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Abstract

High-dimensional Principal Component Analysis

by

Arash Ali Amini

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Associate Professor Martin Wainwright, Chair

Advances in data acquisition and emergence of new sources of data, in recent years,
have led to generation of massive datasets in many fields of science and engineering. These
datasets are usually characterized by having high dimensions and low number of samples.
Without appropriate modifications, classical tools of statistical analysis are not quite ap-
plicable in these “high-dimensional” settings. Much of the effort of contemporary research
in statistics and related fields is to extend inference procedures, methodologies and theo-
ries to these new datasets. One widely used assumption which can mitigate the effects of
dimensionality is the sparsity of the underlying parameters. In the first half of this thesis
we consider principal component analysis (PCA), a classical dimension reduction procedure,
in the high-dimensional setting with “hard” sparsity constraints. We will analyze the sta-
tistical performance of two modified procedures for PCA, a simple diagonal cut-off method
and a more elaborate semidefinite programming relaxation (SDP). Our results characterize
the statistical complexity of the two methods, in terms of the number of samples required
for asymptotic recovery. The results show a trade-off between statistical and computational
complexity. In the second half of the thesis, we consider PCA in function spaces (fPCA), an
infinite-dimensional analog of PCA, also known as Karhunen–Loéve transform. We intro-
duce a functional-theoretic framework to study effects of sampling in fPCA under smoothness
constraints on functions. The framework generates high dimensional models with a different
type of structural assumption, an “ellipsoid” condition, which can be thought of as a soft
sparsity constraint. We provide a M -estimator to estimate principal component subspaces
which takes the form of a regularized eigenvalue problem. We provide rates of convergence
for the estimator and show minimax optimality. Along the way, some problems in approxi-
mation theory are also discussed.
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Chapter 1

Introduction

1.1 Statistics on massive datasets

The classical goal of statistical data analysis is to extract information (or more ambitiously
generate knowledge) from raw datasets, a process which is usually called “statistical infer-
ence”. This rather general statement is meant to encompass the many problems considered
in statistical analysis and its wide area of applications. In particular, the type of information
one seeks and the type of data at hand could be quite varied. Among the early datasets
considered are for example the results of experimental studies (say drug effectiveness studies)
and polling results (categorical data) [40]. Among the more recent examples are:

• the medical and astronomical images (e.g., results of MRI, images of far away galaxies,
images of the surface of the Earth),
• the signal received by a cellphone, a radar, etc. [92],
• the firing of a collection of neurons,
• gene expression data [87],
• paths traced by hurricanes [24],
• reading of nodes in a sensor network,
• epidemic graphs,
• documents on the Internet (and the hyperlink graph),
• paths between nodes on the Internet (routing graphs) [72, 38, 12],
• financial time series (e.g., share prices of a collection companies over time),
• voting history of members of a parliament/senate,
• databases of handwritten data, faces, shapes of body organs or other complex objects,

and so on. The trait shared by these very different datasets which makes them targets of
statistical analysis is that they are “unorganized” and plagued by noise (of various sources,
e.g., measurement noise, noise inherent in the generating process, etc.). More precisely, one
suspects that they contain some organization (or regularity or information) obscured by noise
and one hopes to uncover it by means of analysis. It is also worth noting that these datasets
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are modeled through a myriad of mathematical objects: vectors, functions, matrices, graphs,
probability densities, etc.

The information one seeks to obtain could be the value of an unknown parameter sus-
pected to have influence on the observed dataset, e.g., the sequence of symbols transmitted
in the case of the cellphone signal; it could be a decision to be made, e.g., whether the treat-
ment was effective in an experimental study, whether a target is present in radar detection;
it could be an effective (i.e., low complexity) representation of the data revealing patterns
and facilitating interpretation and visualization; it could be a classification or clustering
task, i.e., grouping similar observations into classes, e.g., classifying a face as male/female,
a document according to its content, detecting objects in a scene and so on; it could be a
prediction problem, e.g. given the path of a hurricane so far what is the most likely path it
is going to take in the future; it could be revealing relationships or connections, e.g., what is
a reasonable association graph for members of the parliament given their votes, what is the
connectivity graph for nodes of a network?

The statistical aspects1 of these problems are usually modeled by a family of probability
distributions P = {Pθ : θ ∈ Θ} indexed by a parameter θ taking values in some parameter
space Θ. Each Pθ is a probability distribution over the observation space X , which could be
a space of vectors, functions or other more fancy mathematical objects. For example, in the
voting problem mentioned, Θ can be the space of {−1, 0, 1}-valued Ns × Nb matrices and
Θ a subspace of the space of all graphs on Ns nodes—where Ns is the number of senators
and Nb is the number of bills. It is usually assumed that we have access to n independent
samples X := {xi}ni=1 ⊂ X drawn from Pθ∗ , where θ∗ ∈ Θ is the unknown true parameter or
the state of nature. The goal is then to infer θ∗ from X; that is, to obtain a function of X,
say θ̂ = θ̂(X), which serves as an estimate of θ∗. We can then compare it to the true value

in some appropriate error metric, say r(θ̂, θ∗) := [Eθ∗ d2(θ̂, θ∗)]1/2, providing an assessment
of the quality of inference (cf. §2.6.1 and [16, 62]).

What makes the inference possible? Intuitively, since the “n” samples agree in the regular
part (θ∗) and differ in the random part (the noise due to sampling), one can hope that due
to independence, the noise can be averaged out as n grows large, revealing the underlying
regularity. In mathematical terms, one hopes that the collection Pn := {P⊗nθ :∈ Θ} of n-fold
product measures generated by the family P becomes well-separated (in some appropriate
metric for probability distributions) as n→∞, allowing for perfect identification of θ∗ ∈ Θ
that generated the data X.

This is indeed the case in the classical setting where Θ is a subset of some finite-
dimensional vector space of fixed dimension p, e.g., Θ ⊂ Rp. More specifically, asymptotic
theory [94] shows that when p is kept constant while n → ∞, the error r(θ̂, θ∗) goes to

1Not all aspects are covered by the decision-theoretic model discussed here. For example, in the context of
sensor networks, there is the problem of communication between nodes: most nodes have access to their own
data, limited processing power and few communication links; there is a need for distribution of information
and computation. This raises interesting questions about the rate of information dissemination in the network
and its interaction with statistical rates.
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(a) Entire dataset

(b) An enlarged subset

Figure 1.1: Gene expression data from a breast cancer study. The top plot is the 78×4918 matrix of expression levels, the rows
represent patients (or tumor samples), the columns represent different genes suspected to influence treatment. The bottom plot
shows the subset of data corresponding to 70 genes among those found to be a good signature for treatment success.

zero for many reasonable estimators θ̂, i.e., they are consistent estimators of θ∗. In fact,
one shows that the optimal convergence rate is O(n−1/2). The estimators that achieve this
rate are called

√
n-consistent ; they are asymptotically efficient2 or optimal in a statistical

sense. This sort of asymptotics is well-suited for approximating problems of classical statis-
tics, where n� p. As an example consider a polling problem, where we ask a population of
roughly n ≈ 1000, which of the p ≈ 5 candidates they are going to vote for in an election.

The situation is quite the opposite for most modern datasets mentioned earlier. Fig. 1.1(a)
shows an example of gene expression data from a breast cancer study conducted by van’t
Veer et. al [95]. The observed dataset, X, collects the expression levels of p = 4918 genes in
tumor samples from n = 78 patients, organized as a n×p matrix. Out of the 78 patients, 34
exhibited recurrence in a 5-year period after treatment; that is, the samples may be thought
of as coming from two populations, say, Pθ1 , modeling gene sequences in patients that ex-
hibited recurrence and Pθ2 , modeling those in patents that did not. The goal was to find a
subset of genes that could reliably differentiate between the two groups and hence could be
used as a predictor of treatment success. Here, we have n � p and consequently classical
asymptotic results are poor approximations for this problem. Fig. 1.1(b) shows the part of
X corresponding to a subset of genes of size n1 = 70 which are part of the signature found

2An estimator is statistically efficient roughly means that among all estimators it requires the least number
of samples to achieve a certain level of error.
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by the study to be a good predictor. Even in this reduced dataset, one has n ≈ p, rendering
classical asymptotics useless.

1.2 Structured high-dimensional datasets

For problems in which n� p, a more appropriate form of asymptotics is obtained by letting
both n and p go to infinity simultaneously. This will be referred to as the high-dimensional
setting. A rough calculation shows that the error r(θ̂, θ∗) will be of the order O(

√
p/n) for

optimal estimators. Thus, as long as p/n→ 0 as (n, p)→∞, we cannot hope for consistency
(cf. §2.4.3).

But p/n → 0 is not a good model for our problems. We would like to let p/n → γ > 0
or even p/n → ∞ and still be able to consistently estimate the parameter. The key is to
impose additional structure on the parameter, so that the parameter space, Θ, has some low
effective dimension. A simple such structure which is both natural and popular is sparsity.
Returning to our example in which Θ ⊂ Rp, we could further impose

Θ ⊂
{
θ ∈ Rp : |{j : [θ]j 6= 0}| ≤ s} (1.1)

for some s � p. (Here and elsewhere, [θ]j applied to a vector θ is its j-th entry and |A|
applied to a set A is its cardinality.) In other words, all θ ∈ Θ have at most “s” nonzero
entries. In yet other words, all θ ∈ Θ lie in the union of

(
p
s

)
coordinate subspaces, each of

which is s-dimensional. A rough estimate then suggests that if
s log (ps)

n
≈ s2 log p

n
goes to zero,

we can hope for consistency. Rigorous results of this sort will appear in Chapter 3 when we
discuss high-dimensional sparse PCA.

Assumption (1.1) is sometimes referred as a hard sparsity constraint suggesting that there
are also soft measures of sparsity; notable among them is an `pq-ball constraint,

Θ ⊂
{
θ ∈ Rp :

p∑
j=1

∣∣[θ]j∣∣q ≤ Cq} (1.2)

for some q < 1. This model allows for a more graceful drop of entries of θ to zero. Although
our focus will be mostly on hard sparsity, some results related to model (1.2) will be discussed
in Chapter 3 in the context of PCA.

Another structure is an ellipsoid condition which arises naturally when the parameter is
a function living in some class of functions and one imposes a smoothness condition on the
class. When the function class is infinite-dimensional, the natural space for the parameter θ
is usually the space of infinite sequences θ = (θ1, θ2, . . . ) with some constraint, say, on their
energy

∑∞
j=1 θ

2
j <∞; this space is referred to as `2 sequence space. The ellipsoid condition

is then,

Θ ⊂
{
θ ∈ `2 :

∞∑
j=1

[θ]2j
µj
≤ Cµ

}
(1.3)
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for a null positive sequence µ = (µ1, µ2, . . . ): µj > 0 and µj → 0 as j →∞. Since for large j,
µj is small, so is the corresponding [θ]j. Hence, the ellipsoid condition too can be thought of
as a soft sparsity assumption. Results for models of the form (1.3) will appear in Chapter 5
in the context of our discussion of functional PCA.

To summarize, all these models impose conditions implying that despite the true param-
eter living in a high-dimensional or even infinite-dimensional space, its truly significant part
is of relatively small size (low-dimensional). This is somehow the essence of sparsity and it is
a plausible assumption for many real-world datasets. As mentioned earlier, a sparse vector
lies in a union of low-dimensional (linear) subspaces. One possible direction of generalization
is to allow it to lie on a (globally nonlinear) submanifold of low dimension or on a union of
such submanifolds.

1.3 Principal component analysis (PCA) and sparsity

As the title suggests, our focus in this thesis will be on principal component analysis (PCA)
in the high-dimensional setting (and in function spaces). PCA is a classical method for
reducing dimension, say from a subset of Rp to some subset of Rd where d � p, and is
frequently used to obtain a low-dimensional representation of a dataset. It operates by
projecting the data onto the d directions of maximal variance, captured by eigenvectors of
the p × p population covariance matrix Σ. Of course, in practice, one does not have access
to the population covariance, but instead must rely on a “noisy” version of the form

Σ̂ = Σ + ∆ (1.4)

where ∆ = ∆n denotes a random noise matrix, typically arsing from having only a finite
number n of samples. We usually take Σ̂ to be the sample covariance, which for a dataset
{xi}ni=1 ⊂ Rp with population mean zero, is given by Σ̂ = 1

n

∑n
i=1 xix

T
i . Fig. 1.2 shows a toy

example with p = 3 and d = 1 and n = 200.
As with any statistical procedure, a natural question when using the noisy version Σ̂ is

the issue of consistency, i.e., under what conditions the sample eigenvectors (i.e., based on

Σ̂) are consistent estimators of their population analogues. In the classical theory of PCA,
the model dimension p is viewed as fixed, and asymptotic statements are established as the
number of observations n tends to infinity. With this scaling, the influence of the noise matrix
∆ dies off, so that sample eigenvectors and eigenvalues are consistent estimators of their
population analogues [7] (cf. §2.4.1). However, such “fixed p, large n” scaling is inappropriate,
as discussed in §1.2, for many contemporary applications in science and engineering (e.g.,
financial time series, astronomical imaging, sensor networks), in which the model dimension
p is comparable or even larger than the number of observations n. This type of high-
dimensional scaling causes dramatic breakdowns in standard PCA and related eigenvector
methods, as shown by classical and ongoing work in random matrix theory [43, 55, 58]
(cf. 2.4.2).
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(a) (b)

Figure 1.2: PCA toy example. (a) is the scatter-plot of some n = 200 points in R3 generated from a spiked covariance model
with one component (cf. Chapter 3). The data clearly concentrates along a line through the origin (i.e., a 1-dimensional
subspace). (b) shows the data after projection onto two 1-dimensional subspaces, generated by the true principal component
(PC), the green points, and by the sample PC based on the sample covariance, the red points. Qualitatively, the sample version
is a very good estimate of the true PC, as one expects for a classical scaling n = 100� 3 = p.

As discussed in §1.2, it is possible to add a natural structural assumption, namely sparsity,
to help mitigate the curse of dimensionality. Various types of sparse models have been
studied in past statistical work. There is a substantial and on-going line of work on subset
selection and sparse regression models [e.g., 26, 37, 69, 90, 100], focusing in particular on
the behavior of various `1-based relaxation methods. Other work has tackled the problem
of estimating sparse covariance matrices in the high-dimensional setting, using thresholding
methods [17, 39] as well as `1-regularization methods [31, 108].

1.3.1 Sparse PCA in high-dimensional setting

A related problem—and the primary focus of Chapter 3—is recovering sparse eigenvec-
tors from high-dimensional data. While related to sparse covariance estimation, the sparse
eigenvector problem presents a different set of challenges; indeed, a covariance matrix may
have a sparse eigenvector with neither it (nor its inverse) being a sparse matrix. Various
researchers have proposed methods for extracting sparse eigenvectors, a problem often re-
ferred to as sparse principal component analysis (SPCA). Some of these methods are based
on greedy or nonconvex optimization procedures (e.g., [59, 109, 71]), whereas others are
based on various types of `1-regularization [110, 32]. Zou et al. [110] develop a method based
on transforming the PCA problem to a regression problem, and then applying the Lasso
(`1-regularization). Johnstone and Lu [58] proposed a two-step method, using an initial pre-
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processing step to select relevant variables followed by ordinary PCA in the reduced space.
Under a particular `q-ball sparsity model, they proved `2-consistency of their procedure as
long as p/n converges to a constant. In recent work, d’Asprémont et al. [32] have formulated
a direct semidefinite programming (SDP) relaxation of the sparse eigenvector problem, and
developed fast algorithms for solving it, but have not provided high-dimensional consistency
results. The elegant work of Paul and Johnstone [73, 75] studies estimation of eigenvectors
satisfying weak `q-ball sparsity assumptions for q ∈ (0, 2). We discuss connections to this
work at more length below.

In Chapter 3, we study the model selection problem for sparse eigenvectors. More pre-
cisely, we consider a spiked covariance model [55], in which the maximal eigenvector z∗ of
the population covariance Σp ∈ Rp×p is k-sparse, meaning that it has nonzero entries on
a subset S(z∗) with cardinality k, and our goal is to recover this support set exactly. In

order to do so, we have access to a matrix Σ̂, representing a noisy version of the population
covariance, as in equation (1.4). Although our theory is somewhat more generally applica-

ble, the most natural instantiation of Σ̂ is as a sample covariance matrix based on n i.i.d.
samples drawn from the population. We analyze this setup in the high-dimensional regime,
in which all three parameters—the number of observations n, the ambient dimension p and
the sparsity index k—are allowed to tend to infinity simultaneously. Our primary interest is
in the following question:

Using a given inference procedure, under what conditions on the scaling
of triplet (n, p, k) is it possible, or conversely impossible, to recover the
support set of the maximal eigenvector z∗ with probability one?

We provide a detailed analysis of two procedures for recovering sparse eigenvectors:

(a) a simple diagonal thresholding (or cut-off) method, used as a pre-processing step by
Johnstone and Lu [58], and

(b) a semidefinite programming (SDP) relaxation for sparse PCA, recently developed by
d’Aspremont et al. [32].

Under the k-sparsity assumption on the maximal eigenvector, we prove that the success/failure
probabilities of these two methods have qualitatively different scaling in terms of the triplet
(n, p, k). For the diagonal thresholding method, we prove that its success/failure is governed
by the rescaled sample size

θdia(n, p, k) :=
n

k2 log(p− k)
, (1.5)

meaning that it succeeds with probability one for scalings of the triplet (n, p, k) such that θdia

is above some critical value and, conversely, fails with probability one when this ratio falls
below some critical value (cf. Proposition 2). We then establish performance guarantees for
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the SDP relaxation [32]: in particular, for the same class of models, we show that it always
has a unique rank-one solution that specifies the correct signed support once θdia(n, p, k) is
sufficiently large, and moreover, that for sufficiently large values of the rescaled sample size

θsdp(n, p, k) :=
n

k log(p− k)
, (1.6)

if there exists a rank-one solution, then it specifies the correct signed support (cf. Theorem 7).
The proof of this result is based on random matrix theory, concentration of measure, and
Gaussian comparison inequalities (cf. § 2.4.2 and §2.3 for related background). Our final
contribution, regarding the spiked covariance model with hard sparsity constraint, is to use
information-theoretic arguments to show that no method can succeed in recovering the signed
support for the spiked identity covariance model if the order parameter θsdp(n, p, k) lies below
some critical value (cf. Theorem 8). One consequence is that the given scaling (1.6) for the
SDP relaxation is sharp, meaning the SDP relaxation also fails once θsdp drops below a
critical threshold. Moreover, it shows that under the rank-one condition, the SDP is in fact
statistically optimal, i.e., it requires only the necessary number of samples (up to a constant
factor) to succeed.

Computational vs. statistical efficiency

Our results, in Chapter 3, highlight some interesting trade-offs between computational and
statistical costs in high-dimensional inference. On one hand, the statistical efficiency of
SDP relaxation is substantially greater than the diagonal thresholding method, requiring
O(1/k) fewer observations to succeed. However, the computational complexity of SDP is
also larger by roughly a factor O(p3): an implementation due to d’Asprémont et al. [32] has
complexity O(np + p4 log p) as opposed to the O(np + p log p) complexity of the diagonal
thresholding method. Moreover, our information-theoretic analysis shows that the best
possible method—namely, one based on an exhaustive search over all

(
p
k

)
subsets, with

exponential complexity—does not have substantially greater statistical efficiency than the
SDP relaxation. The following table summarizes these results:

Method Computational complexity Statistical complexity

Diagonal cut-off O(np+ p log p) O
(
k2 log(p− k)

)
SDP relaxation O(np+ p4 log p) O

(
k log(p− k)

)
1.4 Functional PCA and its sampling problem

The second half of this thesis considers mainly the functional version of PCA, or fPCA
for short. fPCA lies within the broader field of functional data analysis (FDA), that is,
statistical analysis of data which can be modeled as functions. FDA is an established field in
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statistics with a great number of practical applications [80, 81]. When the data is available
as finely sampled curves, say in time, it is common to treat it as a collection of continuous-
time curves or functions, each being observed in totality. These datasets are then termed
“functional” and various statistical procedures applicable in finite-dimension are extended
to be applicable to them, among which is the principal component analysis (PCA). By the
infinite-dimensional (or nonparametric) nature of function spaces, however, new phenomena
might also be expected. In particular, statistical analysis in infinite-dimension may provide
some insights into aspects of the “high-dimensional” (parametric) setting which has been
the focus of much recent work in theoretical statistics, as discussed in §1.2 and §1.3.

If one thinks of continuity as a mathematical abstraction of reality, then treating func-
tional data as continuous curves is arguably a valid modeling device. However, in prac-
tice, one is faced with finite computational resources and is forced to implement a (finite-
dimensional) approximation of true functional procedures by some sort of truncation of
functions, say in frequency-domain. It is then important to understand the effects of this
truncation on the statistical performance of the procedure. In other situations, for example
in longitudinal data analysis [36], a continuous curve model is justified as a hidden underly-
ing generating process to which one has access only through sparsely sampled, corrupted by
noise perhaps, measurements in time. Studying how the time-sampling affects the estimation
of the underlying functions in the presence of noise has some elements in common with that
of the frequency-domain problem mentioned above.

The generalized sampling

The aim of the second half of this thesis, which constitutes Chapter 5, is to study effects
of “sampling” on fPCA in smooth function spaces. We take a functional-theoretic approach
to sampling by treating the sampling procedure as a (continuous) linear operator. This
provides us with a notion of sampling general enough to treat both the frequency-truncation
and time-sampling in the context of a unified framework. We take as our smooth function
space a Hilbert subspace H of L2[0, 1] and denote the sampling operator by Φ : H → Rm.
We assume that there are functions xi(t), t ∈ [0, 1] in H for i = 1, . . . , n, generated i.i.d.
from a probabilistic model (to be discussed). We then observe the collection {Φxi}ni=1 ⊂ Rm

in noise. We refer to the index n as the number of statistical samples, and to the index m
as the number of functional samples.

We analyze a natural M -estimator which takes the form of a regularized PCA in Rm and
provide rates of convergence in terms of n and m. The eigen-decay of two operators govern
the rates, the product of Φ and its adjoint Φ∗ and the product of the map embedding H
in L2 and its adjoint. These eigenvalues will determine ellipsoid models of the form (1.3)
discussed 1.2. Our focus will be on the setting where H is a reproducing kernel Hilbert
space (RKHS), in which case the two eigen-decays are intimately related through the kernel
function (s, t) 7→ K(s, t). In such cases, the two components of the rate interact and give
rise to optimal values for the number of functional samples (m) in terms of the number
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of statistical samples (n) or vice versa. This has practical appeal in cases where obtaining
either type of samples is costly.

A particular rate of eigenvalue decay which concerns is the polynomial-α decay,

µj �
1

j2α
, for j = 1, 2, . . . (1.7)

where {µj} are the relevant eigenvalues and α > 1/2. For this type of decay, the rates of
convergence for the two examples of time sampling and frequency truncation will be worked
out in detail by specializing our general results to these two operators. Under suitable
conditions we obtain the following rates,

time sampling frequency truncation(
1
mn

) 2α
2α+1 +

(
1
m

)2α (
1
n

) 2α
2α+1 +

(
1
m

)2α

which are then shown to be minimax optimal. The interplay between the two types of sample
(statistical versus functional) is clear from the table.

In deriving the rates of convergence in function space, more precisely in the L2 norm, we
encounter some problems which are approximation-theoretic in nature. In particular, we will
need to understand how well the (semi)norm defined by ‖f‖Φ := ‖Φf‖2 = (

∑m
j=1[Φf ]j)

1/2

approximates the L2 norm ‖f‖L2 := (
∫ 1

0
f 2(t)dt)1/2. This type of approximation problem

will be discussed as an interlude in Chapter 4, which also serves as an introduction to the
Hilbert space setup for fPCA in Chapter 5.

1.5 Organization of the thesis

We start with some general background material in Chapter 2. This chapter reviews some
aspects of vector-matrix analysis and its infinite-dimensional extensions (i.e., functional anal-
ysis) and sets the notation for the subsequent chapters. There are also material on concentra-
tion inequalities and Fano’s inequality which are commonly used to establish upper and lower
bounds on performance of estimators. Section 2.4 of this chapter contains a detailed intro-
duction to PCA and some discussion of classical random matrix theory and high-dimensional
effects.

In Chapter 3, we study sparse PCA in high-dimensional setting by analyzing diagonal
cut-off and SDP relaxation methods and providing minimax lower bounds. This material
appears in in [3]. Section 3.6 contains some unpublished analysis of SDP under the `q sparsity
assumption. Chapter 4 is devoted to the study of the approximation problem related to
‖ ·‖Φ and ‖ ·‖L2 ; the material appears in [4]. Chapter 5 contains the analysis of the sampling
problem for functional PCA whose material appear in [5].
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Chapter 2

Background

This chapter serves a two-fold purpose: to review some of the concepts and tools fre-
quently used throughout the thesis and to establish our notation. We try to present some
of the topics in their simpler forms. More refined versions will appear in the subsequent
chapters and in appendices as needed.

We start with our conventions regarding matrix norms and special classes of matrices.
We assume that the reader is familiar with linear algebra, basic matrix operations and finite-
dimensional operator theory (e.g. [15, 54]).

2.1 Vectors, Matrices and their norms

2.1.1 Vector `p norms

The standard n-dimensional Euclidean space is denoted as Rn. For a vector x = (x1, . . . , xn) ∈
Rn, and p ∈ (0,∞], we use

‖x‖p :=


(∑n

i=1 |xi|p
)1/p

p <∞
max1≤i≤n |xi| p =∞

, (2.1)

to denote its `p (quasi)norm. To emphasize the (quasi)norm, we will denote Rn equipped
with ‖ · ‖p as `np . Strictly speaking, ‖ · ‖p is a norm for p ∈ [1,∞) and only a quasinorm for
p ∈ (0, 1), as it does not satisfy the triangle inequality in the later case [61]. For simplicity,
we will omit the “quasi” prefix and call ‖ · ‖p a norm for all p ∈ (0,∞]. Fig. 2.1 illustrates
the unit ball of `np , defined as

Bn
p :=

{
x ∈ Rn : ‖x‖p ≤ 1

}
, (2.2)

for some values of p (and n = 2). Note that the unit ball is not convex for p ∈ (0, 1). The
`p norms in these cases are often used as soft measures of sparsity, as opposed to the hard
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Figure 2.1: `p norm balls. Plots of the unit balls B2
p for p = 1

2
, 1, 2, 4, from left to right.

sparsity which is measured by the cardinality of x ∈ Rn, defined as

card(x) := |{i : xi 6= 0}|; (2.3)

this is sometimes also called the `0 norm of x.
We will say that a vector x ∈ Rn is sparse, if card(x) � n. Similarly, we will say that

x ∈ Rn is sparse in the “`p sense”, for some p ∈ (0, 1), if ‖x‖p is relatively small. Here, relative
means relative to the dimension n, assuming some fixed normalization, say ‖x‖∞ = 1.

For any p ∈ [1,∞], let p′ denote its Hölder conjugate, defined via the relation 1/p+1/p′ =
1. Then, we have the Hölder inequality [42, Chap. 5]: for x, y ∈ Rn,

n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖p′ . (2.4)

In the special case p = p′ = 2, (2.4) reduces to the Cauchy-Schwarz inequality. Another
special case of interest for us is when p = 1 and p′ = ∞. Applying (2.4) with yi = 1, we
obtain the upper bound in the useful relation

‖x‖p ≤ ‖x‖1 ≤ n1/p′‖x‖p, (2.5)

which holds for p ∈ [1,∞] and x ∈ Rn. The lower bound is obtained by noting that for
p ∈ (1,∞), the map α 7→ αp−1 is increasing on (0,∞). (Without loss of generality, assume∑

i |xi| = 1. Then, |xi|p−1 ≤ 1 for all i and
∑

i |xi|p =
∑

i |xi||xi|p−1 ≤
∑

i |xi| = 1. The case
p =∞ is trivial.)

2.1.2 Classes of matrices and spectral theorems

We denote the class of real-valued m-by-n matrices as Rm×n, the class of n-by-n (real-valued)
symmetric matrices as Sn and the class of n-by-n positive semidefinite (PSD) matrices as Sn+.
Recall that a square matrix A ∈ Rn×n is symmetric if A = AT where AT is the transpose
of A, and is PSD if in addition xTAx ≥ 0 for all x ∈ Rn. Thus, we have the inclusions
Sn+ ⊂ Sn ⊂ Rn×n.

The class Rn×n is a vector space (with the usual matrix addition and scalar multiplication)
and can be identified with Rn2

and hence has dimension n2. The class Sn is subspace of Rn×n
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of dimension n(n + 1)/2 and Sn+ is a convex cone [53] in this subspace. The cone structure
of Sn+ induces a natural partial order (sometimes called Löwner oder) which we denote by �
and �. More precisely, A � B and B � A if A−B ∈ Sn+.

We denote a generic eigenvalue of A ∈ Rn×n as λ(A). The minimum and maximum
eigenvalues are denoted as λmin(A) and λmax(A). The eigenvalues in decreasing order are
referred to as λ↓1(A) ≥ λ↓2(A) ≥ · · · ≥ λ↓n(A). Any member of the set of eigenvectors
of A associated with an eigenvalue is denoted as ϑ(A). Similarly, ϑmax(A) represents any
eigenvector associated with the maximal eigenvalue (occasionally referred to as a “maximal
eigenvector”) and ϑ↓j(A) any eigenvector associated with λ↓j(A). We always assume that
eigenvectors are normalized to unit `2-norm, and have a nonnegative first component. The
sign convention guarantees uniqueness of the eigenvector associated with an eigenvalue with
geometric multiplicity one.

By the spectral theorem [15, Chap. 1], any (real) symmetric matrix A ∈ Sn has a
decomposition of the form

A = UΛUT (2.6)

where Λ is diagonal with eigenvalues of A on its diagonal and U ∈ Rn×n is an orthogonal
matrix collecting the corresponding eigenvectors. Our notation for a diagonal matrix Λ ∈
Rn×n with diagonal entries {λi}ni=1 is diag(λ1, . . . , λn). By definition, an orthogonal matrix
U ∈ Rn×n is such that UTU = UUT = In where In denotes the n-by-n identity matrix. The
class of n-by-n orthogonal matrices will be denoted as On. We refer to (2.6) as the eigenvalue
decomposition (EVD), eigen-decomposition or spectral decomposition of A. Note the by

As a consequence of the spectral decomposition, for any matrix A ∈ Rm×n one obtains a
decomposition

A = UΣV T (2.7)

where Σ ∈ Rm×n is diagonal, U ∈ Om and V ∈ On. The nonzero diagonal entries of Σ are
called the singular values of A and denoted as {σi(A)}. They are positive by definition and
their number is equal to the rank of A, denoted as rank(A). For example, if m ≤ n and A is
full rank, we have Σ =

[
Σ1 0

]
where Σ1 = diag(σ1(A), . . . , σm(A)). We refer to (2.7) as the

singular value decomposition (SVD) of A.
Recalling the definition of a PSD matrix, we note that for A � 0 and any U of compatible

dimension, we have UTAU � 0. In particular, it follows from (2.6) that Λ � 0, that is, all
the eigenvalues of a PSD matrix are nonnegative.

2.1.3 Matrix operator norms

Now consider the class of real-valued m-by-n matrices, denoted as Rm×n. For a matrix A ∈
Rm×n, we use |||A|||p,q to denote its operator norm, when viewed as an operator A : `nq 7→ `mp ;
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more precisely, we have
|||A|||p,q := max

‖x‖q=1
‖Ax‖p. (2.8)

When p = q, we also use |||A|||p = |||A|||p,p. A few cases of particular interest in this thesis are

• the spectral norm: |||A|||2 = |||A|||2,2 = maxi{σi(A)},

• the `∞ operator norm: |||A|||∞ = |||A|||∞,∞ = max
i=1,...,m

∑n
j=1 |Aij|,

• the `1 operator norm: |||A|||1 = |||A|||1,1 = max
j=1,...,n

∑m
i=1 |Aij|,

where {σi(A)} are the singular values of A (see §2.1.2). The above expression for the spectral
norm follows from the definition (2.8), the SVD (2.7) and the invariance of the `2 norm under
orthogonal transformations.

For a symmetric matrix A ∈ Sn, one has another useful expression for the spectral norm,

|||A|||2 = sup
{
|λ| : λ is an eigenvalue of A

}
, (2.9)

which is a consequence of the EVD (2.6). The right-hand side of the above equation is called
the spectral radius and is denoted as spr(A). In general, for a non-symmetric matrix A,
one only has spr(A) ≤ |||A|||2. Finally, for a PSD matrix A ∈ Sn+, we get form (2.9) that
|||A|||2 = λmax(A) .

As a consequence of the definition (2.8), for any vector x ∈ Rn, we have

‖Ax‖p ≤ |||A|||p,q‖x‖q, (2.10)

a property referred to as ||| · |||p,q being consistent with vector norms ‖ · ‖p and ‖ · ‖q. By
using (2.10) twice, it follows that operator norms are consistent with themselves,

|||AB|||p,q ≤ |||A|||p,r|||B|||r,q. (2.11)

When all the norms in (2.11) are the same, this is called its submultiplicative property.
Recall that the trace of a square matrix A ∈ Rn×n is given by tr(A) =

∑
iAii. Given two

square matrices X, Y ∈ Rn×n, we define the matrix inner product

〈〈X, Y 〉〉 := tr(XY T ) =
∑
i,j

XijYij. (2.12)

This inner product induces the Hilbert-Schmidt norm |||X|||HS :=
√
〈〈X,X〉〉 (also called the

Forbenius norm). It is not hard to see, using the SVD of X, that |||X|||HS =
(∑n

i=1 σ
2
i (X)

)1/2
.

Note that both the spectral and the Hilbert-Schmidt norms depend only on the singular
values of the matrix. Any such matrix norm is unitarily invariant in the sense that for any
two orthogonal matrices U and V (of proper dimensions), one has

|||UXV ||| = |||X|||. (2.13)

Another useful example of a unitarily invariant norm is the nuclear norm |||X|||∗ :=
∑

i σi(X)
which is dual to the spectral norm with respect to the inner product (2.12).
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Vector norms on matrices

We occasionally find it useful to apply vector `p norms to matrices, treating them as vectors,
say, by stacking their columns on top of each other. [As the `p norms are symmetric, there is
no ambiguity in arrangement of elements in passing from a matrix to a vector.] Our notation
of using double bars ‖ · ‖ for vector norms and triple bars ||| · ||| for matrix norms should leave
no confusion as to which type of norm is being applying to the matrix.

For example, for B ∈ Rn×k, we have

‖B‖∞ := max
1≤i≤n, 1≤j≤k

|Bij|.

The following “mixed-norm” inequality will be useful to us in §3.F,

‖AB‖∞ ≤ |||A|||∞,∞‖B‖∞, (2.14)

where A ∈ Rm×n and B ∈ Rn×k. For the proof, let b1, . . . , bk denote the columns of B. Then,

‖AB‖∞ = ‖ [Ab1, . . . , Abk] ‖∞ = max
1≤i≤k

‖Abi‖∞

≤ |||A|||∞,∞ max
1≤i≤k

‖bi‖∞ = |||A|||∞,∞ ‖B‖∞

where we have used (2.10). For more details, see any of the standard books [54, 89].

2.2 Matrix perturbation theory

Occasionally, one has a matrix with known eigen-decomposition which is perturbed by a
relatively unknown (noise) matrix and one wants to find out how close the eigenvalues and
eigenvectors of the perturbed matrix are to the original one. In this section, we collect some
inequalities bounding such deviations. There are many interesting approaches to deriving
perturbation inequalities. We restrict ourselves to an illustrative sample. For more details,
see [15, 89].

The first result is Weyl theorem on perturbation of eigenvalues [15, Cor. III.2.6]. Recall
that {λ↓j(A)} denotes the eigenvalues of matrix A in nonincreasing order.

Theorem 1. (Weyl) Let A,B ∈ Sn. Then,

max
1≤j≤n

|λ↓j(A)− λ↓j(B)| ≤ |||A−B|||2. (2.15)

Next, we consider perturbation of spectral (or invariant) subspaces. As an example, one
has Davis-Kahan “sin Θ theorem”. We will use Bhatia’s notation [15, p. 211] regarding
projection operators for the remainder of this section: for S ⊂ R and a symmetric matrix A,
we write PA(S) to denote the orthogonal projection onto the eigenspace of A corresponding
to its eigenvalues that lie in S.
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Let A and B be symmetric matrices, S1 an interval [a, b] ⊂ R and S2 = (−∞, a−δ]∪ [b+
δ,∞), for some δ > 0. Let E := PA(S1) and F := PB(S2). Then, one has the following [15,
Theorem VII.3.1, p. 211].

Theorem 2. (Davis-Kahan)

|||EF |||2 ≤
1

δ
|||A−B|||2. (2.16)

Let F⊥ := I − F be the projection onto the orthogonal complement of ranF . As a
consequence of the CS-decomposition [15, Theorem VII.1.8], the nonzero singular values of
E − F⊥ are the nonzero singular values of EF repeated twice. In particular, |||E − F⊥|||2 =
|||EF |||2. The nonzero singular values of EF are themselves the sines of the canonical angles
between the subspace ranE and ranF⊥, hence the name “sin Θ theorem”.

Using Theorems 1 and 2 and the discussion above, one can derive perturbation inequalities
for invariant subspaces. Let us first agree on a distance between subspaces. Let E and F
be two subspaces and PE and PF be orthogonal projections onto them. One defines the
projection-2 distance between them as

d2(E ,F) := |||PE − PF |||2. (2.17)

Consider A,∆ ∈ Sn. We think of A + ∆ as a perturbation of A. Let λj := λ↓j(A) and
note that {λ1, . . . , λj} ⊂ [λj, λ1]. Let Pj := PA([λj, λ1]), i.e., projection onto the eigenspace

of A corresponding to the j-th largest eigenvalues. Similarly, let λ̃j := λ↓j(A + ∆) and

P̃j := PA+∆([λ̃j, λ̃1]). Now, let δj := λj − λj+1 > 0 be the gap to right of the j-th eigenvalue

of A. If |||∆|||2 < 1
2
δj, Weyl inequality implies that [λ̃j, λ̃1] ⊂ (λj − 1

2
δj, λ1 + 1

2
δj) and

[λ̃n, λ̃j+1] ⊂ (−∞, λj+1 + 1
2
δj) = (−∞, λj− 1

2
δj). Letting Sc2 := (λj− 1

2
δj, λ1 + 1

2
δj), it follows

that

PA+∆([λ̃j, λ̃1]) = PA+∆(Sc2) = P⊥A+∆(S2). (2.18)

Applying Theorem 2 with S1 = [λj, λ1] and B = A + ∆, we obtain the following for the
perturbation of the j-th leading invariant subspace.

Corollary 1. With the above notation,

|||Pj − P̃j|||2 ≤ min
{ 2

δj
|||∆|||2, 1

}
. (2.19)

Taking j = 1 in Corollary 1 gives a perturbation inequality for the largest eigenvector,
assuming that the largest eigenvalue is simple; that is, assuming λ1 is separated from the
rest of the spectrum. Similar bounds maybe obtained for other eigenvectors corresponding
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to simple eigenvalues. As an example, consider the previous setup, fix some j ∈ {1, . . . , n}
and assume λj is simple. Let

dj := min
{
|λj − λj+1|, |λj − λj−1|

}
> 0, (2.20)

the two-sided gap in spectrum at λj. We assume λn+1 := λn and λ0 := λ1 for the above to

make sense in the corner cases. Let zj := ϑ↓j(A), i.e., the j-th eigenvector of A, with possible

sign ambiguity. Note that zjz
T
j = PA([λj, λj]) = PA({λj}). Also let z̃j := ϑ↓j(A + ∆).

Assuming |||∆|||2 < 1
2
dj, we have by Weyl inequality {λ̃j} ⊂ (λj − 1

2
dj, λj + 1

2
dj) and

{λ̃1, . . . , λ̃n} \ {λ̃j} ⊂ (−∞, λj+1 + 1
2
dj] ∪ [λj−1 − 1

2
dj,∞) ⊂ (λj − 1

2
dj, λj + 1

2
dj)

c.

Letting Sc2 := (λj − 1
2
dj, λj + 1

2
dj), we observe that

z̃j z̃
T
j = PA+∆({λ̃j}) = PA+∆(Sc2) = P⊥A+∆(S2).

Finally, assume zj and z̃j are aligned or sign-matched, that is zTj z̃j ≥ 0. Letting cj := zTj z̃j ∈
[0, 1] and recalling that zj, z̃j ∈ Sn−1, we have

‖zj − z̃j‖2
2 = 2(1− cj) ≤ 2(1− c2

j) = 2|||zjzj − z̃j z̃Tj |||22

where the last equality is a consequence of CS decomposition (cf. Lemma 34 of Chapter 5).
Applying Theorem 2 with S1 = {λj} and S2 as above, we get the following for perturbation
of aligned eigenvectors.

Corollary 2. With the above notation,

‖zj − z̃j‖2 ≤
√

2|||zjzj − z̃j z̃Tj |||2 ≤ min
{2
√

2

dj
|||∆|||2, 1

}
. (2.21)

There is a more direct way of deriving the above corollary due to Bosq which will work
for any norm derived from an inner product. We refer the reader to [22, Lemma 4.3].

The takeaway from this section is that given a perturbation matrix ∆, having a good
control on |||∆|||2 leads to a good control on the eigen-structure of the perturbed matrix
A + ∆. This, for example, is all one needs to establish the classical consistency theory
for PCA. However, in some cases in our high-dimensional models, more refined bounds are
required, as we will see in later chapters.

2.3 Concentration inequalities

Concentration inequalities are ubiquitous in recent approaches to analysis of consistency of
M -estimators. Also called tail bounds or large deviation bounds, they provide powerful
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tools in deriving finite sample probability bounds. (That is, non-asymptotic bounds which
hold for sufficiently large number of samples.) They are also connected with the notion of
concentration of measure which we will briefly touch upon towards the end of this section.

Consider a random variable X with mean EX. Then, |X − EX| measures the (two-
sided) deviation of X from its mean. A concentration inequality is an upper bound on the
probability of the deviation being larger than say t, with the upper bound going to zero
exponentially fast as t→ 0. More precisely, an inequality of the form

P
(
|X − EX| > t

)
≤ c1 exp(−c2t

2), ∀t ∈ [0, ε), (2.22)

for some constants c1, c2, ε > 0. In words, such inequalities capture sharp “concentration” of
X around its mean, in a probabilistic sense. A one-sided version of the above, i.e., a bound
on P(X − EX > t) for example, is sometimes called a deviation bound ; we however will
not make that distinction. The exponent of t in (2.22) can be other than 2, although, and
exponent of 2 is what we encounter in most cases of interest to us.

Sub-Gaussian variables

Perhaps the most well-known approach to deriving these inequalities is the Chernoff bounding
technique (using an upper bound on the moment generating function); the easiest case
perhaps that of sub-Gaussian random variables. Recall that a sub-Gaussian (zero-mean)
random variable X is one whose moment generating function (m.g.f. for short) is bounded
uniformly by that of a Gaussian random variable, that is,

E exp(λX) ≤ exp
(σ2λ2

2

)
, ∀λ ∈ R, (2.23)

for some constant σ ∈ [0,∞) which we call “a” sub-Gaussian standard of X. (One usually
calls the smallest σ satisfying (2.23) “the” sub-Gaussian standard of X; it is a norm on the
space of sub-Gaussian random variables which turns it into a Banach space. We do not
however insist on working with the smallest σ.) We denote a sub-Gaussian random variable
X with standard σ as

X ∼ SubGauss(σ). (2.24)

If the random variable is not zero-mean the above means that X − EX satisfies (2.22).
Clearly a zero-mean Gaussian random variable is sub-Gaussian. A more interesting

example is a zero-mean random variable which is bounded almost surely, that is, |X| ≤ C,
a.s., for some constant C > 0. It is not hard to see that the sum of independent sub-Gaussian
random variables with standards σi is sub-Gaussian with standard (

∑
i σ

2
i )

1/2.
It follows form (2.23) and Markov inequality [46] that for λ, t ∈ [0,∞),

P
(
X ≥ t

)
= P

(
eλX ≥ eλt) ≤ e−λt E eλX ≤ exp

(σ2λ2

2
− λt

)
. (2.25)
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The right-hand side is minimized by taking λ = t
σ2 , leading to

P
(
X ≥ t

)
≤ exp

(
− t2

2σ2

)
, t ≥ 0. (2.26)

Since the same inequality holds for X replaced by −X, we get an inequality of the form (2.22)
with c1 = 2, c2 = (2σ2)−1 and ε = ∞. We also get the following, the special case of which
for bounded random variables is called the Hoeffding inequality.

