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Abstract

Recent data-loss incidents have shown that existing
large distributed systems are still vulnerable to failures.
To improve the situation, we propose two new testing ap-
proaches: failure testing service (FTS) and declarative
testing specification (DTS). FTS enables us to systemat-
ically push a system into thousands of failure scenarios,
leading us to many critical recovery bugs. With DTS, we
introduce “micro-specifications”, clear and concise spec-
ifications written in Datalog style, which enables devel-
opers to easily write, refine, and manage potentially hun-
dreds of specifications.

1 Introduction

The power of large clusters behind cloud computing has
brought us not only benefits but also a new challenge: a
growing number and frequency of failures that must be
managed [9, 10]. Failing to deal with failures will directly
impact the reliability and availability of data and jobs.
Unfortunately, recent data-loss incidents experienced by
a telecommunication provider [16], a popular social net-
working site [18], and a large bank [20] still display the
vulnerability of existing systems to hardware failures, fail-
ures such as machine crashes, disk and network failures.
This leaves us with an important question: How can we
verify the correctness of large distributed systems in deal-
ing with a growing number failures?

We believe a proper answer requires two more rigor-
ous approaches than the current state-of-the-art of testing.
First, we must begin with a new approach that cansys-
tematicallypush a system into many possible failure sce-
narios. Some existing tools are often not equipped with a
fault-injection feature, and thus failures are injected man-
ually. Some others have the feature, but only inject fail-
ures of the same type (e.g., crashes) [25]. When it comes
to injecting a wide variety of failures, the state-of-the-art
in industry is to do it randomly [3, 13, 24].

Second, after thousands of failures are systematically
injected, we still need to verify the correctness of many
properties of the system. For a large distributed system,

there are potentially hundreds of properties that must be
checked (especially under failures). However, with exist-
ing approaches, a check sometimes has to be written in
tens of lines of code (e.g., in C++ [25], or a scripting lan-
guage [14]). The drawbacks are two-fold. First, they
hinder developers from writing a large number of specifi-
cations; in practice, the number of deployed checks for a
new system is typically small, and hence does not scale to
the complexity of the system. Second, even if we have
hundreds of specifications (e.g., in old systems where
the developers have incrementally added them over the
years), they could be as big as the system code itself. As
a result, the specifications are also likely to be wrong and
correcting them is not always straightforward [8]. Fur-
ther complicating the matter, the specifications must also
evolve as the system evolve [13].

To overcome the first challenge above, we presentfail-
ure testing service(FTS), a framework that can system-
atically exercise many combinations of varieties of fail-
ures (and by “many” our target is “thousands of scenar-
ios”). The key ingredient to a systematic fault-injection
technique is to identify failure points and a list of possi-
ble failures that could happen at a particular failure point
(crashes, disk/network faults, etc.). A failure point and an
injected failure constitute afailure ID that FTS will ex-
plore; exercising a combination of failures is essentially
exercising a combination of failure IDs.

To enable developers to write specifications quickly and
incrementally, we introducedeclarative testing specifica-
tion (DTS). At the heart of DTS is a declarative relational
logic language (based on Datalog) that enables a check to
be written in only a few lines. We chose Datalog style due
to its nature of compactness and expressiveness in speci-
fying logical relationships [1, 7, 15, 21]. With DTS, we
promote a practical iterative style of writing specification:
a developer can begin with a handful of high-level speci-
fications, and as she finds new bugs, she can add more de-
tailed specifications to precisely pinpoint the bugs. If the
same bugs appear again in the future (as the code being
developed), the tighter specifications will allow the devel-
oper to avoid wasting another hours of debugging time.
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Figure 1: HDFS Write Protocol. The figure illustrates
when and where failures could occur in this protocol. Commu-
nications to the master node is excluded for brevity.

This paper makes the three following contributions:

• We introduce failure IDs as a new abstraction for ex-
ploring failures systematically. In addition, we also
provide a ready-to-use “failure surface” for Java-
based systems (Section2).

• With DTS, we introduce “micro-specifications”,
clear and concise specifications written in Datalog
style, which enables developers to manage hundreds
of specifications. We also present a design pattern
for declarative debugging, that is, how a developer
could refine specifications iteratively (Section3).

