifiers. All timestamps are relative to an unknown
reference point, and timing information is reported in
five-minute intervals. CPU core and memory consump-
tion is normalized using an unknown a linear transforma-
tion. Additionally, there is no information on the seman-
tics (i.e. the meaning) of the different job types.

The trace contains 75 five-minute reporting intervals.
There are a total of 3,535,029 observations, 9,218 unique
jobs and 176,580 unique tasks.

3.2 Data quality

We made several unexpected discoveries in analyzing the
data. Some tasks have different job type markings during
different time intervals, violating our mental model that
there is a unique association between each tasks, the as-
sociated job, and the job type. We resolve this ambiguity
by assigning to each task the last seen job type.

Also, some tasks have time gaps in their reports, i.e.,
some of the 5-minute intervals are missing. This violates
our mental model that the system keeps trace of tasks
continuously, even if they are temporarily idle. We sim-
ply ignore the missing time gaps when computing dura-
tions, averages, and other statistics.

We expected to see normalized disk and network uti-
lization data to accompany the normalized CPU core and
memory data. However, the trace does not contain such
data. In [9], the authors analyzed a similar dataset, and
noted that although the disk and network logs are avail-
able, they are not analyzed since CPU and memory are
the bottleneck resources.

There are also two unexpected kinds of tasks in the
dataset. Some tasks have 0 cores and>0 memory. We
interpret these tasks as inactive idle tasks that need to
be kept in memory. Some other tasks have 0 cores and
0 memory. We interpret these as tasks that consume no
resources, but their task pointers are kept in the system
for quick responses to infrequently requested services.

2



3.3 Prior analysis of similar datasets
3.3.1 Google datsets

We are not aware of any other published analysis of
the particular dataset we discuss in this paper. How-
ever, in [9], the authors analyze a similar but not pub-
licly available dataset collected within Google. The
dataset there covers a much longer period of 20 cell
(cluster)-days. The authors identified a set of resource-
consumption “shapes” for tasks that can be used for clus-
ter scheduling and capacity planning.

The authors in [9] seek to map observed data to task
“shapes” by quantizing data for task duration, average
CPU, and average memory into small, medium, and large
levels. The authors then applied the k-means clustering
with the initial clusters subject to the small, medium,
and large level constraints. These initial clusters are
then manually merged to form the final task signature
shapes. The number of final clusters is set to 8, with the
cluster merging process driven by lowering the within-
cluster coefficient of variation. We later describe our own
clustering methodology, with several points of departure
from prior work. A detailed comparison is in Section 4.2.

3.3.2 Other datsets

Our predecessor work looked production system logs of
Hadoop MapReduce at Facebook and another large In-
ternet company [2]. MapReduce was initially developed
at Google, and also has multiple tasks per job. Those
Hadoop MapReduce logs cover a time period of up to
several months, contain job name strings, which we can-
not publish, and MapReduce-specific features such as
map and reduce task information, input/shuffle/output
data sizes, data locality information, and the like. Such
information offers in-depth insight into the workload at
the MapReduce application level, and forms the basis for
our workload replay mechanism in [2].

Our experience with Hadoop MapReduce suggest that
many MapReduce computations are data-intensive, mak-
ing it very valuable to have information about data sizes
and data locality. This is a major departure from the
workload in Google, where the bottleneck resources are
CPU and memory instead of disk and network. In fact,
we found from our Hadoop MapReduce traces that dif-
ferent deployments of the same system have very dif-
ferent workloads. Such differences amplify the need to
make public more traces, to enable comparisons across
different organizations.

4 Data Analysis

This section presents the results of our statistical analy-
sis. We begin by giving a general statistical profile of
the workload. We describe both workload changes at

Figure 1:Time series of the number of job launches.

different times during the trace and aggregate statistical
distributions over the entire trace. We then perform a
clustering analysis to identify common job groups in the
workload. The clustering complements the job type as-
signments originally present in the workload, and helps
set design priorities for the system. Lastly, we identify
and examine any correlations between the job semantics
(i.e. job types) with the job behavior (i.e. clusters). This
helps planning for future workloads by connecting sys-
tem needs with job type projections, which are in turn
translated from future business needs. We italicize key
observations at the end of the relevant paragraph of text.