Lemma 1. Let Xi ∼ SubGauss(σi), i = 1, . . . , n be independent. Then,

P
(∣∣∑

i

(Xi − EXi)
∣∣ > t

)
≤ 2 exp

(
− t2

2
∑

i σ
2
i

)
, t ∈ [0,∞). (2.27)

Sub-Exponential variables

If a zero-mean random variable X satisfies (2.23) only on a neighborhood of zero, say for
λ ∈ (−Λ,Λ), we call it sub-exponential with parameters σ and Λ, denoted as

X ∼ SubExp(σ,Λ). (2.28)

If X is not zero-mean, the above means that X−EX satisfies the necessary condition. There
are alternative characterizations of sub-exponentiality. For example, the above definition is
equivalent, under EX = 0, to either of the following two:

(a) E eλX <∞, λ ∈ (−Γ,Γ), for some Γ > 0,

(b) E eλ0|X| <∞, for some λ0 > 0.

This first one is called Cramér condition. As an example, let X ∼ N(0, 1); then E eλX2
=

(1− 2λ)−1/2 for λ ∈ (−∞, 1
2
), and∞ otherwise. Thus, X2− 1 satisfies the Cramér condition

on (−1
2
, 1

2
), hence it is sub-exponential; or according to our convention one just says that

X2 is sub-exponential. It is easy to show that sums of independent sub-exponential random
variables are sub-exponential. Recall that a chi-square random variable with n degrees of
freedom, denoted as χ2

n, is the sum of squares of n independent standard Gaussian random
variables. It follows that χ2

n is sub-exponential.
For a (zero-mean) sub-exponential random variable, we still have (2.25) but only for

λ ∈ (−Λ,Λ). If t/σ2 < Λ, the right-hand side (RHS) is again minimized at λ = t/σ2 and
we get the sub-Gaussian type bound (2.26). If t/σ2 ≥ Λ, the infimum of RHS is achieved as
λ ↑ Λ, leading to the sub-exponential type bound

P(X ≥ t) ≤ exp
(σ2Λ2

2
− Λt

)
≤ exp

(
− Λt

2

)
. (2.29)
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The two bounds can be summarized as

P(X ≥ t) ≤ exp
(
−min

{ t2

2σ2
,
Λt

2

})
, t ∈ [0,∞). (2.30)

Note that in a neighborhood of zero we still have a bound of the form (2.22). We also have.

Lemma 2. Let Xi ∼ SubExp(σi,Λ), i = 1, . . . , n. Then,

P
(∣∣∑

i

(Xi − EXi)
∣∣ > t

)
≤ 2 exp

(
−min

{ t2

2
∑

i σ
2
i

,
Λt

2

})
, t ∈ [0,∞). (2.31)

The special case of the above for a χ2
n random variable is frequently used in this thesis.

In particular, there is a constant t0 > 0 such that

P
(
|χ

2
n

n
− 1| > t) ≤ 2 exp

(
− nt2

2

)
, t ≤ t0.

More refined versions of χ2 concentration are discussed in §3.A. There are other variations on
Lemma 1 and Lemma 2. For example, using variance information, one can obtain Bernstein
type inequalities. These inequalities are also closely tied with another characterization of
sub-Gaussian and sub-exponential random variables, namely, one in terms of the order of
growth of their moments. For example, a random variable X is sub-Gaussian, if and only
if (E |X|p)1/p ≤ K

√
p for some constant K > 0 and all p ≥ 1. For a more details, we refer

to [25, 98].

Vector-valued variables

It is possible to extend results of the form (2.22) to random vectors, random matrices and
with some success even to random elements of a general Banach space. In such cases, one is
usually interested in bounding the deviation ‖X−EX‖ for some appropriate norm ‖ ·‖. For
example, consider a random vector X ∈ Rp with sub-Gaussian entries, Xi ∼ SubGauss(σi).
Let σ∞ := ‖(σi)‖∞. Then, a simple application of union bound combined with the above
exponential bounds yields

P
(
‖X − EX‖∞ > t) ≤ 2p exp

(
− t2

2σ∞

)
, t ∈ [0,∞). (2.32)

By the equivalence of norms on finite-dimensional spaces, this inequality can be translated
to deviations in other norms.

A more interesting deviation bound along these lines is the Ahlswede-Winter matrix
bound [1, 98, 91] for the deviations of the form |||Sn − ESn|||2 where Sn =

∑n
i=1 Xi with Xi

are independent random matrices with controlled entries. It is interesting in that the proof
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uses the matrix analogue of Chernoff bounding. For a version of the bound see Lemma 26
in §4.A.2.

Bounds similar to (2.32) and also the Ahlswede-Winter explicitly depend on the dimen-
sion p of the vectors (or matrices) involved. Using martingale techniques, one can obtain
bounds on the deviations of the form

∣∣‖Sn‖ − E ‖Sn‖
∣∣, where Sn is the sum of independent

random elements, that do not explicitly depend on the dimension of the random elements.
In particular, these bounds hold for (controlled) random elements in a Banach space. We
refer to [66] for details.

Gaussian concentration

Another rather powerful approach in obtaining concentration inequalities which goes beyond
sums of independent random elements is using the concentration of underlying measures.
We briefly mention the idea here, focusing on the Gaussian measure; the interested reader
is referred to [65] for thorough discussions. Consider a metric space (Ω, d) equipped with
a Borel probability measure µ. For any Borel set A, let Aε = {ω ∈ Ω : d(ω,A) < ε} be
the ε-neighborhood of A. Also, let Aεc denote the complement of Aε. The measure µ has
Gaussian (or normal) concentration if there are constants C, c > 0 such that for all A, with
µ(A) ≥ 1

2
,

µ(Aεc) ≤ C exp(−c ε2), ε > 0. (2.33)

In particular, let γp denote canonical Gaussian measure on Rp with density (2π)−p/2e−‖x‖
2
2/2

with respect to Lebesgue measure. One can show that γp viewed as a (Borel) probability
measure on (Rp, ‖ · ‖2) satisfies (2.33) with C = 1 and c = 1

2
. (This is sometimes called

dimension free concentration as the constants do not depend on p.)
If a measure µ satisfies (2.33), the Lipschitz functions on (Ω, d) satisfy a concentration

inequality of the form (2.22). For functions f : Ω→ R, the Lipschitz seminorm is defined as

‖f‖L := sup
ω 6=ω′

|f(ω)− f(ω′)|
d(ω, ω′)

.

A function f is Lipschitz if ‖f‖L <∞. By looking at f/‖f‖L we can (and will) restrict our
attention to 1-Lipschitz functions, i.e., those with ‖f‖L = 1.

A median of f with respect to µ is a number mf such that both µ({f ≥ mf}) and
µ({f ≤ mf}) are greater that or equal to 1

2
. Take A = {f ≤ mf}, so that µ(A) ≥ 1

2
. Then,

it is easily verified that Aε ⊂ {f < mf + ε}. (To see this, pick x ∈ Aε. Then, by definition,
there exists y ∈ A such that d(x, y) < ε. It follows that f(x) < f(y) + ε ≤ mf + ε}.)
Hence, (2.33) implies

µ({f ≥ mf + ε}) ≤ C exp(−cε2), ε > 0.
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By applying the same argument to −f and combining the results, we get the two sided
bound

µ({|f −mf | ≥ ε}) ≤ 2C exp(−c ε2), ε > 0 (2.34)

which shows sharp concentration of f around its median. One can show that, in fact,
having concentration inequalities for Lipschitz functions is equivalent to having (2.33) for
the underlying measure. Letting µf :=

∫
fdµ denote the mean of f and integrating (2.34)

over ε ∈ (0,∞) one obtains that f is integrable and |µf −mf | ≤ C
√

π
c
. Hence by modifying

the constants appropriately, one also has concentration of f around its mean,

µ({|f − µf | ≥ ε}) ≤ C ′ exp(−c′ ε2), ε > 0.

This, in particular holds for 1-Lipschitz functions on a Gaussian space. In this case, using
different techniques, it is in fact possible to obtain concentration around the mean without
the need to modify the constants. We summarize this useful result in the following lemma
(cf. [66, 65]).

Lemma 3. Let Xi, i = 1, . . . , p be i.i.d. N(0, 1). Let f : Rp → R be 1-Lipschitz with respect
to ‖ · ‖2 on Rp and let f = f(X1, . . . , Xp). Then, E |f | <∞ and

P
(
|f − E f | > t

)
≤ 2 exp

(
− t2

2

)
, t > 0. (2.35)

2.4 PCA and its SDP formulation

As mentioned before, principal component analysis (PCA) is the central theme of this thesis.
In this section, we briefly introduce it and discuss a lesser known semidefinite programming
(SDP) formulation of it. We then review its consistency in the classical setting and some
recent inconsistency results in the high-dimensional setting. Our focus will be on the first
principal component.

PCA as subspace of maxmal variance

Consider a collection of data points xi, i = 1, . . . , n in Rp, drawn i.i.d. from a distribution P.
We denote the expectation with respect to this distribution by E. For simplicity, a generic
point from the distribution is denoted as x. Assume that the distribution is centered, i.e.,
Ex = 0, and that E ‖x‖2

2 < ∞. We usually collect {xi} in a matrix X ∈ Rn×p. Thus, xi
represents the i-th row of X. Let Σ and Σ̂ = Σ̂n denote the population covariance and the
sample covariance, respectively; more specifically,

Σ := ExxT , Σ̂ :=
1

n
XTX =

1

n

n∑
i=1

xix
T
i . (2.36)



CHAPTER 2. BACKGROUND 23

The first principal component (PC) of the distribution P is a vector z∗ ∈ Rp satisfying

z∗ ∈ arg max
‖z‖2=1

E(zTx)2, (2.37)

that is, z∗ is a direction such that the projection of the distribution along which has maximal
variance. We should warn the reader that some authors call the projection ((z∗)Tx)z∗ or even
(z∗)Tx the first principal component of x. To avoid confusion, we call these the first principal
projection and the first principal coordinate of x, respectively. Noting that E(zTx)2 =
E(zTx)(xT z) = zT (ExxT )z, we obtain

z∗ ∈ arg max
‖z‖2=1

zTΣz. (2.38)

By a well-known result in linear analysis, called Rayleigh-Ritz or Courant-Fischer theo-
rem [15, 54, 42], (2.38) is the variational characterization of maximal eigenvectors of Σ. In
the notation introduced in §2.1.2, z∗ = ϑmax(Σ). If there are multiple maximal eigenvectors,
any one of them satisfies (2.38) and can be taken as the first principal component.

The second PC is obtained by removing the contribution form the first PC and applying
the same procedure; that is, obtaining the first PC of x − ((z∗)Tx)z∗. The subsequent PCs
are obtained recursively until all the variance in x is explained, i.e., the remainder is zero.
In case of ambiguity, one chooses a direction orthogonal to all the previous components.
Thus, PCs form an orthonormal basis for the eigen-space of Σ corresponding to nonzero
eigenvalues.

PCA as best linear approximation

A slightly different viewpoint on PCA is through a linear approximation framework. Let P1

be the collection of all rank-one projection operators on Rp. That is,

P =
{
zzT : z ∈ Sp−1

}
.

Pick some P ∈ P1. For any vector x ∈ Rp, we think of Px as an approximation of x. When
x ∼ P is random, E ‖x − Px‖2

2 measures the approximation error, in an average sense. We
can now find the “best” P in the restricted class P1, as

P ∗ = arg min
P∈P1

E ‖x− Px‖2
2. (2.39)

It is not hard to see that this formulation is equivalent to (2.37); indeed, it is equivalent to
maximizing E 〈x, Px〉2. In particular, P ∗ = z∗(z∗)T where z∗ is the principal component of
the distribution of x. The above easily generalizes, by replacing P1 with Pd, the class of
rank d projection operators.
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SDP formulation

Let us now derive a SDP equivalent to (2.38). By a property of the trace, tr(zTΣz) =
tr(ΣzzT ). For a matrix Z ∈ Rp×p, Z � 0 and rank(Z) = 1 is equivalent to Z = zzT for
some z ∈ Rp. Imposing the additional condition tr(Z) = 1 is equivalent to the additional
constraint ‖z‖2 = 1. Dropping the rank(Z) = 1, we obtain a relaxation of (2.38) as follows

Z∗ ∈ arg max
Z� 0, tr(Z)=1

tr(ΣZ). (2.40)

It turns out that this relaxation is in fact exact. That is,

Lemma 4. There is always a rank one solution Z∗ = z∗(z∗)T of (2.40) where z∗ = ϑmax(Σ).

Proof. It is enough to show that for all Z feasible for (2.40), one has tr(ΣZ) ≤ λmax(Σ).
Using the EVD of Z =

∑
i λiuiu

T
i , as in (2.6), this is equivalent to

∑
i λiu

T
i Σui ≤ λmax(Σ).

But this is true, by (2.38) and
∑

i λi = 1.

As the optimization problem in (2.40) is over the cone of semidefinite matrices (Z � 0)
with an objective and extra constraints which are linear in Z, the problem (2.40) is a textbook
example of a SDP. The SDPs belong to the class of conic programs for which fast methods
of solution are currently available. For more information about semidefinite programming,
see [23, 96].

Noisy samples

In practice, of course, one does not have access to the population covariance, but instead
must rely on a “noisy” version of the form

Σ̂ = Σ + ∆, (2.41)

where ∆ = ∆n denotes a random noise matrix, typically arising from having only a finite
number of samples. Unless otherwise stated, we assume the estimate Σ̂ to be the usual sample
covariance, as in (2.36). One then applies the procedure described above to Σ̂, instead of Σ,
and obtains the sample principal components. This is what is usually referred to as principal
component analysis. A natural question in assessing the performance of PCA is under what
conditions the sample PCs (i.e., based on Σ̂) are consistent estimators of their population
analogues.

2.4.1 Classical consistency theory (fixed p, large n)

In the classical theory of PCA, the model dimension p is viewed as fixed, and asymptotic
statements are established as the number of the observations n tends to infinity. With this
scaling the influence of the noise matrix ∆ dies off, so that the sample eigenvectors and
eigenvalues are

√
n-consistent estimators of their population analogues.
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To be more specific, by the results of §2.2, the errors in the sample eigenvalues and
eigenvectors (or projection operators) relative to the population versions are O(|||∆n|||2) =

O(|||Σ̂n − Σ|||2). By the strong law of large number [e.g., 94, 60], ∆n → 0 as n→∞, almost
surely, element-wise. Since p is fixed, ‖∆n‖∞ = maxi,j |[∆n]ij| → 0, almost surely. Recall
that all norms on a finite-dimensional vector space are equivalent with constants depending
on the dimension [21, Chap. 4]. That is, all norms on Sp are equivalent up to constants
depending on p which itself is constant. In particular,

|||∆n|||2 ≤ p2‖∆n‖∞
a.s.−→ 0, (2.42)

proving strong consistency. Furthermore, since by the multivariate central limit theorem [e.g.,
94, 60], we have ‖∆n‖∞ = Op(n−1/2), it follows that |||∆n|||2 = Op(n−1/2). This provides the
rate of convergence for the sample eigenvalues and eigenvectors and proves

√
n-consistency1.

2.4.2 Random Matrix Theory

Before considering the high-dimensional performance of PCA, we review some relevant parts
of random matrix theory [9, 6, 57]. Classical random matrix theory goes back to the obser-
vation of Wigner that the empirical distribution of the eigenvalues of an n-by-n (symmetric)
Gaussian matrix (or more precisely Gaussian ensemble) converges almost surely, as n→∞,
to a semicircle law [103]. This result was later refined and extended to include a large class
of random symmetric matrices, with i.i.d. entries on and above diagonal, satisfying some
mild moment conditions; see [9, 6] and the reference therein.

Marchenko-Pastur law

A similar behavior is observed for the sample covariance which is of interest to us. To
state the result, consider a data matrix2 X = (xij) ∈ Rn×p and the corresponding sample

covariance matrix Σ̂n = 1
n
XTX ∈ Sp+, as in §2.4. One can look at the empirical distribution

of the eigenvalues of Σ̂n, which we denote in this section as µΣ̂n
; this is a (discrete) probability

measure, putting equal mass at each eigenvalue, that is

µΣ̂n
:=

1

p

p∑
j=1

δλj(Σ̂n)

where δx denotes a unit point mass at x (or Dirac delta measure at x). Note that µΣ̂n
is a

random measure.
1Here and elsewhere Op(·) denotes a stochastic “O” notation as is common in treatments of asymptotics

in classical statistics. In short, Xn = Op(an) means that {a−1n Xn} is a tight sequence, that is, it is a bounded
sequence in a probabilistic sense. See [94] for more details.

2To be precise, we consider a doubly infinite array of elements {xij} and for each n and p = p(n), take
X = Xn to be the n-by-p section of it, located at the upper-left corner, for example. We then have a
well-defined model which we can study as n→∞.
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Figure 2.2: Marchenko-Pastur density, and normalized histogram of the empirical eigenvalues for n = 2000 and two values of
α = p/n.

Theorem 3. Assume {xij} to be i.i.d. mean zero, with variance σ2. Let (n, p) → ∞ such
that p/n→ α ∈ (0,∞). Then, with probability one, µΣ̂n

converges weakly to

µMP =

{
ν, if α ∈ (0, 1]

(1− α−1)δ0 + ν, if α ∈ (1,∞)
(2.43)

where ν is absolutely continuous w.r.t. Lebesgue measure (dx) with density

dν

dx
(x) =

1

2πσ2

√
(b+ − x)(x− b−)

αx
1{x ∈ [b−, b+]}

where b± = σ2(1±
√
α)2.

The theorem was originally proved, under stronger conditions, by Marchenko and Pas-
tur [67], in whose honor the limiting distribution is now called. The form stated above
follows from a result due to Yin [106], see also [9]. Note that in the case where α > 1,
Marchenko-Pastur distribution has a point mass at 0, represented by δ0 in (2.43).

Fig. 2.2 shows the plots of the Marchenko-Pastur density for n = 2000 and two values
of α, namely 0.1 and 0.6. The important observation here is that while the expected value
of Σ̂n, which is equal to σ2Ip under assumptions, has all its eignvalues concentrated at 1,
the sample covariance itself, asymptotically, shows a spread of the eigenvalues around 1,
with the smallest and largest eigenvalues tending towards the extreme points of the support
of the density. Fig. 2.2 also shows the normalized histogram of the eigenvalues of a single
Gaussian random matrix with σ2 = 1. One observes that the simulation gets very close to
the theoretical prediction even at samples of size n = 2000.

The statement above about the limiting behavior of the extreme eigenvalues does not
immediately follow from Theorem 3, though separate results have established this intuitive
observation. The first result in this direction was due to Gemen [43] which established

convergence of largest eigenvalue of Σ̂n to b+, under some growth conditions on moments of
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{xij}. Subsequent results relaxed the conditions to the finiteness of only the forth moment
(see [9, Chap. 5] for the intermediate results). The following is from [10] (cf. [9, Thm. 5.11]).

Theorem 4 (Bai-Yin). Assume {xij} to be i.i.d. with mean zero, variance σ2 and finite
fourth moment. Let p/n→ α as n→∞. Then, almost surely

lim
n→∞

λmax(Σ̂n) = σ2(1 +
√
α)2, α ∈ (0,∞), (2.44)

lim
n→∞

λmin(Σ̂n) = σ2(1−
√
α)2, α ∈ (0, 1). (2.45)

These theorems suggest a dramatic failure of the Σ̂n as an estimate of the population
covaraince, in the so called “high-dimensional setting” where p (data dimension) and n
(sample size) go to infinity simultanuously. It also hints at the break-down of multivariate

methods, such as PCA, which base their inference on the sample covariance Σ̂n. To be more
specific, recall that Σ = E Σ̂n = σ2Ip and note that

|||Σ̂n − Σ|||2 = = max
j
|λj(Σ̂n − σ2Ip)|

= max
j
|λj(Σ̂n)− σ2| = max{|λmin(Σ̂n)− σ2|, |λmax(Σ̂n)− σ2|}.

Hence, by Theorem 4, for α ∈ (0, 1),

lim
n→∞

|||Σ̂n − Σ|||2 = σ2(2
√
α + α) > 0 (2.46)

which clearly is nonzero. That is, Σ̂n is not an operator-norm consistent estimate of Σ. In
particular, the argument in §2.4.1 for consistency of PCA does not go through and in fact,
we will see shortly that PCA is not consistent unless p/n→ 0 (cf. §2.4.3).

The inconsistency of Σ̂ has lead to investigation of covariance structures which lead
to consistent estimators in high dimensions. Notable among these are sparse covariance
estimation methods, for example, by thresholdings [18, 39] or by `1-regularization [31, 108].

Non-asymptotic results

Let us briefly look at some non-asymptotic results which closely match the asymptotic be-
havior discussed above. These types of results and their extensions, combined with concen-
tration inequalities discussed in §2.3, are useful in establishing finite sample bounds on the
performance of M -estimators which base their estimates on large random matrices.

We will focus on the classical case of a Gaussian matrix W with independent entries.

Theorem 5 (Gordon). Consider W ∈ Rn×p with i.i.d. standard Gaussian entries. Then,

√
n−√p ≤ Eσmin(W ) ≤ Eσmax(W ) ≤

√
n+
√
p. (2.47)
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Recall that σmax(W ), for example, denotes the maximum singular value of W . The proof
is based on Slepian’s inequality and its generalization by Gordon to minimax of Gaussian
processes [66, Section 3.3]. We refer the reader to [34] for details of the proof. However, we
provide a sketch below as the technique will be useful to us in subsequent chapters.

We will only consider the proof of upper bound which is based on the Slepian’s inequality,
a form of “comparison inequality” for suprema of Gaussian process. We state it below for
future reference. (See, [66, Section 3.3] for the proof.)

Lemma 5 (Slepian). Consider two Gaussian processes (Xt)t∈T and (Yt)t∈T whose increments
satisfy E |Xs −Xt|2 ≤ E |Ys − Tt|2 for all s, t ∈ T . Then,

E sup
t∈T

Xt ≤ E sup
t∈T

Yt

Theorem 5 is proved by considering a Gaussian process Xu,v = 〈Wu, v〉 indexed by
(u, v) ∈ Sp−1 × Sn−1 and comparing it with the process Yu,v = 〈g, u〉+ 〈h, v〉, where g ∈ Rp

and h ∈ Rn are Gaussian vectors with i.i.d. standard entries. One then verifies that the
increment inequality of Lemma 5 holds, hence the expected supremum of the Y -process
dominates that of X-process. It is easy to verify using SVD of W , that supremum of X-
process over its index set is σmax(W ). Using Jensen’s inequality one can bound the supremum
of Y -process as

√
n +
√
p. Modifications and extensions to this result will be presented in

Chapters 3 and 5, where the argument is carried out in more details.
Combining the result of Theorem 5 with Lemma 3 on concentration of Lipschitz functions

of Gaussian vectors, we can obtain full probabilistic bounds on singular values of W . In
particular, treat W as a vector in the Euclidean space Rnp, the corresponding norm being
|||W |||HS = (

∑
i,jW

2
ij)

1/2. As a consequence of Weyl’s Theorem (cf. (2.15)), singular values are
1-Lipschitz functions on this space, i.e., |σi(W )− σi(W ′)| ≤ |||W −W ′|||HS. Hence, Lemma 3
applies and we obtain the following.

Corollary 3. For W of Theorem 5, we have, with probability at least 1− 2 exp(−t2/2),
√
n−√p− t ≤ σmin(W ) ≤ σmax(W ) ≤

√
n+
√
p+ t. (2.48)

We note that the above result is of the right order as that predicted by asymptotics of
Theorem 4. To see this, assume that p/n = α < 1. Let W = U [S

0
]V T be the (full) SVD of

W , where S = diag(σ1(W ), . . . , σp(W )) ∈ Rp×p. We have,

||| 1
n
W TW − Ip|||2 ≤ |||

1

n
STS − Ip|||2 = max

i

∣∣∣σ2
i (W )

n
− 1
∣∣∣.

Taking t = ε
√
p for some fixed ε > 0, in Corollary 3, we have, with probability at least

1− 2 exp(−ε2p/2) that ∣∣∣σi(W )√
n
− 1
∣∣∣ ≤ (1 + ε)

√
α
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For any a ≥ 0, we have that |a−1| ≤ δ implies3 |a2−1| ≤ 3 max{δ, δ2}. Letting Σ̂n = 1
n
W TW

be the sample covaraince based on W , we obtain

|||Σ̂n − Ip||| ≤ 3(1 + ε)2 max{
√
α, α}

with probability at least 1− 2 exp(−εp/2) which is a non-asymptotic version of (2.46).

Part of the on-going research in non-asymptotic random matrix theory is to extend these
type of results to more general ensembles, for example, matrices with just independent rows
of sub-Gaussian vectors; see [98] and the references therein.

2.4.3 PCA inconsistency in high-dimensional setting

In this section, we briefly look at some inconsistency results for PCA, in the high-dimensional
setting where (n, p) → ∞. We will focus on the spiked covariance model proposed by [58],
as this will be our model for the discussion of sparse PCA in Chapter 3. We further focus
on a single-spiked model here.

Recall from §2.4 that in the context of PCA, we observe data points {x1, . . . , xn} i.i.d.
from a distribution with population covaraince matrix Σ = Ex1x

T
1 . The (single) spiked

covariance model assumes the following structure on Σ,

Σ = βz∗(z∗)T + Ip (2.49)

where β > 0 is some positive constant, interpreted as a measure of signal-to-noise ratio
(SNR). It is easily verified that the eigenvalues of Σ are all equal to 1 except for the largest
one which is 1 + β. It follows that z∗ is the leading PC for Σ. One then forms the sample
covariance Σ̂ as in §2.4 and obtains its maximal eigenvector, ẑ, hoping that ẑ is a consistent
estimate4 of z∗.

This unfortunately does not happen unless p/n→ 0 as shown by Paul and Johnston [75]
among others (see also [57]). More specifically, under technical conditions, as (p, n) → ∞
while p/n→ α > 0, asymptotically, the following phase transition occurs:

〈ẑ, z∗〉2 →

{
0, β ≤

√
α

1−α/β2

1+α/β2 , β >
√
α.

(2.50)

Note that 〈ẑ, z∗〉2 measures cosine of the angle between ẑ and z∗ and is related to the
projection 2-distance between the corresponding 1-dimensional subspaces. (See §2.2 for
definition of projection 2-distance.)

3To see this, note that |a−1| ≤ δ implies a+ 1 ≤ 1 + δ+ 1 ≤ 3 max{δ, 1}, hence |a2−1| = (a+ 1)|a−1| ≤
3 max{δ, 1}δ.

4There is sign ambiguity in ẑ; or rather we have a freedom in choosing the sign of z∗. We will assume
that ẑ matches z∗ in sign, it the sense that 〈ẑ, z∗〉 ≥ 0.
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In particular, neither case in (2.50) shows consistency, i.e., 〈ẑ, z∗〉2 → 1. Interestingly, if
the SNR β is below some threshold, ẑ is asymptotically orthogonal to z∗, a complete opposite
of consistency.

This has led to research on additional structure/constraints that one may impose on z∗ to
allow for consistent estimation. As already mentioned, one such constraint is sparsity which
will be the focus of our Chapter 3. Let us mention that there are other approaches to high-
dimensional analysis of PCA, notable among them is the High-Dimension Low Sample Size
(HDLSS) setting where one fixes the sample size n and lets the dimension p go to infinity.
The HDLSS framework was introduced by Hall et. al. [50]; further analysis is provided by
Ahn et. al. [2].

2.5 Hilbert spaces and reproducing kernels

We will need some facts on Hilbert spaces and functional analysis in general which we will
review here. This material is mainly used from Chapter 4 onward. Details can be found in
any standard text on functional analysis [21, 29, 64, 97].

We recall that a Hilbert space is a complete inner product space; it is usually used as an
infinite-dimensional analogue of the Euclidean space. We occasionally represent the inner
product of a Hilbert space H as 〈·, ·〉H and the norm it induces as ‖ · ‖H; we might omit the
subscript if H is understood from the context. Particular example of interest to us is when
H is a space of functions f : X → R on some domain X (usually a subset of Rd). As a more
specific example, consider X ⊂ Rd and let P be a (Borel) probability measure on X . Then,
we have the space L2 := L2(X ,P) of (equivalence classes5) of square-integrable functions,
defined as

L2(X ,P) :=
{
f : X → R

∣∣∣ ∫ f 2dP <∞
}
.

This space becomes a Hilbert space with the inner product 〈f, g〉L2 :=
∫
fgdP, for f, g ∈ L2.

We now summarize some key elements of the theory; H and K will be real Hilbert spaces;
all Hilbert spaces are assumed over reals, unless otherwise stated.

• Linear operators and functionals: The basic objects of study are linear maps between
Hilbert spaces, called (linear) operators, and linear maps from a Hilbert space to real
numbers, called (linear) functionals. The collection of linear functionals on a Hilbert
space is called its algebraic dual.

• Operator norm: For an operator L : H → K, its operator norm is defined as

|||L||| := |||L|||H,K := sup
‖x‖H≤1

‖Lx‖K = sup
‖x‖H=1

‖Lx‖K = sup
x 6=0

‖Lx‖K
‖x‖H

. (2.51)

5When dealing with Lp spaces, one usually identifies functions that are equal almost surely. This is so
that we have ‖f‖L2 = 0 implies f = 0, making ‖ · ‖L2 a legitimate norm.
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• Boundedness and continuity: When |||L||| < ∞, L is called a bounded operator. One
then shows that for an operator, boundedness, continuity everywhere and continuity at
the origin are all equivalent. We will denote the collection of bounded operators from
H to K as B(H,K). Taking K = R, one obtains parallel definitions and results for
linear functionals on H. The collection of all bounded linear functionals on H is called
the (topological) dual of H and denoted as H∗. Deviating slightly from our convention,
we let ‖φ‖H∗ denote the norm of a functional φ ∈ H∗.

• Riesz-Fréchet representation theorem: states that H∗ is isometrically isomorphic to H.
More specifically, for any φ ∈ H∗, there is a unique hφ ∈ H such that φ(f) = 〈f, hφ〉H
for all f ∈ H, and we have ‖φ‖H∗ = ‖hφ‖H. The map φ 7→ hφ is usually used to
identify the dual space, H∗, with the Hilbert space itself, H.

• Orthonormal basis: A collection {ψk} ⊂ H such that ‖ψk‖H = 1 and 〈ψk, ψj〉H = δkj
for all k, j is called an orthonormal system. If furthermore, any f ∈ H can be (uniquely)
represented as f =

∑
k 〈f, ψk〉ψk (where the sum converges in H-norm), the collection

is called an orthonormal basis6. Any Hilbert space has an orthonormal basis which
can be taken to be countable if the Hilbert space is separable; a condition which we
always assume.

• Projections onto convex sets: For any closed convex set C ⊂ H and any point h ∈ H,
there exists a unique point ĥ ∈ C which is closest to h among all the points of C, i.e.,
‖h − ĥ‖2 = infc∈C ‖h − c‖2. The map h 7→ ĥ is called projection onto convex set C,
which we denote as PC.

• Projections onto linear subspaces: An important special case of the above is when L ⊂
H is a closed linear subspace of H. In this case, there is an alternative characterization
of the projection map, in terms of the orthogonal complement of L which is defined as

L⊥ :=
{
f ∈ H : 〈f, y〉H for all y ∈ L

}
.

One can verify that L⊥ is a closed linear subspace of H7.

For any h ∈ H, its projection onto L is the unique element ĥ ∈ L such that h− ĥ ∈ L⊥.
This is sometimes called the “orthogonality principle ”: the error h− ĥ is orthogonal
to the subspace L. From this it follows that H decomposes into direct sum of L and
L⊥, represented as,

H = L
⊕
L⊥, (2.52)

6This type of basis is usually called Schauder basis, in contrast to the linear-algebraic notion of the basis,
called the Hamel basis, of which any vector space has one. This later notion refers to a collection of elements
of H such that any f ∈ H has a (unique) expansion in terms of a “finite” subcollection.

7This is true even if L itself is not closed or linear.
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meaning that any h ∈ H has a unique decomposition as h = y + z where y ∈ L and
z ∈ L⊥. Another consequence is that PL is a (bounded) linear operator of norm 1
(assuming L is not the trivial subspace {0}). For the above reasons, one calls PL the
“orthogonal” projection onto L. We often omit the “orthogonal” label if it is implicitly
understood.

• Kernel and image: Recall that for a linear operator L : H → K, its kernel, KerL, and
its image or range, RaL, are defined as

KerL :=
{
x ∈ H : Lx = 0},

RaL :=
{
y ∈ K : Lx = y for some x ∈ H

}
.

Both are linear subspaces of their respective spaces. For a bounded linear operator,
the kernel is always closed, while the image is not necessarily so. For example, for
the projection operator, PL : H → H, onto a closed linear subspace L ⊂ H, we have
KerPL = L⊥ and RaPL = L.

• Adjoints: For a linear operator T : H → K, its adjoint T ∗ : K → H is the unique linear
operator satisfying

〈Tx, y〉K = 〈x, T ∗y〉H , for all x ∈ H, y ∈ K.

If T is bounded so is T ∗ and we have KerT ∗ = (RaT )⊥. In particular, since (RaT )⊥ =
(RaT )⊥ we have, the direct sum decomposition8

K = RaT
⊕

KerT ∗. (2.53)

An operator T ∈ B(H,H) is self-adjoint if T ∗ = T . Self-adjoint operators are extensions
of symmetric matrices. Projection operators PL introduced above are examples of self-
adjoint operators9.

• Compact operators: A linear operator T is compact if it maps bounded sets to pre-
compact sets (i.e., those whose closures are compact.) As a pre-compact set in a metric
space is bounded, compact operators are a subclass of bounded operators. They are in
fact a proper subclass as the identity map I : H → H on an infinite-dimensional Hilbert
space is bounded but not compact10. Moreover, the class of compact operators is a
closed11 linear subspace of bounded operators. Finite-rank operators (i.e., operators T
with finite-dimensional image, i.e., dim RaT <∞) are examples of compact operators,

8RaT is the closure of RaT and we are relying on that (2.52) is valid for a closed subspace L.
9This is seen by noting that orthogonality principle implies 〈PLx, y〉 = 〈PLx, PLy〉 = 〈x, PLy〉.

10This is a consequence of the well-known theorem that the unit ball of an infinite-dimensional normed
space is never compact.

11Closure is in the topology induced by the operator norm defined in (2.51).
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as are their limits. In fact, informally, compact operators behave in many ways like
finite-rank operators (in much the same way as compact sets behave mostly like finite
sets.) We will use B0(H,K) to denote compact operators from H to K.

• Spectrum: of T ∈ B(H,H) is the collection of “complex” numbers λ such that λI − T
does not have a bounded inverse, usually denoted as σ(T ). (Here, I is the identity map
on H.) One can show12 that λ ∈ σ(T ) if and only if λI−T is not bijective. The points
of the spectrum are further classified depending on how λI − T fails to be bijective.

As we will be focusing on compact operators, we are mostly interested in the “point
spectrum” of T , denoted as σp(T ), which consists of all the (complex) points λ such
that Ker(λI − T ) 6= {0}, that is, λI − T is not injective. In analogy with finite
dimensional case, an element λ ∈ σp(T ) is called an eigenvalue of T , while Ker(λI−T )
is the corresponding eigenspace (i.e., each element is an eigenvector). In general, the
point spectrum is a proper subset of the spectrum.

• Spectrum of a compact operator: One shows that for T ∈ B0(H,H),

σ(T ) = σp(T ) ∪ {0}.

Furthermore, σp(T ) is countable and can be ordered as a sequence {λ1, λ2, . . . } so
that λk → 0 as k → 0. Moreover, the eigenspace corresponding to each λk is finite-
dimensional, i.e., dim Ker(λkI − T ) <∞. (One might call the aforementioned dimen-
sion the multiplicity of λk.)

An important consequence of the above result is that a compact operator on H, always
has at least one eigenvector.

• Spectral theorem for compact self-adjoint operator: is an extension of EVD for sym-
metric matrices (cf. (2.6)). A simple statement is as follows:

Theorem 6. Let H be a (separable) Hilbert space and let T ∈ B0(H,H) be self-adjoint.
Then, there is an orthonormal basis of H consisting of eigenvectors of T .

This theorem is stated in different formats in the literature. For example, let {φk}
be the orthonormal basis of eigenvectors of T guaranteed above, corresponding to the
sequence {λk} of eigenvalues (i.e, Tφk = λkφk. Then, any f ∈ H can be represented
as f =

∑
k 〈x, φk〉φk which then implies, by continuity and linearity of T ,

Tf =
∑
k

λk 〈f, φk〉φk, f ∈ H. (2.54)

12This is a consequence of inverse mapping theorem, for example.
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Another way of expressing the above is in terms of elementary tensors φk ⊗ φk. We
recall that for h ∈ H, h ⊗ h ∈ B(H,H) can be thought of as the rank-one projection
onto the span of {h}. Hence13,

T =
∑
k

λk φk ⊗ φk.

The spectral theorem above can be extended to compact operators between two spaces
H and K which serves as an extension of SVD for general matrices (cf. (2.7)).

Reproducing Kernel Hilbert Spaces (RKHS)

We now turn to a brief review of RKHS theory. The classical reference on the subject is [8].
Here, we follow closely the treatment of [76]. See also [88, Chap. 4]. Again, our Hilbert
spaces are mostly over real numbers although the results usually hold for the complex case
with minor modifications.

Consider a set X and let F(X ,R) be the collection of real-valued functions on X . In
other words, F(X ,R) := RX . This is clearly a vector space with the usual operations of
addition and scalar multiplication.

• We say that H is a “reproducing kernel Hilbert space (RKHS)” on X over R, if

– H is a vector subspace of F(X ,R).

– H is a Hilbert space with respect to some inner product.

– for every y ∈ X , the “evaluation functional” δy : H → R, defined as δyf := f(y)
is bounded (equivalently continuous).

• By Riesz-Fréchet theorem, for any y ∈ X , the bounded linear function δy can be
represented by a function ky ∈ H. That is, δy(f) = 〈f, ky〉 for all f ∈ H. We can then
define the 2-variable “reproducing kernel” for H as

K(x, y) := ky(x) = 〈ky, kx〉 . (2.55)

It is customary to write K(·, y) for ky, so that the “reproducing property” of the kernel
can be expressed as

〈f,K(·, y)〉 = f(y), f ∈ H, y ∈ X (2.56)

13We are interpreting the series convergence in the sense of (2.54). It can also be shown that the series
converges in the operator norm.
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• As an example, consider the space Sobolev space

H =
{
f : [0, 1]→ R

∣∣ f is absolutely continuous, f(0) = 0 and f ′ ∈ L2[0, 1].
}

with the inner product 〈f, g〉 =
∫ 1

0
f ′(t)g′(t)dt. One verifies that this is an RKHS with

kernel K(x, y) = min(x, y).

• For an RKHS H on X with reproducing kernel K(·, ·), we have the following:

– The linear span of {ky : y ∈ X} is dense in H (in the norm topology).

– Norm convergence in H, implies point-wise convergence. That is, ‖fn − f‖H → 0
implies fn(x)→ f(x) for all x ∈ X . This is a consequence of (2.56) and Cauchy–
Schwarz inequality.

– If {ψk} is an orthonormal basis for H, then

K(x, y) :=
∑
k

ψ(x)ψ(y)

where the series converges pointwise.

• We have the following characterization of reproducing kernels:

– Two RKHS with equal kernel functions are equal, that is, they contain the same
functions and their norms are the same. (By equality of kernels we mean pointwise
equality as bivariate functions.)

– One easily verifies that the reproducing kernel K(·, ·) of a RKHS is positive
semidefinite. That is, for any finite collection {x1, . . . , xn} ⊂ X , the matrix(
K(xi, xj)

)
is positive semidefinite.

The converse, which is rather deep, is also true: For any positive semidefinite
function K(·, ·) on X , there exists a RKHS on X whose reproducing kernel is
K(·, ·). This result combined with the previous point shows that there is a one-
to-one correspondence between positive semidefinite functions and RKHSs.

2.6 Minimax lower bounds via Fano inequality

One of the approachs in deriving minimax lower bounds is through the use of Fano inequality.
Here, we give a brief introduction. For more details we refer to [107, 104, 48].
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2.6.1 Decision theory and minimax criterion

Consider a collection of probability distributions {Pθ, θ ∈ Θ}, parametrized with θ, defined
on a common (measurable) space X . The classical decision-theoretic approach to the problem
of statistical inference is as follows: we observe a random variable X distributed according
to Pθ for some unknown, underlying, true θ; the goal of us, as statisticians, is to construct
an estimator of the (true) parameter, θ, based on the observation, X, under the assumption
that there is a cost, depending on the mismatch between the estimator and (true) θ, which

has to be minimized. We denote the estimator as θ̂ = θ̂(X).
Usually, Pθ stands for the distribution of n i.i.d. samples from a simpler distribution.

That is, Pθ = Q⊗nθ , for some Qθ, where the notation ⊗n stands for n-fold product of a measure
with itself. In other words, X consists of n i.i.d. copies from Qθ. We ignore this minor detail
in the following.

To formalize the notion of cost, one puts a distance (or metric) d on Θ to measure

the discrepancy between θ and θ̂ as d(θ, θ̂). At a rather abstract level, there is usually
another piece to the story, a loss function: an increasing function ` : R+ → R+ such
that `(0) = 0. The cost of a discrepancy d(θ, θ̂) to the statistician is `(d(θ, θ̂)). It is also
customary to call `(d(·, ·)) the loss function. Common loss functions are `(x) = xp, for p > 0
and `(x) = 1{x > δ}. The default for us is `(x) = x2. Common distances are:

• The discrete distance 1{θ 6= θ̂}, often used when θ takes on discrete values, say Θ ⊂
{0, 1}d. We call the corresponding loss `(d(θ, θ̂)) = 1{θ 6= θ̂}, the zero-one loss.

• The `2 distance ‖θ − θ̂‖2 when θ takes on real values, say Θ ⊂ Rd. We might call the

corresponding loss `(d(θ, θ̂)) = ‖θ − θ̂‖2
2, the squared error loss.

The expected cost, also known as risk, that is, R(θ) := Eθ `(d(θ, θ̂(X))) is what we
are interested in minimizing. Here Eθ denotes the expectation under Pθ, that is, assuming
X ∼ Pθ. As for any particular estimator θ̂, the risk depends in general on θ, one approach
is to try minimizing the maximum risk,

R∗(Θ) := inf
θ̂

sup
θ∈Θ

Eθ `(d(θ, θ̂(X))).

An estimator the achieves the “inf” above is called minimax optimal, the corresponding
risk, R∗(Θ), is called minimax risk. (For simplicity, we assume that the “inf” is taken over

estimators θ̂ taking values in Θ, so that there is no ambiguity in the definition of R∗(Θ).
Also, a more detailed notation for the minimax risk is R∗(Θ; d, `); we have omitted the
dependence on the distance and loss assuming that those can be inferred from the context.)

2.6.2 Reduction by discretization and Bayesian averaging

In order to obtain lower bounds on the minimax risk, the usual approach is to reduce the
problem to the case where Θ is a finite discrete set, and the loss is the zero-one loss, in which
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case the inference problem is essentially a multiple hypothesis testing. More specifically, for
some δ > 0, let F := Fδ ⊂ Θ be a finite subset of Θ with the property that

d(θ, θ′) ≥ 2δ, ∀θ, θ′ ∈ Fδ.

Then it is easy to verify that

R∗ ≥ `(δ)R∗(Fδ) (2.57)

where

R∗(Fδ) := inf
T̂

max
θ∈Fδ

Pθ{T̂ 6= θ}

where “inf” is now over all estimators T̂ = T̂ (X) taking values in Fδ. One usually tries to
choose δ appropriately such that R∗(Fδ) is bounded below by a numerical constant, in which
case, by (2.57), `(δ) determines a lower bound on minimax risk up to constants. Of course
reduction (2.57) is unnecessary, if we start with a finite discrete Θ, as for example in the
problem of model (or subset) selection where Θ ⊂ {0, 1}d.

