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Abstract

Cooperative Interference Management in Wireless Networks

by

I-Hsiang Wang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor David N. C. Tse, Chair

With the growing number of users along with ever-increasing demand for higher data rates
and better quality of service in modern wireless networks, interference has become the major
barrier against efficient utilization of limited resources. On the other hand, opportunities for
cooperation among radios also increase with the growing number of users, which potentially
lead to better interference management. In traditional wireless system design, however, such
opportunities are usually neglected and only basic interference management schemes are
employed, mainly due to lack of fundamental understanding of interference and cooperation.

In this dissertation, we study the fundamental aspects of cooperative interference man-
agement through the lens of network information theory. In the first and the second part, we
characterize both qualitatively and quantitatively how limited cooperation between trans-
mitting or receiving terminals helps mitigate interference in a canonical two-transmitter-two-
receiver wireless system. We identify two regions regarding the gain from limited coopera-
tion: linear and saturation regions. In the linear region cooperation is efficient and provides
a degrees-of-freedom gain, which is either one cooperation bit buys one bit over the air or two
cooperation bits buy one bit over the air until saturation. In the saturation region coopera-
tion is inefficient and only provides a bounded power gain. The conclusions are drawn from
the approximate characterization of the capacity regions.

In the third part, we investigate how intermediate relay nodes help resolve interference in
delivering information from two sources to their respective destinations in multi-hop wireless
networks. We focus on a linear deterministic approximate model for wireless networks, and
when the minimum cut value between each source-destination pair is constrained to be 1, we
completely characterize the capacity region. One of the interesting findings is that, at most
four nodes need to take special coding operations so that interference can be canceled over-
the-air or within-a-node, while other nodes can take oblivious operations. We also develop
a systematic approach to identify these special nodes.
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Chapter 1

Introduction

In the past two decades, significant progress has been made in wireless communica-
tions. Theoretical advances led by information theory have given birth to various modern
wireless communication techniques, including multiple-input-multiple-output (MIMO) tech-
niques, code-division multiple access (CDMA), orthogonal frequency-division multiple access
(OFDMA), etc. These ideas have been successfully implemented and deployed in real worlds,
such as CDMA2000, WCDMA, WLAN, WiMAX, LTE, etc., and are now used in our daily
lives. Wireless technologies have greatly changed the way we collect information and com-
municate with one another. As a result, the demand for higher data rates as well as better
quality of service has been increasing rapidly.

With more and more users but fixed amount of resource, including spectrum, power,
etc., interference has become the major factor that limits performance of wireless systems.
Interference arises whenever multiple source-destination pairs are present in a network, and
each destination is only interested in retrieving information from its own source(s). Due to
the broadcast and superposition nature of wireless medium, one user’s information-carrying
signal causes interference to other users. When the strength of interference is compara-
ble with the desired signal, it causes severe problems to the interfered source-desitination
pair. Unfortunately, current wireless system designs either treat interference as noise, which
degrades system performance when the interference becomes strong, or orthogonalize inter-
ferences from desired signals, which causes shortage of resource when the number of inter-
ferers grows. In short, only basic interference management schemes are employed in current
wireless systems.

One of the main reasons why more advanced interference management schemes did not
receive much attention is that, there was no such demand for them in the past as interference
was not the bottleneck of system performance. More importantly, despite the advances in
wireless communications, interference has not been well understood fundamentally. The
simplest information theoretic model for studying interference is the two-user interference
channel, introduced by Claude E. Shannon in 1961 [1]. Characterizing its capacity region
has been open for 50 years, except for several special cases, including the strong interference
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regime [2], a class of deterministic interference channels [3], etc. The largest achievable rate
region to date was reported by Han and Kobayashi in 1981 [4]. After 30 years, it is still the
best we know even for this simplest two-user model.

From the past experience, to improve the design of wireless systems, information theoretic
advances must be made first. Driven by the need of more advanced interference management
schemes, in the past few years, significant progress has been made towards understanding
the fundamental limit of delivering information in interference channels. In particular, for
the two-user Gaussian interference channel, the capacity region was characterized to within
1 bit/s/Hz [5], regardless of channel parameters. The bounded-gap-to-optimality result
consolidates the optimality of Han-Kobayashi scheme at high signal-to-noise ratio, and leads
to an uniform approximation of the capacity region. Later, the outer-bounding technique
in [5] was improved, and the sum capacity in a very weak interference regime and a mixed
interference regime was characterized [6] [7] [8].

Theoretical advances in understanding the fundamental capacity limit of the two-user
interference channel make a huge step towards better interference management techniques
in wireless networks. However, in the above interference channel set-up, there are no in-
termediate radios between each source-destination pair, and the sources (destinations) are
thought of as isolated radios, not allowed to communicate with one another. Hence, they
have to combat interference on their own. Such assumptions are no longer appropriate for
modern wireless networks. In various scenarios, sources/destinations are not isolated, and
there may be more radios involved in the network. Cooperation among radios can thus be
induced, and potentially they can better combat interference in a joint effort. For example,
in cellular systems, base stations are able to exchange certain amount of information and co-
operate through the infrastructure backhaul network, and in wireless ad-hoc networks, there
are usually radios other than the sources and the destinations that can cooperatively help
mitigate interferences for both users. Unfortunately, the fundamental limit of cooperative
interference management has not been well understood even in the simplest two-user Gaus-
sian interference channel with cooperation, not to mention more general wireless networks
with additional radios other than sources and destinations.

Without better fundamental understanding, the potential of using cooperation to im-
prove interference management cannot be further explored in practice. Therefore in this
work, we focus on the fundamental limit of cooperative interference management in wireless
networks. We first consider the two-user Gaussian interference channel (GIC) with receiver
cooperation and the two-user GIC with transmitter cooperation, to understand how coopera-
tion help mitigate interference in the canonical two-user system. We then study the problem
of delivering information over a two-source tow-destination wireless network with arbitrary
number of radio nodes, not limited to four (two sources and two destinations) as in the
two-user interference channel.
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1.1 Background

In this section, we briefly review some background knowledge for developing the dissertation.
First we introduce a linear deterministic model for studying Gaussian networks [9], which
will be used throughout the dissertation. Next, to better understand the two key elements
of cooperative interference management, namely, cooperation and interference, we review
some previous work on the single-source single-destination Gaussian relay network and the
two-user Gaussian interference channel, and point out the key elements that will be helpful
in developing our results.

1.1.1 Linear Deterministic Channel Model

The linear deterministic model [9] to be introduced below was originally proposed by Aves-
timehr et al.to study the approximate capacity limit of the single-source single-destination
Gaussian relay network. It is analytically simpler than the Gaussian model, while it still
captures the two key features of wireless medium, broadcast and superposition. The moti-
vation to study such a model is that in contrast to fixed point-to-point channels where noise
is the only source of uncertainty, in multiuser communication, the signal interactions are a
critical source of uncertainty. Therefore, for a first level of understanding, our focus is on
such signal interactions rather than the received noise. Later, the model is also shown to
be useful in studying the two-user Gaussian interference channel [10]. For more intuitions
about the model and its connection to the Gaussian model, please refer to [9].

Consider a general Gaussian network G = (V , E), where V and E stand for the collection
of nodes (radios) and directed edges (links) respectively, the the received signal at any node
v ∈ V is specified as follows:

yv =
∑

(u,v)∈E

hvuxu + zv, (1.1)

where hvu ∈ C is the complex channel gain associated with the link (u, v) ∈ E , xu ∈ C denotes
the transmit signal of the node u, and zv ∼ CN (0, 1) denotes the additive white Gaussian
noise (circularly symmetric with unit variance) at the node v. We assume unit average
transmit power constraint at each node. Hence for every link (u, v) ∈ E , the associated
signal-to-noise ratio SNRuv = |hvu|2.

The corresponding linear deterministic network is defined over the same network topology
G, while the received signal at any node v ∈ V becomes

yv =
∑

(u,v)∈E

S(q−nvu)xu, (1.2)

where additions are modulo-two component-wise, nvu ∈ N is the channel “gain” associated
with the link (u, v) ∈ E , q = max(u,v)∈E{nvu}, xu ∈ Fq2 denotes the transmit signal of the node
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u, and S ∈ Fq×q2 is the shift matrix

S =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0

 . (1.3)

An interpretation of this model considers the binary expansion of signals. The effect of
additive white Gaussian noise is modeled by truncation of the signal below the noise level.
The effect of superposition with interference is modeled by the modulo-two component-wise
addition of the bits in the binary expansion, where the carry-over in real addition is neglected
for simplicity. Hence, we have the following correspondence:

nvu =
(
blog |hvu|2c

)+
= (blog SNRuvc)+ . (1.4)

1.1.2 Single-Source Single-Destination Relay Network

The simplest information theoretic model for studying cooperation is the single relay channel,
introduced by van der Meulen [11]. The capacity of the single relay channel remains open
afterwards, even for the Gaussian relay channel, its capacity is unknown. The most general
strategies for this simple network were developed by Cover and El Gamal [3], including
decode-and-forward (DF) and compress-and-forward (CF). In the DF scheme, the relay
decodes the message sent from the source, re-encodes it, and transmits the codeword to
the destination so that the destination can better decode the message by incorporating
relay’s side information. In the CF scheme, on the other hand, the relay compresses its
received signal, re-encodes the compression index, and sends it to the destination. Then the
destination decodes the message with the help from the relay. It turns out that both DF
and CF can achieve the capacity to within 1 bits/s/Hz, regardless of channel parameters
[9]. Extension of the strategies in [3] to a more general relay network was made in [12].
The extension, however, seems not able to achieve the capacity to within a bounded gap for
general Gaussian relay networks [9].

The recent work by Avestimehr et al.[9] connected Ford and Fulkerson’s well-know max-
flow min-cut theorem in single-unicast wired networks [13] to an approximate1 max-flow min-
cut theorem in Gaussian relay networks, by introducing the linear deterministic network as an
intermediate model. The capacity of the linear deterministic network was characterized, and
the result was a natural generalization of the max-flow min-cut theorem for wired networks.
Based on the insights obtained from the deterministic analysis, a quantize-map-and-forward
(QMF) scheme was proposed for Gaussian networks, where each relay quantizes the received
signal at the noise level and maps it to a random Gaussian codeword for forwarding, and the

1The maximum information flow is within a bounded gap to the minimum cut-set value.
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final destination decodes the source’s message based on the received signal. In contrast to
existing schemes, this scheme can achieve the cut-set upper bound to within a gap which is
independent of the channel parameters. QMF scheme turns out to be useful in the two-user
interference channel with receiver cooperation, developed in Chapter 2.

However, the extension of the result to the network with more than single source and
more than single destination (that is, more than single unicast session in the network) is
non-trivial, and QMF alone no longer suffices to achieve the capacity to within a bounded
gap. Unlike single unicast networks where good understanding has been well established
both for wired and wireless networks, even for two unicast wired networks, the capacity
region remains open. In Chapter 6 we will present some results towards this direction for
wireless networks.

1.1.3 Two-User Interference Channel

When there are more than single source and more than single destination in wireless net-
works, the simplest scenario is the two-user interference channel. As mentioned above, recent
progress [5] has shown that the Han-Kobayashi scheme achieves the capacity of the two-user
Gaussian IC to within 1 bit/s/Hz. The Han-Kobayashi scheme is nothing but a superposition
coding scheme [4]. It turns out that a simple superposition of Gaussian random codes suffices
to achieve the capacity to within 1 bit regardless of channel parameters. Such a scheme is
the key building block of the two-user interference channel with receiver cooperation and
the two-user interference channel with transmitter cooperation developed in Chapter 2 and
Chapter 4 respectively. Therefore, below we first briefly discuss the simple Han-Kobayashi
scheme used in the two-user Gaussian interference channel, adapted from [5].

The Han-Kobayashi strategy involves splitting the transmitted information of both users
into two parts: private information to be decoded only at the intended receiver and common
information that can be decoded at both receivers. By decoding the common information,
part of the interference can be canceled off, while the remaining private information from
the other user is treated as noise. The Han-Kobayashi strategy allows arbitrary splits of
each users transmit power into the private and common information portions as well as time
sharing between multiple such splits. Hence, the key is to find the most suitable power
split. It turns out that the power of the private information of each user should be set
such that it is received at the level of the Gaussian noise at the other receiver. In this way,
the interference caused by the private information has a small effect on the other link as
compared to the impairments already caused by the noise. At the same time, quite a lot of
private information can be conveyed in the own link if the direct gain is appreciably larger
than the cross gain. Moreover, the scheme involves only a single private-common split and
no time-sharing is needed.

The linear deterministic model provides a clear and intuitive explanation about the
power-split mentioned above. In the linear deterministic interference channel, at each trans-
mitter, the bit levels of the transmitted signal can be divided naturally into two parts: private
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levels, which do not appear at the other receiver due to the shift matrix, and common levels,
which appear at the other receiver. This gives a clear illustration why such power-split in
the Gaussian model is reasonable. On the other hand, the capacity region of the linear
deterministic interference channel is known, as it is a special case of the deterministic in-
terference channel considered in [14]. Hence by mimicking the outer-bounding techniques in
[14], tighter outer bounds can be derived in the Gaussian case [5].

When we deal with the case where the transmitters or the receiver are allowed to cooper-
ate, the schemes and outer bounds will build upon the insights obtained in the case without
cooperation, while more new elements will come into play due to cooperation. More details
will be described in Chapter 2 and Chapter 4.

1.2 Organization of the Dissertation

The dissertation comprises of three parts. The contents of Part I and Part II are published in
[15] and [16] respectively. The work of Part III is in collaboration with Sudeep U. Kamath
and is published in [17]. Each part is divided into two chapters, where the first chapter
describes the main contribution and the second chapter complements the first with detailed
proofs.

In Part I and Part II we investigate how much interference can limited cooperation mit-
igate in the canonical two-transmitter-two-receiver system. In Chapter 2 and Chapter 4,
we respectively investigate the two-user Gaussian interference channel with conferencing2

receivers and the two-user Gaussian interference channel with conferencing transmitters.
We characterize the capacity region to within a bounded gap in both scenarios by deriving
tight outer bounds and good cooperative interference management strategies. Further, we
show that there is an interesting reciprocity between the scenario with conferencing trans-
mitters and the scenario with conferencing receivers, and their capacity regions are within
a bounded gap to each other. Hence in the interference-limited regime, the behavior of
the benefit brought by transmitter cooperation is the same as that by receiver cooperation.
Qualitatively, we identify two regions regarding the gain from limited cooperation: linear
and saturation regions. In the linear region cooperation is efficient and provides a degrees-of-
freedom gain, which is either one cooperation bit buys one over-the-air bit or two cooperation
bits buy one over-the-air bit until saturation. In the saturation region cooperation is ineffi-
cient and provides only a power gain, which is bounded regardless of the rate at which the
two terminals cooperate.

In Part III, we investigate the problem of two unicast wireless information flows by study-
ing the two unicast linear deterministic networks. When the minimum cut value between
each source-destination pair is constrained to be 1, we completely characterize the capac-
ity region and conclude that there are exactly five possible capacity regions of this class of
networks. Our achievability scheme is based on linear coding over an extension field with

2Cooperation is orthogonal to the signals in the interference channel.
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at most four nodes performing special linear coding operations, namely interference neutral-
ization and zero forcing, while all other nodes perform oblivious operations, that is, random
linear coding.
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Part I

Interference Mitigation through
Receiver Cooperation
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Chapter 2

Interference Channel with Receiver
Cooperation

Interference is a major issue limiting the performance in wireless networks. Cooperation
among receivers can help mitigate interference by forming distributed MIMO systems. The
rate at which receivers cooperate, however, is limited in most scenarios. How much inter-
ference can one bit of receiver cooperation mitigate? In this chapter, we study the two-user
Gaussian interference channel with conferencing receivers to answer this question in a sim-
ple setting. We identify two regions regarding the gain from receiver cooperation: linear
and saturation regions. In the linear region, receiver cooperation is efficient and provides a
degrees-of-freedom gain, which is either one cooperation bit buys one over-the-air bit or two
cooperation bits buy one over-the-air bit. In the saturation region receiver cooperation is in-
efficient and provides a power gain, which is bounded regardless of the rate at which receivers
cooperate. The conclusion is drawn from the characterization of capacity region to within
two bits/s/Hz, regardless of channel parameters. The proposed strategy consists of two parts:
(1) the transmission scheme, where superposition encoding with a simple power split is em-
ployed, and (2) the cooperative protocol, where one receiver quantize-bin-and-forwards its
received signal, and the other after receiving the side information decode-bin-and-forwards
its received signal.

2.1 Introduction

In modern communication systems, interference is one of the fundamental factors that limit
performance. The simplest information theoretic model for studying this issue is the two-user
interference channel. Characterizing its capacity region is a long-standing open problem, ex-
cept for several special cases (eg., the strong interference regime [2]). The largest achievable
region to date is reported by Han and Kobayashi [4], and the core of the scheme is a super-
position coding strategy. Recent progress has been made on both inner bounds and outer
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bounds: Etkin, Tse, and Wang characterize the capacity region of the two-user Gaussian
interference channel to within one bit [5] by using a superposition coding scheme with a
simple power-split configuration and by providing new upper bounds. The bounded-gap-to-
optimality result [5] leads to an uniform approximation of the capacity region and provides
a strong guarantee on the performance of the proposed scheme. Later, Motahari and Khan-
dani [6], Shang, Kramer, and Chen [7], and Annapureddy and Veeravalli [8] independently
improve the outer bounds and characterize the sum capacity in a very weak interference
regime and a mixed interference regime.

In the above interference channel set-up, transmitters or receivers are not allowed to
communicate with one another, and each user has to combat interference on its own. In
various scenarios, however, nodes are not isolated, and transmitters/receivers can exchange
certain amount of information. Cooperation among transmitters/receivers can help mitigate
interference by forming distributed MIMO systems which provide two kinds of gains: degrees-
of-freedom gain and power gain. The rate at which they cooperate, however, is limited, due to
physical constraints. Therefore, one of the fundamental questions is, how much interference
can limited transmitter/receiver cooperation mitigate? How much gain can it provide?

In this chapter, we consider a two-user Gaussian interference channel with conferencing
receivers to answer this question regarding receiver cooperation. Conferencing among en-
coders/decoders has been studied in [18], [19], [20], [21], [22], and [23]. Our model is similar
to those in [22] and [23] but in an interference channel set-up. The work in [22] characterizes
the capacity region of the compund multiple access channel (MAC) with unidirectional con-
ferencing between decoders. For general set-up (i.e., bidirectional conferencing), it provides
achievable rates and finds the maximum achievable individual rate to within a bounded gap,
but is not able to establish an uniform approximation result on the capacity region. The work
in [23] considers one-sided Gaussian interference channels with unidirectional conferencing
between decoders and characterizes the capacity region in strong interference regimes and
the asymptotic sum capacity at high SNR. For general receiver cooperation, works including
[24] and [25], investigate cooperation in interference channels with a set-up where the coop-
erative links are in the same band as the links in the interference channel. In particular, [25]
characterizes the sum capacity of Gaussian interference channels with symmetric in-band
receiver cooperation to within a bounded gap. Our work, on the other hand, is focused on
the Gaussian interference channel with out-of-band (orthogonal) receiver cooperation, and
studies its entire capacity region. Works on interference channels with additional relays [26]
[27] [28] and two-hop interference-relay networks [29] are also related to our problem, since
the receivers also serve as relays in our set-up.

We propose a strategy achieving the capacity region universally to within 2 bits/s/Hz
per user, regardless of channel parameters. The two-bit gap is the worst-case gap which
can be loose in some regimes, and it is vanishingly small at high SNR when compared to
the capacity. The strategy consists of two parts: (1) the transmission scheme, describing
how transmitters encode their messages, and (2) the cooperative protocol, describing how
receivers exchange information and decode messages. For transmission, both transmitters
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use superposition coding [4] with the same common-private power split as in the case without
cooperation [5]. For the cooperative protocol, it is appealing to apply the decode-forward
or compress-forward schemes, originally proposed in [3] for the relay channel, like most
works dealing with more complicated networks, including [21], [22], [23], [24], [12], etc. It
turns out neither conventional compress-forward nor decode-forward achieves capacity to
within a bounded gap for the problem at hand. On the other hand, [30], [31], [32], [33],
and [9] observe that the conventional compress-forward scheme [3] may be improved by the
destination directly decoding the sender’s message instead of requiring to first decode the
quantized signal of the relay. We use such an improved compress-forward scheme as part of
our cooperative protocol. One of the receivers quantizes its received signal at an appropriate
distortion, bins the quantization codeword and sends the bin index to the other receiver.
The other receiver then decodes its own information based on its own received signal and
the received bin index. After decoding, it bin-and-forwards the decoded common messages
back to the former receiver and helps it decode. Note that although arbitrary number of
rounds is allowed in the conferencing formulation, it turns out that two rounds are sufficient
to achieve within 2 bits of the capacity.

We identify two regions regarding the gain from receiver cooperation: linear and satu-
ration regions, as illustrated through a numerical example in Fig. 2.1. In the plot we fix
the signal-to-noise ratios (SNR) and interference-to-noise ratios (INR) to be 20dB and 15dB
respectively, and we plot the over-the-air user data rate versus the cooperation rate. In the
linear region, receiver cooperation is efficient, in the sense that the growth of over-the-air
user data rate is roughly linear with respect to the capacity of receiver-cooperative links. The
gain in this region is the degrees-of-freedom gain that distributed MIMO systems provide.
On the other hand, in the saturation region, receiver cooperation is inefficient in the sense
that the growth of each user’s over-the-air data rate becomes saturated as one increases the
rate in receiver-cooperative links. The gain is the power gain that is bounded, regardless of
the cooperation rate. We will focus on the system performance in the linear region, because
not only that in most scenarios the rate at which receivers can cooperate is limited, but also
that the gain from cooperation is more significant.

With the bounded-gap-to-optimality result, we find that the fundamental gain from co-
operation in the linear region as follows: either one cooperation bit buys one over-the-air
bit or two cooperation bits buy one over-the-air bit until saturation, depending on channel
parameters. In the symmetric set-up, at high SNR, when INR is below 50% of SNR in dB
scale, one-bit cooperation per direction buys roughly one-bit gain per user until full receiver
cooperation performance is reached, while when INR is between 67% and 200% of SNR in
dB scale, one-bit cooperation per direction buys roughly half-bit gain per user. In the weak
interference regime, for a given pair of (SNR, INR), when the receiver-cooperative link ca-
pacity CB > log INR, cooperation between receivers can get a close-to-interference-free (that
is, within a bounded gap) performance. In the strong interference regime, in contrast to
that without cooperation, system performance can be boost beyond interference-free perfor-
mance, by utilizing receiver-cooperative links not only for interference mitigation but also
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Figure 2.1: The Gain from Limited Receiver Cooperation

for forwarding desired information, since the cross link is stronger than the direct link.
The rest of this chapter is organized as follows. In Section 2.2, we introduce the channel

model and formulate the problem. In Section 2.3, we provide intuitive discussions about
achievability and motivate our two-round strategy. Then we give examples to illustrate why
it is not a good idea to use cooperative protocols based on conventional compress-forward or
decode-forward. In Section 2.4, we describe the strategy concretely and derive its achievable
rates, and in Section 2.5 we show that the achievable rate region is within 2 bits per user
to the outer bounds we provide. In addition, we characterize the capacity region of the
compound MAC with conferencing receivers to within 1 bit, as a by-product. In Section
2.7, focusing on the symmetric set-up, we illustrate the fundamental gain from receiver
cooperation by deriving the optimal number of generalized degrees of freedom (g.d.o.f.) and
compare it with the achievable ones of suboptimal schemes.

2.2 Problem Formulation

2.2.1 Channel Model

The two-user Gaussian interference channel with conferencing receivers is depicted in Fig.
4.1.



CHAPTER 2. INTERFERENCE CHANNEL WITH RX COOPERATION 13

ENC 1

ENC 2

DEC 1

DEC 2

+

+

m1

m2

x1

x2

h11

h22

h12

h21

z1

z2

m̂1

m̂2

u21u12

Figure 2.2: Channel Model

Transmitter-Receiver Links

The transmitter-receiver links are modeled as the normalized Gaussian interference channel:

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2,

where the additive noise processes {zi[n]}, (i = 1, 2), are independent CN (0, 1), i.i.d. over
time. In this chapter, we use [.] to denote time indices. Transmitter i intends to convey
message mi to receiver i by encoding it into a block codeword {xi[n]}Nn=1, with transmit
power constraints

1

N

N∑
n=1

∣∣xi[n]
∣∣2 ≤ 1, i = 1, 2,

for arbitrary block length N . Note that the outcome of each encoder depends solely on its
own message. Messages m1,m2 are independent. Define channel parameters

SNRi := |hii|2, INRi := |hij|2, i, j = 1, 2, i 6= j.

Receiver-Cooperative Links

For (i, j) = (1, 2), (2, 1), the receiver-cooperative links are noiseless with capacity CB
ij from re-

ceiver i to j. Encoding must satisfy causality constraints: for any time index n = 1, 2, . . . , N ,
the cooperation signal from receiver 2 to 1, u21[n], is only a function of {y2[1], . . . , y2[n −
1], u12[1], . . . , u12[n − 1]}, and the cooperation signal from receiver 1 to 2, u12[n], is only a
function of {y1[1], . . . , y1[n− 1], u21[1], . . . , u21[n− 1]}.

In the rest of this chapter, we use vn to denote the sequence {v[1], . . . , v[n]}.
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2.2.2 Strategies, Rates, and Capacity Region

We give the basic definitions for the coding strategies, achievable rates of the strategy, and
the capacity region of the channel.

Definition 2.1 (Strategy and Average Probability of Error). An (M1,M2, N)-strategy con-
sists of the following: for i, j = 1, 2, i 6= j,

(1) message set Mi := {1, 2, . . . ,Mi} for user i;

(2) encoding function e
(N)
i :Mi → CN , mi 7→ xNi at transmitter i;

(3) set of relay functions {r(n)
i }Nn=1 such that uij[n] = r

(n)
i (yn−1

i , un−1
ji ) ∈ {1, 2, . . . , 2CB

ij},
∀n = 1, 2, . . . , N at receiver i;

(4) decoding function d
(N)
i : CN × {1, 2, . . . , 2NCB

ji} →Mi, (yNi , u
N
ji) 7→ m̂i at receiver i.

The average probability of error

P (N)
e :=

1

M1M2

∑
m1∈M1
m2∈M2

Pr

{
d

(N)
1 (yN1 , u

N
21) 6= m1 or

d
(N)
2 (yN2 , u

N
12) 6= m2

∣∣∣∣∣ m1,m2

are sent

}

Definition 2.2 (Achievable Rates and Capacity Region). A rate tuple (R1, R2) is achievable
if for any ε > 0 and for all sufficiently large N , there exists an (M1,M2, N) strategy with

Mi ≥ 2NRi, for i = 1, 2, such that P
(N)
e < ε. The capacity region C is the collections of all

achievable (R1, R2).

2.2.3 Notations

We summarize below the notations used in the rest of this chapter.

• For a real number a, (a)+ := max(a, 0) denotes its positive part.

• For sets A,B ⊆ Rk in an k-dimensional space, A⊕B := {a+ b : a ∈ A, b ∈ B} denotes
the direct sum of A and B. conv{A} denotes the convex hull of the set A.

• With a little abuse of notations, for x, y ∈ Fq, x ⊕ y denotes the modulo-q sum of x
and y.

• Unless specified, all the logarithms log(.) are of base 2.
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2.3 Motivation of Strategies

Before introducing our main result, we first provide intuitive discussions about achievability
and motivate our two-round strategy (to be described in detail in Section 2.4) from a high-
level perspective. Then we give examples to illustrate why cooperative protocols based on
conventional compress-forward or decode-forward may not be good for cooperation between
receivers to mitigate interference. Throughout the discussion in this section, we will make
use of the linear deterministic model proposed in [34] [9].

The linear deterministic model is a tool for studying Gaussian networks so that an uniform
approximation of the capacity can be found. It is also used for the two-user interference
channel [10]. The model captures the signal interaction in the original Gaussian scenario
to some extent, and is useful for illustrating some subtle facts which are not easy to be
uncovered in the Gaussian scenario. Throughout this chapter, all discussions involving the
linear deterministic model are either aimed to elucidate a certain phenomenon that arises
in the Gaussian scenario, or to provide an intuitive argument for a certain claim without
rigorously proving it.

2.3.1 Optimal Strategy in the Linear Deterministic Channel

First, consider the following symmetric channel: SNR1 = SNR2 = SNR, INR1 = INR2 = INR,
and CB

12 = CB
21 = CB. Set INR to be 2/3 of SNR in dB scale, that is, log INR = 2

3
log SNR. Set

CB = 1
3

log SNR. The corresponding linear deterministic channel (LDC) is depicted in Fig.
2.3. The bits at the levels of transmitters/receivers can be thought of as chunks of binary
expansions of the transmitted/received signals. Note that in this example, one bit in the
LDC corresponds to 1

3
log SNR bits in the Gaussian channel. Because INR < SNR, the least

significant bit (LSB) of each transmitter appears below noise level at the other receiver and
is invisible.

In the discussions below, bit ak ∈ F2 denotes the bit sent at the k-th level from the most
significant bit (MSB) at transmitter 1, and similarly bk ∈ F2 denotes the bit sent at the k-th
level at transmitter 2.

We begin with the baseline where two receivers are not allowed to cooperate. The trans-
mitted signals are naturally broken down into two parts: (1) the common levels, which
appear at both receivers, and (2) the private levels, which only appear at its own receiver.
Each transmitter splits its message into common and private parts, which are linearly mod-
ulated onto the common and private levels of the signal respectively. Each receiver then
decodes both user’s common messages and its own private message by solving the linear
equations it received. This is shown to be optimal in the two-user interference channel [10].
In this example (Fig. 2.3.(a)), bits a1 and b1 are common, while a3 and b3 are private. The
sum capacity without cooperation is 4 bits. One cannot turn on the bit a2 (or b2) since the
number of variables (bits) to be solved at the receiver 1, that is, {a1, a3, b1}, has already met
the maximum number of equations it has.
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Figure 2.3: An Example Channel

With receiver cooperation, the natural split of transmitted signals does not change. This
suggests that the encoding procedure and the aim of each decoder remain the same. Each
receiver with the help from the other receiver, however, is able to decode more information
because it has additional linear equations. Since each user’s private message is not of interest
to the other receiver, a natural scheme for receiver cooperation is to exchange linear combi-
nations formed by the signals above the private signal level so that the undesired signal does
not pollute the cooperative information. In this example, as illustrated in Fig. 2.3.(b), with
one-bit cooperation in each direction in the LDC, the optimal sum rate is 5 bits, achieved by
turning on one more bit a2. This causes collisions at the second level at receiver 1 and at the
third level at receiver 2, but they can be resolved with cooperation: receiver 1 sends b1⊕a2 to
receiver 2, and receiver 2 sends b1 to receiver 1. Now receiver 1 can solve (a1, a2, a3, b1), and
receiver 2 can solve (b1, b3, a1, a2). In fact, the exchanged linear combinations are not unique.
For example, receiver 1 can send (b1 ⊕ a2)⊕a1 and receiver 2 can send b1⊕a1, and this again
achieves the same rates. As long as receiver 1 does not send a linear combination containing
the private bit a3 and the sent linear combination is linearly independent of the signals at
receiver 2 (and vice versa for the linear combination sent from receiver 2 to receiver 1), the
scheme is optimal for this example channel. The above discussion regarding the scheme in
the LDC naturally leads to an implementable one-round scheme in the Gaussian channel,
where both receivers quantize and bin their received signals at their own private signal level.

In the above example, it is optimal that each receiver sends to each other linear combina-
tions formed by its received signals above its private signal level. Is this optimal in general?
The answer is no. Consider the following asymmetric example: SNR2 = INR2, SNR1 is 2/3
of SNR2 in dB, and INR1 is 1/3 of SNR2 in dB. CB

12 = 2
3

log SNR2 and CB
21 = 1

3
log SNR2.

The corresponding LDC is depicted in Fig. 2.4, where one bit in the LDC corresponds to
1
3

log SNR2 in the Gaussian channel. First consider the same scheme as that in the previous
exmaple. Note that if receiver 2 just forwards signals above its private signal level, it can
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only forward a1 to receiver 1 and achieves R1 up to 2 bits. On the other hand, if receiver
2 forwards a3 to receiver 1, which is below user 2’s private signal level, it achieves R1 = 3
bits. From this example, we see that once there is “useful” information (which should not
be polluted by the receiver’s own private bits) which lies at or below the private signal level
(in this example, the bit a3), the one-round scheme described in the previous example is
suboptimal. To extract the useful information at or below the private signal level, one of the
receivers (in this example, receiver 2) can first decode and then form linear combinations
using (decoded) common messages only.
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Figure 2.4: An Asymmetric Example

It turns out that without loss of generality, the above situation (where there is useful
information for the other receiver lies at or below the private signal level) only happens at
most at one receiver. In other words, there exists a receiver where no useful information (for
the other receiver) lies at or below the private signal level. The reason is the following:

1. It is straightforward to see that the capacity region is convex, and hence if a scheme
can achieve max(R1,R2)∈C {µ1R1 + µ2R2} for all µ1, µ2 ≥ 0, it is optimal.

2. If µ1 ≥ µ2, we weigh user 1’s rate more. Since the private bits are cheaper to support in
the sense that they do not cause interference at receiver 2, user 1 should be transmitting
at its full private rate, which is equal to the number of levels at or below the private
signal level at receiver 1. Therefore, all levels at or below the private signal level are
occupied by user 1’s private bits and there is no useful information at receiver 1 for
receiver 2.

3. Similarly if µ1 ≤ µ2, there is no useful information at receiver 2 for receiver 1 at or
below the private signal level.

Hence, the following two-round strategy turns out to be optimal in the LDC (the proof is
omitted here): if µ1 ≥ µ2, receiver 1 forms a certain number (no more than the cooperative
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link capacity) of linear combinations composed of the signals above its private signal level
and sends them to receiver 2. After receiver 2 decodes, it forms a certain number of linear
combinations composed of the decoded common bits and sends them to receiver 1. If µ1 ≤ µ2,
the roles of receiver 1 and 2 are exchanged. Note that depending on the operating point in
the capacity region, we use different configurations, implying that time-sharing is needed to
achieve the full capacity region.

From the above discussion, a natural and implementable two-round strategy for Gaus-
sian channels emerges. For the transmission, we use a superposition Gaussian random coding
scheme with a simple power-split configuration, as described in [5]. For the cooperative pro-
tocol, one of the receivers quantize-and-bins its received signal at its private signal level and
forwards the bin index; after the other receiver decodes with the helping side information, it
bin-and-forwards the decoded common messages back to the first receiver and helps it de-
code. In Section 2.5, we shall prove that this strategy achieves the capacity region universally
to within 2 bits per user.

2.3.2 Conventional Compress-Forward and Decode-Forward

We have motivated the two-round strategy to be proposed formally in the next section from
a high level perspective. Below we shall illustrate why conventional compress-forward (CF)
and decode-forward (DF) are not good in certain regimes.

It is a standard approach to evaluate achievable rates of Gaussian relay networks us-
ing conventional compress-forward with Gaussian vector quantization (VQ) assuming joint
Gaussianity of the received signals at relays and destination in the literature, including [21],
[22], [23], [24], [12], etc. What if we replace the quantize-binning part in the two-round strat-
egy proposed above by the conventional compress-forward with Gaussian VQ, as in [35], [21],
and [22], where the two-round idea is also used?

Let us consider another symmetric channel with log INR = 3
5

log SNR and CB = 1
5

log SNR.
From its corresponding LDC in Fig. 2.5, one can see that the two received signals of the
Gaussian channel, (y1, y2), are not jointly Gaussian. The reason is that, suppose they are
jointly Gaussian, the conditional distribution of y2 given y1 should be marginally Gaussian.
As Fig. 2.5 suggests, however, conditioning on receiver 1’s signal results in a hole at the third
level of receiver 2’s signal, which was occupied by a1. Therefore, transmitter 2’s common
codebook is not dense enough to make the conditional distribution of y2 given y1 marginally
Gaussian. The incorrect assumption results in larger quantization distortions, as depicted in
Fig. 2.5.(b)1. The information sent from receiver 1 to receiver 2, a1, is redundant, and cannot
help mitigate interference a2. Hence, the achievable sum rate is 7 bits (4 bits for user 1 and
3 bit for user 2), while the one-round scheme in Fig. 2.5.(a) achieves 8 bits. Recall that 1 bit

1If we view the received signals as vectors of bits rather than binary expansions of Gaussian signals, we
are not restricted to send the MSB a1 to receiver 2 and a2 can be sent instead. However, this kind of scheme
cannot be implemented in the Gaussian scenario using conventional compress-forward with Gaussian VQ.
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in the LDC corresponds to 1
5

log SNR in the Gaussian channel, therefore the performance loss
is unbounded as SNR→∞. The main reason why conventional compress-forward does not
work well is that the scheme does not well utilize the dependency between the two received
signals.
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Figure 2.5: Another Example Channel

Another standard approach is to use decode-forward for the two receivers to cooperate.
Let us go back to the first example and consider the channel in Fig. 2.3. Note that there is
no gain if we require both common messages to be decoded at one of the receivers at the first
stage without cooperation. By symmetry we can assume that, without loss of generality,
each receiver first decodes its own common message and then bin-and-forwards the decoded
information to the other receiver. At the second stage, it then decodes the other user’s
common message with the help from cooperation and decodes its own private message. In
the corresponding LDC, the common bit a2 cannot be decoded at the first stage, and hence
the total throughput using this strategy is at most 4 bits, which is again the same as that
without cooperation. The reason why decode-forward is not good for the two receivers to
cooperate is that, it is too costly to decode users’ own common message at the first stage
without the help from cooperation.
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2.4 A Two-Round Strategy

In this section we describe the two-round strategy and derive its achievable rate region. The
strategy consists of two parts: (1) the transmission scheme and (2) the cooperative protocol.

2.4.1 Transmission Scheme

We use a simple superposition coding scheme with Gaussian random codebooks. For each
transmitter, it splits its own message into common and private (sub-)messages. Each com-
mon message is aimed at both receivers, while each private one is aimed at its own receiver.
Each message is encoded into a codeword drawn from a Gaussian random codebook with a
certain power. For transmitter i, the power for its private and common codes are Qip and
Qic = 1−Qip respectively, for i = 1, 2. As [5] points out, since the private signal is undesired
at the unintended receiver, a reasonable configuration is to make the private interference at
or below the noise level so that it does not cause much damage and can still convey additional
information in the direct link if it is stronger than the cross link. When the interference is
stronger than the desired signal, simply set the whole message to be common. In a word,

for (i, j) = (1, 2) or (2, 1), Qip = min
{

1
INRj

, 1
}

if SNRi > INRj, and Qip = 0 otherwise.

2.4.2 Cooperative Protocol

The cooperative protocol is two-round. We briefly describe it as follows: for (i, j) = (1, 2) or
(2, 1), at the first round, receiver j quantizes its received signal and sends out the bin index
(the procedure is described in detail below). At the second round, receiver i receives this side
information, decodes its desired messages (both users’ common messages and its own private
message) with the decoder described in detail below, randomly bins the decoded common
messages, and sends the bin indices to receiver j. Finally receiver j decodes with the help
from the receiver-cooperative link. We call this a two-round strategy STGj→i→j, meaning
that the processing order is: receiver j quantize-and-bins, receiver i decode-and-bins, and
receiver j decodes. Its achievable rate region is denoted by Rj→i→j. By time-sharing, we
can obtain achievable rate region R := conv {R2→1→2 ∪R1→2→1}, convex hull of the union
of two rate regions.

Remark 2.3 (Engineering Interpretation). There is a simple way to understand the strategy
from an engineering perspective. To achieve max(R1,R2)∈R {µ1R1 + µ2R2} for some non-
negative (µ1, µ2), the processing configuration can be easily determined: strategy STGj→i→j
should be used, where i = arg minl=1,2{µl} and j = arg maxl=1,2{µl}. In a word, the receiver
which decodes last is the one we favor most. This is the high-level intuition we obtained from
the discussion in the LDC in Section 2.3.1.

In the following, we describe each component in detail, including quantize-binning,
decode-binning, and their corresponding decoders. For simplicity, we consider strategy
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STG2→1→2.

Quantize-binning (receiver 2):
Upon receiving its signal from the transmitter-receiver link, receiver 2 does not decode

messages immediately. Instead, serving as a relay, it first quantizes its signal by a pre-
generated Gaussian quantization codebook with certain distortion, and then sends out a bin
index determined by a pre-generated binning function. How should we set the distortion?
As discussed in the previous section, note that both its own (user 2’s) private signal and the
noise it encounters are not of interest to receiver 1. Therefore, a natural configuration is to
set the distortion level equal to the aggregate power level of the noise and user 2’s private
signal.

Decoder at receiver 1:
After retrieving the receiver-cooperative side information, that is, the bin index, receiver

1 decodes two common messages and its own private message, by searching in transmitters’
codebooks for a codeword triple (indexed by user 1 and user 2’s common messages and user
1’s own private message) that is jointly typical with its received signal and some quantization
point (codeword) in the given bin. If there is no such unique codeword triple, it declares an
error.

Decode-binning (receiver 1):
After receiver 1 decodes, it uses two pre-generated binning functions to bin the two

common messages and sends out these two bin indices to receiver 2.

Decoder at receiver 2:
After receiving these two bin indices, receiver 2 decodes two common messages and its

own private message, by searching in the corresponding bins (containing common messages)
and user 2’s private codebook for a codeword triple that is jointly typical with its received
signal.

Remark 2.4 (Difference from the Conventional CF). The action of receiver 2 as a relay is
very similar to that of the relay in the conventional compress-forward with Gaussian vector
quantization. Note that the main difference from the conventional compress-forward with
Gaussian vector quantization lies in the decoding procedure (at receiver 1) and the cho-
sen distortion. In the conventional Gaussian compress-forward, the decoder first searches
in the bin for one quantization codeword that is jointly typical with its received signal from
its own transmitter only, assuming that the two received signals are jointly Gaussian. This
may not be true since a single user may not transmit at the capacity in its own link, which
results in “holes” in signal space. As a consequence, this scheme may not utilize the depen-
dency of two received signals well and cause larger distortions. Our scheme, on the other
hand, utilizes the dependency in a better way by jointly deciding the quantization codeword
and the message triple, consequently allows smaller distortions, and is able to reveal the
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beneficial side information to the other receiver. Quantize-binning and its corresponding de-
coding part of our scheme is very similar to extended hash-and-forward proposed in [31],
in which it was pointed out that the scheme has no advantage over conventional compress-
forward in a single-source single-relay setting. In the Gaussian single-relay channel (with
orthogonal noise-free relay-destination link), the received signal at the relay and the desti-
nation are indeed jointly Gaussian when communicating at the quantize-map-and-forward
achievable rate, and hence the performances of the two schemes are the same. Due to the
above mentioned issues, however, we recognize in our problem where the channel consists of
two source-destination pairs and two relays, the scheme has an unbounded advantage over
the conventional compress-forward in certain regimes. Such phenomena are also observed
in single-source single-destination Gaussian relay networks [9] [36] and interference-relay
channels [28] [36].

2.4.3 Achievable Rates

The following theorem establishes the achievable rates of strategy STG2→1→2. Let Ric and
Rip denote the rates for user i’s common message and private message respectively, for
i = 1, 2.

Theorem 2.5 (Achievable Rate Region for STG2→1→2). The rate tuple (R1c, R2c, R1p, R2p)
satisfying the following constraints is achievable:

Constraints at receiver 1:

R1p ≤ min
{
I (x1; y1|x1c, x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x1c, x2c)
}

(2.1)

R2c ≤ min
{
I (x2c; y1|x1) + (CB

21 − ξ1)+, I (x2c; y1, ŷ2|x1)
}

(2.2)

R2c +R1p ≤ min
{
I (x2c, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x1; y1, ŷ2|x1c)
}

R1c +R1p ≤ min
{
I (x1; y1|x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2c)
}

(2.3)

R1c +R2c +R1p ≤ min
{
I (x1, x2c; y1) + (CB

21 − ξ1)+, I (x1, x2c; y1, ŷ2)
}

where

ξ1 = I (ŷ2; y2|x1c, x1, x2c, y1) .

For i = 1, 2, xic ∼ CN (0, Qic) is the common codebook generating random variable. x1 =
x1p + x1c is the superposition codebook generating variable, where x1p ∼ CN (0, Q1p) is inde-

pendent of x1c. ŷ2
d
= y2 + ẑ2 is the quantization codebook generating random variable, and

ẑ2 ∼ CN (0,∆2), independent of everything else. ∆2 is the quantization distortion at receiver
2.
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Constraints at receiver 2:

R2p ≤ I (x2; y2|x2c, x1c)

R1c +R2p ≤ I (x1c, x2; y2|x2c) + CB
12

R2c +R2p ≤ I (x2; y2|x1c) + CB
12

R2c +R1c +R2p ≤ I (x2, x1c; y2) + CB
12,

where x2 = x2p+x2c is the superposition codebook generating variable, and x2p ∼ CN (0, Q2p)
is independent of x2c.

Proof. For details, see Chapter 3.1. Here we give some high-level comments on these rate
constraints. First, unlike interference channels without cooperation, here receiver 1 is re-
quired to decode m2c correctly so that it can help receiver 2. This additional requirement
gives the rate constraint (2.2) on R2c.

Second, in the set of constraints at receiver 1, on the right-hand side they are all minimum
of two terms. The second term corresponds to the case when the receiver-cooperative link is
strong enough to convey the quantized ŷN2 correctly. The first term corresponds to the case
when receiver 1 can only figure out a set of candidates of quantized ŷN2 . Regarding the “rate
loss” term ξ1, in Section 2.3 we see that in the LDC as long as the quantization level is chosen
such that no private signals pollute the cooperative information, there is no such penalty.
In fact, ξ1 = I (ŷ2; y2|x1c, x1, x2c, y1) corresponds to the number of private bits polluting the
cooperative linear combinations in the LDC if one chooses the quantization distortion to be
too small. In the Gaussian channel, however, due to the carry-over of real additions, the
private part will always “leak” into the levels above the quantization level and hence there
is always at least a bounded rate loss even if we choose the quantization distortion properly.

Finally, in the set of constraints at receiver 2, since receiver 1 only helps receiver 2 decode
m1c and m2c, there is no enhancement in R2p.

We shall use the following shorthand notations throughout the rest of the chapter: for
(i, j) = (1, 2), (2, 1),

SNRip := |hii|2Qip = SNRi ·Qip,

INRip := |hij|2Qjp = INRi ·Qjp.

Next, we quantify the “rate loss” term ξ1 in the set of rate constraints at receiver 1, in
terms of distortions ∆2:

ξ1 = I(ŷ2; y2|x1c, x1, x2c, y1)

= h(ŷ2|x1c, x1, x2c, y1)− h(ŷ2|x1c, x1, x2c, y1, y2)

= h (h22x2p + z2 + ẑ2|h12x2p + z1)− h (ẑ2)

= log

(
1 + ∆2

∆2

+
SNR2p

(1 + INR1p)∆2

)
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≤ log

(
1 + ∆2 + SNR2p

∆2

)
, (2.4)

Below we shall see why the intuition of quantizing at the private signal level works. By
choosing ∆2 = 1 + SNR2p, the “rate loss” ξ1 is upper bounded by 1. In particular, when
SNR2 ≤ INR1, we have SNR2p = 0 and hence ξ1 = 1. On the other hand, note that for
receiver 1 the unwanted signal power level in y2 is exactly 1 + SNR2p, and receiver 1 treats
the unwanted signals as noise anyway. Hence, replacing ŷ2 by y2 only increases the rate by
a bounded gain.

Remark 2.6. The above configuration of the distortion may not be optimal. The achievable
rates can be further improved if we optimize over all possible distortions. For example, if
the cooperative link capacity is large, one could lower the distortion level to yield a finer
description of received signals. With the above simple configuration, however, we are able
to show that it achieves the capacity region to within a bounded gap. Also note that in
this chapter, we generate the quantization codebook in a slightly different way than that
in conventional lossy source coding, where instead a “test channel” y2 = ŷ2 + ẑ2 is used.
With this choice the rate loss ξ1 can be made smaller, while the calculations become more
complicated.