4.1 Workload profile

The first step of our analysis is to statistically character-
ize the workload. Our description below uses the time
series and cumulative distribution functions (CDFs) of
several performance dimensions. Depending on the data
available, we can generalize this approach to other traces
from production clusters.

4.1.1 Temporal behavior

Figure 1 contains a time series of job launches during
the workload, where a job launch is defined as the in-
terval during which we first see a task belonging to the
job. There is a job launch spike for all jobs at 5 minutes
into the traces. We believe this is either a logging arti-
fact, or behavior due to scheduled batch processing or
similar effects. Aside from this spike, we see that differ-
ent job types have vastly different launch patterns. Job
Types 0 and 2 both have launch rates fluctuating around
30 jobs per 5 minutes. Job Type 1 shows much larger
fluctuations, with steep spikes and dips. Job Type 3 has
hardly any new jobs launching, with the line barely visi-
ble above the horizontal axis.Observation 1. Different
job types have vastly different behaviors, with some jobs
having very large spikes in arrival rates.

Figure 2 contains a time series of the number of run-
ning tasks. “Running” is defined as the task being present
in the trace. Thus, a running but idle task with 0 normal-
ized cores would also be counted. Again, the shape of

3



Figure 2:Time series of the number of running tasks.

Figure 3:Normalized core and mem time series for all jobs.

the lines are different for different job types, with some
subset of job types showing very similar behavior. For
example, Job Types 2 and 3 both have near constant num-
ber of tasks. Also, for Job Types 0 and 1, the number of
running tasks both fluctuate around a constant average.

Figure 3 compares the time series for the normal-
ized cores and memory of all jobs, with the time series
of all running tasks. We see that all three lines have
highly correlated spikes and dips, suggesting that the av-
erage core/memory ratio of tasks does not change at a
timescale of several hours.

Figure 4 and 5 respectively shows the normalized core
and memory allocation to each job type. The normalized
core allocation again shows fluctuations around a steady
average. More interesting, the memory allocation to each
job type shows barely any fluctuations at all. This is the
case for Job Types 0, 2, 3. For Job Type 1, the normalized
memory varies along with all other time series examined
so far. Observation 2. Each job type has near constant
CPU and memory allocations, as well as a near constant
number of running tasks.

4.1.2 Aggregate distributions

Figure 6 summarize the task durations. Clearly, task du-
rations show bimodal behavior. Job Types 0, 1, 2 have
mostly short task with a few long tasks. Almost all tasks
in Job Type 3 are long. Since our trace last only a few

Figure 4:Time series of normalized cores.

Figure 5:Time series of normalized memory.

hours, so far we have no way of knowing whether the
“long” tasks are tasks that take a long time to complete,
or tasks that are suppose to be on-going services and
would never complete.Observation 3. Task durations
are bimodal, with different job types having different task
duration distributions.

Figure 7 shows the distribution of tasks per job. Again,
different job types show different behavior. Additionally,
at 1, 2, and 9 tasks per job, all CDFs all show some dis-
crete jumps (i.e., vertical lines). The distribution is also
long-tailed. Observation 4. Tasks per job can fall into
discrete bins, and has a long-tailed distribution.

Figures 8, 9, 10, 11, and 12 respectively show the
distribution of total and average cores, total and aver-
age memory, and memory-core ratio per job. The most
striking feature is the large number of vertical lines in
the CDFs, corresponding to discrete jumps in the dis-
tribution. The exception is Job Type 3, which shows a
smooth CDF in all these graphs.Observation 5. Per-
job core and memory allocations are highly discrete, al-
though some job types have more continuous allocations.

4.2 Job clustering

A clustering analysis identifies groups of common jobs
in the workload. Knowing this helps set design priorities
for the system. For example, if most jobs fall into only
a small number of groups, then the system can be tuned
specifically to the characteristics of those job groups.