The next common step is noting that the minimax risk R∗(Fδ) is bounded below by
optimal Bayes risk for any prior on Fδ. In particular, let w be a probability measure on Fδ
and put wθ := w({θ}), for θ ∈ Fδ. Then since

∑
θ∈Fδ wθ = 1 and wθ ≥ 0, for θ ∈ Fδ, it is

clear that

R∗(Fδ) ≥ r∗(w) (2.58)

where

r∗(w) := inf
T̂

∑
θ∈Fδ

wθPθ{T̂ 6= θ} (2.59)

is the optimal Bayes risk for (prior) w. To see the Bayesian interpretation, let T be a random
variable with distribution w and given T = θ, let X be distributed as Pθ. Then, (2.59) can
be restated as

r∗(w) = inf
T̂

Pw(T̂ 6= T ) (2.60)

where the subscript w on Pw signifies the underlying prior on w(·) the parameter θ.

2.6.3 Fano inequality

We can now apply Fano inequality to (2.60). Assume that the prior w on θ is uniform, i.e.
wθ = 1

|Fδ|
for all θ ∈ Fδ. Then, one form of the inequality states

inf
T̂

P(T̂ (X) 6= T ) ≥ 1− I(X;T ) + log 2

log |Fδ|
(2.61)
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where I(X;T ) is the mutual information between X and T [30]. Hence, the problem of find-
ing a minimax lower bound is reduced to finding an upper-bound on the mutual information
I(X;T ). Before mentioning some such bounds, let us discuss some equivalent definitions of
mutual information.

The usual definition is via entropies. Assume that each Pθ, θ ∈ Θ is absolutely continuous
with respect to a (common) underlying measure µ, with density x 7→ pθ(x). Let c be the
counting measure on Fδ. Then, (X,T ) has a distribution with density (x, θ) 7→ wθpθ(x) with
respect to µ ⊗ c. Let us denote this (joint) density as pX,T . Let pX(x) :=

∑
θ∈Fδ wθpθ(x)

be the marginal density of X with respect to µ. Also let pX|T (x|θ) := pθ(x) denote the
conditional density of X given T = θ.

The (differential) entropy of X and the conditional entropy of X given T are

H(X) := −
∫
pX log pXdµ,= −E log pX(X) (2.62)

H(X|T ) := −
∫
pX,T log pX|T dµ⊗ c = −E log pX|T (X|T ) (2.63)

respectively. The mutual information is defined as

I(X;T ) := H(X)−H(X|T ) (2.64)

This form is suitable for upper bounding the mutual information using the maximum entropy
principal. See §3.5 for an example.

Another useful expression for the mutual information is in terms of the Kullback-Leibler
(KL) divergence between two distributions. For two distributions P and Q with densities p
and q with respect to µ, it is given by

D(P ||Q) := D(p || q) :=

∫
p log

p

q
dµ. (2.65)

Expanding (2.64), we have

I(X;T ) =
∑
θ

wθ

∫
pθ log

pθ
pX
dµ =

∑
θ

wθD(pθ || pX), (2.66)

hence the mutual information has an interpretation as an averaged KL divergence.
Recall that we are assuming wθ to be uniform on Fδ. For simplicity, let N := |Fδ|. In

this case, it is natural to denote the distribution corresponding to pX = 1
N

∑
θ pθ as P ; it is

the center of the collection {Pθ}. Then, we obtain an alternative form of Fano inequality,

inf
T̂

P(T̂ 6= T ) ≥ 1−
1
N

∑
θ∈Fδ D(Pθ ||P ) + log 2

logN
(2.67)
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2.6.4 Bounds on mutual information

A rather simple series of bounds based on representation (2.66) is

I(X;T ) =
1

N

∑
θ∈Fδ

D(Pθ ||P )
(a)

≤ 1

N2

∑
θ,θ′∈Fδ

D(Pθ ||Pθ′)
(b)

≤ max
θ,θ′∈Fδ

D(Pθ ||Pθ′) (2.68)

where (a) follows from convexity of the KL divergence and (b) is trivial. Note that (b) can
be interpreted as follows: the mutual information is bounded by the “diameter” of the set
Fδ in KL divergence. This rather crude bound—which is still useful in some cases—can be
refined to give a more sophisticated bound due to Yang and Barron [104].

To derive the Yang-Barron inequality, we first note that I(X;T ) = infQ
1
N

∑
θ∈Fδ D(Pθ ||Q)

where the infimum is taken over all distributions Q of X. Using this variational characteri-
zation, any choice of Q provides an upper bound. In particular, let E ⊂ Θ some finite subset
of Θ, possibly other than Fδ. Let Q be the distribution of X obtained by setting a uniform
prior on E, i.e., Q has the density q = 1

|E|
∑

t∈E pt. For each θ ∈ Fδ, let tθ ∈ E be such that

D(Pθ ||Ptθ) = mint∈E D(Pθ ||Pt)—that is, we are projecting Pθ onto {Pt, t ∈ E}. Then,

I(X;T ) ≤ 1

N

∑
θ∈Fδ

D(Pθ ||Q) =
1

N

∑
θ∈Fδ

∫
pθ log

pθ
|E|−1

∑
t∈E pt

dµ

(a)

≤ 1

N

∑
θ∈Fδ

∫
pθ log

pθ
|E|−1ptθ

dµ

= log |E|+ 1

N

∑
θ∈Fδ

D(Pθ ||Ptθ)

≤ log |E|+ max
θ∈Fδ

D(Pθ ||Ptθ) (2.69)

where (a) follows since dropping nonnegative terms of a sum does not make it bigger. (We
are dropping every term except ptθ ,) Using the definition of tθ, we can restate this as the
Yang-Barron inequality

I(X;T ) ≤ log |E|+ max
θ∈Fδ

min
t∈E

D(Pθ ||Pt). (2.70)

To see the usefulness of (2.70), let NKL(ε) be the cardinality of the smallest set E ⊂ Θ
such that any θ ∈ Θ is within a ball of radius ε around some element of E, in square root
KL (pseudo-)metric, that is, for any θ ∈ Θ, there is t ∈ E such that

√
D(Pθ ||Pt) ≤ ε. In

other words, NKL(ε) is the covering number of set Θ in square root KL (pseudo-)metric. It
follows that the RHS of (2.70) is upper-bounded by logNKL(ε) + ε2. As this holds for any
ε > 0, we obtain

I(X;T ) ≤ inf
ε>0

{
ε2 + logNKL(ε)

}
. (2.71)
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2.6.5 Symmetry and risk flatness

The lower bound on the minimax risk using Fano inequality is based on the uniform prior on
the parameter space. The question one might ask is whether there are other priors which lead
to tighter bounds. It is known that under some general regularity conditions [16], there are
the so-called least favorable priors for which the optimal Bayes risk is equal to the minimax
risk, i.e., for which inequality (2.58) is tight. In this subsection, we consider settings in which
symmetry considerations lead to the rather opposite conclusion, namely that all priors are
effectively the same. To introduce the setup, we need some notations.

Consider the case where Θ ⊂ Rd. Let π be a permutation of [d] := {1, . . . , d}. The set of
all such permutations is the symmetric group of [d] denoted as Sd. For any vector x ∈ Rd,
let x ◦ π be the vector in Rd, with entries (x ◦ π)i = xπ(i). That is,

x ◦ π = (xπ(1), . . . , xπ(d)).

We are interested in collections {Pθ : θ ∈ Fδ} that have the following property: for any
θ ∈ Fδ and π ∈ Sd,

X ∼ Pθ =⇒ X ◦ π ∼ Pθ◦π. (2.72)

Let us call such collections of distributions symmetric. Then, one can argue that in determin-
ing the minimax risk, we only need to focus on estimators T̃ (X) that have the corresponding
symmetry property, i.e., for π ∈ Sd

T̃ (X ◦ π) ∼ T̃ (X) ◦ π.

We will actually argue sufficiency of an even more restricted class of estimators, namely
those with the property that, for π ∈ Sd,

T̃ (X ◦ π) = T̃ (X) ◦ π. (2.73)

Let us call an estimator T̃ satisfying the above strongly symmetric. In particular, we have
the following which we state without proof.

Proposition 1. Consider a symmetric collection {Pθ : θ ∈ Fδ} of distributions, in the sense

of (2.72). Then, for any estimator T̂ (X), there is a strongly symmetric estimator T̃ (X), in
the sense of (2.73), such that

max
θ∈Fδ

Pθ(T̃ 6= θ) ≤ max
θ∈Fδ

Pθ(T̂ 6= θ).
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Chapter 3

High-dimensional sparse PCA

3.1 Sparse spiked covariance model

The primary focus of this chapter is the (sparse) spiked covariance model, in which some
base covariance matrix is perturbed by the addition of a sparse eigenvector z∗ ∈ Rp. In
particular, in the notations of §2.4, we study sequences of covariance matrices of the form

Σp = β z∗(z∗)T +

[
Ik 0
0 Γp−k

]
= β z∗(z∗)T + Γ (3.1)

where Γp−k ∈ Sp−k+ is a symmetric PSD matrix with λmax(Γp−k) ≤ 1. The vector z∗ is
assumed k-sparse, that is, having exactly k nonzero entries,

card(z∗) = k.

Without loss of generality, by re-ordering the indices as necessary, we assume that the non-
zero entries of z∗ are indexed by {1, . . . , k}, so that equation (3.1) is the form of the co-
variance after any re-ordering. We also assume that the non-zero part of z∗ has entries
z∗i ∈ 1√

k
{−1,+1}, so that ‖z∗‖2 = 1.

The spiked covariance model (3.1) was first proposed by Johnson [55], who focused on the
spiked identity covariance matrix (i.e., model (3.1) with Γp−k = Ip−k). As mentioned earlier
(cf. ?), Johnstone and Lu [58] established that, for the spiked identity model and a Gaussian
ensemble, the sample maximal eigenvector, based on a sample of size n, is inconsistent as
an estimator of z∗ whenever p/n → c > 0. These asymptotic results were refined by later
work [74, 11].

In this chapter, we study a slightly more general family of spiked covariance models, in
which the matrix Γp−k is required to satisfy the following conditions:

A1. |||
√

Γp−k|||∞,∞ = O(1), and (3.2a)

A2. λmax(Γp−k) ≤ min

{
1, λmin(Γp−k) +

β

8

}
. (3.2b)
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Here
√

Γp−k denotes the symmetric square root. These conditions are trivially satisfied by
the identity matrix Ip−k, but also can hold for more general non-diagonal matrices. Thus,
under the model (3.1), the population covariance matrix Σ itself need not be sparse, since
(at least generically) it has k2 + (p− k)2 = Θ(p2) non-zero entries. Assumption (A2) on the
eigenspectrum of the matrix Γp−k ensures that as long as β > 0, then the vector z∗ is the
unique maximal eigenvector of Σ, with associated eigenvalue (1 + β). Since the remaining
eigenvalues are bounded above by 1, the parameter β > 0 represents a signal-to-noise ratio,
characterizing the separation between the maximal eigenvalue and the remainder of the
eigenspectrum. Assumption (A1) is related to the fact that recovering the correct signed
support means that the estimate ẑ must satisfy ‖ẑ − z∗‖∞ ≤ 1/

√
k. As will be clarified

by our analysis (see §3.4.4), controlling this `∞ norm requires bounds on terms of the form
‖
√

Γp−k u‖∞, which requires control of the `∞-operator norm |||
√

Γp−k|||∞,∞.

3.1.1 Model selection problem

In this chapter, we study the model selection problem for eigenvectors: i.e., we assume that
the maximal eigenvector z∗ is k-sparse, meaning that it has exactly k non-zero entries, and
our goal is to recover this support, along with the sign of z∗ on its support. We let

S := supp(z∗) := {i | z∗i 6= 0}

denote the support set of the maximal eigenvector; recall that supp(z∗) = {1, . . . , k} by our
assumed ordering of the indices. We also define the function supp± : Rp → {−1, 0,+1}p by

[supp±(u)]i :=

{
sign(ui) if ui 6= 0

0 otherwise,
(3.3)

so that

S∗± := supp±(z∗)

encodes the signed support of the maximal eigenvector.
Given some estimate Ŝ± of the true signed support S∗±, we assess it based on the 0–1

loss 1{Ŝ± 6= S∗±}, so that the associated risk is simply the probability of incorrect decision

P(Ŝ± 6= S∗±). Our goal is to specify conditions on the scaling of the triplet (n, p, k) such
that this error probability vanishes, or conversely fails to vanish asymptotically. We consider
methods that operate based on a set of n samples x1, . . . , xn, drawn i.i.d. with Gaussian
distribution N(0,Σp). Under the spiked covariance model (3.1), each sample can be written
as

xi =
√
β viz

∗ +
√

Γgi, (3.4)

where vi ∼ N(0, 1) is standard Gaussian, and gi ∼ N(0, Ip) is a standard Gaussian p-vector,
independent of vi, so that

√
Γgi ∼ N(0,Γ).
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3.2 Two methods of support recovery and results

The data {xi}ni=1 defines the sample covariance matrix

Σ̂ :=
1

n

n∑
i=1

xix
T
i , (3.5)

which follows a p-variate Wishart distribution [7]. In the following, we analyze the high-
dimensional scaling of two methods for recovering the (signed) support of the maximal

eigenvector which operate on Σ̂. It will be assumed throughout that the size k of the support
of z∗ is available to the methods a priori, i.e., we do not make any attempt at estimating k.

3.2.1 Diagonal cut-off

Under the spiked covariance model (3.1), note that the diagonal elements of the population
covariance satisfy [Σ]`` = 1 + β/k for all ` ∈ S, and [Σ]`` ≤ 1 for all ` /∈ S. This latter
bound follows since for all ` /∈ S, we have [Σ]`` ≤ |||Γp−k|||2,2 ≤ 1. This observation motivates
a natural approach to recovering information about the support set S, previously used as a
pre-processing step by Johnstone and Lu [58].

Let D`, ` = 1, . . . , p be the diagonal elements of the sample covariance matrix—viz.

D` =
1

n

n∑
i=1

(xi`)
2 = [Σ̂]``.

Form the associated order statistics

D(1) ≤ D(2) ≤ · · · ≤ D(p−1) ≤ D(p),

and output the random subset Ŝd of cardinality k specified by the indices of the largest k
elements {D(p−k+1), . . . , D(p)}. That is, if πd is the permutation of [p] such that D(j) = Dπd(j),
then

Ŝd :=
{
πd(p− k + 1), . . . , πd(p)

}
.

The chief appeal of this method is its low computational complexity: apart from the or-
der O(np) of computing the diagonal elements of Σ̂, it requires only performing a sorting
operation, with complexity O(p log p).

Note that this method provides only an estimate of the support S, as opposed to the
signed support S∗±. One could imagine extending the method to extract sign information as
well, but our main interest in studying this method is to provide a simple benchmark by which
to calibrate our later results on the performance of the more complex SDP relaxation. In
particular, the following result provides a precise characterization of the statistical behavior
of the diagonal cut-off method:
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Proposition 2 (Performance of diagonal cut-off). For k = O(p1−δ) for any δ ∈ (0, 1), the
probability of successful recovery using diagonal cut-off undergoes a phase transition as a
function of the rescaled sample size

θdia(n, p, k) =
n

k2 log(p− k)
. (3.6)

More precisely, there exists a constant θu such that if n > θuk
2 log(p− k), then

P
(
Ŝd = S

)
≥ 1− exp

(
−Θ(k2 log(p− k))

)
→ 1, (3.7)

so that the method succeeds w.a.p. one, and a constant θ` > 0 such that if n ≤ θ`k
2 log(p−k),

then

P
(
Ŝd = S

)
≤ exp

(
−Θ(log(p− k))

)
→ 0, (3.8)

so that the method fails w.a.p. one.

Remarks. The proof of Proposition 2, provided in §3.3, is based on large deviations bounds
on χ2-variates. The achievability assertion (3.7) uses known upper bounds on the tails of
χ2-variates [e.g., 19, 58]. The converse result (3.8) requires an exponentially tight lower
bound on the tails of χ2-variates, which we derive in Appendix 3.B.

To illustrate the prediction of Proposition 2, we provide some results on the diagonal
cut-off method. For all experiments reported here, we generated n samples {x1, . . . , xn}
in an i.i.d. manner from the spiked covariance ensemble (3.1), with Γ = I and β = 3.
Figure 3.1 illustrates the behavior predicted by Proposition 2. Each panel plots the success
probability P

(
Ŝd = S

)
versus the rescaled sample size θdia(n, p, n) = n/[k2 log(p− k)]. Each

panel shows five model dimensions (p ∈ {100, 200, 300, 600, 1200}), with panel (a) showing
the logarithmic sparsity index k = O(log p), and panel (b) showing the case k = O(

√
p).

Each point on each curve corresponds to the average of 100 independent trials. As predicted
by Proposition 2, the curves all coincide, even though they correspond to very different
regimes of (p, k).

3.2.2 Semidefinite-programming relaxation

We now describe the approach to sparse PCA developed by d’Aspremont et al. [32]. Recall
from §? that Sp+ represents the cone of positive semidefinite p-by-p matrices. Given n i.i.d.

observations from the model N(0,Σp), let Σ̂ be the sample covariance matrix (3.5), and
let λn > 0 be a user-defined regularization parameter. d’Aspremont et al. [32] propose
estimating z∗ by solving the optimization problem

Ẑ := arg max
Z ∈ Sp+, tr(Z)=1

[
tr(Σ̂Z)− λn

∑
i,j

|Zij|
]

(3.9)
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Figure 3.1: Plot of the success probability P
(
Ŝd = S

)
versus the rescaled sample size θdia(n, p, k) = n/[k2 log(p− k)]. The five

curves in each panel correspond to model dimensions p ∈ {100, 200, 300, 600, 1200}, SNR parameter β = 3, and sparsity indices
k = O(log p) in panel (a), and k = O(

√
p) in panel (b). As predicted by Proposition 2, the success probability undergoes a

phase transition, with the curves for different model sizes and different sparsity indices all lying on top of one another.

and computing the maximal eigenvector ẑ = ϑmax(Ẑ). The optimization problem (3.9) is a
semidefinite program (SDP), a class of convex conic programs that can be solved exactly in
polynomial time. Indeed, d’Asprémont et al. [32] describe an O(p4 log p) algorithm, with an
implementation posted online, that we use for all simulations reported in this paper.

To gain some intuition for (3.9), recall the exact SDP formulation of the ordinary PCA,

that is (2.40) of §§ 2.4. In particular, replacing Σ with Σ̂ in (2.40), we get the sample version

max
Z ∈ Sp+, tr(Z)=1

tr(Σ̂Z). (3.10)

As mentioned before, this problem always has (at least) a rank-one solution. In particular,

if z = ϑmax(Σ̂) is any maximal eigenvector of Σ̂, then Z = zzT is a solution of (3.10). (If the
maximal eigenvalue is not simple, there are also higher rank solutions.) If we were given a
priori information that the maximal eigenvector were sparse, then it might be natural to solve
the same semidefinite program with the addition of an `0 constraint. Given the intractability
of such an `0-optimization problem, the SDP program (3.9) is a natural relaxation.

In particular, the following result provides sufficient conditions for the SDP relaxation (3.9)
to succeed in recovering the correct signed support of the maximal eigenvector:

Theorem 7 (SDP performance guarantees). Impose conditions (3.2a) and (3.2b) on the
sequence of population covariance matrices {Σp}, and suppose moreover that λn = β/(2k)
and k = O(log p). Then,

(a) Rank guarantee: there exists a constant θwr = θwr(Γ,β) such that for all sequences
(n, p, k) satisfying θdia(n, p, k) > θwr, the semidefinite program (3.9) has a rank one
solution with high probability, and
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(b) Critical scaling: there exists a constant θcrit = θcrit(Γ,β) such that if the sequence
(n, p, k) satisfies

θsdp(n, p, k) :=
n

k log(p− k)
> θcrit, (3.11)

and if there exists a rank one solution, then it specifies the correct signed support with
probability converging to one.

Remarks. Part (a) of the theorem shows that rank one solutions of the SDP (3.9) are not
uncommon; in particular, they are guaranteed to exist with high probability at least under
the weaker scaling of the diagonal cut-off method. The main contribution of Theorem 7 is
its part (b), which provides sufficient conditions for signed support recovery using the SDP,
when a rank one solution exists. The bulk of our technical effort is devoted to part (b);
indeed, the proof of part (a) is straightforward once all the pieces of the proof of part (b)
have been introduced, and so will be deferred to the last appendix. For technical reasons,
our current proof(s) require the condition k = O(log p); however, it should be possible to
remove this restriction, and indeed, the empirical results do not appear to require it.

3.2.3 Minimax lower bound

Proposition 2 and Theorem 7 apply to the performance of specific (polynomial-time) meth-
ods. It is natural then to ask whether there exists any algorithm, possibly with super-
polynomial complexity, that has greater statistical efficiency. The following result is information-
theoretic in nature, and characterizes the fundamental limitations of any algorithm regardless
of its computational complexity:

Theorem 8 (Information-theoretic limitations). Consider the problem of recovering the
eigenvector support in the spiked covariance model (3.1) with Γ = Ip. For any sequence
(n, p, k)→ +∞ such that

θsdp(n, p, k) :=
n

k log(p− k)
<

1 + β

β2
, (3.12)

the probability of error of any method is at least 1/2.

Remarks. Together with Theorem 7, this result establishes the sharpness of the thresh-
old (3.11) in characterizing the behavior of SDP relaxation, and moreover, it guarantees
optimality of the SDP scaling (3.11), up to constant factors, for the spiked identity ensem-
ble.

To illustrate the predictions of Theorem 7 and 8, we applied the SDP relaxation to the
spiked identity covariance ensemble, again generating n i.i.d. samples. We solved the SDP re-
laxation using publically available code provided by d’Asprémont et al. [32]. Figure 3.2 shows
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the corresponding plots for the SDP relaxation. Here we plot the probability P
(

supp±(ẑ) =
S∗±
)

that the SDP relaxation correctly recovers the signed support of the unknown eigenvec-
tor z∗, where the signs are chosen uniformly in {−1,+1} at random. Following Theorem 7,
the horizontal axis plots the rescaled sample size θsdp(n, p, k) = n/[k log(p− k)]. Each panel
shows plots for three different problem sizes, p ∈ {100, 200, 300}, with panel (a) correspond-
ing to logarithmic sparsity (k = O(log p)), and panel (b) to linear sparsity (k = 0.1p).
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Figure 3.2: Performance of the SDP relaxation for the spiked identity ensemble, plotting the success probability
P
(

supp±(ẑ) = S∗±
)

versus the rescaled sample size θsdp(n, p, k) = n/[k log(p − k)]. The three curves in each panel corre-
spond to model dimensions p ∈ {100, 200, 300}, SNR parameter β = 3, and sparsity indices k = O(log p) in panel (a), and
k = 0.1p in panel (b). As predicted by Theorem 7, the curves in panel (a) all lie on top of one another, and transition to success
once the order parameter θsdp is sufficiently large.

Consistent with the prediction of Theorem 7, the success probability rapidly approaches one
once the rescaled sample size exceeds some critical threshold. (Strictly speaking, Theorem 7
only covers the case of logarithmic sparsity shown in panel (a), but the linear sparsity curves
in panel (b) show the same qualitative behavior.) Note that this empirical behavior is con-
sistent with our conclusion that the order parameter θsdp(n, p, k) = n/[k log(p−k)] is a sharp
description of the SDP threshold.

3.3 Proof of Proposition 2 – diagonal cut-off

This section contains the proof of Proposition 2. We begin by proving the achievability
result (3.7). We provide a detailed proof for the case Γp−k = Ip−k, and discuss necessary
modifications for the general case at the end. For ` = 1, . . . , p, we have

D` =
1

n

n∑
i=1

(xi`)
2 =

1

n

n∑
i=1

(√
βviz

∗
` + gi`

)2
. (3.13)
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Since (
√
βz∗` vi + gi`) ∼ N(0, β(z∗` )

2 + 1) for each i, the rescaled variate n
β(z∗` )2+1

D` is central

χ2
n with n degrees of freedom. Consequently, we have

E[D`] =

{
1 for all ` ∈ Sc

1 + β
k

for all ` ∈ S,

where we have used the fact that (z∗` )
2 = 1/k by assumption.

A sufficient condition for success of the diagonal cut-off decoder is a threshold τk such
that D` ≥ (1 + τk) for all ` ∈ S, and D` < (1 + τk) for all ` ∈ Sc. Using the union bound
and the tail bound (3.64) on central χ2, we have

P
{

max
`∈Sc

D` ≥ (1 + τk)
}
≤ (p− k)P

{χ2
n

n
≥ 1 + τk

}
≤ (p− k) exp

(
−3n

16
τ 2
k

)
,

so that the probability of false inclusion vanishes as long as n > 16
3

(τk)
−2 log(p− k).

On the other hand, using the union bound and the tail bound (3.63b), we have

P
{

min
`∈S

D` < (1 + τk)
}
≤ k P

{χ2
n

n
− 1 <

1 + τk

1 + β
k

− 1
}

= k P
{χ2

n

n
− 1 <

τk − β
k

1 + β
k

}
≤ k P

{χ2
n

n
− 1 < τk −

β

k

}

As long as τk < β/k, we may choose x = n
4
(β
k
− τk)2 in equation (3.63b), thereby obtaining

the upper bound

P
{

min
`∈S

D` < n(1 + τk)
}
≤ k exp

(
− n

4

(β
k
− τk

)2
)
,

so that the probability of false exclusion vanishes as long as n > 4(β
k
− τk)−2 log k. Choosing

τk = β
2k

ensures that the probability of both types of error vanish asymptotically as long as

n > max

{
64

3β2
k2 log(p− k),

16

β2
k2 log k

}
.

Since k = o(p), the log(p−k) term is the dominant requirement. The modifications required
for the case of general Γp−k are straightforward. Since var([

√
Γgi]`) = [Γp−k]`` ≤ 1 for all

` ∈ Sc and samples i = 1, . . . , n, we need to adjust the scaling of the χ2
n variates. For general

Γp−k, the variates {D`, ` ∈ Sc} need no longer be independent, but our proof used only union
bound, and so is valid regardless of the dependence structure.
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We now prove the converse claim (3.8) for the spiked identity ensemble. At a high-level,
this portion of the proof consists of the following steps. For a positive real t, define the
events

A1(t) :=
{

max
`∈Sc

D` > 1 + t
}
, and A2(t) :=

{
min
`∈S

D` < 1 + t
}
.

Noting that the event A1(t) ∩A2(t) implies failure of the diagonal cutoff decoder, it suffices
to show the existence of some t > 0 such that P[A1(t)]→ 1 and P[A2(t)]→ 1.

Analysis of event A1. Central to the analysis of event A1 is the following large-deviations
lower bound on χ2-variates:

Lemma 6. For a central χ2
n variable, there exists a constant C > 0 such that

P
{χ2

n

n
> 1 + t

}
≥ C√

n
exp

(
− nt2

2

)
, t ∈ (0, 1).

See Appendix 3.B for the proof.

We exploit this lemma as follows. First define the integer-valued random variable

Z(t) :=
∑
`∈Sc

1{D` > 1 + t}

corresponding to the number of indices ` ∈ Sc for which the diagonal entry D` exceeds 1 + t,
and note that P[A1(t)] = P[Z(t) > 0]. By a one-sided Chebyshev inequality [46], we have

P[A1(t)] = P
{
Z(t) > 0

}
≥ (E[Z(t)])2

(E[Z(t)])2 + var(Z(t))
. (3.14)

Note that Z(t) is a sum of (p − k) independent Bernoulli indicators, each with the same
parameter q(t) := P[D` > 1 + t]. Computing the mean E[Z(t)] = (p − k)q(t) and variance
var(Z(t)) = (p − k)q(t) (1 − q(t)), and then substituting into the Chebyshev bound (3.14),
we obtain

P
{
A1(t)

}
≥ (p− k)2q2(t)

(p− k)2q2(t) + (p− k)q(t) (1− q(t))
≥ (p− k) q(t)

(p− k) q(t) + 1
≥ 1− 1

(p− k)q(t)
.

Consequently, the condition (p− k)q(t)→∞ implies that P[A1(t)]→ 1.

Let us set t =
√

δ log(p−k)
n

where δ ∈ (0, 1) is the parameter from the assumption k =

O(p1−δ). From Lemma 6, we have q(t) ≥ C√
n

exp(−nt2/2), so that

(p− k)q
(√δ log(p− k)

n

)
≥ C(p− k)√

n
exp

(
− δ

2
log(p− k)

)
=

C(p− k)1−δ/2
√
n

.
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Since n ≤ Lk2 log(p− k) for some L < +∞ by assumption, we have

(p− k)q
(√δ log(p− k)

n

)
≥ C√

L

(p− k)1−δ

k

(p− k)δ/2√
log(p− k)

,

which diverges to infinity, since k = O(p1−δ).

Analysis of event A2. In order to analyze this event, we first need to condition on the
random vector v := (v1, . . . , vn), so as to decouple the random variables {D`, ` ∈ S}. After
conditioning on v, each variate nD`, ` ∈ S is a non-central χ2

n,ν∗ , with n degrees of freedom

and non-centrality parameter ν∗ = β
k
‖v‖2

2, so that each D` has mean (ν∗ + n).
Since v is a standard Gaussian n-vector, we have ‖v‖2

2 ∼ χ2
n. Therefore, if we define

the event B(v) :=
{
‖v‖22
n

> 3
2

}
, the large deviations bound (3.63a) implies that P[B] ≤

exp(−n/16). Therefore, by conditioning on B and its complement, we obtain

P[Ac
2] ≤ P

{
min
`∈S

D` > 1 + t
∣∣∣Bc}+ P[B]

≤
(
P
{
χ2
n,ν∗ > n(1 + t)

∣∣∣Bc})k + exp(−n/16), (3.15)

where we have used the conditional independence of {D`, ` ∈ S}. Finally, since
‖v‖22
n
≤ 3

2
on

the event Bc, we have ν∗ ≤ 3β
2k
n, and thus

P
{
χ2
n,ν∗ > n(1 + t) | Bc

}
≤ P

{
χ2
n,ν∗ > {n+ ν∗}+ n{t− 3β

2k
} | Bc

}
.

Since t =
√
δ log(p− k)/n and n < Lk2 log(p−k), we have t ≥

√
δ
L

1
k
, so that the quantity

ε := min{1
2
, t − 3β

2k
} is positive for the pre-factor L > 0 chosen sufficiently small. Thus, we

have

P
{
χ2
n,ν∗ > n(1 + t) | Bc

}
≤ P

{
χ2
n,ν∗ > {n+ ν∗}+ nε

}
≤ exp

(
− n ε2

16 (1 + 23
2
)

)
= exp

(
−n ε

2

64

)
using the χ2 tail bound (3.66). Substituting this upper bound into equation (3.15), we obtain

P[Ac
2] ≤ exp

(
−kn ε

2

64

)
+ exp (−n/16) ,

which certainly vanishes if ε = 1
2
. Otherwise, we have ε = t − 3β

2k
with t =

√
δ log(p−k)

n
, and

we need the quantity

√
kn

(
t− 3β

2k

)
=

√
δk log(p− k)− 3β

2

√
n

k
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to diverge to +∞. This divergence is guaranteed by choosing n < Lk2 log(p − k), for L
sufficiently small.

3.4 Proof of Theorem 7(b) – SDP relaxation

Theorem 7(b) is the main result of this chapter. Its proof is constructive in nature, based on
the notion of a primal-dual certificate: that is, a primal feasible solution and a dual feasible
solution that together satisfy the optimality conditions associated with the SDP (3.9).

3.4.1 High-level proof outline

We first provide a high-level outline of the main steps in our proof. Under the stated
assumptions of Theorem 7, it suffices to construct a rank-one optimal solution Ẑ = ẑẑT ,
constructed from a vector with ‖ẑ‖2 = 1, as well as the following properties:

Correct sign: sign(ẑi) = sign(z∗i ) for all i ∈ S, and (3.16a)

Correct exclusion: ẑj = 0 for all j ∈ Sc. (3.16b)

Note that our objective function f(Z) = tr(Σ̂Z)− λn
∑

i,j |Zij| is concave but not differen-
tiable. However, it still possesses a subdifferential (see the books [84, 53] for more details),
so that it may be shown that the following conditions are sufficient to verify the optimality
of Ẑ = ẑẑT . Let

Sp−1 :=
{
x ∈ Rp : ‖x‖2 = 1

}
Lemma 7. Suppose that for each x ∈ Sp−1, there exists a sign matrix Û = Û(x) such that

(a) the matrix Û satisfies

Ûij =

{
sign(ẑi) sign(ẑj) if ẑiẑj 6= 0

∈ [−1,+1] otherwise.
(3.17)

(b) The vector ẑ satisfies of xT
(
Σ̂− λnÛ(x)

)
x ≤ ẑT

(
Σ̂− λnÛ(x)

)
ẑ.

Then Ẑ = ẑẑT is an optimal rank-one solution.

Proof. The subdifferential ∂f(Ẑ) of our objective function at Z = Ẑ consists of matrices of

the form Σ̂ − λnU , where U satisfies the condition (3.17). By the concavity of f , for any
such U and for all x ∈ Sp−1, we have

f(xxT ) ≤ f(Ẑ) + tr((Σ̂− λnU) (xxT − Ẑ)).
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Therefore, it suffices to demonstrate, for each x ∈ Sp−1, a valid sign matrix Û(x) such that

tr((Σ̂− λnÛ(x)) (xxT − Ẑ)) ≤ 0. Since we have

tr((Σ̂− λnÛ(x))xxT ) ≤ tr((Σ̂− λnÛ(x)) Ẑ)

by assumption (b), the stated conditions are sufficient.

Remarks. Note that if there is a Û independent of x such that ẑ satisfies condition (b) of

Lemma 7, i.e. if ẑ is a maximal eigenvector of Σ̂ − λnÛ , then the above argument shows
that ẑẑT is in fact “the” optimal solution (i.e., among all matrices in the constraint space,
not necessarily rank-one).

The condition (3.17), when combined with the condition (3.16a), implies that we must
have

ÛSS = sign(z∗S) sign(z∗S)T . (3.18)

The remainder of the proof consists in choosing appropriately the remaining dual blocks
ÛSSc and ÛScSc , and verifying that the primal-dual optimality conditions are satisfied. To
describe the remaining steps, it is convenient to define the matrix

Φ := Σ̂− λnÛ − Γ = βz∗z∗T − λnÛ + ∆, (3.19)

where ∆ := Σ̂ − Σ is the effective noise in the sample covariance matrix. We divide our
proof into three main steps, based on the block structure

Φ =

[
ΦSS ΦSSc

ΦScS ΦSS

]
=

[
βz∗Sz

∗
S
T − λnÛSS + ∆SS −λnÛSSc + ∆SSc

−λnÛScS + ∆ScS −λnÛScSc + ∆ScSc

]
. (3.20)

(A) In Step A, we analyze the upper left block ΦSS, using the fixed choice ÛSS = sign(z∗S) sign(z∗S)T .
We establish conditions on the regularization parameter λn and the noise matrix ∆SS

under which the maximal eigenvector of ΦSS has the same sign pattern as z∗S. This
maximal eigenvector specifies the k-dimensional subvector ẑS of our optimal primal
solution.

(B) In Step B, we analyze the off-diagonal block ΦScS, in particular establishing conditions

on the noise matrix ∆ScS under which a valid sign matrix ÛScS can be chosen such that
the p-vector ẑ := (ẑS,~0Sc) is an eigenvector of the full matrix Φ.

(C) In Step C, we focus on the lower right block ΦScSc , in particular analyzing conditions

on ∆ScSc such that a valid sign matrix ÛScSc can be chosen such that ẑ defined in Step
B satisfies condition (b) of Lemma 7.
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Our primary interest is the effective noise matrix ∆ = Σ̂− Σ induced by the usual i.i.d.
sampling model. However, our results are actually somewhat more general, in that we can
provide conditions on arbitrary noise matrices (which need not be of the Wishart type) under

which it is possible to construct (ẑ, Û) as in Steps A through C. Accordingly, in order to
make the proof as clear as possible, we divide our analysis into two parts: in §3.4.2, we
specify sufficient properties on arbitrary noise matrices ∆, and in §3.4.3, we analyze the
Wishart ensemble induced by the i.i.d. sampling model, and establish sufficient conditions
on the sample size n. In §3.4.3, we focus exclusively on the special case of the spiked
identity covariance, whereas §3.4.4 describes how our results extend to the more general
spiked covariance ensembles covered by Theorem 7.

3.4.2 Sufficient conditions for general noise matrices

We now state a series of sufficient conditions, applicable to general noise matrices. So as
to clarify the flow of the main proof, we defer the proofs of these technical lemmas to the
appendix.

Sufficient conditions for step A

We begin with sufficient condition for the block (S, S). In particular, with the choice (3.18)

of ÛSS and noting that sign(z∗S) =
√
k z∗S by assumption, we have

ΦSS = (β − λnk)z∗Sz
∗T
S + ∆SS := αz∗Sz

∗T
S + ∆SS,

where the quantity α := β−λnk < β represents a “post-regularization” signal-to-noise ratio.
Throughout the remainder of the development, we enforce the constraint

λn =
β

2k
, (3.21)

so that α = β/2. The following lemma guarantees correct sign recovery (see equation (3.16a)),
assuming that ∆SS is “small” in a suitable sense:

Lemma 8. (Correct sign recovery) Suppose that the upper left noise matrix ∆SS satisfies

|||∆SS|||∞,∞ ≤
α

10
, and |||∆SS|||2,2 → 0 (3.22)

with probability 1 as p→ +∞. Then w.a.p. one,

(a) The maximal eigenvalue γ1 := λmax(ΦSS) converges to α, and its second largest eigen-
value γ2 converges to zero.
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(b) The upper left block ΦSS has a unique maximal eigenvector ẑS with the correct sign
property (i.e. sign(ẑS) = sign(z∗S)). More specifically, we have

‖ẑS − z∗S‖∞ ≤ 1

2
√
k
. (3.23)

Sufficient conditions for step B

With the subvector ẑS specified, we can now specify the (p− k)× k submatrix ÛScS so that
the vector

ẑ := (ẑS,~0Sc) ∈ Rp (3.24)

is an eigenvector of the full matrix Φ. In particular, if we define the renormalized quantity
z̃S = ẑS/‖ẑS‖1, and choose

ÛScS =
1

λn
(∆ScS z̃S) sign(ẑS)T , (3.25)

then some straightforward algebra shows that (∆ScS − λnÛScS)ẑS = 0, so that ẑ is an

eigenvector of the matrix Φ = βz∗(z∗)T−λnÛ+∆. It remains to verify that the choice (3.25)
is a valid sign matrix (meaning that its entries are bounded in absolute value by one).

Lemma 9. Suppose that w.a.p. one, the matrix ∆ satisfies conditions (3.22), and in addi-
tion, for sufficiently small δ > 0, we have

|||∆ScS|||∞,2 ≤
δ√
k
. (3.26)

Then the specified ÛScS is a valid sign matrix w.a.p. one.

Sufficient conditions in Step C

Up to this point, we have established that ẑ := (ẑS,~0Sc) is an eigenvector of Σ̂ − λnÛ and

we have specified the sub-blocks ÛSS and ÛSSc of the sign matrix. To complete the proof,
it suffices to show that condition (b) in Lemma 7 can be satisfied—namely, that for each

x ∈ Sp−1, there exists an extension ÛScSc(x) to our sign matrix such that

ẑT
(

Σ̂− λnÛ(x)
)
ẑ ≥ xT

(
Σ̂− λnÛ(x)

)
x.

Note that it is sufficient to establish the above inequality with Φ(x) in place of Σ̂−λnÛ(x)1.
Given any vector x ∈ Sp−1, recall the definition (3.19) of the matrix Φ = Φ(x), and observe

1In particular, we have xTΓx ≤ |||Γ|||2,2 ‖x‖22 = max{1, |||Γp−k|||2,2} ‖x‖22 = 1, while ẑTΓẑ = ‖ẑS‖22 = 1;
i.e., we have xTΓx ≤ ẑTΓẑ.
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that (ẑ)TΦ(x)ẑ = γ1 for any choice of ÛScSc(x). Consider the partition x = (u, v) ∈ Sp−1,
with u ∈ Rk and v ∈ Rm, where m = p− k. We have

xTΦx = uTΦSSu+ 2vTΦScSu+ vTΦScScv. (3.27)

Let us decompose u = µẑS + ẑ⊥S , where |µ| ≤ 1 and ẑ⊥S is an element of the orthogonal
complement of the span of ẑS. With this decomposition, we have

uTΦSSu = µ2ẑTSΦSS ẑS + 2µẑTSΦSS ẑ
⊥
S + (ẑ⊥S )TΦSS ẑ

⊥
S

= µ2γ1 + (ẑ⊥S )TΦSS ẑ
⊥
S ,

using the fact that ẑS is an eigenvector of ΦSS with eigenvalue γ1 by definition. Note that
‖ẑ⊥S ‖2

2 ≤ 1−µ2, so that (ẑ⊥S )TΦSS ẑ
⊥
S is bounded by (1−µ2)γ2, where γ2 is the second largest

eigenvalue of ΦSS, which tends to zero according to Lemma 8. We thus conclude that

uTΦSSu ≤ µ2γ1 + (1− µ2)γ2. (3.28)

The following lemma addresses the remaining two terms in the decomposition (3.27):

Lemma 10. Let m = p−k and let S = {(ηi, `i)}i be a set of cardinality |S| = O(m). Suppose
that in addition to conditions (3.22) and (3.26), the noise matrix ∆ satisfies w.p. 1

max
‖v‖2≤ η,
‖v‖1≤ `

√
vT (∆ScSc + Γm)v ≤ η +

δ√
k
`+ ε, ∀(η, `) ∈ S, (3.29)

for sufficiently small δ, ε > 0 as m → +∞. Then w.p. 1, for all x ∈ Sp−1, there exists a
valid sign matrix ÛScSc(x) such that the matrix Φ(x) := βz∗ z∗T − λnÛ(x) + ∆ satisfies

xT
(
Φ(x)

)
x ≤ µ2α + (1− µ2)

α

2
≤ α. (3.30)

where |µ| = |xT ẑ| ≤ 1.

3.4.3 Noise in sample covariance – identity case

Having established general sufficient conditions on the effective noise matrix, we now turn
to the case of i.i.d. samples x1, . . . , xn from the population covariance, and let the effective
noise matrix correspond to the difference between the sample and population covariances.
Our interest is in providing specific scalings of the triplet (n, p, k) that ensure that the
constructions in Steps A through C can be carried out. So as to clarify the steps involved,
we begin with the proof for the spiked identity ensemble (Γ = I). In §3.4.4, we provide the
extension to non-identity spiked ensembles.
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Recalling our sampling model xi =
√
β viz

∗ + gi, define the vector h = 1
n

∑n
i=1 vigi. The

effective noise matrix ∆ = Σ̂− Σ can be decomposed as follows:

∆ = β

(
1

n

n∑
i=1

v2
i − 1

)
z∗z∗T︸ ︷︷ ︸+

√
β
(
z∗hT + hz∗T

)︸ ︷︷ ︸+

(
n−1

n∑
i=1

gig
T
i − Ip

)
︸ ︷︷ ︸ . (3.31)

P R W

We have named each of the three terms that appear in equation (3.31), so that we can deal
with each one separately in our analysis. The decomposition can be summarized as

∆ = βP +
√
βR +W.

The last term W is a centered Wishart random matrix, whereas the other two are cross-
terms from the sampling model, involving both random vectors and the unknown eigenvector
z∗. Defining the standard Gaussian random matrix G = (gij) ∈ Rn×p, we can express W
concisely as

W =
1

n
GTG− Ip. (3.32)

Our strategy is to examine each of the terms βP ,
√
βR and W separately. For sub-block

∆SS, the corresponding sub-blocks of all the three terms are present, while for sub-block
∆ScS, only

√
βRScS and WScS have contributions. Since the conditions to be satisfied by

these two sub-blocks are expressed in terms of their (operator) norms, the triangle inequal-
ity immediately yields the results for the whole sub-block, once we have established them
separately for each of the contributing terms. On the other hand, although the conditions
on ∆ScSc (given in Lemma 10) do not have this (sub)additive property, only the Wishart
term contributes to this sub-block, and it has a natural decomposition of the form required.