2.5 Characterization of the Capacity Region to within

2 Bits

The main result in this section is the characterization of the capacity region to within 2 bits
per user universally, regardless of channel parameters. To prove it, first we provide outer
bounds of the capacity region. Ideas about how to prove them are outlined, and details are
left in Chapter 3. Then we make use of Theorem 2.5 to evaluate the achievable rate region,
and show that it is within 2 bits per user to the proposed outer bounds.

2.5.1 Outer Bounds

To prove the outer bounds, the main idea is the following: first, upper bound the rates by
mutual informations via Fano’s inequality and data processing inequality; second, decompose
them into two parts: (1) terms which are similar to those in Gaussian interference channels
without cooperation, and (2) terms which correspond to the enhancement from cooperation.
We use the genie-aided techniques in [5] to upper bound the first part and obtain namely
the Z-channel bound (where the genie gives interfering symbols xNj to receiver i, i 6= j)
and ETW-bound (where the genie gives the interference term caused by user i at receiver
j, sNi := hjix

N
i + zNj to receiver i). For the second part, we make use of the fact that uN12

and uN21 are both functions of (yN1 , y
N
2 ), and other straightforward bounding techniques. The

results are summarized in the following lemma.
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Lemma 2.7. C ⊆ C , where C consists of nonnegative rate tuples (R1, R2) satisfying the
following inequalities

R1 ≤ log(1 + SNR1) + min

{
CB

21, log

(
1 +

INR2

1 + SNR1

)}
(2.5)

R2 ≤ log(1 + SNR2) + min

{
CB

12, log

(
1 +

INR1

1 + SNR2

)}
(2.6)

R1 +R2 ≤ log

(
1 + INR1 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ CB

21 + CB
12 (2.7)

R1 +R2 ≤ log (1 + SNR2 + INR2) + log

(
1 +

SNR1

1 + INR2

)
+ CB

12 (2.8)

R1 +R2 ≤ log (1 + SNR1 + INR1) + log

(
1 +

SNR2

1 + INR1

)
+ CB

21 (2.9)

R1 +R2 ≤ log
(
1 + SNR1 + SNR2 + INR1 + INR2 + |h11h22 − h12h21|2

)
(2.10)

2R1 +R2 ≤ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ log

(
1 +

SNR1

1 + INR2

)
+ log (1 + SNR1 + INR1) + CB

21 + CB
12 (2.11)

R1 + 2R2 ≤ log

(
1 + INR1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

)
+ log (1 + SNR2 + INR2) + CB

12 + CB
21 (2.12)

2R1 +R2 ≤ log

(
1 +

SNR2

1 + INR1

+ INR2 + SNR1 +
INR1

1 + INR1

+
|h11h22 − h12h21|2

1 + INR1

)
+ log (1 + SNR1 + INR1) + CB

21 (2.13)

R1 + 2R2 ≤ log

(
1 +

SNR1

1 + INR2

+ INR1 + SNR2 +
INR2

1 + INR2

+
|h11h22 − h12h21|2

1 + INR2

)
+ log (1 + SNR2 + INR2) + CB

12 (2.14)

Proof. Details are left in Chapter 3.2. Below we give a short outline and intuitions. First
of all, bounds (2.5), (2.6), and (2.10) are straightforward cut-set upper bounds of individual
rates and sum rate respectively.

Bound (2.7) corresponds to the ETW-bound in Gaussian interference channels without
cooperation. In the genie-aided channel, we upper bound the gain from receiver cooperation
by CB

12 + CB
21, that is, in both directions each bit is useful.

Bounds (2.8) and (2.9) correspond to the Z-channel bounds. In the genie-aided channel,
since the genie gives interfering symbols xNj to receiver i, i 6= j, there is no interference at
receiver i. Intuitively, the cooperation from receiver j to i is now providing only the power
gain, and the genie can provide yNj to receiver i to upper bound this power gain. The gain
from the cooperation from receiver i to j is upper bounded by CB

ij.
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Bounds (2.11) and (2.12) on Ri+2Rj are derived by giving side information sNi to receiver
i and side information xNi and yNi to one of the receiver j’s. In the genie-aided channel there is
an underlying Z-channel structure, and hence the gain from one direction of the cooperation
is absorbed into a power gain. The rest is upper bounded by CB

12 + CB
21.

Bounds (2.13) and (2.14) on Ri + 2Rj are derived by giving side information yNj and
s̃Ni := hjix

N
i + z̃Nj , where z̃j ∼ CN (0, 1) and independent of everything else, to receiver

i and side information yNi to one of the receiver j’s. In the genie-aided channel, there is
an underlying point-to-point MIMO channel, and hence the gain from both directions of
cooperation is absorbed into the MIMO system. The rest is upper bounded by CB

ij.
Note that the derivation of all bounds works for all INR’s and SNR’s.

We make the following observations:

Remark 2.8 (Dependence on Phases). The sum-rate cut-set bound (2.10) not only depends
on SNR’s and INR’s but also on the phases of channel coefficients, due to the term |h11h22−
h12h21|2. In particular, when the receiver-cooperative link capacities CB’s are large, the two
receivers become near-fully cooperated, and the system performance is constrained by that of
the SIMO MAC; that is, it enters the saturation region. Therefore this bound becomes active
and the outer bound depends on phases.

Remark 2.9 (Strong Interference Regime). When SNR1 ≤ INR2 and SNR2 ≤ INR1, unlike
the Gaussian interference channel of which the capacity region is equal to that of a compound
MAC in the strong interference regime [2], here we cannot apply Sato’s argument. Recall that
when there is no cooperation, once user i’s own message is decoded successfully at receiver
i, it can produce ỹNj which has the same distribution as yNj . Since the error probability for
decoding user j’s message at receiver j only depends on the marginal distribution of yNj ,
it can be concluded that at receiver i one can achieve the same performance for decoding
user j’s message by using the same decoder as that in receiver j, and hence receiver i can
decode user j’s message successfully as well. When there is cooperation, however, the error
probability for decoding user j’s message at receiver j depends on the joint distribution of
(yNj , u

N
ij ). Note that the additive noise terms in ỹNj and yNj have different correlations with

the noise term zNi , and uNij can be highly correlated with zNi . As a consequence, the joint
distributions of (yNj , u

N
ij ) and (ỹNj , u

N
ij ) are not guaranteed to be the same, and receiver i

may not be able to achieve the same performance for decoding user j’s message by using
the same decoder as that in receiver j. Therefore, we cannot claim that the capacity region
under strong interference condition is the same as that of compound MAC with conferencing
receivers (CMAC-CR). Instead, we take the Z-channel bounds (2.8) and (2.9), which are
within 1 bit to the sum rate cut-set bound of CMAC-CR in strong interference regimes. This
will be discussed in the last part of this section.
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2.5.2 Capacity Region to within 2 bits

Subsequently we investigate three qualitatively different cases, namely, weak interference,
mixed interference, and strong interference2, in the rest of this section. We summarize the
main achievability result in the following theorem: (recall that C is the outer bound region
defined in Lemma 2.7)

Theorem 2.10 (Within Two-Bit Gap to Capacity Region).

R ⊆ C ⊆ C ⊆ R ⊕
(
[0, 2]× [0, 2]

)
,

Proof. Proved by Lemma 2.11, 2.14, and 2.17 in the rest of this section.

2.5.3 Weak interference

In the case SNR1 > INR2 and SNR2 > INR1, the configuration of superposition coding is to
split message mi into mic and mip, for both users i = 1, 2. We first consider STG2→1→2:
referring to Theorem 2.5, we obtain the set of achievable rates (R1c, R2c, R1p, R2p). The term
ξ1 ≤ 1 bit, due to (2.4) in Section 2.4.3 and the chosen distortion ∆2 = 1 + SNR2p.

To simplify calculations, note that the right-hand-side of (2.1), (2.2), and (2.3) are at
most a bounded gap from their lower bounds I (x1; y1|x1c, x2c), I (x2c; y1|x1), and I (x1; y1|x2c)
respectively. Therefore, we replace these three constraints by

R1p ≤ I (x1; y1|x1c, x2c) ,

R2c ≤ I (x2c; y1|x1) ,

R1c +R1p ≤ I (x1; y1|x2c)

in the following calculations. Next, rewriting Rip = Ri − Ric for i = 1, 2, applying Fourier-
Motzkin algorithm to eliminate R1c and R2c, and removing redundant terms (details omitted
here), we obtain an achievable R2→1→2, which consists of nonnegative (R1, R2) satisfying:

R1 ≤ min
{
I (x1; y1|x2c) , I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
R2 ≤ min

{
I (x2; y2|x1c) + CB

12, I (x2c; y1|x1) + I (x2; y2|x1c, x2c)
}

R1 +R2 ≤ I (x1, x2c; y1) + I (x2; y2|x1c, x2c) +
(
CB

21 − ξ1

)+
(2.15)

R1 +R2 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c) (2.16)

R1 +R2 ≤ I (x1, x2c; y1|x1c) + CB
12 + I (x1c, x2; y2|x2c) +

(
CB

21 − ξ1

)+
(2.17)

R1 +R2 ≤ I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12 (2.18)

2The definitions of these cases are the following: (1) weak interference, where SNR1 > INR2 and SNR2 >
INR1; (2) mixed interference, where SNR1 > INR2 and SNR2 ≤ INR1; (3) strong interference, where SNR1 ≤
INR2 and SNR2 ≤ INR1.
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R1 +R2 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 (2.19)

R1 +R2 ≤ I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + CB
12 (2.20)

2R1 +R2 ≤ I (x1, x2c; y1) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) +
(
CB

21 − ξ1

)+
+ CB

12

2R1 +R2 ≤ I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12 (2.21)

R1 + 2R2 ≤ I (x1, x2c; y1|x1c) + I (x1c, x2; y2) + CB
12 + I (x2; y2|x1c, x2c) +

(
CB

21 − ξ1

)+

R1 + 2R2 ≤ I (x1, x2c; y1|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB
12

+
(
CB

21 − ξ1

)+

R1 + 2R2 ≤ I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB
12

R1 + 2R2 ≤ I (x1, x2c; y1, ŷ2|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB
12

We will show that except (2.21), all bounds are within a bounded gap from the corre-
sponding outer bounds in Lemma 2.7. By symmetry, however, one can write down R1→2→1

and see that the troublesome constraint (2.21) can be compensated by time-sharing with
rate points in R1→2→1. Therefore the resulting R := conv {R2→1→2 ∪R1→2→1} is within a
bounded gap from the outer bounds in Lemma 2.7. An illustration is provided in Fig. 2.6.
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R2→1→2
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(a) Taking union is required, while time-sharing is
not

0
0  

 

Outer Bound

R
12

R
21

C

R1→2→1

R2→1→2

R1

R2

(b) Time-sharing is required

Figure 2.6: Time-sharing to achieve approximate capacity region

We give the following lemma.

Lemma 2.11 (Rate Region in the Weak Interference Regime).

R ⊆ C ⊆ C ⊆ R ⊕
(
[0, 2]× [0, 2]

)
,

in the weak interference regime.
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Proof. We need the following claims:

Claim 2.12. In R2→1→2, whenever the 2R1 +R2 bound (2.21) is active,

(a) if R1 + 2R2 bounds are active, the corner point where R1 + R2 bound and R1 + 2R2

bound intersect can be achieved;

(b) if R1 + 2R2 bounds are not active, the corner point where R1 +R2 bound and R2 bound
intersect can be achieved.

Above two situations are illustrated in Fig. 2.7.

Proof. In both situations, we will argue that the value of R1 +R2 at the intersection of the
dashed lines are always greater than the value of R1 +R2 at the desired corner point. Details
are left in Chapter 3.3.

0
0

R1

R2

2R1 + R2

R1 + R2

R1 + 2R2

Corner point: always achievable

(a) R1 + 2R2 bound is active

0
0

R1

R2

2R1 + R2

R1 + R2

Corner point: always achievable

(b) R1 + 2R2 bound is not active

Figure 2.7: Situations in R2→1→2

Therefore, the 2R1 + R2 bound (2.21) and, by symmetry, its corresponding R1 + 2R2

bound in R1→2→1 do not show up in R = conv
{
R2→1→2 ∪R1→2→1

}
, and R is within 2 bits

per user to the outer bounds in Lemma 2.7. To show this, we first look at the bounds in
R2→1→2 except (2.21). We claim that

Claim 2.13. The bounds in R2→1→2 except (2.21) satisfy:

• R1 bound is within 2 bits to outer bounds;

• R2 bound is within 2 bits to outer bounds;

• R1 +R2 bound is within 3 bits to outer bounds;
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• 2R1 +R2 bound is within 4 bits to outer bounds;

• R1 + 2R2 bound is within 5 bits to outer bounds.

Proof. See Chapter 3.3.

By symmetry, we obtain similar results for R1→2→1, and hence conclude that the bounds
in R satisfies (1) both R1 and R2 bounds are within 2 bits; (2) R1 + R2 bound is within 3
bits; (3) both 2R1 + R2 and R1 + 2R2 bound are within 5 bits to their corresponding outer
bounds. This completes the proof.

2.5.4 Mixed interference

In the case SNR1 > INR2 and SNR2 ≤ INR1, the configuration of superposition coding is to
split message m1 into m1c and m1p, while making the whole m2 common. We first consider
STG2→1→2: by Theorem 2.5, rates satisfying the following are achievable,

R1p ≤ min
{
I (x1; y1|x1c, x2) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x1c, x2)
}

(2.22)

R2 ≤ min
{
I (x2; y1|x1) + (CB

21 − ξ1)+, I (x2; y1, ŷ2|x1)
}

(2.23)

R2 +R1p ≤ min
{
I (x2, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2, x1; y1, ŷ2|x1c)
}

R1c +R1p ≤ min
{
I (x1; y1|x2) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2)
}

(2.24)

R1c +R2 +R1p ≤ min
{
I (x1, x2; y1) + (CB

21 − ξ1)+, I (x1, x2; y1, ŷ2)
}

R1c ≤ I (x1c; y2|x2) + CB
12

R2 ≤ I (x2; y2|x1c) + CB
12

R2 +R1c ≤ I (x2, x1c; y2) + CB
12,

where ξ1 = 1 since SNR2 ≤ INR1.
Again to simplify calculations, note that the right-hand-side of (2.22), (2.23), and (2.24)

are at most a bounded constant number of bits greater than their lower bounds I (x1; y1|x1c, x2),
I (x2; y1|x1), and I (x1; y1|x2) respectively. Therefore, we replace these three constraints by

R1p ≤ I (x1; y1|x1c, x2) ,

R2 ≤ I (x2; y1|x1) ,

R1c +R1p ≤ I (x1; y1|x2)

in the following calculations. Next, rewriting R1p = R1 − R1c, applying Fourier-Motzkin
algorithm to eliminate R1c, and removing redundant terms (details omitted here), we obtain
an achievable R2→1→2, consists of nonnegative (R1, R2) satisfying:

R1 ≤ min
{
I (x1; y1|x2) , I (x1; y1|x1c, x2) + I (x1c; y2|x2) + CB

12

}
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R2 ≤ min
{
I (x2; y1|x1) , I (x2; y2|x1c) + CB

12

}
R1 +R2 ≤ I (x1, x2; y1) +

(
CB

21 − ξ1

)+

R1 +R2 ≤ I (x1, x2; y1, ŷ2)

R1 +R2 ≤ I (x1; y1|x1c, x2) + I (x1c, x2; y2) + CB
12

R1 +R2 ≤ I (x1, x2; y1|x1c) + I (x1c; y2|x2) + CB
12 +

(
CB

21 − ξ1

)+

R1 +R2 ≤ I (x1, x2; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12

R1 + 2R2 ≤ I (x1, x2; y1|x1c) + I (x1c, x2; y2) + CB
12 +

(
CB

21 − ξ1

)+

R1 + 2R2 ≤ I (x1, x2; y1, ŷ2|x1c) + I (x1c, x2; y2) + CB
12

Comparing R2→1→2 with the outer bounds in Lemma 2.7, one can easily conclude that

Lemma 2.14 (Rate Region in the Mixed Interference Regime).

R2→1→2 ⊆ C ⊆ C ⊆ R2→1→2 ⊕
(
[0, 1.5]× [0, 1.5]

)
,

in the mixed interference regime. Besides, R2→1→2 ⊆ R.

Proof. We investigate the bounds in R2→1→2 and claim that

Claim 2.15. The bounds in R2→1→2 satisfy:

• R1 bound is within 1 bit to outer bounds;

• R2 bound is within 1 bit to outer bounds;

• R1 +R2 bound is within 3 bits to outer bounds;

• R1 + 2R2 bound is within 3 bits to outer bounds.

Proof. See Chapter 3.3

This completes the proof.

2.5.5 Strong interference

In the case SNR1 ≤ INR2 and SNR2 ≤ INR1, it turns out that a one-round strategy
STGOneRound described below suffices to achieve capacity to within a bounded gap. The
transmission scheme is the same as that described in Section 2.4.1. The difference is that,
both receivers quantize-and-bins their received signals and decode with the help from the side
information, as described in Section 2.4.2. It is called one-round since both receivers decode
after one-round exchange of informaion. Below is the coding theorem for this strategy:
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Theorem 2.16. The rate tuple (R1c, R2c, R1p, R2p) satisfying the following constraints are
achievable for STGOneRound:

Constraints at receiver 1:

R1p ≤ min
{
I (x1; y1|x1c, x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x1c, x2c)
}

R2c +R1p ≤ min
{
I (x2c, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x1; y1, ŷ2|x1c)
}

R1c +R1p ≤ min
{
I (x1; y1|x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2c)
}

R1c +R2c +R1p ≤ min
{
I (x1, x2c; y1) + (CB

21 − ξ1)+, I (x1, x2c; y1, ŷ2)
}

Constraints at receiver 2: Above constraints with index “1” and “2” exchanged.

Proof. The proof follows the same line as the proof of Theorem 2.5. There is no rate con-
straint for Rjc at receiver i for (i, j) = (1, 2) or (2, 1), since decoding mjc incorrectly at
receiver i does not account for an error.

Now, in the strong interference regime, the configuration of superposition coding is to
make the whole message mi common for both users i = 1, 2; in a word, there is no superpo-
sition eventually. One-round strategy STGOneRound yields achievable rate region ROneRound,
which consists of nonnegative (R1, R2) satisfying

R2 ≤ min
{
I (x2; y1|x1) + (CB

21 − ξ1)+, I (x2; y1, ŷ2|x1)
}

(2.25)

R1 ≤ min
{
I (x1; y1|x2) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2)
}

(2.26)

R1 +R2 ≤ min
{
I (x1, x2; y1) + (CB

21 − ξ1)+, I (x1, x2; y1, ŷ2)
}

(2.27)

R1 ≤ min
{
I (x1; y2|x2) + (CB

12 − ξ2)+, I (x1; y2, ŷ1|x2)
}

(2.28)

R2 ≤ min
{
I (x2; y2|x1) + (CB

12 − ξ2)+, I (x2; y2, ŷ1|x1)
}

(2.29)

R2 +R1 ≤ min
{
I (x2, x1; y2) + (CB

12 − ξ2)+, I (x2, x1; y2, ŷ1)
}
, (2.30)

where ξi = 1, for both i = 1, 2.
Comparing ROneRound with the outer bounds in Lemma 2.7, one can easily conclude that

Lemma 2.17 (Rate Region in the Strong Interference Regime).

ROneRound ⊆ C ⊆ C ⊆ ROneRound ⊕
(
[0, 1]× [0, 1]

)
,

in the strong interference regime. Besides, ROneRound ⊆ R.

Proof. We investigate the bounds in ROneRound and claim that:

Claim 2.18. The bounds in ROneRound satisfy:

• R1 bound is within 1 bit to outer bounds;
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• R2 bound is within 1 bit to outer bounds;

• R1 +R2 bound is within 2 bits to outer bounds.

Proof. See Chapter 3.3.

This completes the proof.

2.5.6 Approximate Capacity of Compound MAC with Conferenc-
ing Receivers

As a side-product of this work, we characterize the capacity region of the compound multiple
access channel with conferencing receivers (CMAC-CR) to within 1 bit. The channel is
defined as follows.

Definition 2.19. A compound multiple access channel with conferencing receivers (CMAC-
CR), is a channel with the same set-up as depicted in Fig. 4.1., while both receivers aim to
decode both m1 and m2.

We give straightforward cut-set upper bounds as follows:

Lemma 2.20. If (R1, R2) is achievable, it must satisfy the following constraints:

R1 ≤ min
{

log(1 + SNR1) + CB
21, log(1 + INR2) + CB

12, log (1 + SNR1 + INR2)
}

R2 ≤ min
{

log(1 + SNR2) + CB
12, log(1 + INR1) + CB

21, log (1 + SNR2 + INR1)
}

R1 +R2 ≤ log (1 + SNR1 + INR1) + CB
21

R1 +R2 ≤ log (1 + SNR2 + INR2) + CB
12

R1 +R2 ≤ log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
.

Proof. These are straightforward cut-set bounds. We omit the details here.

For achievability, we adapt the one-round scheme proposed above with no superposition
coding at transmitters. Therefore, the rate region is exactly the same as (2.25)-(2.30). Hence,
we conclude that

Theorem 2.21 (Within 1 bit to CMAC-CR Capacity Region). The scheme achieves the
capacity of compound MAC with conferencing receivers to within 1 bit.

Proof. Following the same line in the proof of Lemma 2.17, we can conclude that the bounds
in ROneRound satisfy:

• R1 bound is within 1 bit to outer bounds;

• R2 bound is within 1 bit to outer bounds;
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• R1 +R2 bound is within 1 bit to outer bounds.

This completes the proof.

This result implies that for the Gaussian compound MAC with conferencing receivers, a
simple one-round strategy suffices to achieve the capacity region to within 1 bit universally,
regardless of channel parameters.

2.6 One-Round Strategy versus Two-Round Strategy

In Section 2.5 we show that for the two-user Gaussian interference channel with conferencing
receivers, the two-round strategy proposed in Section 2.4 along with time-sharing achieves the
capacity region to within 2 bits universally. One of the drawbacks of the two-round strategy,
however, is the decoding latency. The quantize-binning receiver cannot proceed to decoding
until the other receiver decodes and forwards the bin indices back. The decoding latency is
two times the block length, which can be large. To avoid such large delay, fortunately in
some cases, the one-round strategy STGOneRound described in Section 2.5.5 suffices. One of
such cases is the strong interference regime. This can be easily justified in the corresponding
linear deterministic channel (LDC). At strong interference, all transmitted signals in the
LDC are common. There is no useful information lies below the noise level since the signal
is corrupted by the noise. Hence, quantize-binning at the noise level is sufficient to convey
the useful information.

Another such cases is the symmetric set-up, where SNR = SNR1 = SNR2, INR = INR1 =
INR2, and CB = CB

12 = CB
21.

For the symmetric set-up, a natural performance measure is the symmetric capacity,
defined as follows:

Definition 2.22 (Symmetric Capacity).

Csym := sup {R : (R,R) ∈ C } .

It turns out that the one-round strategy suffices to achieve Csym to within a bounded
gap.

Theorem 2.23 (Bounded Gap to the Symmetric Capacity).
The one-round strategy STGOneRound can achieve the symmtric capacity to within 3 bits.

Proof. See Chapter 3.4.

The justification in the corresponding LDC is again simple. Since the performance mea-
sure in which we are interested is the symmetric capacity, we can without loss of generality
assume that both transmitters are transmitting at full private rate, that is, the entropy of
each user’s private signals is equal to the number of levels below the private signal level.
Therefore at each receiver, there is no useful information below the private signal level, and
quantize-binning at the private signal level suffices to convey the useful information.
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2.7 Generalized Degrees of Freedom Characterization

With the characterization of the capacity region to within a bounded gap, we attempt to
answer the original fundamental question: how much interference can one bit of receiver
cooperation mitigate? For simplicity, we consider the symmetric set-up.

By Lemma 2.7 and Theorem 2.10, we have the characterization of the symmetric capacity
to within 2 bits:

Corollary 2.24 (Approximate Symmetric Capacity). Let Csym be the minimum of the below
four terms:

log(1 + SNR) + min

{
CB, log

(
1 +

INR

1 + SNR

)}
,

log

(
1 + INR +

SNR

1 + INR

)
+ CB,

1

2
log (1 + SNR + INR) +

1

2
log

(
1 +

SNR

1 + INR

)
+

1

2
CB,

1

2
log
(
1 + 2SNR + 2INR + |h11h22 − h12h21|2

)
.

Then, Csym − 2 ≤ Csym ≤ Csym.

2.7.1 Generalized Degrees of Freedom

To study the behavior of the system performance in the linear region, we use the notion
of generalized degrees of freedom (g.d.o.f.), which is originally proposed in [5]. A natural
extension from the definition in [5] would be the following: let

lim
SNR→∞

log INR

log SNR
= α; lim

SNR→∞

CB

log SNR
= κ,

and define the number of generalized degrees of freedom per user as

d := lim
fix α,κ

SNR→∞

Csym

log SNR
, (2.31)

if the limit exists. With fixed α and κ, however, there are certain channel realizations under
which (2.31) has different values and hence the limit does not exist. This happens when
α = 1, where the phases of the channel gains matter both in inner and outer bounds. In
particular, its value can depend on whether the system MIMO matrix is well-conditioned or
not.

From the above discussion we see that the limit does not exist, since for different channel
phases and different INR settings the value of (2.31) may be different. The reason is that,
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the original notion proposed in [5] cannot capture the impact of phases in MIMO situations,
while from Lemma 2.7 and Theorem 2.10, or Corollary 2.24, we see that our results depend
on phases heavily, if the receiver-cooperative link capacity CB is so large that MIMO sum-
rate cut-set bound becomes active. Therefore, instead of claiming that the limit (2.31)
exists for all channel realizations, we pose a reasonable distribution, namely, i.i.d. uniform
distribution, on the phases, show that the limit exists almost surely, and define the limit to
be the number of generalized degrees of freedom per user.

Lemma 2.25. Let

|hij| = gij, ∠hij = Θij, ∀i, j ∈ {1, 2},

where gij’s are deterministic and Θij’s are i.i.d. uniformly distributed over [0, 2π]. Then
the limit (2.31) exists almost surely, and is defined as the number of generalized degrees of
freedom (per user) in the system.

Proof. We leave the proof in Chapter 3.5.

Now that the number of g.d.o.f. is well-defined, we can give the following theorem:

Theorem 2.26 (Generalized Degrees of Freedom Per User). We have a direct consequence
from Corollary 2.24:

For 0 ≤ α < 1,

d = min
{

1, max (α, 1− α) + κ, 1− α

2
+
κ

2

}
.

For α ≥ 1,

d = min
{
α, 1 + κ,

α

2
+
κ

2

}
.

Numerical plots for g.d.o.f. are given in Fig. 2.8. We observe that at different values of
α, the gain from cooperation varies. By investigating the g.d.o.f., we conclude that at high
SNR, when INR is below 50% of SNR in dB scale, one-bit cooperation per direction buys
roughly one-bit gain per user until full receiver cooperation performance is reached, while
when INR is between 67% and 200% of SNR in dB scale, one-bit cooperation per direction
buys roughly half-bit gain per user until saturation.

2.7.2 Gain from Limited Receiver Cooperation

The fundamental behavior of the gain from receiver cooperation is explained in the rest of
this section, by looking at two particular points: α = 1

2
and α = 2

3
. Furthermore, we use the

linear deterministic channel (LDC) for illustration.
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Figure 2.8: Generalized Degrees of Freedom

At α = 1
2
, the plot of d versus κ is given in Fig. 2.9.(a). The slope is 1 until full receiver

cooperation performance is reached, implying that one-bit cooperation buys one over-the-air
bit per user. We look at a particular point κ = 1

4
and use its corresponding LDC (Fig.

2.9.(b)) to provide insights. Note that 1 bit in the LDC corresponds to 1
4

log SNR in the
Gaussian channel, and since CB ≈ 1

4
log SNR, in the corresponding LDC each receiver is able

to sent one-bit information to the other. Without cooperation, the optimal way is to turn on
bits not causing interference, that is, the private bits a3, a4, b3, b4. We cannot turn on more
bits without cooperation since it causes collisions, for example, at the fourth level of receiver
2 if we turn on a2 bit. Now with receiver cooperation, we want to support two more bits
a2, b2. Note that prior to turning on a2, b2, there are “holes” left in receiver signal spaces,
and turning on each of these bits only causes one collision at one receiver. Therefore, we
need 1 bit in each direction to resolve the collision at each receiver. We can achieve 3 bits
per user in the corresponding LDC and d = 3

4
in the Gaussian channel. We cannot turn on

more bits in the LDC since it causes collisions while no cooperation capability is left.
At α = 2

3
, the plot of d versus κ is given in Fig. 2.9.(c). The slope is 1

2
until full receiver

cooperation performance is reached, implying that two-bit cooperation buys one over-the-air
bit per user. We look at a particular point κ = 1

3
and use its corresponding LDC (Fig.

2.9.(d)) to provide insights. Note that now 1 bit in the LDC corresponds to 1
3

log SNR in
the Gaussian channel, and since CB ≈ 1

3
log SNR, in the corresponding LDC each receiver is

able to sent one-bit information to the other. Without cooperation, the optimal way is to
turn on bits a1, a3, b1, b3. We cannot turn on more bits without cooperation since it causes
collisions, for example, at the second level of receiver 2 if we turn on a2 bit. Now with
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Figure 2.9: Gain from Cooperation

receiver cooperation, we want to support one more bit a2. Note that prior to turning on a2,
there are no “holes” left in receiver signal spaces, and turning on a2 causes collisions at both
receivers. Therefore, we need 2 bits in total to resolve collisions at both receivers. We can
achieve 5 bits in total in the corresponding LDC and d = 5

6
in the Gaussian channel. We

cannot turn on more bits in the LDC since it causes collision while no cooperation capability
is left.

From above examples and illustrations, we see that whether one cooperation bit buys one
over-the-air bit or two cooperation bits buy one over-the-air bit depends on whether there
are “holes” in receiver signal spaces before increasing data rates. The “holes” play a central
role not only in why conventional compress-forward is suboptimal in certain regimes, as
mentioned in Section 2.3.2, but also in the fundamental behavior of the gain from receiver
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cooperation. We notice that in [25], there is a similar behavior about the gain from in-band
receiver cooperation as discussed in Section III-B of [25]. We conjecture that the behavior
can be explained via the concept of “holes” as well.

2.7.3 Comparison with Suboptimal Strategies

Pointed out by the motivating examples in Section 2.3.2, conventional compress-forward
and decode-forward are not good for receiver cooperation to mitigate interference in certain
regimes, which are used in [22] and [23]. These suboptimal schemes include:

(1) One-round compress-forward (CF) strategy: the conventional compress-forward is used
for the two receivers to first exchange information and then decode.

(2) One-round decode-forward (DF) strategy: at the first stage both receivers decode one
of the common messages with stronger signal strength without help from the receiver-
cooperative links, by treating other signals as noise. Both then bin-and-forward the
decoded information to each other. At the second stage, both receivers make use of
the bin index send over receiver-cooperative links to decode and enhance the rate.

(3) Two-round CF+DF strategy: at the first stage one of the receivers, say, receiver 1,
compresses its received signal and forwards it to the other receiver. At the second
stage, receiver 2 decodes with the side information received at the first round, and
then bin-and-forwards the decoded information to receiver 1. Then at the third stage
receiver 1 decodes with the help from receiver-cooperative links.

Comparisons of these strategies in terms of the number of generalized degrees of freedom
for different scaling exponents α of log INR and κ of CB are depicted in Fig. 2.10. None of
them achieves the optimal g.d.o.f. universally. Note that although the two-round CF+DF
strategy outperforms one-round CF/DF strategies, it cannot achieve the optimal number of
g.d.o.f. for all α’s and κ’s. By Theorem 2.23, the one-round strategy based on our cooperative
protocol, on the other hand, is sufficient to achieve the symmetric capacity to within 3 bits
universally and hence achieves the optimal number of g.d.o.f. for all α’s and κ’s.
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Figure 2.10: Number of Generalized Degrees of Freedom



41

Chapter 3

Proofs of Part I

In this chapter we fill in the details of various proofs mentioned in the previous chapter.

3.1 Proof of Theorem 2.5

We will first describe the strategy in detail and analyze the error probability rigorously.

3.1.1 Description of the Strategy

In the following, consider all i, j ∈ {1, 2} and i 6= j.

Codebook generation:
Transmitter i splits its message mi → (mic,mip). Consider block length-N encoding.

First we generate 2NRic common codewords {xNic (mic), 1 ≤ mic ≤ 2NRic}, according to dis-
tribution p

(
xNic
)

=
∏N

n=1 p
(
xic[n]

)
with xic[n] ∼ CN (0, Qic) for all n. Then for each common

codeword xNic (mic) serving as a cloud center, we generate 2NRip codewords {xNi (mic,mip),

1 ≤ mip ≤ 2NRip}, according to conditional distribution p
(
xNi |xNic

)
=
∏N

n=1 p
(
xi[n]|xic[n]

)
such that for all n, xi[n] = xic[n] + xip[n], where xip[n] ∼ CN (0, Qip) and independent of ev-
erything else. The power split configuration is such that Qip+Qic = 1, INRjp := Qip|hji|2 ≤ 1

if SNRi > INRj, and no such split if SNRi ≤ INRj. Hence, Qip = min
{

1, 1
INRj

}
if SNRi > INRj,

and Qip = 0 otherwise.

For receiver 2 serving as relay, it generates a quantization codebook Ŷ2, of size
∣∣Ŷ2

∣∣ =

2N
bR2 , randomly according to marginal distribution p(ŷN2 ), marginalized over joint distribu-

tion p
(
yN2 , x

N
1c, x

N
1 , x

N
2c

)
p(ŷN2 |yN2 , xN1c, xN1 , xN2c), where

p(ŷN2 |yN2 , xN1c, xN1 , xN2c) =
N∏
n=1

p
(
ŷ2[n]

∣∣y2[n], x1c[n], x1[n], x2c[n]
)
.
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The conditional distribution is such that for all n, ŷ2[n] = y2[n] + ẑ2[n], where ẑ2[n] ∼
CN (0,∆2), independent of everything else. Parameters R̂2 and ∆2 are to be specified later.

For each element in codebook Ŷ2, map it into {1, . . . , 2NCB
21} through a uniformly generated

random mapping b2 : Ŷ2 → {1, . . . , 2NCB
21}, ŷN2 7→ l21 (binning).

For receiver 1 serving as relay, it generates two binning functions b
(1c)
1 and b

(2c)
1 indepen-

dently according to uniform distributions, such that the message set {1 ≤ mic ≤ 2NRic} is

partitioned into 2λ
(ic)
1 NCB

12 bins, for i = 1, 2, where 0 ≤ λ
(ic)
1 ≤ 1, λ

(1c)
1 + λ

(2c)
1 = 1, and

b
(ic)
1 : {1, . . . , 2NRic} → {1, . . . , 2λ

(ic)
1 NCB

12},

mic 7→ l
(ic)
12 ∈ {1, . . . , 2λ

(ic)
1 NCB

12}.

The superscript notation “(ic)” denotes which message set is partitioned into bins, while the
subscript “1” denotes the binning procedure is at receiver 1.

Encoding:
Transmitter i sends out signals according to its message and the codebook. Receiver 2,

serving as relay, chooses the quantization codeword which is jointly typical with yN2 (if there is
more than one, it chooses the one with the smallest index), and then sends out the bin index
l21 for the quantization codeword. After decoding (m1c,m1p,m2c) (to be specified below),

receiver 1 sends out bin indices
(
l
(1c)
12 , l

(2c)
12

)
according to binning functions

(
b

(1c)
1 , b

(2c)
1

)
.

Decoding at receiver 1:
To draw comparison with the decoding procedure in the conventional compress-forward,

the above decoding can be interpreted as a two-stage procedure as follows. It first constructs
a list of message triples (both users’ common messages and its own private message), each
element of which indices a codeword triple that is jointly typical with its received signal
from the transmitter-receiver link. Then, for each message triple in this list, it constructs
an ambiguity set of quantization codewords, each element of which is jointly typical with
the codeword triple and the received signal. Finally, it searches through all ambiguity sets
and finds one that contains a quantization codeword with the same bin index it received. If
there is no such unique ambiguity set, it declares an error. The two-stage interpretation is
illustrated in Fig. 3.1.

To be specific, upon receiving signal y1 and receiver-cooperative side information l21,
receiver i constructs a list of candidates Li(y

N
i ), defined as

L(yN1 ) :=
{
m := (m1c,m1p,m2c)

∣∣ (xN1c(m1c), x
N
1 (m1c,m1p), x

N
2c(m2c), y

N
1

)
∈ A(N)

ε

}
,

where A
(N)
ε denotes the set of jointly ε-typical N -sequences, correspondingly [37].

For each element m ∈ L(yN1 ), construct an ambiguity set of quantization codewords
B(m), defined as

B(m) :=
{
ŷN2 ∈ Ŷ2

∣∣∣ (ŷN2 , xN1c(m1c), x
N
1 (m1c,m1p), x

N
2c(m2c), y

N
i

)
∈ A(N)

ε

}
.
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Declare the transmitted message is m̂ if there exists an unique m̂ such that ∃ ŷN2 ∈ B(m̂)
with b2(ŷN2 ) = l21. Otherwise, declare an error.

B (1)L
(
yN
1

)

1

m

B (m)

Receiver 2
Quantization
Codewords

Binning Function

Bin Indices

yN
1

True
Transmit/
Selected

Ambiguity Sets

List of
Message
Triples

ŷN
2 (k)

ŷN
2 (1)

l21

(a) Error Event (1)

B (1)L
(
yN
1

)

1

m

B (m)

Receiver 2
Quantization
Codewords

Binning Function

Bin Indices

yN
1

True
Transmit/
Selected

Ambiguity Sets

List of
Message
Triples

ŷN
2 (1)

l21

(b) Error Event (2)

Figure 3.1: Decoding at Receiver 1 and Error Events

Decoding at receiver 2:

After receiving bin indices
(
l
(1c)
12 , l

(2c)
12

)
, receiver 2 searches for an unique message triple

(m2c,m2p,m1c) such that
(
xN2c(m2c), x

N
2 (m2c,m2p), x

N
1c(m1c), y

N
2

)
∈ A

(N)
ε , and b

(ic)
1 (mic) =

l
(ic)
12 , for i = 1, 2. If there is no such unique triple, it declares an error.

3.1.2 Analysis

Error probability analysis at receiver 1:
Without loss of generality, assume that all transmitted messages are 1’s. For simplicity,

we first focus on the case where receiver 1 aims to decode while receiver 2 serves as a relay
to help it decode.

At receiver 1, due to law of large numbers, the probability that the truly transmitted
1 := (m1c = 1,m2c = 1,m1p = 1) /∈ L(yN1 ) goes to zero as N →∞. Besides, the probability
that B(1) does not contain the truly selected ŷN2 is also negligible when N is sufficiently
large. Consider the following error events:

First, there is no quantization codeword jointly typical with received signals. This prob-
ability goes to zero as N →∞ if R̂2 ≥ I(ŷ2; y2), which is a known result in the source coding
literature.
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Second, there exists m 6= 1 such that both of them are in the candidate list L(yN1 ), and the
ambiguity set B(m) contains some quantization codeword ŷN2 with bin index b2(ŷN2 ) = l21.
This event can further be distinguished into two cases: First, this ŷN2 ∈ B(m) is not the
actual selected quantization codeword (illustrated in Fig. 3.1.(a)); second, this ŷN2 ∈ B(m)
is indeed the selected quantization codeword (illustrated in Fig. 3.1.(b)). In the following
we analyze the error probability of these two typical error events.

Again, refer to Fig. 3.1. for illustration. Define error events as follows: for any nonempty
S ⊆ {1c, 1p, 2c},

E
(1)
S := the event that there exists some m 6= 1, (where ms 6= 1,∀s ∈ S and ms = 1,∀s /∈ S),

such that m ∈ L(yN1 ) and B(m) contains some ŷN2 (k), k ∈ {1, 2, . . . , 2N bR2} with b2(ŷN2 (k)) =
l21. Note: this ŷN2 (k) is not the truly selected quantization codeword ŷN2 (1).

E
(2)
S := the event that there exists some m 6= 1, (where ms 6= 1,∀s ∈ S and ms = 1,∀s /∈ S),

such that m ∈ L(yN1 ) and B(m) contains ŷN2 (1).

Probability of E
(1)
S

Consider the probability of the error event E
(1)
S : it can be upper bounded as follows:

Pr
{
E

(1)
S

}
≤

∑
m:ms 6=1,
∀s∈S

∑
k 6=1

Pr
{
m ∈ L(yN1 ), ŷN2 (k) ∈ B(m), b2(ŷN2 (k)) = l21

}
=

∑
m:ms 6=1,
∀s∈S

∑
k 6=1

Pr
{(
ŷN2 (k), xN(m), yN1

)
∈ A(N)

ε , b2(ŷN2 (k)) = l21

}
(a)
= 2−NCB

21

∑
m:ms 6=1,
∀s∈S

∑
k 6=1

Pr
{(
ŷN2 (k), xN(m), yN1

)
∈ A(N)

ε

}
≤ 2N(

P
s∈S Rs)2−NCB

21

∑
k 6=1

Pr
{(
ŷN2 (k), xN(m), yN1

)
∈ A(N)

ε

}
;

where (a) is due to the independent uniform binning.
For notational convenience we use xN(m) to denote the vector of codewords corresponding

to message m, that is,
(
xN1c(m1c), x

N
1 (m1c,m1p), x

N
2c(m2c)

)
.

Note that for k 6= 1, ŷN2 (k) is independent of
(
xN(m), yN1

)
. We then make use of

Theorem 15.2.2 in [37], which upper bounds the volume of conditional joint ε-typical set

A
(N)
ε

(
ŷ2

∣∣xN , yN1 ) given that
(
xN , yN1

)
∈ A(N)

ε , to further upper bound∑
k 6=1

Pr
{(
ŷN2 (k), xN(m), yN1

)
∈ A(N)

ε

}
≤ 2N

bR2

∫
(byN2 ,xN ,yN1 )∈A(N)

ε

p
(
ŷN2
)
p
(
xN , yN1

)
dŷN2 dx

NdyN1
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≤ 2N
bR2

∫
(xN ,yN1 )∈A(N)

ε

p
(
xN , yN1

)
dxNdyN1

∫
byN2 ∈A(N)

ε

(by2∣∣xN ,yN1 ) p
(
ŷN2
)
dyN2

≤ 2N
bR2

∫
(xN ,yN1 )∈A(N)

ε

p
(
xN , yN1

)
dxNdyN1

∫
byN2 ∈A(N)

ε

(by2∣∣xN ,yN1 ) 2−N(h(by2)−ε)dyN2

(b)

≤ 2N(h(by2|x1c,x1,x2c,y1)+2ε) · 2−N(h(by2)−ε) · 2N bR2

∫
(xN ,yN1 )∈A(N)

ε

p
(
xN , yN1

)
dxNdyN1

= 2N
bR22−N(I(by2;x1c,x1,x2c,y1)−3ε)

∫
(xN ,yN1 )∈A(N)

ε

p
(
xN , yN1

)
dxNdyN1

= Pr
{
m ∈ L(yN1 )

}
· 2N bR22−N(I(by2;x1c,x1,x2c,y1)−3ε),

where (b) is due to Theorem 15.2.2 in [37]. Besides, according to the results in [38],

Pr
{
m ∈ L(yN1 )

}
≤



2−N(I(x1;y1|x1c,x2c)−ε′) S = {1p}
2−N(I(x1;y1|x2c)−ε′) S = {1c}
2−N(I(x2c;y1|x1)−ε′) S = {2c}
2−N(I(x2c,x1;y1|x1c)−ε′) S = {1p, 2c}
2−N(I(x1;y1|x2c)−ε′) S = {1p, 1c}
2−N(I(x1,x2c;y1)−ε′) S = {2c, 1c}
2−N(I(x1,x2c;y1)−ε′) S = {1p, 2c, 1c}

,

where ε′ = 4ε. Note that unlike in the interference channel without cooperation as in [38],
here we require receiver 1 to decode m2c correctly. Hence, the event when S = {2c} does
cause an error. Therefore, the probability of the first kind of error event vanishes as N →∞
if

R1p ≤ I (x1; y1|x1c, x2c) + ϕ

R2c ≤ I (x2c; y1|x1) + ϕ

R2c +R1p ≤ I (x2c, x1; y1|x1c) + ϕ

R1c +R1p ≤ I (x1; y1|x2c) + ϕ

R1c +R2c +R1p ≤ I (x1, x2c; y1) + ϕ,

where ϕ = CB
21 − R̂2 + I(ŷ2;x1c, x1, x2c, y1).

On the other hand, since we can alternatively upper bound Pr
{
E

(1)
S

}
as follows:

Pr
{
E

(1)
S

}
≤∑

m:ms 6=1,
∀s∈S

Pr
{
m ∈ L(yN1 )

}
· Pr

{
∃ k 6= 1, ŷN2 (k) ∈ B(m), b2(ŷN2 (k)) = l21

∣∣∣m ∈ L(yN1 )
}
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≤ 2N(
P
s∈S Rs) Pr

{
m ∈ L(yN1 )

}
.

the probability of the first kind of error event vanishes as N →∞ if

R1p ≤ I (x1; y1|x1c, x2c) + ϕ+

R2c ≤ I (x2c; y1|x1) + ϕ+

R2c +R1p ≤ I (x2c, x1; y1|x1c) + ϕ+

R1c +R1p ≤ I (x1; y1|x2c) + ϕ+

R1c +R2c +R1p ≤ I (x1, x2c; y1) + ϕ+.

Finally, plug in R̂2 = I(ŷ2; y2) and by Markov relation: (x1c, x1, x2c, y1)− y2 − ŷ2, we get
the rate loss term

ξ1 := R̂2 − I(ŷ2;x1c, x1, x2c, y1) = I(ŷ2; y2)− I(ŷ2;x1c, x1, x2c, y1)

= I(ŷ2; y2|x1c, x1, x2c, y1).

Probability of E
(2)
S

Consider the probability of the error event E
(2)
S :

Pr
{
E

(2)
S

}
≤

∑
m:ms 6=1,∀s∈S

Pr
{
ŷN2 (1) ∈ B(m),m ∈ L(yN1 )

}
=

∑
m:ms 6=1,∀s∈S

Pr
{(
ŷN2 (1), xN(m), yN1

)
∈ A(N)

ε

}

≤



2
N

 P
s∈S

Rs

!
· 2−N(I(x1;y1,by2|x1c,x2c)−ε′), S = {1p}

2
N

 P
s∈S

Rs

!
· 2−N(I(x1;y1,by2|x2c)−ε′), S = {1c}

2
N

 P
s∈S

Rs

!
· 2−N(I(x2c;y1,by2|x1)−ε′), S = {2c}

2
N

 P
s∈S

Rs

!
· 2−N(I(x2c,x1;y1,by2|x1c)−ε′), S = {1p, 2c}

2
N

 P
s∈S

Rs

!
· 2−N(I(x1;y1,by2|x2c)−ε′), S = {1p, 1c}

2
N

 P
s∈S

Rs

!
· 2−N(I(x1,x2c;y1,by2)−ε′), S = {2c, 1c}

2
N

 P
s∈S

Rs

!
· 2−N(I(x1,x2c;y1,by2)−ε′), S = {1p, 2c, 1c}
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where ε′ = 4ε. Note that the event when S = {2c} does cause an error. Hence, the probability
of the second kind of error event vanishes as N →∞ if

R1p ≤ I (x1; y1, ŷ2|x1c, x2c)

R2c ≤ I (x2c; y1, ŷ2|x1)

R2c +R1p ≤ I (x2c, x1; y1, ŷ2|x1c)

R1c +R1p ≤ I (x1; y1, ŷ2|x2c)

R1c +R2c +R1p ≤ I (x1, x2c; y1, ŷ2) .

Error probability analysis at receiver 2:
After receiving the two bin indices, receiver 2 can decode (m1c,m2c,m2p), with effectively

smaller candidate message sets, (namely, the bins,) for m1c and m2c. Following the same line

as [38], it can be shown that (we omit the detailed analysis here), for all 0 ≤ λ
(ic)
1 ≤ 1 and

λ
(1c)
1 + λ

(2c)
1 = 1, the following region is achievable:

R2p ≤ I (x2; y2|x2c, x1c)

R1c +R2p ≤ I (x1c, x2; y2|x2c) + λ
(1c)
1 CB

12

R2c +R2p ≤ I (x2; y2|x1c) + λ
(2c)
1 CB

12

R2c +R1c +R2p ≤ I (x2, x1c; y2) + CB
12.