4



Figure 6:CDF of tasks durations.

Figure 7:CDF of tasks per job.

4.2.1 Clustering methodology

We use the k-means clustering, a well-known algorithm
in statistical machine learning. K-means assigns inputs
of n data points intok clusters, withk set by the user.
The algorithm assigns each data point to the cluster with
the closest mean. The algorithm randomly selects the ini-
tial cluster means, then iteratively improves them where
the centroid a cluster’s data points becomes the new clus-
ter mean. The iteration continues until convergence.

The input data is vectors of job characteristics, one
for each job. We use many job characteristics, including
all characteristics in Section 4.1, and additional charac-
teristics derived from the primary characteristics. Even
if some of the characteristics are redundant, by includ-
ing them all we ensure that we cover many characteris-
tics that potentially separate clusters. The characteristics
are total and average cores for the job, total and average
memory, total and average memory while the job is ac-
tive (i.e., greater than 0 cores), job duration, tasks, task
counts multiplied by task duration, active task counts
multiplied by active task duration, as well as average,
standard deviation, and normalized standard deviation of
the memory-core ratio. We normalize all values by linear
scaling, such that the maximum value in each character-
istic scales to 1. This ensures comparability between data
characteristics that have different units.

We use the Matlab implementation of k-means. The
initial cluster means are randomly selected. Also, we

Figure 8:CDF of total normalized cores per job.

Figure 9:CDF of average normalized cores per job.

set k-means to use Euclidean distance. Further, when a
cluster becomes empty during the iterative optimization
process, we create a new cluster consisting of a single
data point that is the furthest from the old cluster mean.
Additionally, since different initial cluster centers may
lead to different results, we repeat the clustering algo-
rithm2

14 times. This ensures that for our 14-dimensional
input data, each initial cluster mean will have probabilis-
tically a high and low initial value for every dimension.
Information about other k-means parameters are at [8].
We measure the clustering quality by the average dis-
tance from each data point to its assigned cluster mean.
Thekmeans function in Matlab returns the sum point-
to-mean distance, from which we obtain the average by
dividing by the number of data points.

Another subtlety is to select the appropriate value for
k, i.e., the appropriate number of clusters. Ifk is too
small or too large, then some clusters may escape detec-
tion or we may get artificial cluster boundaries. In par-
ticular, whenk = n, each cluster is a single data point,
and the average distance to cluster mean would be zero.
Our approach is to incrementk, and track both the av-
erage point-to-mean distances and the clustering assign-
ment structure. If we are finding “natural” clusters, the
average point-to-mean distances would decrease rapidly,
and only one cluster at a time would be split. If we are
finding artificial cluster boundaries, we would have data
points re-arranging between many different clusters in-

5



Figure 10:CDF of total normalized memory per job.

Figure 11:CDF of average normalized memory per job.

stead of a cluster split. Thus, we stop increasingk when
we see slow decrease in average point-to-mean distances
and cluster re-arrangements.

4.2.2 Clustering results

Figure 13 shows the clustering results for incremental
values ofk. Each node in the tree represents a clus-
ter. Each arrow represents a large number of data points
moving from the source cluster to the destination clus-
ter. Thus, the tree structure indicates that for incremental
values ofk, clusters divide one at a time until we reach
k = 9. The text columns on the left and right margins
indicate the value ofk, the average point-to-mean dis-
tance normalized by the number of data dimensions (i.e.,
D), and the percentage decrease inD for incrementalk.
We label the clusters by manual inspection of the cluster
means. The labels for CPU (more cores) and mem (more
memory) are relative. For example, going fromk = 4

to k = 5, we have cluster of memory-heavy tasks split
into clusters of very memory-heavy tasks, and memory-
heavy tasks that are relatively higher in CPU.