• We have applied FTS and DTS to the Hadoop
File System (HDFS), an open-source version of the
Google File System [5], and uncovered many critical
recovery bugs (Section4). We chose HDFS as our
first target due to its complexity (over 25 KLOC) and
its growing popularity (it has been widely deployed
in over 80 medium to large organizations including
Amazon, Yahoo, and Facebook).

After presenting our contributions, we follow with a
discussion of new challenges (Section5) and close with
related work (Section6) and conclusion (Section7).

2 Failure Testing Service

Figure1 motivates the need for a systematic failure ser-
vice: in a distributed write, there are many points where
the system components could fail (labeled withX). The
expectation is that the write protocol should succeed if at
least one datanode is alive [5]. The developer might want
to verify that the specification holds even if, for example,
the disk at the second datanode fails in the first round; or,
if the first datanodeand the second datanode crash in the
second round.

To help developers in this regard, the ultimate goal of
FTS is to exercise as many combinations of failures as
possible. In a sense, this is similar to model checking
which explores different sequences of states. One key

FTS Server

Fail / 

No Fail?

Workload Driver

while (server injects 

 new failureIDs) {

   runWorkload(); 

   // ex: hdfs.write

} 

Instrumented HDFS

Java SDK

AspectJ

Failure 

Surface
Failure

IDs

Figure 2: FTS Framework.

technique in model-checking is to record the states that
have been explored, which is commonly done by hashing
the abstract state of the system and recording the history
of the hashes. Similarly in our case, we need a clear ab-
stract representation of a failure, which can be hashed and
thus recorded in the failure history. Below, we first intro-
duce the concept of failure IDs and follow with the overall
framework. So far, we have used FTS to exercise more
than 40,000 combinations of failures.

2.1 Failure IDs

To construct a failure ID, we first define afailure point,
a system/library call that performs disk or network I/O.
For every failure point, FTS generates a list of possible
failures that could happen before and after. For example,
FTS could throw an exception before a disk-write failure
point. FTS could also crash a node after the node receives
a message but before it sends an acknowledgment. When
FTS exercises a failure ID (i.e., injects a particular failure
at a particular failure point), FTS records the hash value
of the failure ID in the failure history.

Table1 shows an example of a failure ID. The table also
shows that a failure point contains more complex informa-
tion (static, dynamic, and domain-specific) than what we
have described above. These information are essential to
increase failure coverage. For example, if a static failure
point could be called by different upper-level functions,
then dynamic information such as stack trace is useful to
expand the failure scenarios. Domain-specific informa-
tion such as target I/O is valuable because a common func-
tion could write to different file types or send messages to
different nodes.

2.2 FTS Framework

We plan to integrate the concept of failure IDs to a model
checker (since a failure ID does not contain the system
state). However, since not all systems support a ready-to-
use model-checker, we build our own testing framework
that could be quickly integrated to the system we want
to test. Figure2 depicts the overall framework of FTS.
We first instrument the system (e.g., HDFS) by insert-
ing a “failure surface” which builds failure IDs and send
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Info Type Field Example value
Func. call : OutputStream.flush()

Static I/O type : Write
Location : BlockReceiver.java
Line : 45

Dynamic Stack trace : (the stack trace)
Domain Thread name : Block Receiver
specific Target I/O : Disk1, Metafile

FTS Failure : Bad disk
Hash Value : 1289065658

Table 1: A Sample of Failure ID. A failure ID contains
static, dynamic, and domain-specific information about a failure
point and an injected failure. Hash is used to label a failureID.

them to the FTS server, which then makes failure deci-
sions based on the failure history. The developer attaches
the workload to be tested at the workload driver and spec-
ifies the maximum number of failures (MAX). The while
loop exits when the server does not see a new combination
of MAX failure IDs.

2.2.1 Failure Surface

There are many possible layers to introduce a failure sur-
face (e.g., inside the library or at the VMM layer). We do
this between the application and the Java library for two
reasons. First, at this layer, we could get rich domain-
specific information useful to increase failure coverage.
Second, by leveraging aspect-oriented programming (As-
pectJ in our case), this can be done without any modifi-
cation to the system. Since our target audience is system
developers, we assume source code availability.

The failure surface has two important jobs. First, it
builds the non-domain and domain specific information
of every failure ID (Table1). The non-domain specific
part is directly available from AspectJ. For the domain-
specific part, sometimes not enough information is avail-
able at the failure point. For example, given a call
to DataOutputStream.write(), the target output stream
(e.g., what the disk file or the network address is) is not
available. Thus, we have written and applied a context-
passing aspect to the Java SDK so that relevant contexts
are accessible at the failure point. This is a general feature
that can be used for all Java-based systems.