Note that the performance of decoding the private message m2p does not gain from cooper-
ation, since receiver 1 does not decode the private message m2p.

Taking convex hull over all possible λ
(1c)
1 ∈ [0, 1]. Note that the bounds for R2p and

R2c + R1c + R2p remain unchanged. Project the three-dimensional rate region to a two-
dimensional space for any fixed R2p = r2p, we see that the convexifying procedure results in
the following region:

R1c + r2p ≤ I (x1c, x2; y2|x2c) + CB
12

R2c + r2p ≤ I (x2; y2|x1c) + CB
12

R2c +R1c + r2p ≤ I (x2, x1c; y2) + CB
12.

Hence the following rate region is achievable for receiver 2 to decode successfully:

R2p ≤ I (x2; y2|x2c, x1c)

R1c +R2p ≤ I (x1c, x2; y2|x2c) + CB
12

R2c +R2p ≤ I (x2; y2|x1c) + CB
12

R2c +R1c +R2p ≤ I (x2, x1c; y2) + CB
12.
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3.2 Proof of Lemma 2.7

(1) Bounds (2.5) on R1 and (2.6) on R2

Proof. One can directly use cut-set bounds. As an alternative, we give the following proof
in which the decomposition of mutual informations is made clear.

We have the following bounds by Fano’s inequality, data-processing inequality, and chain
rule: if R1 is achievable,

N(R1 − εN)

(a)

≤ I(xN1 ; yN1 , u
N
21)

(b)

≤ I(xN1 ; yN1 , u
N
21, x

N
2 )

(c)
= I(xN1 ; yN1 , u

N
21|xN2 )

(d)
= I(xN1 ; yN1 |xN2 ) + I(xN1 ;uN21|yN1 , xN2 ) = h(h11x

N
1 + zN1 )− h(zN1 ) + I(xN1 ;uN21|yN1 , xN2 )

(e)

≤ N log(1 + SNR1) + I(xN1 ;uN21|yN1 , xN2 ),

where εN → 0 as N →∞. (a) is due to Fano’s inequality and data processing inequality. (b)
is due to the genie giving side information xN1 to receiver 1, ie., conditioning reduces entropy.
(c) is due to the fact that xN1 and xN2 are independent. (d) is due to chain rule. (e) is due
to the fact that i.i.d. Gaussian distribution maximizes differential entropy under covariance
constraints.

To upper bound I(xN1 ;uN21|yN1 , xN2 ), which corresponds to the enhancement from cooper-
ation, we make use of the fact that uN21 is a function of (yN1 , y

N
2 ):

I(xN1 ;uN21|yN1 , xN2 ) = h(xN1 |yN1 , xN2 )− h(xN1 |uN21, y
N
1 , x

N
2 )

(a)

≤ h(xN1 |yN1 , xN2 )− h(xN1 |uN21, y
N
1 , x

N
2 , y

N
2 )

(b)
= h(xN1 |yN1 , xN2 )− h(xN1 |yN1 , xN2 , yN2 )

= I(xN1 ; yN2 |yN1 , xN2 ) = h(yN2 |yN1 , xN2 )− h(yN2 |yN1 , xN2 , xN1 )

= h(h21x
N
1 + zN2 |h11x

N
1 + zN1 )− h(zN2 )

≤ N log

(
1 +

INR2

1 + SNR1

)
.

(a) is due to the fact that conditioning reduces entropy. (b) is due to the fact that uN21 is a
function of (yN1 , y

N
2 ).

Besides, it is trivial to see that I(xN1 ;uN21|yN1 , xN2 ) ≤ H(uN21) ≤ NCB
21. Hence, (and simi-

larly for R2), we have shown bounds (2.5) and (2.6).

(2) Bound (2.7) on R1 +R2
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Figure 3.2: Side Information Structure for Bound (2.7)

Proof. Define

s1 := h21x1 + z2, s2 := h12x2 + z1,

s̃1 := h21x1 + z̃2, s̃2 := h12x2 + z̃1,

where z̃1, z̃2 are i.i.d. CN (0, 1)’s, independent of everything else. Note that si and s̃i have
the same marginal distribution, for i = 1, 2.

A genie gives side information s̃Ni to receiver i (refer to Fig. 3.2.) Making use of Fano’s
inequality, data processing inequality, and the fact that Gaussian distribution maximizes con-
ditional entropy subject to conditional variance constraints, we have: if (R1, R2) is achievable,

N(R1 +R2 − εN)

(a)

≤ I(xN1 ; yN1 , u
N
21) + I(xN2 ; yN2 , u

N
12)

(b)
= I(xN1 ; yN1 ) + I(xN2 ; yN2 ) + I(xN1 ;uN21|yN1 ) + I(xN2 ;uN12|yN2 )

(c)

≤ I(xN1 ; yN1 , s̃
N
1 ) + I(xN2 ; yN2 , s̃

N
2 ) +H(uN21) +H(uN12)

(d)

≤ h(yN1 , s̃
N
1 )− h(sN2 , z̃

N
2 ) + h(yN2 , s̃

N
2 )− h(sN1 , z̃

N
1 ) +NCB

21 +NCB
12

(e)
= h(yN1 |s̃N1 ) + h(s̃N1 )− h(sN2 )− h(z̃N2 ) + h(yN2 |s̃N2 )

+ h(s̃N1 )− h(sN1 )− h(z̃N1 ) +NCB
21 +NCB

12

= h(yN1 |s̃N1 )− h(z̃N2 ) + h(yN2 |s̃N2 )− h(z̃N1 ) +N(CB
21 + CB

12)

(f)

≤ N
{

RHS of (2.7)
}
,
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where εN → 0 as N →∞. (a) follows from Fano’s inequality and data processing inequality.
(b) is due to chain rule. (c) is due to the genie giving side information s̃Ni to receiver i,
i = 1, 2, and I(xNi ;uNji |yNi ) ≤ H(uNji). (d) is due to the fact that H(uNji) ≤ NCB

ji. (e) is due
to chain rule. (f) is due to the fact that i.i.d. Gaussian distribution maximizes conditional
entropy subject to conditional variance constraints. Note that alternatively the genie can
give side informations sNi to receiver i, as in [5].

Hence, we have shown bound (2.7).

(3) Bounds (2.8) and (2.9) on R1 +R2
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Figure 3.3: Side Information Structure for Bound (2.8)

Proof. A genie gives side information xN2 and yN2 to receiver 1 (refer to Fig. 3.3.) Making use
of Fano’s inequality, data processing inequality, the fact that uN21 is a function of (yN1 , y

N
2 ),

and the fact that Gaussian distribution maximizes conditional entropy subject to conditional
variance constraints, we have: if (R1, R2) is achievable,

N(R1 +R2 − εN)

≤ I(xN1 ; yN1 , u
N
21) + I(xN2 ; yN2 , u

N
12)

(a)

≤ I(xN1 ; yN1 , u
N
21, y

N
2 , x

N
2 ) + I(xN2 ; yN2 ) + I(xN2 ;uN12|yN2 )

(b)

≤ I
(
xN1 ; yN1 , u

N
21, y

N
2 |xN2

)
+ h

(
yN2
)
− h

(
sN1
)

+H
(
uN12

)
(c)
= I

(
xN1 ; yN1 , y

N
2 |xN2

)
+ h

(
yN2
)
− h

(
sN1
)

+H
(
uN12

)
= h

(
h11x

N
1 + zN1 , s

N
1

)
− h

(
zN1 , z

N
2

)
+ h

(
yN2
)
− h

(
sN1
)

+H
(
uN12

)
= h

(
h11x

N
1 + zN1 |sN1

)
− h

(
zN1 , z

N
2

)
+ h

(
yN2
)

+H
(
uN12

)
≤ N

{
RHS of (2.8)

}
,
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where εN → 0 as N → ∞. (a) is due to chain rule and the genie giving side information
xN2 and yN2 to receiver 1. (b) is due to the fact that xN1 and xN2 are independent, and
I(xN2 ;uN12|yN2 ) ≤ H(uN12). (c) is due to the fact that uN21 is a function of (yN1 , y

N
2 ).

Hence, (and similarly if we gives side information xN1 to receiver 2), we have shown bounds
(2.8) and (2.9).

(4) Bound (2.10) on R1 +R2

Proof. This is straightforward cut-set upper bound: if (R1, R2) is achievable,

N(R1 +R2 − εN)

≤ I
(
xN1 , x

N
2 ; yN1 , y

N
2

)
= h

(
yN1 , y

N
2

)
− h

(
zN1 , z

N
2

)
≤ N

{
RHS of (2.10)

}
,

where εN → 0 as N →∞.
Hence, we have shown bound (2.10).

(5) Bounds (2.11) on 2R1 +R2 and (2.12) on R1 + 2R2
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Figure 3.4: Side Information Structure for Bound (2.11)

Proof. A genie gives side information xN2 and yN2 to one of the two receiver 1’s, and side
information sN2 to receiver 2 (refer to Fig. 3.4.) Making use of Fano’s inequality, data
processing inequality, the fact that uN21 is a function of (yN1 , y

N
2 ), and the fact that Gaussian

distribution maximizes conditional entropy subject to conditional variance constraints, we
have: if (R1, R2) is achievable,

N(2R1 +R2 − εN)
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(a)

≤ I(xN1 ; yN1 , u
N
21) + I(xN1 ; yN1 , u

N
21) + I(xN2 ; yN2 , u

N
12)

(b)

≤ I(xN1 ; yN1 , u
N
21, y

N
2 , x

N
2 ) + I(xN1 ; yN1 ) + I(xN2 ; yN2 , s

N
2 ) + I(xN1 ;uN21|yN1 ) + I(xN2 ;uN12|yN2 )

(c)

≤ I(xN1 ; yN1 , u
N
21, y

N
2 |xN2 ) + I(xN1 ; yN1 ) + I(xN2 ; yN2 , s

N
2 ) +H

(
uN21

)
+H

(
uN12

)
(d)
= I(xN1 ; yN1 , y

N
2 |xN2 ) + I(xN1 ; yN1 ) + I(xN2 ; yN2 , s

N
2 ) +H

(
uN21

)
+H

(
uN12

)
= h

(
h11x

N
1 + zN1 , s

N
1

)
− h

(
zN1 , z

N
2

)
+ h(yN1 )− h(sN2 ) + h(yN2 , s

N
2 )− h(sN1 , z

N
1 )

+H
(
uN21

)
+H

(
uN12

)
= h

(
h11x

N
1 + zN1 |sN1

)
− h

(
zN1 , z

N
2

)
+ h(yN1 ) + h(yN2 |sN2 )− h(zN1 ) +H

(
uN21

)
+H

(
uN12

)
≤ N

{
RHS of (2.11)

}
,

where εN → 0 as N →∞. (a) follows from Fano’s inequality and data processing inequality.
(b) is due to chain rule and the genie giving side information xN2 and yN2 to one of the receiver
1’s and side information sN2 to receiver 2. (c) is due to the fact that xN1 , x

N
2 are independent

and I(xNi ;uNji |yNi ) ≤ H(uNji). (d) is due to the fact that uN21 is a function of (yN1 , y
N
2 ). Hence,

(and similarly for R1 + 2R2), we have shown bounds (2.11) and (2.12).

(6) Bounds (2.13) on 2R1 +R2 and (2.14) on R1 + 2R2
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Figure 3.5: Side Information Structure for Bound (2.14)

Proof. A genie gives side information s̃N1 , y
N
2 to receiver 1, and side information yN1 to one

of the receiver 2’s (refer to Fig. 3.5.) Making use of Fano’s inequality, data processing
inequality, the fact that uN12, u

N
21 are functions of (yN1 , y

N
2 ), and the fact that Gaussian distri-

bution maximizes conditional entropy subject to conditional variance constraints, we have:
if (R1, R2) is achievable,

N(R1 + 2R2 − εN)
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≤ I(xN1 ; yN1 , u
N
21) + I(xN2 ; yN2 , u

N
12) + I(xN2 ; yN2 , u

N
12)

(a)

≤ I(xN1 ; yN1 , u
N
21, y

N
2 , s̃

N
1 ) + I(xN2 ; yN2 , u

N
12, y

N
1 ) + I(xN2 ; yN2 ) + I(xN2 ;uN12|yN2 )

(b)

≤ I(xN1 ; yN1 , u
N
21, y

N
2 |s̃N1 ) + I(xn1 ; s̃N1 ) + I(xN2 ; yN2 , u

N
12, y

N
1 ) + I(xN2 ; yN2 ) +H(uN12)

(c)

≤ I(xN1 ; yN1 , y
N
2 |s̃N1 ) + I(xN2 ; yN1 , y

N
2 ) + h(s̃N1 )− h(zN2 ) + h(yN2 )− h(sN1 ) +NCB

12

(d)

≤ I(xN1 ; yN1 , y
N
2 |s̃N1 ) + I(xN2 ; yN1 , y

N
2 |xN1 , s̃N1 ) + h(yN2 )− h(zN2 ) +NCB

12

= I(xN1 , x
N
2 ; yN1 , y

N
2 |s̃N1 ) + h(yN2 )− h(zN2 ) +NCB

12

= h(yN1 , y
N
2 |s̃N1 ) + h(yN2 )− h(zN1 , z

N
2 )− h(zN2 ) +NCB

12

(e)

≤ N
{

RHS of (2.14)
}
,

where εN → 0 as N →∞. (a) is due to the genie giving side information s̃N1 , y
N
2 to receiver

1, and side information yN1 to one of the receiver 2’s. (b) is due to chain rule and the fact
that I(xN2 ;uN12|yN2 ) ≤ H(uN12). (c) is due to the fact that uN21 and uN12 are both functions of
(yN1 , y

N
2 ), and that H(uN12) ≤ NCB

12. (d) is due to the fact that conditioning reduces entropy
and that xN2 and (xN1 , s̃

N
1 ) are independent. (e) is due to the fact that Gaussian distribution

maximizes conditional entropy subject to conditional variance constraints.
Hence, (and similarly for 2R1 +R2), we have shown bounds (2.14) and (2.13).

3.3 Proof of Claim 2.12, Claim 2.13, Claim 2.15, and

Claim 2.18

3.3.1 Proof of Claim 2.12

Proof. To show (a), since we have four possible R1 +2R2 bounds, we distinguish into 4 cases:

(1) If the bound

R1 + 2R2 ≤ I (x1, x2c; y1|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB
12 +

(
CB

21 − ξ1

)+

is active, note that the point (R∗1, R
∗
2) where the R1 + 2R2 bound and the 2R1 + R2 bound

(2.21) intersect, satisfies

3R∗1 + 3R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x1, x2c; y1|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB

12 +
(
CB

21 − ξ1

)+
}

= {I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)}+
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
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+
{
I (x1, x2c; y1|x1c) + I (x1c, x2; y2|x2c) + CB

12 +
(
CB

21 − ξ1

)+
}

= (2.16) + (2.19) + (2.17),

which is greater than three times the active sum rate bound.

(2) If the bound

R1 + 2R2 ≤ I (x1, x2c; y1|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c)

+ CB
12 +

(
CB

21 − ξ1

)+

is active, note that the point (R∗1, R
∗
2) where the R1 + 2R2 bound and the 2R1 + R2 bound

(2.21) intersect, satisfies

3R∗1 + 3R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+

{
I (x1, x2c; y1|x1c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB
12 +

(
CB

21 − ξ1

)+

}
= {I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)}

+
{
I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x1, x2c; y1|x1c) + I (x1c, x2; y2|x2c) + CB

12 +
(
CB

21 − ξ1

)+
}

= (2.16) + (2.20) + (2.17),

which is greater than three times the active sum rate bound.

(3) If the bound

R1 + 2R2 ≤ I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB
12

is active, note that the point (R∗1, R
∗
2) where the R1 + 2R2 bound and the 2R1 + R2 bound

(2.21) intersect, satisfies

3R∗1 + 3R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB

12

}
= {I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)}+

{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
+
{
I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB

12

}
= (2.16) + (2.19) + (2.18),

which is greater than three times the active sum rate bound.
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(4) If the bound

R1 + 2R2 ≤ I (x1, x2c; y1, ŷ2|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB
12

is active, note that the point (R∗1, R
∗
2) where the R1 + 2R2 bound and the 2R1 + R2 bound

(2.21) intersect, satisfies

3R∗1 + 3R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x1, x2c; y1, ŷ2|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB

12

}
= {I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)}

+
{
I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB

12

}
= (2.16) + (2.20) + (2.18),

which is greater than three times the active sum rate bound.
Hence, we conclude that in case (a), the corner point where R1 +R2 bound and R1 +2R2

bound intersect can be achieved.
To show (b), since we have two possible R2 bounds, we distinguish into 2 cases:

(1) If the bound

R2 ≤ I (x2; y2|x1c) + CB
12

is active, note that the point (R∗1, R
∗
2) where the R2 bound and the 2R1 + R2 bound (2.21)

intersect, satisfies

2R∗1 + 2R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x2; y2|x1c) + CB

12

}
= I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

+ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12

+ I (x2; y2|x1c) + I (x1c; y2|x2c)− I (x1c, x2; y2) + CB
12

= (2.16) + (2.19) +
[
I (x1c; y2|x2c)− I (x1c; y2) + CB

12

]
(∗∗)
≥ (2.16) + (2.19),

which is greater than two times the active sum rate bound. (∗∗) is due to

I (x1c; y2|x2c) = I (x1c; y2, x2c)− I (x1c;x2c)

= I (x1c; y2, x2c) ≥ I (x1c; y2) ,

since x1c and x2c are independent.
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(2) If the bound

R2 ≤ I (x2c; y1|x1) + I (x2; y2|x1c, x2c)

is active, note that the point (R∗1, R
∗
2) where the R2 bound and the 2R1 + R2 bound (2.21)

intersect, satisfies

2R∗1 + 2R∗2

=
{
I (x1, x2c; y1, ŷ2) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB

12

}
+ {I (x2c; y1|x1) + I (x2; y2|x1c, x2c)}

= {I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)}
+
{
I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + CB

12

}
= (2.16) + (2.20),

which is greater than two times the active sum rate bound.
Hence, we conclude that in case (b), the corner point where R1 +R2 bound and R2 bound

intersect can be achieved.

3.3.2 Proof of Claim 2.13

Proof. (Keep in mind ∆2 = 1 + SNR2p and INRip ≤ 1, i = 1, 2)

(1) R1 bound: We have two bounds. First, I (x1; y1|x2c) = log
(

1 + SNR1

1+INR1p

)
, which is within

2 bits to the upper bound log (1 + SNR1 + INR2). Second,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

= log

(
1 +

SNR1p

1 + INR1p

)
+ log

(
1 + SNR2p + INR2

1 + INR2p

)
+ CB

12

≥ log

(
1 + SNR1 + INR2

1 + INR1p

)
− 1.

Hence, if the second bound is active, it is within 2 bits to the upper bound log (1 + SNR1 + INR2).

(2) R2 bound: We have two bounds. First, I (x2; y2|x1c) + CB
12 = log

(
1 + SNR2

1+INR2p

)
+ CB

12. If

the first bound is active, it is within 1 bit to the upper bound log (1 + SNR2) + CB
12. Second,

I (x2c; y1|x1) + I (x2; y2|x1c, x2c)

= log

(
1 + INR1

1 + INR1p

)
+ log

(
1 + SNR2p + INR2p

1 + INR2p

)
≥ log

(
1 + SNR2 + INR1

1 + INR2p

)
− 1.

Hence, the second bound is within 2 bits to the upper bound log (1 + SNR2 + INR1).
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(3) R1 +R2 bound: We have six bounds for R1 +R2, investigated as follows:

• First,

I (x1, x2c; y1) + I (x2; y2|x1c, x2c) +
(
CB

21 − ξ1

)+

= log

(
1 + SNR1 + INR1

1 + INR1p

)
+ log

(
1 +

SNR2p

1 + INR2p

)
+
(
CB

21 − ξ1

)+
,

which is within 2 + 1 = 3 bits to the upper bound (2.9).

• Second,

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

= log

(
(1 + ∆2)(1 + SNR1 + INR1) + SNR2 + INR2 + |h11h22 − h12h21|2

(1 + ∆2)(1 + INR1p) + SNR2p

)
+ log

(
1 +

SNR2p

1 + INR2p

)
(a)

≥ log

(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

4∆2

)
+ log (1 + SNR2p)− 1

= log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
+ log

(
1 + SNR2p

∆2

)
− 3

(b)

≥ log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
− 3,

where (a) is due to (1+∆2)(1+INR1p)+SNR2p ≤ (1+∆2)2+SNR2p = 4+3SNR2p ≤ 4∆2

since ∆2 = 1 + SNR2p and INR1p ≤ 1. (b) is due to ∆2 = 1 + SNR2p.

This lower bound is within 3 bits to the upper bound (2.10).

• Third,

I (x1, x2c; y1|x1c) + I (x1c, x2; y2|x2c) + CB
12 +

(
CB

21 − ξ1

)+

= log

(
1 + SNR1p + INR1

1 + INR1p

)
+ CB

12 + log

(
1 + SNR2p + INR2

1 + INR2p

)
+
(
CB

21 − ξ1

)+
,

which is within 2 + 1 = 3 bits to the upper bound (2.7).

• Fourth,

I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12

= I (x2c; y1, ŷ2|x1c) + I (x1; y1, ŷ2|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

≥ I (x2c; ŷ2|x1c) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12
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(a)

≥ I (x2c; y2|x1c)− 1 + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

(b)

≥ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − 1

= log

(
1 +

SNR1p

1 + INR1p

)
+ log

(
1 + SNR2 + INR2

1 + INR2p

)
+ CB

12 − 1,

which is within 3 bits to the upper bound (2.8). Note that (a) is due to

I (x2c; ŷ2|x1c) = log

(
1 + ∆2 + INR2p + SNR2

1 + ∆2 + INR2p + SNR2p

)
≥ log

(
1 + INR2p + SNR2

1 + (1 + SNR2p) + INR2p + SNR2p

)
≥ log

(
1 + INR2p + SNR2

1 + INR2p + SNR2p

)
− 1

= I (x2c; y2|x1c)− 1.

(b) is due to

I (x2c; y2|x1c) + I (x1c, x2; y2|x2c)

= I (x2c; y2, x1c) + I (x1c, x2; y2|x2c)

≥ I (x2c; y2) + I (x1c, x2; y2|x2c)

= I (x1c, x2, x2c; y2) = I (x1c, x2; y2) .

• Fifth,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12

= log

(
1 +

SNR1p

1 + INR1p

)
+ log

(
1 + SNR2 + INR2

1 + INR2p

)
+ CB

12,

which is within 2 bits to the upper bound (2.8).

• Sixth,

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + CB
12

= log
(

1 + SNR1p

1+INR1p

)
+ log

(
1+INR1

1+INR1p

)
+ log

(
1+SNR2p+INR2

1+INR2p

)
+ CB

12

≥ log
(

1 + SNR1p

1+INR1p

)
+ log

(
1+SNR2+INR2

(1+INR1p)(1+INR2p)

)
+ CB

12 ,

which is within 3 bits to the upper bound (2.8).
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(4) 2R1 +R2 bound: The bound

I (x1, x2c; y1) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12 +

(
CB

21 − ξ1

)+

= log
(

1+SNR1+INR1

1+INR1p

)
+ log

(
1 + SNR1p

1+INR1p

)
+ CB

12 + log
(

1+SNR2p+INR2

1+INR2p

)
+
(
CB

21 − ξ1

)+
,

which is within 3 + 1 = 4 bits to the upper bound (2.11).

(5) R1 + 2R2 bound: We have four bounds for R1 + 2R2, investigated as follows:

• First,

I (x1, x2c; y1|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB
12 +

(
CB

21 − ξ1

)+

= log
(

1+SNR1p+INR1

1+INR1p

)
+ log

(
1+SNR2+INR2

1+INR2p

)
+ log

(
1 + SNR2p

1+INR2p

)
+ CB

12 +
(
CB

21 − ξ1

)+
,

which is within 3 + 1 = 4 bits to the upper bound (2.12).

• Second,

I (x1, x2c; y1|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+ I (x2; y2|x1c, x2c) + CB
12 +

(
CB

21 − ξ1

)+

=

 log
(

1+SNR1p+INR1

1+INR1p

)
+ log

(
1+INR1

1+INR1p

)
+ log

(
1+SNR2p+INR2

1+INR2p

)
+ log

(
1 + SNR2p

1+INR2p

)
+ CB

12 +
(
CB

21 − ξ1

)+


≥

 log
(

1+SNR1p+INR1

1+INR1p

)
+ log

(
1+SNR2+INR2

(1+INR1p)(1+INR2p)

)
+ log

(
1 + SNR2p

1+INR2p

)
+ CB

12 +
(
CB

21 − ξ1

)+

 ,

which is within 4 + 1 = 5 bits to the upper bound (2.12).

• Third,

I (x1, x2c; y1, ŷ2|x1c) + I (x1c, x2; y2) + I (x2; y2|x1c, x2c) + CB
12

=

 log
(

(1+∆2)(1+SNR1p+INR1)+SNR2+INR2p+|h11h22−h12h21|2Q1p

(1+∆2)(1+INR1p)+SNR2p

)
+ log

(
1+SNR2+INR2

1+INR2p

)
+ log

(
1 + SNR2p

1+INR2p

)
+ CB

12


≥

 log
(

1+SNR1p+INR1+SNR2+INR2p+|h11h22−h12h21|2Q1p

4∆2

)
+ log

(
1+SNR2+INR2

1+INR2p

)
+ log (1 + SNR2p) + CB

12 − 1


≥

{
log (1 + SNR1p + INR1 + SNR2 + INR2p + |h11h22 − h12h21|2Q1p)

+ log
(

1+SNR2+INR2

1+INR2p

)
+ CB

12 − 3

}
,

which is within 1 + 3 = 4 bits to the upper bound (2.14).
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• Fourth,

I (x1, x2c; y1, ŷ2|x1c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + I (x2; y2|x1c, x2c) + CB
12

=

 log
(

(1+∆2)(1+SNR1p+INR1)+SNR2+INR2p+|h11h22−h12h21|2Q1p

(1+∆2)(1+INR1p)+SNR2p

)
+ log

(
1+INR1

1+INR1p

)
+ log

(
1+SNR2p+INR2

1+INR2p

)
+ log

(
1 + SNR2p

1+INR2p

)
+ CB

12


≥

 log
(

1+SNR1p+INR1+SNR2+INR2p+|h11h22−h12h21|2Q1p

4∆2

)
+ log

(
1+SNR2+INR2

(1+INR1p)(1+INR2p)

)
+ log (1 + SNR2p) + CB

12 − 1


≥

{
log (1 + SNR1p + INR1 + SNR2 + INR2p + |h11h22 − h12h21|2Q1p)

+ log
(

1+SNR2+INR2

(1+INR1p)(1+INR2p)

)
+ CB

12 − 3

}
,

which is within 2 + 3 = 5 bits to the upper bound (2.14).

Therefore, we see that the bounds in R2→1→2 except (2.21) satisfies:

• R1 bound is within 2 bits to outer bounds;

• R2 bound is within 2 bits to outer bounds;

• R1 +R2 bound is within 3 bits to outer bounds;

• 2R1 +R2 bound is within 4 bits to outer bounds;

• R1 + 2R2 bound is within 5 bits to outer bounds.

3.3.3 Proof of Claim 2.15

Proof. (Keep in mind ∆2 = 1 and INR2p ≤ 1)

(1) R1 bound: We have two bounds. First, I (x1; y1|x2) = log (1 + SNR1), which is within 1
bit to the upper bound R1 ≤ log (1 + SNR1 + INR2). Second,

I (x1; y1|x1c, x2) + I (x1c; y2|x2) + CB
12

= log (1 + SNR1p) + log

(
1 + INR2

1 + INR2p

)
+ CB

12

≥ log

(
1 + SNR1 + INR2

1 + INR2p

)
+ CB

12.

Hence, if the second bound is active, it is within 1 bit to the upper bound log (1 + SNR1 + INR2).
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(2) R2 bound: We have two bounds. First, I (x1; y1|x1) = log (1 + INR1), which is within
1 bit to the upper bound R2 ≤ log (1 + SNR2 + INR1). Second, I (x2; y2|x1c) + CB

12 =

log
(

1+SNR2+INR2p

1+INR2p

)
+CB

12, which is within 1 bit to the upper bound R2 ≤ log (1 + SNR2)+CB
12.

(3) R1 +R2 bound: We have five bounds, investigated as follows:

• First,

I (x1, x2; y1) +
(
CB

21 − ξ1

)+
= log (1 + SNR1 + INR1) +

(
CB

21 − ξ1

)+
,

which is within 1 + ξ1 = 2 bits to the upper bound (2.9).

• Second,

I (x1, x2; y1, ŷ2) = log

(
2(1 + SNR1 + INR1) + SNR2 + INR2 + |h11h22 − h12h21|2

2

)
which is within 1 bit to the upper bound (2.10).

• Third,

I (x1; y1|x1c, x2) + I (x1c, x2; y2) + CB
12

= log (1 + SNR1p) + log

(
1 + SNR2 + INR2

1 + INR2p

)
+ CB

12

which is within 1 bit to the upper bound (2.8).

• Fourth,

I (x1, x2; y1|x1c) + I (x1c; y2|x2) + CB
12 +

(
CB

21 − ξ1

)+

= log (1 + SNR1p + INR1) + log

(
1 + INR2

1 + INR2p

)
+ CB

12 +
(
CB

21 − ξ1

)+
,

which is within 2 + ξ1 = 3 bits to the upper bound (2.7).

• Fifth,

I (x1, x2; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12

= I (x2; y1, ŷ2|x1c) + I (x1; y1, ŷ2|x1c, x2) + I (x1c; y2|x2) + CB
12

≥ I (x2; y1, ŷ2|x1c) + I (x1; y1|x1c, x2) + I (x1c; y2|x2) + CB
12

=

 log
(

2(1+SNR1p+INR1)+SNR2+INR2p+|h11h22−h12h21|2Q1p

2(1+SNR1p)+INR2p

)
+ log (1 + SNR1p) + log

(
1+INR2

1+INR2p

)
+ CB

12


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≥

 log
(

1+SNR1p+INR1+SNR2+INR2p+|h11h22−h12h21|2Q1p

3(1+SNR1p)

)
+ log (1 + SNR1p) + log

(
1+INR2

1+INR2p

)
+ CB

12


≥

{
log (1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2)

+ log
(

1
1+INR2p

)
+ CB

12 − log 3

}
.

Hence, if this bound is active, it is within 1 + log 3 = log 6 bits to the upper bound
(2.10).

(4) R1 + 2R2 bound: We have two bounds. First,

I (x1, x2; y1|x1c) + I (x1c, x2; y2) + CB
12 +

(
CB

21 − ξ1

)+

= log (1 + SNR1p + INR1) + log

(
1 + SNR2 + INR2

1 + INR2p

)
+ CB

12 +
(
CB

21 − ξ1

)+
,

which is within 2 + ξ1 = 3 bits to the upper bound (2.12)
Second,

I (x1, x2; y1, ŷ2|x1c) + I (x1c, x2; y2) + CB
12

=

 log
(

2(1+SNR1p+INR1)+SNR2+INR2p+|h11h22−h12h21|2Q1p

2

)
+ log

(
1+SNR2+INR2

1+INR2p

)
+ CB

12

 ,

which is within 2 bits to the upper bound (2.14).
Therefore, we see that the bounds in R2→1→2 satisfies:

• R1 bound is within 1 bit to outer bounds;

• R2 bound is within 1 bit to outer bounds;

• R1 +R2 bound is within 3 bits to outer bounds;

• R1 + 2R2 bound is within 3 bits to outer bounds.

3.3.4 Proof of Claim 2.18

Proof. (Keep in mind that ∆1 = ∆2 = 1)

(1) R1 bound: We have four bounds. First,

I (x1; y1|x2) + (CB
21 − ξ1)+ = log (1 + SNR1) + (CB

21 − ξ1)+
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which is within ξ1 = 1 bit to the upper bound log (1 + SNR1) + CB
21. Second,

I (x1; y2|x2) + (CB
12 − ξ2)+ = log (1 + INR2) + (CB

12 − ξ2)+

≥ log (1 + SNR1 + INR2)− 1.

Hence if this bound is active, it is within 1 bit to the upper bound log (1 + SNR1 + INR2).
Finally,

I (x1; y1, ŷ2|x2) = log

(
2 + 2SNR1 + INR2

2

)
I (x1; y2, ŷ1|x2) = log

(
2 + SNR1 + 2INR2

2

)
,

which are both within 1 bit to the upper bound log (1 + SNR1 + INR2).

(2) R2 bound: By symmetry we have the same gap result as (1).

(3) R1 +R2 bound: We have four bounds. First,

I (x1, x2; y1) + (CB
21 − ξ1)+ = log (1 + SNR1 + INR1) + (CB

21 − ξ1)+,

which is within 1 + ξ1 = 2 bits to the upper bound (2.9). Second,

I (x2, x1; y2) + (CB
12 − ξ2)+ = log (1 + SNR2 + INR2) + (CB

12 − ξ2)+,

which is within 1 + ξ2 = 2 bits to the upper bound (2.8). Finally,

I (x1, x2; y1, ŷ2) = log

(
2(1 + SNR1 + INR1) + SNR2 + INR2 + |h11h22 − h12h21|2

2

)
I (x2, x1; y2, ŷ1) = log

(
2(1 + SNR2 + INR2) + SNR1 + INR1 + |h11h22 − h12h21|2

2

)
,

which are both within 1 bit to the upper bound (2.10).
Therefore, we see that the bounds in ROneRound satisfies:

• R1 bound is within 1 bit to outer bounds;

• R2 bound is within 1 bit to outer bounds;

• R1 +R2 bound is within 2 bits to outer bounds.
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3.4 Proof of Theorem 2.23

From Section 2.5.5, we have shown that when SNR ≤ INR,

Rsym,OneRound ≤ Csym ≤ Csym ≤ Rsym,OneRound + 1.

Hence we focus on the case SNR > INR in the rest of the proof.
By symmetry and by Theorem 2.16, if Rsym,OneRound ≥ 0 satisfies the following, it is

achievable:

Rsym,OneRound ≤ min
{
I (x2c, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x1; y1, ŷ2|x1c)
}
,

Rsym,OneRound ≤ min
{
I (x1; y1|x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2c)
}
,

2Rsym,OneRound ≤ min
{
I (x1, x2c; y1) + (CB

21 − ξ1)+, I (x1, x2c; y1, ŷ2)
}

+ min
{
I (x1; y1|x1c, x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x1c, x2c)
}
.

Note that since

I (x1; y1|x1c, x2c) ≤ I (x1; y1, ŷ2|x1c, x2c) ≤ I (x1; y1|x1c, x2c) + constant,

I (x1; y1|x2c) ≤ I (x1; y1, ŷ2|x2c) ≤ I (x1; y1|x2c) + constant,

a sufficient condition for achievable Rsym,OneRound is

Rsym,OneRound ≤ min
{
I (x2c, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x1; y1, ŷ2|x1c) , I (x1; y1|x2c)
}

Rsym,OneRound ≤
1

2
min

{
I (x1, x2c; y1) + (CB

21 − ξ1)+, I (x1, x2c; y1, ŷ2)
}

+
1

2
I (x1; y1|x1c, x2c)

(1) I (x2c, x1; y1|x1c) + (CB
21 − ξ1)+:

I (x2c, x1; y1|x1c) + (CB
21 − ξ1)+ = log

(
1 + SNRp + INR

1 + INRp

)
+ (CB − ξ)+,

and its gap to the outer bound log
(
1 + INR + SNR

1+INR

)
+ CB:

gap ≤ log (1 + INRp) + ξ ≤ 1 + 1 = 2.

(2) I (x2c, x1; y1, ŷ2|x1c):

I (x2c, x1; y1, ŷ2|x1c)

= I (x2c; y1, ŷ2|x1c) + I (x1; y1, ŷ2|x2c, x1c)

≥ I (x2c; ŷ2|x1c) + I (x1; y1|x2c, x1c)

= log

(
1 + ∆ + SNR + INRp
1 + ∆ + SNRp + INRp

)
+ log

(
1 + SNRp + INRp

1 + INRp

)
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(a)

≥ log

(
1 + SNR

2 + 2SNRp + 2INRp

)
+ log

(
1 + SNRp + INRp

1 + INRp

)
= log

(
1 + SNR

1 + INRp

)
− 1,

where (a) is due to ∆ = 1 + SNRp.
Therefore, the gap to the outer bound log (1 + SNR + INR):

gap ≤ 1 + log

(
1 + SNR + INR

1 + SNR

)
+ log (1 + INRp)

≤ 1 + log

(
2 + 2SNR

1 + SNR

)
+ log (1 + 1) = 3,

since SNR > INR and INRp ≤ 1.

(3) I (x1; y1|x2c):

I (x1; y1|x2c) = log (1 + SNR + INRp)− log (1 + INRp) ,

and its gap to the outer bound log (1 + SNR + INR):

gap ≤ log

(
1 + SNR + INR

1 + SNR + INRp

)
+ log (1 + INRp)

≤ log

(
2 + 2SNR

1 + SNR

)
+ log (1 + 1) = 2.

(4) 1
2
I (x1, x2c; y1) + 1

2
(CB

21 − ξ1)+ + 1
2
I (x1; y1|x1c, x2c):

1

2
I (x1, x2c; y1) +

1

2
(CB

21 − ξ1)+ +
1

2
I (x1; y1|x1c, x2c)

=
1

2
log (1 + SNR + INR) +

1

2
(CB − ξ)+ +

1

2
log (1 + SNRp + INRp)− log (1 + INRp) ,

and its gap to the outer bound 1
2

log (1 + SNR + INR) + 1
2

log
(
1 + SNR

1+INR

)
+ 1

2
CB:

gap ≤ 1

2
ξ + log (1 + INRp) ≤ 1.5.

(5) 1
2
I (x1, x2c; y1, ŷ2) + 1

2
I (x1; y1|x1c, x2c):

1

2
I (x1, x2c; y1, ŷ2) +

1

2
I (x1; y1|x1c, x2c)

=
1

2
log

(
∆ (1 + SNR + INR) + 1 + 2SNR + 2INR + |h11h22 − h12h21|2

∆ (1 + INRp) + 1 + SNRp + INRp

)
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+
1

2
log

(
1 + SNRp + INRp

1 + INRp

)
≥ 1

2
log

(
1 + 2SNR + 2INR + |h11h22 − h12h21|2

4∆

)
+

1

2
log

(
∆

1 + INRp

)
=

1

2
log
(
1 + 2SNR + 2INR + |h11h22 − h12h21|2

)
− 1

2
log (1 + INRp)− 1.

Therefore, the gap to the outer bound 1
2

log (1 + 2SNR + 2INR + |h11h22 − h12h21|2):

gap ≤ 1

2
log (1 + INRp) + 1 ≤ 1.5.

From (1) - (5), we conclude that when SNR > INR,

Rsym,OneRound ≤ Csym ≤ Csym ≤ Rsym,OneRound + 3.

This completes the proof.

3.5 Proof of Lemma 2.25

Proof. From Corollary 2.24 we see that except the term

V :=
1

2
log
(
1 + 2SNR + 2INR + |h11h22 − h12h21|2

)
,

all terms scaled by log SNR converges everywhere as SNR→∞ with α, κ fixed. Note that

|h11h22 − h12h21|2

= |g11e
jΘ11g22e

jΘ22 − g12e
jΘ12g21e

jΘ21|2

=
[
g11g22 cos (Θ11 + Θ22)− g12g21 cos (Θ12 + Θ21)

]2

+
[
g11g22 sin (Θ11 + Θ22)− g12g21 sin (Θ12 + Θ21)

]2

= g2
11g

2
22 + g2

12g
2
21 − 2g11g22g12g21 cos (Θ11 + Θ22 −Θ12 −Θ21)

= SNR2 + INR2 − 2(cos Θ)SNRINR,

where Θ = Θ11 +Θ22−Θ12−Θ21 mod 2π. Obviously Θ is uniformly distributed over [0, 2π].
Now, consider the limit

L(α, κ) := lim
fix α,κ

SNR→∞

V

log SNR
.
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We have the following upper and lower bounds for V due to the fact that
∣∣|h11||h22| −

|h12||h21|
∣∣ ≤ |h11h22 − h12h21| ≤ |h11||h22|+ |h12||h21|:

V ≥ 1

2
log
(
1 + 2SNR + 2INR + (SNR− INR)2

)
;

V ≤ 1

2
log
(
1 + 2SNR + 2INR + (SNR + INR)2

)
.

Hence, when α < 1, taking limits at both sides yields 1 ≤ L(α, κ) ≤ 1 and implies L(α, κ) =
1. Similarly, when α > 1, taking limits at both sides yields α ≤ L(α, κ) ≤ α and implies
L(α, κ) = α. When α = 1, note that

V =
1

2
log
(
1 + 2SNR + 2INR + SNR2 + INR2 − 2(cos Θ)SNRINR

)
=

1

2
log

(
(1 + SNR + INR)2 − 4 cos2 Θ

2
SNRINR

)
,

and therefore L(α, κ) = 1 if Θ 6= 0, 2π. Since the event {Θ = 0, 2π} is of zero measure, the
limit L(α, κ) exists almost surely.
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Part II

Interference Mitigation through
Transmitter Cooperation
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Chapter 4

Interference Channel with
Transmitter Cooperation

In Part I, we show how limited receiver cooperation helps mitigate interference. The
scenario with transmitter cooperation, however, is more difficult to tackle. In this chapter
we study the two-user Gaussian interference channel with conferencing transmitters to make
progress towards this direction. We characterize the capacity region to within 6.5 bits/s/Hz,
regardless of channel parameters. Based on the bounded-gap-to-optimality result, we show
that there is an interesting reciprocity between the scenario with conferencing transmitters
and the scenario with conferencing receivers, and their capacity regions are within a bounded
gap to each other. Hence in the interference-limited regime, the behavior of the benefit
brought by transmitter cooperation is the same as that by receiver cooperation.

4.1 Introduction

In modern wireless communication systems, interference has become the major factor that
limits the performance. Interference arises whenever multiple transmitter-receiver pairs are
present, and each receiver is only interested in retrieving information from its own trans-
mitter. Due to the broadcast and superposition nature of wireless channels, one user’s
information-carrying signal causes interference to other users. The interference channel is
the simplest information theoretic model for studying this issue, where each transmitter (re-
ceiver) is assumed to be isolated from other transmitters (receivers). In various practical
scenarios, however, they are not isolated, and cooperation among transmitters or receivers
can be induced. For example, in downlink cellular systems, base stations are connected via
infrastructure backhaul networks.

In Part I, we have studied the two-user Gaussian interference channel with conferencing
receivers to understand how limited receiver cooperation helps mitigate interference. We
proposed good coding strategies, proved tight outer bounds, and characterized the capacity
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region to within 2 bits/s/Hz. Based upon the bounded-gap-to-optimality result, we identify
two regions regarding the gain from receiver cooperation: linear and saturation regions. In
the linear region, receiver cooperation is efficient, in the sense that the growth of each user’s
”over-the-air” data rate is roughly linear with respect to the capacity of receiver-cooperative
links. The gain in this region is the degrees-of-freedom gain that distributed MIMO systems
provide. In the saturation region, receiver cooperation is inefficient in the sense that the
growth of each user’s over-the-air data rate becomes saturated as one increases the rate in
receiver-cooperative links. The gain is the power gain which is bounded, independent of
the channel strength. Furthermore, until saturation the degree-of-freedom gain is either one
cooperation bit buys one over-the-air bit or two cooperation bits buy one over-the-air bit.

In this chapter, we study its reciprocal problem, the two-user Gaussian interference chan-
nel with conferencing transmitters, to investigate how limited transmitter cooperation helps
mitigate interference. A natural cooperative strategy between transmitters is that, prior to
each block of transmission, two transmitters hold a conference to tell each other part of their
messages. Hence the messages are classified into two kinds: (1) cooperative messages, which
are those known to both transmitters due to the conference, and (2) noncooperative ones,
which are those unknown to the other transmitter since the cooperative link capacities are
finite. On the other hand, messages can also be classified based on their target receivers: (1)
common messages, which are those aimed at both receivers, and (2) private ones, which are
those aimed at their own receiver. Hence in total there are four kinds of messages for each
user, and seven codes for the whole system1. Now the question is, how do we encode these
messages?

Generally speaking, Gaussian interference channels with transmitter cooperation are
more difficult to tackle than Gaussian interference channels with receiver cooperation. Take
the following extreme case. When transmitters can cooperate in an unlimited fashion, the
scenario reduces to the MIMO Gaussian broadcast channel. When receivers can cooperate in
an unlimited fashion, the scenario reduces to the MIMO Gaussian multiple access channel.
The capacity region of the latter is fully characterized in the 70’s [39] [40], while that of the
former has not been solved until recently [41]. This is due to difficulties both in achievability
and outer bounds.

Similar phenomenon arises between Gaussian interference channels with conferencing
transmitters and Gaussian interference channels with conferencing receivers. Compared with
the scenario with conferencing receivers [15] where each user just has two kinds of messages
(common and private), in the scenario with conferencing transmitters not only does the
message structure in the strategy become more complicated due to the collaboration among
transmitters, but it is also more difficult to prove the outer bounds since the transmitters
are potentially correlated. In order to overcome the difficulties, we first study an auxiliary
problem in the linear deterministic setting [34] [9]. We first characterize the capacity region
of the linear deterministic interference channel with conferencing transmitters, and then

1There is only one cooperative common code carrying both cooperative common messages.
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make use of the intuition there to design good coding strategies and to prove outer bounds
in the Gaussian scenario. Eventually the proposed strategy in the Gaussian setting is a
simple superposition of a pair of noncooperative common and private codewords and a pair
of cooperative common and private codewords. For the noncooperative part, Han-Kobayashi
scheme [4] is employed, and the common-private split is such that the private interference is
at or below the noise level at the unintended receiver [5]. For the cooperative part, we use a
simple linear beamforming strategy for encoding the private messages, superimposed upon
the common codewords. By choosing the power split and beamforming vectors cleverly, the
strategy achieves the capacity region universally to within 6.5 bits, regardless of channel
parameters. The 6.5-bit gap is the worst-case gap which can be loose in some regimes, and
it is vanishingly small at high SNR when compared to the capacity.

With the bounded-gap-to-optimality result, we observe an interesting uplink-downlink
reciprocity between the scenario with conferencing receivers and the scenario with confer-
encing transmitters: for the original and reciprocal channels, the capacity regions are within
a bounded gap to each other. Hence the fundamental gain from transmitter cooperation at
high SNR is the same as that from receiver cooperation [15].

Related Works

Conferencing among transmitters is first studied by Willems [18] in the context of multiple
access channels, where the capacity region is characterized. The capacity of the Gaussian
MAC with conferencing transmitters, however, has not been characterized explicitly in a
computable form until recently by Bross et al.[19], where the authors show that the opti-
mization on auxiliary random variables can be reduced to finding the optimal Gaussian input
distribution. On the other hand, the extension to the compound MAC has been done by
Marić et al.[20].

Works on Gaussian interference channel with transmitter cooperation can be roughly di-
vided into two categories. One set of works investigate cooperation in interference channels
with a set-up where the cooperative links share the same band as the links in the interfer-
ence channel. Høst-Madsen [24] proposes cooperative strategies based on decode-forward,
compress-forward, and dirty paper coding, and derives the achievable rates. The recent work
by Prabhakaran et al.[42] characterizes the sum capacity of Gaussian interference channels
with reciprocal in-band transmitter cooperation to within a bounded gap. The other set of
works focus on conferencing transmitters, that is, cooperative links are orthogonal to each
other as well as the links in the interference channel. Some works are dedicated to achiev-
able rates. Cao et al.[43] derive an achievable rate region based on superposition coding
and dirty paper coding. Some works consider special cases of the channel. One such spe-
cial case attracting particularly broad interest is the cognitive interference channel, where
one of the transmitters (the cognitive user) is assumed to have full knowledge about the
other’s transmission (the primary user). It is equivalent to the case where transmitter co-
operation is unidirectional and unlimited. As for the cognitive interference channel, Marić
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et al.[20] characterize the capacity region in the strong interference regime. Wu et al.[44]
and Jovičić et al.[45] independently characterize the capacity region when the interference at
the primary receiver is weak. Very recently, Rini et al.[46] characterize the capacity region
to within a bounded gap, regardless of channel parameters. On the other hand, works on
the case with limited cooperative capacities are not rich in the literature. Bagheri et al.[47]
investigate symmetric Gaussian interference channel with unidirectional limited transmitter
cooperation, and characterize the sum capacity to within a bounded gap.