The fact that clusters divide one at a time give us con-
fidence that clear cluster boundaries are being found. If
the data did not have such boundaries, e.g., grouped in a
circle of constant density, then as we incrementk, there
would be significant rearrangement between neighboring
clusters. Such rearrangement occurs going fromk = 8

to k = 9, indicating thatk = 8 is a good stopping point.

Figure 12: CDF of normalized memory to normalized core
ratio.

Figure 13:K-means clustering structure.

Also, atk = 8, the percentage decrease inD drops from
≈20% to≈10% per additional cluster, also indicating a
significant change in the clustering structure. Thus, we
stop atk = 8, with the final clusters highlighted in bold.

Figure 14 gives the job count in each final cluster, and
Figure 15 gives the numerical value of the final cluster
means, along the four dimensions necessary for cluster
labeling. The labels follow a hierarchical structure, with
the CPU and memory labels being relative to branches
at the same clustering hierarchy level. Thus, clusters la-
beled as “CPU” may in fact have higher memory/core
ratio than clusters labeled as “Mem”.

Stopping atk = 8 also enables easy comparison with
the clustering analysis in [9], which also finds 8 clusters.
The methodology in [9] starts with 18 initial clusters.
The cluster means are constrained to be small/large dura-
tion, small/medium/large CPU, and small/medium/large
memory. K-means finds the optimum cluster means

6



Figure 14:Number of jobs in each cluster.

Figure 15:Numerical values of cluster means.

subject to the constraints, with the small/medium/large
quantization boundaries being manually chosen. The 18
clusters are manually merged into 8 clusters, with the
cluster count 8 being manually chosen also.

In contrast, except for cluster labeling, our method-
ology is fully automated. We incrementk and justify
stopping atk = 8 by observing that the rate of decrease
in average points-to-mean distance slows considerably,
and that cluster re-arrangements take place. We place no
constraints on the cluster centroids, and build confidence
in the clusters’ quality by noting that each increment in
k leads to only one cluster splitting at a time. The clus-
ter tree structure also enable us to identify what the final
clusters should be for anyk < 8.

Another difference is the metric for clustering qual-
ity. The analysis in [9] measured cluster quality by
within-cluster coefficient of variation (CV), the standard
deviation of the data in each cluster normalized by the
mean. This is a per-cluster metric, essential for choosing
which clusters to merge into “better” clusters. Each data
characteristic would have a separate CV, requiring un-
wieldy multi-dimensional comparisons when the num-
ber of data characteristics is large. In contrast, we use
the all-clusters average sum of points-to-mean distances.
This is a all-clusters metric, essential for identifying a
good stopping point for incrementingk. Further, the av-
erage sum of points-to-mean distances allows the cluster-
ing quality at eachk to be represented by a single num-
ber. As evident in Figure 13, the single number summary
allow the stopping point fork to be easily determined.

A final, major difference is that our input data uses 14
job characteristics, which reduces to four characteristics
necessary for the final cluster labels - activity level, dura-

Figure 16:Correlation coefficient between different job types
and clusters.

tion, CPU-memory ratio, and number of tasks in the job.
By having 14 initial characteristics and discovering that
we only need 4, we build confidence that the other char-
acteristics are truly redundant. In particular, [9] used av-
erage cores and average memory as task descriptors, two
characteristics among our 14 initial characteristics but
not within the final 4. For us, the relative memory/CPU
intensity reduces to a single memory/core ratio. Thus, a
good method to identify the most important job descrip-
tor characteristics would be to start with many charac-
teristics and then perform feature selection. Our feature
selection method combines automatic k-means cluster-
ing with manual cluster labeling. It would be worthwhile
to explore a fully automated algorithm.

4.3 Correlating semantics and behavior

It is desirable to correlate job semantics and behavior.
Identifying such correlations is important because job se-
mantics represent application semantics, which changes
according to evolving user and business needs. On the
other hand, job behavior is a system property, which
should be continuously optimized in response to evolv-
ing job semantics. Thus, to truly do capacity planning
and system tuning, system designers need to translate job
semantics into job behavior.