Second, when the FTS server returns a failure confir-
mation, the failure surface must map the failure to the cor-
rect error-code (if the failure is non-crash). For Java-based
systems, this is straightforward: a failure point either re-
turns false or throws an I/O exception. For C-based sys-
tems, a failure point could return a variety of error-codes
(e.g., EIO, EROFS), and hence more mappings are needed.

2.2.2 FTS Server and Workload Driver

One inherent complexity lies in the interaction between
the driver and the server. In essence, we do not know
what failure IDs that server will see before we run the
workload. Yet, we want to somewhat “control” the com-
binations of failure IDs for a given run. As a more con-
crete example, consider three failure IDsA, B, andC, not
known apriori. For two failures, we want to inject{A, B}
in one run,{A, C} in another run, and so on. To control
this, we implementfailure locking: after the first run, the
driver will lock the first failure toA (lock[1] = A) such
that in the next run the server could only injectA for the
first failure. For the second failure, since the driver does
not lock it (lock[2] = Ø), the server will injectanynew
failure that it has not exercised (e.g., C). Eventually, the
driver will unlock the first failure in order for the server to
exercise{B, C}.

2.2.3 Other Features

We briefly discuss other important features of FTS be-
low. First, failure ID should not contain non-deterministic
information (e.g., chunk filename [5]), otherwise FTS
always gets a new hash failure ID and will never fin-
ish. Thus, we have a domain-specific component that fil-
ters out irrelevant non-deterministic information. Second,
since some failures (e.g., bad disks) are only emulated,
the server keeps track persistent failures such that future
related operations will naturally fail (similar to persistent
network partitioning in [24]). Finally, FTS server supports
extensible filters to exercise specific failures in specific
contexts. This feature is useful to reproduce the sequence
of failures that leads to the bug.

2.3 Summary

We have introduced failure IDs as a new abstraction for
exploring failures. The ultimate goal is to exercise as
many combinations of failure IDs as possible. In a sense,
this is similar to model checking which exhausts all ab-
stract states of a system. Thus, to have a model-checker
exercise failures systematically, the notion of failure IDs
can be directly employed.

Second, we have built a ready-to-use FTS. Deploying
FTS is relatively easy; one could quickly do that without
the domain-specific component. For example, we have
ported FTS to two other systems in just a few hours (Sec-
tion 4.4). To increase failure coverage, one can gradually
introduce the domain-specific component.

FTS is written in 4180 lines of code in Java. As of
now, FTS is able to inject transient failures, persistent disk
failures, crashes, and disk corruption. In the future, we
will support other types of failures (e.g., delays to emulate
message reordering).
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3 Declarative Testing Specification

After failures are injected, the developer needs to verify
the system correctness. This can be done in many ways
(e.g., via external behaviors or detailed internal checks).
For example, one can easily observe the external behavior
(e.g., return value of the client API, hangs, or crashes). A
harder but more precise way is to write detailed checks.
With the state of the art, a single check could reach one
hundred lines of code [8, 13, 24]. As a result, managing
hundreds of checks could be complicated (not to mention
that they must evolve as the system evolves [13]).

With DTS, we attempt to improve the state-of-the-art of
writing testing specification. To achieve this, we explored
writing “micro-specifications”, clear and concise specifi-
cations written in Datalog style. We chose this style as it
has been successfully used in building distributed systems
declaratively [1, 15] and in verifying some aspects of sys-
tem correctness (e.g., security [7, 21]). However, since
the innovation of high-performance declarative language
is still underway [1], we feel that using Datalog for just
writing system specifications is a sweet spot to explore.

In the next two sections, we show how micro-
specifications promote a practical iterative style of writing
specifications. More specifically, the first example shows
how a developer canrefineloose specifications into tighter
ones, while the second example illustrates how toincre-
mentally addmore detailed specifications. The motivation
for these examples is that a developer never begins with
complete and precise specifications. But, as she unearths
new problems, she might wish to refine existing specifica-
tions or add more specifications to pinpoint similar prob-
lems quickly in the future.