Our main contribution in this chapter is characterizing the capacity region of the two-
user Gaussian interference channel with conferencing transmitters to within a bounded gap
for arbitrary channel strength and cooperative link capacities. The rest of the chapter is
organized as follows. After we formulate the problem in Section 4.2, we investigate the
auxiliary linear deterministic channel in Section 4.3. Then we carry the intuitions and
techniques to solve the original problem in Section 4.4 and characterize the capacity region to
within a bounded gap. In Section 4.5 we discuss the interesting uplink-downlink reciprocity.

4.2 Problem Formulation

4.2.1 Channel Model

The Gaussian interference channel with conferencing transmitters is depicted in Fig. 4.1.

ENC 1

ENC 2

DEC 1

DEC 2

+

+

m1

m2

x1

x2

h11

h22

h12

h21

z1

z2

m̂1

m̂2

v21v12

Figure 4.1: Channel Model

The links among transmitters and receivers are modeled as the normalized Gaussian
interference channel:

y1 = h11x1 + h12x2 + z1, y2 = h21x1 + h22x2 + z2,

where the additive noise processes {zi[k]}, (i = 1, 2), are independent CN (0, 1), i.i.d. over
time. In this chapter, we use [.] to denote time indices. Transmitter i intends to convey
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message mi to receiver i by encoding it into a block codeword {xi[k]}Nk=1, with transmit
power constraints

1

N

N∑
k=1

∣∣xi[k]
∣∣2 ≤ 1, i = 1, 2,

for arbitrary block length N . Note that outcome of the encoder depends on both messages.
Messages m1,m2 are independent. Define channel parameters

SNRi := |hii|2, INRi := |hij|2, i, j = 1, 2, i 6= j.

The cooperative links between transmitters are noiseless with finite capacity CB
ij from

transmitter i to j. Encoding must satisfy causality constraints: for any time index k =
1, 2, . . . , N , vij[k] is only a function of {mi, vji[1], . . . , vji[k − 1]}.

4.2.2 Notations

We summarize below the notations used in the rest of this chapter.

• For a real number a, (a)+ := max(a, 0) denotes its positive part.

• For a real number a, bac denotes the closest integer that is not greater than a.

• For sets A,B ⊆ Rk in k-dimensional space, A ⊕ B := {a + b : a ∈ A, b ∈ B} denotes
the direct sum of A and B.

• With a little abuse of notations, for x, y ∈ Fq, x ⊕ y denotes the modulo-q sum of x
and y.

• Unless specified, all the logarithms log(.) are of base 2.

4.3 Linear Deterministic Interference Channel with Con-

ferencing Transmitters

As discussed in Section 4.1, we shall first study an auxiliary problem, linear deterministic
interference channel with conferencing transmitters, to overcome the complications both in
achievability and outer bounds.

The corresponding linear deterministic channel (LDC) is parametrized by nonnegative
integers n11, n21, n22, n12, k12, and k21, where

nij :=
(
blog |hij|2c

)+
, i, j ∈ {1, 2}
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correspond to the channel gains in logarithmic-two scale, and

k12 := bCB
12c, k21 := bCB

21c

correspond to the cooperative link capacities. An illustration is depicted in Fig. 4.2(a) along
with an example in Fig. 4.2(b). Each circle or diamond represents a bit. The bit emitting
from a single circle at transmitters will broadcast noiselessly through the edges to the circles
at receivers. Multiple incoming bits at a circle are summed up using modulo-two addition
and produce a single received bit. The diamonds represent the bits exchanged between
transmitters. In Fig. 4.2(b), Tx1 can send one bit to Tx2, and Tx2 can send two bits to
Tx1. For more details about this model, we point the readers to reference [34] [9] [10].

Tx1

Tx2

Rx1

Rx2

n11

n12

n22

n21

k12k21

(a) Channel Model

Tx1

Tx2

Rx1

Rx2

+
+

+

(b) Example Channel

Figure 4.2: Linear Deterministic Interference Channel with Conferencing Transmitters.

The following theorem characterizes the capacity region of this channel.

Theorem 4.1. Nonnegative (R1, R2) is achievable if and only if it satisfies the following:

R1 ≤ min
{

max (n11, n12) , n11 + k12

}
R2 ≤ min

{
max (n22, n21) , n22 + k21

}
R1 +R2 ≤ (n11 − n21)+ + max (n22, n21) + k12 (4.1)

R1 +R2 ≤ (n22 − n12)+ + max (n11, n12) + k21 (4.2)

R1 +R2 ≤ max
{
n12, (n11 − n21)+}+ max

{
n21, (n22 − n12)+}+ k12 + k21 (4.3)

R1 +R2 ≤
{

max {n11 + n22, n12 + n21} , if n11 + n22 6= n12 + n21

max {n11, n12, n21, n22} , if n11 + n22 = n12 + n21
(4.4)

2R1 +R2 ≤ max (n11, n12) + max
{
n21, (n22 − n12)+}+ (n11 − n21)+ + k12 + k21 (4.5)

R1 + 2R2 ≤ max (n22, n21) + max
{
n12, (n11 − n21)+}+ (n22 − n12)+ + k21 + k12



CHAPTER 4. INTERFERENCE CHANNEL WITH TX COOPERATION 75

2R1 +R2 ≤ n21 + max
{
n11 + (n22 − n21)+ , n12

}
+ (n11 − n21)+ + k12 (4.6)

R1 + 2R2 ≤ n12 + max
{
n22 + (n11 − n12)+ , n21

}
+ (n22 − n12)+ + k21

4.3.1 Motivating Examples

Before going into technical details of proving the achievability and outer bounds, we first
give several examples to motivate the scheme as well as the outer bounds. In the discussions
below, bit ai ∈ F2 denotes an information bit for user 1, and similarly bi ∈ F2 denotes an
information bit for user 2. The index i denotes the i-th level from the most significant bit
(MSB) at the user’s transmitter. If i becomes larger than the total number of levels available
at the user’s transmitter, the corresponding bit has to be relayed to the final destination via
the other transmitter, as we will see in the sequel.
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a1 b1
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b3
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b3

b2

b3

b2⊕
b3⊕
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a1⊕a2

b1

b2

b2⊕ b3

b1

(a) Achieving R1 = 2, R2 = 3

a1

a2

TransmittedExchanged

b2b2

b2 b2⊕ a1

a2

b2

a3

a3

a3

a3a3

a1b2⊕

(b) Achieving R1 = 3, R2 = 1

Figure 4.3: Coding Strategies for Example Channel in Fig. 4.2

Achievability

The first example channel is depicted in Fig. 4.2(b), where n11 = 2, n12 = 3, n21 = 1, n22 =
3, k12 = 1, k21 = 2. We shall use this example to argue intuitively the need of cooperative
common messages, shed some light on how cooperative messages should be encoded, and il-
lustrate the two-fold usage of transmitter cooperation - nulling out interferences and relaying
additional information.

To achieve the rate point (R1, R2) = (2, 3), one simple strategy is depicted in Fig. 4.3(a).
In this coding scheme, we identify the message structure in Table 4.1. Note that transmitter
2 sends b2 and b3 to transmitter 1 so that it can carry out proper precoding to null out
interference b2 and b3 at receiver 1. Similarly transmitter 1 sends a1 to transmitter 2 so that
it can null out interference a1 at receiver 2.
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Table 4.1: Message Structure in Fig. 4.3(a)

Cooperative Cooperative Noncooperative Noncooperative
common private common private

None a1 and (b2, b3) b1 a2

On the other hand, to achieve the rate point (R1, R2) = (3, 1), one simple strategy is
depicted in Fig. 4.3(b). In this coding scheme, we identify the message structure in Table
4.2. Note that to support a third bit a3 for user 1, it has to occupy the topmost circle level

Table 4.2: Message Structure in Fig. 4.3(b)

Cooperative Cooperative Noncooperative Noncooperative
common private common private

a3 b2 a1 a2

at transmitter 2 and both receivers, since the direct link from transmitter 1 to receiver 1
has only two levels. Hence, receiver 2 inevitably will decode bit a3, which is then classified
as cooperative common. From this example we see that cooperative common messages are
needed, and their signal should occupy the levels that appear at both receivers cleanly. For
the cooperative private parts, the example suggests that one should design precoding cleverly
such that interference is nulled out at the unintended receiver. Based upon these intuitions,
we propose an explicit scheme in Section 4.3.4.

In the above example, we can see that the usage of the cooperative links is two-fold:
(1) null out interference, as in Fig. 4.3(a), and (2) relay additional bits, as the link from
transmitter 1 to 2 in Fig. 4.3(b). This observation is also useful in motivating outer bounds.

Fundamental Tradeoff on 2R1 +R2 and R1 + 2R2

For outer bounds, the main difference from the interference channel without cooperation [14]
[10] is that there are two different types of bounds on 2R1 +R2 (and R1 + 2R2 correspond-
ingly). Below we demonstrate the two different types of fundamental tradeoff on 2R1 + R2

through two examples.
The first type of tradeoff does not involve the information that flows in the cooperative

links. Consider the example channel with n11 = n22 = 5, n12 = n21 = 3, k12 = k21 = 1.
We first consider the case without cooperation. Two corner points of the capacity region are
(R1, R2) = (4, 2) and (5, 0), and the optimal strategies are depicted in Fig. 4.4(a) and (b)
respectively. To enhance user 1’s rate from 4 to 5 bits, the bit a3 has to be turned on and
causes collisions at the third level at receiver 1 and the fifth level at receiver 2. Transmitter
2 then has to turn off bit b1 to avoid destroying bit a3, and b5 cannot be decoded since it is
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Figure 4.4: Example Channel without Transmitter Coopertaion: Tradoff from (R1, R2) =
(4, 2) to (5, 0)
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corrupted by a3. Now consider the case with cooperation. Two corner points of the capacity
region are (R1, R2) = (4, 4) and (5, 2), and the optimal strategies are depicted in Fig. 4.5(a)
and (b) respectively. Note that to enhance user 1’s rate from 4 to 5 bits, again the bit a3

has to be turned on and again causes collisions at the same places as in the case without
cooperation. Note that the bits exchanged in the cooperative links remain the same, and
hence the information that flows in the cooperative links is not involved in this tradeoff.
Furthermore, the tradeoff is qualitatively the same as that in the case without cooperation.
Later we will see that this type of outer bound on 2R1 + R2 can be generalized from the
2R1 +R2 bound in deterministic interference channel without cooperation [14], and the proof
technique is quite similar.

The second type of tradeoff is a new phenomenon in interference channel with coop-
eration, and it involves the information that flows in the cooperative links. Consider the
example channel in Fig. 4.2(b). The two rate points (R1, R2) = (2, 3) and (R1, R2) = (3, 1)
are on the boundary of the capacity region. To enhance user 1’s rate from 2 to 3 bits,
since the number of levels from transmitter 1 to receiver 1 is only 2, the third bit a3 has
to be relayed from transmitter 2 to receiver 1. Hence, the topmost level at transmitter 2
has to be occupied by information exclusively for user 1, that is, a3, and at receiver 2 the
topmost level is no longer available for user 2. On the other hand, since the cooperative
link from transmitter 1 to transmitter 2 is now occupied by a3, the opportunity of nulling
out the interference at the third level at receiver 2 is eliminated. As a consequence, the
only available level for user 2 at receiver 2 is the second level, and user 2 has to back off its
rate from 3 to 1. Note that the key difference from the first type of tradeoff is that, at the
rate point (R1, R2) = (2, 3) the cooperative link from transmitter 1 to 2 is used for nulling
out interference, while at (R1, R2) = (3, 1) it is used for relaying additional bits. Hence, the
information that flows in the cooperative links is involved in this tradeoff, and the tradeoff
is qualitatively different from that in the case without cooperation. As we will show later, to
prove this type of outer bound on 2R1 +R2, we need to develop a new technique for giving
side information to the receivers.

4.3.2 Outer Bounds

To prove the converse part of Theorem 4.1, instead of giving full details of the proof2, here
we describe the techniques used in the proof. These techniques will be reused for proving
outer bounds in the Gaussian problem.

1) Bounds on R1 and R2: These bounds are straightforward cut-set bounds.

2) Bounds on R1 + R2: Bound (4.4) is a standard cut-set bound. Its value is the rank of
the system transfer matrix, with both transmit signals as input and both receive signals as
output assuming full cooperation. It is quite straightforward to see that n11 +n22 6= n12 +n21

2We will provide full details when we deal with the Gaussian problem.
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if and only if the system matrix is full rank, and the value of its rank is the right-hand side
of (4.4).

Bound (4.1) is obtained by providing side information
(
m2, v

N
12

)
to receiver 1 so that

receiver 1 is not interfered by transmitter 2 at all. This leads to the part (n11 − n21)+ +
max (n22, n21), which is identical to the Z-channel bound in interference channel without
cooperation. Giving the side information enhances the sum rate by at most H

(
vN12|m2

)
≤

Nk12 bits. Similar arguments works for bound (4.2).
Bound (4.3) is obtained by providing side information

(
vN12, v

N
21, s

N
1

)
and

(
vN12, v

N
21, s

N
2

)
to

receiver 1 and 2 respectively, where sN1 denotes the interference caused by transmitter 1
at receiver 2 (and vice versa for sN2 ). Giving side information

(
vN12, v

N
21

)
to both receivers

enhances the sum rate by at most H
(
vN12, v

N
21

)
≤ N(k12 + k21) bits. Finally, we are able to

prove the bound by making use of the Markov relations observed first in [18] for the MAC
with conferencing transmitters, which states that given the conferencing signals, the transmit
signals and messages at two transmitters are independent:

(
mi, x

N
i

)
−
(
vN12, v

N
21

)
−
(
mj, x

N
j

)
,

for (i, j) = (1, 2) or (2, 1).

3) Bounds on 2R1+R2 and R1+2R2: By symmetry we shall focus on the bounds on 2R1+R2.
For linear deterministic interference channel without cooperation, the outer bound on

2R1 +R2 is proved by first creating a copy of receiver 1 and then giving proper side informa-
tion to these three receivers [14]. The side information structure is the following: give side
information

(
xN2 , s

N
1

)
to one of the two receiver 1’s and side information sN2 to receiver 2.

As discussed in the previous section, there are two types of tradeoff on 2R1 + R2. They
correspond to bound (4.5) and bound (4.6) respectively. Bound (4.5) can be obtained via a
similar technique as that in [14]. The side information structure is the following: give side
information

(
m2, s

N
1 , v

N
12, v

N
21

)
to one of the two receiver 1’s, and

(
sN2 , v

N
12, v

N
21

)
to receiver 2.

The role of
(
m2, v

N
12

)
is the same as xN2 , and the additional side information

(
vN12, v

N
21

)
is to

make the transmitters conditionally independent. We then make use of the above Markov
property to complete the proof.

Bound (4.6), which corresponds to the second type of tradeoff discussed earlier, is ob-
tained by splitting receiver 2’s signal into two parts: yN2 =

(
yN2α, y

N
2β

)
, where yN2α is the part of

transmitter 2’s signal that is not corrupted by sN1 , the interference from transmitter 1. Then
we apply a cut-set bound argument on one of the two receiver 1’s and yN2α, and provide side
information

(
m2, v

N
12, s

N
1

)
to the other receiver 1. Fig. 4.6 provides an illustration. Since this

kind of side information structure has not been reported in literature, we detail the proof
below:

Proof. If (R1, R2) is achievable, by Fano’s inequality,

N (2R1 +R2 − εN) ≤ 2I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1 , s

N
1 |m2, v

N
12

)
+ I

(
m1; vN12|m2

)
+ I

(
m1; yN1

)
+ I

(
m2; yN2α, y

N
2β

)
= H

(
xN1 , s

N
1 |m2, v

N
12

)
+ I

(
m1; yN1

)
+ I

(
m2; yN2α

)
+ I

(
m2; yN2β|yN2α

)
+ I

(
m1; vN12|m2

)
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Figure 4.6: Side Information Structure for Outer Bound (4.6)

(a)

≤ H
(
xN1 , s

N
1 |m2, v

N
12

)
+ I

(
m1,m2; yN1 , y

N
2α

)
+ I

(
m2, v

N
12; yN2β|yN2α

)
+H

(
vN12|m2

)
(b)

≤ H
(
xN1 , s

N
1 |m2, v

N
12

)
+H

(
yN1 , y

N
2α

)
+H

(
yN2β
)
−H

(
yN2β|yN2α,m2, v

N
12

)
+H

(
vN12

)
(c)
= H

(
xN1 , s

N
1 |m2, v

N
12

)
+H

(
yN1 , y

N
2α

)
+H

(
yN2β
)
−H

(
sN1 |m2, v

N
12

)
+H

(
vN12

)
= H

(
xN1 |sN1 ,m2, v

N
12

)
+H

(
yN1 , y

N
2α

)
+H

(
yN2β
)

+H
(
vN12

)
≤ N

{
(n11 − n21)+ + max

{
n11 + (n22 − n21)+ , n12

}
+ n21 + k12

}
where εN → 0 as N → ∞. (a) is due to a simple fact that I

(
m1; yN1

)
+ I

(
m2; yN2α

)
≤

I
(
m1,m2; yN1 , y

N
2α

)
. (b) is due to that conditioning reduces entropy. (c) holds since yN2α is a

function of
(
m2, v

N
12

)
.

Let us revisit the example in Fig. 4.2(b) and demonstrate that bound (4.6) is active.
Plugging the channel parameters into Theorem 4.1, we see that without bound (4.6), the
region is

R1 ≤ 3, R2 ≤ 3, R1 +R2 ≤ 5,

and the rate point (3, 1) is not on its boundary. In this example, y2α spans the topmost two
levels at receiver 2. Hence, H

(
yN1 , y

N
2α

)
≤ 4N , and 2R1 + R2 ≤ 1 + 4 + 1 + 1 = 7 which is

active in the capacity region:

R1 ≤ 3, R2 ≤ 3, R1 +R2 ≤ 5, 2R1 +R2 ≤ 7.
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4.3.3 Achievability via Linear Reciprocity

Unlike the linear deterministic interference channel with conferencing receivers, it is not
straightforward to directly show that linear strategies achieves the capacity in the case
with conferencing transmitters. We can overcome this by using linear reciprocity of linear
deterministic networks [48] and prove the achievability part of Theorem 4.1. We sketch the
idea of the proof as follows.

First it is not hard to show that linear strategies are optimal for the reciprocal channel,
that is, the linear deterministic interference channel with conferencing receivers. In such
linear strategies, each user modulates its information bits (message) onto the transmit signal
vector via a linear transformation. Each receiver, serving as a relay, linearly transforms
its received signal and sends it to the other receiver through the finite-capacity link. Since
the channel is linear and deterministic, the exchanged signals between receivers are again
linear transformations of the transmit information bits. Finally, each receiver solves all its
received linear equations of the transmit information bits (one set from the other receiver and
the other from the transmitters) and recovers its desired message. Note that the decoding
process is again a linear transformation. By choosing these linear transformations (encoding,
relaying, and decoding) properly, the scheme achieves the capacity.

Next by linear reciprocity, we immediately show that the capacity region of the recip-
rocal channel (the linear deterministic interference channel with conferencing receivers) is
an achievable region of the original channel. The strategy is again linear. Each transmitter
sends a linear transformation of its information bits to the other transmitter through the
finite-capacity link. Then it sends out a linear transformation of the received bits from the
other transmitter and its own information bits to the receivers. Finally, each receiver solves
the linear equations it receives to recover its desired message. It remains to show that this
region coincides with that given in Theorem 4.1, which is a straightforward calculation.

Note that in such linear strategies, there is no need to split the messages at the trans-
mitters, and the decoding process at the receivers can be viewed as treating interference
as noise. This is first observed in Lecture Notes 6 in [49] for linear deterministic interfer-
ence channels without cooperation. This implies that the complicated message structure
described in Section 4.1 is not necessary for linear deterministic interference channel with
conferencing receivers or transmitters.

To this end, there are two paths towards constructing good coding strategies in the
Gaussian scenario. The first approach is deriving structured lattice strategies based on the
capacity-achieving linear strategies of the corresponding linear deterministic channels. This
approach, however, requires an explicit description of linear transformations in the capacity-
achieving linear strategies for the LDC. The second approach is deriving Gaussian random
coding strategies, which is the conventional approach for additive white Gaussian noise net-
works. In this chapter, we will take the second approach. For this purpose, however, the
proof of achievability via linear reciprocity does not give much insight. Below we give an
alternative proof of achievability, which provides guidelines for designing good Gaussian ran-
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dom coding strategies in the Gaussian interference channel with conferencing transmitters.

4.3.4 Alternative Proof of Achievability

To get a better handle to deal with the the design of good Gaussian random coding schemes,
we propose a general coding strategy that applies to both the linear deterministic channel
(LDC) and the Gaussian channel. The strategy is based on Marton’s coding scheme for
general broadcast channels [50] and superposition coding. It is described as follows: (Nota-
tions: subscript o stands for cooperative common, subscript h stands for cooperative private,
subscript c stands for noncooperative common, and subscript p stands for noncooperative
private.)

1) First, generate the cooperative common vector codeword xNo (m1o,m2o) according to
p
(
xNo
)

=
∏N

k=1 p (xo[k]). Denote mo := (m1o,m2o).

2) Second, for each cooperative common mo, generate the cooperative vector codeword
xNoh (m1h,m2h,mo) based on Marton’s coding scheme according to conditional distribu-
tion p

(
xNoh, u

N
1 , u

N
2 |xNo (mo)

)
=
∏N

k=1 p (xoh[k], u1[k], u2[k]|xo(mo)[k]), where the auxil-
iary codewords are uN1 (m̃1h,mo) and uN2 (m̃2h,mo).

3) Third, at transmitter i, for i = 1, 2, generate the noncooperative common codeword
xNic (mic) according to distribution p

(
xNic
)

=
∏N

k=1 p (xic[k]).

4) Fourth, at transmitter i, for eachmic generate the noncooperative codeword xNicp (mip,mic)

according to p
(
xNicp|xNic (mic)

)
=
∏N

k=1 p (xicp[k]|xic (mic) [k]).

5) Finally, superimpose these two codewords to form the transmit codewords:

xN1 (mo,m1h,m2h,m1c,m1p) = xNoh[1] + xN1cp

xN2 (mo,m1h,m2h,m2c,m2p) = xNoh[2] + xN2cp.

Remark 4.2. Note that in Step 4), say at transmitter 1, we can use Gelfand-Pinsker cod-
ing (dirty paper coding) to generate the noncooperative private codeword so that it can be
protected against known interference at transmitter 1, which is caused by the cooperative
private auxiliary codeword of the other user, that is, u2. Throughout the chapter, however,
we will choose (u1, u2) cleverly such that the effect of u2 is zero-forced exactly in LDC and
approximately in the Gaussian setting, and hence Gelfand-Pinsker coding does not provide
significant improvement.

For decoding, receiver 1 looks for a unique message tuple (mo, m̃1h,m1c,m1p) such that(
yN1 , x

N
o (mo) , u

N
1 (m̃1h,mo) , x

N
1c (m1c) , x

N
1cp (m1p,m1c) , x

N
2c (m̂2c)

)
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is jointly typical, for some m̂2c. Receiver 2 uses the same decoding rule with index 1 and 2
exchanged.

Based on the above strategy, we have the following coding theorem:

Theorem 4.3 (Achievable Rates). A nonnegative rate tuple (R1o, R1h, R1c, R1p, R2o, R2h, R2c, R2p)

is achievable if it satisfies the following for some nonnegative (R̃1h, R̃2h): ( denote Ro :=
R1o +R2o )

Constraints at Receiver 1:

R1p ≤ I (x1cp; y1|x1c, x2c, u1, xo)

R̃1h ≤ I (u1; y1|x1cp, x1c, x2c, xo)

R̃1h +R1p ≤ I (u1, x1cp; y1|x1c, x2c, xo)

R2c +R1p ≤ I (x2c, x1cp; y1|x1c, u1, xo)

R1c +R1p ≤ I (x1c, x1cp; y1|x2c, u1, xo)

R2c + R̃1h ≤ I (x2c, u1; y1|x1cp, x1c, xo)

R2c + R̃1h +R1p ≤ I (x2c, u1, x1cp; y1|x1c, xo)

R1c + R̃1h +R1p ≤ I (x1c, x1cp, u1; y1|x2c, xo)

R1c +R2c +R1p ≤ I (x1c, x1cp, x2c; y1|u1, xo)

R1c +R2c + R̃1h +R1p ≤ I (x1c, x1cp, x2c, u1; y1|xo)
Ro + R̃1h ≤ I (xo, u1; y1|x1cp, x1c, x2c)

Ro + R̃1h +R1p ≤ I (xo, u1, x1cp; y1|x1c, x2c)

Ro +R2c + R̃1h ≤ I (xo, x2c, u1; y1|x1cp, x1c)

Ro +R2c + R̃1h +R1p ≤ I (xo, x2c, u1, x1cp; y1|x1c)

Ro +R1c + R̃1h +R1p ≤ I (xo, x1c, x1cp, u1; y1|x2c)

Ro +R1c +R2c + R̃1h +R1p ≤ I (xo, x1c, x1cp, x2c, u1; y1)

Constraints at Receiver 2: Above with index 1 and 2 exchanged.

Constraints at Transmitters:

R1h ≤ R̃1h

R2h ≤ R̃2h

R1o +R1h ≤ CB
12

R2o +R2h ≤ CB
21

R̃1h + R̃2h −R1h −R2h ≥ I (u1;u2|xo) ,
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for some (u1, u2)− xoh − (y1, y2), x1 = xoh[1] + x1cp, x2 = xoh[2] + x2cp, and

p (xoh, xo, u1, u2, x1c, x1cp, x2c, x2cp)

= p (xo) p (xoh, u1, u2|xo) p (x1c) p (x1cp|x1c) p (x2c) p (x2cp|x2c) .

Proof. The proof is quite straightforward. It involves standard error probability analysis of
superposition coding and Marton’s coding scheme, and hence is omitted here. Note we have
in total 5 independent messages to be decoded at each receiver, and hence in general there
should be 25 − 1 = 31 inequalities. However, say at receiver 1, decoding m2c incorrectly is
not accounted as an error. Furthermore due to the superposition coding of m̃1h upon xNo
and the superposition coding of m1p upon xN1c, we remove the inequality on R2c and the

23 + 23 − 2 = 14 inequalities involving Ro but not R̃1h or involving R1c but not R1p. Hence
in total we have 31− 1− 14 = 16 inequalities at each receiver.

Below we show that with proper choices of distribution p (xoh, xo, u1, u2, x1c, x1cp, x2c, x2cp),
the above coding strategy can achieve the capacity region of LDC. We shall distinguish into
two cases: (1) system transfer matrix is full-rank, and (2) system transfer matrix is not
full-rank.

System matrix is full-rank: n11 + n22 6= n12 + n21

In this case, for the cooperative part, we shall set xo to be running over all transmit levels,

and choose (u1, u2) |xo
d
= (y1h, y2h) occupying the following numbers of least significant bits

(LSB) at receiver 1 and 2 respectively:

g1 = max
{
n11 − (n21 − n22)+ , n12 − (n22 − n21)+} (4.7)

g2 = max
{
n22 − (n12 − n11)+ , n21 − (n11 − n12)+} (4.8)

Then we choose xh occupying the levels at transmitters so that it results in (y1h, y2h) at

receivers. The cooperative codeword is generated according to the distribution of xoh
d
=

xo + xh. The addition here is bit-wise modulo-two. We observe the following:

Claim 4.4. Under i.i.d. Bernoulli half inputs, mutual information I (u1;u2|xo) = 0 with the
above choice if n11 + n22 6= n12 + n21, and hence u1 and u2 are independent conditioned on
xo.

Remark 4.5 (Comments on Claim 4.4). Intuitively speaking, choosing p (u1, u2, xo) as above
has an effect that the interference caused by the other user’s cooperative private signal is
nulled out at the target receiver. The reason is that, the received signal contributed by the
cooperative private signals at a receiver, say, receiver 1, is y1h = u1, and the conditional
independence of u1 and u2 given cooperative common signal xo implies that within y1h there
is no dependency on u2, and hence, the interference caused by u2 is nulled out.
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Proof. For the case {n11 ≥ n12, n22 ≥ n21}, (g1, g2) becomes

g1 = max
{
n11 − (n21 − n22)+ , n12 − (n22 − n21)+} = n11

g2 = max
{
n22 − (n12 − n11)+ , n21 − (n11 − n12)+} = n22

and the rank of the full system transfer matrix is n11 + n22 = g1 + g2. Hence, under i.i.d.
Bernoulli half inputs,

I (u1;u2|xo) = H (u1|xo) +H (u2|xo)−H (u1, u2|xo)
= n11 + n22 − (n11 + n22) = 0.

Similar argument works for the case n11 ≤ n12, n22 ≤ n21.
For the case {n11 ≤ n12, n22 ≥ n21}, (g1, g2) becomes

g1 = max (n11, n12 + n21 − n22)

g2 = max (n11 + n22 − n12, n21)

and the rank of the transfer matrix is g1 + g2 again, since the subsystem (lies in the original
system with (y1h, y2h) as output and the corresponding levels at transmitters as input) has
channel parameters

n′11 = n11, n
′
21 = n21, n

′
12 = g1, n

′
22 = g2.

If n11 + n22 > n12 + n21, then g1 = n11 and g2 = n11 + n22 − n12, and hence n′11 = n′12,
n′22 > n′21.

Similarly, if n11 + n22 < n12 + n21, then g1 = n12 + n21 − n22 and g2 = n21, and hence
n′11 < n′12, n′22 = n′21.

Similar argument works for the case n11 ≥ n12, n22 ≤ n21.
Therefore, under i.i.d. Bernoulli half inputs, u1 and u2 are independent conditioned on

xo from the analysis of the previous cases.

For the noncooperative part, we set x1cp
d
= x1c+x1p such that x1c and x1p are independent.

x1c is allowed to occupy all levels at transmitter 1, while x1p is allowed to occupy only the
(n11 − n21)+ LSB’s. The addition here is bit-wise modulo-two. The same design is applied to
user 2. As commented in Remark 4.5, with the above choice of y1h and y2h in (4.7) and (4.8),
there are no redundancy between y1h and y2h and hence no interference from u2 at receiver
1. Similar situation happens at receiver 2. Now take all inputs to be i.i.d. Bernoulli half
across levels, we obtain a set of achievable rates from Theorem 4.3. After Fourier-Motzkin
elimination, we show that the achievable region coincides with the region given in Theorem
4.1.

Lemma 4.6. The above strategy achieves the region given in Theorem 4.1 when n11 +n22 6=
n12 + n21.

Proof. The details are left in Chapter 5.1.
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System matrix is not full-rank: n11 + n22 = n12 + n21

In this case, for the cooperative part, we shall again set xo to be running over all transmit

levels. The difference lies in the cooperative private part. Here we also choose (u1, u2) |xo
d
=

(y1h, y2h), but occupying the following numbers of LSB’s at receiver 1 and 2 respectively:

g1 = (n11 − n21)+ , g2 = (n22 − n12)+ .

Claim 4.7. Under i.i.d. Bernoulli half inputs, mutual information I (u1;u2|xo) = 0 with the
above choice if n11 + n22 = n12 + n21.

Proof. Since yih only occupies levels that appear at receiver i but do not appear at the other
receiver, for i = 1, 2, hence they are conditionally independent given xo under Bernoulli half
i.i.d. inputs.

For the noncooperative part, we use the same scheme as the previous case. Now take all
inputs to be i.i.d. Bernoulli half across levels, we obtain achievable rates from Theorem 4.3.
After Fourier-Motzkin elimination, we have the following lemma:

Lemma 4.8. The above strategy achieves the region given in Theorem 4.1 when n11 +n22 =
n12 + n21.

Proof. The details are left in Chapter 5.1.

We conclude this section with the following remark.

Remark 4.9 (Implications on the Gaussian Problem). The two numbers g1 and g2 provide
clues in determining the power allocated to the cooperative private codewords and the design of
beamforming vectors in the Gaussian scenario. Take user 1 as an example. When n11+n22 6=
n12 + n21,

g1 = max
{
n11 − (n21 − n22)+ , n12 − (n22 − n21)+}

= max {n11 + n22, n12 + n21} −max {n22, n21} ,

which corresponds to |h11h22−h12h21|2
1+SNR2+INR2

. On the other hand, when n11 + n22 = n12 + n21,

g1 = (n11 − n21)+ = (n12 − n22)+ ,

which corresponds to SNR1

INR2
= INR1

SNR2
= SNR1+INR1

SNR2+INR2
. This implies that the power of u1 conditioned

on xo should be proportional to

|h11h22 − h12h21|2 + SNR1 + INR1

1 + SNR2 + INR2

=
|h11h22 − h12h21|2 + |h11|2 + |h22|2

1 + SNR2 + INR2

,

and that the beamforming vector should be a combination of zero-forcing and matched-filter
vectors.
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In the next section, we will incorporate the insights obtained in analyzing the linear
deterministic interference channel with conferencing transmitters to derive capacity results
for the Gaussian interference channel with conferencing transmitters, and show that the
inner and outer bounds are within a bounded gap.

4.4 Gaussian Interference Channel with Conferencing

Transmitters

With the full understanding in the linear deterministic interference channel with conferenc-
ing transmitters, now we have enough clues to crack the original Gaussian problem. As
for the outer bounds, we shall mimic the genie-aided techniques and the structure of side
informations in Section 4.3.2 to develop the proofs. As for the achievability, we shall mimic
the choice of auxiliary random variables and level allocation in Section 4.3.4 to construct
good schemes in the Gaussian scenario. Moreover, the achievable rate regions obtained prior
to Fourier-Motzkin elimination can be made equivalent symbolically, and hence the proof
of achieving approximate capacity in the Gaussian channel follows closely to the proof of
achieving exact capacity in the linear deterministic channel. Although the Gaussian inter-
ference channel with conferencing transmitters and its corresponding linear deterministic
channel are strongly related in coding strategies, proof of achievability, and outer bounds,
unlike the two-user Gaussian interference channel [10], their capacity regions are not within a
bounded gap. Similar situations happen in MIMO channel, Gaussian relay networks [9], and
the Gaussian interference channel with conferencing receivers [15], where explicit/implicit
MIMO structures lie in the channel model.

Our main result is summarized in the following lemma and theorem.

Lemma 4.10 (Outer Bounds). If (R1, R2) is achievable, it satisfies the following constraints:

R1 ≤ min
{

log (1 + SNR1) + CB
12, log

(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)}
(4.9)

R2 ≤ min
{

log (1 + SNR2) + CB
21, log

(
1 + SNR2 + INR2 + 2

√
SNR2INR2

)}
(4.10)

R1 +R2 ≤ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 + SNR2 + INR2 + 2

√
SNR2INR2

)
+ CB

12 (4.11)

R1 +R2 ≤ log

(
1 +

SNR2

1 + INR1

)
+ log

(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)
+ CB

21 (4.12)

R1 +R2 ≤

 log
(

1 + SNR1+2
√

SNR1INR1

1+INR2
+ INR1

)
+ CB

12

+ log
(

1 + SNR2+2
√

SNR2INR2

1+INR1
+ INR2

)
+ CB

21

 (4.13)

R1 +R2 ≤ log

(
1 + SNR1 + INR1 + SNR2 + INR2

+2
√

SNR1INR1 + 2
√

SNR2INR2 + |h11h22 − h12h21|2
)

(4.14)
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2R1 +R2 ≤

 log
(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)
+ log

(
1 + SNR1

1+INR2

)
+ log

(
1 + SNR2+2

√
SNR2INR2

1+INR1
+ INR2

)
+ CB

12 + CB
21

 (4.15)

R1 + 2R2 ≤

 log
(
1 + SNR2 + INR2 + 2

√
SNR2INR2

)
+ log

(
1 + SNR2

1+INR1

)
+ log

(
1 + SNR1+2

√
SNR1INR1

1+INR2
+ INR1

)
+ CB

21 + CB
12

 (4.16)

2R1 +R2 ≤

 log

(
1 + SNR1 + INR1 + SNR2 + INR2 + SNR1SNR2

+INR1INR2 + SNR1INR2 + 2 (1 + INR2)
√

SNR1INR1

)
+ log

(
1 + SNR1

1+INR2

)
+ 1 + CB

12

 (4.17)

R1 + 2R2 ≤

 log

(
1 + SNR+INR1 + SNR2 + INR2 + SNR1SNR2

+INR1INR2 + SNR2INR1 + 2 (1 + INR1)
√

SNR2INR2

)
+ log

(
1 + SNR2

1+INR1

)
+ 1 + CB

21

 (4.18)

Theorem 4.11 (Bounded Gap to Capacity). Outer bounds in Lemma 4.10 is within log 90 ≈
6.5 bits per user to the capacity region.

4.4.1 Outer Bounds

Details of the proof of Lemma 4.10 are left in Chapter 5.4. It follows closely to the techniques
we develop in the proofs of the LDC outer bounds. The only twist is how to mimic the proof
of bound (4.6), which is a new type of outer bound that does not appear in the case without
cooperation. It corresponds to bound (4.17) here. Recall that in the proof there, we split
receiver 2’s signal into two parts: yN2 =

(
yN2α, y

N
2β

)
, where yN2α is the part of transmitter 2’s

signal that is not corrupted by sN1 , the interference from transmitter 1. Such split is not
possible in the Gaussian channel due to additive noise and carry-over in real addition. As
shown in Chapter 5.4, we will overcome this by providing the following side information to
receiver 2:

ỹN2 := h22x
N
2 + z̃N2 ,

where z̃2 ∼ CN (0, 1 + INR2), i.i.d. over time and is independent of everything else. This
mimics the signal yN2α in LDC, and helps us prove the 2R1 +R2 outer bound.

4.4.2 Coding Strategy and Achievable Rates

We shall employ the coding strategy proposed in Section 4.3.4. The analysis in the linear
deterministic setting suggests that, for the cooperative private messages, in the Gaussian
setting one may choose its bearing auxiliary random variables u1 and u2 to be conditionally
independent given xo. This implies that a simple linear beamforming strategy is sufficient.
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On the other hand, the interference should be zero-forced approximately. Based on this
observation, we implement the following strategy.

For the cooperative common signal, recall that in the LDC we allow xo to run over all
transmit levels. To mimic it, in the Gaussian setting we choose xo to be Gaussian with zero
mean and a covariance matrix which has diagonal entries (values of transmit power) that are
comparable with the total transmit power. For simplicity, we choose the covariance matrix
to be diagonal:

Kxo
= diag (Q1o, Q2o) , Qio = 1/4, i = 1, 2.

Here the value 1/4 is just a heuristic choice such that the transmit power constraints will be
satisfied.

For the cooperative private signal, from the discussion in Remark 4.9, we shall make it a
superposition of zero-forcing vectors

v1z =

[
h22

−h21

]
, v2z =

[
−h12

h11

]
and matched-filter vectors

v1m =

[
h∗11

h∗12

]
, v2m =

[
h∗21

h∗22

]
.

For the auxiliary random variables u1 and u2, we make them distributed as identical copies
of user 1 and user 2’s desired cooperative signals received at receiver 1 and 2 respectively.
For example, u1 would be the sum of the transmit cooperative common signal and user 1’s
cooperative private signal projected onto the channel vector [h11 h12].

Hence we choose (xoh, xo, u1, u2) be jointly Gaussian such that

xoh
d
= xo + w1zv1z + w2zv2z + w1mv1m + w2mv2m︸ ︷︷ ︸

xh

u1
d
= [h11 h12] (xo + v1zw1z + v1mw1m)

u2
d
= [h21 h22] (xo + v2zw2z + v2mw2m) ,

where w1z, w2z, w1m, and w2m are independent Gaussians and independent of everything
else, with variances θ1z, θ2z, θ1m, and θ2m respectively. Their values are chosen such that
the total transmit power constraint will be met and the conditional variances of u1 and u2

conditioned on xo behave as we predicted in Remark 4.9. With this guideline, we choose

θ1z =
1/4

(1 + SNR2 + INR2)



CHAPTER 4. INTERFERENCE CHANNEL WITH TX COOPERATION 90

θ1m =
1/4

(SNR1 + INR1) (1 + SNR2 + INR2)

θ2z =
1/4

(1 + SNR1 + INR1)

θ2m =
1/4

(SNR2 + INR2) (1 + SNR1 + INR1)
.

Again, the factor 1/4 is just a heuristic choice such that the transmit power constraints will
be satisfied.

For the noncooperative part, we set xic ∼ CN (0, Qic), where Qic = 1/4−Qip, for i = 1, 2.

xicp
d
= xic + xip, where xip ∼ CN (0, Qip) is independent of xic and Qip = min (1/4, 1/INRj),

for (i, j) = (1, 2) or (2, 1). The choice of Qip is such that the interference caused by the other
user’s noncooperative private signal is at or below the noise level at the receiver.

At this stage, we shall check that the total transmit power constraint is met with the
above heuristic choices of factors. We only need to show that the power for xh at each
transmitter is at most 1/2, which is pretty straightforward3.

Note that the variances of u1 and u2 conditioned on xo are

Ku1|xo =
|h11h22 − h12h21|2 + SNR1 + INR1

4 (1 + SNR2 + INR2)
,

Ku2|xo =
|h11h22 − h12h21|2 + SNR2 + INR2

4 (1 + SNR1 + INR1)
,

matching our prediction in Remark 4.9.
With this encoding, the interference caused by the other user’s cooperative private signal

should be nulled out approximately, that is, its variance is at or below the noise level. To see
this, the received signals are jointly distributed with (xo, u1, u2, x1c, x1cp, x2c, x2cp) such that

y1
d
= u1 + ẑ1 + h11x1cp + h12x2cp + z1

y1
d
= u2 + ẑ2 + h21x1cp + h22x2cp + z2,

where the interferences caused by undesired cooperative private signals are

ẑ1 = (h11h
∗
21 + h12h

∗
22)w2m, ẑ2 = (h21h

∗
11 + h22h

∗
12)w1m,

at receiver 1 and 2 respectively. Note that the variance of these terms are upper bounded
by a constant, since

|h11h
∗
21 + h12h

∗
22|2 = |h21h

∗
11 + h22h

∗
12|2

3We have Q1h =
SNR2+

SNR1
SNR1+INR1

4(1+SNR2+INR2)
+

INR1+
INR2

SNR2+INR2
4(1+SNR1+INR1)

≤ 1
2 , and vice versa for Q2h.
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= (SNR1 + INR1) (SNR2 + INR2)− |h11h22 − h12h21|2

≤ (SNR1 + INR1) (SNR2 + INR2) .

Hence,

σ2
1 := Var (ẑ1) =

|h11h
∗
21 + h12h

∗
22|2

4 (SNR1 + INR1) (1 + SNR2 + INR2)
≤ 1

4

σ2
2 := Var (ẑ2) =

|h21h
∗
11 + h22h

∗
12|2

4 (1 + SNR1 + INR1) (SNR2 + INR2)
≤ 1

4

and in effect the interference is nulled out approximately.

Remark 4.12. When the cooperative link capacities are sufficiently large and the channel be-
comes a two-user Gaussian MIMO broadcast channel with two transmit antennas and single
receive antenna at each receiver, the proposed scheme in Theorem 4.3 is capacity-achieving.
Dirty paper coding among cooperative private messages is needed to achieve the capacity
of Gaussian MIMO broadcast channel exactly [41], that is, u1 and u2 is not independent
conditioned on xo and xo is made zero. As shown in Chapter 5.2 and 5.3, however, lin-
ear beamforming strategies along with superposition coding suffice to achieve the capacity
approximately. We conjecture that dirty paper coding among cooperative private messages
will lead to a better rate region and smaller gap to the outer bounds, while the procedure of
computing the achievable region becomes complicated.

We have designed a coding strategy and its configuration which met the observation and
intuition from the analysis of LDC, and it turns out that it achieves the capacity to within
a bounded gap. This completes the proof of Theorem 4.11. The proof is broken into two
parts: (1) the computation of the achievable rate region, and (2) the evaluation of the gap
among inner and outer bounds. Details are left in Chapter 5.2 and Chapter 5.3 respectively.

4.5 Uplink-Downlink Reciprocity

Recall that in Section 4.3.3 we have demonstrated the reciprocity between linear deterministic
interference channel with conferencing receivers and linear deterministic interference channel
with conferencing transmitters. In this section, we show that a similar reciprocity holds in
the Gaussian case.

For the channel described in Section 4.2, we define its reciprocal channel as the Gaussian
interference channel with conferencing receivers [15] with the 2-by-2 channel matrix[

h11 h12

h21 h22

]H
=

[
h∗11 h∗21

h∗12 h∗22

]
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and cooperative link capacities CB
21 from receiver 1 to 2 and CB

12 from receiver 2 to 1. Note
that for the reciprocal channel, the channel matrix is the Hermitian of the original one and
the cooperative link capacities are swapped. Motivated by backhaul cooperation in cellular
networks where cooperation is among base stations, we term the interference channel with
conferencing receivers the uplink scenario, and the interference channel with conferencing
transmitters the downlink scenario. The original downlink and the reciprocal uplink scenarios
are depicted in Fig. 4.7.
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ENC 2

DEC 1

DEC 2

+

+

m1

m2

x1

x2

z1

z2

m̂1

m̂2

CB
12 CB
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h11

h12

h21

h22

(a) Original Gaussian Downlink Scenario
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n12
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k12k21

(b) Original LDC Downlink Scenario
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x2

h∗11
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z1
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(c) Reciprocal Gaussian Uplink Scenario

Tx1

Tx2

Rx1

Rx2

n11

n22

k12 k21

n12

n21

(d) Reciprocal LDC Uplink Scenario

Figure 4.7: Uplink-Downlink Reciprocity

Theorem 4.13. The capacity regions of the original and the reciprocal channels are within
a bounded gap, regardless of channel parameters.

Proof. Details are left in Chapter 5.5.

The reciprocity implies immediately that the gain from transmitter cooperation shares
the same characteristics as that from receiver cooperation, that is, the degree-of-freedom
gain is either one bit or half a bit per cooperation bit until saturation, and the power gain
is bounded no matter how large the cooperative link capacities are after saturation.
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Remark 4.14. As mentioned in Section 4.3.3, there is an exact reciprocity between the linear
deterministic downlink scenario and the uplink scenario. Not only are the capacity regions of
the original and the reciprocal channel the same, but the capacity-achieving linear schemes
are also reciprocal. On the other hand, for the Gaussian downlink scenario and the uplink
scenario, combining the results in this chapter and Chapter 2, it seems such reciprocity in the
proposed strategies does not exist, since the message structures are different. Although the
strategies proposed in this chapter and Chapter 2 are not reciprocal, we conjecture that such
reciprocity may be obtained via structured lattice strategies derived from capacity-achieving
linear schemes of the corresponding linear deterministic channels. Such conversion has been
applied successfully in [51] to construct lattice coding strategies for many-to-one and one-to-
many Gaussian interference channels.
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Chapter 5

Proofs of Part II

In this chapter we fill in the details of various proofs mentioned in the previous chapter.

5.1 Proof of Achievability in Theorem 4.1

5.1.1 Proof of Lemma 4.6

Plugging in the configuration, we have the following achievable rates from Theorem 4.3: for
some nonnegative (R̃1h, R̃2h), (notations are listed in Table 5.1)

Table 5.1: Notations

p1 t1 m1 l1 s1

(n11 − n21)+ max (n12, p1) max (n11, n12) max (n11, g1) max (n12, g1)

p2 t2 m2 l2 s2

(n22 − n12)+ max (n21, p2) max (n22, n21) max (n22, g2) max (n21, g2)

Constraints at Transmitters:

R1h ≤ R̃1h

R2h ≤ R̃2h

R1o +R2o = Ro

R1o +R1h ≤ k12

R2o +R2h ≤ k21

R̃1h + R̃2h −R1h −R2h ≥ 0
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Constraints at Receiver 1:

R1p ≤ p1 R̃1h ≤ g1 Ro + R̃1h ≤ m1

R2c +R1p ≤ t1 R̃1h +R1p ≤ g1 Ro + R̃1h +R1p ≤ m1

R1c +R1p ≤ n11 R2c + R̃1h ≤ s1 Ro +R2c + R̃1h ≤ m1

R1c +R2c +R1p ≤ m1 R2c + R̃1h +R1p ≤ s1 Ro +R2c + R̃1h +R1p ≤ m1

R1c + R̃1h +R1p ≤ l1 Ro +R1c + R̃1h +R1p ≤ m1

R1c +R2c + R̃1h +R1p ≤ m1 Ro +R1c +R2c + R̃1h +R1p ≤ m1

Constraints at Receiver 2: Above with index 1 and 2 exchanged.
After Fourier-Motzkin elimination, we have the following achievable rates and identify

all redundant terms. The claims used below to show the redundancy are proved in the end
of this section. We use symbol “Red” to denote “redundant”.