In this Google trace, we treat job types as a proxy for
job semantics, since they are assigned prior to trace col-
lection. Job behavior is represented by the final cluster
means, which describe the job along several characteris-
tics. Figure 14 gives the number of jobs per cluster per
job type. However, this information remains insufficient.
When a cluster has many jobs of a type, we need to know
whether the job type is common and has many jobs in all
clusters, or a strong correlation actually exists. Likewise,
we need to know the anti-correlations.

Figure 16 shows the correlation coefficient between
the cluster assignments and job types. The correlation
coefficient ranges from 1 (strong correlation) to 0 (no
correlation) to -1 (strong anti-correlation). The strongest
correlations and anti-correlations are highlighted in bold.

We see that Figure 16 is also insufficient for capac-
ity planning. Our intuition is that strong correlations are

7



associated with many data points. However, correlation
measures only the relative number of jobs. For clus-
ters with many jobs, a cluster-job-type pair with strong
anti-correlation may still contain many jobs. Likewise,
for clusters with a few jobs, a cluster-job-type pair with
strong correlation may give only a few jobs. We need
both Figure 14 and Figure 16 to understand the distribu-
tion of job types across the clusters.

5 Discussion
5.1 System design implications

One can derive many design insights from the statistical
characteristics we described. We highlight here some of
the most striking implications.

Scheduling algorithms must be able to handle very
large spikes in job arrival rates (Observation 1 in Sec-
tion 4). Also, if scheduling algorithms seek to keep con-
stant the number of tasks, CPU, and memory allocation
for each job type (Observation 2), such algorithms would
need to handle jobs with pathological number of tasks,
or CPU and memory demands. Otherwise, application
designs can game the scheduler to horde resources by re-
writing their jobs with different tasks, CPU, and memory
demands. Even if there is no intentional gaming, having
game-resistant schedulers can partially compensate for
tasks with specialist task slot, CPU, and memory needs.
Additionally, schedulers need to account for highly dis-
crete resource demands (Observations 4 and 5), with par-
ticular attention to any boundary effects.

The results of our clustering analysis suggest that the
largest clusters are very short active jobs and inactive
jobs, while the smallest clusters are the long active jobs
(Figure 14). This means that the cluster management
system need to keep many inactive jobs in memory. Also,
the small clusters of long active jobs indicate that they are
the biggest contributors to the overall clustering sum of
points-to-mean distances. Thus, it is important to opti-
mize for the resource allocation and placement for these
jobs. Any sub-optimal allocation or placement would
impact system performance over a long time. The long
duration of such jobs may require migrating the task slots
to different machines. The large number of short active
jobs also make them a prime target for performance op-
timization. Fortunately, the bimodal nature of job dura-
tions (Observation 3) makes it easy to classify the jobs.

For capacity planning, we need to translate projections
of application needs to system resource demands. Our
correlation analysis indicates that a good translation is
difficult. We propose to use the empirical distribution
of each job type across the clusters. For example, if
we project Job Type 3 to increase by, say, 100%, while
the rest of the systems remain fixed, we can do capacity
planning by doubling the number of Type 3 jobs in every

cluster. The result is many more long duration jobs, since
Job Type 3 is highly correlated with long jobs and highly
anti-correlated with short jobs (Figure 16). We can then
optimize the new system accordingly.

5.2 Limitation of the traces

There are several limitations to the types of analysis en-
abled by the data currently public data. Although we ex-
tracted some insights, there is insufficient information for
generalizing our findings to longer time periods or other
workloads at Google. In particular, with longer times-
pans of observations, we could potentially build a per-job
progress indicator that predicts, given information about
the job’s completed tasks, when the job will complete
execution and what its resource requirements are.

The high degree of anonymization of the data pre-
vents us from gaining insights on the semantics of the job
scheduler. As a result, we are unable to evaluate the pros
and cons of alternate scheduling algorithms. This limita-
tion would be addressed with more fine-grained data on
task execution and queuing times, and more information
about the job type semantics.