3.1 Refining Specifications

This section focuses on demonstrating how a developer
could refine a high-level specification into a tighter one.
Here, we use the HDFS log recovery process as an ex-
ample. We begin with a high-level specification that will
catch data-loss bugs:

lostFiles(F) :- userFiles(F), not-in server(F)

The specification is written as a Datalog rule which
consists of a head (lostFiles) and predicates in the body
(userFiles andserver). The head is evaluated when the
body is true. A comma between predicates represents con-
junction. Thus, the rule specifies the relation: “a user file
F is lost if it does not exist at the server.”

Next, we need to “fill” the test predicates with runtime
facts; the head and the predicates are essentially database
tables. TheuserFiles table is filled whenever the HDFS
client write API returns a success. Populating theserver

table is a bit more complicated. As a background, HDFS

maintains two server files that store the metadata of user
files: the image file (img) and the log file (log). When a
client stores a file, it is first recorded in the log file. Upon
a master reboot (or periodically), the log recovery pro-
cess will merge the two files into the image file and empty
the log file. To ensure idempotency, HDFS utilizes two
other files (log2 andimg2). In short,at any time, user files
should exist in the union of all the four files. Thus, we
can simply write the specification below, which reads: “a
user file F exists at the server if F exists in any of the four
server files.” Uppercase and lowercase letters (e.g., F and
img) stand for variables and constants respectively.

server(F) :- filesIn(F, img);

server(F) :- filesIn(F, log);

server(F) :- filesIn(F, log2);

server(F) :- filesIn(F, img2);

We use FTS to automatically insert all possible crashes
in this process. Interestingly, the rules above trigger a vi-
olation of the data-loss specification. However, since the
rules are not rigorous enough, we were not able to exactly
pinpoint the bug. We spent a couple hours debugging, and
then refined the specification (and hence the iterative pro-
cess of writing specifications).

The new specification reflects in detail the five-step pro-
cess shown in Table2. That is, depending on the progress,
user files are expected to be in a different subset of the
four files as shown in the last column of the table. For
example, during the process of mergingimg andlog to
img2 at step 3, user files are expected to be inimg and
log, but not inimg2, becauseimg2 is still not complete.
However, whenlog is emptied at step 4,img2 is com-
plete, and thus user files should be found inimg2, but not
in img and log. The way HDFS keeps track the steps
is via the existence of the four files (column 1). To ex-
press this, we simply introduce two new relational tables
exists(img,log,log2,img2) andstep(Num):

step(1) :- exists(1, 1, 0, 0);

step(2) :- exists(1, 1, 1, 0);

step(3) :- exists(1, 1, 1, 1);

step(4) :- exists(1, 1, 0, 1);

Using the new relations above, we can simply write
new server rules that correspond to the logic in the last
column of Table2, that is, “user files should be inimg2 at
step 4, or inimg andlog otherwise”:

server(F) :- filesIn(F, img2), step(N), N == 4;

server(F) :- filesIn(F, img) , step(N), N != 4;

server(F) :- filesIn(F, log) , step(N), N != 4;

With this more rigorous specification, we were able to
pinpoint the data-loss bug. As a background, if the master
node crashes exactly before the log renaming operation
at step 4, the protocol will begin again from step 1 (not
shown). However, exactly before step 4, there is a bug
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img log log2 img2 Steps: User files (f1 and f2) in:
f1 f2 − − 1. Start img + log
f1 f2 Ø − 2. Create an emptylog2 img + log
f1 f2 Ø f1f2 3. Mergeimg andlog to img2 img + log
f1 Ø − f1f2 4. Renamelog2 to log img2

f1f2 Ø − − 5. Renameimg2 to img img + log

Table 2: Log Recovery Protocol. The table shows the process of merging user-file metadata (f1 and f2) in img andlog. If a
crash occurs in the middle, the next reboot will start from a different step depending on which of the four files exist (not shown).Ø
and− represent empty and non-existent file respectively.

that truncates the log file (f2 is no longer inlog). Thus,
if a crash happens after the truncate bug and before step
4, the next reboot will mergeimg (f1) with an emptylog!
The finalimg file will only contain f1, and hence f2 is lost.
This bug still exists in the latest released version of HDFS.

ThelostFiles rule captures the bug because all rules
that depend onlog are re-evaluated when the bug trun-
cateslog: file f2 is removed fromfilesIn(F, log),
which will then remove f2 from server(F) (because the
bug is at step 3). Finally, f2 is added tolostFiles because
f2 is in userFiles but not inserver. In summary, in this
section, we have written a full-page prose specification of
the log recovery process, and it has been elegantly sum-
marized in just 8 lines of Datalog rules.