(1) R1 and R2:

R1 ≤ n11 + k12 R2 ≤ n22 + k21

R1 ≤ m1 R2 ≤ m2

R1 ≤ p1 + t2 + k12 (Red) R2 ≤ p2 + t1 + k21 (Red)

R1 ≤ p1 + s2 + k12 (Red) R2 ≤ p2 + s1 + k21 (Red)

R1 ≤ g1 + t2 + k12 (Red) R2 ≤ g2 + t1 + k21 (Red)

R1 ≤ g1 + s2 + k12 (Red) R2 ≤ g2 + s1 + k21 (Red).

To show the redundancy, we need to prove the following claim

Claim 5.1.

• p1 + t2 ≥ n11, p2 + t1 ≥ n22

• g1 ≥ p1, g2 ≥ p2

• s1 ≥ t1, s2 ≥ t2

(2) R1 +R2:

R1 +R2 ≤ t1 + t2 + k12 + k21

R1 +R2 ≤ p1 +m2 + k12

R1 +R2 ≤ p2 +m1 + k21

R1 +R2 ≤ g1 +m2

R1 +R2 ≤ g2 +m1
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R1 +R2 ≤ s1 + t2 + k12 + k21 (Red)

R1 +R2 ≤ s2 + t1 + k12 + k21 (Red)

R1 +R2 ≤ s1 + s2 + k12 + k21 (Red)

(3) 2R1 +R2 and R1 + 2R2:

2R1 +R2 ≤ p1 +m1 + t2 + k12 + k21

2R1 +R2 ≤ g1 +m1 + t2 + k12 + k21 (Red)

2R1 +R2 ≤ p1 +m1 + s2 + k12

2R1 +R2 ≤ g1 +m1 + s2 + k12 (Red)

2R1 +R2 ≤ p1 + l1 +m2 + k12

R1 + 2R2 ≤ p2 +m2 + t1 + k12 + k21

R1 + 2R2 ≤ g2 +m2 + t1 + k12 + k21 (Red)

R1 + 2R2 ≤ p2 +m2 + s1 + k21

R1 + 2R2 ≤ g2 +m2 + s1 + k21 (Red)

R1 + 2R2 ≤ p2 + l2 +m1 + k21.

(4) 2R1 + 2R2:

2R1 + 2R2 ≤ p1 + s1 + t2 +m2 + k12 + k21 (Red)

2R1 + 2R2 ≤ l1 + t1 + p2 +m2 + k12 + k21 (Red)

2R1 + 2R2 ≤ p1 + s1 + s2 +m2 + k12 + k21 (Red)

2R1 + 2R2 ≤ l1 + t1 + g2 +m2 + k12 + k21 (Red)

2R1 + 2R2 ≤ t1 +m1 + p2 + s2 + k12 + k21 (Red)

2R1 + 2R2 ≤ s1 +m1 + p2 + s2 + k12 + k21 (Red)

2R1 + 2R2 ≤ p1 +m1 + l2 + t2 + k12 + k21 (Red)

2R1 + 2R2 ≤ g1 +m1 + l2 + t2 + k12 + k21 (Red)

To show the redundancy, we need to prove the following claim:

Claim 5.2.

• s1 + t2 ≥ p2 +m1; s2 + t1 ≥ p1 +m2

• l1 + t1 ≥ p1 +m1; l2 + t2 ≥ p2 +m2

After removing the redundant terms, we have the following achievable region for LDC
when n11 + n22 6= n12 + n21:

R1 ≤ min {n11 + k12,m1}
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R2 ≤ min {n22 + k21,m2}
R1 +R2 ≤ min {g1 +m2, g2 +m1}
R1 +R2 ≤ t1 + t2 + k12 + k21

R1 +R2 ≤ min {p1 +m2 + k12, p2 +m1 + k21}
2R1 +R2 ≤ min {p1 + l1 +m2 + k12, p1 + s2 +m1 + k12}
2R1 +R2 ≤ p1 +m1 + t2 + k12 + k21

R1 + 2R2 ≤ min {p2 + l2 +m1 + k21, p2 + s1 +m2 + k21}
R1 + 2R2 ≤ p2 +m2 + t1 + k21 + k12.

To show that the above achievable region coincides with the rate region given in Theorem
4.1, the following facts are crucial:

Claim 5.3.

• g1 +m2 = g2 +m1 = max (n11 + n22, n12 + n21).

• s2 +m1 = l1 +m2; s1 +m2 = l2 +m1

With these facts, referring to Table 5.1, and checking with the outer bounds, we complete
the proof.

5.1.2 Proof of Lemma 4.8

We have the following achievable rates: for some nonnegative (R̃1h, R̃2h),

Constraints at Transmitters:

R1h ≤ R̃1h

R2h ≤ R̃2h

R1o +R2o = Ro

R1o +R1h ≤ k12

R2o +R2h ≤ k21

R̃1h + R̃2h −R1h −R2h ≥ 0

Constraints at Receiver 1:

R1p ≤ p1 R̃1h ≤ p1 Ro + R̃1h ≤ m1

R2c +R1p ≤ t1 R̃1h +R1p ≤ p1 Ro + R̃1h +R1p ≤ m1

R1c +R1p ≤ n11 R2c + R̃1h ≤ t1 Ro +R2c + R̃1h ≤ m1
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R1c +R2c +R1p ≤ m1 R2c + R̃1h +R1p ≤ t1 Ro +R2c + R̃1h +R1p ≤ m1

R1c + R̃1h +R1p ≤ n11 Ro +R1c + R̃1h +R1p ≤ m1

R1c +R2c + R̃1h +R1p ≤ m1 Ro +R1c +R2c + R̃1h +R1p ≤ m1

Constraints at Receiver 2: Above with index 1 and 2 exchanged.
After Fourier-Motzkin elimination and removing redundant terms based on facts derived

in the previous analysis, we have the following achievable region:

R1 ≤ min {m1, n11 + k12}
R2 ≤ min {m2, n22 + k21}

R1 +R2 ≤ min {p1 +m2, p2 +m1, t1 + t2 + k12 + k21}
2R1 +R2 ≤ p1 + t2 +m1 + k12 (Red)

R1 + 2R2 ≤ p2 + t1 +m2 + k21 (Red),

which coincides with the outer bounds. To prove this, we need the following facts:

Claim 5.4.

• p1 +m2 = p2 +m1 = max (n11, n22, n12, n21)

• p1 + t2 = p2 + n11; p2 + t1 = p1 + n22

With the first fact p1 + m2 = p2 + m1 = max (n11, n22, n12, n21), we show that the sum
rate inner bound coincides the outer bound. With the second fact p1 + t2 = p2 + n11, we
show that the 2R1 + R2 inner bound is redundant. Similarly the R1 + 2R2 inner bound is
also redundant. This completes the proof.

5.1.3 Proof of the Claims

Proof of Claim 5.1

• p1 + t2 ≥ n11, p2 + t1 ≥ n22

Proof.

p1 + t2 ≥ (n11 − n21)+ + n21 ≥ n11, p2 + t1 ≥ (n22 − n12)+ + n12 ≥ n22.

• g1 ≥ p1, g2 ≥ p2
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Proof.

g1 = max
{
n11 − (n21 − n22)+ , n12 − (n22 − n21)+} ≥ n11 − (n21 − n22)+ ≥ n11 − n21.

On the other hand, g1 ≥ 0. Hence, g1 ≥ (n11 − n21)+ = p1. Similarly g2 ≥ p2.

• s1 ≥ t1, s2 ≥ t2

Proof.

s1 = max (n12, g1) ≥ max (n12, p1) = t1,

since g1 ≥ p1. Similarly s2 ≥ t2.

Proof of Claim 5.2

• s1 + t2 ≥ p2 +m1; s2 + t1 ≥ p1 +m2

Proof. If n21 ≤ n22,

s1 + t2 = max
{
n12, n11 − (n21 − n22)+}+ t2 = m1 + t2 ≥ m1 + p2.

If n21 > n22 and n22 ≤ n12,

s1 + t2 = max {n12, n11 + n22 − n21}+ n21 = max {n12 + n21, n11 + n22}
≥ 0 + max (n11, n12) = p2 +m1.

If n21 > n22 and n22 > n12,

s1 + t2 = max {n12, n11 + n22 − n21}+ n21 = max {n12 + n21, n11 + n22}
≥ max {n11 + n22 − n12, n21} ≥ max {n11 + n22 − n12, n22}
≥ n22 − n12 + max (n11, n12) = p2 +m1.

Hence, s1 + t2 ≥ p2 +m1. Similarly, s2 + t1 ≥ p1 +m2.

• l1 + t1 ≥ p1 +m1; l2 + t2 ≥ p2 +m2

Proof. If n21 ≥ n22,

l1 + t1 = max
{
n11, n12 − (n22 − n21)+}+ t1 = m1 + t1 ≥ m1 + p1.

If n21 < n22 and n11 ≥ n12,

p1 +m1 = p1 + n11 ≤ t1 + l1.

If n21 < n22 and n11 < n12, then m1 = t1 = n12, hence

p1 +m1 = p1 + t1 ≤ n11 + t1 ≤ l1 + t1.

Hence, l1 + t1 ≥ p1 +m1. Similarly, l2 + t2 ≥ p2 +m2
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Proof of Claim 5.3

• g1 +m2 = g2 +m1 = max (n11 + n22, n12 + n21).

Proof. Note that

max (n22, n21)− (n21 − n22)+ = n22, max (n22, n21)− (n22 − n21)+ = n21.

Hence,

g1 +m2 = max
{
n11 − (n21 − n22)+ , n12 − (n22 − n21)+}+ max (n22, n21)

= max {n11 + n22, n12 + n21} .

By symmetry, g2 +m1 = max (n11 + n22, n12 + n21).

• s2 +m1 = l1 +m2; s1 +m2 = l2 +m1

Proof.

s2 +m1 = max
{
n21, n22 − (n12 − n11)+}+ max (n11, n12)

= max {n21 + max (n11, n12) , n22 + n11}
= max {n21 + n11, n21 + n12, n22 + n11} ;

l1 +m2 = max
{
n11, n12 − (n22 − n21)+}+ max (n22, n21)

= max {n11 + max (n22, n21) , n12 + n21}
= max {n11 + n22, n11 + n21, n12 + n21} .

Hence s2 +m1 = l1 +m2. By symmetry s1 +m2 = l2 +m1.

Proof of Claim 5.4

• p1 +m2 = p2 +m1 = max (n11, n22, n12, n21)

Proof. If n11 ≥ n21 ≥ n22, then n11 ≥ n12 (otherwise contradicts the assumption
n11 + n22 = n12 + n21) and

p1 +m2 = n11 − n21 + n21 = n11 = max
i,j∈{1,2}

{nij} .

If n21 ≥ n22 and n21 ≥ n11, then n21 ≥ n12 (contradiction otherwise) and

p1 +m2 = 0 + n21 = n21 = max
i,j∈{1,2}

{nij} .
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If n21 ≤ n22 and n21 ≤ n11, then n12 ≥ n11 and n12 ≥ n22 (contradiction otherwise)
and

p1 +m2 = n11 − n21 + n22 = n12 = max
i,j∈{1,2}

{nij} .

If n11 ≤ n21 ≤ n22, then n22 ≥ n12 (contradiction otherwise) and

p1 +m2 = 0 + n22 = n22 = max
i,j∈{1,2}

{nij} .

Hence, p1 +m2 = maxi,j∈{1,2} {nij}. Similarly, p2 +m1 = maxi,j∈{1,2} {nij}.

• p1 + t2 = p2 + n11; p2 + t1 = p1 + n22

Proof. Note that t2 = max
{
n21, (n22 − n12)+} = n21, since n21 ≥ 0 and

n21 = n11 + n22 − n12 ≥ n22 − n12.

Hence,

p1 + t2 = (n11 − n21)+ + n21 = max (n11, n21)

On the other hand,

p2 + n11 = (n22 − n12)+ + n11 = (n21 − n11)+ + n11 = max (n11, n21)

Hence, p1 + t2 = p2 + n11. Similarly, p2 + t1 = p1 + n22.

5.2 Proof of Theorem 4.11: Achievable Rate Region

Plug in Theorem 4.3 and evaluate, we obtain the following achievable rates:

Constraints at Transmitters:

R1h ≤ R̃1h

R2h ≤ R̃2h

R1o +R2o = Ro

R1o +R1h ≤ CB
12

R2o +R2h ≤ CB
21

R̃1h + R̃2h −R1h −R2h ≥ 0,

for some nonnegative (R̃1h, R̃2h).
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Constraints at Receiver 1:

R1p ≤ log

(
1 +

SNR1p

1 + σ2
1 + INR1p

)
R̃1h ≤ log

(
1 +

Ku1|xo
1 + σ2

1 + INR1p

)
R̃1h +R1p ≤ log

(
1 +

Ku1|xo + SNR1p

1 + σ2
1 + INR1p

)
R2c +R1p ≤ log

(
1 +

INR1c + SNR1p

1 + σ2
1 + INR1p

)
R1c +R1p ≤ log

(
1 +

SNR1c + SNR1p

1 + σ2
1 + INR1p

)
R2c + R̃1h ≤ log

(
1 +

Ku1|xo + INR1c

1 + σ2
1 + INR1p

)
R2c + R̃1h +R1p ≤ log

(
1 +

Ku1|xo + INR1c + SNR1p

1 + σ2
1 + INR1p

)
R1c + R̃1h +R1p ≤ log

(
1 +

Ku1|xo + SNR1c + SNR1p

1 + σ2
1 + INR1p

)
R1c +R2c +R1p ≤ log

(
1 +

SNR1c + INR1c + SNR1p

1 + σ2
1 + INR1p

)
R1c +R2c + R̃1h +R1p ≤ log

(
1 +

Ku1|xo + SNR1c + INR1c + SNR1p

1 + σ2
1 + INR1p

)
Ro + R̃1h ≤ log

(
1 +

Ku1

1 + σ2
1 + INR1p

)
Ro + R̃1h +R1p ≤ log

(
1 +

Ku1 + SNR1p

1 + σ2
1 + INR1p

)
Ro +R2c + R̃1h ≤ log

(
1 +

Ku1 + INR1c + SNR1p

1 + σ2
1 + INR1p

)
Ro +R2c + R̃1h +R1p ≤ log

(
1 +

Ku1 + SNR1c + INR1c + SNR1p

1 + σ2
1 + INR1p

)
Ro +R1c + R̃1h +R1p ≤ log

(
1 +

Ku1 + SNR1c + SNR1p

1 + σ2
1 + INR1p

)
Ro +R1c +R2c + R̃1h +R1p ≤ log

(
1 +

Ku1 + SNR1c + INR1c + SNR1p

1 + σ2
1 + INR1p

)
Constraints at Receiver 2: Above with index 1 and 2 exchanged.

Notice that SNRic+SNRip = SNRi/4, INRic+ INRip = INRi/4, and Kui ≥ SNRi/4+ INRi/4
for i = 1, 2. For simplicity, we consider the subset of the above region:



CHAPTER 5. PROOFS OF PART II 103

Constraints at Transmitters: The same as above.

Constraints at Receiver 1: Exactly the same expressions as those in Section 5.1.1. but the
notations are defined as

p1 := log

(
1 +

SNR1p

1 + σ2
1 + INR1p

)
, g1 := log

(
1 +

Ku1|xo
1 + σ2

1 + INR1p

)
t1 := log

(
1 +

INR1c + SNR1p

1 + σ2
1 + INR1p

)
, n11 := log

(
1 +

SNR1/4

1 + σ2
1 + INR1p

)
s1 := log

(
1 +

Ku1|xo + INR1c

1 + σ2
1 + INR1p

)
, l1 := log

(
1 +

Ku1|xo + SNR1/4

1 + σ2
1 + INR1p

)
m1 := log

(
1 +

SNR1/4 + INR1c

1 + σ2
1 + INR1p

)
instead of those in Table 5.1.

Constraints at Receiver 2: Above with index 1 and 2 exchanged.
Notice now the rate region is symbolically identical to that in LDC when the system

matrix is full rank. Hence, after the Fourier-Motzkin procedure, we have the following
achievable rates, which are also symbolically identical to those in LDC. The only difference
is that, “redundancy” is replaced by “approximate redundancy”. Proof of the claims to show
the approximate redundancy will be given later in this section.

(1) R1 and R2:

R1 constraints:

R1 ≤ n11 + CB
12

R1 ≤ m1

R1 ≤ p1 + t2 + CB
12 (approx. Red)

R1 ≤ p1 + s2 + CB
12 (approx. Red)

R1 ≤ g1 + t2 + CB
12 (approx. Red)

R1 ≤ g1 + s2 + CB
12 (approx. Red)

R2 constraints: Above with index 1 and 2 exchanged.
To show the approximate redundancy, we need to prove the following claim:

Claim 5.5.

• p1 + t2 ≥ n11 − log (9/4), p2 + t1 ≥ n22 − log (9/4)

• p1 + s2 ≥ n11 − log (9/4), p2 + s1 ≥ n22 − log (9/4)
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• g1 + t2 ≥ n11 − log 9, g2 + t1 ≥ n22 − log 9

• g1 + s2 ≥ n11 − log 9, g2 + s1 ≥ n22 − log 9

(2) R1 +R2:

R1 +R2 ≤ t1 + t2 + CB
12 + CB

21

R1 +R2 ≤ p1 +m2 + CB
12

R1 +R2 ≤ p2 +m1 + CB
21

R1 +R2 ≤ g1 +m2

R1 +R2 ≤ g2 +m1

R1 +R2 ≤ s1 + t2 + CB
12 + CB

21 (approx. Red)

R1 +R2 ≤ s2 + t1 + CB
12 + CB

21 (approx. Red)

R1 +R2 ≤ s1 + s2 + CB
12 + CB

21 (approx. Red)

To show the approximate redundancy, we need to prove the following claim:

Claim 5.6. s1 ≥ t1 − log 5, s2 ≥ t2 − log 5

(3) 2R1 +R2 and R1 + 2R2:

2R1 +R2 ≤ p1 +m1 + t2 + CB
12 + CB

21

2R1 +R2 ≤ g1 +m1 + t2 + CB
12 + CB

21 (approx. Red)

2R1 +R2 ≤ p1 +m1 + s2 + CB
12

2R1 +R2 ≤ g1 +m1 + s2 + CB
12 (approx. Red)

2R1 +R2 ≤ p1 + l1 +m2 + CB
12

R1 + 2R2 ≤ p2 +m2 + t1 + CB
12 + CB

21

R1 + 2R2 ≤ g2 +m2 + t1 + CB
12 + CB

21 (approx. Red)

R1 + 2R2 ≤ p2 +m2 + s1 + CB
21

R1 + 2R2 ≤ g2 +m2 + s1 + CB
21 (approx. Red)

R1 + 2R2 ≤ p2 + l2 +m1 + CB
21.

To prove the approximate redundancy, we need to show the following claim:

Claim 5.7. g1 ≥ p1 − log 5, g2 ≥ p2 − log 5

(4) 2R1 + 2R2:

2R1 + 2R2 ≤ p1 + s1 + t2 +m2 + CB
12 + CB

21
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2R1 + 2R2 ≤ l1 + t1 + p2 +m2 + CB
12 + CB

21

2R1 + 2R2 ≤ p1 + s1 + s2 +m2 + CB
12 + CB

21

2R1 + 2R2 ≤ l1 + t1 + g2 +m2 + CB
12 + CB

21

2R1 + 2R2 ≤ t1 +m1 + p2 + s2 + CB
12 + CB

21

2R1 + 2R2 ≤ s1 +m1 + p2 + s2 + CB
12 + CB

21

2R1 + 2R2 ≤ p1 +m1 + l2 + t2 + CB
12 + CB

21

2R1 + 2R2 ≤ g1 +m1 + l2 + t2 + CB
12 + CB

21

All the above are approximately redundant.
To show the approximate redundancy, we need to prove the following claim:

Claim 5.8.

• s1 + t2 ≥ p2 +m1 − log 18, s2 + t1 ≥ p1 +m2 − log 18

• l1 + t1 ≥ p1 +m1 − log 12, l2 + t2 ≥ p2 +m2 − log 12

We summarize in the lemma below an achievable rate region:

Lemma 5.9. If (R1, R2) satisfies the following, it is achievable.

R1 ≤ min
{
m1, n11 + CB

12 − 2 log 3
}

R2 ≤ min
{
m2, n22 + CB

21 − 2 log 3
}

R1 +R2 ≤ t1 + t2 + CB
12 + CB

21 − 2 log 5

R1 +R2 ≤ min
{
p1 +m2 + CB

12, p2 +m1 + CB
21

}
− (log 90) /2

R1 +R2 ≤ min {g1 +m2, g2 +m1}
2R1 +R2 ≤ p1 +m1 + t2 + CB

12 + CB
21 − log 5

2R1 +R2 ≤ min
{
p1 +m1 + s2 + CB

12 − log 5, p1 + l1 +m2 + CB
12

}
R1 + 2R2 ≤ p2 +m2 + t1 + CB

12 + CB
21 − log 5

R1 + 2R2 ≤ min
{
p2 +m2 + s1 + CB

21 − log 5, p2 + l2 +m1 + CB
21

}
.

In Section 5.3, we will show that the above achievable rate region is within a bounded
gap from the outer bounds in Lemma 4.10. We close this section by the proof of the above
mentioned claims.

Proof of the Claims

Prior to the proof of the above claims, we give a bunch of useful lemmas.
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Lemma 5.10.

log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
≥ log

(
1 +

SNR1

1 + INR2

)
+ log (1 + SNR2 + INR2) .

Proof. Consider the Gaussian interference channel without cooperation. We take indepen-
dent Gaussian input signals. Note that

log

(
1 +

SNR1

1 + INR2

)
+ log (1 + SNR2 + INR2)

= I (x1; y1, y2|x2) + I (x2; y2)

≤ I (x1; y1, y2|x2) + I (x2; y2, y1) = I (x1, x2; y1, y2)

= log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
.

Corollary 5.11.

Ku1|xo ≥
SNR1

4 (1 + INR2)
, Ku2|xo ≥

SNR2

4 (1 + INR1)

Proof.

1 +Ku1|xo

=
3

4
+

1 + SNR2 + INR2 + |h11h22 − h12h21|2 + SNR1 + INR1

4 (1 + SNR2 + INR2)

(a)

≥ 3

4
+

1 + SNR1

1+INR2

4
= 1 +

SNR1

4 (1 + INR2)
,

where (a) is due to Lemma 5.10. Hence Ku1|xo ≥
SNR1

4(1+INR2)
. Similarly Ku2|xo ≥

SNR2

4(1+INR1)
.

Lemma 5.12.

2|h11h22 − h12h21|2 + 4SNR1SNR2 ≥ SNR1SNR2 + INR1INR2,

2|h11h22 − h12h21|2 + 4INR1INR2 ≥ SNR1SNR2 + INR1INR2.

Proof.

|h11h22 − h12h21|2 ≥ SNR1SNR2 + INR1INR2 − 2
√

SNR1SNR2INR1INR2

:= x+ y − 2
√
xy,

where x = SNR1SNR2 and y = INR1INR2. Hence,

2|h11h22 − h12h21|2 + 4SNR1SNR2 − (SNR1SNR2 + INR1INR2)

≥ 2x+ 2y − 4
√
xy + 3x− y = y

(
5u2 − 4u+ 1

)
≥ 0,

where u :=
√
x/y.

Similarly, we can prove that 2|h11h22−h12h21|2+4INR1INR2 ≥ SNR1SNR2+INR1INR2.
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Proof of Claim 5.5

• p1 + t2 ≥ n11 − log (9/4), p2 + t1 ≥ n22 − log (9/4)

Proof.

p1 + t2 = log

(
1 +

SNR1p

1 + σ2
1 + INR1p

)
+ log

(
1 +

INR2c + SNR2p

1 + σ2
2 + INR2p

)
= log

(
(1 + σ2

1 + SNR1p + INR1p) (1 + σ2
2 + INR2/4 + SNR2p)

(1 + σ2
1 + INR1p) (1 + σ2

2 + INR2p)

)
≥ log

(
1 + σ2

1 + SNR1/4 + INR1p

1 + σ2
1 + INR1p

)
− log

(
1 + σ2

2 + INR2p

)
≥ n11 − log (9/4) .

Similarly, p2 + t1 ≥ n22 − log (9/4).

• p1 + s2 ≥ n11 − log (9/4), p2 + s1 ≥ n22 − log (9/4)

Proof.

p1 + s2 = log

(
1 +

SNR1p

1 + σ2
1 + INR1p

)
+ log

(
1 +

Ku2|xo + INR2c

1 + σ2
2 + INR2p

)
= log

(
(1 + σ2

1 + SNR1p + INR1p)
(
1 + σ2

2 + INR2/4 +Ku2|xo

)
(1 + σ2

1 + INR1p) (1 + σ2
2 + INR2p)

)
≥ n11 − log (9/4) .

Similarly, p2 + s1 ≥ n22 − log (9/4).

• g1 + t2 ≥ n11 − log 9, g2 + t1 ≥ n22 − log 9

Proof.

g1 + t2 = log

((
1 + σ2

1 + INR1p +Ku1|xo

)
(1 + σ2

2 + INR2/4 + SNR2p)

(1 + σ2
1 + INR1p) (1 + σ2

2 + INR2p)

)

≥ log

(
σ2

1 + INR1p +
(
1 +Ku1|xo

)
(1 + INR2/4)

1 + σ2
1 + INR1p

)
− log

(
1 + σ2

2 + INR2p

)
(a)

≥ log

(
1 + σ2

1 + INR1p + SNR1/16

1 + σ2
1 + INR1p

)
− log

(
1 + σ2

2 + INR2p

)
≥ n11 − log 9,

where (a) is due to Corollary 5.11. Similarly, g2 + t1 ≥ n22 − log 9.
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• g1 + s2 ≥ n11 − log 9

Proof.

g1 + s2 = log

((
1 + σ2

1 + INR1p +Ku1|xo

) (
1 + σ2

2 + INR2/4 +Ku2|xo

)
(1 + σ2

1 + INR1p) (1 + σ2
2 + INR2p)

)

≥ log

(
σ2

1 + INR1p +
(
1 +Ku1|xo

)
(1 + INR2/4)

1 + σ2
1 + INR1p

)
− log

(
1 + σ2

2 + INR2p

)
≥ log

(
1 + σ2

1 + INR1p + SNR1/16

1 + σ2
1 + INR1p

)
− log

(
1 + σ2

2 + INR2p

)
≥ n11 − log 9.

Similarly, g2 + s1 ≥ n22 − log 9.

Remark 5.13. If we want to follow the proofs in LDC closely, we can also prove the ap-
proximate redundancy by making use of the fact (to be proved later)

s2 ≥ t2 − log 5, s1 ≥ t1 − log 5, g1 ≥ p1 − log 5, g2 ≥ p2 − log 5,

which results in a looser upper bound on the gap to outer bounds.

Proof of Claim 5.6

Proof.

s1 = log

(
1 +

Ku1|xo + INR1c

1 + σ2
1 + INR1p

)
= log

(
1 + σ2

1 + INR1/4 +Ku1|xo
1 + σ2

1 + INR1p

)
(a)

≥ log

(
1 + σ2

1 + INR1/4 + SNR1

4(1+INR2)

1 + σ2
1 + INR1p

)
(b)

≥ log

(
1 + σ2

1 + INR1/4 + SNR1p

5

1 + σ2
1 + INR1p

)
≥ t1 − log 5,

where (a) is due to Corollary 5.11, and (b) is due to the fact that SNR1

1+INR2
≥ 4SNR1p

5
.

Similarly s2 ≥ t2 − log 5.
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Proof of Claim 5.7

Proof.

g1 = log

(
1 + σ2

1 + INR1p +Ku1|xo
1 + σ2

1 + INR1p

)
(a)

≥ log

(
1 + σ2

1 + INR1p + SNR1

4(1+INR2)

1 + σ2
1 + INR1p

)
(b)

≥ log

(
1 + σ2

1 + INR1p + SNR1p

5

1 + σ2
1 + INR1p

)
≥ p1 − log 5,

where (a) is due to Corollary 5.11, and (b) is due to the fact that SNR1

1+INR2
≥ 4SNR1p

5
.

Similarly g2 ≥ p2 − log 5.

Proof of Claim 5.8

• s1 + t2 ≥ p2 +m1 − log 18, s2 + t1 ≥ p1 +m2 − log 18

Proof.

s1 = log

(
1 + σ2

1 + INR1/4 +Ku1|xo
1 + σ2

1 + INR1p

)
t2 = log

(
1 + σ2

2 + INR2/4 + SNR2p

1 + σ2
2 + INR2p

)
p2 = log

(
1 + σ2

2 + INR2p + SNR2p

1 + σ2
2 + INR2p

)
m1 = log

(
1 + σ2

1 + SNR1/4 + INR1/4

1 + σ2
1 + INR1p

)

Hence, it suffices to compare L =
(
1 + σ2

1 + INR1

4
+Ku1|xo

) (
1 + σ2

2 + INR2

4
+ SNR2p

)
and

R =
(
1 + σ2

1 + SNR1

4
+ INR1

4

)
(1 + σ2

2 + INR2p + SNR2p).

Note that from Lemma 5.12, if SNR2 ≥ INR2,

INR1

4
+Ku1|xo =

|h11h22 − h12h21|2 + INR1INR2 + SNR2INR1 + SNR1 + 2INR1

4 (1 + SNR2 + INR2)

≥ SNR1SNR2 + INR1INR2 + 4SNR2INR1 + 4SNR1 + 8INR1

16 (1 + SNR2 + INR2)

≥ SNR1 max (SNR2, 1) + 4INR1 max (SNR2, 1)

48 max (SNR2, 1)

≥ SNR1 + INR1

48
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Also, INR2/4 ≥ INR2p. Hence, s1 + t2 ≥ p2 +m1 − log 12.

If SNR2 < INR2,

R =
(
1 + σ2

1 + INR1/4
) (

1 + σ2
2 + SNR2p

)
+ (SNR1/4)

(
1 + σ2

2 + SNR2p

)
+ INR2p

(
1 + σ2

1 + INR1/4
)

+ (SNR1/4)INR2p

≤ 2
(
1 + σ2

1 + INR1/4
) (

1 + σ2
2 + SNR2p

)
+ (SNR1/4) (5/4 + SNR2p) + SNR1/4

= 2
(
1 + σ2

1 + INR1/4
) (

1 + σ2
2 + SNR2p

)
+

9

16
SNR1 +

SNR1SNR2p

4
,

and

L =
(
1 + σ2

1 + INR1/4
) (

1 + σ2
2 + SNR2p

)
+Ku1|xo

(
1 + σ2

2 + SNR2p

)
+
(
1 + σ2

1 + INR1/4
)

(INR2/4) +Ku1|xo(INR2/4)

≥ (1 + σ2
1 + INR1/4) (1 + σ2

2 + SNR2p)

2
+

INR1

8

+
Ku1|xo max (INR2, 1)

4
+

INR1INR2

16
+
Ku1|xo

2

≥ (1 + σ2
1 + INR1/4) (1 + σ2

2 + SNR2p)

2
+

SNR1

96

+
|h11h22 − h12h21|2 + 2INR1INR2 + SNR1 + INR1

48

≥ (1 + σ2
1 + INR1/4) (1 + σ2

2 + SNR2p)

2
+

SNR1SNR2

96
+

SNR1

32
.

Hence, s1 + t2 ≥ p2 +m1 − log 18.

In summary, s1 + t2 ≥ p2 +m1 − log 18, and similarly, s2 + t1 ≥ p1 +m2 − log 18.

• l1 + t1 ≥ p1 +m1 − log 12, l2 + t2 ≥ p2 +m2 − log 12

Proof.

l1 = log

(
1 + σ2

1 + INR1p + SNR1/4 +Ku1|xo
1 + σ2

1 + INR1p

)
t1 = log

(
1 + σ2

1 + INR1/4 + SNR1p

1 + σ2
1 + INR1p

)
p1 = log

(
1 + σ2

1 + INR1p + SNR1p

1 + σ2
1 + INR1p

)
m1 = log

(
1 + σ2

1 + SNR1/4 + INR1/4

1 + σ2
1 + INR1p

)
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Hence, it suffices to compare

L =
(
1 + σ2

1 + INR1p + SNR1/4 +Ku1|xo

) (
1 + σ2

1 + INR1/4 + SNR1p

)
and

R =
(
1 + σ2

1 + SNR1/4 + INR1/4
) (

1 + σ2
1 + INR1p + SNR1p

)
.

Note that from Lemma 5.12, if SNR2 ≤ INR2,

SNR1

4
+Ku1|xo =

|h11h22 − h12h21|2 + SNR1SNR2 + SNR1INR2 + 2SNR1 + 1INR1

4 (1 + SNR2 + INR2)

≥ SNR1SNR2 + INR1INR2 + 4SNR1INR2 + 8SNR1 + 4INR1

16 (1 + SNR2 + INR2)

≥ INR1 max (INR2, 1) + 4SNR1 max (INR2, 1)

48 max (INR2, 1)

≥ INR1 + SNR1

48

Also, INR1/4 ≥ INR1p. Hence, l1 + t1 ≥ p1 +m1 − log 12.

If SNR2 > INR2,

R =
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+ (INR1/4)

(
1 + σ2

1 + SNR1p

)
+ INR1p

(
1 + σ2

1 + SNR1/4
)

+ (INR1/4)INR1p

≤ 2
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+ (INR1/4) (5/4 + SNR1p) + INR1/4

= 2
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+

9

16
INR1 +

INR1SNR1p

4
,

and

L =
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+
(
INR1p +Ku1|xo

)
(INR1/4)

+
(
1 + σ2

1 + SNR1/4
)

(INR1/4) +
(
INR1p +Ku1|xo

) (
1 + σ2

1 + SNR1p

)
≥
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+

INR1

4

(
1 +Ku1|xo +

SNR1

4

)
≥
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+

INR1

4

(
1 +

SNR1

48

)
≥
(
1 + σ2

1 + SNR1/4
) (

1 + σ2
1 + SNR1p

)
+

INR1

4

(
1 +

SNR1p

12

)
Hence, l1 + t1 ≥ p1 +m1 − log 12.

In summary, l1 + t1 ≥ p1 +m1 − log 12, and similarly, l2 + t2 ≥ p2 +m2 − log 12.
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5.3 Proof of Theorem 4.11: Bounded Gap to Outer

Bounds

(1) Bounds on R1:

• Consider the outer bound

R1 ≤ log
(

1 + SNR1 + INR1 + 2
√

SNR1INR1

)
and the inner bound

R1 ≤ m1 = log

(
1 +

SNR1/4 + INR1c

1 + σ2
1 + INR1p

)
= log

(
1 + σ2

1 + SNR1+INR1

4

1 + σ2
1 + INR1p

)

Note that

log
(

1 + SNR1 + INR1 + 2
√

SNR1INR1

)
≤ log (1 + SNR1 + INR1) + 1,

log

(
1 + σ2

1 + SNR1+INR1

4

1 + σ2
1 + INR1p

)
≥ log (1 + SNR1 + INR1)− log 9.

Hence the gap is at most log 9 + 1 = 2 log 3 + 1.

• Consider the outer bound

R1 ≤ log (1 + SNR1) + CB
12

and the inner bound

R1 ≤ n11 + CB
12 − 2 log 3

= log

(
1 +

SNR1/4

1 + σ2
1 + INR1p

)
+ CB

12 − 2 log 3

Note that

log

(
1 +

SNR1/4

1 + σ2
1 + INR1p

)
≥ log (1 + SNR1)− log 9.

Hence, the gap is at most 2 log 3 + log 9 = 4 log 3 ≈ 6.34

In summary, the gap is at most 4 log 3 ≈ 6.34.

(2) R2: similar to R1, the gap is at most 4 log 3 ≈ 6.34.
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(3) R1 +R2:

• Consider the outer bound (4.11) and the inner bound

R1 +R2 ≤ p1 +m2 + CB
12 − (log 90) /2.

Note that

log
(

1 + SNR2 + INR2 + 2
√

SNR2INR2

)
≤ log (1 + SNR2 + INR2) + 1,

m2 ≥ log (1 + SNR2 + INR2)− log 9,

p1 = log

(
1 +

SNR1p

1 + σ2
1 + INR1p

)
≥ log

(
1 +

SNR1

1 + INR2

)
− log(9/4).

Hence the gap is at most 5 log 3− 1 + (log 10)/2 ≈ 8.586.

• Consider the outer bound (4.13) and the inner bound

R1 +R2 ≤ t1 + t2 + CB
12 + CB

21 − (2 log 5) .

Note that

log

(
1 +

SNR1 + 2
√

SNR1INR1

1 + INR2

+ INR1

)
≤ log

(
1 +

2SNR1 + INR1

1 + INR2

+ INR1

)
≤ log

(
1 +

SNR1

1 + INR2

+ INR1

)
+ 1,

and

t1 = log

(
1 + σ2

1 + INR1/4 + SNR1p

1 + σ2
1 + INR1p

)
≥ log

(
1 +

SNR1

1 + INR2

+ INR1

)
− log 9.

Hence, the gap is at most 4 log 3 + 2 + 2 log 5 ≈ 12.984.

• Consider the outer bound (4.14) and the inner bound

R1 +R2 ≤ min {g1 +m2, g2 +m1} .

Note that

log

(
1 + SNR1 + INR1 + SNR2 + INR2 + 2

√
SNR1INR1

+2
√

SNR2INR2 + |h11h22 − h12h21|2
)

≤ log
(
1 + 2SNR1 + 2INR1 + 2SNR2 + 2INR2 + |h11h22 − h12h21|2

)
≤ log

(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
+ 1,
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and

g1 +m2 = log

((
1 + σ2

1 + INR1p +Ku1|xo

) (
1 + σ2

2 + SNR2+INR2

4

)
(1 + σ2

1 + INR1p) (1 + σ2
2 + INR2p)

)
≥ log

((
1 +Ku1|xo

)
(1 + SNR2 + INR2)

)
− log(81/4)

= log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
− log 81.

Hence, the gap is at most 4 log 3 + 1 ≈ 7.34.

In summary, the gap is at most 4 log 3 + 2 + 2 log 5 ≈ 12.984.

(4) 2R1 +R2:

• Consider the outer bound (4.15) and the inner bound

2R1 +R2 ≤ p1 +m1 + t2 + CB
12 + CB

21 − (log 5) .

From previous arguments, one can directly see that the gap is at most

log(9/4) + (2 log 3 + 1) + (2 log 3 + 1) + log 5

= 6 log 3 + log 5 ≈ 11.832.

• Consider the outer bound (4.17) and the inner bounds

2R1 +R2 ≤ p1 +m1 + s2 + CB
12 − (log 5)

2R1 +R2 ≤ p1 + l1 +m2 + CB
12.

Note that

log

(
1 + SNR1 + INR1 + SNR2 + INR2 + SNR1SNR2

+INR1INR2 + SNR1INR2 + 2 (1 + INR2)
√

SNR1INR1

)
≤ log

(
1 + 2SNR1 + 2INR1 + SNR2 + INR2 + SNR1SNR2

+2INR1INR2 + 2SNR1INR2

)
.

For the inner bounds,

m1 + s2 ≥ log
(
(1 + SNR1 + INR1)

(
1 + INR2/4 +Ku2|xo

))
− (4 log 3− 2)

= log

(
1 + SNR1 + INR1 + SNR2

4
+ INR2

2

+SNR1INR2

4
+ |h11h22−h12h21|2+INR1INR2

4

)
− (4 log 3− 2)

≥ log

(
1 + SNR1 + INR1 + SNR2

4
+ INR2

2

+SNR1INR2

4
+ SNR1SNR2+INR1INR2

16

)
− (4 log 3− 2),
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and

l1 +m2 ≥ log
(
(1 + SNR2 + INR2)

(
1 + SNR1/4 +Ku1|xo

))
− (4 log 3− 2)

= log

(
1 + SNR2 + INR2 + SNR1

2
+ INR1

4

+SNR1INR2

4
+ |h11h22−h12h21|2+SNR1SNR2

4

)
− (4 log 3− 2)

≥ log

(
1 + SNR2 + INR2 + SNR1

2
+ INR1

4

+SNR1INR2

4
+ SNR1SNR2+INR1INR2

16

)
− (4 log 3− 2).

Hence, the gap is at most (4 log 3 + 3) + log(9/4) + log 5 = 6 log 3 + log 5 + 1 ≈ 12.832.

In summary, the gap is at most 6 log 3 + log 5 + 1 ≈ 12.832.

(5) R1 + 2R2: similar to 2R1 +R2, the gap is at most 6 log 3 + log 5 + 1 ≈ 12.832.
Combining the results, we characterize the capacity region to within a bounded gap,

which is at most

max

{
4 log 3,

4 log 3 + 2 + 2 log 5

2
,
6 log 3 + log 5 + 1

3

}
= 2 log 3 + 1 + log 5 = log 90 ≈ 6.5.

5.4 Proof of Lemma 4.10

We first state a useful fact [18]:

Fact 5.14 (Conditional Independence among Messages). The following Markov relations
hold:

m1 ↔
(
vN12, v

N
21

)
↔ m2; m1 ↔

(
vN12, v

N
21

)
↔ xN2 ; m2 ↔

(
vN12, v

N
21

)
↔ xN1 .

The proof can be found in [18].
Below we start the proof of the outer bounds stated in Lemma 4.10.

Proof. (1) R1 bound (4.9):
If R1 is achievable, by Fano’s inequality,

N (R1 − εN)

≤ I
(
m1; yN1

)
≤ I

(
m1; yN1 |m2

)
≤ I

(
m1; yN1 |m2, v

N
12

)
+ I

(
m1; vN12|m2

)
= h

(
yN1 |m2, v

N
12

)
− h

(
yN1 |m2, v

N
12,m1

)
+H

(
vN12|m2

)
−H

(
vN12|m2,m1

)
(a)
= h

(
h11x

N
1 + zN1 |m2, v

N
12

)
− h

(
zN1 |m2, v

N
12,m1

)
+H

(
vN12|m2

)
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(b)

≤ h
(
h11x

N
1 + zN1

)
− h

(
zN1
)

+H
(
vN12

)
≤ N log

(
1 + |h11|2

)
+NCB

12 = N
{

log (1 + SNR1) + CB
12

}
where εN → 0 as N → ∞. (a) is due to the fact that xN2 is a function of

(
m2, v

N
12

)
, and(

xN1 , x
N
2 , v

N
12

)
are all functions of (m1,m2). (b) is due to conditioning reduces entropy and

the fact that zN1 is independent of everything else.
On the other hand, if R1 is achievable

N (R1 − εN)

≤ I
(
m1; yN1 |m2

)
= h

(
yN1 |m2

)
− h

(
yN1 |m2,m1

)
≤ h

(
yN1
)
− h

(
zN1 |m2,m1

)
= h

(
yN1
)
− h

(
zN1
)

≤ max
‖ρ|≤1

{
N log

(
1 + |h11|2 + |h12|2 + 2<{h11h

∗
12ρ}

)}
= N log

(
1 + |h11|2 + |h12|2 + 2|h11||h12|

)
= N log

(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)
,

where εN → 0 as N →∞.

(2) R2 bound (4.10): They follow the same line as the R1 bounds.

(3) R1 +R2 bound (4.11) and (4.12):
Let s1 := h21x1 + z2, and s2 := h12x2 + z1. If (R1, R2) is achievable, by Fano’s inequality,

N (R1 +R2 − εN)

≤ I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1 , s

N
1 , v

N
12|m2

)
+ I

(
m2, v

N
12; yN2

)
= I

(
m1; yN1 , s

N
1 |vN12,m2

)
+ I

(
m1; vN12|m2

)
+ h

(
yN2
)
− h

(
yN2 |m2, v

N
12

)
= h

(
yN1 , s

N
1 |vN12,m2

)
− h

(
zN1 , z

N
2

)
+H

(
vN12|m2

)
+ h

(
yN2
)
− h

(
sN1 |m2, v

N
12

)
= h

(
yN1 |sN1 , vN12,m2

)
+ h

(
yN2
)
− h

(
zN1 , z

N
2

)
+H

(
vN12|m2

)
≤ h

(
h11x

N
1 + zN1 |h21x

N
1 + zN2

)
+ h

(
yN2
)
− h

(
zN1 , z

N
2

)
+H

(
vN12

)
≤ N log

(
1 +

|h11|2

1 + |h21|2

)
+N log

(
1 + |h21|2 + |h22|2 + 2|h21||h22|

)
+NCB

12

= N {RHS of (4.11)} ,

where εN → 0 as N →∞.
Similarly, we prove the outer bound (4.12).

(4) R1 +R2 bound (4.13):
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If (R1, R2) is achievable, by Fano’s inequality,

N (R1 +R2 − εN)

≤ I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1 |vN12, v

N
21

)
+ I

(
m2; yN2 |vN12, v

N
21

)
+ I

(
m1; vN12, v

N
21

)
+ I

(
m2; vN12, v

N
21

)
(a)

≤ I
(
m1; yN1 |vN12, v

N
21

)
+ I

(
m2; yN2 |vN12, v

N
21

)
+ I

(
m1,m2; vN12, v

N
21

)
≤ I

(
m1; yN1 , s

N
1 |vN12, v

N
21

)
+ I

(
m2; yN2 , s

N
2 |vN12, v

N
21

)
+ I

(
m1,m2; vN12, v

N
21

)
= h

(
yN1 , s

N
1 |vN12, v

N
21

)
− h

(
yN1 , s

N
1 |vN12, v

N
21,m1

)
+ h

(
yN2 , s

N
2 |vN12, v

N
21

)
− h

(
yN2 , s

N
2 |vN12, v

N
21,m2

)
+H

(
vN12, v

N
21

)
= h

(
yN1 , s

N
1 |vN12, v

N
21

)
− h

(
sN2 , z

N
2 |vN12, v

N
21,m1

)
+ h

(
yN2 , s

N
2 |vN12, v

N
21

)
− h

(
sN1 , z

N
1 |vN12, v

N
21,m2

)
+H

(
vN12, v

N
21

)
(b)
= h

(
yN1 , s

N
1 |vN12, v

N
21

)
− h

(
sN2 |vN12, v

N
21,m1

)
− h

(
zN2
)

+ h
(
yN2 , s

N
2 |vN12, v

N
21

)
− h

(
sN1 |vN12, v

N
21,m2

)
− h

(
zN1
)

+H
(
vN12, v

N
21

)
(c)
= h

(
yN1 , s

N
1 |vN12, v

N
21

)
− h

(
sN2 |vN12, v

N
21

)
− h

(
zN2
)

+ h
(
yN2 , s

N
2 |vN12, v

N
21

)
− h

(
sN1 |vN12, v

N
21

)
− h

(
zN1
)

+H
(
vN12, v

N
21

)
= h

(
yN1 |sN1 , vN12, v

N
21

)
+ h

(
yN2 |sN2 , vN12, v

N
21

)
− h

(
zN1
)
− h

(
zN2
)

+H
(
vN12, v

N
21

)
≤ h

(
yN1 |sN1

)
+ h

(
yN2 |sN2

)
− h

(
zN1
)
− h

(
zN2
)

+H
(
vN12

)
+H

(
vN21

)
≤ N {RHS of (4.13)} ,

where εN → 0 as N → ∞. (a) is due to the fact that m1 and m2 are independent. (b) is
due to the fact that zN1 and zN2 are independent to everything else, respectively. (c) is due
to the following fact regarding the Markov relations:

(5) R1 +R2 bound (4.14):
If (R1, R2) is achievable, by Fano’s inequality,

N (R1 +R2 − εN)

≤ I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1 , y

N
2

)
+ I

(
m2; yN1 , y

N
2

)
≤ I

(
m1; yN1 , y

N
2 |m2

)
+ I

(
m2; yN1 , y

N
2

)
= I

(
m1,m2; yN1 , y

N
2

)
= h

(
yN1 , y

N
2

)
− h

(
zN1 , z

N
2

)
≤ N {RHS of (4.14)} ,

where εN → 0 as N →∞.