Regarding the Wishart term, the spectral norm of such a random matrix (|||W |||2,2) is well-
characterized [34, 43]; for instance, see claim (3.33a) in Lemma 12 for one precise statement.
See also the discussion of § ?. The following lemma, concerning the mixed (∞, 2) norms of
submatrices of centered Wishart matrices, is perhaps of independent interest, and plays a
key role in our analysis:

Lemma 11. Let W ∈ Rp×p be a centered Wishart matrix as defined in (3.32). Let I, J ⊂
{1, . . . , p} be sets of indices, with cardinalities |I|, |J | → ∞ as n, p→∞, and let WI,J denote
the corresponding submatrix. Then as long as max{|J |, log |I|}/n = o(1), we have

|||WI,J |||∞,2 = O

(√
|J |+

√
log |I|√

n

)
,

as n, p→ +∞ with probability 1.

See Appendix 3.D for the proof of this claim.
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Verifying steps A and B

First, let us look at the Wishart random matrix. The conditions on the upper-left sub-block
WSS and lower-left sub-block WScS are addressed in the following:

Lemma 12. As (n, p, k)→ +∞, we have w.a.p. one

|||WSS|||2,2 = O

(√
k

n

)
, (3.33a)

|||WSS|||∞,∞ = O

(√
k2

n

)
, (3.33b)

|||WScS|||∞,2 = O

(√
k +

√
log(p− k)√
n

)
. (3.33c)

In particular, under the scaling n > Lk log(p − k) and k = O(log p), the conditions of
Lemma 8 and Lemma 9 are satisfied for WSS and WScS for sufficiently large L.

Proof. Assertion (3.33a) about the spectral norm of WSS follows directly from known results
on singular values of Gaussian random matrices (e.g., see [34, 43]). To bound the mixed
norm |||WScS|||∞,2, we apply Lemma 11 with the choices I = Sc and J = S, noting that
|I| = p−k and |J | = k. Finally, to obtain a bound on |||WSS|||∞,∞, we first bound |||WSS|||∞,2.
Again using Lemma 11, this time with the choices I = J = S, we obtain

|||WSS|||∞,2 = O
(√k +

√
log k√
n

)
= O

(√k

n

)
, (3.34)

as n, k →∞. Now, using the fact that for any x ∈ Rk, ‖x‖2 ≤
√
k‖x‖∞, we obtain

|||WSS|||∞,∞ = max
‖x‖∞≤1

‖WSSx‖∞ ≤ max
‖x‖2≤

√
k
‖WSSx‖∞ =

√
k|||WSS|||∞,2.

Combined with the inequality (3.34), we obtain the stated claim (3.33b).

We now turn to the cross-term R, and establish the following result:

Lemma 13. The matrix R = z∗hT + hz∗T , as defined in equation (3.31), satisfies the
conditions of Lemmas 8 and 9.

Proof. First observe that h may be viewed as a vector consisting of the off-diagonal elements
of the first column of a (p+ 1)× (p+ 1) Wishart matrix, say W ′. This representation follows
since hj = 1

n

∑n
i=1 vigij, where the Gaussian variable vi is independent of gij for all 1 ≤ j ≤ p.

For ease of reference, let us index rows/columns of W ′ by 1′, 1, . . . , p, let S ′ = {1′} ∪ S, and
let h = W ′

1′,S∪Sc . (Recall that S ∪ Sc is simply {1, . . . , p}.)
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Since the spectral norm of a matrix is an upper bound on the `2-norm of any column, we
have

‖hS‖2 ≤ |||W ′
S′S′ |||2,2 = O

(
k + 1

n

)
, (3.35)

where we used known bounds [34] on singular values of Gaussian random matrices. Un-

der the scaling n > Lk log(p − k), we thus have ‖hS‖2
P−→ 0. By Lemma 21, we have

P[|W ′
ij| > t] ≤ C exp(−cnt2) for t > 0 sufficiently small, which implies (via union bound)

that

‖h‖∞ = O

(√
log(p)

n

)
= O

(
1√
k

)
, (3.36)

under our assumed scaling. Note also that ‖h‖∞ = max{‖hS‖∞, ‖hSc‖∞}, i.e. the ∞-norm
of each of these subvectors are also O(k−1/2). Assume for the following that L is chosen large
enough so that ‖h‖∞ ≤ δ/

√
k.

Now, to complete the proof, let us first examine the spectral norm of RSS = z∗Sh
T
S+hSz

∗
S
T .

The two (possibly) non-zero eigenvalues of this matrix are z∗S
ThS ± ‖z∗S‖2‖hS‖2, whence we

have

|||RSS|||2,2 ≤
∣∣z∗SThS∣∣+ ‖z∗S‖2‖hS‖2 ≤ 2‖hS‖2

P→ 0.

As for the (matrix)∞-norm ofRSS, let us exploit the “maximum row sum” interpretation,
i.e. |||RSS|||∞,∞ = maxi∈S

∑
j∈S |Rij| (cf. §2.1.3) to deduce

|||RSS|||∞,∞ ≤ |||z∗ShTS |||∞,∞ + |||hSz∗S
T |||∞,∞

≤
(

max
i∈S
|z∗i |
)
‖hTS‖1 +

(
max
i∈S
|hi|
)
‖z∗S

T‖1

≤ 1√
k
|||W ′

S′S′ |||∞,∞ + ‖hS‖∞
√
k.

From the argument of Lemma 12, we have |||W ′
S′S′|||∞,∞ = O

(√
k2

n

)
, so that

1√
k
|||W ′

S′S′|||∞,∞ = O

(√
k

n

)
P−→ 0,

and moreover, the norm |||RSS|||∞,∞ can be made smaller than 2δ, by choosing L sufficiently
large in the relation n > Lk log(p− k).
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Finally, to establish the additional condition required by Lemma 9—namely equation (3.26)—
notice that

|||RScS|||∞,2 = max
‖y‖2=1

‖RScSy‖∞

= max
‖y‖2=1

‖hScz∗S
Ty‖∞

=
(

max
‖y‖2=1

|z∗S
Ty|
)
‖hSc‖∞ ≤

δ√
k

where the last line uses max‖y‖2=1 |z∗STy| = ‖z∗S‖2 = 1, thereby completing the proof.

Finally, we examine the first term in equation (3.31), i.e. P . As this term only contributes
to the upper-left block, we only need to establish that it satisfies Lemma 8:

Lemma 14. The matrix PSS satisfies condition (3.22) of Lemma 8.

Proof. Note that for any matrix norm, we have |||PSS||| =
∣∣n−1

∑n
i=1(vi)

2 − 1
∣∣ |||z∗Sz∗ST |||. Now,

notice that |||z∗Sz∗ST |||2,2 = |z∗ST z∗S| = 1. Also, using the “maximum row sum” characterization

of matrix ∞-norm, we have |||z∗Sz∗ST |||∞,∞ =
∑k

j=1

∣∣( ± 1√
k

)(
± 1√

k

)
| = 1. Now by the strong

law of large numbers,
∣∣n−1

∑n
i=1(vi)

2 − 1
∣∣ a.s.→ 0 as n→∞. It follows that with probability 1

|||PSS|||2,2 = |||PSS|||∞,∞ → 0,

which clearly implies condition (3.22).

Verifying step C

For this step, we only need to consider the lower-right block of W ; i.e., we only need to verify
condition (3.29) of Lemma 10 for ∆ScSc = WScSc . Recall that W = n−1GTG− Ip where G is
a n× p (canonical) Gaussian matrix (see equation (3.32)). With a slight abuse of notation,
let GSc = (Gij) for 1 ≤ i ≤ n and j ∈ Sc. Note that GSc ∈ Rn×m where m = p− k and

∆ScSc + Im = WScSc + Im = n−1GT
ScGSc .

Now, we can simplify the quadratic form in (3.29) as√
vT (∆ScSc + Im)v =

√
‖n−1/2GScv‖2

2 = ‖n−1/2GScv‖2.

for which we have the following lemma.

Lemma 15. For any M > 0 and ε > 0, there exists a constant B > 0 such that for any set
S = {(ηi, `i)}i with elements in (0,M)× R+ and cardinality |S| = O(m), we have

max
‖v‖2≤η,
‖v‖1≤`

‖n−1/2GScv‖2 ≤ η +B

√
logm

n
`+ ε, ∀(η, `) ∈ S (3.37)
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as p→∞, with probability 1. In particular, under the scaling n > Lk logm, condition (3.29)
of Lemma 10 is satisfied for L large enough.

Proof. Without loss of generality, assume M = 1. We begin by controlling the expectation of
the left-hand side, using an argument based on the Gordon–Slepian theorem [66], similar to
that used for establishing bounds on spectral norms of random Gaussian matrices [e.g. 34].
First, we require some notation: for a zero-mean random variable Z, define its standard devi-

ation σ(Z) =
(
E |Z|2

)1/2
. For vectors x, y of the same dimension, define the Euclidean inner

product 〈x, y〉 = xTy. For matrices X, Y of the same dimension (although not necessarily
symmetric), recall the Hilbert–Schmidt norm

|||X|||HS := 〈〈X,X〉〉1/2 =
(∑

i,j

X2
ij

)1/2
.

Given some (possibly uncountable) index set {t ∈ T}, let (Xt)t∈T and (Yt)t∈T be a pair of
centered Gaussian processes. One version of the Gordon–Slepian theorem (see [66]) asserts
that if σ(Xs −Xt) ≤ σ(Ys − Yt) for all s, t ∈ T , then we have

E[sup
t∈T

Xt] ≤ E[sup
t∈T

Yt]. (3.38)

For simplicity in notation, define H̃ := GSc ∈ Rn×m, H := n−1/2GSc , and fix some
η, ` > 0. We wish to bound

f(H̃; η, `) := max
‖v‖2≤η,
‖v‖1≤`

‖H̃v‖2 = max
‖v‖2≤η,
‖v‖1≤`,
‖u‖2=1

〈H̃v, u〉

where v ∈ Rm, u ∈ Rn. Note that 〈H̃v, u〉 = uT H̃v = tr(H̃vuT ) = 〈〈H̃, uvT 〉〉. Consider H̃
to be a (canonical) Gaussian vector in Rmn, take

T := {t = (u, v) ∈ Rn × Rm | ‖v‖2 ≤ η, ‖v‖1 ≤ `, ‖u‖2 = 1}, (3.39)

and define Xt = 〈〈H̃, uvT 〉〉 for t ∈ T . Observe that (Xt)t∈T is a (centered) canonical Gaussian

process generated by H̃, and f(H̃; η, `) = maxt∈T Xt. We compare this to the maximum of
another Gaussian process (Yt)t∈T , defined as Yt = 〈(g, h), (u, v)〉 where g ∈ Rn and h ∈ Rm

are Gaussian vectors with E[ggT ] = η2In and E[hhT ] = Im. Note that, for example,

σ(〈g, u〉) =
(
E〈g, u〉2

)1/2
=
(
uT E[ggT ]u

)1/2
= η‖u‖2,

in which the left-hand size is the norm of a process
(
〈g, u〉

)
u

expressed in terms of the norm
of a vector (i.e., its index).
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Let t = (u, v) ∈ T and t′ = (u′, v′) ∈ T . Assume, without loss of generality, that
‖v′‖2 ≤ ‖v‖2. Then, we have

σ2(Xt −Xt′) = |||uvT − u′v′T |||2HS

= |||uvT − u′vT + u′vT − u′v′T |||2HS

= ‖v‖2
2‖u− u′‖2

2 + ‖u′‖2
2‖v − v′‖2

2 + 2
(
uTu′ − ‖u′‖2

2

)(
‖v‖2

2 − vTv′
)

≤ η2‖u− u′‖2
2 + ‖v − v′‖2

2 = σ2(Yt − Yt′).

where we have used Cauchy–Schwarz inequality to deduce |uTu′| ≤ 1 = ‖u′‖2
2 and |vTv′| ≤

‖v‖2‖v′‖2 ≤ ‖v‖2
2. Thus, the Gordon–Slepian lemma is applicable and we obtain

E f(H̃; η, `) ≤ Emax
t∈T

Yt

= E max
‖u‖2=1

〈g, u〉+ E max
‖v‖2≤η, ‖v‖1≤`

〈h, v〉

≤ E ‖g‖2 +
(
E ‖h‖∞

)
`

<
√
n η +

(√
3 logm

)
`.

where we have used
(
E ‖g‖2

)2
< E

(
‖g‖2

2

)
= E tr(ggT ) = trE(ggT ) = n η2; the bound used

for E ‖h‖∞ follows from standard Gaussian tail bounds [66]. Noting that H = n−1/2H̃, we

obtain E f(H; η, `) ≤ η +
√

3 logm
n

`.

The final step is to argue that f(H; η, `) is sufficiently close to its mean. For this, we will
use concentration of Gaussian measure [66, 65] for Lipschitz functions in Rmn. To see that
A → f(A; η, `) is in fact 1-Lipschitz, note that it satisfies the triangle inequality and it is
bounded above by the spectral norm. Thus,∣∣f(H̃; η, `)− f(F̃ ; η, `)

∣∣ ≤ f(H̃ − F̃ ; η, `) ≤ |||H̃ − F̃ |||2,2 ≤ |||H̃ − F̃ |||HS

where we have used the assumption η ≤ 1. Noting that H = n−1/2H̃ and f(H; η, `) =

n−1/2f(H̃; η, `), Gaussian concentration of measure for 1-Lipschitz functions (cf. Lemma 3
of §2.3) implies that

P
[
f(H; η, `)− E[f(H; η, `)] > t

]
≤ exp(−nt2/2).

Finally, we use union bound to establish the result uniformly over S. By assumption, there
exists some K > 0 such that |S| ≤ Km. Thus

P
[

max
(η,`)∈S

(
f(H; η, `)− (η +

√
(3 logm)/n · `)

)
> t
]
≤ K exp(−nt2/2 + logm).
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Now, fix some ε > 0, take t =
√

6 logm
n

and apply the Borell–Cantelli lemma to conclude

that

max
(η,`)∈S

[
f(H; η, `)−

(
η +

√
3 logm

n
· `
)]

≤
√

6 logm

n
≤ ε

eventually (w.p. 1).

3.4.4 Nonidentity noise covariance

In this section, we specify how the proof is extended to (population) covariance matrices
having a more general base covariance term Γp−k in equation (3.1). For convenience, in this
section, we write vi := vi and gi := gi. Then, for example, giS := (gij, j ∈ S) := (gij, j ∈ S).

Let Γ
1/2
p−k denote the (symmetric) square root of Γp−k. We can write samples from the general

model as
x̃i =

√
βviz

∗ + g̃i, i = 1, . . . , n (3.40)

where

g̃i =

(
giS

Γ
1/2
p−kg

i
Sc

)
(3.41)

with gi ∼ N(0, Ip) and vi ∼ N(0, 1) standard independent Gaussian random variables.

Denoting the resulting sample covariance as Σ̂, we can obtain an expression for the noise
matrix ∆ = Σ̂−Σ. The result will be similar to expansion (3.31) with h and W appropriately
modified; more specifically, we have

h̃S = hS, h̃Sc = Γ
1/2
p−khSc (3.42)

W̃SS = WSS, W̃ScS = Γ
1/2
p−kWScS, W̃ScSc = Γ

1/2
p−kWScScΓ

1/2
p−k. (3.43)

Note that the P -term is unaffected.
Re-examining the proof presented for the case Γp−k = Ip−k, we can identify conditions

imposed on h and W to guarantee optimality. By imposing sufficient constraints on Γp−k,

we can make h̃ and W̃ satisfy the same conditions. The rest of the proof will then be exactly
the same as the case Γp−k = Ip−k. As before, we proceed by verifying Steps A through C in
sequence.

Verifying steps A and B

Examining the proof of Lemma 13, we observe that we need bounds on ‖h̃S‖2, ‖h̃S‖1 and
‖h̃‖∞ = max{‖h̃S‖∞, ‖h̃Sc‖∞}. Since h̃S = hS, we should only be concerned with ‖h̃Sc‖∞,
for which we simply have

‖h̃Sc‖∞ ≤ |||Γ1/2
p−k|||∞,∞‖hSc‖∞.
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Thus, assumption (3.2a)—i.e., |||Γ1/2|||∞,∞ = O(1)—guarantees that Lemma 13 also holds for
(nonidentity) Γ.

Similarly, for Lemma 12 to hold, we need to investigate |||W̃ScS|||∞,2, since this is the
only norm (among those considered in the lemma) affected by a nonidentity Γ. Using sub-
multiplicative property of operator norms (cf. (2.11) in §2.1.3), we have

|||W̃ScS|||∞,2 ≤ |||Γ1/2
p−k|||∞,∞|||WScS|||∞,2,

so that the same boundedness assumption (3.2a) is sufficient.

Verifying step C

For the lower-right block W̃ScSc , we first have to verify Lemma 15. We also need to examine
the proof of Lemma 10 where the result of Lemma 15—namely relation (3.37)—was used.

Let G̃ = (g̃ij)
n,p
i,j=1,1 and let G̃Sc = (G̃ij) for 1 ≤ i ≤ n and j ∈ Sc. Note that G̃T

Sc ∈ R(p−k)×n

and we have
G̃T
Sc =

(
g̃1
Sc , . . . , g̃

n
Sc

)
= Γ

1/2
p−k
(
g1
Sc , . . . , g

n
Sc

)
= Γ

1/2
p−kG

T
Sc .

Using this notation, we can write W̃ScSc = n−1G̃T
ScG̃Sc−Γp−k = Γ

1/2
p−k
(
n−1GT

ScGSc−Ip−k
)

Γ
1/2
p−k,

consistent with equation (3.43).
Now to establish a version of (3.37), we have to consider the maximum of

‖n−1/2G̃Scv‖2 = ‖n−1/2GScΓ
1/2
p−kv‖2

over the set where ‖v‖2 ≤ η and ‖v‖1 ≤ `. Let ṽ = Γ
1/2
p−kv and note that for any consistent

pair of vector/matrix norms we have ‖ṽ‖ ≤ |||Γ1/2
p−k||| ‖v‖. Thus, for example, ‖v‖2 ≤ η implies

‖ṽ‖2 ≤ |||Γ1/2
p−k|||2,2η, and similarly for the `1-norm. Now, if we assume that Lemma 15 holds

for GSc , we obtain, for all (η, `) ∈ S, the inequality

max
‖v‖2≤η,
‖v‖1≤`

‖n−1/2G̃Scv‖2 ≤ max
‖ṽ‖2≤|||Γ1/2

p−k|||2,2η,

‖ṽ‖1≤|||Γ1/2
p−k|||1,1`

‖n−1/2GSc ṽ‖2

≤ |||Γ1/2
p−k|||2,2η +B|||Γ1/2

p−k|||1,1

√
logm

n
`+ ε. (3.44)

Thus, one observes that the boundedness condition (3.2a) guarantees that

|||Γ1/2
p−k|||1,1 = |||Γ1/2

p−k|||∞,∞ ≤ A1,

thereby taking care of the second term in equation (3.44). More specifically, the constant
A1 is simply absorbed into some B′ = BA1. In addition, we also require a bound on
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|||Γ1/2
p−k|||2,2, which follows from our assumption |||Γp−k|||2,2 ≤ 1. However, the fact that the

factor multiplying η in (3.44) is no longer unity has to be addressed more carefully.
Recall that inequality (3.37) was used in the proof of Lemma 10 to establish a bound on

v∗T∆ScScv
∗ = v∗TWScScv

∗ = v∗T (HTH − Ip−k)v∗ = ‖Hv∗‖2
2 − ‖v∗‖2

2

where H = n−1/2GSc . The bound obtained on this term is given by (3.79). We focus on the
core idea, omitting some technical details such as the discretization argument2. Replacing
WScSc with W̃ScSc , we need to establish a similar bound on

v∗T W̃ScScv
∗ = v∗T (n−1G̃T

ScG̃Sc − Γp−k)v
∗ = ‖n−1/2G̃Scv

∗‖2
2 − ‖Γ

1/2
p−kv

∗‖2
2.

Note that ‖v∗‖2 ≤ |||Γ−1/2
p−k |||2,2‖Γ

1/2
p−kv

∗‖2 or, equivalently, |||Γ−1/2
p−k |||

−1
2,2‖v∗‖2 ≤ ‖Γ1/2

p−kv
∗‖2. Thus,

using (3.44), one obtains

‖n−1/2G̃Scv
∗‖2

2 − ‖Γ
1/2
p−kv

∗‖2
2 ≤

(
|||Γ1/2

p−k|||
2
2,2 − |||Γ

−1/2
p−k |||

−2
2,2

)
‖v∗‖2

2

+
(
terms of lower order in ‖v∗‖2

)
.

Note that unlike the case Γp−k = Ip−k, the term quadratic in ‖v∗‖2 does not vanish in
general. Thus, we have to assume that its coefficient is eventually small compared to β.
More specifically, we assume

|||Γ1/2
p−k|||

2
2,2 − |||Γ

−1/2
p−k |||

−2
2,2 ≤

α

4
=
β

8
, eventually. (3.45)

The boundedness assumptions on |||Γ1/2
p−k|||1,1 and |||Γ1/2

p−k|||2,2 now allows for the rest of the terms
to be made less than α/4, using arguments similar to the proof of Lemma 10, so that the
overall objective is less than α/2, eventually. This concludes the proof.

Noting that |||Γ1/2
p−k|||22,2 = λmax(Γp−k) and |||Γ−1/2

p−k |||
−2
2,2 = λmin(Γp−k), we can summarize the

conditions sufficient for Lemma 10 to extend to general covariance structure as follows

|||Γ1/2
p−k|||1,1 = |||Γ1/2

p−k|||∞,∞ = O(1) (3.46a)

λmax(Γp−k) ≤ 1 (3.46b)

λmax(Γp−k)− λmin(Γp−k) ≤
β

8
, (3.46c)

as stated previously.

2In particular, we will assume that v∗ saturates (3.44), so that ‖v∗‖2 = η. For a more careful argument
see the proof of Lemma 10.
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3.5 Proof of Theorem 8 – minimax lower bound

Our proof is based on the standard approach of applying Fano’s inequality (e.g., [30, 52, 104,
101] and § 2.6). Let S denote the collection of all possible support sets, i.e. the collection of
k-subsets of {1, . . . , p} with cardinality |S| =

(
p
k

)
; we view S as a random variable distributed

uniformly over S. Let PS denote the distribution of a sample X ∼ N(0,Σp(S)) from a spiked
covariance model, conditioned on the maximal eigenvector having support set S, and let
Xn = (x1, . . . , xn) be a set of n i.i.d. samples. In information-theoretic terms, we view
any method of support recovery as a decoder that operates on the data Xn and outputs
an estimate of the support Ŝ = φ(Xn)—in short, a (possibly random) map φ : (Rp)n → S.

Using the 0 -1 loss to compare an estimate Ŝ and the true support set S, the associated risk

is simply the probability of error P[error] =
∑

S∈S
(
p
k

)−1PS[Ŝ 6= S]. Due to symmetry of the
ensemble, in fact we only need to restrict our attention to symmetric estimators for which
we have P[error] = PS[Ŝ 6= S], where S is some fixed but arbitrary support set, a property
that we refer to as risk flatness (cf. §2.6.5).

In order to generate suitably tight lower bounds, we restrict attention to the following
sub-collection S̃ of support sets:

S̃ := {S ∈ S | {1, . . . , k − 1} ⊂ S} ,

consisting of those k-element subsets that contain {1, . . . , k − 1} and one element from
{k, . . . , p}. By risk flatness, the probability of error with S chosen uniformly at random from
the original ensemble S is the same as the probability of error with S chosen uniformly from
S̃. Letting U denote a subset chosen uniformly at random from S̃, using Fano’s inequality,
we have the lower bound

P[error] ≥ 1− I(U ;Xn) + log 2

log |S̃|
,

where I(U ;Xn) is the mutual information between the data Xn and the randomly chosen

support set U , and |S̃| = p− k + 1 is the cardinality of S̃.
It remains to obtain an upper bound on I(U ;Xn) = H(Xn)−H(Xn|U). By chain rule

for entropy, we have H(Xn) ≤ nH(x). Next, using the maximum entropy property of the
Gaussian distribution [30], we have

H(Xn) ≤ nH(x) ≤ n
{p

2
[1 + log(2π)] +

1

2
log detE [xxT ]

}
, (3.47)

where E[xxT ] is the covariance matrix of x. On the other hand, given U = U , the vector
Xn is a collection of n Gaussian p-vectors with covariance matrix Σp(U). The determinant
of this matrix is 1 + β, independent of U , so that we have

H(Xn|U) =
np

2

[
1 + log(2π)

]
+
n

2
log(1 + β). (3.48)
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Combining equations (3.47) and (3.48), we obtain

I(U ;Xn) ≤ n

2

{
log detE [xxT ]− log(1 + β)

}
. (3.49)

The following lemma, proved in Appendix 3.E, specifies the form of the log determinant of
the covariance matrix ΣM := E[xxT ].

Lemma 16. The log determinant has the exact expression

log det ΣM = log(1 + β) + log

(
1− β

1 + β

p− k
k(p− k + 1)

)
+ (p− k) log

(
1 +

β

k(p− k + 1)

)
.

(3.50)

Substituting equation (3.50) into equation (3.49) and using the inequality log(1+α) ≤ α,
we obtain

I(U ;Xn) ≤ n

2

{
log

(
1− β

1 + β

p− k
k(p− k + 1)

)
+ (p− k) log

(
1 +

β

k(p− k + 1)

)}
≤ n

2

{
− β

1 + β

p− k
k(p− k + 1)

+
β(p− k)

k(p− k + 1)

}
=
n

2

{
β2

1 + β

p− k
k(p− k + 1)

}
≤ β2

2(1 + β)

n

k
.

From the Fano bound (3.47), the error probability is greater than 1
2

if β2

1+β
n
k
< log(p− k) <

log |S̃|, which completes the proof.

3.6 Some results on `q sparsity

In this section, we provide some partial analysis of the SDP for the spiked covariance model
with `q sparsity model. In particular, we assume a sampling model ? with the following
constraint on z∗,

p∑
j=1

|z∗j |q ≤ κ (3.51)

for some q ∈ (0, 2) and κ = κ(p) > 0. Recall that Ẑ is the solution and λn is the regularization
parameter of SDP (3.9). Let us define

Z∗ := z∗(z∗)T .

We have the following theorem.
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Theorem 9. Let λn = c1κ
√

β log p
n

, assume (3.51) holds and ‖z∗‖2 = 1. Then,

|||Ẑ − Z∗|||2HS ≤ c2(β)κ2
( log p

n

) 1
1+q (3.52)

with high probability at least 1− c3p
−c4 − c5e

−c6n.

The c2(β) constant in (3.52) is decreasing in β and can be taken to be c2(β) ∼ β
−q
1+q as

β →∞. The proof relies on the following lemma.

Lemma 17. Let f be a convex function defined on a convex subset C of a normed space
(X , ‖ · ‖). Let x̂ be a minimizer of f on C, i.e.,

f(x̂) = inf
x∈C

f(x) (3.53)

Furthermore assume that for some x0 ∈ C and R > 0, we have for all x ∈ C

‖x− x0‖ = R =⇒ f(x) > f(x0). (3.54)

Then, we have ‖x̂− x0‖ ≤ R.

Proof. Without loss of generality, we can assume x0 = 0 and f(x0) = 0, since x̂ is a minimizer
of f on C if and only if x̂− x0 is a minimizer of g(x) = f(x+ x0)− f(x0) over x ∈ C − x0.

Now, assume that the conclusion does not hold, ‖x̂‖ > R. Then, there exists λ ∈ (0, 1)
such that z = (1− λ)x0 + λx̂ has norm R. (This holds for example with λ = R

‖x̂‖). Then,

f(z) ≤ (1− λ)f(x0) + λf(x̂) = λf(x̂) ≤ λf(x0) = 0. (3.55)

But since ‖z‖2 = R, by assumption (3.54) we should have f(z) > f(x0) = 0 which is a
contradiction.

3.6.1 Proof of Theorem 9

We will apply the Lemma (3.54) to the function f(Z) = −〈〈Σ̂− Ip, Z〉〉+λn‖Z‖1 over the set

C = Sp+ ∩ {Z : tr(Z) = 1}, with x0 = Z∗ and x̂ = Ẑ. To simplify notation, let Ê := Ẑ − Z∗
and E := Z − Z∗. Then,

f(Z)− f(Z∗) = −〈〈Σ̂− Ip, E〉〉+ λn(‖Z∗ + E‖1 − ‖Z∗‖1) (3.56)

Our strategy is to find a value of R such that for all ‖E‖2 = |||E|||HS = R, we have
f(Z)− f(Z∗) > 0 with high probability. It then follows from the lemma that |||E|||HS ≤ R.

Lemma 18. We have 〈〈−Z∗, E〉〉 ≥ 1
2
|||E|||2HS.
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Proof. In general, we have |||Z|||HS ≤ |||Z|||∗ where ||| · |||∗ is the nuclear norm of the matrix—
cf. §?. For a matrix Z ∈ Sp+, |||Z|||∗ = tr(Z). It follows that, for Z ∈ C,

|||Z|||HS ≤ tr(Z) = 1. (3.57)

Now,

1 ≥ |||Z|||2HS = |||Z∗ + E|||2HS = |||E|||2HS + |||Z∗|||2HS + 2〈〈Z∗, E〉〉.

Using |||Z∗|||HS =
√
〈z∗, z∗〉 = 1 and rearranging gives the inequality.

As was observed previously (cf. ?), we can write Σ̂ = β( 1
n

∑
i v

2
i )Z

∗+
√
β(z∗hT +h(z∗)T )+

1
n
GTG, where h = 1

n

∑n
i=1 vigi and G = (gij) ∈ Rn×p is a standard Gaussian matrix. Since

E ∈ Sp, we have

−〈〈Σ̂− Ip, E〉〉 = −β
( 1

n

n∑
i=1

v2
i

)
〈〈Z∗, E〉〉︸ ︷︷ ︸

T0

−〈〈2
√
βh(z∗)T +

1

n
GTG− Ip︸ ︷︷ ︸

∆̃

, E〉〉 (3.58)

By χ2 concentration, 1
n

∑
i v

2
i ≥ 1

2
with probability at least 1− exp(−n/64). Hence, with

the same probability, the first in (3.58) bounded below as T0 ≥ −1
2
β〈〈Z∗, E〉〉 ≥ β 1

4
|||E|||2HS.

As for the term involving ∆̃, we first note that the following bound on its vector `∞ norm
which follows from our previous discussions.

Lemma 19. With probability at least 1− c2p
−c3

‖∆̃‖∞ ≤ c1

√
β log p

n
.

Consider the set S := {i : |z∗i | ≥ τ} ⊂ [p], where τ > 0 is some threshold to be
determined later, and let k = card(S). We denote by Z∗S ⊂ Rk2

, a vector consisting of all
elements Z∗ij, (i, j) ∈ S2. Similarly, let Z∗Sc ⊂ Rp2−k2

denote the vector consisting of Z∗ij,

(i, j) /∈ S2. Similar notations will used for ∆̃ and E.

Lemma 20. As long as ‖∆̃‖∞ ≤ λn, we have

T1 := −〈∆̃S, ES〉+ λn(‖Z∗S + ES‖1 − ‖Z∗S‖1) ≥ −2λnk‖ES‖2 (3.59)

T2 := −〈∆̃Sc , ESc〉+ λn(‖Z∗Sc + ESc‖1 − ‖Z∗Sc‖1) ≥ −4λnτ
1−qκ2. (3.60)

We take λn = c1

√
β log p
n

so that the consequences of Lemma 20 hold. Note that ‖ES‖2 ≤
|||E|||HS = R. From Lemma 23 in Appendix 3.G, k ≤ τ−qκ. Then, putting the pieces together
we have

f(Z)− f(Z∗) = T0 + T1 + T2 ≥
β

4
R2 − 2λnτ

−qκR− 4λnτ
1−qκ2. (3.61)
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Choose τ so that λnτ
1−qκ2 = (λnτ

−qκ)2 or equivalently, τ = λ
1

1+q
n . Then, taking R =

c3λnτ
−qκ for some sufficiently large c3 = c3(β) > 0, we can make the right-hand side of (3.61)

positive3, implying that f(Z)− f(Z∗) > 0. Some algebra shows that

R = c3κλ
1

1+q
n = c4κ

( log p

n

) 1
2(1+q) (3.62)

where c4 > 0 could depend on β. The proof is complete. The proofs of auxiliary lemmas
can be found in Appendix 3.G.

Appendix 3.A Large deviations for χ2 variates

The following large-deviations bounds for centralized χ2 are taken from Laurent and Mas-
sart [63]. Given a centralized χ2-variate X with d degrees of freedom, then for all x ≥ 0,

P
{
X − d ≥ 2

√
d x+ 2x

}
≤ exp(−x), and (3.63a)

P
{
X − d ≤ −2

√
d x
}
≤ exp(−x). (3.63b)

We also use the following slightly different version of the bound (3.63a),

P
{
X − d ≥ d x

}
≤ exp

(
− 3

16
d x2

)
, 0 ≤ x <

1

2
(3.64)

due to Johnstone [56]. More generally, the analogous tail bounds for non-central χ2, taken
from Birgé [19], can be established via the Chernoff bound. Let X be a noncentral χ2 variable
with d degrees of freedom and noncentrality parameter ν ≥ 0. Then for all x > 0,

P
{
X ≥ (d+ ν) + 2

√
(d+ 2ν)x+ 2x

}
≤ exp(−x), and (3.65a)

P
{
X ≤ (d+ ν)− 2

√
(d+ 2ν)x

}
≤ exp(−x). (3.65b)

We derive here a slightly weakened but useful form of the bound (3.65a), valid when ν
satisfies ν ≤ Cd for a positive constant C. Under this assumption, then for any δ ∈ (0, 1),
we have

P
{
X ≥ (d+ ν) + 4d

√
δ
}
≤ exp

(
− δ

1 + 2C
d

)
. (3.66)

3With this choice of R, the RHS becomes (β4 c
2
3−2c3−4)λnτ

−qκ, which is positive if c3 >
4
β (1 +

√
1 + β).
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To establish this bound, let x = d2δ
d+2ν

for some δ ∈ (0, 1). From equation (3.65a), we have

p∗ := P
{
X ≥ (d+ ν) + 2d

√
δ + 2

d2

d+ 2ν
δ
}
≤ exp

(
− d2δ

d+ 2ν

)
≤ exp

(
− δ

1 + 2C
d

)
.

Moreover, we have

p∗ ≥ P
{
X ≥ (d+ ν) + 2d

√
δ + 2dδ

}
≥ P

{
X ≥ (d+ ν) + 4d

√
δ
}
,

since
√
δ ≥ δ for δ ∈ (0, 1).

Appendix 3.B Proof of Lemma 6

Using the form of the χ2
n PDF, we have, for even n and any t > 0,

P
{χ2

n

n
> 1 + t

}
=

1

2n/2Γ(n/2)

∫ ∞
(1+t)n

x
n
2
−1 exp(−x/2)dx

=
1

2n/2Γ(n/2)

 (n/2− 1)!(
1
2

)(n/2−1)+1
exp

(
−n(1 + t)

2

) n/2−1∑
i=0

1

i!

(
n(1 + t)

2

)i
≥ exp(−nt/2)

{exp(−n/2) (n/2)n/2−1

(n/2− 1)!

}
(1 + t)n/2−1

where the second line uses standard integral formula (cf. §3.35 in the reference book [45]). Us-
ing Stirling’s approximation for (n/2−1)!, the term within square brackets is lower bounded
by 2C/

√
n. Also, over t ∈ (0, 1), we have (1 + t)−1 > 1/2, so we conclude that

P
{χ2

n

n
> 1 + t

}
≥ C√

n
exp

(
−n

2

{
t− log(1 + t)

})
. (3.67)

Defining the function f(t) = log(1+t), we calculate f(0) = 0, f ′(0) = 1 and f ′′(t) = −1/(1 + t)2.
Note that f ′′(t) ≥ −1, for all t ∈ R. Consequently, via a second-order Taylor series expan-
sion, we have f(t)− t ≥ −t2/2. Substituting this bound into equation (3.67) yields

P
{χ2

n

n
> 1 + t

}
≥ C√

n
exp

(
−nt

2

2

)
as claimed.
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Appendix 3.C Proofs for §3.4.2

3.C.1 Proof of Lemma 8

The argument we present here has a deterministic nature. In other words, we will show
that if the conditions of the lemma hold for a nonrandom sequence of matrices ∆SS, the
conclusions will follow. Thus, for example, all the references to limits may be regarded as
deterministic. Then, since the conditions of the lemma are assumed to hold for a random
∆SS a.a.s., it immediately follows that the conclusions hold a.a.s.. To simplify the argument
let us assume that α−1|||∆SS|||∞,∞ ≤ ε for sufficiently small ε > 0; it turns out that ε = 1

10
is

enough.
We prove the lemma in steps. First, by Weyl’s theorem (cf. Theorem 1 in § 2.2

and [54, 89]) , eigenvalues of the perturbed matrix αz∗Sz
∗
S
T +∆SS are contained in intervals of

length 2|||∆SS|||2,2 centered at eigenvalues of αz∗Sz
∗
S
T . Since the matrix z∗Sz

∗
S
T is rank-one, one

eigenvalue of the perturbed matrix is in the interval [α± |||∆SS|||2,2], and the remaining k− 1
eigenvalues are in the interval [0±|||∆SS|||2,2]. Since by assumption 2|||∆SS|||2,2 ≤ α eventually,
the two intervals are disjoint, and the first one contains the maximal eigenvalue γ1 while the
second contains the second largest eigenvalue γ2. In other words, |γ1 − α| ≤ |||∆SS|||2,2 and
|γ2| ≤ |||∆SS|||2,2. Since |||∆SS|||2,2 → 0 by assumption, we conclude that γ1 → α and γ2 → 0.
For the rest of the proof, take n large enough so

|γ1α
−1 − 1| ≤ ε, (3.68)

where ε > 0 is a small number to be determined.
Now, let ẑS ∈ Rk with ‖ẑS‖2 = 1 be the eigenvector associated with γ1, i.e.

(αz∗Sz
∗
S
T + ∆SS)ẑS = γ1ẑS. (3.69)

Taking inner products with ẑS, one obtains α(z∗S
T ẑS)2 + ẑTS∆SS ẑS = γ1. Noting that

|ẑTS∆SS ẑS| is upper-bounded by |||∆SS|||2,2, we have by triangle inequality

|α− α(z∗S
T ẑS)2| = |α− γ1 + γ1 − α(z∗S

T ẑS)2|
≤ |α− γ1|+ |γ1 − α(z∗S

T ẑS)2| ≤ 2|||∆SS|||2,2

which implies z∗S
T ẑS → 1 (taking into account our sign convention). Take n large enough so

that
|z∗S

T ẑS − 1| ≤ ε, (3.70)

and let u be the solution of
αz∗S + ∆SSu = αu (3.71)

which is an approximation of equation (3.69) satisfied by ẑS. Using triangle inequality, one
has ‖u‖∞ ≤ ‖z∗S‖∞ + α−1|||∆SS|||∞,∞‖u‖∞, which implies that

‖u‖∞ ≤ (1− α−1|||∆SS|||∞,∞)−1‖z∗S‖∞ ≤ (1− ε)−1‖z∗S‖∞. (3.72)
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We also have
‖u− z∗S‖∞ ≤ α−1|||∆SS|||∞,∞‖u‖∞ ≤ ε(1− ε)−1‖z∗S‖∞. (3.73)

Subtracting equation (3.71) from equation (3.69), we obtain αz∗S(z∗S
T ẑS−1)+∆SS(ẑS−u) =

γ1ẑS − αu. Adding and subtracting γ1u on the right-hand side and dividing by α, we have

z∗S(z∗S
T ẑS − 1) + α−1∆SS(ẑS − u) = γ1α

−1(ẑS − u) + (γ1α
−1 − 1)u,

which implies

‖ẑS − u‖∞ ≤
(
|γ1α

−1| − α−1|||∆SS|||∞,∞
)−1{

|z∗S
T ẑS − 1| · ‖z∗S‖∞ + |γ1α

−1 − 1| · ‖u‖∞
}

≤ (1− 2ε)−1[ε+ ε(1− ε)−1] · ‖z∗S‖∞

where the last inequality follows from equations (3.68), (3.70) and (3.72). Combining with
the bound (3.73) on ‖uz∗S‖∞ yields

‖ẑS − z∗S‖∞
‖z∗S‖∞

≤ ε

1− 2ε
+

ε

(1− 2ε)(1− ε)
+

ε

1− ε

≤ 3ε

(1− 2ε)2
.

Finally, we take ε = 1
10

to conclude ‖ẑS − z∗S‖∞ ≤ 1
2
‖z∗S‖∞ = 1

2
√
k

a.a.s., as claimed.

3.C.2 Proof of Lemma 9

Recall that by definition, z̃S = ẑS/‖ẑS‖1. Using the identity sign(ẑS)T ẑS = ‖ẑS‖1 yields

ÛScS ẑS = λ−1
n ∆ScS ẑS, which is the desired equation. It only remains to prove that ÛScS is

indeed a valid sign matrix.
First note that from equation (3.23) we have |ẑi| ∈

[
1

2
√
k
, 3

2
√
k

]
for i ∈ S, which implies

that ‖ẑS‖1 ∈
[√

k
2
, 3
√
k

2

]
. Thus, ‖z̃S‖2 = 1/(‖ẑS‖1) ≤ 2√

k
.

Now we can write

max
i∈Sc,j∈S

|Ûij| ≤ λ−1
n ‖∆ScS z̃S‖∞

≤ λ−1
n |||∆ScS|||∞,2 ‖z̃S‖2

≤ 2k

β

δ√
k

2√
k

=
4

β
δ,

so that taking δ ≤ β
4

completes the proof.
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3.C.3 Proof of Lemma 10

Here we provide the proof for the case Γp−k = Ip−k; necessary modifications for the general
case are discussed in §3.4.4. First, let us bound the cross-term in equation (3.27). Recall

that z̃S = ẑS/‖ẑS‖1. Also, by our choice (3.25) of ÛScS, we have

ΦScS = ∆ScS − λnÛScS = ∆ScS −∆ScS z̃S sign(ẑS)T .

Now, using sub-multiplicative property of operator norms [see relation (2.11) in §2.1.3], we
can write

|||ΦScS|||∞,2 = |||∆ScS

(
Ip−k − z̃S sign(ẑS)T

)
|||∞,2

≤ |||∆ScS|||∞,2 · |||Ip−k − z̃S sign(ẑS)T |||2,2
≤ |||∆ScS|||∞,2 ·

(
1 + ‖z̃S‖2 ‖ sign(ẑS)‖2

)
≤ 3|||∆ScS|||∞,2, (3.74)

where we have also used the facts that |||abT |||2,2 = ‖a‖2‖b‖2, and ‖z̃S‖2 = 1/(‖ẑS‖1) ≤ 2√
k
,

using the bound (28). Recall the decomposition x = (u, v), where u = µẑS + ẑ⊥S with

µ2 + ‖ẑ⊥S ‖2
2 ≤ 1. Also, by our choice (3.25) of ÛScS, we have ΦScSu = ΦScS ẑ

⊥
S . Thus,

max
u
|2vTΦScSu| ≤ max

‖ũ‖2 ≤
√

1−µ2,
ũ ⊥ zS

|2vTΦScSũ| ≤
√

1− µ2 max
‖ũ‖2≤1

|2vTΦScSũ|. (3.75)

Using Hölder’s inequality (cf. (2.4)), we have

max
‖ũ‖2≤1

|2vTΦScSũ| ≤ 2‖v‖1 max
‖ũ‖2≤1

‖ΦScSũ‖∞

≤ 2‖v‖1 |||ΦScS|||∞,2

≤ 6‖v‖1
δ√
k

(3.76)

where we have used bound (3.74) and applied condition (3.26). We now turn to the last

term in the decomposition (3.27), namely vTΦScScv = vT∆ScScv − λn v
T ÛScScv. In order

to minimize this term, we use our freedom to choose ÛScSc(x) = sign(v) sign(v)T , so that

−λn vT ÛScScv simply becomes −λn‖v‖2
1.

Define the objective function f ∗ := maxx x
TΦx. Also let H = n−1/2GSc , where GSc =

(Gij) for 1 ≤ i ≤ n and j ∈ Sc. Noting that ∆ScSc = HTH − Im (with m = p− k) and using
the bounds (3.28), (3.75) and (3.76), we obtain the following bound on the objective

f ∗ ≤ max
u

uTΦSSu+ max
u,v

2vTΦScSu+ max
v
vTΦScScv

≤
{
µ2γ1 + (1− µ2)γ2

}
+ (1− µ2)

[
max
‖v‖2≤1

{
6‖v‖1

δ√
k

+ ‖Hv‖2
2 − ‖v‖2

2 − λn‖v‖2
1

}]
︸ ︷︷ ︸

g∗

.