3.2 Adding Specifications Incrementally

To illustrate the generality of the iterative process above,
we briefly give another example where we catch unavail-
ability bugs. This time, rather than refining a specifica-
tion, we incrementally add more specifications to pinpoint
the bugs. We begin with a general specification below
which reads: “there is an unavailability bug if a write op-
eration fails but there is at least one good datanode.”

unavailability(F, Num) :-

write_op(F, fail), good_nodes(Num), Num >= 1;

We caught some bugs that break the rule. One bug is a
buggy failover where the master keeps returning the same
datanodes that the client cannot reach. This is because
it takes the master 10 minutes to detect a dead datanode
by default. But, since the master does not incorporate the
client’s view of unreachable datanodes, the master does
not give the client another set of available datanodes. To
catch this specific design bug, we simply added a new
rule:

bad_failover(BadNode) :-

master_returns(BadNode), unreachable_nodes(BadNode);

3.3 Implementation

To fill the rules with runtime facts, one can write some
form of state-exposer that interposes the internal functions

of each node [13]. However, we decided to interpose and
reverse-engineer the system API and the disk and network
protocols, primarily because inter-node protocols and on-
disk formats change less frequently than the internal func-
tions. The obtained information is then “translated” into
Datalog. For example, when a buffer is written to theimg

file, we extract the file entries in the buffer, and add them
to filesIn(F, img); when the HDFS write API returns a
success, the corresponding file is added touserFiles(F);
when HDFS creates and deletes any of the four storage
files, the exists() relation is re-evaluated. After the
translation phase, the tester enters the declarative world
in which she can build the abstract model of the system
succinctly. The DTS translation mechanism for HDFS is
written in 1200 lines of code in Java.

4 Preliminary Results

We have integrated FTS and DTS to HDFS ver. 0.20.0.
We chose HDFS as our first target due to its complexity
(over 25 KLOC) and its growing popularity (it has been
widely deployed in over 80 medium to large organizations
including Amazon, Yahoo, and Facebook). To show the
effectiveness of FTS and DTS, we present our prelimi-
nary results in four aspects: Can FTS exercise thousands
of failure scenarios? Does FTS help us find critical bugs?
Can we write hundreds of specifications with DTS? Fi-
nally, is our framework useful for other systems as well?

4.1 Thousands of Failures

We have run FTS on three HDFS workloads: write, ap-
pend and master reboot. For every workload, we use dif-
ferent setups: we vary the resources (datanodes and disks)
and the number of injected failures. The high-level expec-
tation is that as long as there is at least one resource avail-
able, the workload should not fail. Given a workload, FTS
will run a number of experiments until there is no new set
of failures to inject. As an example, for a write workload
with 3 replicas, 3 available datanodes, and 2 bad-disk fail-
ures per run, FTS identifies 74 failure IDs and exercises
2415 combinations of two failures. Because of the expo-
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nential growth of the possible combinations (Section5),
three is the maximum number of failures we could inject
per run.

In total, FTS has generated 394 unique failure IDs and
exercised 41332 unique combinations (with a maximum
of three failures per run), out of which 22872 result in
unsuccessful experiments. The ability to explore this large
number of combinations has led us to numerous critical
recovery bugs.

We also found that injecting multiple failures is crucial:
we found some sections of code that would not have been
executed unless three failures are injected. More specifi-
cally, we have exercised 36 failure IDs that only appear as
a third failure, 8 out of which result in unsuccessful exper-
iments. With FTS, the vision of “towards 100% coverage
of recovery code” becomes feasible.

4.2 Bugs Found and Observations

We are still in the process of debugging the thousands of
unsuccessful experiments. As of now, we have uncovered
21 bugs (15 are new) that lead to unavailability, data loss,
and inconsistencies. We present our high-level observa-
tions below.

First, unsurprisingly, an implementation is much more
complex than the prose specification; when we read the
simple prose specification of the HDFS write protocol, we
had little confidence that we would find new bugs. But,
we were wrong; we found many bad failover strategies
that fail the corresponding operations even though good
resources are still available. Second, replicas are only
useful to prevent a single point of hardware failure, but
software is still the single point of failure. A prime exam-
ple is the data-loss bug described in Section3.1; the bug
causes the master node to lose all replicas. Another ex-
ample is some bugs in the append protocol that make the
datanodes lose all replicas of the affected files.