(6) 2R1 +R2 bound (4.15) and R1 + 2R2 bound (4.16):
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If (R1, R2) is achievable, by Fano’s inequality,

N (2R1 +R2 − εN)

≤ 2I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1

)
+ I

(
m1; yN1 , s

N
1 , v

N
12, v

N
21|m2

)
+ I

(
m2; yN2 , s

N
2 , v

N
12, v

N
21

)
≤ I

(
m1, v

N
12, v

N
21; yN1

)
+ I

(
m1; yN1 , s

N
1 |vN12, v

N
21,m2

)
+ I

(
m2; yN2 , s

N
2 |vN12, v

N
21

)
+ I

(
m1; vN12, v

N
21|m2

)
+ I

(
m2; vN12, v

N
21

)
= h

(
yN1
)
− h

(
sN2 |m1, v

N
12, v

N
21

)
+ I

(
m1,m2; vN12, v

N
21

)
+ h

(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12, v

N
21

)
− h

(
zN1 , z

N
2

)
+ h

(
yN2 , s

N
2 |vN12, v

N
21

)
− h

(
sN1 , z

N
1 |m2, v

N
12, v

N
21

)
(a)
= h

(
yN1
)
− h

(
sN2 |vN12, v

N
21

)
+H

(
vN12, v

N
21

)
+ h

(
h11x

N
1 + zN1 |sN1 ,m2, v

N
12, v

N
21

)
+ h

(
yN2 , s

N
2 |vN12, v

N
21

)
− 2h

(
zN1
)
− h

(
zN2
)

= h
(
yN1
)

+ h
(
h11x

N
1 + zN1 |sN1 ,m2, v

N
12, v

N
21

)
+H

(
vN12, v

N
21

)
+ h

(
yN2 |sN2 , vN12, v

N
21

)
− 2h

(
zN1
)
− h

(
zN2
)

≤ N {RHS of (4.15)} ,

where εN → 0 as N →∞. (a) is due to the Markovity in Fact 5.14.
Similar arguments work for R1 + 2R2 bound (4.16).

(7) 2R1 +R2 bound (4.17) and R1 + 2R2 bound (4.18):
Using the intuition from the study of linear deterministic channel, we give the following

side information to receiver 2:

ỹN2 := h22x
N
2 + z̃N2 ,

where z̃2 ∼ CN (0, 1 + INR2), i.i.d. over time and is independent of everything else.
Now, if (R1, R2) is achievable, by Fano’s inequality,

N (2R1 +R2 − εN)

≤ 2I
(
m1; yN1

)
+ I

(
m2; yN2

)
≤ I

(
m1; yN1 , s

N
1 |m2, v

N
12

)
+ I

(
m1; vN12|m2

)
+ I

(
m1; yN1

)
+ I

(
m2; ỹN2 , y

N
2

)
= h

(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12

)
− h

(
zN1 , z

N
2

)
+ I

(
m1; yN1

)
+ I

(
m2; ỹN2

)
+ I

(
m2; yN2 |ỹN2

)
+ I

(
m1; vN12|m2

)
(a)

≤ h
(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12

)
− h

(
zN1 , z

N
2

)
+ I

(
m1,m2; yN1 , ỹ

N
2

)
+ I

(
m2, v

N
12; yN2 |ỹN2

)
+ I

(
m1; vN12|m2

)
= h

(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12

)
− h

(
zN1 , z

N
2

)
+ h

(
yN1 , ỹ

N
2

)
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− h
(
zN1 , z̃

N
2

)
+ h

(
yN2 |ỹN2

)
− h

(
yN2 |ỹN2 ,m2, v

N
12

)
+H

(
vN12|m2

)
= h

(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12

)
+ h

(
yN1 , ỹ

N
2

)
+ h

(
yN2 |ỹN2

)
− h

(
sN1 |z̃N2 ,m2, v

N
12

)
+H

(
vN12|m2

)
− h

(
zN1 , z

N
2

)
− h

(
zN1 , z̃

N
2

)
(b)
= h

(
h11x

N
1 + zN1 , s

N
1 |m2, v

N
12

)
+ h

(
yN1 , ỹ

N
2

)
+ h

(
yN2 |ỹN2

)
− h

(
sN1 |m2, v

N
12

)
+H

(
vN12|m2

)
− h

(
zN1 , z

N
2

)
− h

(
zN1 , z̃

N
2

)
= h

(
h11x

N
1 + zN1 |sN1 ,m2, v

N
12

)
+ h

(
yN1 , ỹ

N
2

)
+ h

(
yN2 |ỹN2

)
+H

(
vN12|m2

)
− h

(
zN1 , z

N
2

)
− h

(
zN1 , z̃

N
2

)
≤ N {RHS of (4.17)} ,

where εN → 0 as N → ∞. (a) is due to a simple fact that I
(
m1; yN1

)
+ I

(
m2; ỹN2

)
≤

I
(
m1,m2; yN1 , ỹ

N
2

)
and that conditioning reduces entropy. (b) holds since z̃N2 is independent

of
(
m2, v

N
12

)
and sN1 .

Similar arguments work for R1 + 2R2 bound (4.18).

5.5 Proof of Theorem 4.13

In Part I, we characterized the capacity region of the Gaussian interference channel with
conferencing receivers to within 2 bits per user. Hence by Theorem 4.11, we only need to
compare the outer bounds. Note that for the reciprocal channel, its channel parameters are

SNR′1 = SNR1, SNR′2 = SNR2; INR′1 = INR2, INR′2 = INR1; CB
12

′
= CB

21, CB
21

′
= CB

12.

Plugging these into the outer bounds in Chapter 2, we obtain the outer bounds for the
reciprocal channel as follows:

R1 ≤ min
{

log (1 + SNR1) + CB
12, log (1 + SNR1 + INR1)

}
R2 ≤ min

{
log (1 + SNR2) + CB

21, log (1 + SNR2 + INR2)
}

R1 +R2 ≤ log

(
1 + INR2 +

SNR1

1 + INR1

)
+ log

(
1 + INR1 +

SNR2

1 + INR2

)
+ CB

21 + CB
12

R1 +R2 ≤ log (1 + SNR2 + INR1) + log

(
1 +

SNR1

1 + INR1

)
+ CB

21

R1 +R2 ≤ log (1 + SNR1 + INR2) + log

(
1 +

SNR2

1 + INR2

)
+ CB

12

R1 +R2 ≤ log
(
1 + SNR1 + SNR2 + INR1 + INR2 + |h11h22 − h12h21|2

)
2R1 +R2 ≤ log

(
1 + INR1 +

SNR2

1 + INR2

)
+ log

(
1 +

SNR1

1 + INR1

)
+ log (1 + SNR1 + INR2)

+ CB
21 + CB

12
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R1 + 2R2 ≤ log

(
1 + INR2 +

SNR1

1 + INR1

)
+ log

(
1 +

SNR2

1 + INR2

)
+ log (1 + SNR2 + INR2)

+ CB
12 + CB

21

2R1 +R2 ≤ log

(
1 +

SNR2

1 + INR2

+ INR1 + SNR1 +
INR2

1 + INR2

+
|h11h22 − h12h21|2

1 + INR2

)
+ log (1 + SNR1 + INR2) + CB

12

R1 + 2R2 ≤ log

(
1 +

SNR1

1 + INR1

+ INR2 + SNR2 +
INR1

1 + INR1

+
|h11h22 − h12h21|2

1 + INR1

)
+ log (1 + SNR2 + INR1) + CB

21

(1) Bounds on R1 and R2:
Note that

log (1 + SNR1 + INR1) ≤ log
(

1 + SNR1 + INR1 + 2
√

SNR1INR1

)
≤ log (1 + SNR1 + INR1) + 1.

Hence the gap is at most 1 bit.

(2) Bounds on R1 +R2:
Note that:

(a)

log

(
1 + INR2 +

SNR1

1 + INR1

)
+ log

(
1 + INR1 +

SNR2

1 + INR2

)
= log

(
(1 + INR1) (1 + INR2) + SNR1

1 + INR1

)
+ log

(
(1 + INR2) (1 + INR1) + SNR2

1 + INR2

)
= log

(
(1 + INR1) (1 + INR2) + SNR1

1 + INR2

)
+ log

(
(1 + INR2) (1 + INR1) + SNR2

1 + INR1

)
= log

(
1 + INR1 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
≤ log

(
1 + SNR1+2

√
SNR1INR1

1+INR2
+ INR1

)
+ log

(
1 + SNR2+2

√
SNR2INR2

1+INR1
+ INR2

)
≤ log

(
1 + INR1 +

2SNR1 + INR1

1 + INR2

)
+ log

(
1 + INR2 +

2SNR2 + INR2

1 + INR1

)
≤ log

(
1 + INR1 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ 2
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(b)

log (1 + SNR2 + INR1) + log

(
1 +

SNR1

1 + INR1

)
= log

(
1 +

SNR2

1 + INR1

)
+ log (1 + SNR1 + INR1)

≤ log

(
1 +

SNR2

1 + INR1

)
+ log

(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)
≤ log

(
1 +

SNR2

1 + INR1

)
+ log (1 + SNR1 + INR1) + 1

(c)

log
(
1 + SNR1 + SNR2 + INR1 + INR2 + |h11h22 − h12h21|2

)
≤ log

(
1 + SNR1 + INR1 + SNR2 + INR2

+2
√

SNR1INR1 + 2
√

SNR2INR2 + |h11h22 − h12h21|2
)

≤ log
(
1 + 2SNR1 + 2INR1 + 2SNR2 + 2INR2 + |h11h22 − h12h21|2

)
≤ log

(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
+ 1

Hence the gap is at most 2 bits.

(3) Bounds on 2R1 +R2 and R1 + 2R2:
Note that:

(a)

log

(
1 + INR1 +

SNR2

1 + INR2

)
+ log

(
1 +

SNR1

1 + INR1

)
+ log (1 + SNR1 + INR2)

=
{

log
(

1 + INR2 + SNR2

1+INR1

)
+ log (1 + SNR1 + INR1) + log

(
1 + SNR1

1+INR2

) }
≤

 log
(

1 + SNR2+2
√

SNR2INR2

1+INR1
+ INR2

)
+ log

(
1 + SNR1

1+INR2

)
+ log

(
1 + SNR1 + INR1 + 2

√
SNR1INR1

)


≤

{
log
(

1 + INR2 + SNR2

1+INR1

)
+ 1 + log

(
1 + SNR1

1+INR2

)
+ log (1 + SNR1 + INR1) + 1

}

(b) {
log
(

1 + SNR2

1+INR2
+ INR1 + SNR1 + INR2

1+INR2
+ |h11h22−h12h21|2

1+INR2

)
+ log (1 + SNR1 + INR2)

}
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=

{
log

(
1 + SNR1 + INR1 + SNR2 + 2INR2

+SNR1INR2 + INR1INR2 + |h11h22 − h12h21|2
)

+ log
(

1 + SNR1

1+INR2

) }

≤

 log

(
1 + SNR1 + INR1 + SNR2 + 2INR2

+SNR1INR2 + INR1INR2 + 2 (SNR1SNR2 + INR1INR2)

)
+ log

(
1 + SNR1

1+INR2

)


≤

 log

(
1 + SNR1 + INR1 + SNR2 + INR2 + SNR1SNR2 + INR1INR2

+SNR1INR2 + 2 (1 + INR2)
√

SNR1INR1

)
+ log

(
1 + SNR1

1+INR2

)
+ 1


≤
{

log

(
1 + 2SNR1 + 2INR1 + SNR2 + INR2

+SNR1SNR2 + 2INR1INR2 + 2SNR1INR2

)
+ log

(
1 + SNR1

1+INR2

)
+ 1

}

≤

 log

(
1 + 2SNR1 + 2INR1 + SNR2 + INR2

+2SNR1INR2 + 4|h11h22 − h12h21|2 + 8INR1INR2

)
+ log

(
1 + SNR1

1+INR2

)
+ 1


≤

 log

(
1 + SNR1 + INR1 + SNR2 + 2INR2

+SNR1INR2 + INR1INR2 + |h11h22 − h12h21|2
)

+ log
(

1 + SNR1

1+INR2

)
+ 4


Hence the gap is at most 4 bits.
In summary, we have

CRx ⊂ CTx ⊂ CRx ⊕ [0, τ ]× [0, τ ], (5.1)

where τ = 4/3 bits.
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Part III

Two Unicast Wireless Information
Flows
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Chapter 6

Two Unicast Linear Deterministic
Network

We investigate the two unicast flow problem over layered linear deterministic networks
with arbitrary number of nodes. When the minimum cut value between each source-
destination pair is constrained to be 1, it is obvious that the triangular rate region {(R1, R2) :
R1, R2 ≥ 0, R1 + R2 ≤ 1} can be achieved, and that one cannot achieve beyond the square
rate region {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R2 ≤ 1}. Analogous to the work by Wang and
Shroff for wired networks [52], we provide the necessary and sufficient conditions for the
capacity region to be the triangular region and the necessary and sufficient conditions for
it to be the square region. Moreover, we completely characterize the capacity region and
conclude that there are exactly three more possible capacity regions of this class of networks,
in contrast to the result in wired networks where only the triangular and square rate regions
are possible. Our achievability scheme is based on linear coding over an extension field
with at most four nodes performing special linear coding operations, namely interference
neutralization and zero forcing, while all other nodes perform random linear coding.

6.1 Introduction

Characterizing the fundamental limit of delivering information from multiple sources to mul-
tiple destinations over networks is the holy grail in network information theory. The ultimate
goal is to characterize the capacity region of multi-source-multi-destination information flows
over arbitrary networks. Exploring wired network models yields fruitful understanding in
this problem, and the capacity of single unicast [13] and multicast [53] are fully character-
ized. In wired networks, however, all links are orthogonal to one another, and such a model
cannot fully capture the broadcast and superposition nature of wireless networks. In [9], a
deterministic approach is proposed as a bridge for using results in wired networks to help
understand wireless network information flow. The proposed linear deterministic network
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model turns out to be very useful for studying wireless networks as it preserves the broadcast
and superposition aspects. Capacity of several traffic patterns are characterized completely
in linear deterministic networks and approximately in Gaussian networks, including single
unicast and multicast [9].

In the above mentioned problems where good understanding has been established, there
is only one user’s information flow in the network and no interference from other users.
However, as for how multiple information flows interact as they interfere with one another,
very little is known. To the best of our knowledge, even for the two unicast problem,
there is no capacity results for general wired networks, let alone the general multi-source-
multi-destination information flow problem. Instead of attempting directly to characterize
the capacity region, a different route is taken in [52] to make progress in this problem, by
studying the capacity region in the low rate regime. In [52], Wang and Shroff provide the
necessary and sufficient condition for achievability of the rate pair (1, 1) for two unicast flows
over arbitrary wired networks with integer link capacities. They show that a simple outer
bound called the Network Sharing Bound [54] turns out to be tight for the (1, 1) point, i.e.
if the Network Sharing Bound allows the achievability of (1, 1), then in fact, (1, 1) can be
achieved. The result in [52] can be interpreted as follows. Let us consider a class of wired
networks with integer link capacities where the minimum cut value between each source-
destination pair is constrained to be 1, and hence rate pairs outside the square rate region
S := {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R2 ≤ 1} cannot be achieved. The main result of [52]
provides the necessary and sufficient condition for the capacity region to be S. Moreover,
since the triangular rate region T := {(R1, R2) : R1, R2 ≥ 0, R1 + R2 ≤ 1} can be achieved
simply by time-division-access and routing, [52] completely characterizes the capacity region
for this class of networks. There are only two possible capacity regions for this class of
networks, the triangular region T and the square region S. See Fig. 6.1 for an illustration
of these rate regions.

T

R1

R2

(a) Network Sharing Bound = 1

S

R1

R2
(1, 1)

(b) Network Sharing Bound ≥ 2

Figure 6.1: Capacity Regions for Wired Network
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In this chapter, we take an initial step towards understanding the two unicast flow prob-
lem over linear deterministic networks [9] with arbitrary number of nodes. Our main result
is an analog of [52] over linear deterministic networks. We assume that all channel strengths
are zero or unity, that the network is layered and that each source can reach its own destina-
tion, and hence the minimum cut value between each source-destination pair is constrained
to be 1. Similar to wired networks, rate pairs outside the square rate region S cannot be
achieved, and rate pairs inside the triangular rate region T can be achieved by time-sharing
between two users’ single unicast flows. For this class of networks, we completely character-
ize the capacity region. We show that the capacity region of such a network must be one of
the five regions depicted in Fig. 6.2, and provide the necessary and sufficient conditions for
the capacity region to be each of them.

T

R1

R2

(a) O

T12

R1

R2
(1/2, 1)

(1, 0)

(b) T(12) \O

T21

R1

R2
(0, 1)

(1, 1/2)

(c) T(21) \O

(1/2, 1)

R1

R2

(1, 1/2)

P

(d) P \ (T ∪O)

S

R1

R2
(1, 1)

(e) Q \O

Figure 6.2: Capacity Regions for Linear Deterministic Network

Regarding when one can achieve beyond the trivially achievable T, we provide a novel
sum rate outer bound on two unicast flows over linear deterministic networks, analogous
to the Network Sharing Bound. This outer bound is intimately related to the Generalized
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Network Sharing outer bound [55] for wired networks. We show that if this bound does not
constrain the sum rate to be upper bounded by 1, then indeed, one can achieve beyond the
triangular rate region T, and hence establish the necessary and sufficient condition for the
capacity region being T. In contrast however, to achievability of the (1, 1) point in [52], we
find that we cannot always achieve (1, 1). Instead, we show that once one can achieve beyond
T, one can achieve either one of the two trapezoid rate regions: T12 := {(R1, R2) : R1, R2 ≥
0, R2 ≤ 1, 2R1 + R2 ≤ 2} and T21 := {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R1 + 2R2 ≤ 2}, and
there are networks whose capacity regions are T12 or T21.

Regarding when one can achieve the full square S, we investigate the achievability of
the (1, 1) point, and find the necessary and sufficient conditions for it. For single source
unicast and multicast problems, random linear coding over a large finite field at all nodes
suffices to achieve capacity in wired as well as linear deterministic networks [53], [9]. This
is no longer the case for the two-unicast problem since each destination is interested only in
the message of its own source. Indeed, we can identify two nodes - one for each destination
that must be able to decode the messages of their respective destinations. We call these two
nodes critical nodes and their receptions are required to be completely free of interference
from the other user. For this purpose, at certain nodes interference from the other user has
to be cancelled “over-the-air”, which is called interference neutralization in the literature
[29] [56]. Other than the nodes performing interference neutralization, all other nodes may
perform random linear coding. The parents of each critical node are the natural candidates
to perform interference neutralization, although they are not the only ones. We introduce a
systematic approach to capture the effect on the rest of the network caused by interference
neutralization, and provide the graph-theoretic necessary and sufficient conditions for (1, 1)-
achievability. Moreover, we show that if (1, 1) cannot be achieved, then the capacity region
is contained in the pentagon region P := {(R1, R2) : R1, R2 ≥ 0, R1, R2 ≤ 1, R1 +R2 ≤ 3/2}.
Moreover, there are networks whose capacity regions are P.

Continuing further, we characterize the necessary and sufficient conditions for the capac-
ity region to be T12, T21, and P respectively. The outer bounds on 2R1 + R2, R1 + 2R2 for
the trapezoids T12,T21 respectively and that on R1 + R2 for the pentagon P are inspired
from the interference channel outer bounds [14]. The scheme we propose is linear over the
extension field F2r for r sufficiently large. Note that unlike single multicast where a ran-
dom (vector) linear scheme over the base field F2 suffices to achieve the capacity [9], in the
two-unicast problem not only does the linear scheme operate on a larger field but also some
nodes need to perform special linear coding (in contrast to random linear coding), including
interference neutralization (over-the-air) and zero forcing (within-the-node). Later we will
show by an example that both operating on a larger field and special coding at certain nodes
are necessary for achieving capacity. It turns out that, fortunately, the number of nodes
which are required to take special coding operation is bounded above by 4 and can be found
explicitly. More specifically, they are usually parents of the two critical nodes and hence lie
in two layers at most. Other than these special nodes, others can perform random linear
coding (RLC) over the extension field.
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Related Works

In the literature, the study of two unicast information flows over wireless networks using the
deterministic approach begins with the investigation of the two-user interference channel [4]
[14] [5] and its variants, including interference channels with cooperation [42] [25] [15] [16]
and two-hop interference networks [29] [56]. Focusing on small networks (four nodes in total),
researchers are able to characterize the capacity region exactly in the linear deterministic
case [14] [15] [16] and to within a bounded gap in the Gaussian case [5] [15] [16], but the
extension to larger networks seems non-trivial [29]. It is pointed out [29] that more advanced
schemes, including interference neutralization, plays a key role in achieving capacity.

Another approach is directly looking at the Gaussian model but focusing on a cruder
metric, degrees of freedom, instead of bounded gap to capacity. In [56], a systematic approach
for interference neutralization called “aligned interference neutralization” is proposed for the
2x2x2 interference network, and it is shown that full degrees of freedom (one for each user)
can be achieved almost surely. Later, in a recent independent work [57] such a scheme is
employed and the authors characterize the degrees-of-freedom region of two unicast Gaussian
networks almost surely. Interestingly, it is shown that [57] there are five possible degrees-
of-freedom regions almost surely and they are the same as the five regions reported in this
chapter. The connection between the two results is yet to be understood and explored.
These degrees-of-freedom results, however, rely heavily either on the assumption that there
is infinite channel diversity, or on the rationality/irrationality of the channel gains for the
scheme to work.

The rest of the chapter is organized as follows. In Section 6.2, we formulate the problem
and give several useful definitions. In Section 6.3, we state our main results, and in Section 6.4
we furnish examples that motivate linear scheme based on field extension and illustrate
several important elements in achievability and outer bounds. Then we devote to details of
achievability proof as well as outer bounds in Section 6.5 and 6.6, respectively. Finally, we
conclude the chapter by discussing possible extensions to more general linear deterministic
networks in Section 6.7.

6.2 Problem Formulation

A two-source-two-destination layered network is a directed, acyclic, layered graph G = (V , E),
i.e. where the collection of nodes V can be partitioned into L+ 2 layers (L ≥ 0):

V =
L+1⋃
k=0

Lk, Lk ∩ Lj 6= ∅, ∀k 6= j,

such that for any edge (u, v) ∈ E , ∃ k, 0 ≤ k ≤ L s.t. u ∈ Lk, v ∈ Lk+1. The first layer
L0 = {s1, s2} consists of the two source nodes, and the last layer LL+1 = {d1, d2} consists of
the two destination nodes. Without loss of generality we assume each node in the network
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can be reached by at least one of the source nodes and can reach at least one of the destination
nodes.

For each node v ∈ V \ {s1, s2}, we define nodes that can reach v as its predecessors. Let
P(v) denote the set of predecessors that can reach v in one step. We will call the nodes in
P(v) as the parents of v. Let Xu, Yu ∈ F2 denote the transmission and reception of node u
respectively. The reception of a node is the binary XOR of the transmission of its parents:
Yv =

⊕
u∈P(v) Xu. For example, in Fig. 6.3(a), the reception at node u4 will be given by

Yu4 = Xu1 ⊕Xu2 .

s1

s2

d1

d2

u1

u2 u3

u4

(a) Zigzag Network

s1

s2

d1

d2

u1

u2

u3

u4

u5

u6

(b) An Asymmetric Network

Figure 6.3: Examples

The channel model we have used is a special case of the linear deterministic network
from [9]. The simplification is that if there is a link from one node to another, then the
channel strength is unity. We note that the essential nature of the linear deterministic
network, namely broadcast and superposition, is preserved. As an example, in the network
in Fig. 6.3(a), the transmission of u2 is broadcasted to u3 and u4, and hence the two edges
(u2, u3) and (u2, u4) carry the same signal. The reception of u4, as mentioned above, is the
binary XOR of the transmission of u1 and u2.

6.3 Main Result

If, for each i = 1, 2, si can reach di, then it is trivial to see that the triangular rate region T

can be achieved, and that one cannot achieve beyond the square rate region S. However, it
is not clear under what conditions the triangular region or the square region is the capacity
region. Our main result gives a complete answer to this question (and beyond). To state
the result, we will need a few definitions.

A node is si-reachable if it can be reached by si. It is si-only-reachable if it can be reached
by si but not sj, j 6= i. It is s1s2-reachable if it can be reached by both s1 and s2.

For each node v ∈ V \ {s1, s2},
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• let P(v) denote the set of parents of v that are reachable from at least one of s1, s2,

• let P si(v) ⊆ P(v) denote the set of parents of v reachable by source si, i = 1, 2,

• let K(v) := {u : P(u) = P(v)} denote the clones of v, the set of nodes that receive the
same signal as v,

• let Ksi(v) := {u : P si(u) = P si(v)} , i = 1, 2, the set of nodes that have the same si-
reachable parents as v. We called these nodes the si-clones of v.

The following table illustrates these sets of nodes for the node u4 in the two example
networks in Fig. 6.3. For the network in (b), we assume for now that there is no edge from
s1 to u2.

Fig. 6.3(a) Fig. 6.3(b)
P(u4) {u1, u2} {u1, u2}
Ps1(u4) {u1, u2} {u1}
Ps2(u4) {u2} {u2}
K(u4) {u4} {u4}
Ks1(u4) {u4} {u4, u6}
Ks2(u4) {u3, u4} {u4, u5}

For two sets of nodes U1 and U2, we say a collection of nodes T is a (U1;U2)-vertex-cut
if in the graph obtained from the deletion of T , there are no paths from any node in U1 \ T
to any node in U2 \ T . Note that this definition allows T to have nodes from U1 or U2.

We say a node v ∈ V is omniscient if it satisfies either of (A) or (B) below:

(A) K(v) is a (s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-vertex-cut.

(B) K(v) is a (s1, s2; d2)-vertex-cut and Ks1(v) is a (s1; d1)-vertex-cut.

Theorem 6.1 (Characterization of T). Assume that si can reach di for i = 1, 2.

(a) If there exists an omniscient node in the network, then the capacity region is the triangular
region T.

(b) Conversely, if no node in the network is omniscient, then the capacity region is strictly
larger than T. Further, the capacity region contains at least one of the trapezoid regions T12

and T21. In particular, (2/3, 2/3) is achievable and at least one of (1/2, 1) and (1, 1/2) is
achievable.

It turns out that we are able to give the necessary and sufficient condition for the capacity
region to be either T12 or T21. Before describing the theorem, we need some extra definitions.

Definition 6.2 (Critical Nodes). For each i = 1, 2, we define the critical node v∗i as any
node with the smallest possible layer index such that K(v∗i ) is a (s1, s2; di)-vertex-cut.
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• Existence: {di} ⊆ K(di) is a (s1, s2; di)-vertex-cut.

• Uniqueness up to clones: if u,w are nodes in the same layer with K(u) and K(w) both
being (s1, s2; di)-vertex-cuts, then K(u) = K(w), i.e. u and w are clones.

We use Lk∗i to denote the layer where critical nodes v∗i lies, for i = 1, 2.

For example in Fig. 6.3, v∗1 = u4, k
∗
1 = 2 and v∗2 = d2, k

∗
2 = 3 for both networks.

The critical nodes defined here are directly analogous to the edges performing the “reset”
operation in the add-up-and-reset construction of Wang and Shroff [52].

Below we describe one scenario where we get a result similar to the one in [52]. This
lemma strengthens part (b) of Theorem 6.1 in this special scenario.

Lemma 6.3. Suppose in a network s2 cannot reach d1, i.e. k∗1 = 0. Then, the capacity
region of this network is the triangle T or the square S depending on whether there is an
omniscient node in the network or not, i.e. depending on whether v∗2 is omniscient or not
(using Lemma 6.6). If k∗2 = 0, then (1, 1) can be achieved by all nodes performing random
linear coding. If k∗2 > 0 and there is no omniscient node, then (1, 1) is achieved with high
probability when all nodes except nodes in P(v∗2) performing random linear coding over a
sufficiently large field.

Next we define cut values and min-cut on the network.

Definition 6.4 (Cut Value and Min-Cut). Fix a set of nodes in layer k, U ⊆ Lk. Consider
a partition of V into (T , T c) with s1, s2 ∈ T and U ⊆ T c. Construct the transfer matrix G
with rows indexed by elements of T and columns indexed by elements of T c where the (u,w)
entry of G is 1 if there is a directed edge from u to w and 0 otherwise. The rank-mincut
[9] from {s1, s2} to U is defined as the minimum rank of the transfer matrix G over all such
partitions (T , T c), and is denoted by C (s1.s2;U).

The following two lemmas provide some important properties of critical nodes. Their
proofs are left in Chapter 7.

Lemma 6.5. For i = 1, 2, C (s1, s2;P(v∗i )) = 2 if k∗i ≥ 2.

Lemma 6.6. A network has an omniscient node if and only if one of the critical nodes v∗1
or v∗2 is omniscient.

Once we define the cut value, we can define primary min-cut nodes for any set of nodes
U with C (s1, s2;U) = 1, due to the following lemma. What these primary min-cut nodes
receive determines what U receive.

Lemma 6.7 (Primary Min-Cut). By Ul, 0 ≤ l < k, denote the set of nodes in layer Ll that
can reach some node in U . Let l∗ be the minimum index such that C(s1, s2;Ul∗) = 1. Then,
Ul∗ ⊆ K(u) for any u ∈ Ul∗ , i.e. nodes in Ul∗ are all clones of each other.

We then define any of the nodes in K(u) as the primary min-cut node of U , denoted by
Pmc (U). It is unique up to clones.
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Comment: Note that the reception of any node in U is a function of the reception of
Pmc (U).

For example, in Fig. 6.3(b) when there is an edge from s1 to u2, Pmc(u5) = u2; when there
is no edge from s1 to u2, Pmc(u5) = s2. We also see that the critical node v∗i = Pmc(di), i =
1, 2.

Next, we define induced graph G12(w) for a node w ∈ P s2(v∗1) as follows. The purpose of
these induced graph is two-fold: 1) to capture the effect on the rest of the network caused
by interference neutralization for (1, 1)-achievability, and 2) to capture the Markov relations
that are useful in the derivation of outer bounds.

Definition 6.8 (Induced Graph G12).
If C (s1, s2;P s2(v∗1)) = 2 then G12(w) := G. If C (s1, s2;P s2(v∗1)) = 1, then we define G12(w) as
the graph obtained by modifying only the parents of nodes in Lk∗1 as follows. For u ∈ Lk∗1 ,

PG12(w)(u) =

{
P(u) if w /∈ P(u)

P(u)∆P s2(v∗1) if w ∈ P(u),

where ∆ denotes symmetric set difference: A∆B := (A \B) ∪ (B \A). We then drop nodes
in G12(w) that cannot be reached by either of the two sources. In the rest of this chapter, a
graph theoretic object with a graph (say, G12) in its subscript, like PG12(w)(u) above, denote the
graph theoretic object in the induced graph G12. Define R(w) as the set of nodes in P s2(v∗1)
that can reach one of the two destinations in G12(w).

Similarly we can define G21(w) with indices 1 and 2 swapped in the above definition.

s1

s2

d1

d2

u1

u2 u3

u4

(a) Zigzag Network

s1

s2

d1

d2

u1

u2

u3

u4

u5

u6

(b) An Asymmetric Network

Figure 6.4: Induced Graph G12 for Example Networks in Fig. 6.3.

For example, induced graphs for the networks in Fig. 6.3 are depicted in Fig. 6.4. For
G12 in (a), s2 can no longer reach d2, as u4 is omniscient in the original network G. In (b),
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node u6 becomes omniscient in G12 while there is no omniscient node in the original network
G.

We will use G12(w) when k∗1 ≤ k∗2 and G21(w) when k∗2 ≤ k∗1. We will only use these graphs
in relation to whether or not there is an omniscient node in G12(w). Lemma 6.9 below allows
us to drop the w and refer to any of the G12(w) as G12 and talk about whether or not there
is an omniscient node in G12.

Lemma 6.9. Suppose, in a network with no omniscient node, and with k∗1 ≤ k∗2, there exists
a node w0 ∈ P s2(v∗1) such that there is an omniscient node in G12(w0). Then for any node
w ∈ P s2(v∗1), there is an omniscient node in G12(w).

Theorem 6.10 (Characterization of T12 and T21). Consider a network G in which no node
is omniscient.

(a) If the network G satisfies the following conditions, then the capacity region is the trapezoid
region T12:

• T
(12)
1 : 0 < k∗1 ≤ k∗2.

• T
(12)
2 : C (s1, s2;P s2 (v∗1)) = 1. Let w12 denote Pmc (P s2 (v∗1)).

• T
(12)
3 : Let u21 := PmcG12 (v∗2). u21 is omniscient in G12.

• T
(12)
4 : w12 = s2, i.e., P s2 (v∗1) cannot be reached by s1.

We call the conjunction of the above conditions T(12). Symmetrically, if G satisfies the
above condition with indices 1 and 2 (in the superscript) exchanged, then the capacity region
is the trapezoid region T21.

(b) Conversely, if neither condition T(12) nor T(21) is satisfied, then the two trapezoid re-
gions are strictly contained in the capacity region. Moreover, both (1/2, 1) and (1, 1/2) are
achievable and hence the pentagon P.

Remark: Based on Lemma 6.3, if k∗1 = 0, then the capacity region of this network is the
triangle T or the square S depending on whether there is an omniscient node in the network.
This is why in T

(12)
1 we need to constrain k∗1 > 0.

Next we give the necessary and sufficient condition for the capacity region being the
pentagon region P := {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R2 ≤ 1, R1 +R2 ≤ 3/2}.

Theorem 6.11 (Characterization of P and S). Consider a network G in which no node is
omniscient and neither T(12) nor T(21) is satisfied.

(a) Denote the conjunction of the below conditions by P(12):

• P
(12)
1 ≡ T

(12)
1 , P

(12)
2 ≡ T

(12)
2 , P

(12)
3 ≡ T

(12)
3
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• P
(12)
4 : w12 6= s2 and Ks2 (w12) forms an (s2; d2)-vertex-cut in G.

Similarly we define condition P(21) with indices 1 and 2 (in the superscript) exchanged.
If the network G satisfies condition P(12) or P(21), then the capacity region is P.

(b) Conversely, if neither condition P(12) nor P(21) is satisfied, then the pentagon region is
strictly contained in the capacity region. Moreover, (1, 1) is achievable and hence the square
S.

We can easily see that T
(12)
4 ∨ P

(12)
4 = {Ks2 (w12) forms an (s2; d2)-vertex-cut in G.} and

hence Q(12) := T(12) ∨ P(12) is the conjunction of the following:

• Q
(12)
1 ≡ T

(12)
1 , Q

(12)
2 ≡ T

(12)
2 , Q

(12)
3 ≡ T

(12)
3

• Q
(12)
4 : Ks2 (w12) forms an (s2; d2)-vertex-cut in G.

Corollary 6.12 (Complete Characterization of Capacity). As a corollary of Theorem 6.1,
6.10 and 6.11, we completely characterize all possible capacity regions of two unicast flows
over the linear deterministic networks as formulated in Section 6.2, as follows: (Short-
hand notations: O := {∃ an omniscient node}, T := T(12) ∨ T(21), P := P(12) ∨ P(21), and
Q := Q(12) ∨Q(21) = T∨P. Also, in the context that no confusion will be caused, we use the
same notation to denote the set of networks that satisfy the condition.)

O ⇐⇒ T

T(12) \O ⇐⇒ T12

T(21) \O ⇐⇒ T21

P \ (T ∪O) ⇐⇒ P

Q \O ⇐⇒ S

Fig. 6.2 give an illustration of all these regions.

6.4 Motivating Examples

Before going into proofs of our main result, let us visit some examples to illustrate several
important elements in our scheme as well as outer bounds.

6.4.1 Why Random Linear Coding Fails

We first demonstrate, through a simple example, why random linear coding with its success
in achieving the capacity of single multicast over wired and linear deterministic networks
[53] [34], cannot achieve capacity for multiple unicast. Also, by the example we will show
that most of the nodes in the network can perform random linear coding and only up to four
nodes are needed to do special linear coding.
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The example is depicted in Fig. 6.5(a). Random linear coding for achieving the (1, 1)
point, in the context of this example, means that each node sends out a symbol in a large field
of characteristic 2 and each intermediate node scales its reception by a randomly uniformly
chosen coefficient from the field, independent of others, and transmits it. How and why we
lift the symbols from the base field F2 to a larger field will be explained later. Random linear
coding achieves the capacity of single multicast with high probability.

However, for two unicast if we perform random linear coding, in the network in Fig. 6.5(a),
destinations d1 and d2 will receive linear combinations of the two symbols from sources, say
a from source 1 and b from source 2, and their coefficients are non-zero with high probability.
This is because both d1 and d2 can be reached by s1 and s2.

On the other hand, if nodes u4, u5, u6 choose their scaling coefficients more carefully, both
d1 and d2 are able to receive a clean copy of their desired symbols. This is due to the
fact that the reception of u4 (which is the same as that of u6) and the reception of u5 are
linearly independent with high probability under random linear coding at all other nodes in
previous layers, since C (s1, s2; u4, u5) = 2. The scaling coefficients chosen at u4 is such that
the b-component in the transmission is cancelled over-the-air. Because the reception of u4

and u5 are linearly independent, the a-coefficient remains non-zero. Similarly, u6 can choose
its scaling coefficient so that d2 receives a non-zero scaled-copy of symbol b.

We observe that in this example only nodes u4 and u6 need to perform linear coding
carefully. It turns out that for arbitrary layered networks, at most 4 nodes need to perform
special linear coding.

s1

s2

d1

d2

u1

u2

u3

u4

u5

u6

(a) Network

a

b

a + b

ρa

0

a + b

ρ2a + b

a + ρb

ρa

ρ2b

(b) Linear Scheme over F4 achieving (1, 1)

Figure 6.5: Examples

6.4.2 Why Field Extension is Necessary

We give an example to illustrate the limitation if we do not use field extension and stick to
vector linear scheme in F2. The network is depicted in Fig. 6.5(a). Let the total number
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of channel uses be T , and source si would like to deliver Bi bits to its own destination
di, i = 1, 2. We consider achieving beyond the triangular region T, and hence assume
B1 + B2 > T . Therefore, at u2, at least B1 + B2 − T bits from each source get corrupted,
while B1−(B1+B2−T ) = T−B2 bits from s1 and B2−(B1+B2−T ) = T−B1 are clean. u5’s
reception is just a function of what u2 receives, and hence it cannot obtain more information
than what u2 possesses. In particular, u5 cannot obtain the two length-(B1 +B2−T ) chunks
of bits of user 1 and user 2 that get corrupted at u2. If u5 does not transmit this corrupted
chunk, u4 needs to supply the clean chunk for user 1 to d1 and u6 needs to supply the clean
chunk for user 2 to d2, respectively. But the reception of u4 and u6 is identical, and therefore
both of them should be able to decode these two chunks. As their reception has at most T
bits, we have 2(B1 + B2 − T ) ≤ T =⇒ 2B1 + 2B2 ≤ 3T . If u5 transmits this corrupted
chunk, still u4 needs to have the clean chunk for user 2 and u6 needs to have the clean chunk
for user 1. This is due to the property of F2. Hence we can again conclude 2B1 + 2B2 ≤ 3T .
Therefore, we see that this linear scheme over vector space of F2 cannot achieve beyond the
pentagon P.

On the other hand, if instead we use a linear scheme over finite field F4, we are able
to achieve (1, 1). Recall that from the standard construction of extension field, the field F4

comprises {0, 1, ρ, ρ2} with the following addition and multiplication and one-to-one corre-
spondence with (F2)2:

+ 0 1 ρ ρ2

0 0 1 ρ ρ2

1 1 0 ρ2 ρ
ρ ρ ρ2 0 1
ρ2 ρ2 ρ 1 0

× 0 1 ρ ρ2

0 0 0 0 0
1 0 1 ρ ρ2

ρ 0 ρ ρ2 1
ρ2 0 ρ2 1 ρ

F2 × F2 F4

(0, 0) 0
(0, 1) 1
(1, 0) ρ
(1, 1) ρ2

Therefore, we can use two time slots to translate the following scalar coding scheme over F4

(depicted in Fig. 6.5(b)) back to a nonlinear coding scheme over (F2)2: a, b ∈ F4,

s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Transmits a b ρa a+ b 0 ρ2a+ b a+ b a+ ρb

Receives a a+ b b ρ2a+ b a+ b ρ2a+ b ρa ρ2b

Note that since the network is layered, one can without loss of generality assume that there
is no processing delay within a node.

From the above example we see the benefit of working in the extension field is that, at
each node there are more choices of scaling coefficients. In vector space (F2)r, r ≥ 2, the
encoding matrix at each node has entries that are either 0 or 1, which limits the achievable
rates of such a scheme.

6.4.3 Example of Networks with Different Capacity Regions

We provide examples of networks for each of the five possible capacity regions and use
them to illustrate the important elements in our proposed scheme (including interference
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neutralization and zero forcing) as well as outer bounds.

1) Network with capacity region T

The example is depicted in Fig. 6.3(a). For achievability we know that T can be achieved
via time-sharing between rate pairs (1, 0) and (0, 1). For the outer bound, we notice that
u4 is omniscient, and the reception of the destination d1 is a function of the reception of u4.
This means u4 can decode the message of s1. The reception of each node in Ks2(u4) = {u4.u3}
is some function of the reception of node u4 and the transmission of s1. Since u4 can now
recover the transmission of s1, and since Ks2(u4) forms a (s2; d2)-vertex-cut, u4 can recover
the reception of d2, and thus, also the message of s2. Therefore, the sum rate cannot be
greater than the maximum entropy of the reception of u4, which is 1.

2) Network with capacity region T12

The example is depicted in Fig. 6.3(b) (without the dashed edge). We shall use this
example to illustrate (1/2, 1)-achievability as well as the outer bound. For achieving the rate
pair (1/2, 1), we use the following scheme:

s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Time 1 Transmits a b1 a b1 b1 a+ b1 b1 0
Time 1 Receives a b1 b1 a+ b1 b1 a+ b1 a+ b1 b1

Time 2 Transmits a b2 a 0 b2 a 0 b2 − b1
Time 2 Receives a b2 b2 a 0 a+ b2 a b2 − b1

Note that in the first time slot, all nodes transmit what they receive except for u6. This is
because the reception of u6 contains a and hence it transmits 0 instead so that d2 receives
b1. In the second time slot, u2 has to keep silent so that u4, the critical node for d1, is able
to decode a. u5 hence receives 0, and b2 needs to be provided by u6. Still, it is necessary for
u6 to transmit a linear combination that does not contain a. Therefore, it makes use of the
two linear combinations it receives over the two time slots, a + b1 and a + b2, to zero-force
interference a and sends out b2 − b1.

To see that the capacity region is T12, we shall verify that the network satisfies T(12).
Obviously T

(12)
1 , T

(12)
2 , and T

(12)
4 hold, as P s2(v∗1) = {u2}. Induced graph G12 is G with edges

(u2, u4) and (u2, u5) deleted. It can be seen that u6 becomes omniscient in G12. Therefore

T
(12)
3 also holds.

3) Network with capacity region P

The example is the one depicted in Fig. 6.3(b) with an additional (dashed) edge (s1, u2).
To see that the capacity region is P, we shall verify that both (1/2, 1) and (1, 1/2) are
achievable and the network satisfies P(12). To achieve (1/2, 1), we use a similar scheme as
above except that in the first time slot, u5 and u6 have to carry out interference neutralization
to cancel a over the air. To achieve (1, 1/2), we use the following scheme:
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s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Time 1 Transmits a1 b a1 0 b a1 0 a1 + b

Time 1 Receives a1 a1 + b b a1 0 a1 + b a1 a1 + b

Time 2 Transmits a2 b 0 a2 − a1 b a2 − a1 0 b

Time 2 Receives a2 a2 + b b a2 − a1 a2 − a1 b a2 − a1 b

Note that in the first time slot, all nodes transmit what they receive except for u2. This is
because the reception of u6 contains b and hence it transmits 0 instead so that u4, the critical
node for d1, receives a1. In the second time slot, u2 makes use of the two linear combinations
it receives over the two time slots, a1 + b and a2 + b, to zero-force interference b and sends
out a2 − a1. Meanwhile, u1 keeps silent so that u6 is able to decode b.

For the outer bound, obviously P
(12)
1 , P

(12)
2 , and P

(12)
4 hold, as P s2(v∗1) = {u2} and w12 = u2.

Induced graph G12 is G with edges (u2, u4) and (u2, u5) deleted. It can be seen that u6 becomes

omniscient in G12. Therefore P
(12)
3 also holds.

4) Network with capacity region S

The example is depicted in Fig. 6.5(a). Interference neutralization happens right at d1

and d2, which is carried out by u4, u5, u6. As explained in the previous subsection, such
interference neutralization is not possible without coding in the extension field.

6.5 Proof of Achievability

In this section, we shall establish various achievability results beyond the trivially-achievable
triangular rate region T. We assume that in the network no nodes are omniscient and describe
a coding scheme that achieves (1, 1), (1, 1/2), or (1/2, 1). We will use a linear scheme over the
finite field F2r , for some r > 0. We map the r-length binary sequences in (F2)r to symbols in
F2r such that the bitwise modulo-two addition in (F2)r translates to the addition operation
in F2r . Such a mapping is always possible by the standard construction of the extension field
F2r . Under such a mapping, we are able to abstract r usages in the original network to a
single channel use in a network with the same topology, but with inputs and outputs in the
extension field F2r . A node is said to perform Random Linear Coding (RLC) over F2r if the
coefficient(s) chosen by the node in the linear transformation is chosen uniformly at random
in F2r and independently of the coefficients chosen by all its predecessors.

We will focus on schemes achieving rate pairs (1, 1) and (1/2, 1) respectively. To achieve
(1, 1), each source aims to convey a symbol in F2r to its own destination over one symbol-
time slot. The block length used by each node would be r. To achieve (1/2, 1), s1 aims
to deliver one symbol while s2 aims to deliver two symbols to their respective destinations.
The block length here would be 2r. Note that the functions transforming an incoming r-
block of bits (respectively 2r-block) to an outgoing r-block of bits (respectively 2r) is not a
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linear transformation over the vector space (F2)r (respectively (F2)2r) and must necessarily
be understood as operations over the extension field F2r for our proofs to work.

A scalar linear coding scheme over F2r is specified by the following collection of linear
coding coefficients : {αv ∈ F2r : v ∈ V \{d1, d2}}. Define for each v ∈ V the global coefficients
βv,s1 , βv,s2 ∈ F2r as follows.

• Initialize: βs1,s1 := 1, βs1,s2 := 0, βs2,s1 := 0, βs2,s2 := 1.

• For v ∈ V \ {s1, s2}, we define

βv,s1 :=
∑

u∈P(v)

αuβu,s1 , βv,s2 :=
∑

u∈P(v)

αuβu,s2 .

If the messages of source s1 and s2 are a and b respectively, then the reception of node
v ∈ V \ {s1, s2} is given by βv,s1 · a+ βv,s2 · b.

Recall Lemma 6.5 and 6.6. These two lemmas explain why we define critical nodes.
Lemma 6.5 shows that the rank-influence from the sources to destination di drops precisely
at the critical node v∗i and hence, the nodes in P(v∗i ) are natural candidates for special
coding so as to cancel interference and arrange user i’s symbol(s) to be received at v∗i even
while other nodes may perform random linear coding. Note that this kind of special coding
is a linear operation over the finite field F2r making use of the superposition feature of the
channel. Lemma 6.6 shows that the critical nodes suffice to capture the property of existence
of an omniscient node in the network.

The reception of destination di is just a function of that of the critical node v∗i . Hence we
define the cloud Ci, for i = 1, 2, to be the set of nodes that can be reached by some node in
K(v∗i ) and that can reach di. All nodes in the cloud receive functions of the reception of the
critical node. Our scheme will ensure that v∗i can decode what di aims to decode, i = 1, 2.

Below we provide several useful lemmas. Proofs of these lemmas can be found in Chap-
ter 7.1.