(3.77)
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In obtaining the last inequality, we have used the change of variable v → (
√

1− µ2) v, with

some abuse of notation, and exploited the inequality ‖v‖2 ≤
√

1− µ2. (Note that this bound
follows from the identity ‖x‖2

2 = 1 = µ2 + ‖ẑ⊥S ‖2
2 + ‖v‖2

2.)
Let v∗ be the optimal solution to problem g∗ in equation (3.77); note that it is random

due to the presence of H. Also, set S = {(ηij, `ij)} where i and j range over {1, 2, . . . , d
√
m e}

and

ηij =
i√
m
, `ij =

i√
m
j.

Note that S satisfies the condition of the lemma, namely |S| = d
√
m e2 = O(m).

Since ‖v∗‖2 ≤ 1, and ‖v∗‖2 ≤ ‖v∗‖1 ≤
√
m ‖v∗‖2, there exists4 (η∗, `∗) ∈ S such that

η∗ − 1√
m
< ‖v∗‖2 ≤ η∗

`∗ − 3 < ‖v∗‖1 ≤ `∗

Thus, using condition (3.29), we have

‖Hv∗‖2 ≤ max
‖v‖2≤η∗,
‖v‖1≤`∗

‖Hv‖2 ≤ η∗ +
δ√
k
`∗ + ε ≤ ‖v∗‖2 +

1√
m

+
δ√
k

(‖v∗‖1 + 3) + ε.

To simplify notation, let

A = A(ε, δ,m, k) := 1/
√
m+ 3 δ/

√
k + ε, (3.78)

so that the bound in the above display may be written as ‖v∗‖2 + δ‖v∗‖1/
√
k+A. Now, we

have

‖Hv∗‖2
2 − ‖v∗‖2

2 ≤ 2‖v∗‖2

(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

≤ 2

(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

. (3.79)

4 Let i∗ = d
√
m ‖v∗‖2e and η∗ = i∗√

m
. Using the fact that, for any x ∈ R, dxe − 1 < x ≤ dxe,

we have η∗ − 1/
√
m < ‖v∗‖2 ≤ η∗ or, equivalently, ‖v∗‖2 = η∗ + ξ where −1/

√
m < ξ ≤ 0. Now let

j∗ =
⌈
‖v∗‖1
‖v∗‖2

⌉
. One has (j∗ − 1)‖v∗‖2 < ‖v∗‖1 ≤ j∗‖v∗‖2 which, using the fact that ‖v∗‖2 ≤ 1, implies

j∗‖v∗‖2 − 1 < ‖v∗‖1 ≤ j∗‖v∗‖2. This in turn implies

j∗η∗ + j∗ξ − 1 < ‖v∗‖1 ≤ j∗η∗

Take `∗ = j∗η∗ and note that j∗ξ − 1 > −3, since j∗ is at most d
√
m e.
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Using this in (3.77) and recalling from (3.21) that λn = β/(2k), we obtain the following
bound

g∗ ≤ 6 δ
‖v∗‖1√

k
+ 2

(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

− β

2

(
‖v∗‖1√

k

)2

.

Note that this is quadratic in ‖v∗‖1/
√
k, i.e.

g∗ ≤ a

(
‖v∗‖1√

k

)2

+ b

(
‖v∗‖1√

k

)
+ c

where

a = δ2 − β

2
, b = 8 δ + 2δA, and c = 2A+ A2.

By choosing δ sufficiently small, say δ2 ≤ β/4, we can make a negative. This makes the
quadratic form ax2 + bx+ c achieve a maximum of c+ b2/4(−a), at the point x∗ = b/2(−a).
Note that we have b/2(−a) → 0 and c → 0 as ε, δ → 0 and m, k → ∞. Consequently, we
can make this maximum (and hence g∗) arbitrarily small eventually, say less than α/2, by
choosing δ and ε sufficiently small.

Combining this bound on g∗ with our bound (3.77) on f ∗, and recalling that γ1 → α and
γ2 → 0 by Lemma 8, we conclude that

f ∗ ≤ µ2
(
α + o(1)

)
+ (1− µ2)

{α
2

+ o(1)
}
≤ α + o(1),

as claimed.

Appendix 3.D Proof of Lemma 11

In this section, we prove Lemma 11, a general result on ||| · |||∞,2-norm of Wishart matrices.
Some of the intermediate results are of independent interest and are stated as separate
lemmas. Two sets of large deviation inequalities will be used, one for chi-squared RVs χ2

n

and one for “sums of Gaussian product” random variates. To define the latter precisely, let

Z1 and Z2 be independent Gaussian RVs, and consider the sum
∑n

i=1Xi where Xi
iid∼Z1Z2,

for 1 ≤ i ≤ n. The following tail bounds are known [58, 19]:

P
(∣∣∣n−1

n∑
i=1

Xi

∣∣∣ > t
)
≤ C exp(−3nt2/2), as t→ 0 (3.80)

P
(
|n−1χ2

n − 1| > t
)
≤ 2 exp(−3nt2/16), 0 ≤ t < 1/2, (3.81)

where C is some positive constant.
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Let W be a p × p centered Wishart matrix as defined in (3.32). Consider the following
linear combination of off-diagonal entries of the first row

n∑
j=2

ajW1j = n−1

n∑
i=1

gi1

p∑
j=2

gijaj

Let ξi := ‖a‖−1
2

∑p
j=2 gijaj, where a = (a2, . . . , ap) ∈ Rp−1. Note that {ξi}ni=1 is a collection

of independent standard Gaussian RVs. Moreover, {ξi}ni=1 is independent of {gi1}ni=1. Now,
we have

p∑
j=2

ajW1j = n−1‖a‖2

n∑
i=1

gi1ξ
i,

which is a (scaled) sum of Gaussian products (as defined above). Using (3.80), we obtain

P
(∣∣∣ p∑

j=2

ajW1j

∣∣∣ > t
)
≤ C exp

(
− 3nt2/2‖a‖2

2

)
(3.82)

Combining the bounds in (3.82) and (3.81), we can bound a full linear combination of
first-row entries. More specifically, let x = (x1, . . . , xp) ∈ Rp, with x1 6= 0 and

∑p
j=2 xj 6= 0,

and consider the linear combination
∑p

j=1 xjW1j. Noting that W11 = n−1
∑

i(gi1)2 − 1 is a

centered χ2
n, we obtain

P
[∣∣∣ p∑

j=1

xjW1j

∣∣∣ > t
]
≤ P

(
|x1W11|+

∣∣∣ p∑
j=2

xjW1j

∣∣∣ > t
)

≤ P
[
|x1W11| > t/2

]
+ P

[∣∣∣ p∑
j=2

xjW1j

∣∣∣ > t/2
]

≤ 2 exp

(
− 3nt2

16 · 4x2
1

)
+ C exp

(
− 3nt2

2 · 4
∑p

j=2 x
2
j

)
≤ 2 max{2, C} exp

(
− 3nt2

16 · 4
∑p

j=1 x
2
j

)
.

Note that the last inequality holds, in general, for x 6= 0. Since there is nothing special
about the “first” row, we can conclude the following.

Lemma 21. For t > 0 small enough, there are (numerical constants) c > 0 and C > 0 such
that for all x ∈ Rp\{0},

P
(∣∣∣ p∑

j=1

xjWij

∣∣∣ > t
)
≤ C exp

(
−c nt2/‖x‖2

2

)
, (3.83)

for 1 ≤ i ≤ p.
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Now, let I, J ⊂ {1, . . . , p} be index sets5, both allowed to depend on p (though we have
omitted the dependence for brevity). Choose x such that xj = 0 for j /∈ J and ‖xJ‖2 = 1.
Note that ‖WI,JxJ‖∞ = max

i∈I
|
∑

j∈JWijxj| = max
i∈I
|
∑p

j=1Wijxj|, suggesting the following

lemma

Lemma 22. Consider some index set I such that |I| → ∞ and n−1 log |I| → 0 as n, p→∞
and some xJ ∈ S|J |−1. Then, there exists an absolute constant B > 0 such that

‖WI,JxJ‖∞ ≤ B

√
log |I|
n

(3.84)

as n, p→∞, with probability 1.

Proof. Applying the union bound in conjunction with the bound (3.83) yields

P
(

max
i∈I

∣∣∣∑
j∈J

Wijxj

∣∣∣ > t
)
≤ |I|C exp(−cnt2). (3.85)

Letting t = B
√
n−1 log |I|, the right-hand side simplifies to C exp (−(cB2 − 1) log |I|). Tak-

ing B >
√

2c−1 and applying Borel–Cantelli lemma completes the proof.

Note that as a corollary, setting xJ = (1, 0, . . . , 0) yields bounds on the ∞-norm of
columns (or, equivalently, rows) of Wishart matrices.

Lemma 22 may be used to obtain the desired bound on |||WI,J |||∞,2. For simplicity, let
y ∈ R|J | represent a generic |J |-vector. Recall that |||WI,J |||∞,2 = maxy∈S|J|−1 ‖WI,Jy‖∞. We

use a standard discretization argument, covering the unit `2-ball of R|J | using an ε-net, say
N . It can be shown [68] that there exists such a net with cardinality |N | < (3/ε)|J | . For
every y ∈ S|J |−1, let uy ∈ N be the point such that ‖y − uy‖2 ≤ ε. Then

‖WI,Jy‖∞ ≤ |||WI,J |||∞,2‖y − uy‖2 + ‖WI,Juy‖∞ ≤ |||WI,J |||∞,2 ε+ ‖WI,Juy‖∞.

Taking the maximum over y ∈ S|J |−1 and rearranging yields the inequality

|||WI,J |||∞,2 ≤ (1− ε)−1 max
u∈N
‖WI,Ju‖∞. (3.86)

Using this bound (3.86), we can now provide the proof of Lemma 11 as follows. Let
N = {u1, . . . , u|N |} be a 1

2
-net of the ball S|J |−1, with cardinality |N | < 6|J |. Then from our

bound (3.86), we have

P
(
|||WI,J |||∞,2 > t

)
≤ P

(
2 max
u∈N
‖WI,Ju‖∞ > t

)
≤ |N | · P

(
‖WI,Ju1‖∞ > t/2

)
≤ 6|J | · C|I| exp(−c nt2/4).

5We always assume that these index sets form an increasing sequence of sets. More precisely, with I =
Ip, we assume I1 ⊂ I2 ⊂ · · · . We also assume |Ip| → ∞ as p→∞.
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In the last line, we used (3.85). Taking t = D′′
√
|J |+
√

log |I|
√
n

with D′′ large enough and using
Borel-Cantelli lemma completes the proof.

Appendix 3.E Proof of Lemma 16

The mixture covariance can be expressed as

ΣM := E[xxT ] = E
[
E
[
xxT |U

] ]
=

∑
S∈S̃

1

|S̃|
E
[
xxT |U = S

]
=

∑
S∈S̃

1

|S̃|

(
Ip + βz∗(S)z∗(S)T

)
= Ip +

β

|S̃|

∑
S∈S̃

z∗(S)z∗(S)T =: Ip +
β

k |S̃|
Y,

where

Yij =
∑
S∈S̃

[
√
k z∗(S)]i[

√
k z∗(S)T ]j =

∑
S∈S̃

I{i ∈ S}I{j ∈ S} =
∑
S∈S̃

I{{i, j} ⊂ S}.

Let R := {1, . . . , k − 1} and Rc := {k, . . . , p}. Note that we always have R ⊂ S for S ∈ S̃.
In general, we have

Yij =


|S̃|, if both i, j ∈ R,
1, if exactly one of i or j ∈ R,
0, if both i, j /∈ R.

Consequently, Y takes the form

Y =



|S̃| . . . |S̃| 1 1 . . . 1
...

. . .
...

...
...

. . .
...

|S̃| . . . |S̃| 1 1 . . . 1
1 . . . 1 1 0 . . . 0
1 . . . 1 0 1 . . . 0
...

. . .
...

...
...

. . .
...

1 . . . 1 0 0 . . . 1


or Y =

|S̃|~1R~1TR ~1R~1
T
Rc

~1Rc~1
T
R IRc×Rc



where ~1R, for example, denotes the vector of all ones over the index set R. We conjecture
an eigenvector of the form

v =

(
~1R

b~1Rc

)
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and let us denote the associated eigenvalue as λ. Thus, we assume Y v = λv, or, in more
detail,

|S̃||R|~1R + b |Rc|~1R = λ~1R,

|R|~1Rc + b~1Rc = λ b~1Rc

where we have used, for example, ~1TR~1R = |R|. Note that |Rc| = |S̃| = p− k + 1. Rewriting

in terms of |S̃|, we get

|S̃| (|R|+ b) = λ,

|R|+ b = λ b

from which we conclude, assuming λ 6= 0, that b = 1

|S̃|
. This, in turn, implies λ = |S̃| |R|+ 1.

Thus far, we have determined an eigenpair. We can now subtract λ (v/‖v‖2)(v/‖v‖2)T =
(λ/‖v‖2

2) vvT and search for the rest of the eigenvalues in the remainder. Note that

λ

‖v‖2
2

=
λ

|R|+ b2 |Rc|
=
|S̃| |R|+ 1

|R|+ |S̃|−1
= |S̃|.

Thus, we have

λ

‖v‖2
2

vvT =

|S̃|~1R~1TR ~1R~1
T
Rc

~1TRc~1R
1

|S̃|
~1Rc~1

T
Rc


implying

Y − λ

‖v‖2
2

vvT =

0 0

0 I − 1

|S̃|
~1Rc~1

T
Rc

 .

The nonzero block of the remainder has one eigenvalue equal to 1 − |Rc|
|S̃|

= 0 and the rest

of |Rc| − 1 of its eigenvalues equal to 1. Thus, the remainder has |R| + 1 of its eigenvalues
equal to zero and |Rc| − 1 of them equal to one.

Overall, we conclude that eigenvalues of Y are as follows:
|S̃||R|+ 1, 1 time,

1, |Rc| − 1 times,

0, |R| times,

or


(p− k + 1)(k − 1) + 1, 1 time,

1, p− k times,

0, k − 1 times.

The eigenvalues of Y are mapped to those of ΣM by the affine map x → 1 + β

k |S̃|
x, so that

ΣM has eigenvalues

1 +
β(k − 1)

k
+

β

k(p− k + 1)
, 1 +

β

k(p− k + 1)
, 1 (3.87)

with multiplicities 1, p−k and k− 1, respectively. The log determinant stated in the lemma
then follows by straightforward calculation.
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Appendix 3.F Proof of Theorem 7(a)

Since in part (a) of the theorem we are using the weaker scaling n > θwrk
2 log(p − k), we

have more freedom in choosing the sign matrix Û . We choose the upper-left block ÛSS as
in part (b) so that Lemma 8 applies. Also let ẑ := (ẑS,~0Sc) as in (3.24), where ẑS is the
(unique) maximal eigenvector of the k × k block ΦSS; it has the correct sign by Lemma 8.
We set the off-diagonal and lower-right blocks of the sign matrix to

ÛScS =
1

λn
∆ScS, ÛScSc =

1

λn
∆ScSc (3.88)

so that ΦScS = 0 and ΦScSc = 0. With these blocks of Φ being zero, ẑ is the maximal eigen-
vector of Φ, hence an optimal solution of (3.9), if and only if ẑS is the maximal eigenvector
of ΦSS; the latter is true by definition. Note that this argument is based on the remark
following Lemma 7. It only remains to show that the choices of (3.88) lead to valid sign
matrices.

Recalling that vector ∞-norm of a matrix A is ‖A‖∞ := maxi,j |Ai,j| (see § 2.1.3), we

need to show ‖ÛScS‖∞ ≤ 1 and ‖ÛScSc‖∞ ≤ 1. Using the notation of section 3.4.4 and the
mixed-norm inequality (2.14), we have

‖ÛScS‖∞ =

√
β

λn
‖h̃Scz∗S

T‖∞ ≤
√
β

λn
|||h̃Sc|||∞,∞‖z∗S

T‖∞

=

√
β

λn
‖h̃Sc‖∞‖z∗S‖∞

≤
√
β

λn
|||Γ1/2

p−k|||∞,∞‖hSc‖∞‖z
∗
S‖∞

=
2k√
β
O(1)O

(√
log(p− k)

n

)
1√
k

= O(1)
1√
k
→ 0,

where the last line follows under the scaling assumed and assumption (3.2a) on |||Γ1/2
p−k|||∞,∞.

For the lower-right block, we use the mixed-norm inequality (2.14) twice together with
symmetry to obtain

‖ÛScSc‖∞ =
1

λn
‖W̃ScSc‖∞ =

1

λn
‖Γ1/2

p−kWScScΓ
1/2
p−k‖∞

≤ 1

λn
|||Γ1/2

p−k|||
2
∞,∞‖WScSc‖∞

=
2k

β
O(1) O

(√
log(p− k)

n

)
which can be made less than one by choosing θwr large enough. The bound on ‖WScSc‖∞
used in the last line can be obtained using arguments similar to those of Lemma 11. The
proof is complete.
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Appendix 3.G Proofs of §3.6

We start with an inequality relating `1, `∞ norms and `q F -norm for q ∈ (0, 1); recall that
for q ∈ (0, 1), we let ‖z‖q :=

∑
j |zj|q. We have the following

‖z‖1 ≤ ‖z‖1−q
∞ ‖z‖q, q ∈ (0, 1) (3.89)

for z ∈ Rp. For the proof, first assume ‖z‖∞ ≤ 1, that is, |zj| ≤ 1 for j ∈ [p]. For any
q ∈ (0, 1), the function x 7→ x1−q is increasing on [0, 1]. That is, for x ∈ [0, 1], we have
x1−q ≤ 1 or equivalently x ≤ xq. In particular,

∑p
j=1 |zj| ≤

∑p
j=1 |zj|q which is the desired

inequality. The general form is obtained by applying the inequality to z/‖z‖∞.
The following lemma collects some observations regarding `1 norm of z∗ and its subvectors

and some relations between k, τ and κ.

Lemma 23. Assume ‖z∗‖q ≤ κ and ‖z∗‖2 = 1. Let S := {i : |z∗j | ≥ τ} and κ := card(S).
Then,

‖z∗‖1 ≤ κ, ‖z∗Sc‖1 ≤ τ 1−qκ, k ≤ τ−qκ (3.90)

Proof. We have ‖z∗‖∞ ≤ ‖z∗‖2 = 1 and ‖z∗Sc‖∞ < τ . The first two assertions in (3.90) now
follow from (3.89). For the third assertion, we note that since x 7→ xq is increasing for q > 0,
we have

k =
∑
j∈S

1 ≤
∑
j∈S

( |z∗j |
τ

)q ≤ τ−qκ. (3.91)

We can now give a bound on ‖Z∗Sc‖1. For simplicity, let a = ‖z∗S‖1 and b = ‖z∗Sc‖1. Then,

‖Z∗Sc‖1 =
∑

(i,j)/∈S×S

|z∗i z∗j | = b2 + 2ab ≤ 2b(a+ b) ≤ 2τ 1−qκ2 (3.92)

by (3.90) and a+ b = ‖z∗‖1.

3.G.1 Proof of Lemma 19

We have ‖h(z∗)T‖∞ = maxi,j |hi||z∗j | ≤ ‖h‖∞‖z∗‖∞ ≤ ‖h‖∞. Both ‖h‖∞ and ‖n−1GTG −

Ip‖∞ are bounded by a constant multiple of
√

log p
n

with stated probability.
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3.G.2 Proof of Lemma 20

By triangle inequality, ‖Z∗S + ES‖1 ≥ ‖Z∗S‖1 − ‖ES‖1. We have

T1 ≥ −‖∆̃S‖∞‖ES‖1 − λn‖ES‖1

≥ −2λn‖ES‖1

≥ −2λnk‖ES‖2

where the first line follows from Hölder inequality (2.4) in addition to triangle, the second line

from assumption ‖∆̃‖∞ < λn and the last line from (2.5) . Similarly, by triangle inequality,
‖Z∗Sc + ESc‖1 ≥ ‖ESc‖1 − ‖Z∗Sc‖1. Then,

T2 ≥ −‖∆̃Sc‖∞‖ESc‖1 + λn‖ESc‖1 − 2λn‖Z∗Sc‖1

≥ −2λn‖Z∗Sc‖1

≥ −2λn(2τ 1−qκ2)

where the last line follows from (3.92).
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Chapter 4

Approximation properties of certain
operator-induced norms on Hilbert
spaces

4.1 Introduction

This chapter serves as an interlude to Chapter 5 where we study effects of sampling in
functional PCA. The focus here is on a class of approximation-theoretic issues that arise
frequently in the analysis of functional estimators in statistics and statistical learning theory.
In particular, we will see how the results established here will assist us in determining the
functional rate of convergence for the estimators of Chapter 5 .

To set the stage, let P be a probability measure supported on a compact set X ⊂ Rd and
consider the function class

L2(P) :=
{
f : X → R | ‖f‖L2(P) <∞

}
, (4.1)

where ‖f‖L2(P) :=
√∫

X f
2(x) dP(x) is the usual L2 norm1 defined with respect to the measure

P. It is often of interest to construct approximations to this L2 norm that are “finite-
dimensional” in nature, and to study the quality of approximation over the unit ball of some
Hilbert space H that is continuously embedded within L2. For example, in approximation
theory and mathematical statistics, a collection of n design points in X is often used to define
a surrogate for the L2 norm. In other settings, one is given some orthonormal basis of L2(P),
and defines an approximation based on the sum of squares of the first n (generalized) Fourier
coefficients. For problems of this type, it is of interest to gain a precise understanding of the
approximation accuracy in terms of its dimension n and other problem parameters.

1We also use L2(X ) or simply L2 to refer to the space (4.1), with corresponding conventions for its norm.
Also, one can take X to be a compact subset of any separable metric space and P a (regular) Borel measure.
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The goal in this chapter is to study such questions in reasonable generality for the case
of Hilbert spaces H. We let Φn : H → Rn denote a continuous linear operator on the Hilbert
space, which acts by mapping any f ∈ H to the n-vector

(
[Φnf ]1 [Φnf ]2 · · · [Φnf ]n

)
.

This operator defines the Φn-semi-norm

‖f‖Φn :=

√√√√ n∑
i=1

[Φnf ]2i . (4.2)

In the sequel, with a minor abuse of terminology,2 we refer to ‖f‖Φn as the Φn-norm of
f . Our goal is to study how well ‖f‖Φn approximates ‖f‖L2 over the unit ball of H as
a function of n, and other problem parameters. We provide a number of examples of the
sampling operator Φn in §4.2.2. Since the dependence on the parameter n should be clear,
we frequently omit the subscript to simplify notation.

In order to measure the quality of approximation over H, we consider the quantity

RΦ(ε) := sup
{
‖f‖2

L2 | f ∈ BH, ‖f‖2
Φ ≤ ε2

}
, (4.3)

where BH := {f ∈ H | ‖f‖H ≤ 1} is the unit ball of H. The goal in this chapter is to obtain
sharp upper bounds on RΦ. As discussed in Appendix 4.C, a relatively straightforward
argument can be used to translate such upper bounds into lower bounds on the related
quantity

TΦ(ε) := inf
{
‖f‖2

Φ | f ∈ BH, ‖f‖2
L2 ≥ ε2

}
. (4.4)

We also note that, for a complete picture of the relationship between the semi-norm ‖ · ‖Φ

and the L2 norm, one can also consider the related pair

TΦ(ε) := sup
{
‖f‖2

Φ | f ∈ BH, ‖f‖2
L2 ≤ ε2

}
, and (4.5a)

RΦ(ε) := inf
{
‖f‖2

L2 | f ∈ BH, ‖f‖2
Φ ≥ ε2

}
. (4.5b)

Our methods are also applicable to these quantities, but we limit our treatment to (RΦ, TΦ)
so as to keep the contribution focused.

Certain special cases of linear operators Φ, and associated functionals have been studied
in past work. In the special case ε = 0, we have

RΦ(0) = sup
{
‖f‖2

L2 | f ∈ BH, Φ(f) = 0
}
,

a quantity that corresponds to the squared diameter of BH ∩ Ker(Φ), measured in the L2-
norm. Quantities of this type are standard in approximation theory (e.g., [35, 78, 79]), for
instance in the context of Kolmogorov and Gelfand widths. Our primary interest in this

2This can be justified by identifying f and g if Φf = Φg, i.e. considering the quotient H/Ker Φ.
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chapter is the more general setting with ε > 0, for which additional factors are involved in
controlling RΦ(ε). In statistics, there is a literature on the case in which Φ is a sampling
operator, which maps each function f to a vector of n samples, and the norm ‖·‖Φ corresponds
to the empirical L2-norm defined by these samples. When these samples are chosen randomly,
then techniques from empirical process theory [93] can be used to relate the two terms. As
discussed in the sequel, our results have consequences for this setting of random sampling.

As an example of a problem in which an upper bound on RΦ is useful, let us consider a
general linear inverse problem, in which the goal is to recover an estimate of the function f ∗

based on the noisy observations

yi = [Φf ∗]i + wi, i = 1, . . . , n,

where {wi} are zero-mean noise variables, and f ∗ ∈ BH is unknown. An estimate f̂ can be
obtained by solving a least-squares problem over the unit ball of the Hilbert space—that is,
to solve the convex program

f̂ := arg min
f ∈BH

n∑
i=1

(yi − [Φf ]i)
2.

For such estimators, there are fairly standard techniques for deriving upper bounds on the
Φ-semi-norm of the deviation f̂ − f ∗. Our results in this chapter on RΦ can then be used
to translate this to a corresponding upper bound on the L2-norm of the deviation f̂ − f ∗,
which is often a more natural measure of performance.

As an example where the dual quantity TΦ might be helpful, consider the packing problem
for a subset D ⊂ BH of the Hilbert ball. Let M(ε;D, ‖ · ‖L2) be the ε-packing number of D
in ‖ · ‖L2 , i.e., the maximal number of function f1, . . . , fM ∈ D such that ‖fi − fj‖L2 ≥ ε for
all i, j = 1, . . . ,M . Similarly, let M(ε;D, ‖ ·‖Φ) be the ε-packing number of D in ‖ ·‖Φ norm.
Now, suppose that for some fixed ε, TΦ(ε) > 0. Then, if we have a collection of functions
{f1, . . . , fM} which is an ε-packing of D in ‖ · ‖L2 norm, then the same collection will be
a
√
TΦ(ε)-packing of D in ‖ · ‖Φ. This implies the following useful relationship between

packing numbers

M(ε ;D, ‖ · ‖L2) ≤M(
√
TΦ(ε) ;D, ‖ · ‖Φ).

The remainder of this chapter is organized as follows. We begin in §4.2 with background
on the Hilbert space set-up, and provide various examples of the linear operators Φ to which
our results apply. §4.3 contains the statement of our main result, and illustration of some
its consequences for different Hilbert spaces and linear operators. Finally, §4.4 is devoted to
the proofs of our results.

4.1.1 Notation

For the convenience of the reader, we review some notations used in this chapter. More
details can be found in Chapter 2. For any positive integer p, we use Sp+ to denote the
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cone of p × p positive semidefinite matrices. For A,B ∈ Sp+, we write A � B or B �
A to mean A − B ∈ Sp+. For any square matrix A, let λmin(A) and λmax(A) denote its

minimal and maximal eigenvalues, respectively. We will use both
√
A and A1/2 to denote

the symmetric square root of A ∈ Sp+. We will use {xk} = {xk}∞k=1 to denote a (countable)
sequence of objects (e.g. real-numbers and functions). Occasionally we might denote an n-
vector as {x1, . . . , xn}. The context will determine whether the elements between braces are
ordered. The symbols `2 = `2(N) are used to denote the Hilbert sequence space consisting
of real-valued sequences equipped with the inner product 〈{xk}, {yk}〉`2 :=

∑∞
k=1 xiyi. The

corresponding norm is denoted as ‖ · ‖`2 .

4.2 Background and setup

We begin with some background on the class of Hilbert spaces of interest in this paper and
then proceed to provide some examples of the sampling operators of interest. For a general
review of the functional-analytic concepts used here, one can refer to §2.5.

4.2.1 Hilbert spaces

We consider a class of Hilbert function spaces contained within L2(X ), and defined as follows.
Let {ψk}∞k=1 be an orthonormal sequence (not necessarily a basis) in L2(X ) and let σ1 ≥
σ2 ≥ σ3 ≥ · · · > 0 be a sequence of positive weights decreasing to zero. Given these two
ingredients, we can consider the class of functions

H :=
{
f ∈ L2(P)

∣∣∣ f =
∞∑
k=1

√
σkαkψk, for some {αk}∞k=1 ∈ `2(N)

}
, (4.6)

where the series in (4.6) is assumed to converge in L2. (The series converges since
∑∞

k=1(
√
σkαk)

2 ≤
σ1‖{αk}‖`2 < ∞.) We refer to the sequence {αk}∞k=1 ∈ `2 as the representative of f . Note
that this representation is unique due to σk being strictly positive for all k ∈ N.

If f and g are two members of H, say with associated representatives α = {αk}∞k=1 and
β = {βk}∞k=1, then we can define the inner product

〈f, g〉H :=
∞∑
k=1

αkβk = 〈α, β〉`2 . (4.7)

With this choice of inner product, it can be verified that the space H is a Hilbert space. (In
fact, H inherits all the required properties directly from `2.) For future reference, we note
that for two functions f, g ∈ H with associated representatives α, β ∈ `2, their L2-based
inner product is given by3 〈f, g〉L2 =

∑∞
k=1 σkαkβk.

3In particular, for f ∈ H, ‖f‖L2 ≤ √σ1‖f‖H which shows that the inclusion H ⊂ L2 is continuous.
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We note that each ψk is in H, as it is represented by a sequence with a single nonzero
element, namely, the k-th element which is equal to σ

−1/2
k . It follows from (4.7) that

〈√σkψk,
√
σjψj〉H = δkj. That is, {√σkψk} is an orthonormal sequence in H. Now,

let f ∈ H be represented by α ∈ `2. We claim that the series in (4.6) also converges
in H norm. In particular,

∑N
k=1

√
σkαkψk is in H, as it is represented by the sequence

{α1, . . . , αN , 0, 0, . . . } ∈ `2. It follows from (4.7) that ‖f −
∑N

k=1

√
σkαkψk‖H =

∑∞
k=N+1 α

2
k

which converges to 0 as N →∞. Thus, {√σkψk} is in fact an orthonormal basis for H.

We now turn to a special case of particular importance to us, namely the reproducing
kernel Hilbert space (RKHS) of a continuous kernel. Consider a symmetric bivariate function
K : X × X → R, where X ⊂ Rd is compact4. Furthermore, assume K to be positive
semidefinite and continuous. Consider the integral operator IK mapping a function f ∈ L2

to the function IKf :=
∫
K(·, y)f(y)dP(y). As a consequence of Mercer’s theorem [83, 42],

IK is a compact operator from L2 to C(X ), the space of continuous functions on X equipped
with the uniform norm5. Let {σk} be the sequence of nonzero eigenvalues of IK, which
are positive, can be ordered in nonincreasing order and converge to zero. Let {ψk} be the
corresponding eigenfunctions which are continuous and can be taken to be orthonormal in
L2. With these ingredients, the space H defined in equation (4.6) is the RKHS of the kernel
function K. This can be verified as follows.

As another consequence of the Mercer’s theorem, K has the decomposition

K(x, y) :=
∞∑
k=1

σkψk(x)ψk(y) (4.8)

where the convergence is absolute and uniform (in x and y). In particular, for any fixed
y ∈ X , the sequence {√σkψk(y)} is in `2. (In fact,

∑∞
k=1(
√
σkψk(y))2 = K(y, y) < ∞.)

Hence, K(·, y) is in H, as defined in (4.6), with representative {√σk ψk(y)}. Furthermore, it
can be verified that the convergence in (4.6) can be taken to be also pointwise6. To be more
specific, for any f ∈ H with representative {αk}∞k=1 ∈ `2, we have f(y) =

∑∞
k=1

√
σkαkψk(y),

for all y ∈ X . Consequently, by definition of the inner product (4.7), we have

〈f,K(·, y)〉H =
∞∑
k=1

αk
√
σkψk(y) = f(y),

so that K(·, y) acts as the representer of evaluation. This argument shows that for any fixed
y ∈ X , the linear functional on H given by f 7→ f(y) is bounded, since we have

|f(y)| =
∣∣〈f,K(·, y)〉H

∣∣ ≤ ‖f‖H‖K(·, y)‖H,
4Also assume that P assign positive mass to every open Borel subset of X .
5In fact, IK is well defined over L1 ⊃ L2 and the conclusions about IK hold as a operator from L1 to

C(X ).
6The convergence is actually even stronger, namely it is absolute and uniform, as can be seen by noting

that
∑m
k=n+1 |αk

√
σkψk(y)| ≤ (

∑m
k=n+1 α

2
k)1/2(

∑m
k=n+1 σkψ

2
k(y))1/2 ≤ (

∑m
k=n+1 α

2
k)1/2 maxy∈X k(y, y).
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hence H is indeed the RKHS of the kernel K. This fact plays an important role in the sequel,
since some of the linear operators that we consider involve pointwise evaluation.

A comment regarding the scope: our general results hold for the basic setting introduced
in equation (4.6). For those examples that involve pointwise evaluation, we assume the more
refined case of the RKHS described above.

4.2.2 Linear operators, semi-norms and examples

Let Φ : H → Rn be a continuous linear operator, with co-ordinates [Φf ]i for i = 1, 2, . . . , n.
It defines the (semi)-inner product

〈f, g〉Φ := 〈Φf,Φg〉Rn , (4.9)

which induces the semi-norm ‖ · ‖Φ. By the Riesz representation theorem, for each i =
1, . . . , n, there is a function ϕi ∈ H such that [Φf ]i = 〈ϕi, f〉H for any f ∈ H.

Let us illustrate the preceding definitions with some examples.

Example 1 (Generalized Fourier truncation). Recall the orthonormal basis {ψi}∞i=1 under-
lying the Hilbert space. Consider the linear operator Tψn1 : H → Rn with coordinates

[Tψn1 f ]i := 〈ψi, f〉L2 , for i = 1, 2, . . . , n. (4.10)

We refer to this operator as the (generalized) Fourier truncation operator, since it acts by
truncating the (generalized) Fourier representation of f to its first n co-ordinates. More
precisely, by construction, if f =

∑∞
k=1

√
σkαkψk, then

[Φf ]i =
√
σiαi, for i = 1, 2, . . . , n. (4.11)

By definition of the Hilbert inner product, we have αi = 〈ψi, f〉H, so that we can write
[Φf ]i = 〈ϕi, f〉H, where ϕi :=

√
σiψi. ♦

Example 2 (Domain sampling). A collection xn1 := {x1, . . . , xn} of points in the domain X
can be used to define the (scaled) sampling operator Sxn1 : H → Rn via

Sxn1 f := n−1/2
(
f(x1) . . . f(xn)

)
, for f ∈ H. (4.12)

As previously discussed, when H is a reproducing kernel Hilbert space (with kernel K), the
(scaled) evaluation functional f 7→ n−1/2f(xi) is bounded, and its Riesz representation is
given by the function ϕi = n−1/2K(·, xi). ♦

Example 3 (Weighted domain sampling). Consider the setting of the previous example. A
slight variation on the sampling operator (4.12) is obtained by adding some weights to the
samples

Wxn1 ,w
n
1
f := n−1/2

(
w1f(x1) . . . wnf(xn)

)
, for f ∈ H. (4.13)
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where wn1 = (w1, . . . , wn) is chosen such that
∑n

k=1w
2
k = 1. Clearly, ϕi = n−1/2wiK(·, xi).

[As an example of how this might arise, consider approximating f(t) by
∑n

k=1 f(xk)Gn(t, xk)
where {Gn(· , xk)} is a collection of functions in L2(X ) such that 〈Gn(· , xk), Gn(· , xj)〉L2 =
n−1w2

k δkj. Proper choices of {Gn(·, xi)} might produce better approximations to the L2

norm in the cases where one insists on choosing elements of xn1 to be uniformly spaced, while
P in (4.1) is not a uniform distribution. Another slightly different but closely related case is
when one approximates f 2(t) over X = [0, 1], by say n−1

∑n−1
k=1 f

2(xk)W (n(t− xk)) for some
function W : [−1, 1]→ R+ and xk = k/n. Again, non-uniform weights are obtained when P
is nonuniform.]

♦

4.3 Main result and some consequences

We now turn to the statement of our main result, and the development of some its conse-
quences for various models.

4.3.1 General upper bounds on RΦ(ε)

We now turn to upper bounds on RΦ(ε) which was defined previously in (4.3). Our bounds
are stated in terms of a real-valued function defined as follows: for matrices D,M ∈ Sp+,

L(t,M,D) := max

{
λmax

(
D − t

√
DM

√
D
)
, 0

}
, for t ≥ 0. (4.14)

Here
√
D denotes the matrix square root, valid for positive semidefinite matrices.

The upper bounds on RΦ(ε) involve principal submatrices of certain infinite-dimensional
matrices—or equivalently linear operators on `2(N)—that we define here. Let Ψ be the
infinite-dimensional matrix with entries

[Ψ]jk := 〈ψj, ψk〉Φ, for j, k = 1, 2, . . . , (4.15)

and let Σ = diag{σ1, σ2, . . . , } be a diagonal operator. For any p = 1, 2, . . ., we use Ψp and
Ψp̃ to denote the principal submatrices of Ψ on rows and columns indexed by {1, 2, . . . , p}
and {p + 1, p + 2, . . . }, respectively. A similar notation will be used to denote submatrices
of Σ.

Theorem 10. For all ε ≥ 0, we have:

RΦ(ε) ≤ inf
p∈N

inf
t≥ 0

{
L(t,Ψp,Σp) + t

(
ε+

√
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )
)2

+ σp+1

}
. (4.16)
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Moreover, for any p ∈ N such that λmin(Ψp) > 0, we have

RΦ(ε) ≤
(

1− σp+1

σ1

) 1

λmin(Ψp)

(
ε+

√
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )
)2

+ σp+1. (4.17)

Remark (a): These bounds cannot be improved in general. This is most easily seen in
the special case ε = 0. Setting p = n, bound (4.17) implies that RΦ(0) ≤ σn+1 whenever Ψn

is strictly positive definite and Ψñ = 0. This bound is sharp in a “minimax sense”, meaning
that equality holds if we take the infimum over all bounded linear operators Φ : H → Rn.
In particular, it is straightforward to show that

inf
Φ: H→Rn

Φ surjective

RΦ(0) = inf
Φ: H→Rn

Φ surjective

sup
f ∈BH

{
‖f‖2

L2 | Φf = 0
}

= σn+1, (4.18)

and moreover, this infimum is in fact achieved by some linear operator. Such results are
known from the general theory of n-widths for Hilbert spaces (e.g., see Chapter IV in
Pinkus [78] and Chapter 3 of [41].)

In the more general setting of ε > 0, there are operators for which the bound (4.17)
is met with equality. As a simple illustration, recall the (generalized) Fourier truncation
operator Tψn1 from Example 1. First, it can be verified that 〈ψk, ψj〉Tψn1 = δjk for j, k ≤ n

and 〈ψk, ψj〉Tψn1 = 0 otherwise. Taking p = n, we have Ψn = In, that is, the n-by-n identity

matrix, and Ψñ = 0. Taking p = n in (4.17), it follows that for ε2 ≤ σ1,

RTψn1
(ε) ≤

(
1− σn+1

σ1

)
ε2 + σn+1, (4.19)

As shown in Appendix 4.E, the bound (4.19) in fact holds with equality. In other words, the
bounds of Theorems 10 are tight in this case. Also, note that (4.19) implies RTψn1

(0) ≤ σn+1

showing that the (generalized) Fourier truncation operator achieves the minimax bound
of (4.18). Fig 4.1 provides a geometric interpretation of these results.

Remark (b): In general, it might be difficult to obtain a bound on λmax(Σ
1/2
p̃ Ψp̃Σ

1/2
p̃ ) as it

involves the infinite dimensional matrix Ψp̃. One may obtain a simple (although not usually
sharp) bound on this quantity by noting that for a positive semidefinite matrix, the maximal
eigenvalue is bounded by the trace, that is,

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤ tr

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
=
∑
k>p

σk[Ψ]kk. (4.20)

Another relatively easy-to-handle upper bound is

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤ |||Σ1/2

p̃ Ψp̃Σ
1/2
p̃ |||∞ = sup

k>p

∑
r >p

√
σk
√
σr
∣∣[Ψ]kr

∣∣. (4.21)
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Figure 4.1: Geometry of Fourier truncation. The plot shows the set {(‖f‖L2 , ‖f‖Φ) : ‖f‖H ≤ 1} ⊂ R2 for the case of
(generalized) Fourier truncation operator Tψn

1
.

These bounds can be used, in combination with appropriate block partitioning of Σ
1/2
p̃ Ψp̃Σ

1/2
p̃ ,

to provide sharp bounds on the maximal eigenvalue. Block partitioning is useful due to the

following: for a positive semidefinite matrix M =
(
A1 C
CT A2

)
, we have λmax(M) ≤ λmax(A1) +

λmax(A2). We leave the the details on the application of these ideas to examples in §4.3.2.

4.3.2 Some illustrative examples

Theorem 10 has a number of concrete consequences for different Hilbert spaces and linear
operators, and we illustrate a few of them in the following subsections.

Random domain sampling

We begin by stating a corollary of Theorem 10 in application to random time sampling in
a reproducing kernel Hilbert space (RKHS). Recall from equation (4.12) the time sampling
operator Sxn1 , and assume that the sample points {x1, . . . , xn} are drawn in an i.i.d. manner
according to some distribution P on X . Let us further assume that the eigenfunctions ψk,
k ≥ 1 are uniformly bounded7 on X , meaning that

sup
k≥1

sup
x∈X
|ψk(x)| ≤ Cψ. (4.22)

Finally, we assume that ‖σ‖1 :=
∑∞

k=1 σk <∞, and that

σpk ≤ Cσ σk σp, for some positive constant Cσ and for all large p, (4.23)∑
k>pm σk ≤ σp, for some positive integer m and for all large p. (4.24)

7One can replace supx∈X with essential supremum with respect to P.
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Let mσ be the smallest m for which (4.24) holds. These conditions on {σk} are satisfied,
for example, for both a polynomial decay σk = O(k−α) with α > 1 and an exponential
decay σk = O(ρk) with ρ ∈ (0, 1). In particular, for the polynomial decay, using the tail
bound (4.63) in Appendix 4.B, we can take mσ = d α

α−1
e to satisfy (4.24). For the exponential

decay, we can take mσ = 1 for ρ ∈ (0, 1
2
) and mσ = 2 for ρ ∈ (1

2
, 1) to satisfy (4.24).

Define the function

Gn(ε) :=
1√
n

√√√√ ∞∑
j=1

min{σj, ε2}, (4.25)

as well as the critical radius

rn := inf{ε > 0 : Gn(ε) ≤ ε2}. (4.26)

Corollary 4. Suppose that rn > 0 and 64C2
ψmσ r

2
n log(2nr2

n) ≤ 1. Then for any ε2 ∈ [r2
n, σ1),

we have

P
[
RSxn1

(ε) > (C̃ψ + C̃σ) ε2
]
≤ 2 exp

(
− 1

64C2
ψ r

2
n

)
, (4.27)

where C̃ψ := 2(1 + Cψ)2 and C̃σ := 3(1 + C−1
ψ )Cσ‖σ‖1 + 1.

We provide the proof of this corollary in Appendix 4.A. As a concrete example consider
a polynomial decay σk = O(k−α) for α > 1, which satisfies assumptions on {σk}. Using the
tail bound (4.63) in Appendix 4.B, one can verify that r2

n = O(n−α/(α+1)). Note that, in this
case,

r2
n log(2nr2

n) = O(n−
α
α+1 log n

1
α+1 ) = O(n−

α
α+1 log n)→ 0, n→∞.

Hence conditions of Corollary 4 are met for sufficiently large n. It follows that for some
constants C1, C2 and C3, we have

RSxn1
(C1n

− α
2(α+1) ) ≤ C2 n

− α
α+1

with probability 1− 2 exp(−C3n
α
α+1 ) for sufficiently large n.

Sobolev kernel

Consider the kernel K(x, y) = min(x, y) defined on X 2 where X = [0, 1]. The corresponding
RKHS is of Sobolev type and can be expressed as{

f ∈ L2(X ) | f is absolutely continuous, f(0) = 0 and f ′ ∈ L2(X )
}
.
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Also consider a uniform domain sampling operator Sxn1 , that is, that of (4.12) with xi =
i/n, i ≤ n and let P be uniform (i.e., the Lebesgue measure restricted to [0, 1]).