A major benefit of having real production traces is that
we can inform design decisions based on common jobs
and resource requirements. However, to evaluate these
design decisions, we still need a realistic and represen-
tative workload, which is seldom extractable from the
traces. A worthy research goal is to create a system-
generic workload synthesis and replay tools that repro-
duce the original workload’s behavior without the over-
head of reproducing the system configuration and raw
data. Our work in [2] is an initial step in this direction
for Hadoop MapReduce workloads.

6 Conclusions and Future Work

In this paper, we demonstrated that publicly available
traces are invaluable regardless of dataset size. Clearly,
more data would allow us to generalize findings and gain
additional system design insights. We hope the Google
public data release foreshadows a seachange in attitudes
towards making production traces publicly available. We
argue for a public production system trace repository
similar to the Computer Failure Data Repository. To fa-
cilitate such a repository while addressing trade secret
and user privacy concerns, future work should develop
a toolkit with anonymizers, data format converters, and
standard algorithms for detailed statistical analysis. We
hope our paper represents the first step in this direction.

References

[1] BAKER, M. G., HARTMAN , J. H., KUPFER, M. D., SHIRRIFF,
K. W., AND OUSTERHOUT, J. K. Measurements of a Dis-

8



tributed File System. InSOSP ’91: Proceedings of the thir-
teenth ACM symposium on Operating systems principles (New
York, NY, USA, 1991), ACM, pp. 198–212.

[2] CHEN, Y., GANAPATHI , A. S., GRIFFITH, R., AND KATZ ,
R. H. Towards Understanding Cloud Performance Tradeoffs
Using Statistical Workload Analysis and Replay. Tech. Rep.
UCB/EECS-2010-81, EECS Department, University of Califor-
nia, Berkeley, May 2010.

[3] ELNAFFAR, S., MARTIN , P.,AND HORMAN, R. Automatically
Classifying Database Workloads. InCIKM ’02: Proceedings of
the eleventh international conference on Information and knowl-
edge management (2002), pp. 622–624.

[4] HELLERSTEIN, J. L. Google Cluster Data. http:
//googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

[5] I NTERNET TRAFFIC ARCHIVE. FIFA World Cup 1998 ac-
cess logs. http://ita.ee.lbl.gov/html/contrib/
WorldCup.html.

[6] L EUNG, A. W., PASUPATHY, S., GOODSON, G., AND M ILLER ,
E. L. Measurement and Analysis of Large-scale Network File
System Workloads. InATC’08: USENIX 2008 Annual Techni-
cal Conference on Annual Technical Conference (2008), pp. 213–
226.

[7] L O, J. L., BARROSO, L. A., EGGERS, S. J., GHARACHORLOO,
K., LEVY, H. M., AND PAREKH, S. S. An Analysis of Database
Workload Performance on Simultaneous Multithreaded Proces-
sors. InISCA ’98: Proceedings of the 25th annual international
symposium on Computer architecture (1998), pp. 39–50.

[8] M ATLAB . kmeans documentation. http://www.
mathworks.com/access/helpdesk/help/toolbox/
stats/kmeans.html.

[9] M ISHRA, A. K., HELLERSTEIN, J. L., CIRNE, W., AND DAS,
C. R. Towards Characterizing Cloud Backend Workloads: In-
sights from Google Compute Clusters.SIGMETRICS Perform.
Eval. Rev. 37, 4 (2010), 34–41.

[10] SCHROEDER, B., AND GIBSON, G. The Computer Failure
Data Repository (CFDR): collecting, sharing and analyzingfail-
ure data. InSC ’06: Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing (New York, NY, USA, 2006), ACM,
p. 154.

[11] WILLIAMS , A., ARLITT, M., WILLIAMSON , C., AND

BARKER, K. Chapter 1 Web Workload Characterization: Ten
Years Later.

[12] YU, P. S., CHEN, M.-S., HEISS, H.-U., AND LEE, S. On
Workload Characterization of Relational Database Environments.
IEEE Trans. Softw. Eng. 18, 4 (1992), 347–355.

9