Lemma 6.13. If u is si-reachable, and all its predecessors do RLC with one symbol from each
source, then si’s symbol has a non-zero coefficient in the reception of u with high probability.

Lemma 6.14. Consider U ⊆ Lk with C(s1, s2;U) = 2. Suppose each source transmits one
symbol and all nodes in the network up to and including layer Lk−1 perform RLC.

(a) Then the nodes in U can collectively decode both of the transmitted symbols with high
probability.

(b) If a node v has U ⊆ P(v), then with all nodes except nodes in U performing arbitray
linear coding, nodes in U can arrange their transmission so that v receives any desired linear
combination of the source symbols with high probability.



CHAPTER 6. TWO UNICAST LINEAR DETERMINISTIC NETWORK 140

(c) Let u ∈ U ⊆ P(v). If nodes in P(v) \ U stay silent and nodes in U \ {u} do RLC,
then u is able to arrange its transmission so that v receives any linear combination linearly
independent of the reception of u with high probability.

(d) As a corollary of (c), if the node u is s1s2-reachable, then u can adjust its transmission
so that v can decode either s1 or s2’s symbol with high probability.

Lemma 6.15. If U ⊆ Lk satisfies C(s1.s2;U) = 2, then for any u ∈ U , we can find some
w ∈ U such that C(s1.s2; u,w) = 2.

Next, we shall prove achievability in different cases. Formal proofs of lemmas and claims
are left in Chapter 7.1. Without loss of generality, we assume that k∗1 ≤ k∗2. If k∗1 = 0,
based on Lemma 6.3 we know that if there is no omniscient node, then (1, 1) is achievable.
If k∗1 = 1, then by the definition of critical node v∗1, both s1 and s2 are v∗1’s parents and hence
it is omniscient. Therefore we focus on 2 ≤ k∗1 ≤ k∗2 below. We shall distinguish into two
cases: k∗1 = k∗2 and k∗1 < k∗2.

6.5.1 k∗1 = k∗2 = k∗

Special Patterns Implied by the Conditions

When the critical nodes are in the same layer, it turns out that if the network G satisfies
the conditions given in Theorem 6.10 or Theorem 6.11, it has a special pattern. The fact
is summarized in the following lemma. Let P1 := P (v∗1) \ P (v∗2), P2 := P (v∗2) \ P (v∗1),
P12 := P (v∗1) ∩ P (v∗2).

Lemma 6.16. When k∗1 = k∗2 = k∗ and there is no omniscient node, we have the following
equivalence relations.

T(12) ⇐⇒


P1 is s1-only-reachable
C (s1, s2;P2) = 1, u21 := Pmc (P2) 6= si, i = 1, 2
P12 is s2-only-reachable
Ks1 (u21) forms (s1; d1) -vertex-cut.

P(12) \ T(21) ⇐⇒


P1 is s1-only-reachable
C (s1, s2;P2) = 1, u21 := Pmc (P2) 6= si, i = 1, 2
C (s1, s2;P12) = 1,w12 := Pmc (P12) 6= si, i = 1, 2
Ks2 (w12) forms (s2; d2) -vertex-cut.
Ks1
G12 (u21) forms (s1; d1) -vertex-cut in G12.

and the equivalence relation for T(21) (P(21) \ T(12)) is the one for T(12) (P(12) \ T(21)) with
indices “1” and “2” exchanged.

Proof. Proof is detailed in Chapter 7.

One direct consequence of the above lemma is that, T(12) ∩ T(21) = P(12) ∩ P(21) = ∅.
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Proof of Achievability

In this case, it is sufficient to show that v∗1, v
∗
2 can decode the symbols desired by destinations

d1, d2 respectively. This is because the network past layer Lk∗ has no interference to di from
any node in K(v∗j ) for (i, j) = (1, 2) or (2, 1).

By definition, we can see that K(v∗1) ∪ K(v∗2) = Lk∗ . For suppose, there exists node
u ∈ Lk∗\(K(v∗1) ∪ K(v∗2)) . As each node can reach at least one of the destinations, u can reach
either d1 or d2 thus violating the definition of a critical node. Now, suppose K(v∗1)∩K(v∗2) 6= ∅,
then K(v∗1) = K(v∗2) and so, both v∗1 and v∗2 are omniscient, violating the assumption. Hence
K(v∗1) and K(v∗2) form a partition of Lk∗ .

Since neither v∗1 nor v∗2 is omniscient, P s1(v∗1) 6= P s1(v∗2) and P s2(v∗2) 6= P s2(v∗1). It can be
stated equivalently as

P s1(v∗1) \ P s1(v∗2) 6= ∅ or P s1(v∗1) ( P s1(v∗2) and

P s2(v∗2) \ P s2(v∗1) 6= ∅ or P s2(v∗2) ( P s2(v∗1)

For notational convenience, let us define P s1
1 := P s1 (v∗1) \ P s1 (v∗2) and P s2

2 := P s2 (v∗2) \
P s2 (v∗1).

Below we first show that (1, 1) is achievable when the network G does not fall into any
of the above four patterns described in Lemma 6.16. Next we show that in the patterns
corresponding to P(12) \ T(21) and P(21) \ T(12), both (1, 1/2) and (1/2, 1) can be achieved.
Finally we show that in the pattern corresponding to T(12), (1/2, 1) can be achieved, and in
the pattern corresponding to T(21), (1, 1/2) can be achieved.

As a first step, we show the following claim.

Claim 6.17. (1, 1) is achievable if P s1
1 = ∅ or P s2

2 = ∅ or P12 = ∅, under the assumption
that there is no omniscient node.

Proof. See Chapter 7.

In the following we focus on the case where P s1
1 6= ∅, P s2

2 6= ∅, and P12 6= ∅. We then
show the following claim.

Claim 6.18. Consider the conditions

A1 ∀ u1 ∈ P s1
1 , u1 is s1-only-reachable.

A2 ∀ u2 ∈ P s2
2 , u2 is s1s2-reachable.

B1 ∀ u1 ∈ P s1
1 , u1 is s1s2-reachable.

B2 ∀ u2 ∈ P s2
2 , u2 is s2-only-reachable.

Let A = A1 ∧ A2 and B = B1 ∧ B2. Then the negation of A ∨ B implies that (1, 1) is
achievable.
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Remark: Note that A ∨ B is implied by the disjunction of T(12), T(21), P(12), and P(21).
Therefore this claim proves (1, 1)-achievability for some cases.

Proof. See Chapter 7.

So far we have demonstrated (1, 1)-achievability when condition A ∨ B is not satisfied.
Since A and B are disjoint, we can separate into two different cases. Besides, discussion on
one case will lead to similar arguments for the other case by symmetry.

Case A: ∀ u1 ∈ P s1
1 , u1 is s1-only-reachable, and ∀ u2 ∈ P s2

2 , u2 is s1s2-reachable.
For this case, if P1 \P s1

1 6= ∅, that is, there exists a node in P1 and it is s2-only-reachable,
then C (s1, s2;P1) = 2. We can achieve (1, 1), by first arranging the transmission of P(v∗2) so
that v∗2 can decode b and then arranging the transmission of P1 to form any linear combination
of a and b; in particular, the one that combined with the transmission from P12 forms a at
v∗1. If P2 \ P s2

2 6= ∅, that is, there exists a node in P2 and it is s1-only-reachable, then
C (s1, s2;P2) = 2. (1, 1) is then achievable by a similar argument as above.

We now narrow down to the case ∀ u1 ∈ P1, u1 is s1-only-reachable, and ∀ u2 ∈ P2, u2

is s1s2-reachable. If C (s1, s2;P2) = 2, obviously (1, 1) is achievable, as v∗1 can always get
a from P1 (whose transmission does not affect v∗2) and one can arrange P2’s transmission
(which does not affect v∗1) to ensure v∗2 decode b. If C (s1, s2;P12) = 2, we can achieve (1, 1)
by arranging the transmission of P12 so that their aggregate is a. Hence v∗1 can decode a.
Then nodes in P2 just scale their received linear combinations so that a gets neutralized at
v∗2 and only b is left. If C (s1, s2;P12) = 1, we identify w12 = Pmc (P12). If Ks2(w12) does not
form a (s2; d2)-vertex-cut, we can arrange its parents’ transmission so that w12 can decode
a, and at the same time P2 can receive a linear combination with a non-zero b-coefficient.
Hence nodes in P12 can send out a scaled version of a to neutralize a at v∗2 if necessary, and
v∗1 can always obtain a from P1.

So far we have shown that in Case A, if one of the following is violated, then (1, 1) is
achievable:

• P1 is s1-only-reachable

• P2 is s1s2-reachable, and C (s1, s2;P2) = 1

• C (s1, s2;P12) = 1, Ks2(w12) forms a (s2; d2)-vertex-cut

To complete the proof of (1, 1)-achievability, we need to show that if u21 := Pmc (P2) is
not ommiscient in G12, then (1, 1) can be achieved. We can simply arrange the transmission
of P12 so that their aggregate become 0 at v∗1. Effectively we are in G12 with this special
linear coding operation. Since in G12, d1 is s1-only-reachable and u21 is the new critical node
of d2, by Lemma 6.3 we know that (1, 1) can be achieved in G12. We then translate the linear
coding scheme in G12 back to a linear coding scheme in G.
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The next thing to show for Case A: if a network is in P(12) \ T(21), then (1, 1/2) can
be achieved. To show it, we employ a two-time-slot coding scheme. We aim to deliver
two symbols a1 and a2 for user 1 and one symbol b for user 2 over two symbol time slots.
Symbols are drawn from the extension field F2r . In the first time slot, we do RLC with s1

transmitting a1 and s2 transmitting b, up to layer Lk∗−1. Pick one node w ∈ P12 and one
node u ∈ P2. Keep other nodes in P12 and P2 silent, while nodes in P1 do RLC. We turn
off the transmission of w. v∗1 can then decode a1. In the second time slot again we do RLC
with s1 transmitting a2 and s2 transmitting b, up to layer Lk∗−1. We use the two linear
combinations w receives over the two time slots to zero-force (ZF) b and produce a linear
combination of a1 and a2: (the superscripts of β’s denote the time indices)

β(1)
w,s1
· a1 + β(1)

w,s2
· b; β(2)

w,s1
· a2 + β(2)

w,s2
· b

ZF
=⇒ β(2)

w,s1
· a2 +

β
(1)
w,s1

β
(1)
w,s2

· β(2)
w,s2
· a1. (6.1)

w then scales this ZF output and sends it out. Hence v∗1 can use a1 as side information to
decode a2.

As for user 2, in the first time slot v∗2 receives a linear equation from u: β
(1)
u,s1 ·a1 +β

(1)
u,s2 · b.

In the second time slot u receives β
(2)
u,s1 · a2 + β

(2)
u,s2 · b. u makes use of of the two linear

combinations to zero-force b and generate a linear combination of a1 and a2:

β(1)
u,s1
· a1 + β(1)

u,s2
· b; β(2)

u,s1
· a2 + β(2)

u,s2
· b

ZF
=⇒ β(2)

u,s1
· a2 +

β
(1)
u,s1

β
(1)
u,s2

· β(2)
u,s2
· a1. (6.2)

As long as the two linear combinations in (6.1) and (6.2) are not aligned, u can scale (6.2)
properly to form a1 at v∗2 in the second time slot. Then with reception of the first time slot,
v∗2 can decode b.

The two linear combinations in (6.1) and (6.2) are aligned if and only if the determinant∣∣∣∣∣∣∣
β

(2)
w,s1

β
(1)
w,s1

β
(1)
w,s2

· β(2)
w,s2

β
(2)
u,s1

β
(1)
u,s1

β
(1)
u,s2

· β(2)
u,s2

∣∣∣∣∣∣∣ = 0 ⇐⇒

β(1)
u,s1
β(1)

w,s2
β(2)

w,s1
β(2)

u,s2
= β(1)

u,s2
β(1)

w,s1
β(2)

w,s2
β(2)

u,s1
,

which is of very low probability due to the same reason in Chapter 7.2.
Therefore, we show that in Case A, if T(12)∨P(12) is violated, then (1, 1) can be achieved;

if T(12) is violated, then (1, 1/2) can be achieved. It remains to show that if there is no
omniscient node, then in Case A, (1/2, 1) is always achievable.

We aim to deliver one symbol a for user 1 and two symbols b1, b2 for user 2 over two time
slots. Pick nodes u1 ∈ P1, u2 ∈ P2,w2 ∈ P12. Both u2 and w2 zero-force user 1’s symbol a
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and form a linear combination of b1, b2. These two linear equations are linearly independent
with high probability, as shown in Chapter 7.2. w2 transmits in the first time slot, while u1

and u2 transmit in the second time slot. Therefore v∗1 can obtain a, v∗2 can solve b1 and b2,
and (1/2, 1) is achievable.

Case B: ∀ u2 ∈ P s2
2 , u2 is s2-only-reachable, and ∀ u1 ∈ P s1

1 , u1 is s1s2-reachable.
Similar to Case A, we show that in Case B, if T(21) ∨P(21) is violated, then (1, 1) can be

achieved; if T(21) is violated, then (1/2, 1) can be achieved. Besides, if there is no omniscient
node, then in Case B, (1, 1/2) is always achievable.

6.5.2 k∗1 < k∗2

Since v∗1 is not omniscient, Ks2(v∗1) does not form a (s2; d2)-vertex-cut, which is equivalent to

∃ u2 ∈ Lk∗1 \ K(v∗1) so that P s2(u2) 6= ∅,P s2(u2) 6= P s2(v∗1).

The following lemma makes sure that u2 can still receive a linear combination where user
2’s symbol has a non-zero coefficient with high probability even if P s2(v∗1) do some special
linear coding.

Lemma 6.19. Consider all nodes doing RLC for each source sending one symbol up to Lk∗1−1

including Lk∗1−1, except P s2(v∗1). If P s2(u2) 6= P s2(v∗1), then it is possible with high probability
that P s2(v∗1) can arrange their transmission so that v∗1 receives a linear combination solely of
user 1’s symbol and u2 receives a linear combination of at least user 2’s symbol, that is, the
coefficient of user 2’s symbol is non-zero.

(1, 1)-Achievability

For the (1, 1)-achievability we need to prove the following claim

Claim 6.20. ¬Q(12) =⇒ (1, 1) is achievable.

Proof. Since Q
(12)
1 is satisfied, in a network that does not satisfy Q(12), at least one of the

following holds:

• C (s1, s2;P s2(v∗1)) = 2

• C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) does not form an (s1; d1)-vertex-cut in G12

• C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) forms an (s1; d1)-vertex-cut in G12 and Ks2(w12)

does not form a (s2; d2)-vertex-cut in G
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Case 1: C (s1, s2;P s2(v∗1)) = 2
In this case, the idea is to arrange the transmission of P s2(v∗1) so that their aggregate

contains user 1’s symbol a only. Mathematically, we aim to have∑
w∈Ps2 (v∗1)

αwβw,s1 6= 0,
∑

w∈Ps2 (v∗1)

αwβw,s2 = 0, (6.3)

This is doable since C (s1, s2;P s2(v∗1)) = 2. Other nodes in the same layer simply do RLC.
Therefore v∗1 is able to decode a. Nodes in C1 do RLC and d1 can decode a.

As for user 2, we look at v∗2. If v∗2 has no parents in the cloud C1, we only need to guarantee
that the parents of v∗2 can collectively decode b. If v∗2 has some parent(s) in the cloud C1, the
parent(s) will inject user 1’s symbol a to the reception of v∗1. As v∗2 is not omniscient, there
must exist u1 ∈ Lk∗2 ∩ C1 such that P(u1) 6= P s1(v∗2). If P(u1) ( P s1(v∗2), we can arrange the
nodes in P(u1) to make sure that u1 can decode user 1’s symbol, and then arrange the nodes
in P s1(v∗2)\P(u1) to neutralize user 1’s symbol at v∗2, given that these s1-reachable nodes can
still receive a linear combination with non-zero a-coefficient under the special coding carried
out by P s2(v∗1). Then since some node in P(v∗2) will receive a linear combination with non-
zero b-coefficient (eg., a successor of u2 in Lemma 6.19), one can always ensure v∗2 to decode
b. If P(u1) \ P s1(v∗2) 6= ∅, we can arrange the nodes in P(v∗2) to form a linear combination
that only contains b at v∗2 given that the reception of P(v∗2) can collectively decode b. Then
use nodes in P(u1) \ P s1(v∗2) to place user 1’s symbol at u1 if necessary.

In summary, we want to guarantee that under the special linear coding carried out by
P s2(v∗1) so that the neutralization criterion (6.3) is met, P(v∗2) can still collectively decode
b and every node in P s1(v∗2) receives a linear combination with non-zero a-coefficient. The
latter is quite obvious, as nodes affected by the special linear coding still receive linear
combinations with non-zero a-coefficients. As for the former, note that if every node up to
layer k∗2 − 2 does RLC, it holds with high probability since C (s1, s2;P(v∗2)) = 2. With the
special linear coding carried out by P s2(v∗1) described above, however, we cannot claim it
with the existing random linear network coding argument.

We shall use the following two lemmas to overcome the difficulty, by breaking the network
into two stages: one from the source layer to the layer Lk∗1 , and the other from layer Lk∗1
to layer Lk∗2−1. The first lemma claims that, under the special operation at P s2(v∗1) so that
neutralization criterion (6.3) is satisfied, with high probability all nodes in layer Lk∗1 that
can reach d2 (call this set U) receive a non-zero linear combination of a and b, and the
subspace spanned by their reception has dimension two when all other nodes perform RLC.
The second lemma claims that, once U ’s reception satisfies the above property, then P(v∗2)
can collectively decode both a and b with high probability, when all nodes between Lk∗1 and
Lk∗2−1 perform RLC. The lemmas are made concrete below.

Lemma 6.21 (Reception of U). Let us recall that U :=
{
u ∈ Lk∗1 : u can reach d1

}
. Consider

RLC with s1 transmitting a and s2 transmitting b. All nodes perform RLC up to layer Lk∗1−1.
In Lk∗1−1, nodes except P s2(v∗1) also perform RLC. Then under special coding operation of
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P s2(v∗1) such that neutralization criterion (6.3) is satisfied, with high probability all nodes
in U receive a non-zero linear combination of a and b, and the subspace spanned by their
reception has dimension two. Further, if node u ∈ U is s1-reachable, then its reception has a
non-zero coefficient of s1’s symbol a with high probability.

Lemma 6.22 (Rank Conservation). Suppose U and V are the first and the last layers of
a linear deterministic network and each node u ∈ U possesses a linear combination of the
symbols a, b given by λu · a+ µu · b. Suppose

• each node in U can reach some node in V ,

• C (U ;V) ≥ 2,

• for each u ∈ U , we have λu, µu not both 0,

• the |U| × 2 matrix with rows given by
[
λu µu

]
for each u ∈ U has full rank (i.e. rank

2).

If all nodes in the network perform RLC, then nodes in V can collectively decode both the
symbols a and b with high probability.

Case 2: C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) does not form an (s1; d1)-vertex-cut in G12

In this case, since C (s1, s2;P s2(v∗1)) = 1, effectively they receive only one linear equation
of a and b. Since P s2(v∗1) can be reached by s2, the coefficient of b in this linear equation is
non-zero in general. Hence we need to arrange their transmission so that

∑
w∈Ps2 (v∗1) Xw = 0,

that is, ∑
w∈Ps2 (v∗1)

αwβw,s1 =
∑

w∈Ps2 (v∗1)

αwβw,s2 = 0, (6.4)

Since C (s1, s2;P(v∗1)) = 2, v∗1 must have some s1-only-reachable parents. Therefore v∗1 can
decode a.

With such special operation in P s2(v∗1), effectively we are in the induced graph G12. In
other words, any linear coding scheme in the induced graph G12 can be translated to a
linear coding scheme in G satisfying the neutralization criterion (6.4), in the sense that the
reception of di remains the same in both schemes, for i = 1, 2. In G12, note that d1 can only
be reached by s1 but not s2. Hence by Lemma 6.3, as long as the critical node for destination
d2 in G12, u21, is not omniscient, (1, 1) is achievable. u21 is not omniscient in G12 by the
assumption of this case.

Case 3: C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) forms an (s1; d1)-vertex-cut in G12 and Ks2(w12)

does not form an (s2; d2)-vertex-cut in G
In this case the idea is to enable w12 to decode user 1’s symbol a while keeping user 2’s

flow to v∗2, making use of the fact that Ks2(w12) does not form a (s2; d2)-vertex-cut in G.
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Effectively we impose the neutralization criterion on w12 instead of v∗1, and carry out the
special coding operation at P s2(w12) instead of P s2(v∗1).

As for user 1, obviously w12 6= s2, and hence it can be reached by s1 due to the definition
of critical nodes. Since C (s1, s2;P(w12)) = 2, we can enable w12 to decode a by satisfying
the following neutralization condition:∑

w∈P(w12)

αwβw,s1 = βP(w12),s1 ,
∑

w∈P(w12)

αwβw,s2 = 0. (6.5)

Once w12 decodes a, it simply sends out a scaled copy of a. With all other nodes performing
RLC up to layer Lk∗1−1 (including P s2(v∗1)), critical node v∗1 can decode a.

As for user 2, note that depending on the value of C (s1, s2;P s2(w12)) being 2 or 1, βP(w12),s1

is either non-zero or zero. If C (s1, s2;P s2(w12)) = 2, we use the two lemmas, Lemma 6.21
and 6.22, in the first case to show that the parents of v∗2 can recover both user’s symbols
with high probability under the special operation at P s2(w12). If C (s1, s2;P s2(w12)) = 1, we
construct another induced graph G ′12 to capture the constraints that such special coding lays
on the reception of other nodes in the same layer as w12, which is similar to G12 in the second
case. In G ′12, the critical node for user 2 may no longer be v∗2, as the min-cut value from the
sources {s1, s2} to the parents of v∗1 may drop to 1. Note that as in G12, destination d1 is now
s1-only-reachable in G ′12. Hence we only need the new critical node for destination d2 is not
omniscient in G ′12.

The following lemma guarantees it in this case.

Lemma 6.23. In this case (Case 3) when C (s1, s2;P s2(w12)) = 1, for all possible G ′12, the
s1-clones of PmcG′12 (d2) do not form a (s1; d1)-vertex-cut.

Combining the above three cases, we complete the proof for the claim and the (1, 1)-
achievability.

(1, 1/2)-Achievability

For the (1, 1/2)-achievability we need to prove the following claim

Claim 6.24. P(12) =⇒ (1, 1/2) is achievable.

Proof. Consider two cases, distinguishing whether v∗2 has parents from the cloud or not.

1) P(v∗2)∩C1 6= ∅: Under the condition that P(v∗2)∩C1 6= ∅, we know that in G12 the critical
node for d2 is still v∗2, as CG12 (s1, s2;PG12(v∗2)) = 2. This is because nodes in the cloud C1

become s1-only-reachable in G12 while some nodes in PG12(v∗2) are s2-reachable in G12. P(12)

implies that the s1-clones of v∗2 in G12 becomes a (s1; d1)-vertex-cut. Therefore, some nodes
in P(v∗2) must be dropped in generating G12 (as they cannot be reached by either one of the
sources), and PG12(v∗2) 6= P(v∗2).
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We aim to deliver two symbols a1, a2 for user 1 and one symbol b for user 2 over two
symbol time slots. Symbols are drawn from the extension field F2r . In the first time slot we
do RLC with s1 transmitting a1 and s2 transmitting b, up to layer Lk∗1−1. Then we arrange
the transmission of P s2(v∗1) so that their aggregate becomes zero, as in Case 2. v∗1 can
hence decode a1, and transmit a scaled version of it. The rest of the nodes keep performing
RLC. It is as if the communication is over the induced graph G12, and effectively nodes in
P(v∗2) \ PG12(v∗2) will receive nothing. As the s1-clones of v∗2 form a (s1; d1)-vertex-cut in G12,
v∗2 will receive a linear equation of a1 and b, and both symbols have non-zero coefficients.
Therefore, d1 can decode a1 in the first time slot.

In the second time slot, we do RLC with s1 transmitting a2 and s2 transmitting b, up to
the layer right before w12. For those nodes in K(w12) that can reach P s2(v∗1), instead of scaling
their reception and transmitting it, they replace their reception by a linear combination of
a1 and a2. This linear combination is obtained by zero-forcing b using the reception of the
first and the second time slot:

β(1)
w12,s1

· a1 + β(1)
w12,s2

· b; β(2)
w12,s1

· a2 + β(2)
w12,s2

· b

ZF
=⇒ β(2)

w12,s1
· a2 +

β
(1)
w12,s1

β
(1)
w12,s2

· β(2)
w12,s2

· a1.

The rest of the nodes perform RLC up to layer Lk∗1 . Since v∗1 already obtains a1 in the first
time slot and it receives a linear combination of a1, a2 with non-zero a2-coefficient in the
second time slot, it can decode a2. Onwards it transmits a scaled copy of a2, while other
nodes perform RLC. The nodes in P(v∗2) \ PG12(v∗2), unlike in the first time slot, will receive
a linear combination of a1, a2, which is a scaled version of that transmitted by w12. Hence,
we can arrnage the transmission of P(v∗2) \PG12(v∗2) and P(v∗2)∩C1 so that v∗2 can decode a1.
Therefore, using the reception from the first time slot, v∗2 can decode b.

2) P(v∗2) ∩ C1 = ∅: We aim to deliver two symbols a1 and a2 for user 1 and one symbol b
for user 2 over two symbol time slots. Again the symbols are drawn from the extension field
F2r . In the first time slot, we do RLC with s1 transmitting a1 and s2 transmitting b, up to
layer Lk∗1−1. Then we arrange the transmission of P s2(v∗1) so that their aggregate becomes
zero, as in Case 2. It is as if the communication is over the induced graph G12. Since u21 is
the critical node for the parents of v∗2 in G12, in the first time slot the they effectively receive
only one equation

β(1)
u21,s1

· a1 + β(1)
u21,s2

· b,

where β
(1)
u21,s1 is non-zero with high probability since Ks1

G12 (u21) forms a (s1; d1)-vertex-cut in

G12 and hence u21 must be reachable by s1. β
(1)
u21,s2 is non-zero with high probability since v∗1

is not omniscient and hence s2 must be able to reach v∗2 in G12.
In the second time slot, we do RLC with s1 transmitting a2 and s2 transmitting b, up to

the layer right before w12. For those nodes in K(w12) that can reach P s2(v∗1), instead of scaling
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their reception and transmitting it, they replace their reception by a linear combination of
a1 and a2. This linear combination is obtained by zero-forcing b using the reception of the
first and the second time slot:

β(1)
w12,s1

· a1 + β(1)
w12,s2

· b; β(2)
w12,s1

· a2 + β(2)
w12,s2

· b

ZF
=⇒ β(2)

w12,s1
· a2 +

β
(1)
w12,s1

β
(1)
w12,s2

· β(2)
w12,s2

· a1.

The rest of the nodes remain doing RLC, up to the layer right before v∗2. In the second
time slot, v∗2’s parents receive at least two linear equations in {a1, a2, b}. Pick two nodes
u,w ∈ P(v∗2) such that C (s1, s2; u,w) = 2. Let their reception be

βu,a1 · a1 + βu,a2 · a2 + βu,b · b,
βw,a1 · a1 + βw,a2 · a2 + βw,b · b,

respectively. We shall show that the following determinant∣∣∣∣∣∣
β

(1)
u21,s1 0 β

(1)
u21,s2

βu,a1 βu,a2 βu,b

βw,a1 βw,a2 βw,b

∣∣∣∣∣∣ (6.6)

= β(1)
u21,s2

∣∣∣∣βu,a1 βu,a2

βw,a1 βw,a2

∣∣∣∣+ β(1)
u21,s1

∣∣∣∣βu,a2 βu,b

βw,a2 βw,b

∣∣∣∣
is non-zero with high probability.

Note that in the second time slot, we choose the scaling coefficients α’s for all nodes up
to the layer right before v∗2 in the same way as RLC. The only difference from RLC is that
at the nodes in K(w12) that can reach P s2(v∗1), the term scaled and transmitted is replaced

by the zero-forced output β
(2)
w12,s1 · a2 +

β
(1)
w12,s1

β
(1)
w12,s2

· β(2)
w12,s2 · a1. Suppose we do RLC, then u and w

will receive

β(2)
u,s1
· a2 + β(2)

u,s2
· b, and β(2)

w,s1
· a2 + β(2)

w,s2
· b

respectively, where D(2) :=

∣∣∣∣∣β(2)
u,s1 β

(2)
u,s2

β
(2)
w,s1 β

(2)
w,s2

∣∣∣∣∣ 6= 0 with high probability since C (s1, s2; u,w) = 2.

As pointed out above, from the connection of the scheme to RLC, we see∣∣∣∣βu,a1 βu,a2

βw,a1 βw,a2

∣∣∣∣ =
β

(1)
w12,s1

β
(1)
w12,s2

·D(2)
Z ,

∣∣∣∣βu,a2 βu,b

βw,a2 βw,b

∣∣∣∣ = D
(2)
R ,

where

D
(2)
Z :=

∣∣∣∣∣∣
β

(2)
u,s1

[
β

(2)
u,s2

]
Z

β
(2)
w,s1

[
β

(2)
w,s2

]
Z

∣∣∣∣∣∣ ,
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and

D
(2)
R :=

∣∣∣∣∣∣
β

(2)
u,s1

[
β

(2)
u,s2

]
R

β
(2)
w,s1

[
β

(2)
w,s2

]
R

∣∣∣∣∣∣ .
Here

[
β

(2)
u,s2

]
R

denotes the coefficient of b that u receives under a virtual RLC with the same

coding operation as regular RLC except that nodes in K(w12) that can reach P s2(v∗1) (call
this set Z) are transmitting scaled copies of a (with the same scaling coefficient as in regular

RLC) instead of a linear combination of a, b.
[
β

(2)
u,s2

]
Z

denotes the coefficient of b that u

receives under a virtual RLC with the same coding operation as regular RLC except that
the s2-reachable predecessors of u in the same layer as w12 other than Z are transmitting
scaled copies of the a-components in their reception (with the same scaling coefficient).

Note that if there is no s2-reachable predecessor of u in Z, then
[
β

(2)
u,s2

]
Z

= 0. We have

D
(2)
Z +D

(2)
R = D(2). The determinant in (6.6) equals to zero if and only if

β(1)
u21,s2

β(1)
w12,s1

D
(2)
Z + β(1)

u21,s1
β(1)

w12,s2
D

(2)
R = 0.

Suppose

∣∣∣∣∣β(1)
w12,s1 β

(1)
w12,s2

β
(1)
u21,s1 β

(1)
u21,s2

∣∣∣∣∣ is a zero polynomial, then we are done since D(2) 6= 0 with high

probability.
Note that D

(2)
Z and D

(2)
R cannot simultaneously be zero with high probability, as their

sum is non-zero with high probability. First assume that D
(2)
Z 6= 0. The determinant in (6.6)

equals to zero if and only if

D
(2)
R

D
(2)
Z

=
β

(1)
u21,s2β

(1)
w12,s1

β
(1)
u21,s1β

(1)
w12,s2

.

RHS and LHS are independent. We only need to consider the case

∣∣∣∣∣β(1)
w12,s1 β

(1)
w12,s2

β
(1)
u21,s1 β

(1)
u21,s2

∣∣∣∣∣ is not

a zero polynomial. The probability distribution of RHS is going to spread out over the
spectrum (see Lemma 7.1 in Chapter 7.2). Hence the above equality happens with vanishing
probability.

Similar conclusion can be drawn in the case D
(2)
R 6= 0.

(1/2, 1)-Achievability

For the (1/2, 1)-achievability, we argue that if there is no omniscient node, then (1/2, 1)
is achievable. We shall use nodes reachable from u2 in P(v∗2) to provide user 2’s symbols.
Define the collection of these nodes by Sk∗2−1(u2). Consider the following two cases.
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1) P(v∗2) ∩ C1 6= ∅: If Q(12) is violated, (1, 1) can be achieved and so can (1/2, 1). Hence
we focus on the case in which Q(12) is satisfied. Under the condition that P(v∗2) ∩ C1 6= ∅,
from the analysis of the previous case we know that some nodes in P(v∗2) must be dropped
in generating G12, and PG12(v∗2) 6= P(v∗2).

We aim to deliver one symbol a for user 1 and two symbols b1, b2 for user 2 over two time
slots. In the first time slot, all nodes up to layer k∗2 − 1 perform RLC with s1 transmitting a
scaled copy of a, and s2 transmitting a scaled copy of b1, except that nodes in P s2(v∗1) perform
special linear coding to make sure their aggregate transmission is zero. Hence effectively we
are in G12, and the nodes in P s1

G12(v
∗
2), which form a (s1; d1)-vertex-cut in G12 and therefore

lie in the cloud C1, can decode a. Since CG12 (s1, s2;PG12(v∗2)) = 2, we can arrange the
transmission of PG12(v∗2) so that v∗2 can decode b1 and so can d2. But d1 will receive nothing,
as Ks1

G12(v
∗
2) is a (s1; d1)-vertex-cut in G12. In the second time slot, all nodes up to layer k∗2−1

perform RLC with s1 transmitting a scaled copy of a, and s2 transmitting a scaled copy of
b2. This time the nodes in P(v∗2) \ PG12(v∗2) will receive a non-triavial linear combination of
a and b2 with a non-zero a-coefficient. Then we let nodes in PG12(v∗2) transmit a scaled copy
of a by choosing their scaling coefficients uniformly and independently, while using nodes in
P(v∗2) \ PG12(v∗2) to neutralize the symbol a in the reception of v∗2 and obtain a clean copy of
b2. Hence d1 can decode a, and d2 can decode b2 in the second time slot.

2) P(v∗2) ∩ C1 = ∅: We aim to prove that (1/2, 1) is achievable in this case. User 1 has one
symbol a and user 2 has two symbols b1, b2 to be delivered over two time slots.

In the first time slot, all nodes up to layer k∗2−1 perform RLC with s1 transmitting a scaled
copy of a, and s2 transmitting a scaled copy of b1. Note that because C (s1, s2;P(v∗2)) = 2, we
have that P(v∗2) can collectively decode both a and b1 due to Lemma 6.14(a). In the second
time slot, all nodes up to layer k∗1−2 perform RLC with s1 sending a and s2 sending b2. Due
to Lemma 6.14(a), we can arrange the transmission of P(v∗1) so that v∗1 receives only a in the
second time slot, since C (s1, s2;P(v∗1)) = 2. As ∅ ( P s2(u2) 6= P s2(v∗1), u2 receives a linear
combination with a non-zero coefficient of user 2’s symbol due to Lemma 6.19. Further, all
nodes perform RLC up to layer k∗2−1. As u2 has a path to P(v∗2), some node in P(v∗2) receives
a linear combination of the three symbols with a non-zero coefficient for b2. Thus, P(v∗2) can
collectively decode all three symbols a, b1, b2. Since this decoding is a linear operation, these
nodes can arrange their transmissions so as to form b1 and b2 at v∗2’s reception in first and
second time slots respectively. All nodes in layer k∗2 onwards perform RLC with no mixing
across time slots. Thus, d2 can recover both b1 and b2. As nodes in Lk∗2−1 ∩ C1 perform RLC
with no mixing across time slots, destination d1 can recover both the symbols a and b1.
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6.6 Proof of Outer Bounds

6.6.1 Outer Bound on R1 +R2: the Omniscient Bound

We show that if a node v is omniscient, then it can decode both user’s messages and hence,
the achievable sum rate is upper bounded by 1. This explains the motivation for the name.
Let v be omniscient and satisfy condition (A) in the definition of omniscient nodes: K(v) is
a (s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-vertex-cut. Since K(v) is a (s1, s2; d1)-vertex-
cut, the reception of the destination d1 is a function of the reception of v. This means v
can decode the message of s1. The reception of each node in Ks2(v) is some function of the
reception of node v and the transmission of s1. Since v can now recover the transmission of
s1, and since Ks2(v) forms a (s2; d2)-vertex-cut, v can recover the reception of d2, and thus,
also the message of s2. We leave the formal proof of this outer bound in Chapter 7.

6.6.2 Outer Bounds on 2R1 +R2 and R1 + 2R2

We want to show that if the condition T(12) is satisfied, then 2R1 +R2 ≤ 2 for any achievable
(R1, R2). We first show the following claim.

Claim 6.25. If there exists random variables {Z1, Z21, Z22} in the network satisfying

1) H (Z1) ≤ 1, H (Z21) ≤ 1, H (Z22) ≤ 1.

2) XN
s1
↔ ZN

1 ↔ Y N
d1

and XN
s2
↔ (ZN

21, Z
N
22)↔ Y N

d2

3) XN
s1
↔ (ZN

21, X
N
s2

)↔ Y N
d1

4) H
(
ZN

1 |XN
s1

)
≥ H

(
ZN

22

)
5) ZN

22 is a function of XN
s2

then 2R1 +R2 ≤ 2 for any achievable (R1, R2).

Proof is detailed in Chapter 7.
We shall use the above claim to complete the proof of the outer bound 2R1 + R2 ≤ 2.

We set Z1 := Yv∗1
, Z21 := Yu21 , Z22 :=

∑
w∈Ps2(v∗1)

Xw.

• Hence by the definition of the channels, condition 1) of the claim is satisfied.

• By the definition of v∗1, we see that the first Markov chain in condition 2) is satisfied.

By condition T
(12)
3 and the definition of the induced graph G12 we see that the second

Markov chain is also satisfied. Hence, condition 2) is satisfied.

• By conditions T
(12)
3 and T

(12)
4 , we see that the Markov chain in condition 3) is satisfied.
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• Condition 4) is satisfied with equality due to the definition of Z22 and condition T
(12)
4 .

• Condition 5) is satisfied due to the definition of Z22 and conditions T
(12)
2 and T

(12)
4 .

Similarly, if the condition T(21) is satisfied, then R1 + 2R2 ≤ 2 by symmetry.

6.6.3 Outer Bound on 2R1 + 2R2

We want to show that if the condition P(12) is satisfied, then 2R1+2R2 ≤ 3 for any achievable
(R1, R2). We first show the following claim.

Claim 6.26. If there exists random variables {Z11, Z12, Z21, Z22} in the network satisfying

1) H(Z11) ≤ 1, H(Z12) ≤ 1, H(Z21) ≤ 1, H(Z22) ≤ 1

2) XN
s1
↔ ZN

11 ↔ Y N
d1

and XN
s2
↔ (ZN

21, Z
N
22)↔ Y N

d2

3) XN
s1
↔ (ZN

21, Z
N
22, X

N
s2

)↔ Y N
d1

and
XN

s2
↔ (ZN

12, X
N
s1

)↔ Y N
d2

4) H
(
ZN

11|XN
s1

)
≥ H

(
ZN

22|XN
s1

)
5) ZN

22 is a function of ZN
12

then 2R1 + 2R2 ≤ 3 for any achievable (R1, R2).

Proof is detailed in Chapter 7.
We shall use the above claim to complete the proof of the outer bound 2R1 + 2R2 ≤ 3.

We set Z11 := Yv1 , Z12 := Yw12 , Z21 := Yu21 , Z22 :=
∑

w∈Ps2(v∗1)
Xw.

• By the definition of the channels, condition 1) of the claim is satisfied.

• By the definition of v∗1, we see that the first Markov chain in condition 2) is satisfied.

By condition P
(12)
3 and the definition of the induced graph G12 we see that the second

Markov chain is also satisfied. Hence, condition 2) is satisfied.

• The first Markov chain in condition 3) is due to condition P
(12)
3 and the definition of

the induced graph G12. The second Markov chain is due to condition P
(12)
4 . Hence

condition 3) is satisfied.

• Condition 4) is satisfied with equality due to the definition of Z22.

• Condition 5) is satisfied due to the definition of Z12, Z22 and conditions P
(12)
2 and P

(12)
4 .

Similarly, if the condition P(21) is satisfied, then 2R1 + 2R2 ≤ 3 by symmetry.
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6.7 Concluding Remarks

In this chapter, we completely characterize the capacity region of two unicast information
flows over a layered linear deterministic network with base field F2 under the unit-channel
strength assumption. It turns out that when each source can reach its own destination, the
capacity region is one of the five: the triangle T, the trapezoids T12,T21, the pentagon P, and
the square S. The necessary and sufficient condition for the capacity region to be one of them
elucidates when and how the connectivity of the network limits the amount of information
deliverable to the destination under the presence of the other interfering information flow.

Our result extends to a more general linear deterministic channel setting where a general
matrix in F2 (not necessarily a shift matrix) is associated to each edge in the network. Such
generalization is made possible by looking at entries of the receive/transmit vectors, called
“bubbles”, and redefining omniscience, clone sets, parents, cuts, etc., for bubbles. This result
will be detailed in a later version of [17].
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Chapter 7

Proofs of Part III

7.1 Proof of Lemmas and Claims

By the phrase “with high probability”, we mean a probability that goes to 1 as the size of
the field F2r goes to infinity.

7.1.1 Proof of Lemma 6.3

If k∗1 = 0 and k∗2 = 1, then both s1 and s2 are v∗2’s parents, and obviously v∗2 is omniscient,
violating the assumption. Hence, k∗2 = 0 or k∗2 ≥ 2. If k∗2 = 0, then there is no interference
at destination d1 from source s2 and vice versa. In this case, clearly (1, 1) is achievable.

If k∗2 ≥ 2, we shall show that (1, 1) can be achieved provided that there is no omniscient
node. Nodes do RLC with s1 transmitting a scaled copy of symbol a ∈ F2r and s2 transmitting
a scaled copy of symbol b ∈ F2r , until layer Lk∗2−1. By definitions of v∗2 and C1, layer Lk∗2 is
partitioned by K(v∗2) and C1 ∩ Lk∗2 . Since v∗2 is not omniscient,

∃ u1 ∈ C1 ∩ Lk∗2 such that P s1(u1)(= P(u1)) 6= P s1(v∗2).

Note that since u1 ∈ C1, P s1(u1) = P(u1). Also note that all nodes in C1 are s1-only-reachable.
Consider the following two cases:

1. P(u1) \ P s1(v∗2) 6= ∅. In this case we arrange nodes in P(v∗2) so that user 2’s symbol b
can be decoded at v∗2. Then use nodes in P(u1) \ P s1(v∗2) to provide user 1’s symbol a
at u1 if necessary. u1 and v∗2 and their successors do RLC.

2. P(u1) ( P s1(v∗2). In this case we first let nodes in P(u1) do RLC and place user 1’s
symbol a at u1. Then, use nodes in P s1(v∗2) \ P(u1) and nodes in P(v∗2) to neutralize
user 1’s symbol a and place user 2’s symbol b at v∗2. u1 and v∗2 and their successors do
RLC.

Hence, (1, 1) is achievable when k∗1 = 0.
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7.1.2 Proof of Lemma 6.5

Suppose i = 1. Suppose C (s1, s2;P(v∗1)) 6= 2. It cannot be larger than 2 by definition and it
cannot be 0 because {s1, s2} has paths to P(v∗1). So, suppose C (s1, s2;P(v∗1)) = 1.

Let A ⊆ V be the set of nodes in the graph that can be reached by {s1, s2} and can reach
P(v∗1). Let G ′ be the graph induced by nodes in A and for U ⊆ A, let CG′ (s1, s2;U) denote
the mincut from {s1, s2} to U in the graph G ′. Then, obviously CG′ (s1, s2;P(v∗1)) = 1.

Note that for any partition of the vertices of A into (B,A\B) with {s1, s2} ⊆ B,P(v∗1) ⊆
A \ B, if there exist nodes in the same layer u1, u2 ∈ A such that u1 ∈ B and u2 ∈ A \ B,
then the rank of the transfer matrix across the cut (B,A \ B) is at least 2. Thus, if there
exists a cut (B,A \ B) of value 1, then the cut must be of the form B = (∪tl=0Ll) ∩ A, for
some t ≥ 0. This tells us that if u ∈ A ∩ Lt+1, then K(u) ⊇ A ∩ Lt+1, so that K(u) is a
(s1, s2; d1)-vertex-cut violating the definition of critical node v∗1. Hence we complete the proof
by contradiction.

7.1.3 Proof of Lemma 6.6

Suppose node v is omniscient, say K(v) is a (s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-
vertex-cut. Suppose v∗1 is not omniscient. As K(v) is a (s1, s2; d1)-vertex-cut, we have that
either v ∈ K(v∗1) or that v lies in a layer Lk with k > k∗1. This follows from the definition of the
critical node v∗1. In the first case, we automatically have that v∗1 is omniscient. So, suppose
v lies in layer Lk with k > k∗1. Then, since v∗1 is not omniscient, there exists a path from s2

to d2 with a node uk∗1 in layer Lk∗1 and a node uk in layer Lk such that P s2(v∗1) 6= P s2(uk∗1 ).
Since node v is omniscient, we must have that P s2(v) = P s2(uk). But this is impossible since
uk has an s2-reachable parent from the path that does not lie in the cloud C1 which contains
all the parents of v. This contradiction establishes that v∗1 must have been omniscient.

7.1.4 Proof of Lemma 6.7

First note that if we restrict attention to the induced subgraph G ′ obtained by deleting all
nodes which can either not reach the set of nodes U or cannot be reached by at least one of
s1 and s2, then the mincut value C (s1, s2;U) is preserved. Since each node can be reached
by at least one of s1 or s2, we only have to delete nodes that cannot reach some node in U .

Now, we are looking at a graph where the set of nodes in layer l is Ul for 0 ≤ l < k and
U for layer k.

Consider, for this graph, the set of all vertex bipartitions between {s1, s2} and U which
yield a transfer matrix of rank 1. All such bipartition cuts must be ‘vertical’, i.e. they are
partitions of the form (A,Ac) where A = ∪rl=0Ul for some l, 0 ≤ l < k. This is because
any non-‘vertical’ cut yields a transfer matrix of rank at least 2. This establishes that the
parents sets of all nodes in Ul∗ are identical in this graph and so, also in the original graph
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because every node in the new graph G ′ has the same parent set as in the original graph.
This concludes the proof of the lemma.

7.1.5 Proof of Lemma 6.9

We are in the scenario where C (s1, s2;P s2(v∗1)) = 1. Consider G12(w) for some node w ∈
P s2(v∗1) and suppose that there is no omniscient node in G12(w). As G12(w) has no paths
from s2 to d1, by Lemma 6.3, we can achieve (1, 1) in G12(w), with high probability, by
all nodes except nodes in P(v∗2) performing RLC. Then, with high probability all nodes in
P s2(v∗1) receive a non-trivial linear combination and each has a non-zero coefficient of symbol
b sent by s2. Take any such (1, 1) achieving scheme and any other node w′ ∈ P s2(v∗1). Consider
G12(w′). Note w has no outgoing edges in G12(w) and w′ has no outgoing edges in G12(w′). Let
the reception of node w and w′ in G12(w) be βw,s1 ·a+βw,s2 ·b and βw′,s1 ·a+βw′,s2 ·b respectively,
where βw,s2 , βw′,s2 6= 0. Just make all nodes choose the same coefficients in G12(w′) as in G12(w)

except for node w′ which chooses αw′|G12(w′) = αw ·
βw,s2

βw′,s2
. Then, the receptions of all nodes

will be identical to those in G12(w). This achieves (1, 1) in G12(w′) and hence, there cannot
be any omniscient node in this network either by the Omniscient node outer bound.

7.1.6 Proof of Lemma 6.13

Without loss of generality let i = 1. We shall prove this by induction on the layer index
where u lies. Say u ∈ Lk. The node u receives βu,s1 · a+ βu,s2 · b.

For k = 1, βu,s1 = αs1βs1,s1 = αs1 . Since all predecessors of u are doing RLC, so does
s1 and hence αs1 is chosen uniformly and randomly over F2r . Therefore, Pr{βu,s1 = 0} =
Pr{αs1 = 0} → 0 as r →∞.