This setting has the benefit that many interesting quantities can be computed explicitly,
while also having some practical appeal. The following can be shown about the eigen-
decomposition of the integral operator IK introduced in §4.2,

σk =
[(2k − 1)π

2

]−2

, ψk(x) =
√

2 sin
(
σ
−1/2
k x

)
, k = 1, 2, . . . .

In particular, the eigenvalues decay as σk = O(k−2).
To compute the Ψ, we write

[Ψ]kr = 〈ψk, ψr〉Φ =
1

n

n∑
`=1

{
cos

(k − r)`π
n

− cos
(k + r − 1)`π

n

}
. (4.28)

We note that Ψ is periodic in k and r with period 2n. It is easily verified that n−1
∑n

`=1 cos(q`π/n)
is equal to −1 for odd values of q and zero for even values, other than q = 0,±2n,±4n, . . . .
It follows that

[Ψ]kr =


1 + 1

n
if k − r = 0,

−1− 1
n

if k + r = 2n+ 1
1
n
(−1)k−r otherwise

, (4.29)

for 1 ≤ k, r ≤ 2n. Letting Is ∈ Rn be the vector with entries, (Is)j = (−1)j+1, j ≤ n, we
observe that Ψn = In + 1

n
IsITs . It follows that λmin(Ψn) = 1. It remains to bound the terms

in (4.17) involving the infinite sub-block Ψñ.
The Ψ matrix of this example, given by (4.29), shares certain properties with the Ψ

obtained in other situations involving periodic eigenfunctions {ψk}. We abstract away these
properties by introducing a class of periodic Ψ matrices. We call Ψñ a sparse periodic matrix,
if each row (or column) is periodic and in each period only a vanishing fraction of elements
are large. More precisely, Ψñ is sparse periodic if there exist positive integers γ and η, and
positive constants c1 and c2, all independent of n, such that each row of Ψñ is periodic with
period γn. and for any row k, there exits a subset of elements Sk = {`1, . . . , `η} ⊂ {1, . . . , γn}
such that ∣∣[Ψ]k,n+r

∣∣ ≤ c1, r ∈ Sk, (4.30a)∣∣[Ψ]k,n+r

∣∣ ≤ c2 n
−1, r ∈ {1, . . . , γn} \ Sk, (4.30b)

The elements of Sk could depend on k, but the cardinality of this set should be the constant
η, independent of k and n. Also, note that we are indexing rows and columns of Ψñ by
{n+ 1, n+ 2, . . . }; in particular, k ≥ n+ 1. For this class, we have the following whose proof
can be found in Appendix 4.B.
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(a) (b)

Figure 4.2: Sparse periodic Ψ matrices. Display (a) is a plot of the N -by-N leading principal submatrix of Ψ for the Sobolev
kernel (s, t) 7→ min{s, t}. Here n = 9 and N = 6n; the period is 2n = 18. Display (b) is a the same plot for a Fourier-type
kernel. The plots exhibit sparse periodic patterns as defined in §4.3.2.

Lemma 24. Assume Ψñ to be sparse periodic as defined above and σk = O(k−α), α ≥ 2.
Then,

(a) for α > 2, λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
= O(n−α), n→∞,

(b) for α = 2, λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
= O(n−2 log n), n→∞.

In particular (4.29) implies that Ψñ is sparse periodic with parameters γ = 2, η = 2,
c1 = 2 and c2 = 1. Hence, part (b) of Lemma 24 applies. Now, we can use (4.17) with p = n
to obtain

RSxn1
(ε) ≤ 2ε2 +O

(
n−2 log n

)
(4.31)

where we have also used (a+ b)2 ≤ 2a2 + 2b2.

Fourier-type kernels

In this example, we consider an RKHS of functions on X = [0, 1] ⊂ R, generated by a
Fourier-type kernel defined as K(x, y) := κ(x− y), x, y ∈ [0, 1], where

κ(x) = ζ0 +
∞∑
k=1

2ζk cos(2πkx), x ∈ [−1, 1]. (4.32)

We assume that (ζk) is a R+-valued nonincreasing sequence in `1, i.e.
∑

k ζk <∞. Thus, the
trigonometric series in (4.32) is absolutely (and uniformly) convergent. As for the operator
Φ, we consider the uniform time sampling operator Sxn1 , as in the previous example. That
is, the operator defined in (4.12) with xi = i/n, i ≤ n. We take P to be uniform.
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This setting again has the benefit of being simple enough to allow for explicit computa-
tions while also practically important. One can argue that the eigen-decomposition of the
kernel integral operator is given by

ψ1 = ψ
(c)
0 , ψ2k = ψ

(c)
k , ψ2k+1 = ψ

(s)
k , k ≥ 1 (4.33)

σ1 = ζ0, σ2k = ζk, σ2k+1 = ζk, k ≥ 1 (4.34)

where ψ
(c)
0 (x) := 1, ψ

(c)
k (x) :=

√
2 cos(2πkx) and ψ

(s)
k (t) :=

√
2 sin(2πkx) for k ≥ 1.

For any integer k, let ((k))n denote k modulo n. Also, let k 7→ δk be the function defined
over integers which is 1 at k = 0 and zero elsewhere. Let ι :=

√
−1. Using the identity

n−1
∑n

`=1 exp(ι2πk`/n) = δ((k))n , one obtains the following,

〈ψ(c)
k , ψ

(c)
j 〉Φ =

[
δ((k−j))n + δ((k+j))n

]( 1√
2

)δk+δj
, (4.35a)

〈ψ(s)
k , ψ

(s)
j 〉Φ = δ((k−j))n − δ((k+j))n , (4.35b)

〈ψ(c)
k , ψ

(s)
j 〉Φ = 0, valid for all j, k ≥ 0. (4.35c)

It follows that Ψn = In if n is odd and Ψn = diag{1, 1, . . . , 1, 2} if n is even. In particular,
λmin(Ψn) = 1 for all n ≥ 1. It is also clear that the principal submatrix of Ψ on indices
{2, 3, . . . } has periodic rows and columns with period 2n. If follows that Ψn is sparse periodic
as defined in §4.3.2 with parameters γ = 2, η = 2, c1 = 2 and c2 = 0.

Suppose for example that the eigenvalues decay polynomially, say as ζk = O(k−α) for
α > 2. Then, applying (4.17) with p = n, in combination with Lemma 24 part (a), we get

RSxn1
(ε) ≤ 2ε2 +O(n−α). (4.36)

As another example, consider the exponential decay ζk = ρk, k ≥ 1 for some ρ ∈ (0, 1),
which corresponds to the Poisson kernel. In this case, the tail sum of {σk} decays as the
sequence itself, namely,

∑
k>n σk ≤ 2

∑
k>n ρ

k = 2ρ
1−ρρ

k. Hence, we can simply use the trace

bound (4.20) together with (4.17) to obtain

RSxn1
(ε) ≤ 2ε2 +O(ρn). (4.37)

4.4 Proof of Theorem 10

We now turn to the proof of our main theorem. Recall from §4.2.1 the correspondence
between any f ∈ H and a sequence α ∈ `2; also, recall the diagonal operator Σ : `2 → `2

defined by the matrix diag{σ1, σ2, . . .}. Using the definition of (4.15) of the Ψ matrix, we
have

‖f‖2
Φ = 〈α,Σ1/2ΨΣ1/2α〉`2 ,
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By definition (4.6) of the Hilbert space H, we have ‖f‖2
H =

∑∞
k=1 α

2
k and ‖f‖2

L2 =
∑

k σkα
2
k.

Letting B`2 =
{
α ∈ `2 | ‖α‖`2 ≤ 1

}
be the unit ball in `2, we conclude that RΦ can be

written as

RΦ(ε) = sup
α∈B`2

{
Q2(α) | QΦ(α) ≤ ε2

}
, (4.38)

where we have defined the quadratic functionals

Q2(α) := 〈α,Σα〉`2 , and QΦ(α) := 〈α,Σ1/2ΨΣ1/2α〉`2 . (4.39)

Also let us define the symmetric bilinear form

BΦ(α, β) := 〈α,Σ1/2ΨΣ1/2β〉`2 , α, β ∈ `2, (4.40)

whose diagonal is BΦ(α, α) = QΦ(α).
We now upper bound RΦ(ε) using a truncation argument. Define the set

C := {α ∈ B`2 | QΦ(α) ≤ ε2}, (4.41)

corresponding to the feasible set for the optimization problem (4.38). For each integer
p = 1, 2, . . ., consider the following truncated sequence spaces

Tp :=
{
α ∈ `2 | αi = 0, for all i > p

}
, and

T ⊥p :=
{
α ∈ `2 | αi = 0, for all i = 1, 2, . . . p

}
.

Note that `2 is the direct sum of Tp and T ⊥p . Consequently, any fixed α ∈ C can be decom-
posed as α = ξ + γ for some (unique) ξ ∈ Tp and γ ∈ T ⊥p . Since Σ is a diagonal operator,
we have

Q2(α) = Q2(ξ) +Q2(γ).

Moreover, since any α ∈ C is feasible for the optimization problem (4.38), we have

QΦ(α) = QΦ(ξ) + 2BΦ(ξ, γ) +QΦ(γ) ≤ ε2. (4.42)

Note that since γ ∈ T ⊥p , it can be written as γ = (0p, c), where 0p is a vector of p zeroes,
and c = (c1, c2, . . .) ∈ `2. Similarly, we can write ξ = (x, 0) where x ∈ Rp. Then, each of the
terms QΦ(ξ), BΦ(ξ, γ), QΦ(γ) can be expressed in terms of block partitions of Σ1/2ΨΣ1/2.
For example,

QΦ(ξ) = 〈x,Ax〉Rp , QΦ(γ) = 〈y,Dy〉`2 , (4.43)
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where A := Σ
1/2
p ΨpΣ

1/2
p and D := Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ , in correspondence with the block partitioning

notation of Appendix 4.F. We now apply inequality (4.85) derived in Appendix 4.F. Fix
some ρ2 ∈ (0, 1) and take

κ2 := ρ2λmax(Σ
1/2
p̃ Ψp̃Σ

1/2
p̃ ), (4.44)

so that condition (4.88) is satisfied. Then, (4.85) implies

QΦ(ξ) + 2BΦ(ξ, γ) +QΦ(γ) ≥ ρ2QΦ(ξ)− κ2

1− ρ2
‖γ‖2

2. (4.45)

Combining (4.42) and (4.45), we obtain

QΦ(ξ) ≤ ε2

ρ2
+
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )

1− ρ2
‖γ‖2

2. (4.46)

We further note that ‖γ‖2
2 ≤ ‖γ‖2

2 + ‖ξ‖2
2 = ‖α‖2

2 ≤ 1. It follows that

QΦ(ξ) ≤ ε̃2, where ε̃2 :=
ε2

ρ2
+
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )

1− ρ2
. (4.47)

Let us define

C̃ := {ξ ∈ B`2 ∩ Tp | QΦ(ξ) ≤ ε̃2}. (4.48)

Then, our arguments so far show that for α ∈ C,

Q2(α) = Q2(ξ) +Q2(γ) ≤ sup
ξ ∈ C̃

Q2(ξ)︸ ︷︷ ︸
Sp

+ sup
γ ∈B`2∩T

⊥
p

Q2(γ)︸ ︷︷ ︸
S⊥p

. (4.49)

Taking the supremum over α ∈ C yields the upper bound

RΦ(ε) ≤ Sp + S⊥p .

It remains to bound each of the two terms on the right-hand side. Beginning with the
term S⊥p and recalling the decomposition γ = (0p, c), we have Q2(γ) =

∑∞
k=1 σk+pc

2
k, from

which it follows that

S⊥p = sup
{ ∞∑
k=1

σk+p c
2
k |

∞∑
k=1

c2
k ≤ 1

}
= σp+1,

since {σk}∞k=1 is a nonincreasing sequence by assumption.
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We now control the term Sp. Recalling the decomposition ξ = (x, 0) where x ∈ Rp, we
have

Sp = sup
ξ ∈ C̃

Q2(ξ) = sup
{
〈x,Σp x〉 : 〈x, x〉 ≤ 1, 〈x,Σ1/2

p ΨpΣ
1/2
p x〉 ≤ ε̃2

}
= sup
〈x,x〉≤ 1

inf
t≥ 0

{
〈x,Σpx〉+ t

(
ε̃2 − 〈x,Σ1/2

p ΨpΣ
1/2
p x〉

)}
(a)

≤ inf
t≥ 0

{
sup
〈x,x〉≤ 1

〈x,Σ1/2
p (Ip − tΨp)Σ

1/2
p x〉+ t ε̃2

}
where inequality (a) follows by Lagrange (weak) duality. It is not hard to see that for any
symmetric matrix M , one has

sup
{
〈x,Mx〉 : 〈x, x〉 ≤ 1

}
= max

{
0, λmax(M)

}
.

Putting the pieces together and optimizing over ρ2, noting that

inf
r∈(0,1)

{a
r

+
b

1− r

}
= (
√
a+
√
b)2

for any a, b > 0, completes the proof of the bound (4.16).

We now prove bound (4.17), using the same decomposition and notation established
above, but writing an upper bound on Q2(α)slightly different form (4.49). In particular, the
argument leading to (4.49), also shows that

RΦ(ε) ≤ sup
ξ ∈Tp, γ ∈T ⊥p

{
Q2(ξ) +Q2(γ) | ξ + γ ∈ B`2 , QΦ(ξ) ≤ ε̃2

}
. (4.50)

Recalling the expression (4.39) for QΦ(ξ) and noting that Ψp � λmin(Ψp)Ip implies A =

Σ
1/2
p ΨpΣ

1/2
p � λmin(Ψp)Σp, we have

QΦ(ξ) ≥ λmin(Ψp)Q2(ξ). (4.51)

Now, since we are assuming λmin(Ψp) > 0, we have

RΦ(ε) ≤ sup
ξ ∈Tp, γ ∈T ⊥p

{
Q2(ξ) +Q2(γ)

∣∣∣ ξ + γ ∈ B`2 , Q2(ξ) ≤ ε̃2

λmin(Ψp)

}
. (4.52)

The RHS of the above is an instance of the Fourier truncation problem with ε2 replaced
with ε̃2/λmin(Ψp). That problem is workout in detail in Appendix 4.E. In particular, ap-
plying equation (4.83) in Appendix 4.E with ε2 changed to ε̃2/λmin(Ψp) completes the proof
of (4.17). Figure 4.3 provides a graphical representation of the geometry of the proof.



CHAPTER 4. APPROXIMATION PROPERTIES OF OPERATOR NORMS 99

(a) (b)

Figure 4.3: Geometry of the proof of (4.17). Display (a) is a plot of the set Q := {(Q2(α), QΦ(α)) : ‖α‖`2 = 1} ⊂ R2.
This is a convex set as a consequence of Hausdorff-Toeplitz theorem on convexity of the numerical range and preservation
of convexity under projections. Display (b) shows the set Q̃ := conv(0,Q), i.e., the convex hull of {0} ∪ Q. Observe that

RΦ(ε) = sup{x : (x, y) ∈ Q̃, y ≤ ε2}. For any fixed r ∈ (0, 1), the bound of (4.17) is a piecewise linear approximation to one

side of Q̃ as shown in Display (b).

4.5 Conclusion

We considered the problem of bounding (squared) L2 norm of functions in a Hilbert unit
ball, based on restrictions on an operator-induced norm acting as a surrogate for the L2

norm. In particular, given that f ∈ BH and ‖f‖2
Φ ≤ ε2, our results enable us to obtain, by

estimating norms of certain finite and infinite dimensional matrices, inequalities of the form

‖f‖2
L2 ≤ c1ε

2 + hΦ,H(σn)

where {σn} are the eigenvalues of the operator embedding H in L2, hΦ,H(·) is an increasing
function (depending on Φ and H) and c1 ≥ 1 is some constant. We considered examples of
operators Φ (uniform time sampling and Fourier truncation) and Hilbert spaces H (Sobolev,
Fourier-type RKHSs) and showed that it is possible to obtain optimal scaling hΦ,H(σn) =
O(σn) in most of those cases. We also considered random time sampling, under polynomial
eigen-decay σn = O(n−α), and effectively showed that hΦ,H(σn) = O(n−α/(α+1)) (for ε small
enough), with high probability as n → ∞. This last result complements those on related
quantities obtained by techniques form empirical process theory, and we conjecture it to be
sharp.

Appendix 4.A Analysis of random time sampling

This section is devoted to the proof of Corollary 4 on random time sampling in reproducing
kernel Hilbert spaces. The proof is based on an auxiliary result, which we begin by stating.
Fix some positive integer m and define

ν(ε) = ν(ε;m) := inf
{
p :
∑
k>pm

σk ≤ ε2
}
. (4.53)
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With this notation, we have

Lemma 25. Assume ε2 < σ1 and 32C2
ψmν(ε) log ν(ε) ≤ n. Then,

P
{
RSxn1

(ε) > C̃ψ ε
2 + C̃σ σν(ε)

}
≤ 2 exp

(
− 1

32C2
ψ

n

ν(ε)

)
. (4.54)

We prove this claim in §4.A.2 below.

4.A.1 Proof of Corollary 4

To apply the lemma, recall that we assume that there exists m such that for all (large) p,
one has ∑

k>pm

σk ≤ σp. (4.55)

and we let mσ be the smallest such m. We define

µ(ε) := inf
{
p : σp ≤ ε2

}
, (4.56)

and note that by (4.55), we have ν(ε;mσ) ≤ µ(ε). Then, Lemma 25 states that as long as
ε2 < σ1 and 32C2

ψmσµ(ε) log µ(ε) ≤ n, we have

P
{
RSxn1

(ε) > (C̃ψ + C̃σ)ε2
}
≤ 2 exp

(
− 1

32C2
ψ

n

µ(ε)

)
. (4.57)

Now by the definition of µ(ε), we have σj > ε2 for j < µ(ε), and hence

G2
n(ε) ≥ 1

n

∑
j < µ(ε)

min{σj, ε2} =
µ(ε)− 1

n
ε2 ≥ µ(ε)

2n
ε2,

since µ(ε) ≥ 2 when ε2 < σ1. One can argue that ε 7→ Gn(ε)/ε is nonincreasing. It follows
from definition (4.26) that for ε ≥ rn, we have

µ(ε) ≤ 2n
(G(ε)

ε

)2

≤ 2n
(G(rn)

rn

)2

≤ 2nr2
n,

which completes the proof of Corollary 4.
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4.A.2 Proof of Lemma 25

For ξ ∈ Rp, let ξ⊗ξ be the rank-one operator on Rp given by η 7→ 〈ξ, , η〉2 ξ. For an operator
A on Rp, let |||A|||2 denote its usual operator norm, |||A|||2 := sup‖x‖2≤1 ‖Ax‖2. Recall that for a
symmetric (i.e., real self-adjoint) operator A on Rp, |||A|||2 = sup{|λ| : λ an eigenvalue of A}.
It follows that |||A|||2 ≤ α is equivalent to −αIp � A � αIp.

Our approach is to first show that |||Ψp − Ip|||2 ≤ 1
2

for some properly chosen p with high
probability. It then follows that λmin(Ψp) ≥ 1

2
and we can use bound (4.17) for that value

of p. Then, we need to control λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
. To do this, we further partition Ψp̃ into

blocks. In order to have a consistent notation, we look at the whole matrix Ψ and let Ψ(k)

be the principal submatrix indexed by {(k−1)p+1, . . . , (k−1)p+p}, for k = 1, 2, . . . , pm−1.
Throughout the proof, m is assumed to be a fixed positive integer. Also, let Ψ(∞) be the
principal submatrix of Ψ indexed by {pm + 1, pm + 2, . . . }. This provides a full partitioning
of Ψ for which Ψ(1), . . . ,Ψ(pm−1) and Ψ(∞) are the diagonal blocks, the first pm−1 of which
are p-by-p matrices and the last an infinite matrix. To connect with our previous notations,
we note that Ψ(1) = Ψp and that Ψ(2), . . . ,Ψ(pm−1),Ψ(∞) are diagonal blocks of Ψp̃. Let us
also partition the Σ matrix and name its diagonal blocks similarly.

We will argue that, in fact, we have |||Ψ(k) − Ip|||2 ≤ 1
2

for all k = 1, . . . , pm−1, with high
probability. Let Ap denote the event on which this claim holds. In particular, on event Ap,
we have Ψ(k) � 3

2
Ip for k = 2, . . . , pm−1; hence, we can write

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤

pm−1∑
k=2

λmax

(√
Σ(k)Ψ(k)

√
Σ(k)

)
+ λmax

(√
Σ(∞)Ψ(∞)

√
Σ(∞)

)

≤ 3

2

pm−1∑
k=2

λmax

(
Σ(k)

)
+ tr

(√
Σ(∞)Ψ(∞)

√
Σ(∞)

)

=
3

2

pm−1∑
k=2

σ(k−1)p+1 +
∑
k>pm

σk[Ψ]kk. (4.58)

Using assumptions (4.23) on the sequence {σk}, the first sum can be bounded as

pm−1∑
k=2

σ(k−1)p+1 ≤
pm−1∑
k=2

σ(k−1)p ≤
pm−1∑
k=2

Cσσk−1σp ≤ Cσ‖σ‖1σp

Using the uniform boundedness assumption (4.53), we have [Ψ]kk = n−1
∑n

i=1 ψ
2
k(xi) ≤ C2

ψ.
Hence the second sum in (4.58) is bounded above by C2

ψ

∑
k>pm σk.

We can now apply Theorem 10. Assume for the moment that ε2 ≥
∑

k>pm σk so that the

right-hand side of (4.58) is bounded above by 3
2
Cσ‖σ‖1σp + C2

ψε
2. Applying bound (4.17),
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on event Ap, with8 r = (1 + Cψ)−1, we get

RSxn1
(ε2) ≤ 2

{
r−1ε2 + (1− r)−1

(3

2
Cσ‖σ‖1σp + C2

ψε
2
)}

+ σp+1

= 2(1 + Cψ)2ε2 + 3(1 + C−1
ψ )Cσ‖σ‖1σp + σp+1.

≤ C̃ψ ε
2 + C̃σ σp

where C̃ψ := 2(1 + Cψ)2 and C̃σ := 3(1 + C−1
ψ )Cσ‖σ‖1 + 1. To summarize, we have shown

the following

Event Ap and ε2 ≥
∑
k>pm

σk =⇒ RSxn1
(ε2) ≤ C̃ψ ε

2 + C̃σ σp. (4.59)

It remains to control the probability of Ap :=
⋂pm−1

k=1

{
|||Ψ(k) − Ip|||2 ≤ 1

2

}
. We start with

the deviation bound on Ψ(1)−Ip, and then extend by union bound. We will use the following
lemma which follows, for example, from the Ahlswede-Winter bound [1], or from [85]. (See
also [98, 91, 102].)

Lemma 26. Let ξ1, . . . , ξn be i.i.d. random vectors in Rp with E ξ1⊗ ξ1 = Ip and ‖ξ1‖2 ≤ Cp
almost surely for some constant Cp. Then, for δ ∈ (0, 1),

P
{∣∣∣∣∣∣∣∣∣n−1

n∑
i=1

ξi ⊗ ξi − Ip
∣∣∣∣∣∣∣∣∣

2
> δ
}
≤ p exp

(
− nδ2

4C2
p

)
. (4.60)

Recall that for the time sampling operator, [Φψk]i = 1√
n
ψk(xi) so that from (4.15),

Ψk` =
1

n

n∑
i=1

ψk(xi)ψ`(xi)

Let ξi := (ψk(xi), 1 ≤ k ≤ p) ∈ Rp for i = 1, . . . , n. Then, {ξi} satisfy the conditions of
Lemma 26. In particular, letting ek denote the k-th standard basis vector of Rp, we note
that

〈ek,E(ξi ⊗ ξi)e`〉2 = E〈ek, ξi〉2〈e`, ξi〉2 = 〈ψk, ψ`〉L2 = δk`

and ‖ξi‖2 ≤
√
pCψ, where we have used uniform boundedness of {ψk} as in (4.22). Further-

more, we have Ψ(1) = n−1
∑n

i=1 ξi ⊗ ξi. Applying Lemma 26 with Cp =
√
pCψ yields,

P
{
|||Ψ(1) − Ip|||2 > δ

}
≤ p exp

(
− δ2

4C2
ψ

n

p

)
. (4.61)

8We are using the alternate form of the bound based on (
√
A+
√
B)2 = infr∈(0,1)

{
Ar−1 +B(1− r)−1

}
.
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Similar bounds hold for Ψ(k), k = 2, . . . , pm−1. Applying the union bound, we get

P
pm−1⋃
k=1

{
|||Ψ(k) − Ip|||2 > δ

}
≤ exp

(
m log p− δ2

4C2
ψ

n

p

)
.

For simplicity, let A = An,p := n/(4C2
ψ p). We impose m log p ≤ A

2
δ2 so that the exponent

in (4.61) is bounded above by−A
2
δ2. Furthermore, for our purpose, it is enough to take δ = 1

2
.

It follows that

P(Acp) = P
pm−1⋃
k=1

{
|||Ψ(k) − Ip|||2 >

1

2

}
≤ exp

(
− 1

32C2
ψ

n

p

)
, (4.62)

if 32C2
ψmp log p ≤ n. Now, by (4.59), under ε2 ≥

∑
k>pm σk, RSxn1

(ε2) > C̃ψ ε
2 + C̃σ σp

implies Acp. Thus, the exponential bound in (4.62) holds for P{RSxn1
(ε2) > C̃ψ ε

2 + C̃σ σp}
under the assumptions. We are to choose p and the bound is optimized by making p as
small as possible. Hence, we take p to be ν(ε) := inf{p : ε2 ≥

∑
k>pm σk} which proves

Lemma 25. (Note that, in general, ν(ε) takes its values in {0, 1, 2, . . . }. The assumption
ε2 < σ1 guarantees that ν(ε) 6= 0.)

Appendix 4.B Proof of Lemma 24

Assume σk = Ck−α, for some α ≥ 2. First, note the following upper bound on the tail sum∑
k>p

σk ≤ C

∫ ∞
p

x−α dx = C1(α) p1−α. (4.63)

Furthermore, from the bounds (4.30a) and (4.30b), we have, for k ≥ n+ 1,

[Ψ]kk ≤ min{c1, c2}. (4.64)

To simplify notation, let us define In := {1, 2, . . . , γn}.
Consider the case α > 2. We will use the `∞– `∞ upper bound of (4.21), with p = n.

Fix some k ≥ n + 1. Note that σk ≤ σn+1. Then, recalling the assumptions on Ψ and the
definition of Sk, we have∑

`≥n+1

√
σk
√
σ`
∣∣[Ψ]k,`

∣∣ ≤ √σn+1

∞∑
q=0

γn∑
r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r+qγn

∣∣
=
√
σn+1

∞∑
q=0

γn∑
r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r

∣∣
≤ √σn+1

∞∑
q=0

{
c1

∑
r∈Sk

√
σn+r+qγn +

c2

n

∑
r∈ In\Sk

√
σn+r+qγn

}
. (4.65)
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Using (4.63), the second double sum in (4.65) is bounded by

∞∑
q=0

∑
r∈ In\Sk

√
σn+r+qγn ≤

∑
`>n

√
σ` ≤ C2(α)n1−α/2. (4.66)

Recalling that Sk ⊂ In and |Sk| = η, the first double sum in (4.65) can be bounded as follows

∞∑
q=0

∑
r∈Sk

√
σn+r+qγn =

√
C
∞∑
q=0

∑
r∈Sk

(n+ r + qγn)−α/2

≤
√
C
∞∑
q=0

∑
r∈Sk

(n+ qγn)−α/2

≤
√
C η

∞∑
q=0

(1 + qγ)−α/2n−α/2

≤
√
C η
(

1 + γ−α/2
∞∑
q=1

q−α/2
)
n−α/2

= C3(α, γ, η)n−α/2 (4.67)

where in the last line we have used
∑∞

q=1 q
−α/2 <∞ due to α/2 > 1. Combining (4.65), (4.66)

and (4.67) and noting that
√
σn+1 ≤

√
Cn−α/2, we obtain∑

`≥n+1

√
σk
√
σ`
∣∣[Ψ]k,`

∣∣ ≤ √Cn−α/2{c1C3(α, γ, η)n−α/2 +
c2

n
C2(α)n1−α/2

}
= C4(α, η, γ)n−α.

(4.68)

Taking supremum over k ≥ 1 and applying the `∞– `∞ bound of (4.21), with p = n, concludes
the proof of part (a).

Now, consider the case α = 2. The above argument breaks down in this case because∑∞
q=1 q

−α/2 does not converge for α = 2. A remedy is to further partition the matrix

Σ
1/2
ñ ΨñΣ

1/2
ñ . Recall that the rows and columns of this matrix are indexed by {n+1, n+2, . . . }.

Let A be the principal submatrix indexed by {n + 1, n + 2, . . . , n2} and D be the principal
submatrix indexed by {n2 + 1, n2 + 2, . . . }. We will use a combination of the bounds (4.30a)
and (4.30b), and the well-known perturbation bound λmax

[(
A C
CT D

)]
≤ λmax(A) + λmax(D),

to write

λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
≤ λmax(A) + λmax(D) ≤ |||A|||∞+ tr(D). (4.69)

The second term is bounded as

tr(D) =
∑
k>n2

σk [Ψ]kk ≤ min{c1, c2}
∑
k>n2

σk = min{c1, c2} (n2)1−2 = C5(γ)n−2, (4.70)
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where we have used (4.63) and (4.64). To bound the first term, fix k ∈ {n+ 1, . . . , n2}. By
an argument similar to that of part (a) and noting that γ ≥ 1, hence γn2 ≥ n2, we have

n2∑
`=n+1

√
σk
√
σ`
∣∣[Ψ]k,`

∣∣ ≤ √σn+1

n∑
q=0

γn∑
r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r

∣∣
≤ √σn+1

n∑
q=0

{
c1

∑
r∈Sk

√
σn+r+qγn +

c2

n

∑
r∈ In\Sk

√
σn+r+qγn

}
. (4.71)

Using γ ≥ 1 again, the second double sum in (4.71) is bounded as

n∑
q=0

∑
r∈ In\Sk

√
σn+r+qγn ≤

3γn2∑
`=n+1

√
σ` ≤

√
C

3γn2∑
`=2

1

`
≤
√
C log(3γn2) ≤ C6(γ) log n, (4.72)

for sufficiently large n. Note that we have used the bound
∑p

`=2 `
−1 ≤

∫ p
1
x−1 dx = log p.

The first double sum in (4.71) is bounded as follows

∞∑
q=0

∑
r∈Sk

√
σn+r+qγn =

√
C

n∑
q=0

∑
r∈Sk

(n+ r + qγn)−1

≤
√
C η

n∑
q=0

(1 + qγ)−1n−1

≤
√
C η
(

1 + γ−1 + γ−1

n∑
q=2

q−1
)
n−1

= C7(γ, η)n−1 log n, (4.73)

for n sufficiently large. Combining (4.71), (4.72) and (4.73), taking supremum over k and
using the simple bound

√
σn+1 ≤

√
Cn−1, we get

|||A|||∞ ≤
√
Cn−1

{
c1C7(γ, η)

log n

n
+
c2

n
C6(γ) log n

}
= C8(γ, η)

log n

n2
(4.74)

which in view of (4.70) and (4.69) completes the proof of part (b).

Appendix 4.C Relationship between RΦ(ε) and TΦ(ε)

In this appendix, we prove the claim made in §4.1 about the relation between the upper
quantities RΦ and TΦ and the lower quantities TΦ and RΦ. We only carry out the proof for
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RΦ; the dual version holds for TΦ. To simplify the argument, we look at slightly different
versions of RΦ and TΦ, defined as

R◦Φ(ε) := sup
{
‖f‖2

L2 : f ∈ BH, ‖f‖2
Φ < ε2

}
, (4.75)

T ◦Φ(δ) := inf
{
‖f‖2

Φ : f ∈ BH, ‖f‖2
L2 > δ2

}
(4.76)

and prove the following

R◦Φ
−1(δ) = T ◦Φ(δ) (4.77)

where R◦Φ
−1(δ) := inf{ε2 : R◦Φ(ε) > δ2} is a generalized inverse of R◦Φ. To see (4.77), we

note that RΦ(ε) > δ2 iff there exists f ∈ BH such that ‖f‖2
Φ < ε2 and ‖f‖2

L2 > δ2. But this
last statement is equivalent to T ◦Φ(δ) < ε2. Hence,

R◦Φ
−1(δ) = inf{ε2 : T ◦Φ(δ) < ε2} (4.78)

which proves (4.77).
Using the following lemma, we can use relation (4.77) to convert upper bounds on RΦ to

lower bounds on TΦ.

Lemma 27. Let t 7→ p(t) be a nondecreasing function (defined on the real line with values in
the extended real line.). Let q be its generalized inverse defined as q(s) := inf{t : p(t) > s}.
Let r be a properly invertible (i.e., one-to-one) function such that p(t) ≤ r(t), for all t. Then,

(a) q(p(t)) ≥ t, for all t,

(b) q(s) ≥ r−1(s), for all s.

Proof. Assume (a) does not hold, that is, inf{α : p(α) > p(t)} < t. Then, there exists
α0 such that p(α0) > p(t) and α0 < t. But this contradicts p(t) being nondecreasing. For
part (b), note that (a) implies t ≤ q(p(t)) ≤ q(r(t)), since q is nondecreasing by definition.
Letting t := r−1(s) and noting that r(r−1(s)) = s, by assumption, proves (b).

Let p = R◦Φ, q = T ◦Φ and r(t) = At+ B for some constant A > 0. Noting that R◦Φ ≤ RΦ

and TΦ(·+ γ) ≥ T ◦Φ for any γ > 0, we obtain from Lemma 27 and (4.77) that

RΦ(ε) ≤ Aε2 +B =⇒ TΦ(δ+) ≥ δ2

A
−B, (4.79)

where TΦ(δ+) denotes the right limit of TΦ as δ2. This may be used to translate an upper
bound of the form (4.17) on RΦ to a corresponding lower bound on TΦ.
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Appendix 4.D The 2× 2 subproblem

The following subproblem arises in the proof of Theorem 10.

F (ε2) := sup
{(

r s
)(u2 0

0 v2

)(
r
s

)
︸ ︷︷ ︸

=: x(r,s)

: r2 + s2 ≤ 1,
(
r s

)(a2 0
0 d2

)(
r
s

)
︸ ︷︷ ︸

=: y(r,s)

≤ ε2
}
, (4.80)

where u2, v2, a2 and d2 are given constants and the optimization is over (r, s). Here, we
discuss the solution in some detail; in particular, we provide explicit formulas for F (ε2).
Without loss of generality assume u2 ≥ v2. Then, it is clear that F (ε2) ≤ u2 and F (ε2) = u2

for ε2 ≥ u2. Thus, we are interested in what happens when ε2 < u2.
The problem is easily solved by drawing a picture. Let x(r, s) and y(r, s) be as denoted

in the last display. Consider the set

S :=
{(
x(r, s), y(r, s)

)
: r2 + s2 ≤ 1}

=
{
r2(u2, a2) + s2(v2, d2) + q2(0, 0) : r2 + s2 + q2 = 1

}
= conv

{
(u2, a2), (v2, d2), (0, 0)

}
. (4.81)

That is, S is the convex hull of the three points (u2, a2), (v2, d2) and the origin (0, 0).
Then, two (or maybe three) different pictures arise depending on whether a2 > d2 (and

whether d2 ≥ v2 or d2 < v2) or a2 ≤ d2; see Fig. 4.4. It follows that we have two (or three)
different pictures for the function ε2 7→ F (ε2). In particular, for a2 > d2 and d2 < v2,

F (ε2) = v2 min
{ε2

d2
, 1
}

+ (u2 − v2) max
{

0,
ε2 − d2

a2 − d2

}
, (4.82)

for a2 > d2 and d2 ≥ v2, F (ε2) = ε2, and for a2 ≤ d2,

F (ε2) = u2 min
{ε2

a2
, 1
}
.

All the equations above are valid for ε2 ∈ [0, σ1].

Appendix 4.E Details of Fourier truncation example

Here we establish the claim that the bound (4.19) holds with equality. Recall that for the
(generalized) Fourier truncation operator Tψn1 , we have

RTψn1
(ε2) = sup

{ ∞∑
k=1

σkα
2
k :

∞∑
k=1

α2
k ≤ 1,

n∑
k=1

σkα
2
k ≤ ε2

}
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Figure 4.4: Top plots illustrate the set S as defined in (4.81), in various cases. The bottom plots are the corresponding
ε2 7→ F (ε2).

Let α = (tξ, sγ), where t, s ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn, γ = (γ1, γ2 . . . ) ∈ `2 and ‖ξ‖2 = 1 =
‖γ‖2. Let u2 = u2(ξ) :=

∑n
k=1 σkξ

2
k and v2 = v2(γ) :=

∑
k>n σkγ

2
k.

Let us fix ξ and γ for now and try to optimize over t and s. That is, we look at

G(ε2; ξ, γ) := sup
{
t2u2 + s2v2 : t2 + s2 ≤ 1, t2u2 ≤ ε2

}
.

This is an instance of the 2-by-2 problem (4.80), with a2 = u2 and d2 = 0. Note that our
assumption that u2 ≥ v2 holds in this case, for all ξ and γ, because {σk} is a nonincreasing
sequence. Hence, we have, for ε2 ≤ σ1,

G(ε2; ξ, γ) = v2 + (u2 − v2)
ε2

u2
= v2(γ) +

(
1− v2(γ)

u2(ξ)

)
ε2.

Now we can maximize G(ε2; ξ, γ) over ξ and then γ. Note that G is increasing in u2.
Thus, the maximum is achieved by selecting u2 to be sup‖ξ‖2=1 u

2(ξ) = σ1. Thus,

sup
ξ
G(ε2; ξ, γ) =

(
1− ε2

σ1

)
v2(γ) + ε2.

For ε2 < σ1, the above is increasing in v2. Hence the maximum is achieved by setting v2 to
be sup‖γ‖2=1 v

2(γ) = σn+1. Hence, for ε2 ≤ σ1

RTψn1
(ε2) := sup

ξ, γ
G(ε2; ξ, γ) =

(
1− σn+1

σ1

)
ε2 + σn+1. (4.83)
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Appendix 4.F A quadratic inequality

In this appendix, we derive an inequality which will be used in the proof of Theorem 10.
Consider a positive semidefinite matrix M (possibly infinite-dimensional) partitioned as

M =

(
A C
CT D

)
.

Assume that there exists ρ2 ∈ (0, 1) and κ2 > 0 such that(
A C
CT (1− ρ2)D + κ2I

)
� 0. (4.84)

Let (x, y) be a vector partitioned to match the block structure of M . Then we have the
following.

Lemma 28. Under (4.84), for all x and y,

xTAx+ 2xTCy + yTDy ≥ ρ2xTAx− κ2

1− ρ2
‖y‖2

2. (4.85)

Proof. By assumption (4.84), we have(√
1− ρ2 xT 1√

1−ρ2
yT
)( A C

CT (1− ρ2)D + κ2I

)(√
1− ρ2 x

1√
1−ρ2

y

)
≥ 0. (4.86)

Writing (4.84) as a perturbation of the original matrix,(
A C
CT D

)
+

(
0 0
0 −ρ2D + κ2I

)
� 0, (4.87)

we observe that a sufficient condition for (4.84) to hold is ρ2D � κ2I. That is, it is sufficient
to have

ρ2λmax(D) ≤ κ2. (4.88)

Rewriting (4.84) differently, as(
(1− ρ2)A 0

0 (1− ρ2)D

)
+

(
ρ2A C
CT κ2I

)
� 0, (4.89)

we find another sufficient condition for (4.84), namely, ρ2A− κ−2CCT � 0. In particular, it
is also sufficient to have

κ−2λmax(CCT ) ≤ ρ2λmin(A). (4.90)
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Chapter 5

Sampled forms of functional PCA in
reproducing kernel Hilbert spaces

As mentioned in §1.4, the aim of this chapter is to study effects of “sampling” on func-
tional PCA (fPCA). We recall our functional-theoretic take on sampling, namely a continuous
linear operator Φ : H 7→ Rm acting on some Hilbert subspace H of L2 which usually rep-
resents some smooth subclass of functions in L2. We also recall the basic setup: there are
functions xi(t), t ∈ [0, 1] in H for i = 1, . . . , n, generated i.i.d. from a probabilistic model (to
be discussed below) which are acted upon by Φ. We observe the collection {Φxi}ni=1 ⊂ Rm

in noise. The index n is referred to as the number of statistical samples, and the index m as
the number of functional samples.

Our model for the functions {xi} will be an extension to function spaces of the spiked
covariance model introduced by Johnstone and his collaborators [55, 58], and studied by
various authors [58, 75, 3]. We consider such models with r components, each lying within
the Hilbert ball BH(ρ) of radius ρ, with the goal of recovering the r-dimensional subspace
spanned by the spiked components in this functional model. We analyze our M -estimators
within a high-dimensional framework that allows both the number of statistical samples n
and the number of functional samples m to diverge together. Our theoretical contribution is
to provide non-asymptotic bounds on the estimation error as a function of the pair (m,n).
Although our rates also explicitly track the number of components r and the smoothness
parameter ρ, we do not make any effort to obtain optimal dependence on these parameters.

The general asymptotic properties of PCA in function spaces have been investigated
by various authors (e.g., [33, 22, 49].) Accounting for smoothness of functions by intro-
ducing various roughness/smoothness penalties is a standard approach, used in the pa-
pers [82, 77, 86, 20] among others. The problem of principal component analysis for sampled
functions, with a functional-theoretic take on sampling as ours, is discussed in [14], for the
noiseless case. A more recent line of work is devoted to the case of functional PCA with
noisy sampled functions [27, 105, 51]. Cardot [27] considers estimation via spline-based ap-
proximation, and derives MISE rates in terms of various parameters of the model. Hall et
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al. [51] study estimation via local linear smoothing, and establish minimax-optimality in cer-
tain settings that involve a fixed number of functional samples. Both of these papers [27, 51]
have studied trade-offs between the numbers of statistical and functional samples; we refer
the reader to Hall et al. [51] for an illuminating discussion of connections between FDA
and LDA approaches (i.e. having full versus sampled functions), which inspired much of
the present work. We note that the regularization present in our M -estimator is closely
related to classical roughness penalties [82, 86] in the special case of spline kernels, although
the discussion there applies to fully-observed functions, as opposed to the sampled models
considered here.

As mentioned above, our sampled model resembles very much that of spiked covariance
model for high-dimensional principal component analysis which was studied in some detail
in Chapter 3; in contrast, here the smoothness condition on functional components trans-
lates into an ellipsoid condition on the vector principal components. Perhaps an even more
significant difference is that, here, the effective scaling of noise in Rm is substantially smaller
in some cases (e.g., the case of time sampling). This could explain why the difficulty of
“high-dimensional” setting is not observed in such cases as one lets m,n→∞. On the other
hand, a difficulty particular to our sampled model is the lack of orthonormality between
components (after sampling) which leads to identifiability issues; it also makes recovering
individual components difficult.

Elements of the technique we use to analyze the M -estimator (such as establishing a
perturbation inequality and uniformly controlling the terms involving noise, etc.) have be-
come more or less standard in recent years. We refer the reader to [93] for some general
discussions. These techniques lead to finite-sample bounds which hold with high probability.
We also draw on the recent work, namely [70], on bounding Gaussian complexities of balls in
a RKHS. Techniques from non-asymptotic random matrix theory, for example as discussed
in [34] and §2.4.2, are employed in bounding norms of random matrices. We provide a slight
extension, in Appendix 5.G, of one such result. Results on controlling suprema of linear
product-of-Gaussians processes are also established (cf. Appendix 5.F).

The remainder of this chapter is organized as follows. Section 5.1 is devoted to back-
ground material on reproducing kernel Hilbert spaces, adjoints of operators, as well as the
class of sampled functional models that we study in this chapter. More details can be found
in Chapter 4.2. In Section 5.2, we describe M -estimators for sampled functional PCA, and
discuss various implementation details. Section 5.3 is devoted to the statements of our main
results, and discussion of their consequences for particular sampling models. In subsequent
sections, we provide the proofs of our results, with some more technical aspects deferred to
the appendices. Section 5.4 is devoted to bounds on the subspace-based error, whereas Sec-
tion 5.5 is devoted to bounds on error in the function space. Section 5.6 provides matching
lower bounds on the minimax error, showing that our analysis is sharp. We conclude with a
discussion in Section 5.7.
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5.1 Background and problem set-up

In this section, we begin by introducing background on reproducing kernel Hilbert spaces, as
well as linear operators and their adjoints. We then introduce the functional and observation
model that we study in this chapter, and conclude with discussion of some approximation-
theoretic issues that play an important role in parts of our analysis.