4.3 Hundreds of Specifications

So far, we have been writing specifications in a bug-driven
manner, that is, for every bug that we found (from exter-
nal observation), we wrote more specifications to pinpoint
the bug more precisely. Overall, we have written 50 rules
in only 70 lines. After writing these rules, we uncovered
new bugs not observable externally (hence the power of
detailed checks). We believe that there is nothing that pre-
vents us from writing many more specifications, which is
our next top priority.

4.4 Other Systems

To show that FTS can be deployed to other systems
quickly, we have ported FTS to two different versions

of the Apache Lucene concurrency library in just a few
hours. In this particular experiment, we would like to find
new concurrency bugs in the presence of failures (e.g., a
hang bug because an exception block does not wake up
waiting threads); we note that many novel concurrency
bug-finding tools often do not incorporate failures. We
have run 23 workloads (out of the available 184 work-
loads in their JUnit tests) and found 4 concurrency bugs
(2 are new).

5 Future Work and Discussion

We have begun deploying FTS and DTS to two other large
distributed systems: Cassandra (an open-source version of
Amazon Dynamo and Google BigTable) and ZooKeeper
(an open-source version of Google Chubby).

Apart from this initial success, there are some chal-
lenges that we need to solve. The first relates to non-
determinism; we found a bug that only appears if the par-
allel node executions run in a certain order. Thus, we need
some form of execution scheduling [19]. We also plan to
add other failure types such as message reordering and
network partitioning.

The second challenge is to intelligently prune the fail-
ure points; the number of combinations of failures grows
exponentially (e.g., in a particular setup with 149 failure
IDs and 3 injected failures per experiment, FTS generates
17263 thousands of experiments in over five hours). This
prohibits us to explore more failures per experiment. We
have sketched out some pruning techniques, but unfortu-
nately they are out of the scope of this paper.

Finally, we need some form of heuristics to classify un-
successful experiments to the actual bugs [6]. From our
experience, thousands of unsuccessful experiments map
to only a few number of bugs. Without heuristics, we have
to debug one experiment at a time.

6 Related Work

Throughout the paper, we have compared our work with
others. In this section, we highlight the distinction again.

One state-of-the-art of finding bugs is to use a model-
checker. Most model-checkers rely on the abstract state
of the system [11, 23, 25, 24]. Although, some of them
have built-in “knobs” to enable/disable failures, it is still
unclear how they exercise combinations of failures. To do
that systematically, these model checkers could use our
concept of failure ID as part of the abstracted state.

LFI [17] presents an XML-based language to specify
the to-be-injected failures. Their language can be useful
for FTS (e.g., for writing a filter to reproduce an unsuc-
cessful experiment).
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Existing model checkers are equipped with checkers.
WiDS and D3S use their own scripting language to write
checks [14, 13]. In this language, a check often reaches
more than 50 lines. We found that writing checks in re-
lational logic language is more clear and concise. FiSC
and EXPLODE use existing file system checkers written
in C [25, 26]. Again, reasoning about hundreds of non-
declarative checks is proven to be hard [8]. D3 uses a
variant of Datalog by writing checks on top of distributed
log messages [4], while ours run on top of the interposed
disk and network communications. Singthet al.also uses
a variant of Datalog, but their checks only run on sys-
tems built on the same language [22]. Cloud9 also plans
to design a new testing specification that is accessible to
programmers [2].

Another way to build robust systems is via writing
an executable specification in theorem prover, as demon-
strated by seL4 [12]. In a sense, their work and our work
share a similarity: we write two versions of the system in
different languages; they use Isabelle/HOP, while we use
Datalog style.

7 Conclusion

As failure becomes the norm, when data is lost or avail-
ability is reduced, we should no longer blame the failure,
but rather the inability to recover from the failure. Thus,
we began with a simple question: How can we assess the
quality of existing systems in handling thousands of pos-
sible failures? This simple question gave birth to FTS.
As we achieve this end, we were confronted with the fact
that, for a large distributed system, there are a large num-
ber of properties that need to be verified (not just state
invariants, but also specific behaviors of the recovery pro-
tocols). This gave birth to DTS, which has enabled us to
write, refine, and manage many micro-specifications eas-
ily; the more specifications we can write, the more prop-
erties we can verify, the finer bug reports we will produce,
and the less time we will spend on debugging.
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