Suppose for all nodes in Ll, l ≥ 1, that are reachable from s1 the coefficient of user 1’s
symbol a is non-zero with high probability. Consider an s1-reachable node in Ll+1. We have

βu,s1 =
∑

v∈P(u)

αvβv,s1 =
∑

v∈Ps1 (u)

αvβv,s1 ,

since for nodes that cannot be reached by s1 the coefficient of a is always 0. Conditioned
on a realization of {βv,s1 : v ∈ P s1(u)} where they are not all zero, βu,s1 is uniformly
distributed over F2r since {αv| v ∈ P s1(u)} are chosen independently of one another and
{βv,s1 : v ∈ P s1(u)}, and uniformly over F2r . Consequently,

Pr {βu,s1 = 0|{βv,s1 : v ∈ P s1(u)}} → 0

as r → ∞, if {βv,s1 : v ∈ P s1(u)} are not all zeros. By the induction assumption, the
probability that they are all zeros also goes to zero as r →∞, and so we have Pr {βu,s1 = 0} →
0 as r →∞. This completes the proof by induction.
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7.1.7 Proof of Lemma 6.14

Proof of Part (a)

Consider a super-sink d′ with full access to the reception of all nodes in U . Since C(s1, s2;U) =
2, we have C(s1, s2; d′) = 2. Moreover, we can easily argue that both s1 and s2 can reach
d′ by contradiction, and hence C(si; d

′) = 1, for i = 1, 2. Consider a multiple access flow
problem with two sources s1, s2 and a single destination d′. The capacity region is the square
region {(R1, R2) : R1, R2 ≥ 0, R1 ≤ C(s1; d′), R2 ≤ C(s2; d′), R1 + R2 ≤ C(s1, s2; d′)} and can
be achieved via scalar random linear coding if the extension field size 2r is sufficiently large
[58]. Hence (1, 1) can be achieved, and d′ can decode both user’s symbols and so can U .

Proof of Part (b)

Fix the transmission from P(v) \ U . We write the reception of v as∑
u∈U

(αuβu,s1 · a+ αuβu,s2 · b)︸ ︷︷ ︸
To be determined

+
∑

u∈P(v)\U

(αuβu,s1 · a+ αuβu,s2 · b)︸ ︷︷ ︸
Given

From part (a) we know that U can collectively solve a and b with high probability, and
hence it can construct any linear combination of a and b. Therefore, they can arrange their
transmission by choosing the scaling coefficients α’s carefully so that combined with the
given part in v, the aggregate reception at v is the desired linear combination.

Proof of Part (c)

From part (a) we know the the subspace spanned by the received linear combinations of
U has dimension 2 with high probability. The received linear combination of u spans an
one-dimensional space with high probability. Note that U \ {u} 6= ∅.

Consider the subspace spanned by the received linear combination(s) of U \ {u}. This
subspace is either has dimension 2 or has dimension 1 but not aligned with the reception of u.
In the first case, after the nodes in U \{u} chose the scaling coefficients randomly, uniformly,
and independently over F2r , the resulting effective linear combination at v contributed by this
part is uniformly distributed over the whole two-dimensional space. Hence it is not aligned
with the reception of u with high probability. u can then choose its scaling coefficient properly
so that any desired linear combination except those aligned with the reception of u can be
formed at v. In the second case, it can be guaranteed that the resulting effective linear
combination at v contributed by U \ {u} is not aligned with the reception of u. Hence we
arrive at the same conclusion as above.
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Proof of Part (d)

This is a simple corollary of part (c). Since u is s1s2-reachable, with all its predecessors
doing RLC it will receive a linear combination of a and b with non-zero coefficients for both
symbols with high probability. Hence linear combinations consisting of purely a or b with
high probability at v can be formed at v due to the conclusion in part (c).

7.1.8 Proof of Lemma 6.15

C(s1, s2;U) = 2. Note that all nodes can be reached by at least one of the source nodes. Fix
node u ∈ U .

For sufficiently large block length N, if all nodes perform RLC with one symbol from each
source, then by Lemma 6.13 and Lemma 6.14(a), we have the following with high probability:

• the subspace spanned by the received linear combination at u has dimension 1, and

• the subspace spanned by the received linear combinations at U has dimension 2.

Fix any choice of the coefficients so that the above hold. Pick any other node w ∈ U such
that the subspace spanned by the received linear combinations at u and w has dimension
2. Then, we must have C(s1, s2; u,w) = 2, or else u,w could not have received linearly
independent linear combinations.

(Note: Lemma 6.15 is a purely graph-theoretic lemma. It is easier to prove it however
using the random coding arguments in Lemma 6.13 and Lemma 6.14(a).)

7.1.9 Proof of Lemma 6.16

For all four cases, the direction “⇐” is quite obvious. Also note that when k∗1 = k∗2 = k∗

and there is no omniscient node in, the two clone-sets, K(v∗1) and K(v∗2), partition the whole
layer Lk∗ . Therefore, it is sufficient to look at v∗1 and v∗2 only.

For the other direction “⇒”, we shall prove the first and the third case, in which the
superscript of the conditions is “(12)”. To satisfy T

(12)
2 and T

(12)
3 (equivalently P

(12)
2 and

P
(12)
3 ), we require C (s1, s2;P s2(v∗1)) = 1 as well as Ks1

G12 (u21) forms an (s1; d1)-vertex-cut in
G12. In generating G12, since there is only one node v∗2 (up to clones) in the same layer as
v∗1, the reorganization step will not involve any change in edges, as M = 1. There are two
possible cases where Ks1

G12 (u21) forms an (s1; d1)-vertex-cut in G12: u21 6= v∗2, or u21 = v∗2.
In the first case where u21 6= v∗2, we have CG12 (s1, s2;PG12(v∗2)) = 1. Hence all nodes

in P s2(v∗1) are parents of v∗2, and C (s1, s2;P(v∗2) \ P s2(v∗1)) = 1. Due to the fact that v∗1
is not omniscient, s2 must be able to reach P(v∗2) \ P s2(v∗1). On the other hand, nodes in
P(v∗1)\P s2(v∗1) are all s1-only-reachable and hence cannot belong to P(v∗2)\P s2(v∗1). Similarly
nodes in P(v∗2) \ P s2(v∗1) cannot be in P(v∗1) \ P s2(v∗1). Therefore, we conclude that U1 is s1-
only-reachable, C (s1, s2;W) = C (s1, s2;U2) = 1. Then condition 3 and 4 in T(12) (P(12))
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imply the rest of the conditions in the right-hand-side of the case T(12) (P(12)). It is quite
easy to see that in this case P(12) ∩ T(21) = ∅.

In the second case where u21 = v∗2, P(v∗1)\P s2(v∗1) should be equal to the set of s1-reachable

parents of v∗2 in G12. If T
(12)
3 is satisfied, then v∗1 and v∗2 will share the same s1-reachable

parents, contradicting the assumption that there is no omniscient node. If P
(12)
3 is satisfied,

then it must be the case that v∗2 has no parents in P s2(v∗1). Therefore, P s2(v∗1) = U1, all
nodes in W are s1-only-reachable, and all nodes in U1 are s2-only-reachable. Then condition
P

(12)
4 implies that Ks2 (w12) forms an (s2; d2)-vertex-cut. Then it is easy to verify that T(21)

is satisfied. So considering P(12) \ T(21), this pattern will not be included. Proof complete.

7.1.10 Proof of Claim 6.17

It is quite obvious that (1, 1) is achievable when W = ∅. The assumption that there is no
omniscient node combined with U s1

1 = ∅ or U s2
2 = ∅, implies the following three cases:

1) P s1(v∗1) ( P s1(v∗2) and P s2(v∗2) \ P s2(v∗1) 6= ∅: Pick u1 ∈ P s1(v∗1) and then find a node
w1 ∈ P(v∗1) such that C(s1, s2; u1,w1) = 2. Such a node exists by Lemma 6.15. Pick nodes
u2 ∈ P s2(v∗2) \ P s2(v∗1) and w2 ∈ P s1(v∗2) \ P s1(v∗1). Note that u2,w2 may be the same node.

(i) Suppose there exist u2 and w2 described as above such that C(s1, s2; u2,w2) = 2: See
Fig. 7.1(a) for an illustration. We first arrange the transmission of u1 and w1 so that
only user 1’s symbol appears at v∗1. This can be done due to Lemma 6.14(a). Next
we arrange the transmission of u2 and w2 so that the effect of user 1’s symbol in the
transmission of u1 (and possibly w2) at v∗2 can be neutralized, and user 2’s symbol can
appear cleanly. This can be done due to Lemma 6.14(b).

(ii) Suppose C(s1, s2; u2,w2) = 1 for all u2 and w2 described as above: Then, we must
have P s2(v∗2) \ P s2(v∗1) = P s1(v∗2) \ P s1(v∗1), for if not, we can always find nodes u2 ∈
P s2(v∗2) \ P s2(v∗1) and w2 ∈ P s1(v∗2) \ P s1(v∗1) such that C(s1, s2; u2,w2) = 2. Thus, there
must be a node w′2 ∈ P(v∗1) ∩ P(v∗2) such that C(s1, s2; u2,w

′
2) = 2, by the definition of

v∗2. Note that w′2 may be the same node as u1, w1, or a clone of either one. Also note
that now u2 must be s1s2-reachable. See Fig. 7.1(b)(c) for an illustration. We further
distinguish into two cases based on whether w1 is a parent of v∗2 or not:

(1) If w1 is not a parent of v∗2, then it is s2-only-reachable since P s1(v∗1) ( P s1(v∗2). We
let u1 and w′2 do RLC. Since u2 is s1s2-reachable, by Lemma 6.14(d), it can arrange its
transmission so that v∗2 can decode s2’s symbol. We can then use w1 to neutralize user
2’s symbol in v∗1’s reception if necessary. Since u1 is s1-reachable, v∗1 can obtain user
1’s symbol cleanly after neutralization.

(2) If w1 is a parent of v∗2, then we first arrange the transmission of {u1,w1,w
′
2} so that

v∗1 can decode user 1’s symbol. This can be done due to Lemma 6.14(a). Next, since
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v∗1

v∗2

u1

u2

w2

w1

(a) Illustration of Case 1)(i). u1 and w2

are s1-reachable and u2 is s2-reachable.

v∗1

v∗2

u1

u2

w′
2

w1

(b) Illustration of Case 1)(ii)(1). u1 is s1-
reachable, u2 is s1s2-reachable, and w1 is
s1-only-reachable.

v∗1

v∗2

u1

u2

w′
2

w1

(c) Illustration of Case 1)(ii)(2). u1 is s1-
reachable and u2 is s1s2-reachable.

v∗1

v∗2

u1

u2

w2

w1

(d) Illustration of Case A1 ∩ B2. u1 is
s1-reachable and u2 is s2-reachable.

Figure 7.1: Critical Nodes in the Same Layer
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their aggregate at v∗2 has only user 1’s symbol and u2 is s1s2-reachable, we can arrange
the transmission of u2 so that user 1’s symbol is neutralized and only user 2’s symbol
is left.

2) P s2(v∗2) ( P s2(v∗1) and P s1(v∗1) \ P s1(v∗2) 6= ∅: Similar to the previous case.

3) P s1(v∗1) ( P s1(v∗2) and P s2(v∗2) ( P s2(v∗1): Pick a node u1 ∈ P s2(v∗1) \ P s2(v∗2) and a node
u2 ∈ P s1(v∗2) \ P s1(v∗1). By the definition of v∗1 and v∗2, we shall be able to find w1 ∈ P(v∗1)
and w2 ∈ P(v∗2) such that C(s1, s2; u1,w1) = C(s1, s2; u2,w2) = 2. Note that w1,w2 may be
the same node but u1, u2 are different nodes, although they may be clones. We shall show
that (1, 1) is achievable. First let {w1,w2} do RLC. Then we can arrange the transmission
of u1 and u2 such that v∗1 and v∗2 can obtain their desired symbols due to Lemma 6.14(c).

7.1.11 Proof of Claim 6.18

Note that

¬ (A ∨B) = ¬ (A1 ∧ A2) ∧ ¬ (B1 ∧B2) = (¬A1 ∨ ¬A2) ∧ (¬B1 ∨ ¬B2)

= (¬A1 ∧ ¬B1) ∨ (¬A1 ∧ ¬B2) ∨ (¬A2 ∧ ¬B1) ∨ (¬A2 ∧ ¬B2) .

We distinguish into 4 cases.

1. ¬A1 ∧ ¬B1:

In this case, there is a node in P s1
1 that is s1s2-reachable and there is another node

in P s1
1 that is s1-only-reachable. Hence C (s1, s2;P s1

1 ) = 2. We can first arrange the
transmission of P(v∗2) so that v∗2 can decode b. Since C (s1, s2;P s1

1 ) = 2, we can arrange
their transmission to form any linear combination of a and b; in particular, the one
that combined with the transmission fromW forms a at v∗1. Hence (1, 1) is achievable.

2. ¬A1 ∧ ¬B2:

In this case there is a node u1 ∈ P s1
1 that is s1s2-reachable and there is a node

u2 ∈ P s2
2 that is s1s2-reachable. Locate nodes w1 ∈ P(v∗1) and w2 ∈ P(v∗2) such that

C (s1, s2; u1,w1) = C (s1, s2; u2,w2) = 2. Note that w1,w2 may be the same node but
u1, u2 will be different nodes although they may be clones. Then, let w1,w2 perform
RLC while u1, u2 arrange their transmissions so that v∗1, v

∗
2 can decode their desired sym-

bols. This can be done with high probability due to Lemma 6.14(d). See Fig. 7.1(d)
for an illustration.

3. ¬A2 ∧ ¬B1:

In this case there is a node in P s1
1 that is s1-only-reachable and there is a node in P s2

2

that is s2-only-reachable. Obviously (1, 1) is achievable.
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4. ¬A2 ∧ ¬B2:

In this case, there is a node in P s2
2 that is s2-only-reachable and there is another node

in P s2
2 that is s1s2-reachable. Similar to the first case, (1, 1) is achievable.

Proof complete.

7.1.12 Proof of Lemma 6.19

We shall distinguish the condition P s2(u2) 6= P s2(v∗1) into two cases, (1) P s2(u2)\P s2(v∗1) 6= ∅,
and (2) P s2(u2) ( P s2(v∗1).

P s2(u2) \ P s2(v∗1) 6= ∅

In this case, if P s2(u2)∩P s2(v∗1) = ∅, then the special linear coding operation in P s2(u2) will
not affect the coefficient of user 2’s symbol b in the reception of u. Therefore the goal in
the claim of this lemma can be met from C(s1, s2;P(v∗1)) = 2 and Lemma 6.14(b). Below we
consider the case where P s2(u2) ∩ P s2(v∗1) 6= ∅.

If P s2(v∗1) \ P s2(u2) 6= ∅, then we shall let the nodes in P s2(u2) ∩ P s2(v∗1) do RLC. Hence
the parents of u2 are all doing RLC. Since s2 can reach u2, the coefficient of b in the reception
of u2 is non-zero with high probability. Now we turn to v∗1. As C(s1, s2;P(v∗1)) = 2 and all
nodes other than P s2(v∗1) \P s2(u2) are doing RLC, by Lemma 6.14(c) they can arrange their
transmission so that v∗1 receives a linear combination consisting of a solely.

P s2(u2) ( P s2(v∗1)

In this case we let the nodes in P s2(u2) do RLC. Hence the coefficient of b in the re-
ception of u2 is non-zero with high probability since all its predecessor are doing RLC.
Then as C(s1, s2;P(v∗1)) = 2 and all nodes other than P s2(v∗1) \ P s2(u2) are doing RLC, by
Lemma 6.14(c) they can arrange their transmission so that v∗1 receives a linear combination
consisting of a solely.

7.1.13 Proof of Lemma 6.21

The special coding operation performed by nodes in P s2(v∗1) is as follows: Nodes choose their
coefficients independently and uniformly over the set of coefficients satisfying

∑
u∈U αuβu,s2 =

0. Under this special coding, it is easy to show the first part of the assertion, namely, that
each node receives a non-trivial linear combination. Because the reception of P s2(v∗1) has full
rank, the linear constraint leaves the sum

∑
u∈U αuβu,s1 non-zero with high probability. This

allows us to argue that any s1-reachable node receives a non-zero coefficient for the symbol
a transmitted by source s1 inspite of the special coding.

Find node u ∈ U such that u /∈ Ks2(v∗1). and u is s2-reachable. Such a node exists because
v∗1 is not omniscient. Then, find node w ∈ U such that C(s1, s2; u,w) = 2. If all nodes in
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P s2(v∗1) performed random linear coding, then u,w jointly can decode both symbols a and b
with high probability.

Let P1 := P(u) \ P(w),P12 := P(u) ∩ P(w),P2 := P(w) \ P(u).

• As P(u) 6= ∅, we have P1 ∪ P12 6= ∅.

• As P(w) 6= ∅, we have P12 ∪ P2 6= ∅.

• As P(u) 6= P(w) (since C(s1, s2; u,w) = 2), we have P1 ∪ P2 6= ∅.

Note that the conditions on the sets P1,P12,P2 are symmetric.
Reception of node u:(∑

x∈P1∪P12
αxβx,s1

)
· a+

(∑
x∈P1∪P12

αxβx,s2

)
· b

Reception of node w:(∑
x∈P12∪P2

αxβx,s1

)
· a+

(∑
x∈P12∪P2

αxβx,s2

)
· b

Let D :=

∣∣∣∣∑x∈P1∪P12
αxβx,s1

∑
x∈P1∪P12

αxβx,s2∑
x∈P12∪P2

αxβx,s1

∑
x∈P12∪P2

αxβx,s2

∣∣∣∣ . D is non-zero if and only if u,w can

jointly decode both symbols a and b.

For two nodes x, y, denote the determinant

∣∣∣∣βx,s1 βx,s2

βy,s1 βy,s2

∣∣∣∣ by β(x, y). Some algebra allows

the determinant D to be expressed as:

D =
∑
x∈P1

∑
y∈P12

αxαyβ(x, y) +
∑

x∈P12

∑
y∈P2

αxαyβ(x, y)

+
∑
x∈P2

∑
y∈P1

αxαyβ(x, y). (7.1)

Note that D is also symmetric in the sets P1,P12,P2. Let the special coding set P s2(v∗1)
be denoted by P . We are given that C (s1, s2;P) = 2. The constraint placed on the coding
coefficients of nodes in P is

∑
x∈P αxβx,s2 = 0.

• Suppose P \ (P1 ∪ P12 ∪ P2) 6= ∅.
Because we have with high probability, βx,s2 6= 0∀x ∈ P , we can view the special
coding as all nodes in P1 ∪ P12 ∪ P2 performing random linear coding while nodes in
P \ (P1 ∪ P12 ∪ P2) performing restricted coding. In this case, parent nodes of u and
w perform RLC and so, the claim is obviously true.

• Suppose P ⊆ P1 ∪ P12 ∪ P2 and suppose there are two non-empty sets among P ∩
P1,P ∩ P12,P ∩ P2.

Without loss of generality, assume P ∩P1 6= ∅. Fix x0 ∈ P ∩P1. Find x1 ∈ P such that
C (s1, s2; x0, x1) = 2. If x1 ∈ P12 or x1 ∈ P2, then we have x0 ∈ P ∩P1, and x1 ∈ P ∩P12

or x1 ∈ P ∩ P2 such that C (s1, s2; x0, x1) = 2.
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If x1 ∈ P1, then pick any node x2 in the non-empty set P∩(P12∪P2). By submodularity,
we have C (s1, s2; x0, x1, x2) + C (s1, s2; x2) ≤ C (s1, s2; x0, x2) + C (s1, s2; x1, x2) . Since the
two terms on the left are 2 and 1 respectively, at least one term on the right must be
greater than 1 and thus, 2.

Thus, we can always find nodes x0 ∈ P∩E, x1 ∈ P∩F, where (E,F ) = (P1,P12), (P12,P2)
or (P2,P1). such that C (s1, s2; x0, x1) = 2.

Suppose, without loss of generality, we have x1 ∈ P ∩ P1, x2 ∈ P ∩ P12 so that

C (s1, s2; x1, x2) = 2. We set αx1 = β−1
x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

Then, evaluating Equation (7.1) with this substitution for αx1 gives us a polynomial in
(αx : x ∈ P1 ∪P12 ∪P2 \ {x1}) with coefficients being rational functions in (βx,s1 , βx,s2 :
x ∈ P1 ∪ P12 ∪ P2 \ {x1}) which are themselves polynomials in the coding coefficients
from the past stages. This polynomial has a coefficient for α2

x2
only in the sum

∑
x∈P

∑
y∈P12∪P2

αxαyβ(x, y)

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αy

[
αxβ(x, y) + αxβ

−1
x1,s2

βx,s2β(x1, y)
]

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αxαy
βy,s2

βx1,s2

β(x1, x)

where the last equality follows from the identity βx,s2β(x1, y)+βx1,s2β(x, y)+βy,s2β(x1, x) =
0.

Putting x = y = x2 gives the coefficient of α2
x2

to be
βx2,s2

βx1,s2
β(x1, x2) which is not identically

zero since each of βx2,s2 , βx1,s2 , β(x1, x2) are not identically zero, the first two because
x1, x2 lie in P and so are s2-reachable and the third because C (s1, s2; x1, x2) = 2.

Thus, D is not identically zero and hence, evaluates to a non-zero value with high
probability.

• Finally, suppose P ⊆ P1 or P ⊆ P12 or P ⊆ P2.

– First, suppose P ⊆ P1. Fix x1 ∈ P . There exists x2 ∈ P such that C (s1, s2; x1, x2) =

2. Force αx1 = β−1
x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D

=
∑
x∈P1

∑
y∈P12∪P2

αxαyβ(x, y) +
∑

x∈P12

∑
y∈P2

αxαyβ(x, y)
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=
∑
x∈P

∑
y∈P12∪P2

αxαyβ(x, y)

+
∑

x∈P1\P

∑
y∈P12∪P2

αxαyβ(x, y) +
∑

x∈P12

∑
y∈P2

αxαyβ(x, y)

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αxαy
βy,s2

βx1,s2

β(x1, x)

+
∑

x∈P1\P

∑
y∈P12∪P2

αxαyβ(x, y) +
∑

x∈P12

∑
y∈P2

αxαyβ(x, y)

As u /∈ Ks2(v∗1), we have that some node y0 ∈ P12 is s2-reachable. Then, βy0,s2 is
not identically zero and the coefficient of αx2αy0 is not identically zero.

– Suppose P ⊆ P12. Then, fix x1 ∈ P . There exists x2 ∈ P such that C (s1, s2; x1, x2) =

2. Force αx1 = β−1
x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D =
∑

x∈P\{x1}

∑
y∈P1∪P2

αxαy
βy,s2

βx1,s2

β(x1, x) +
∑

x∈P12\P

∑
y∈P1∪P2

αxαyβ(x, y)

+
∑
x∈P1

∑
y∈P2

αxαyβ(x, y).

Again, since u /∈ Ks2(v∗1), we have that some node y0 ∈ P1 is s2-reachable. Then,
βy0,s2 is not identically zero and the coefficient of αx2αy0 is not identically zero.

– Now, suppose P ⊆ P2. Then, fix x1 ∈ P . There exists x2 ∈ P such that

C (s1, s2; x1, x2) = 2. Force αx1 = β−1
x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D =
∑

x∈P\{x1}

∑
y∈P1∪P12

αxαy
βy,s2

βx1,s2

β(x1, x) +
∑

x∈P2\P

∑
y∈P1∪P12

αxαyβ(x, y)

+
∑
x∈P1

∑
y∈P12

αxαyβ(x, y).

Again, as u is s2-reachable, we have that some node y0 ∈ P1 ∪P12 is s2-reachable.
Then, βy0,s2 is not identically zero and the coefficient of αx2αy0 is not identically
zero.

7.1.14 Proof of Lemma 6.22

For A ⊆ U , define f(A) as the rank of the |A| × 2 matrix with rows given by
[
λu µu

]
for

u ∈ A, and define g(A) = C (A;V) . Then, f(·), g(·) are rank functions of two matroids on
the same ground set U . The given conditions tell us that both these matroids have rank at
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least two and every singleton subset has rank 1 in both matroids. We will first show that
there exist a two-element subset of U that has rank 2 in both matroids.

Find two elements x, y ∈ U , such that f({x, y}) = 2. If g({x, y}) = 2, we have found the
desired two-element subset. Else, we must have g({x, y}) = 1. Then, there exists an element
z ∈ U such that g({x, z}) = 2. If f({x, z}) = 2, we have the required 2-element subset. Else
if we have f({x, z}) = 1, then by submodularity, we must have

f({z}) + f({x, y, z}) ≤ f({x, z}) + f({y, z})
g({y}) + g({x, y, z}) ≤ g({x, y}) + g({y, z})
These give f({y, z}), g({y, z}) ≥ 2, and thus, {y, z} is the required subset of U that has

rank 2 in both matroids.

Thus, we have two nodes x, y ∈ U such that

∣∣∣∣λx µx

λy µy

∣∣∣∣ 6= 0 and C (x, y;V) = 2.

Again, for A ⊆ V , the function defined by h(A) = C (x, y;A) is the rank function of
a matroid over ground set V that has rank two. Thus, there exist u,w ∈ V such that
C (x, y; u,w) = 2.

Thus, when all nodes perform RLC except nodes in U \{x, y} remain silent, we have that
u, v can jointly recover both symbols a and b.

Now, if all nodes perform RLC, the a and b coefficients of the receptions of nodes u, v
would be polynomials in the random coding coefficients with a determinant that is a poly-
nomial that is not identically zero. QED.

7.1.15 Proof of Lemma 6.23

If v∗2 has a parent from user 1’s cloud C1, then in either G12 or G ′12 since this node in the
cloud becomes s1-only-reachable while v∗2 can be reached by s2, v∗2 remains to be the critical
node for user 2, ie., PmcG12(d2) = PmcG′12(d2) = v∗2. Since the s1-clones of v∗2 form an (s1; d1)-
vertex-cut in G12 but not in G, the only possibility is that some parents of v∗2 are not in the
cloud C1 and are dropped in G12. These nodes are descendants of P s2(v∗1), which becomes
s1-only-reachable in G ′12. Therefore in G ′12, v∗2 has some s1-reachable parents that is not in
the cloud C1, and hence the s1-clones of v∗2 do not form an (s1; d1)-vertex-cut in G ′12.

In the rest of the proof we deal with the case where v∗2 has no parents from user 1’s cloud
C1. Hence “s1-clones of v∗2 form an (s1; d1)-vertex-cut in G12” implies that CG12(s1, s2;PG12(v∗2)) =
1. We shall show that, for all possible G ′12, either CG′12(s1, s2;PG′12(v

∗
2)) = 2, which implies

that PmcG′12(d2) = v∗2 and s1-clones of v∗2 do not form an (s1; d1)-vertex-cut in G ′12, or directly
prove the statement.

Below a few notations are given before we proceed. U :=
{
u ∈ Lk∗1 : u can reach d2

}
.

U|G′12 and U|G12 denote the nodes in the same layer as v∗1 that can reach d2 in G ′12 and G12

respectively. Recall that R is the set of nodes in P s2(v∗1) that can reach one of the two
destinations in G12. Define the following subsets of U : (use short-hand notations P for
P s2(v∗2) and S := P \ R)

UP := {u : P(u) ⊇ P} , UQ := {u : P(u) ∩ P = ∅}
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UR := {u : P(u) ∩ P 6= ∅,P(u) ∩ P ⊆ R}
US := {u : S ⊆ P(u) ∩ P ( P}

Note that these four sets form a partition of U , and Ks2(v∗1) ∩ U ⊆ UP .
Let us consider the following two cases: 1) R 6= ∅, and 2) R = ∅. Note that when

generating induced graphs G12 and G ′12, some nodes may be dropped as they are no longer
reachable from the sources. Consequently U|G12 and U|G′12 may be strictly contained in U .
In the following discussion, we shall further distinguish into these cases.

1) R 6= ∅:
We shall show that in this case, CG′12(s1, s2;PG′12(v

∗
2)) = 2.

(A) U|G′12 = U : Since no nodes are dropped in U when generating G ′12, no nodes will
be dropped in the later layers and C (U ;P(v∗2)) remains the same in G and G ′12. As
C (U ;P(v∗2)) ≥ 2 and all non-vertical cuts have cut-values at least 2, we only need to
show that CG′12 (s1, s2;U) = 2.

(i) U|G12 = U :

In this case, since U|G12 = U , we have CG12 (U|G12 ;PG12(v∗2)) = C (U ;P(v∗2)) ≥ 2. There-
fore, CG12(s1, s2;PG12(v∗2)) = 1 implies that CG12(s1, s2;U|G12) = 1.

Suppose that C (s1, s2;UR) = 2. Since nodes in UR will not be affected in generating
G12, CG12 (s1, s2;UR) = 2. Hence CG12 (s1, s2;U|G12) = 2, contradicting the above fact.
Besides, UR 6= ∅. Therefore, C (s1, s2;UR) = 1.

Find a node u ∈ U such that C (s1, s2;UR ∪ {u}) = 2. Below we show that this node
u ∈ US by contradiction. Suppose u ∈ UQ. As the nodes in UQ will not be affected in
generating G12, we have CG12 (s1, s2;UR ∪ {u}) = C (s1, s2;UR ∪ {u}) = 2, contradicting
the above fact that CG12(s1, s2;U|G12) = 1. Next, suppose u ∈ UP . Let us first consider
the min-cut value from {s1, s2} to the collection of parents of UR ∪ {u}, denoted by
P (UR ∪ {u}). It is 2 in G. In G12, nodes in S are dropped, but nodes in R and nodes
in P (UR ∪ {u}) \ P are not. Therefore the min-cut value is again 2 since nodes in R
receive the same linear combination as those in P under any RLC scheme. Second,
it is clear that in G12, UR ∪ {u} are not clones as u has no parents in R. Hence,
CG12 (s1, s2;UR ∪ {u}) = 2, again contradicting the above fact that CG12(s1, s2;U|G12) =
1.

Hence, u ∈ US for all such u. We use the same argument as above to show that the min-
cut value from {s1, s2} to P (UR ∪ {u}) is again 2 in G12. Then CG12(s1, s2;U|G12) = 1
implies that UR ∪ {u} become clones in G12. Next, we turn to look at G ′12. First,
obviously UR ∪ {u} are not clones in G ′12, as u has some parents in S which are not
dropped in G ′12. Second, CG′12

(
s1, s2;PG′12(U)

)
= 2 as R becomes s1-only-reachable in

G ′12 while s2 can reach some other node in PG′12(U). Combining the above two, we have
shown that CG′12 (s1, s2;U) = 2.
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(ii) U|G12 6= U :

Some nodes in U are dropped in generating G12 and hence U ∩ Ks2(v∗1) 6= ∅. The
nodes in this intersection will be come s1-only-reachable in G ′12. Since some nodes in
U|G′12 = U can be reached by s2 in G ′12, we conclude that CG′12 (s1, s2;U) = 2.

(B) U|G′12 6= U : Some nodes in U are dropped in generating G ′12, and the collection of these
nodes is U \U|G′12 . In the same layer as P s2(w12), consider the collection of predecessors
of nodes in U \U|G′12 . It must be equal to P s2(w12), otherwise nodes in U \U|G′12 would
not be dropped in generating G ′12. Hence, U \ U|G′12 cannot be reached by K(w12), and
has no parents in P . Therefore U \ U|G′12 ⊆ UQ. Nodes in U \ U|G′12 hence will not be
dropped in G12 and CG12 (s1, s2;UR ∪ UQ) = 2, as nodes in U \U|G′12 can only be reached
by P s2(w12) while nodes in UR can be reached by w12 and its s1-only-reachable parents.
Hence, the only possibility such that CG12(s1, s2;PG12(v∗2)) = 1 is that U|G12 6= U and
CG12(U|G12 ;PG12(v∗2)) = 1.

Note that CG′12
(
U|G′12 ;PG′12(v

∗
2)
)

= C
(
U|G′12 ;P(v∗2)

)
and CG12 (U|G12 ;PG12(v∗2)) = C (U|G12 ;P(v∗2)).

Also note that U \ U|G12 will not be dropped in G ′12, and U \ U|G′12 will not be dropped
in G12. Hence U is partitioned by U \ U|G′12 , U \ U|G12 , and U|G12 ∩ U|G′12 . Furthermore,
UR ⊆ U|G12 ∩ U|G′12 .
We first show that C

(
U|G′12 ;P(v∗2)

)
≥ 2. Define a function of the subsets of U by

f(A) := C (A;P(v∗2)) , A ⊆ U .

Since f is submodular, we have

3
(a)

≤ f
(
U|G12 ∩ U|G′12

)
+ f (U) ≤ f (U|G12) + f

(
U|G′12

)
(b)
= 1 + f

(
U|G′12

)
=⇒ f

(
U|G′12

)
≥ 2.

(a) is due to f (U) ≥ 2 and f
(
U|G12 ∩ U|G′12

)
≥ 1 since UR ⊆ U|G12 ∩ U|G′12 . (b) is due

to f (U|G12) = 1.

Next we show that CG′12
(
s1, s2;U|G′12

)
= 2. This is easy to see, since U \ U|G12 will

become s1-only-reachable in G ′12 and some other nodes in U|G′12 can be reached by s2.

Combining the above arguments, we conclude that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

2) R = ∅:
In this case, U = UP ∩ UQ. For notational convenience, we denote P(U) \ P by Q. Since

in G12 the nodes in P no longer connects to UP , P(U|G12) = Q. Note that if UP 6= ∅, then
CG′12

(
s1, s2;P(U|G′12)

)
= 2 since P ⊆ P(U), and nodes in P become s1-only-reachable in G ′12

while some other nodes in P(U|G′12) can be reached by s2.
CG12 (s1, s2;PG12(v∗2)) = 1 implies that: (A) CG12 (s1, s2;Q) = 1, (B) CG12 (Q;U|G12) = 1,

or (C) CG12 (U|G12 ;PG12(v∗2)) = 1. Below we discuss the three cases respectively.
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(A) CG12 (s1, s2;Q) = 1: Suppose UP = ∅, then P(U) = Q, and CG12 (s1, s2;Q) = 1 implies
C (s1, s2;Q) = 1 contradicting the definition of v∗2. Hence UP 6= ∅, implying that
CG′12

(
s1, s2;P(U|G′12)

)
= 2.

If U|G′12 are not clones in G ′12 and CG′12
(
U|G′12 ;PG′12(v

∗
2)
)
≥ 2, then CG′12

(
s1, s2;PG′12(v

∗
2)
)

=
2.

If U|G′12 become clones in G ′12, then u′21 := PmcG′12(d1) must belong to this new clone
set. Its parent set is P ∪Q|G′12 , as some nodes in Q may be dropped in G ′12. P becomes
s1-only-reachable in G ′12, while v∗1 has some s1-only-reachable parents not in P . Hence,
KG′12v

∗
1 ∩ K

s1
G′12

(u′21) = ∅, and Ks1
G′12

(u′21) does not form a (s1; d1)-vertex-cut in G ′12.

If CG′12
(
U|G′12 ;PG′12(v

∗
2)
)

= 1, then U|G′12 6= U , that is, some nodes in UQ are dropped
in G ′12. But no nodes in UP will be dropped. A node in UP is s1-reachable in G ′12, and
is an predecessor of u′21. This node cannot lie in K(v∗1), otherwise Q contains some s1-
only-reachable nodes implying that all nodes in Q are s1-only-reachable, contradicting
the fact that in G ′12 some nodes in Q|G′12 can be reached by s2. Hence this node is not
an predecessor of any node in the cloud C1. In G ′12, u′21 has a s1-reachable parent whose
predecessors include this node in UP , and this parent is not in the cloud C1. Therefore,
Ks1
G′12

(u′21) does not form a (s1; d1)-vertex-cut in G ′12.

(B) CG12 (Q;U|G12) = 1: In this case, U|G12 become clones in G12. Suppose UP = ∅. Then
U|G12 = U , and U are clones in G, contradicting the definition of v∗2. Hence UP 6= ∅,
implying that CG′12

(
s1, s2;P(U|G′12)

)
= 2. Moreover, we see that UQ are clones in G.

Suppose U|G′12 6= U . We know that U \ U|G′12 ⊆ UQ. Since UQ are clones in G, we
conclude that U \ U|G′12 = UQ, implying that all nodes in UQ and Q will be dropped in
G ′12. This contradicts the fact that some nodes in U|G′12 can be reached by s2. Therefore,
U|G′12 = U .

In G ′12, nodes in UP have parents in P . Therefore obviously U|G′12 = U are not clones

in G ′12. Combining the above discussions, we conclude that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

(C) CG12 (U|G12 ;PG12(v∗2)) = 1: In this case, we must have UG12 6= U . If U|G′12 = U , we use the

same argument in Case 1)(A)(ii) to show that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2. If If U|G′12 6= U ,

we use the same argument in Case 1)(B)(ii) to show that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

Proof of the claim is now complete.

7.2 (1/2, 1)-Achievability in Case A when k∗1 = k∗2 = k∗

We first state a useful lemma.
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Lemma 7.1. Let p(α1, α2, . . . , αn), q(α1, α2, . . . , αn) ∈ F2[α1, α2, . . . , αn] such that p, q are
not identically equal to zero or to each other. If α1, α2, . . . , αn are chosen independently and
uniformly over F2k , then

• q(α1, α2, . . . , αn) 6= 0 with probability at least 1 − O( 1
2k

), so the rational function p
q

is
well-defined with high probability,

• and P (p
q

= γ) = O( 1
2k

) for all γ ∈ F2k .

Proof. We use a standard result from finite fields which states that if a multivariate polyno-
mial g in n variables over finite field F with degree in each variable at most d, is evaluated
at an argument chosen uniformly over the set of possible arguments, then it yields zero with
probability at most nd

|F| , provided of course that the polynomial is not identically zero.
This proves the first item in the lemma with g = q and the second item in the lemma for

the case γ = 0 using g = p.
For γ = 1, we use the fact that p− q is not identically zero to get P (p

q
= 1) = O( 1

2k
).

For any other γ ∈ F2k , we notice that p − γq cannot possibly be identically zero unless
both p and q are identically zero. This is because p, q have coefficients from F2 while γ 6= 0, 1.
This establishes that p− γq evaluates to zero with probability atmost O( 1

2k
).

We start the proof of (1/2, 1)-achievability below.
Here, we have

• P s1(v∗1) \ P s1(v∗2) 6= ∅,P s2(v∗2) \ P s2(v∗1) 6= ∅,

• u1 ∈ P s1(v∗1) \ P s1(v∗2) 6= ∅ and u2 ∈ P s2(v∗2) \ P s2(v∗1) 6= ∅,

• u1 is s1-only-reachable and u2 is s1s2-reachable,

• w2 ∈ P(v∗2) such that C (s1, s2; u2,w2) = 2, and w2 is a parent of v∗1, and w2 is s2-
reachable.

We will use RLC for the transmission of all nodes in layers 0 through k∗ − 2. The RLC
is performed without mixing across the time steps. In the first time step, s1 transmits the
symbol a while s2 transmits the symbol b1. In the second time step, s1 transmits symbol a
while s2 transmits the symbol b2.

Suppose now that w2 is s1s2-reachable.
Consider the scheme where w2 and u2 both zero-force user 1’s symbol a. u1 and u2 transmit

in the first time slot, thus causing no interference at v∗1 and v∗2. w2 transmits in the second
time slot.

We have β
(1)
u1,s2 = β

(1)
u1,s2 = 0, while β

(1)
u1,s1 6= 0 with high probability from Lemma 6.13.

Thus u1 can decode s1’s symbol a with high probability.
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Now, the receptions of u2 in the two time slots are β
(1)
u2,s1 ·a+β

(1)
u2,s2 ·b1 and β

(2)
u2,s1 ·a+β

(2)
u2,s2 ·b2

respectively. Similarly, the receptions of w2 are β
(1)
w2,s1 ·a+β

(1)
w2,s2 ·b1 and β

(2)
w2,s1 ·a+β

(2)
w2,s2 ·b2. Note

that the coefficients of these symbols are all non-zero with high probability from Lemma 6.13.
The zero-forcing yields:

• Transmission of u2 : β
(1)
u2,s2β

(2)
u2,s1 · b1 − β(2)

u2,s2β
(1)
u2,s1 · b2

• Transmission of w2 : β
(1)
w2,s2β

(2)
w2,s1 · b1 − β(2)

w2,s2β
(1)
w2,s1 · b2

To show that v∗2 can decode, we only need to show that the determinant

∣∣∣∣∣β(1)
u2,s2β

(2)
u2,s1 −β(2)

u2,s2β
(1)
u2,s1

β
(1)
w2,s2β

(2)
w2,s1 −β

(2)
w2,s2β

(1)
w2,s1

∣∣∣∣∣
is non-zero, ie that β

(1)
u2,s2β

(2)
u2,s1β

(2)
w2,s2β

(1)
w2,s1 6= β

(2)
u2,s2β

(1)
u2,s1β

(1)
w2,s2β

(2)
w2,s1 or

β
(1)
u2,s2β

(1)
w2,s1

β
(1)
u2,s1β

(1)
w2,s2

6= β
(2)
u2,s2β

(2)
w2,s1

β
(2)
u2,s1β

(2)
w2,s2

Note that the coefficients with 1 superscript are independent of the coefficients with 2
superscript. So, LHS and RHS are two independent and identically distributed random
variables taking values in F2r .

By Lemma 6.14, we have that the determinant

∣∣∣∣∣β(1)
u2,s1 β

(1)
u2,s2

β
(1)
w2,s1 β

(1)
w2,s2

∣∣∣∣∣ 6= 0 with high probability.

So, the above random variable is not equal to 1 with high probability.
Now, we note that the random variable is a ratio of two polynomials with coefficients from

F2, a ratio that is not identically 1. The equality stating that the ratio equals γ ∈ F2r , γ 6= 0, 1
is an equality stating that a polynomial not identically zero evaluates to 0. If all coefficients
are chosen indpendently and uniformly at random, this polynomial evaluates to 0 with

probability O
(

1
|F2r |

)
. Thus, the random variable does not concentrate on any given value

γ ∈ F2r and so, two independent and identically distributed copies of the random variable
are unequal with high probability.

Suppose that w2 is s2-only-reachable. Then, u1, u2 transmit in the first time slot with u2

zero-forcing user 1’s symbol a. In the second time slot, w2 which can recover both b1 and b2

with high probability, provides a linearly independent signal to u2’s transmission.

7.3 Formal Proofs of Outer Bounds

7.3.1 Proof of the Omniscient Bound

Since K(v) is a (s1, s2; d1)-vertex-cut, the received signal at d1, Yd1 is a function of Yv. On
the other hand, since Ks2(v) is a (s2; d2)-vertex-cut, we have that Y N

d2
is a function of XN

s1

and Y N
v . Hence we have the Markov chains

XN
s1
↔ Y N

v ↔ Y N
d1

(7.2)
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XN
s2
↔
(
Y N

v , XN
s1

)
↔ Y N

d1
(7.3)

By Fano’s inequality and the data processing inequality, we have for any scheme of block
length N,

N (R1 +R2 − εN)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
≤ I

(
XN

s1
;Y N

v

)
+ I

(
XN

s2
;Y N

v , XN
s1

)
(from (7.2) and (7.3))

≤ I
(
XN

s1
;Y N

v

)
+ I

(
XN

s2
;Y N

v |XN
s1

)
= H

(
Y N

v

)
−H

(
Y N

v |XN
s1

)
+H

(
Y N

v |XN
s1

)
= H

(
Y N

v

)
≤ N,

where εN → 0 as N →∞. Hence R1 +R2 ≤ 1.

7.3.2 Proof of Claim 6.25

Proof. If (R1, R2) is achievable, from data processing inequality and Fano’s inequality, we
have

N (2R1 +R2 − εN)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s1
;ZN

21, X
N
s2

)
+ I

(
XN

s1
;ZN

1

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
(b)
= I

(
XN

s1
;ZN

21|XN
s2

)
+ I

(
XN

s1
;ZN

1

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
= H

(
ZN

21|XN
s2

)
+H

(
ZN

1

)
−H

(
ZN

1 |XN
s1

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

21, Z
N
22|XN

s2

)
(c)
= H

(
ZN

1

)
+H

(
ZN

21|XN
s2

)
−H

(
ZN

21|XN
s2

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

1 |XN
s1

)
(d)

≤ H
(
ZN

1

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

22

)
= H

(
ZN

1

)
+H

(
ZN

21|ZN
22

) (e)

≤ 2N

where εN → 0 as N →∞. (a) is due to condition 2) and 3). (b) is due to the fact that XN
s1

and XN
s2

are independent. (c) is due to condition 5) and rearranging terms. (d) is due to
condition 4). (e) is due to condition 1).
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7.3.3 Proof of Claim 6.26

Proof. If (R1, R2) is achievable, from data processing inequality and Fano’s inequality, we
have

N (2R1 +R2 − ε1,N)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s1
;ZN

21, Z
N
22, X

N
s2

)
+ I

(
XN

s1
;ZN

11

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
(b)
= I

(
XN

s1
;ZN

21, Z
N
22|XN

s2

)
+ I

(
XN

s1
;ZN

11

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
= H

(
ZN

21, Z
N
22|XN

s2

)
+H

(
ZN

11

)
−H

(
ZN

11|XN
s1

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

21, Z
N
22|XN

s2

)
(c)

≤ H
(
ZN

11

)
−H

(
ZN

22|XN
s1

)
+H

(
ZN

22

)
+H

(
ZN

21|ZN
22

)
(d)
= H

(
ZN

11

)
+H

(
ZN

21|ZN
22

)
+ I

(
XN

s1
;ZN

22

)
(e)

≤ 2N + I
(
XN

s1
;ZN

12

)
,

where ε1,N → 0 as N →∞. (a) is due to condition 2) and 3). (b) is due to the fact that XN
s1

and XN
s2

are independent. (c) is due to cancellation of terms and condition 4). (d) is due to
I
(
XN

s1
;ZN

22

)
= H

(
ZN

22

)
−H

(
ZN

22|XN
s1

)
. (e) is due to condition 1) and 5).

We see that we cannot upper bound 2R1 +R2 by 2 in this case. On the other hand,

N (R2 − ε2,N) ≤ I
(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s2
;ZN

12, X
N
s1

) (b)
= I

(
XN

s2
;ZN

12|XN
s1

)
= H

(
ZN

12|XN
s1

)
.

where ε2,N → 0 as N →∞. (a) is due to condition (3). (b) is due to the fact that XN
s1

and
XN

s2
are independent.

Combining the above two, we have

N (2R1 + 2R2 − εN)

≤ 2N + I
(
XN

s1
;ZN

12

)
+H

(
ZN

12|XN
s1

)
= 2N +H

(
ZN

12

)
(a)

≤ 3N,

where εN = ε1,N + ε2,N → 0 as N →∞. (a) is due to condition 1). Proof complete.
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Chapter 8

Conclusions and Future Work

In Part I and Part II, we characterized both qualitatively and quantitatively how limited
cooperation between transmitting terminals or receiving terminals helps mitigate interference
in the canonical two-user Gaussian interference channel. From the fundamental perspective,
the study sheds light on how limited cooperation can be used for better interference man-
agement in wireless networks. It also points out the potential impact on wireless system
design. One important insight gained from the study is that, in different regimes of inter-
ference, the gain from limited cooperation can be quite different. This leads to a broader
optimization framework taking the resource used for cooperation into account. Although the
study is on the additive white Gaussian noise channel model with orthogonal cooperation,
which is a fairly reasonable model for cellular systems with backhaul cooperation, we believe
that the same principles can be readily applied to fading wireless channels as well as various
cooperation scenarios, such as in-band cooperation in wireless ad-hoc networks.

Nevertheless, from the practical point of view, it is still quite an open question regarding
how much cooperation gain one can extract in a deployed wireless system. Various efforts
have been pushed towards settling this question and a comprehensive survey can be found
in [59]. Along this direction, one of the ongoing research topics is to pursue practical coding
and system design for cooperative wireless systems. Some partial results can be found in our
work [60] and the references therein.

In Part III, we investigated how intermediate relay nodes help resolve interference in
delivering information from two sources to their respective destinations in multi-hop wireless
networks. This belongs to a broader class of problem, namely, the two unicast infomation flow
over wireless networks. Given that even the understanding in the two-unicast wired networks
is limited, we focused on a special class of layered linear deterministic networks without any
other restrictions on the model except that the min-cut between each source-destination
pair is constrained to be 1. We completely characterized the capacity region of this class
of two-unicast networks, which provides an analogous result to that of the wired networks
[52]. However, for general two-unicast linear deterministic networks, the characterization of
the capacity region remains open, as it is also open for two-unicast wired networks. Hence,
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the connection of the result in Part III to the Gaussian two-unicast networks is yet to be
explored. To make progress, we believe that a better understanding of two-unicast wired
networks is necessary. On the other hand, extensions of the result to networks with more than
two source-destination pairs also seem non-trivial, and more work has to be done towards
that direction.
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