5.1.1 Reproducing Kernel Hilbert Spaces

We begin with a quick overview of some standard properties of reproducing kernel Hilbert
spaces; we refer the reader to the books [99, 47] and §2.5 for more details. A reproducing
kernel Hilbert space (or RKHS for short) is a Hilbert space H of functions f : T → R that is
equipped with an associated kernel K : T × T → R. We assume the kernel to be continuous
and T ⊂ Rd to be compact. For concreteness, we think of T = [0, 1] throughout this chapter,
but any compact set of Rd suffices. For each t ∈ T , the function Rt := K(·, t) belongs to the
Hilbert space H, and it acts as the representer of evaluation, meaning that 〈f,Rt〉H = f(t)
for all f ∈ H.

The kernel K defines an integral operator TK on L2(T ), mapping the function f to the
function g(s) =

∫
T
K(s, t)f(t)dt. By the spectral theorem in Hilbert spaces, this operator

can be associated with a sequence of eigenfunctions ψk, k = 1, 2, . . . in H, orthogonal in H
and orthonormal in L2(T ), and a sequence of non-negative eigenvalues µ1 ≥ µ2 ≥ · · · . Most
useful for this chapter is the fact that any function f ∈ H has an expansion in terms of these
eigenfunctions and eigenvalues, namely

f =
∞∑
k=1

√
µkαkψk (5.1)

for some (αk) ∈ `2. In terms of this expansion, we have the representations ‖f‖2
H =

∑∞
k=1 α

2
k

and ‖f‖2
L2 =

∑∞
k=1 µkα

2
k. Many of our results involve the decay rate of these eigenvalues: in

particular, for some parameter α > 1/2, we say that the kernel operator has eigenvalues with
polynomial-α decay if there is a constant c > 0 such that

µk ≤
c

k2α
for all k = 1, 2, . . . . (5.2)

Let us consider an example to illustrate.

Example 4 (Sobolev class with smoothness α = 1). In the case T = [0, 1] and α = 1, we
can consider the kernel function K(s, t) = min{s, t}. As discussed in Appendix 5.A, this
kernel generates the class of functions

H :=
{
f ∈ L2([0, 1]) | f(0) = 0, f absolutely continuous and f ′ ∈ L2([0, 1])

}
.
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The class H is an RKHS with inner product 〈f, g〉H =
∫ 1

0
f ′(t)g′(t)dt, and the ball BH(ρ)

corresponds to a Sobolev space with smoothness α = 1. The eigen-decomposition of the
kernel integral operator is

µk =
[(2k − 1)π

2

]−2

, ψk(t) =
√

2 sin
(
µ
−1/2
k t

)
, k = 1, 2, . . . . (5.3)

Consequently, this class has polynomial decay with parameter α = 1.

We note that there are natural generalizations of this example to α = 2, 3, . . ., corresponding
to the Sobolev classes of α-times differentiable functions (e.g., see the books [47, 13]).

In this chapter, the operation of generalized sampling is defined in terms of a bounded
linear operator Φ : H → Rm on the Hilbert space. Its adjoint is a mapping Φ∗ : Rm → H,
defined by the relation 〈Φf, a〉Rm = 〈f,Φ∗a〉H for all f ∈ H and a ∈ Rm. In order to compute
a representation of the adjoint, we note that by the Riesz representation theorem, the j-th
coordinate of this mapping—namely, f 7→ [Φf ]j—can be represented as an inner product
〈φj, f〉H, for some element φj ∈ H, and we can write

Φf =
[
〈φ1, f〉H 〈φ2, f〉H · · · 〈φm, f〉H

]T
. (5.4)

Consequently, we have 〈Φ(f), a〉Rm =
∑m

j=1 aj〈φj, f〉H = 〈
∑m

j=1 ajφj, f〉H, so that for any
a ∈ Rm, the adjoint can be written as

Φ∗a =
m∑
j=1

ajφj. (5.5)

This adjoint operator plays an important role in our analysis.

5.1.2 Functional model and observations

Let s1 ≥ s2 ≥ s3 ≥ · · · ≥ sr > 0 be a fixed sequence of positive numbers, and let {f ∗j }rj=1 be
a fixed sequence of functions orthonormal in L2[0, 1]. Consider a collection of n i.i.d. random
functions {x1, . . . , xn}, generated according to the model

xi(t) =
r∑
j=1

sjβijf
∗
j (t), for i = 1, . . . , n, (5.6)

where {βij} are i.i.d. N(0, 1) across all pairs (i, j). This model corresponds to a finite-
rank instantiation of functional PCA, in which the goal is to estimate the span of the un-
known eigenfunctions {f ∗j }rj=1. Typically, these eigenfunctions are assumed to satisfy certain



CHAPTER 5. SAMPLED FUNCTIONAL PCA IN RKHS 114

smoothness conditions; in this chapter, we model such conditions by assuming that the eigen-
functions belong to a reproducing kernel Hilbert space H embedded within L2[0, 1]; more
specifically, they lie in some ball in H,

‖f ∗j ‖H ≤ ρ, j = 1, . . . , r. (5.7)

For statistical problems involving estimation of functions, the random functions might
only be observed at certain times (t1, . . . , tm), such as in longitudinal data analysis, or
we might collect only projections of each xi in certain directions, such as in tomographic
reconstruction. More concretely, in a time-sampling model, we observe m-dimensional vectors
of the form

yi =
[
xi(t1) xi(t2) · · · xi(tm)

]T
+ σ0wi, for i = 1, 2, . . . , n, (5.8)

where {t1, t2, . . . , tm} is a fixed collection of design points, and wi ∈ Rm is a noise vector.
Another observation model is the basis truncation model in which we observe the projections
of f onto the first m basis functions {ψj}mj=1 of the kernel operator—namely,

yi =
[
〈ψ1, xi〉L2 〈ψ2, xi〉L2 · · · 〈ψm, xi〉L2

]T
+ σ0wi, for i = 1, 2, . . . , n, (5.9)

where 〈·, ·〉L2 represents the inner product in L2[0, 1].
In order to model these and other scenarios in a unified manner, we introduce a linear

operator Φm that maps any function x in the Hilbert space to a vector Φm(x) of m samples,
and then consider the linear observation model

yi = Φm(xi) + σmwi, for i = 1, 2, . . . , n. (5.10)

This model (5.10) can be viewed as a functional analog of the spiked covariance models
introduced by Johnstone [55, 58] as an analytically-convenient model for studying high-
dimensional effects in classical PCA.

Both the time-sampling (5.8) and frequency truncation (5.9) models can be represented
in this way, for appropriate choices of the operator Φm. Recall the representation (5.4) of
Φm in terms of the functions {φj}mj=1.

• For the time sampling model (5.8), we set φj = K(·, tj)/
√
m, so that by the reproducing

property of the kernel, we have 〈φj, f〉H = f(tj)/
√
m for all f ∈ H, and j = 1, 2, . . .m.

With these choices, the operator Φm maps each f ∈ H to the m-vector of rescaled

samples 1√
m

[
f(t1) · · · f(tm)

]T
. Defining the rescaled noise σm = σ0√

m
yields an

instantiation of the model (5.10) which is equivalent to time-sampling (5.8).

• For the basis truncation model (5.9), we set φj = µjψj so that the operator Φ maps each

function f ∈ H to the vector of basis coefficients
[
〈ψ1, f〉L2 · · · 〈ψm, f〉L2

]T
. Setting

σm = σ0 then yields another instantiation of the model (5.10), this one equivalent to
basis truncation (5.9).
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A remark on notation before proceeding: in the remainder of the chapter, we use (Φ, σ)
as shorthand notation for (Φm, σm), since the index m should be implicitly understood
throughout our analysis.

In this chapter, we provide and analyze estimators for the r-dimensional eigen-subspace
spanned by {f ∗j }, in both the sampled domain Rm, and in the functional domain. To be
more specific, for j = 1, . . . , r, define the vectors z∗j := Φf ∗j ∈ Rm, and the subspaces

Z∗ := span{z∗1 , . . . , z∗r} ⊂ Rm, and F∗ := span{f ∗1 , . . . , f ∗r } ⊂ H,

and let Ẑ and F̂ denote the corresponding estimators. In order to measure the performance
of the estimators, we will use projection-based distances between subspaces. In particular,
let PZ∗ and PẐ be orthogonal projection operators into Z∗ and Ẑ, respectively, considered as
subspaces of `m2 := (Rm, ‖ · ‖2). Similarly, let PF∗ and PF̂ be orthogonal projection operators

into F∗ and F̂, respectively, considered as subspaces of (H, ‖ · ‖L2). We are interested in
bounding the deviations

dHS(Ẑ,Z∗) := |||PẐ − PZ∗|||HS, and dHS(F̂,F∗) := |||PF̂ − PF∗ |||HS, (5.11)

where ||| · |||HS is the Hilbert-Schmidt norm of an operator (or matrix).

5.1.3 Approximation-theoretic quantities

One object that plays an important role in our analysis is the matrix K := ΦΦ∗ ∈ Rm×m.
From the form of the adjoint, it can be seen that [K]ij = 〈φi, φj〉H. For future reference, let
us compute this matrix for the two special cases of linear operators considered thus far.

• For the time sampling model (5.8), we have φj = K(·, tj)/
√
m for all j = 1, . . . ,m,

and hence [K]ij = 1
m
〈K(·, ti),K(·, tj)〉H = 1

m
K(ti, tj), using the reproducing property

of the kernel.

• For the basis truncation model (5.9), we have φj = µjψj, and hence [K]ij = 〈µiψi, µjψj〉H =
µiδij. Thus, in this special case, we have K = diag(µ1, . . . , µm).

In general, the matrix K is a type of Gram matrix, and so is symmetric and positive
semidefinite. We assume throughout this chapter that the functions {φj}mj=1 are linearly
independent in H, which implies that K is strictly positive definite. Consequently, it has a
set of eigenvalues which can be ordered as

µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂m > 0. (5.12)

Under this condition, we may use K to define a norm on Rm via ‖z‖2
K := zTK−1z. Moreover,

we have the following interpolation lemma, which is proved Appendix 5.B.1:
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Lemma 29. For any f ∈ H, we have ‖Φf‖K ≤ ‖f‖H, with equality if and only if
f ∈ Ra(Φ∗). Moreover, for any z ∈ Rm, the function g = Φ∗K−1z has smallest Hilbert norm
of all functions satisfying Φg = z, and is the unique function with this property.

This lemma is useful in constructing a function-based estimator, as will be clarified in Sec-
tion 5.2.

In our analysis of the functional error dHS(F̂,F∗), a number of approximation-theoretic
quantities play an important role. As a mapping from an infinite-dimensional space H to
Rm, the operator Φ has a non-trivial nullspace. Given the observation model (5.10), we
receive no information about any component of a function f ∗ that lies within this nullspace.
For this reason, we define the width of the nullspace in the L2-norm, namely the quantity

Nm(Φ) := sup
{
‖f‖2

L2 | f ∈ Ker(Φ), ‖f‖H ≤ 1
}
. (5.13)

In addition, the observation operator Φ induces a semi-norm on the space H, defined by

‖f‖2
Φ := ‖Φf‖2

2 =
m∑
j=1

[Φf ]2j . (5.14)

It is of interest to assess how well this semi-norm approximates the L2-norm. Accordingly,
we define the quantity

Dm(Φ) := sup
f∈Ra(Φ∗)
‖f‖H≤1

∣∣‖f‖2
Φ − ‖f‖2

L2

∣∣, (5.15)

which measures the worst-case gap between these two (semi)-norms, uniformly over the
Hilbert ball of radius one, restricted to the subspace of interest Ra(Φ∗). Given knowledge of
the linear operator Φ, the quantity Dm(Φ) can be computed in a relatively straightforward
manner. In particular, recall the definition of the matrix K, and let us define a second matrix
Θ ∈ Sm+ with entries Θij := 〈ϕi, ϕj〉L2 .

Lemma 30. We have the equivalence

Dm(Φ) = |||K −K−1/2ΘK−1/2|||2, (5.16)

where ||| · |||2 denotes the `2-operator norm.

See Appendix 5.B.2 for the proof of this claim.

5.2 M-estimator and implementation

With this background in place, we now turn to the description of our M -estimator, as well
as practical details associated with its implementation.
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5.2.1 M-estimator

We begin with some preliminaries on notation, and our representation of subspaces. For each
j = 1, . . . ,m, define the vector z∗j := Φf ∗j , corresponding to the image of the function f ∗j
under the observation operator. We let Z∗ denote the r-dimensional subspace of Rm spanned
by {z∗1 , . . . , z∗r}, where z∗j = Φf ∗j . Our initial goal is to construct an estimate Ẑ, itself an
r-dimensional subspace, of the unknown subspace Z∗.

We represent subspaces by elements of the Stiefel manifold Vr(Rm), which consists of of
m× r matrices Z with orthonormal columns

Vr(Rm) :=
{
Z ∈ Rm×r | ZTZ = Ir

}
.

A given matrix Z acts as a representative of the subspace spanned by its columns, denoted
by col(Z). For any U ∈ Vr(Rr), the matrix ZU also belongs to the Stiefel manifold, and
since col(Z) = col(ZU), we may call ZU a version of Z. We let PZ = ZZT ∈ Rm×m be
the orthogonal projection onto col(Z). For two matrices Z1, Z2 ∈ Vr(Rm), we measure the
distance between the associated subspaces via dHS(Z1, Z2) := |||PZ1 − PZ2|||HS, where ||| · |||HS
is the Hilbert-Schmidt (or Frobenius) matirx norm.

Subspace-based estimator

With this notation, we now specify an M -estimator for the subspace Z∗ = span{z∗1 , . . . , z∗r}.
Let us begin with some intuition. Given the n samples {y1, . . . , yn}, let us define the m ×
m sample covariance matrix Σ̂n := 1

n

∑n
i=1 yiy

T
i . Given the observation model (5.10), a

straightforward computation shows that

E[Σ̂n] =
r∑
j=1

s2
jz
∗
j (z
∗
j )
T + σ2

mIm. (5.17)

Thus, as n becomes large, we expect that the top r eigenvectors of Σ̂n might give a good
approximation to span{z∗1 , . . . , z∗r}. By the Courant-Fischer variational representation, these
r eigenvectors can be obtained by maximizing the objective function

〈〈Σ̂n, PZ〉〉 := tr(Σ̂nZZ
T )

over all matrices Z ∈ Vr(Rm).
However, this approach fails to take into account the smoothness constraints that the

vectors z∗j = Φf ∗j inherit from the smoothness of the eigenfunctions f ∗j . Since ‖f ∗j ‖H ≤ ρ by
assumption, Lemma 29 implies that

‖z∗j ‖2
K = (z∗j )

TK−1z∗j ≤ ‖f ∗j ‖2
H ≤ ρ2 for all j = 1, 2, . . . , r.
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Consequently, if we define the matrix Z∗ :=
[
z∗1 · · · z∗r

]
∈ Rm×r, then it must satisfy the

trace smoothness condition

〈〈K−1, Z∗(Z∗)T 〉〉 =
r∑
j=1

(z∗j )
TK−1z∗j ≤ rρ2. (5.18)

This calculation motivates the constraint 〈〈K−1, PZ〉〉 ≤ 2rρ2 in our estimation procedure.
Based on the preceding intuition, we are led to consider the optimization problem

Ẑ ∈ arg max
Z∈Vr(Rm)

{
〈〈Σ̂n, PZ〉〉 | 〈〈K−1, PZ〉〉 ≤ 2rρ2

}
, (5.19)

where we recall that PZ = ZZT ∈ Rm×m. Given any optimal solution Ẑ, we return the
subspace Ẑ = col(Ẑ) as our estimate of Z∗. As discussed at more length in Section 5.2.2,

it is straightforward to compute Ẑ in polynomial time. The reader might wonder why we
have included an additional factor of two in this trace smoothness condition. This slack is
actually needed due to the potential infeasibility of the matrix Z∗ for the program (5.19),
which arises since the columns Z∗ are not guaranteed to be orthonormal. As shown by our
analysis, the additional slack allows us to find a matrix Z̃∗ ∈ Vr(Rm) that spans the same
subspace as Z∗, and is also feasible for the program (5.19). More formally, we have:

Lemma 31. Under condition (5.26b), there exists a matrix Z̃∗ ∈ Vr(Rm) such that

Ra(Z̃∗) = Ra(Z∗), and 〈〈K−1, Z̃∗(Z̃∗)T 〉〉 ≤ 2rρ2. (5.20)

See Appendix 5.B.3 for the proof of this claim.

The functional estimate F̂

Having obtained an estimate1 Ẑ = span{ẑ1, . . . , ẑr} of Z∗ = span{z∗1 , . . . , z∗r}, we now

need to construct a r-dimensional subspace F̂ of the Hilbert space as an estimate of F∗ =
span{f ∗1 , . . . , f ∗r }. We do so using the interpolation suggested by Lemma 29. For each
j = 1, . . . , r, define the function

f̂j := Φ∗K−1ẑj =
m∑
i=1

(K−1ẑj)i φi. (5.21)

Since K = ΦΦ∗ by definition, this construction ensures that Φf̂j = ẑj. Moreover, Lemma 29

guarantees that f̂j has the minimal Hilbert norm (and hence is smoothest in a certain

1Here, {ẑj}rj=1 ⊂ Rm is any collection of vectors that span Ẑ. As we are ultimately only interested in the

resulting functional “subspace”, it does not matter which particular collection we choose.
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sense) over all functions that have this property. Finally, since Φ is assumed to be sur-
jective (equivalently, K assumed invertible), Φ∗K−1 maps linearly independent vectors to
linearly independent functions, and hence preserves dimension. Consequently, the space
F̂ := span{f̂1, . . . , f̂r} is an r-dimensional subspace of H which we take as our estimate of
F∗.

5.2.2 Implementation details

In this section, we consider some practical aspects of implementing the M -estimator, and
present some simulations to illustrate its qualitative properties. We begin by observing
that once the subspace vectors {ẑj}rj=1 have been computed, then it is straightforward to

compute the function estimates {f̂j}rj=1, as weighted combinations of the functions {φj}mj=1.
Accordingly, we focus our attention on solving the program (5.19).

On the surface, the problem (5.19) might appear non-convex, due to the Stiefel manifold
constraint. However, it can be reformulated as a semidefinite program (SDP), a well-known
class of convex programs, as clarified in the following:

Lemma 32. The problem (5.19) is equivalent to solving the SDP

X̂ ∈ arg max
X�0
〈〈Σ̂n, X〉〉 such that |||X|||2 ≤ 1, tr(X) = r, and 〈〈K−1, X〉〉 ≤ 2rρ2, (5.22)

for which there always exists an optimal rank r solution. Moreover, by Lagrangian duality,
for some β > 0, the problem is equivalent to

X̂ ∈ arg max
X�0
〈〈Σ̂n − βK−1, X〉〉 such that |||X|||2 ≤ 1 and tr(X) = r, (5.23)

which can be solved by an eigendecomposition of Σ̂n − βK−1.

As a consequence, for a given Lagrange multiplier β, the regularized form of the estimator
can be solved with the cost of solving an eigenvalue problem. For a given constraint 2rρ2,
the appropriate value of β can be found by a path-tracing algorithm, or a simple dyadic
splitting approach.

In order to illustrate the estimator, we consider the time sampling model (5.8), with
uniformly spaced samples, in the context of a first-order Sobolev RKHS (with kernel function
K(s, t) = min(s, t)). The parameters of the model are taken to be r = 4, (s1, s2, s3, s4) =
(1, 0.5, 0.25, 0.125), σ0 = 1, m = 100 and n = 75. The regularized form (5.23) of the
estimator is applied and the results are shown in Fig. 5.1. The top row corresponds to
the four “true” signals {f ∗j }, the leftmost being f ∗1 (i.e. having the highest signal-to-noise

ratio.) and the rightmost f ∗4 . The subsequent rows show the corresponding estimates {f̂j},
obtained using different values of β. The second, third and fourth rows correspond to β = 0,
β = 0.0052 and β = 0.83.
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Figure 5.1: Regularized PCA for time sampling in first-order Sobolev RKHS. Top row shows, from left to right, plots of the r = 4
“true” principal components f∗1 , . . . , f

∗
4 with signal-to-noise ratios s1 = 1, s2 = 0.5, s3 = 0.25 and s4 = 0.125, respectively. The

number of statistical and functional samples are n = 75 and m = 100. Subsequent rows show the corresponding estimators
f̂1, . . . , f̂4 obtained by applying the regularized form (5.23).

One observes that without regularization (β = 0), the estimates for two weakest signals
(f ∗3 and f ∗4 ) are poor. The case β = 0.0052 is roughly the one which achieves the minimum
for the dual problem. One observes that the quality of the estimates of the signals, and in
particular the weakest ones, are considerably improved. The optimal (oracle) value of β,

that is the one which achieves the minimum error between {f ∗j } and {f̂j}, is β = 0.0075 in
this problem. The corresponding estimates are qualitatively similar to those of β = 0.0052
and are not shown.

The case β = 0.83 shows the effect of over-regularization. It produces very smooth signals
and although it fails to reveal f ∗1 and f ∗2 , it reveals highly accurate versions of f ∗3 and f ∗4 .
It is also interesting to note that the smoothest signal, f ∗4 , now occupies the position of
the second (estimated) principal component. That is, the regularized PCA sees an effective
signal-to-noise ratio which is influenced by smoothness. This suggests a rather practical
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appeal of the method in revealing smooth signals embedded in noise. One can vary β from
zero upward and if some patterns seem to be present for a wide range of β (and getting
smoother as β is increased), one might suspect that they are indeed present in data but
masked by noise.

5.3 Main results

We now turn to the statistical analysis of our estimators, in particular deriving high-
probability upper bounds on the error of the subspace-based estimate Ẑ, and the functional
estimate F̂. In both cases, we begin by stating general theorems that applies to arbitrary lin-
ear operators Φ—Theorems 11 and 12 respectively—and then derive a number of corollaries
for particular instantiations of the observation operator.

5.3.1 Subspace-based estimation rates (for Ẑ)

We begin by stating high-probability upper bounds on the error dHS(Ẑ,Z∗) of the subspace-
based estimates. Our rates are stated in terms of a function that involves the eigenvalues
of the matrix K = ΦΦ∗ ∈ Rm, ordered as µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂m > 0. Consider the function
F : R+ → R+ given by

F(t) :=
[ m∑
j=1

min{t2, rρ2µ̂j}
]1/2

. (5.24)

As will be clarified in our proofs, this function provides a measure of the statistical complex-
ity of the function class Ra(Φ∗) = {f ∈ H | f =

∑m
j=1 ajφj for some a ∈ Rm}.

We require a few regularity assumptions. Define the quantity

Cm(f ∗) := max
1 ≤ i,j ≤ r

∣∣〈f ∗i , f ∗j 〉Φ − δij∣∣ = max
1 ≤ i,j ≤ r

∣∣〈z∗i , z∗j 〉Rm − δij∣∣, (5.25)

which measures the departure from orthonormality of the vectors z∗j := Φf ∗j in Rm. A
straightforward argument using a polarization identity shows that Cm(f ∗) is upper bounded
(up to a constant factor) by the uniform quantity Dm(Φ), as defined in equation (5.15).
Recall that the random functions are generated according to the model xi =

∑r
j=1 sjβijf

∗
j ,

where the signal strengths are ordered as 1 = s1 ≥ s2 ≥ · · · ≥ sr > 0, and that σm denotes
the noise standard deviation in the observation model (5.10).

In terms of these quantities, we require the following assumptions:
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(A1)
s2
r

s2
1

≥ 1

2
, and σ2

0 := sup
m
σ2
m ≤ κs2

1, (5.26a)

(A2) Cm(f ∗) ≤ 1

2r
, and (5.26b)

(A3)
σm√
n
F(t) ≤

√
κt for the same constant κ as in (A1). (5.26c)

(A4) r ≤ min
{m

2
,
n

4
, κ

√
n

σm

}
. (5.26d)

Remarks: The first part of condition (A1) is to prevent the ratio sr/s1 from going to
zero as the pair (m,n) increases, where the constant 1/2 is chosen for convenience. Such
a lower bound is necessary for consistent estimation of the eigen-subspace corresponding to
{s1, . . . , sr}. The second part of condition (A1), involving the constant κ, provides a lower
bound on the signal-to-noise ratio sr/σm. Condition (A2) is required to prevent degeneracy
among the vectors z∗j = Φf ∗j obtained by mapping the unknown eigenfunctions to the obser-
vation space Rm. (In the ideal setting, we would have Cm(f ∗) = 0, but our analysis shows
that the upper bound in (A2) is sufficient.) Condition (A3) is required so that the critical
tolerance εm,n specified below is well-defined; as will be clarified, it is always satisfied for the
time-sampling model, and holds for the basis truncation model whenever n ≥ m. Condition
(A4) is easily satisfied, since the RHS of (5.26d) goes to ∞ while we usually take r to be
fixed. Our results, however, hold if r grows slowly with m and n subject to (5.26d).

Theorem 11. Under conditions (A1)—(A3) for a sufficiently small constant κ, let εm,n be
the smallest positive number satisfying the inequality

σm√
n
r3/2F(ε) ≤ κ ε2. (5.27)

Then there are universal positive constants (c0, c1, c2) such that

P
[

d2
HS(Ẑ,Z∗) ≤ c0 ε

2
m,n

]
≥ 1− ϕ(n, εm,n), (5.28)

where ϕ(n, εm,n) := c1

{
r2 exp

(
− c2r

−3 n
σ2
m

(εm,n ∧ ε2m,n)
)

+ r exp(− n
64

)
}

.

Theorem 11 is a general result, applying to an arbitrary bounded linear operator Φ.
However, we can obtain a number of concrete results by making specific choices of this
sampling operator, as we explore in the following sections.

Consequences for time-sampling

Let us begin with the time-sampling model (5.8), in which we observe the sampled functions

yi =
[
xi(t1) xi(t2) . . . xi(tm)

]T
+ σ0wi, for i = 1, 2, . . . ,m.
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As noted earlier, this set-up can be modeled in our general setting (5.10) with φj = K(·, tj)/
√
m

and σm = σ0/
√
m.

In this case, by the reproducing property of the RKHS, the matrix K = ΦΦ∗ has entries
of the form Kij = 〈φi, φj〉H =

K(ti,tj)

m
. Letting µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂m > 0 denote its ordered

eigenvalues, we say that the kernel matrix K has polynomial-decay with parameter α > 1/2
if there is a constant c such that µ̂j ≤ c j−2α for all j = 1, 2, . . . ,m. Since the kernel matrix
K represents a discretized approximation of the kernel integral operator defined by K, this
type of polynomial decay is to be expected whenever the kernel operator has polynomial-α
decaying eigenvalues. For example, the usual spline kernels that define Sobolev spaces have
this type of polynomial decay [47]. In Appendix 5.A, we verify this property explicitly for
the kernel K(s, t) = min{s, t} that defines the Sobolev class with smoothness α = 1.

For any such kernel, we have the following consequence of Theorem 11:

Corollary 5 (Achievable rates for time-sampling). Consider the case of a time-sampling
operator Φ. In addition to conditions (A1) and (A2), suppose that the kernel matrix K has
polynomial-decay with parameter α > 1/2. Then we have

P
[

d2
HS(Ẑ,Z∗) ≤ c0 min

{(κr,ρ σ2
0

mn

) 2α
2α+1 , r3 σ

2
0

n

}]
≥ 1− ϕ(n,m), (5.29)

where κr,ρ := r3+ 1
2α ρ

1
α , and ϕ(n,m) := c1

{
exp

(
− c2

{(
r−2ρ2mn

) 1
2α+1 ∧m

})
+exp(−n/64)

}
.

Remarks: (a) Disregarding constant pre-factors not depending on the pair (m,n), Corol-

lary 5 guarantees that solving the program (5.19) returns a subspace estimate Ẑ such that

d2
HS(Ẑ,Z∗) - min

{
(mn)−

2α
2α+1 , n−1

}
with high probability as (m,n) increase.

Depending on the scaling of the number of time samples m relative to the number of func-
tional samples n, either term in this upper bound can be the smallest (and hence active) one.

For instance, it can be verified that whenever m ≥ n
1

2α , then the first term is smallest, so that

we achieve the rate d2
HS(Ẑ,Z∗) - (mn)−

2α
2α+1 . The appearance of the term (mn)−

2α
2α+1 is quite

natural, as it corresponds to the minimax rate of a non-parameteric regression problem with
smoothness α, based on m samples each of variance n−1. Later, in Section 5.3.3, we provide
results guaranteeing that this scaling is minimax optimal under reasonable conditions on the
choice of sample points (in particular, see Theorem 13(a)).

(b) To be clear, although the bound (5.29) allows for the possibility that the error is of
order lower than n−1, we note that the probability with which the guarantee holds includes
a term of the order exp(−n/64). Consequently, in terms of expected error, we cannot guar-
antee a rate faster than n−1.
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Proof. We need to bound the critical value εm,n defined in the theorem statement (5.27).
Define the function G2(t) :=

∑m
j=1 min{µ̂j, t2}, and note that F(t) =

√
rρG( t√

rρ
) by

construction. Under the assumption of polynomial-α eigendecay, we have

G2(t) ≤
∫ ∞

0

min{cx−2α, t2} dx,

and some algebra then shows that G(t) - t1−1/(2α). Disregarding constant factors, an upper
bound on the critical εm,n can be obtained by solving the equation

ε2 =
σm√
n
r3/2
√
rρ
( ε√

rρ

)1−1/(2α)
.

Doing so yields the upper bound ε2 -
[σ2

m

n
r3(
√
rρ)

1
α

] 2α
2α+1 . Otherwise, we also have the trivial

upper bound F(t) ≤
√
mt, which yields the alternative upper bound εm,n -

(mσ2
m

n
r3
)1/2

.
Recalling that σm = σ0/

√
m and combining the pieces yields the claim. Notice that this last

(trivial) bound on F(t) implies that condition (A3) is always satisfied for the time-sampling
model.

Consequences for basis truncation

We now turn to some consequences for the basis truncation model (5.9).

Corollary 6 (Achievable rates for basis truncation). Consider a basis truncation operator
Φ in a Hilbert space with polynomial-α decay. Under conditions (A1), (A2) and m ≤ n, we
have

P
[

d2
HS(Ẑ,Z∗) ≤ c0

(κr,ρ σ2
0

n

) 2α
2α+1

]
≥ 1− ϕ(n,m), (5.30)

where κr,ρ := r3+ 1
2α ρ

1
α , and ϕ(n,m) := c1

{
exp

(
− c2

(
r−2ρ2n

) 1
2α+1

)
+ exp(−n/64)

}
.

Proof. We note that as long as m ≤ n, condition (A3) is satisfied, since σm√
n
F(t) ≤ σ0

√
m
n
t ≤

σ0t. The rest of the proof follows that of Corollary 5, noting that in the last step we have
σm = σ0 for the basis truncation model.

5.3.2 Function-based estimation rates (for F̂)

As mentioned earlier, given the consistency of Ẑ, the consistency of F̂ is closely related
to approximation properties of the semi-norm ‖ · ‖Φ induced by Φ, and in particular how
closely it approximates the L2-norm. These approximation-theoretic properties are captured
in part by the nullspace width Nm(Φ) and defect Dm(Φ) defined earlier in equations (5.13)



CHAPTER 5. SAMPLED FUNCTIONAL PCA IN RKHS 125

and (5.15) respectively. In addition to these previously defined quantities, we require bounds
on the following global quantity

RΦ(ε; ν) := sup
{
‖f‖2

L2 | ‖f‖2
H ≤ ν2, ‖f‖2

Φ ≤ ε2}. (5.31)

A general upper bound on this quantity is of the form

RΦ(ε; ν) ≤ c1ε
2 + ν2Sm(Φ). (5.32)

In fact, it is not hard to show that such a bound exists with c1 = 2 and Sm(Φ) = 2(Dm(Φ) +
Nm(Φ)) using the decomposition H = Ra(Φ∗)⊕Ker(Φ). However, this bound is not sharp.
One can show that in most cases of interest, Sm(Φ) is of the order of Nm(Φ). There are
different assumptions which can lead to such a scaling of the remainder term Sm(Φ). We
refer to Chapter 4 for a general approach. Here, we give a simple condition, which will be
verified for the first-order Sobolev RKHS, namely,

(D1) Θ � c0K
2

for a positive constant c0.

Lemma 33. Under (D1), the bound (5.32) holds with c1 = 2c0 and Sm(Φ) = 2Nm(Φ).

This Lemma is proved in Appendix 5.B.4.

Theorem 12. Suppose that condition (A1) holds, Dm(Φ) ≤ 1
4rρ2 ≤ 1 and Nm(Φ) ≤ 1. Then

there is a constant κ′r,ρ such that

d2
HS(F̂,F∗) ≤ κ′r,ρ

{
ε2m,n + Sm(Φ) + [Dm(Φ)]2} (5.33)

with the same probability as in Theorem 11.

As with Theorem 11, this is a generally applicable result, stated in abstract form. By
specializing it to different sampling models, we can obtain concrete rates, as illustrated in
the following sections.

For future reference, let us introduce another condition regulating the approximation
property of ‖ · ‖Φ relative to ‖ · ‖L2 . Consider the matrix Ψ ∈ Rm×m with entries Ψij :=
〈ψi, ψj〉Φ. Since the eigenfunctions are orthogonal in L2, the deviation of Ψ from the identity
measures how well the inner product defined by Φ approximates the L2-inner product over
the first m eigenfunctions of the kernel operator. In particular, we require an upper bound
of the form

(D2) λmax(Ψ) ≤ c1,

for some universal constant c1 > 0. Condition (D2) will be used when deriving minimax
lower bounds.
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Consequences for time-sampling

We begin by returning to the case of the time sampling model (5.8), where φj = K(·, tj)/
√
m.

In this case, condition (D1) needs to be verified by some calculations. For instance, as
shown in Appendix 5.A, in the case of the Sobolev kernel with smoothness α = 1 (namely,
K(s, t) = min{s, t}), we are guaranteed that (D1) holds with c0 = 1, whenever the samples
{tj} are chosen uniformly over [0, 1]; hence, by Lemma 33, Sm(Φ) = 2Nm(Φ). Moreover, in
the case of uniform sampling, we expect that the nullspace width Nm(Φ) is upper bounded
by µm+1, so will be proportional to m−2α in the case of a kernel operator with polynomial-α
decay. This is verified in Chapter 4 (up to a logarithmic factor) for the case of the first-order
Sobolev kernel. In Appendix 5.A, we also show that, for this kernel, [Dm(Φ)]2 is of the order
m−2α, that is, of the same order as Nm(Φ).

Corollary 7. Consider the basis truncation model (5.9) with uniformly spaced samples, and
assume condition (D1) holds and that Nm(Φ) + [Dm(Φ)]2 - m−2α. Then the M-estimator

returns a subspace estimate F̂ such that

d2
HS(F̂,F∗) ≤ κ′r,ρ

{
min{

( σ2
0

nm

) 2α
2α+1 ,

σ2
0

n
}+

1

m2α

}
(5.34)

with the same probability as in Corollary 5.

In this case, there is an interesting trade-off between the bias or approximation error
terms which is of order m−2α and the estimation error. An interesting transition occurs at
the point when m % n

1
2α , at which:

• the bias term m−2α becomes of the order n−1, so that it is no longer dominant, and

• for the two terms in the estimation error, we have the ordering

(mn)−
2α

2α+1 ≤
(
n1+ 1

2α

)− 2α
2α+1 = n−1.

Consequently, we conclude that the scaling m = n
1

2α is the minimal number of samples
such that we achieve an overall bound of the order n−1 in the time-sampling model. In
Section 5.3.3, we will see that these rates are minimax-optimal.

Consequences for basis truncation

For the basis truncation operator Φ, we have Θ = K2 = diag(µ2
1, . . . , µ

2
m) so that condition

(D1) is satisfied trivially with c0 = 1. Moreover, Lemma 30 implies Dm(Φ) = 0. In addition,
a function f =

∑∞
j=1

√
µjajψj satisfies Φf = 0 if and only if a1 = a2 = · · · = am = 0, so that

Nm(Φ) = sup
{
‖f‖2

L2 | ‖f‖H ≤ 1, Φf = 0} = µm+1.

Consequently, we obtain the following corollary of Theorem 12:
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Corollary 8. Consider the basis truncation model (5.9) with a kernel operator that has
polynomial-α decaying eigenvalues. Then the M-estimator returns a function subspace esti-
mate F̂ such that

d2
HS(F̂,F∗) ≤ κ′r,ρ

{(σ2
0

n

) 2α
2α+1 +

1

m2α

}
(5.35)

with the same probability as in Corollary 6.

By comparison to Corollary 7, we see that the trade-offs between (m,n) are very dif-
ferent for basis truncation. In particular, there is no interaction between the number of
functional samples m and the number of statistical samples n. Increasing m only reduces
the approximation error, whereas increasing n only reduces the estimation error. Moreover,
in contrast to the time sampling model of Corollary 7, it is impossible to achieve the fast
rate n−1, regardless of how we choose the pair (m,n). In Section 5.3.3, we will also see that
the rates given in Corollary 8 are minimax optimal.

5.3.3 Lower bounds

We now turn to lower bounds on the minimax risk, demonstrating the sharpness of our
achievable results in terms of their scaling with (m,n). In order to do so, it suffices to
consider the simple model with a single functional component f ∗ ∈ BH(1), so that we
observe yi = βi1 Φm(f ∗) + σmwi for i = 1, 2, . . . , n, where βi1 ∼ N(0, 1) are i.i.d. standard
normal variates. The minimax risk in the Φ-semi-norm is given by

MH
m,n(δ2; ‖ · ‖?) := inf

f̃
sup

f∗∈BH(1)

Pf∗
[
‖f̃ − f ∗‖2

? ≥ δ2
]
. (5.36)

where the function f ∗ ranges over the unit ball BH(1) = {f ∈ H | ‖f‖H ≤ 1} of some Hilbert

space, and f̃ ranges over measurable functions of the data matrix (y1, y2, . . . , yn) ∈ Rm×n.

Theorem 13 (Lower bounds for ‖f̃ − f ∗‖2
Φ). Suppose that the kernel matrix K has eigen-

values with polynomial-α decay and (A1) holds.

(a) For the time-sampling model,

MH
m,n

(
C min

{ ( σ2
0

mn

) 2α
2α+1 ,

σ2
0

n

}
; ‖ · ‖Φ

)
≥ 1

2
. (5.37)

(b) For the frequency-truncation model, with m ≥ (c0n)
1

2α+1 :

MH
m,n

(
C
(σ2

0

n

) 2α
2α+1 ; ‖ · ‖Φ

)
≥ 1

2
. (5.38)
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Note that part (a) of Theorem 13 shows that the rates obtained in Corollary 7 for the
case of time-sampling are minimax optimal. Similarly, comparing part (b) of the theorem to
Corollary 8, we conclude that the rates obtained for frequency truncation model are minimax
optimal for n ∈ [m, c1m

2α+1]. The case of n > c1m
2α+1 is not of practical interest as will

become clear shortly as a consequence of the next theorem.
We now turn to lower bounds on the minimax risk in the ‖ · ‖L2 norm—namely

MH
m,n(δ2; ‖ · ‖L2) := inf

f̃
sup

f∗∈BH(1)

Pf∗
[
‖f̃ − f ∗‖2

L2 ≥ δ2
]
. (5.39)

Theorem 14 (Lower bounds for ‖f̃ − f ∗‖2
L2). Suppose that condition (D2) holds, and the

operator associated with kernel function K of the reproducing kernel Hilbert space H has
eigenvalues with polynomial-α-decay.

(a) For the time-sampling model, the minimax error is lower bounded as

MH
m,n

(
C
{

min{
( σ2

0

mn

) 2α
2α+1 ,

σ2
0

n
}+ (

1

m
)2α
}

; ‖ · ‖L2

)
≥ 1

2
. (5.40)

(b) For the frequency-truncation model, the minimax error is lower bounded as

MH
m,n

(
C
{(σ2

0

n

) 2α
2α+1 +

( 1

m

)2α}
; ‖ · ‖L2

)
≥ 1

2
. (5.41)

Verifying condition (D2) requires, in general, some calculations in the case of time-
sampling model. It is verified for uniform time-sampling for the first-order Sobolev RKHS
in Appendix 5.A. For the frequency-truncation, (D2) always holds trivially since Ψ = Im.
By this theorem, the L2 convergence rates of Corollary 7 and 8 are minimax optimal. Also
note that due to the presence of the approximation term m−2α in (5.41), the Φ-norm term

n
2α

2α+1 is only dominant when m ≥ c2n
1

2α+1 implying that this is the interesting regime for
Theorem 13(b).

5.4 Proof of subspace-based rates

We now turn to the proofs of the results involving the error dHS(Ẑ,Z∗) between the estimated

Ẑ and true subspace Z∗. We begin by proving Theorem 11, and then turn to its corollaries.

5.4.1 Preliminaries

We begin with some preliminaries before proceeding to the heart of the proof. Let us first
introduce some convenient notation. Consider the n×m matrices

Y :=
[
y1 y2 · · · yn

]T
, and W :=

[
w1 w2 · · · wn

]T
,
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corresponding to the observation matrix Y and noise matrix W respectively. In addition,
we define the matrices B := (βij) ∈ Rn×r and S := diag(s1, . . . , sr) ∈ Rr×r. Recalling
that Z∗ := (z∗1 , . . . , z

∗
r ) ∈ Rm×r, the observation model (5.10) can be written in the matrix

form Y = B(Z∗S)T + σmW . Moreover, let us define the matrices B := BTB
n
∈ Rr×r and

W := WTB
n
∈ Rm×r. Using this notation, some algebra shows that the associated sample

covariance Σ̂n := 1
n
Y TY can be written in the form

Σ̂n = Z∗SBS(Z∗)T︸ ︷︷ ︸
Γ

+∆1 + ∆2, (5.42)

where ∆1 := σm
[
WS(Z∗)T + Z∗SW

T ]
and ∆2 := σ2

m
WTW
n

.

Lemma 31, proved in Appendix 5.B.3 shows the existence of a matrix Z̃∗ ∈ Vr(Rm) such

that Ra(Z̃∗) = Ra(Z∗). As discussed earlier, due to the nature of the Steifel manifold, there

are many versions of this matrix Z̃∗, and also of any optimal solution matrix Ẑ, obtained
via right multiplication with an orthogonal matrix. For the subsequent arguments, we need
to work with a particular version of Z̃∗ (and Ẑ) that we describe here.

Now let us fix some convenient versions of Z̃∗ and Ẑ. As a consequence of CS decompo-
sition, as long as r ≤ m/2, there exist orthogonal matrices U, V ∈ Rr×r and an orthogonal
matrix Q ∈ Rm×m, such that

QT Z̃∗U =

Ir0
0

 , and QT ẐV =

ĈŜ
0

 , (5.43)

where Ĉ = diag(ĉ1, · · · , ĉr) and Ŝ = diag(ŝ1, · · · , ŝr) such that 1 ≥ ŝ1 ≥ · · · ≥ ŝr ≥ 0 and

Ĉ2 + Ŝ2 = Ir. (See Bhatia [15], Theorem VII.1.8, for details on this decomposition.) In the

analysis to follow, we work with Z̃∗U and ẐV instead of Z̃∗ and Ẑ. To avoid extra notation,
from now on, we will use Z̃∗ and Ẑ for these new versions, which we refer to as properly
aligned. With this choice, we may assume U = V = Ir in the CS decomposition (5.43).

The following lemma isolates some useful properties of properly aligned subspaces:

Lemma 34. Let Z̃∗ and Ẑ be properly aligned, and define the matrices

P̂ := PẐ − PZ̃∗ = ẐẐT − Z̃∗(Z̃∗)T , and Ê := Ẑ − Z̃∗. (5.44)

In terms of the CS decomposition (5.43), we have

|||Ê|||HS ≤ |||P̂ |||HS, (5.45a)

(Z̃∗)T (PZ̃∗ − PẐ)Z̃∗ = Ŝ2, and (5.45b)

d2
F (Ẑ, Z̃∗) = |||PZ̃∗ − PẐ |||

2
HS = 2|||Ŝ2|||2HS + 2|||ĈŜ|||2HS = 2

∑
k

ŝ2
k(ŝ

2
k + ĉ2

k) = 2 tr(Ŝ2). (5.45c)
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Proof. From the CS decomposition (5.43), we have Z̃∗(Z̃∗)T − Ẑ(Ẑ)T = Q

(
Ŝ2 −ĈŜ 0

−ŜĈ −Ŝ2 0
0 0 0

)
QT ,

from which relations (5.45b) and (5.45c) follow. From the decomposition (5.43) and the
proper alignment condition U = V = Ir, we have

|||Ê|||2HS = |||QT (Ẑ − Z̃∗)|||2HS = |||Ir − Ĉ|||2HS + |||Ŝ|||2HS

= 2
r∑
i=1

(1− ĉi) ≤ 2
r∑
i=1

(1− ĉ2
i ) = 2

r∑
i=1

ŝ2
i = |||P̂ |||2HS (5.46)

where we have used the relations Ĉ2 + Ŝ2 = Ir, ĉi ∈ [0, 1], and 2 tr(Ŝ2) = |||PZ̃∗ − PẐ |||2HS.

5.4.2 Proof of Theorem 11

Using the notation introduced in Lemma 34, our goal is to bound the Frobenius norm |||P̂ |||HS.
Without loss of generality we will assume s1 = 1 throughout. Recalling the definition (5.42)
of the random matrix ∆, the following inequality plays a central role in the proof:

Lemma 35. Under condition (A1) and s1 = 1, we have

|||P̂ |||2HS ≤ 128 〈〈P̂ , ∆1 + ∆2〉〉 (5.47)

with probability at least 1− exp(−n/32).

Proof. We use the shorthand notation ∆ = ∆1 + ∆2 for the proof. Since Z̃∗ is feasible and
Ẑ is optimal for the program (5.19), we have the basic inequality 〈〈Σ̂n, PZ̃∗〉〉 ≤ 〈〈Σ̂n, PẐ〉〉.
Using the decomposition Σ̂ = Γ + ∆ and rearranging yields the inequality

〈〈Γ, PZ̃∗ − PẐ〉〉 ≤ 〈〈∆, PẐ − PZ̃∗〉〉. (5.48)

From the definition (5.42) of Γ and Z∗ = Z̃∗R, the left-hand side of the inequality (5.48)
can be lower bounded as

〈〈Γ, PZ̃∗ − PẐ〉〉 = 〈〈B, SRT (Z̃∗)T (PZ̃∗ − PẐ)Z̃∗RS〉〉
= trBSRT Ŝ2RS

≥ λmin(B)λmin(S2)λmin(RTR) tr(Ŝ2)

where we have used (5.88) and (5.89) of Appendix 5.I, several times. We note that λmin(S2) =
s2
r ≥ 1

2
and λmin(RTR) ≥ 1

2
provided rCm(f ∗) ≥ 1

2
; see equation (5.68). To bound the

minimum eigenvalue of B, let γmin(B) denote the minimum singular value of the n × r
Gaussian matrix B. The following concentration inequality is well-known (cf. [34, 65]):

P
[
γmin(B) ≤

√
n−
√
r − t

]
≤ exp(−t2/2), for all t > 0.
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Since λmin(B) = γ2
min(B/

√
n), we have that λmin(B) ≥ (1−

√
r/n− t)2 with probability at

least 1 − exp(−nt2/2). Assuming r/n ≤ 1
4

and setting t = 1
4
, we get λmin(B) ≥ 1

16
with

probability at least 1− exp(−n/32). Putting the pieces together yields the claim.

The inequality (5.47) reduces the problem of bounding |||P̂ |||2HS to the sub-problem of

studying the random variable 〈〈P̂ , ∆1 + ∆2〉〉. Based on Lemma 35, our next step is to
establish an inequality (holding with high probability) of the form

〈〈P̂ , ∆1 + ∆2〉〉 ≤ c1

{ σm√
n
r3/2F(|||Ê|||HS) + κ|||Ê|||2HS + ε2m,n

}
, (5.49)

where c1 is some universal constant, κ is the constant in condition (A1), and εm,n is the

critical radius from Theorem 11. Doing so is a non-trivial task: both matrices P̂ and ∆
are random and depend on one another, since the subspace Ẑ was obtained by optimizing
a random function depending on ∆. Consequently, our proof of the bound (5.49) involves
deriving a uniform law of large numbers for a certain matrix class.

Suppose that the bound (5.49) holds, and that the subspaces Z̃∗ and Ẑ are properly

aligned. Lemma 34 implies that |||Ê|||HS ≤ |||P̂ |||HS, and since F is a non-decreasing function,
the inequality (5.49) combined with Lemma 35 implies that(

1− 128κc1

)
|||P̂ |||2HS ≤ c1

{ σm√
n
r3/2F(|||P̂ |||HS) + ε2m,n

}
,

from which the claim follows as long as κ is suitably small (for instance, κ ≤ c1
256

suffices). Ac-
cordingly, in order to complete the proof of Theorem 11, it remains to prove the bound (5.49),
and the remainder of our work is devoted to this goal. Given the linearity of trace, we can
bound the terms 〈〈P̂ , ∆1〉〉 and 〈〈P̂ , ∆2〉〉 separately.

Bounding 〈〈P̂ , ∆1〉〉

Let {zj}, {z̃∗j } and {êj} and {wj} denote the columns of Ẑ, Z̃∗, Ê and W , respectively,
where we recall the definitions of these quantities from equation (5.42) and Lemma 34. Note
that wj = n−1

∑n
i=1 wiβij. In Appendix 5.C.1, we show that

〈〈P̂ , ∆1〉〉 ≤
√

6σr3/2 max
j,k
|〈wk, êj〉|+

√
3

2
σr |||Ê|||2HS max

j,k
|〈wj, z̃∗k〉|. (5.50)

Consequently, we need to obtain bounds on quantites of the form |〈wj, v〉|, where the vector
v is either fixed (e.g., v = z̃∗j ) or random (e.g., v = êj). The following lemmas provide us
with the requisite bounds:

Lemma 36. We have

max
j,k

σr3/2 |〈wk, êj〉| ≤ C
{ σ√

n
r3/2F(|||Ê|||HS) + κ|||Ê|||2HS + κε2m,n

}
with probability at least 1− c1r exp(−κ2r−3n

ε2m,n
2σ2 )− r exp(−n/64).
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Lemma 37. We have

P
[

max
j,k

σr|wTk z̃∗j | ≤
√

6κ
]
≥ 1− r2 exp(−κ2r−2n/2σ2).

See Appendix 5.C.2 and 5.C.3, respectively, for the proofs of these claims.

Bounding 〈〈P̂ , ∆2〉〉

Recalling the definition (5.42) of ∆2 and using linearity of the trace, we obtain

〈〈P̂ , ∆2〉〉 =
σ2

n

r∑
j=1

{
(zj)

TW TWzj − (z̃∗j )
TW TWz̃∗j

}
.

Since êj = zj − z̃∗j , we have

〈〈P̂ , ∆2〉〉 = σ2

r∑
j=1

{
2(z̃∗j )

T
( 1

n
W TW − Ir

)
êj +

1

n
‖Wêj‖2

2 + 2(z̃∗j )
T êj

}
≤ σ2

r∑
j=1

{
2 (z̃∗j )

T
( 1

n
W TW − Ir

)
êj︸ ︷︷ ︸

T1(êj ; z̃∗j )

+
1

n
‖Wêj‖2

2︸ ︷︷ ︸
T2(êj)

}
, (5.51)

where we have used the fact that 2
∑

j(z̃
∗
j )
T êj = 2

∑
j[(z̃

∗
j )
T zj − 1] = 2

∑
j(ĉj − 1) =

−|||Ê|||2HS ≤ 0.
The following lemmas provide high probability bounds on the terms T1 and T2.

Lemma 38. We have the upper bound

σ2

r∑
j=1

T1(êj; z̃
∗
j ) ≤ C

{
σ0

σ√
n
rF(|||Ê|||HS) + κ|||Ê|||2HS + κε2m,n

}

with probability 1− c2 exp(−κ2r−2n
εm,n∧ε2m,n

16σ2 )− r exp(−n/64).

Lemma 39. We have the upper bound σ2
∑r

j=1 T2(êj) ≤ Cκ
{
|||Ê|||2HS + ε2m,n

}
with probability

at least 1− c3 exp(−κ2r−2n ε2m,n/2σ
2).

See Appendices 5.C.4 and 5.C.5, respectively, for the proofs of these claims.
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5.5 Proof of functional rates

We now turn to the proof of Theorem 12, which provides upper bounds on the estimation
error in the function domain. As in the proof of Theorem 11, let Ẑ = (ẑ1, · · · , ẑr) ∈ Vr(Rm)

and Z̃∗ = (z̃∗1 , · · · , z̃∗r ) ∈ Vr(Rm) represent the subspaces Ẑ and Z∗ respectively, and assume
that they are properly aligned (see Lemma 34). For j = 1, . . . ,m, define ĝj := Φ∗K−1ẑj
and g∗j := Φ∗K−1z̃∗j . Let {ĥj}rj=1 be any basis of F̂, orthonormal in L2, and similarly, let
{h∗j}rj=1 be any orthonormal basis of F∗. Our goal is to bound the Hilbert-Schmidt norm
|||PF̂ − PF∗|||2HS. In order to do so, we first observe that

|||PF̂ − PF∗|||2HS ≤ 2
r∑
j=1

‖ĥj − h∗j‖2
L2 , (5.52)

so that it suffices to upper bound
∑r

j=1 ‖ĥj−h∗j‖2
L2 . We relate this quantity to the functions

ĝj and g∗j via the elementary inequality

‖ĥj − h∗j‖2
L2 ≤ 4

{
‖ĝj − g∗j‖2

L2 + ‖ĥj − ĝj‖2
L2 + ‖g∗j − h∗j‖2

L2

}
. (5.53)

The remainder of our proof is focused on obtaining suitable upper bounds on each of these
three terms.

We begin by bounding the first term ‖ĝj − g∗j‖2
L2 . Recall the definitions of RΦ(ε; ν) and

Sm(Φ) and their relation via inequality (5.32). We exploit the inequality in the following
way: suppose that we can show that

r∑
j=1

‖ĝj − g∗j‖2
Φ ≤ A2, and

r∑
j=1

‖ĝj − g∗j‖2
H ≤ B2. (5.54)

Let S(A,B) = {(a, b) ∈ Rr × Rr |
∑r

j=1 a
2
j ≤ A2,

∑r
j=1 b

2
j ≤ B2}. We may then conclude

that

r∑
j=1

‖ĝj − g∗j‖2
L2 ≤ sup

(a,b)∈S(A,B)

r∑
j=1

RΦ(aj; bj)

(i)

≤ sup
(a,b)∈S(A,B)

r∑
j=1

{
c1a

2
j + b2

jSm(Φ)
}

= c1A
2 +B2Sm(Φ). (5.55)

where inequality (i) follows by repeated application of inequality (5.32).
It remains to establish upper bounds of the form (5.54). By definition, we have ĝj − g∗j ∈

Ra(Φ∗) and Φ(ĝj − g∗j ) = ẑj − z̃∗j . Recalling the norm ‖a‖2
K := aTK−1a, we note that the
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matrices Ẑ and Z̃∗ satisfy the trace smoothness condition
∑r

j=1 ‖ẑj‖2
K = 〈〈K−1, ZZT 〉〉 ≤

2rρ2, and hence
r∑
j=1

‖ĝj − g∗j‖2
H =

r∑
j=1

‖ẑj − z̃∗j ‖2
K ≤ 2

r∑
j=1

(‖ẑj‖2
K + ‖z̃∗j ‖2

K) ≤ 8 rρ2︸︷︷︸
B2

Furthermore, recalling that ‖f‖Φ = ‖Φf‖2, we have
r∑
j=1

‖ĝj − g∗j‖2
Φ =

r∑
j=1

‖ẑj − z̃∗j ‖2
2 = |||Ẑ − Z̃∗|||2HS ≤ |||PẐ − PZ̃∗|||

2
HS︸ ︷︷ ︸

A2

Consequently, by the bound (5.55) with A2 = |||PẐ − PZ̃∗ |||2HS and B2 = 8rρ2, we conclude
that

r∑
j=1

‖ĝj − g∗j‖2
L2 ≤ c1|||PẐ − PZ∗|||2HS + 8rρ2Sm(Φ) (5.56)

We now need to bound the remaining two terms in the decomposition (5.53). In order

to do so, we exploit the freedom in choosing the orthonormal families {ĥj}rj=1 and {h∗j}rj=1.
By appropriate choices, we obtain the following results:

Lemma 40. There exists an orthonormal basis {ĥj}rj=1 of F̂ for which

r∑
j=1

‖ĥj − ĝj‖2
L2 = 2r2ρ4D2

m(Φ). (5.57)

Lemma 41. There exists an orthonormal basis {h∗j}rj=1 of F∗ for which

r∑
j=1

‖h∗j − g∗j‖2
L2 ≤ c2 r

2C2
m(f ∗) + 6rρ2Sm(Φ). (5.58)

As these proofs are more technical and lengthy, we defer them to Appendices 5.D.1 and 5.D.2
respectively.

Combining all of the pieces, we obtain the upper bound

|||PF̂ − PF∗|||2HS ≤ c3

{
|||PẐ − PZ∗|||2HS + r2ρ4D2

m(Φ) + r2C2
m(f ∗) + rρ2Sm(Φ)

}
. (5.59)

By using polarization identity and decomposition H = Ra(Φ∗) ⊕ Ker(Φ), one can show
that

Cm(f ∗) ≤ κ′′ρ
(
Dm(Φ) +Nm(Φ)

)
, (5.60)

when Nm(Φ) ≤ 1. (See Appendix 5.B.5 for more details.) Using this inequality and noting
that Sm(Φ) ≥ Nm(Φ) ≥ [Nm(Φ)]2 when Nm(Φ) ≤ 1, the bound (5.59) can be simplified to
the form given in Theorem 12.
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5.6 Proof of minimax lower bounds

We now turn to the proofs of the minimax lower bounds stated in Theorems 13 and 14. We
begin with some preliminary results that apply to both proofs.

5.6.1 Preliminary results

Our proofs proceed via a standard reduction from estimation to multi-way hypothesis testing
(e.g., [107, 104]). In particular, let {f 1, . . . , fM} be an δ-packing set of BH(1) in a given norm
‖ · ‖?. (For our proofs, this norm will be either ‖ · ‖Φ or ‖ · ‖L2 .) Given such a packing set,
it is known that the minimax error in the norm ‖ · ‖? can be lower bounded by

MH
m,n(

δ2

4
; ‖ · ‖?) := inf

f̃
sup

f∗∈BH(1)

Pf∗
[
‖f̃ − f ∗‖2

? ≥
δ2

4

]
≥ 1− I(y; f) + log 2

logM
. (5.61)

where y = (y1, . . . , yn) ∈ Rm×n is the observation matrix, and f is a random function
uniformly distributed over the packing set. The quantity I(y; f) is the mutual information
between y and f , and a key step in the proofs is obtaining good upper bounds on it.

Let Pf (respectively Pg) be the distribution of y given that f ∗ = f (respectively f ∗ = g).
The mutual information I(y; f) is intimately related to the Kullback-Leibler (KL) divergence
between Pf and Pg, which is given by

D(Pf ‖Pg) =

∫
pf (y) log

pf (y)

pg(y)
dy, (5.62)

where pf and pg are the densities with respect to Lebesgue measure. Our analysis requires
upper bounds on this KL divergence, as provided by the following lemma:

Lemma 42. Assume that ‖f‖Φ = ‖g‖Φ. Then the Kullback-Leibler divergence is upper

bounded as D(Pf ‖Pg) ≤
n ‖f−g‖2Φ

σ2
m

.

See Appendix 5.E.1 for the proof.

5.6.2 Proof of Theorem 13

We are now ready to begin the proof of our lower bounds on the minimax error in the (semi)-
norm ‖ · ‖Φ. In order to leverage the lower bound (5.61), we need to have control on the
packing and covering numbers in this norm:

Lemma 43 (Packing/covering in ‖·‖Φ-norm). Suppose that the kernel matrix K has polynomial-
α decay.
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(a) Suppose that m ≤ (c0n)
1

2α for some constant c0. Then there exists a collection of
functions {f 1, . . . , fM} contained in BH(1) such that M ≥ 4m, and

‖f i‖2
Φ =

σ2
0

16n
and ‖f i − f j‖2

Φ ≥
σ2

0

64n
, for all i 6= j ∈ {1, 2, . . . ,M}.

(b) The covering number of the set Ra(Φ∗)∩BH(1) in the ‖ · ‖Φ-norm is upper bounded as

logNΦ(ε) ≤ c1(1/ε)
1
α . (5.63)

In the other direction, if ε2 ≥ κ1

m2α for some constant κ1 > 0, then the packing number
is lower bounded as

logMΦ(ε) ≥ c2(1/ε)
1
α . (5.64)

The proof of this auxiliary result is given in Appendix 5.E.2; here we use it to prove
Theorem 13.

The case of time sampling

Let us consider part (a) first. Recall that in this case σm = σ0/
√
m. First, supposing that

m ≤ (c0n)
1

2α , we establish a lower bound of the order 1/n on the minimax risk. (Note that
if this upper bound on m holds, then the 1/n term is the minimum of the two terms in
Theorem 13(a).) Let {f 1, . . . , fM} be the collection of functions from part Lemma 43(a).
Using the Fano bound (5.61) and the inequality logM ≥ m log 4, we obtain

MH
m,n

( σ2
0

256n
; ‖ · ‖Φ

)
≥ 1− I(y; f) + log 2

m log 4
,

where y is the matrix of observations (y1, . . . , yn) ∈ Rm×n, and the random variable f ranges
uniformly over the packing set {f 1, . . . , fM}. By the convexity of the Kullback-Leibler
divergence, we have

I(y; f) ≤ 1(
M
2

)∑
i 6=j

D(Pf i ‖Pfj)
(i)

≤ 1(
M
2

)∑
i 6=j

n‖f i − f j‖2
Φ

σ2
m

(ii)

≤ n

σ2
m

σ2
0

4n
=

m

4
,

where inequality (i) follows from Lemma 42, and inequality (ii) follows from the packing
construction in Lemma 43(a). Consequently, we have

I(y; f) + log 2

m log 4
≤ m/4 + log 2

m log 4
≤ 1

2

for all m ≥ 2, which completes the proof.
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Otherwise, we may assume that m ≥ (c0n)
1

2α , under which assumption we prove the lower

bound involving the term of order (mn)−
2α

2α+1 . (Note that this lower bound on m holds, then

the (mn)−
2α

2α+1 term is the minimum of the two terms in Theorem 13(a).) Let δ2 = c3(
σ2

0

mn
)

2α
2α+1

for some c3 > 0 to be chosen. Since m ≥ (c0n)
1

2α by assumption, some algebra shows that
δ2 ≥ κ1

m2α , so that the lower bound on the packing number from Lemma 43(b) may be applied.
Combining this lower bound with the Fano inequality, we obtain

MH
m,n

(δ2

4
; ‖ · ‖Φ

)
≥ 1− I(y; f) + log 2

c2(1/δ)1/α
.

By the upper bounding technique of Yang and Barron [104], the mutual information I(y; f)
is upper bounded by infν>0

{
ν2 + logNKL(ν)}, where NKL is the covering number in the

square-root Kullback-Leibler (pseudo)-metric. By Lemma 42 and Lemma 43(b), we have

NKL(ν) ≤ c1

(
σ0√
nm
ν
)1/α

. Re-parameterizing in terms of ε2 =
σ2

0

nm
ν2, we obtain the upper

bound

I(y; f) ≤ inf
ε>0

{nm
σ2

0

ε2 + c1(1/ε)1/α
}
≤
( 1

ε∗

)1/α
,

where ε2∗ = c4

( σ2
0

nm

) 2α
2α+1 for some constant c4. Consequently, we have

R :=
I(y; f) + log 2

c2(1/δ)1/α
≤
(

1
ε∗

)1/α
+ log 2

(1/δ)1/α
.

Note that δ and ε∗ are of the same order. By choosing the pre-factor c3 sufficiently small,
we can thus guarantee that the ratio R is less than 1/2, from which the claim follows.

The case of frequency truncation

Recall that in this case σm = σ0. Since by assumptionm ≥ (c0n)
1

2α+1 , letting δ2 = c3

(σ2
0

n

) 2α
2α+1 ,

we have δ2 ≥ κ1

m2α after some algebra. Hence, the lower bound on the packing number from

Lemma 43(b) may be applied. Moreover, we have NKL(ν) ≤ c1

(
σ0√
n
ν
)1/α

. The rest of the

proof follows that of part (a).

5.6.3 Proof of Theorem 14

On one hand, no method can estimate to an accuracy greater than 1
2
Nm(Φ). Indeed, whatever

estimator f̃ is used, the adversary can always choose some function f ∗ such that Φ(f ∗) = 0,

and ‖f̃ − f ∗‖L2 ≥ 1
2
Nm(Φ). To see this, note that on one hand, if ‖f̃‖L2 ≥ 1

2
Nm(Φ), then

the adversary can set f ∗ = 0. On the other hand, if ‖f̃‖L2 < 1
2
Nm(Φ), then for any δ > 0,

adversary can choose a function f ∗ ∈ Ker(Φ) ∩ BH(1) such that ‖f ∗‖L2 > Nm(Φ) − δ, by



CHAPTER 5. SAMPLED FUNCTIONAL PCA IN RKHS 138

definition (5.13) of Nm(Φ). We then have ‖f ∗− f̃‖L2 ≥ ‖f ∗‖L2−‖f̃‖L2 > 1
2
Nm(Φ)− δ where

we let δ → 0. In addition, it follows from the theory of optimal widths in Hilbert spaces [78]
that Nm(Φ) % µm+1, thereby establishing the m−2α lower bound for a kernel operator with
polynomial-α decay.

Let us now prove the lower bound involving (mn)−
2α

2α+1 in part (a). This term is the

smaller of the two terms involved in the minimum, when m ≥ n
1

2α ; this is the only case
we need to consider as for m < n

1
2α , the minimum is n−1 which is dominated by the term

m−2α. We introduce the shorthand Ψm
1 = span{ψ1, . . . , ψm} ∩ BH(1), corresponding to the

intersection of the unit ball BH(1) with the m-dimensional subspace of H spanned by the
first m eigenfunctions of the kernel. For this proof, our packing/covering constructions take
place entirely within this set. The following lemma, proved in Appendix 5.E.3, provides
bounds on these packing and covering numbers:

Lemma 44 (Packing/covering in ‖ · ‖L2-norm). There is a universal constant c1 > 0 such
that

logNL2(ε; Ψm
1 ) ≤ c1(1/ε)

1
α . (5.65)

In the other direction, if ε2 ≥ κ1

m2α for some constant κ1 > 0, there is a universal constant
c2 > 0 such that

logML2(ε; Ψm
1 ) ≥ c2(1/ε)

1
α . (5.66)

Based on this lemma, proving a (mn)−
2α

2α+1 bound is relatively straightforward, once again

using Fano’s inequality (5.61). Choosing δ2 = c3(
σ2

0

mn
)

2α
2α+1 for a constant c3 to be specified,

we construct a δ-packing in ‖ · ‖L2 norm, of size M such that logM ≥ c2(1/δ)1/α. As in
the proof of Theorem 13, we upper bound the mutual information in terms of the covering
number in the ‖ · ‖Φ. By condition (D2), this covering number is upper bounded (up to
constant factors) by the covering number in the ‖ · ‖L2-norm. To see this, note that for any
f ∈ Ψm

1 ∩ BL2(ε), we have f =
∑m

j=1 ajψj, with
∑m

j=1 a
2
j/µj ≤ 1 and

∑m
j=1 a

2
j ≤ ε2. Then,

condition (D2) implies ‖f‖2
Φ = 〈a,Ψa〉 ≤ c1‖a‖2

2 ≤ 2ε2, that is f ∈ Ψm
1 ∩ BΦ(

√
c1ε). Finally,

by Lemma 44, the ‖ · ‖L2 covering number scales as (1/ε)1/α, so that the same calculations

as before yield the (mn)−
2α

2α+1 rate as claimed.

The proof of part (b) is similar. We only need to consider the case m ≥ n
1

2α+1 . The rest

of the argument follows by taking δ2 = c3

(σ2
0

n

) 2α
2α+1 and recalling that σm = σ0 in this case.

5.7 Discussion

We studied the problem of sampling for functional PCA from a functional-theoretic view-
point. The principal components were assumed to lie in some Hilbert subspace H of L2,
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usually a RKHS, and the sampling operator, a bounded linear map Φ : H → Rm. The
observation model was taken to be the output of Φ plus some Gaussian noise. The two
main examples of Φ considered were time sampling, [Φf ]j = f(tj), and (generalized) fre-
quency truncation [Φf ]j = 〈ψj, f〉L2 . We showed that it is possible to recover the subspace
spanned by the original components, by applying a regularized version of PCA in Rm followed
by simple linear mapping back to function space. The regularization involved the “trace-
smoothness condition” (5.18) based on the matrix K = ΦΦ∗ whose eigendecay influenced
the rate of convergence in Rm.

We obtained the rates of convergence for the subspace estimators both in the discrete
domain, Rm, and the function domain, L2. As examples, for the case of a RKHS H for which
both the kernel integral operator and the kernel matrix K have polynomial-α eigendecay (i.e.,
µj � µ̂j � j−2α), the following rates in HS-projection distance for subspaces in the function
domain were worked out in details:

time sampling frequency truncation(
1
mn

) 2α
2α+1 +

(
1
m

)2α (
1
n

) 2α
2α+1 +

(
1
m

)2α

The two terms in each rate can be associated, respectively, with the estimation error (due
to noise) and approximation error (due to having finite samples of an infinite dimensional
object). Both rates exhibit a trade-off between the number of statistical samples (n) and
that of functional samples (m). The two rates are qualitatively different: the two terms in
the time sampling case interact to give an overall fast rate of n−1 for the optimal trade-off
m � n

1
2α , while there is no interaction between the two terms in the frequency truncation; the

optimal trade-off gives an overall rate of n−
2α

2α+1 , a characteristics of nonparametric problems.
Finally, these rates were shown to be minimax optimal.

Appendix 5.A A special kernel

In this appendix, we examine a simple reproducing kernel Hilbert space, corresponding
to a Sobolev or spline class with smoothness α = 1. We provide expressions for various
approximation-theoretic quantities appearing in our results, such as Dm(Φ), Nm(Φ) and Ψ.
Further background on the calculations given here can be found in the paper [4].

Let us consider the time sampling model (5.8) with uniformly spaced points tj = j/m
for j = 1, . . . ,m. Elementary calculations show that K =

(
m−1K(ti, tj)

)
= 1

m2LL
T , where

L ∈ Rm×m is lower triangular with all the nonzero entries equal 1. It can be shown that

the eigenvalues of K are given by µ̂k :=
{

4m2 sin2
(µ−1/2

k

2m+1

)}−1
for k = 1, 2, . . . ,m. Using the

inequalities 2
π
x ≤ sin(x) ≤ x, for 0 ≤ x ≤ π/2, we have(2m+ 1

2m

)2

µk ≤ µ̂k ≤
π2

4

(2m+ 1

2m

)2

µk,
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showing that µ̂k is a good approximation of µk, even for moderate values of m.
Recalling the definition of Ψ ∈ Rm×m from Section 5.3.2, it can be shown that it takes

the form Ψ = Im + 1
m
IsITs , where Is ∈ Rm is the vector with entries [Is]j = (−1)j+1. Since

λmax(Ψ) = 2, condition (D2) is clearly satisfied.
Now we consider the quantity Dm(Φ); by Lemma 30, it suffices to bound the operator

norm of K−1/2(K2 − Θ)K−1/2. Some algebra shows that K2 − Θ = m−4(1
2
hhT + 1

6
m2K),

where h = (1, 2, . . . ,m), so that

Dm(Φ) = |||K−1/2(K2 −Θ)K−1/2|||2 =
1

2m4
hTK−1h+

1

6m2
=

1

2m
+

1

6m2
≤ 1

m
.

Finally, it was shown in Chapter 4 that Nm(Φ) - logm
m2 .

Appendix 5.B Auxiliary lemmas

Here we collect the proofs of various auxiliary lemmas.

5.B.1 Proof of Lemma 29

The space Ra(Φ∗) is finite-dimensional and hence closed, which guarantees validity of the
well-known decomposition H = Ra(Φ∗) ⊕ Ker(Φ). In particular, for any f ∈ H, there is
a ∈ Rm and f⊥ ∈ Ker(Φ) such that f = Φ∗a+ f⊥. Then, Φf = Ka, and

‖f‖2
H ≥ ‖Φ∗a‖2

H = 〈Φ∗a,Φ∗a〉H = 〈a,ΦΦ∗a〉Rm = 〈Ka,Ka〉K = ‖Φf‖2
K .

Equality holds iff f⊥ = 0 which gives the desired condition.

5.B.2 Proof of Lemma 30

By a well-known result, for a symmetric matrix, the numerical radius is equal to the operator

norm. Thus, we have |||K−K−1/2ΘK−1/2|||2 = supa∈Rm\{0}
|aT
(
K−K−1/2ΘK−1/2

)
a|

‖a‖22
. Making the

substitution b = K−1/2a, or equivalently a = K1/2b, we obtain

|||K −K−1/2ΘK−1/2|||2 = sup
b∈Rm\{0}

|bT
(
K2 −Θ

)
b|

bTKb

Now define the function f = Φ∗b ∈ Ra(Φ∗). With this definition, we have the following
equivalences:

bTKb = ‖Φ∗b‖2
H = ‖f‖2

H, bTK2b = ‖Φf‖2
2 = ‖f‖2

Φ, and bTΘb = ‖
m∑
j=1

bjφj‖2
L2 = ‖f‖2

L2 ,

from which the claim follows.
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5.B.3 Proof of Lemma 31

The (truncated) QR decomposition [44] of Z∗ has the form Z∗ = Z̃∗R, where Z̃∗ ∈ Vr(Rm),
and R ∈ Rr×r is upper triangular with nonnegative diagonal entries. By construction, we
have Ra(Z̃∗) = Ra(Z∗). Moreover, from the trace smoothness condition (5.18), we have

rρ2 ≥
r∑
j=1

‖z∗j ‖2
K = tr

(
(Z∗)TK−1Z∗

)
≥ λmin(RTR) tr

(
(Z̃∗)TK−1Z̃∗

)
(5.67)

where the final inequality follows from the bound (5.89) in Appendix 5.I. Recalling the defini-
tion (5.25), we have Cm(f ∗) = ‖(Z∗)TZ∗−Ir‖∞ = ‖RTR−Ir‖∞. Since λj(R

TR) = λj(R
TR− Ir) + 1,

we have

max
j=1,...,r

|λj(RTR)− 1| ≤ |||RTR− Ir|||2 ≤ r‖RTR− Ir‖∞ = rCm(f ∗). (5.68)

Since rCm(f ∗) ≤ 1
2
, we conclude that λmin(RTR) ≥ 1

2
. Combined with our earlier bound (5.67),

we conclude that Z̃∗ indeed satisfies the trace-smoothness condition.

5.B.4 Proof of Lemma 33

We only need to consider the case ν = 1; the general case follows by rescaling. Consider the
following local one-sided version of Dm(Φ),

Uloc(ε; Φ) := sup
f ∈Ra(Φ∗),
‖f‖H≤ 1,
‖f‖2Φ≤ ε

2

‖f‖2
L2 . (5.69)

Using an argument similar to that of Lemma 30, (5.69) is equivalent to

Uloc(ε; Φ) = sup
bT b≤ 1,
bTKb≤ ε2

bTK−1/2ΘK−1/2b. (5.70)

Using Lagrange duality, we have

Uloc(ε; Φ) ≤ inf
t≥ 0

[
max

(
λmax(K−1/2ΘK−1/2 − tK), 0

)
+ tε2

]
≤ c0ε

2 (5.71)

since (D1) implies λmax(K−1/2ΘK−1/2 − c0K) ≤ 0.
For f ∈ H, let f = g + f⊥ be its decomposition according to H = Ra(Φ∗) ⊕ Ker(Φ).

Then, ‖g‖2
H + ‖f⊥‖2

H = ‖f‖2
H ≤ 1 and ‖f‖2

L2 ≤ 2‖g‖2
L2 + 2‖f⊥‖2

L2 . Hence, we obtain

RΦ(ε; 1) ≤ 2Uloc(ε; Φ) + 2Nm(Φ). (5.72)

Combining (5.71) and (5.72) proves the claim.
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5.B.5 Proof of inequality (5.60)

By polarization identity and some algebra,

Cm(f ∗) ≤ 2ρ2 sup
‖f‖H≤1, ‖f‖L2= 1√

2ρ

∣∣‖f‖2
Φ − ‖f‖2

L2

∣∣
Let f = g+f⊥ be the decomposition according to f ∈ H = Ra(Φ∗)+Ker(Φ). Let f ∈ BH(1)
and ‖f‖L2 = 1√

2ρ
. Then, as in Appendix 5.B.4, we have g, f⊥ ∈ BH(1). Hence,∣∣‖f‖2

Φ − ‖f‖2
L2

∣∣ ≤ ∣∣ ‖g‖2
Φ − ‖g‖2

L2

∣∣︸ ︷︷ ︸
≤ Dm(Φ)

+
∣∣ ‖g + f⊥‖2

L2︸ ︷︷ ︸
a2

−‖g‖2
L2︸ ︷︷ ︸

b2

∣∣
where we have define a, b > 0 as above for simplicity. Let d := ‖f⊥‖L2 . By triangle inequality,
b ≤ a+ d and |a− b| ≤ d. Then,

|a2 − b2| = |a− b|(a+ b) ≤ d(2a+ d) ≤
(√2

ρ
+ 1
)
Nm(Φ),

since a = 1√
2ρ

and d ≤ Nm(Φ) ≤ 1, by assumption.

Appendix 5.C Proofs for Theorem 11

In this appendix, we collect the proofs of various auxiliary lemmas involved in the proof of
Theorem 11.

5.C.1 Derivation of the bound (5.50)

From the CS-decomposition (5.43), we have ẐT Z̃∗ = Ĉ, and hence P̂ Z̃∗ = ẐĈ − Z̃∗ =

ÊĈ − Z̃∗(Ir − Ĉ). From the decomposition (5.42), we have

〈〈P̂ , ∆1〉〉 = σ tr
[
WSRT (Z̃∗)T P̂ + Z̃∗RSW

T
P̂
]

= 2σ tr
[
RSW

T
P̂ Z̃∗

]
= 2σ

{
tr
[
RSW

T
ÊĈ
]
− tr

[
RSW

T
Z̃∗(Ir − Ĉ)

]}
,

where we have used the standard facts tr(ABT ) = tr(ATB) and tr(AB) = tr(BA). For the
first term we have∣∣∣ tr [RSW T

ÊĈ
]∣∣∣ =

∣∣∣∣ r∑
j,k=1

Rjksk〈wk, êj〉 ĉj
∣∣∣∣ ≤ ( r∑

j,k=1

R2
j,k

)1/2(∑
j,k

s2
k ĉ

2
j (〈wk, êj〉)2

)1/2
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where we have used Cauchy-Schwarz. By (5.68), under the assumption rCm(f ∗) ≤ 1
2
, we

have tr(RTR) ≤ 3
2
r. We also have 0 < sk ≤ s1 = 1 and 0 ≤ ĉj ≤ 1 for j, k = 1, . . . , r. It

follows that∣∣∣ tr [RSW T
ÊĈ
]∣∣∣ ≤√3

2

√
r
( r∑
j,k=1

(〈wk, êj〉)2
)1/2

≤
√

3

2
r3/2 max

j,k
|〈wk, êj〉|.

For the second term, using a similar argument by applying Cauchy-Schwarz, we get∣∣∣ tr [RSW T
Z̃∗(Ir − Ĉ)

]∣∣∣ ≤√3

2

√
r
( r∑
j=1

(1− ĉj)2

r∑
k=1

(〈wk, z̃∗j 〉)2
)1/2

≤
√

3

2
r
(∑

j

(1− ĉj)2
)1/2

max
j,k
|〈wk, z̃∗j 〉| ≤

√
3

2
√

2
r |||Ê|||2HS max

j,k
|〈wj, z̃∗k〉|.

where the last inequality follows from the fact that
(∑

j(1−ĉj)2
)1/2 ≤

∑
j(1−ĉj) = 1

2
|||Ê|||2HS.

5.C.2 Proof of Lemma 36

We make use of an ellipsoid approximation (see [70]). To simplify notation, define K̃ :=

(8rρ2)K and µ̃ := 8rρ2 µ̂, so that we have tr(ZTK−1Z) ≤ 2rρ2 if and only if tr(ZT K̃−1Z) ≤
1/4. Since both Ẑ and Z̃∗ satisfy this condition, it follows that ‖zj‖K̃ ≤

1
2

and ‖z̃∗j ‖K̃ ≤
1
2

for j = 1, . . . , r, where ‖a‖2
K̃

:= aT K̃−1a. Thus, we are guaranteed that êj ∈ EK̃ :=
{
v ∈

Rm | ‖v‖K̃ ≤ 1
}

.

We first establish an upper bound on the quantity sup
{
〈wk, v〉 | v ∈ EK̃ ∩ B2(t)

}
,

where B2(t) = {v ∈ Rm | ‖v‖2 ≤ t} is the Euclidean ball of radius t. Let µ̃1 ≥ · · · ≥ µ̃m be

the eigenvalues of K̃ in decreasing order and let µ̃ := (µ̃1, . . . , µ̃m). Since for U ∈ Vm(Rm),
the random vectors wk and Uwk have the same distribution, it is equivalent to bound the
quantity sup

{
〈wk, v〉 | v ∈ Eµ̃∩B2(t)

}
. Now for v ∈ Eµ̃∩B2(t), we have

∑m
i=1 µ̃

−1
i v2

i ≤ 1 and∑m
i=1 t

−2v2
i ≤ 1 implying

∑m
i=1 max{µ̃−1

i , t−2}v2
i ≤ 2. Consequently, if we define the modified

ellipse Eγ :=
{
v ∈ Rm |

∑m
i=1

v2
i

γi
≤ 1

}
where γi := 2 min{t2, µ̃i}, then we are guaranteed

that v ∈ Eγ, so that it suffices to upper bound supv ∈ Eγ 〈wk, v〉. For future reference, we note
that

‖γ‖1 = 16F2(t/
√

8), and ‖γ‖∞ ≤ 2t2 (5.73)

where F was defined previously (5.24). Define the random variables wk := 1
n

∑n
i=1wiβik and

Bkk := 1
n

∑n
i=1 β

2
ik. For each index k, Lemma 45 (see Appendix 5.F), combined with the

relations (5.73), yields

σ sup
v∈Eγ
|〈wk, v〉| ≤ σB

1/2

kk

{√‖γ‖1

n
+ δ

√
‖γ‖∞
n

}
≤ C1B

1/2

kk

σ√
n

{
F(t/

√
8) + δt

}
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with probability at least 1 − exp(−δ2/2). Taking δ = Ar
√
n t/σ, where Ar := κr−3/2 for

some small enough constant κ > 0, we obtain

σ sup
v∈Eγ
|〈wk, v〉| ≤ C1B

1/2

kk

{ σ√
n
F(t/

√
8) + Art

2
}

with probability at least 1− exp(−A2
r n t

2/2σ2).
As was mentioned earlier, the same bound with the same probability holds for sup

{
σ|〈wk, v〉 |

v ∈ EK̃ ∩ B2(t)
}

. Since êj ∈ EK̃ , j = 1, . . . , r we can apply the technical Lemma 48 of Ap-
pendix 5.H with ν = (n,m), θν = Arn/σ

2 and tν = εm,n to obtain

σ|〈wk, êj〉| ≤ C1B
1/2

kk

{ σ√
n
F(2‖êj‖2/

√
8) + Ar(2‖êj‖2)2 +

σ√
n
F(2εm,n/

√
8) + Ar(2εm,n)2

}
,

for all j ∈ {1, . . . , r}, with probability at least 1−c1 exp(−A2
r n ε

2
m,n/2σ

2). Note that ‖êj‖2 ≤
|||Ê|||HS, j = 1, . . . , r. Since the bound obtained above is nondecreasing in ‖êj‖, we can

replace ‖êj‖ everywhere with |||Ê|||HS. We also note that by χ2
n concentration [55, 63], we

have Bkk ≤ 3/2 with probability at least 1− exp(−n/64). Finally, by definition of εm,n and
monotonicity of F we have σ√

n
F(2εm,n/

√
8) ≤ σ√

n
F(εm,n) ≤ Arε

2
m,n. Putting together the

pieces, we conclude that

max
j,k

σ|〈wk, êj〉| ≤ C2

{ σ√
n
F(|||Ê|||HS) + Ar|||Ê|||2HS + Ar ε

2
m,n

}
,

with probability at least 1 − c1r exp(−A2
rn ε

2
m,n/2σ

2) − r exp(−n/64), where we have used
union bound to obtain a uniform result over k.

5.C.3 Proof of Lemma 37

We control terms of the form 〈wk, z̃∗j 〉 using Lemma 45 in Appendix 5.F, this time with
wi replaced with 〈wi, z̃∗j 〉 and γ = 1 (i.e., we are looking at sums of products of univariate

Gaussians). Thus, for any fixed j and k, we have σ|〈wk, z̃∗j 〉| ≤ σ B
1/2

kk

{
1√
n

+ δ 1√
n

}
, with

probability at least 1− exp(−δ2/2). Taking δ = κr−1
√
n/σ, then the event maxk Bkk ≤ 3/2,

which we have already accounted for, we have by union bound

max
j,k

σr|〈wk, z̃∗j 〉| ≤
√

3

2

{ σ√
n
r + κ

}
≤
√

6κ

with probability at least 1 − r2 exp(−κ2r−2n/2σ2). The second inequality follows by our
assumption r ≤ κ

√
n/σ.
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5.C.4 Proof of Lemma 38

For each j ∈ {1, . . . , r}, we define the vector ζj := Wz̃∗j ∈ Rn so that ζj = (ζji ) where

ζji = wTi z̃
∗
j . We can use the same ellipsoid approximation as Appendix 5.C.2— that is,

we first look at sup
{
T1(v; z̃∗j ) | v ∈ EK̃ ∩ B2(t)

}
and then argue that it is enough to

bound supv∈Eγ T1(v; z̃∗j ) = supv∈Eγ〈v,
1
n

∑n
i=1 ζ

j
iwi − z̃∗j 〉, due to the invariance of the under-

lying distribution under orthogonal transformations of v. Now applying Lemma 46 from
Appendix 5.F yields

σ2 sup
v ∈Eγ

T1(v; z̃∗j ) ≤
(‖ζj‖2√

n
+ 1
){ σ2

√
n

√
‖γ‖1 + δσ2

√
‖γ‖∞

}
(5.74)

with probability at least 1 − 2 exp(−n δ∧δ2

16
). Recalling that by assumption σ ≤ σ0, let

Ãr = κr−1. For t ≤ σσ0/Ãr, take δ = Ãrt/(σσ0) ≤ 1. Then, using (5.73), the left-hand side
of (5.74) is bounded above by

C1

(‖ζj‖2√
n

+ 1
){
σ0

σ√
n
F(t/

√
8) + Ãrt

2
}

(5.75)

with probability at least 1−2 exp
(
−Ã2

rn t
2/(16σ2σ2

0)
)
. For t > σσ0/Ãr, take δ = Ãrt/σ

2. In

this case, Ãrt > σσ0 ≥ σ2 implying δ > 1. Then, the left-hand side of (5.74) is again bounded

above by (5.75), this time with probability at least 1 − 2 exp(−Ãrn t/(16σ2)
)
. Assuming

κ ≤ 1, which is going to be the case, we have Ã2
r ≤ Ãr. Combining the two cases, we have

the upper bound (5.75) with probability at least

1− 2 exp
{
− Ã2

r n (σ−2
0 ∧ 1) (t ∧ t2) / (16σ2)

}︸ ︷︷ ︸
p1(t)

(5.76)

for all t > 0. (Note the break-up into two cases was to obtain a dependence of σ−2 in the
probability exponent for all t > 0.)

By an argument similar to Appendix 5.C.2—that is, using technical Lemma 48—we have
‖êj‖2 ≤ |||Ê|||HS and σ√

n
F(2εm,n/

√
8) ≤ Ãrε

2
m,n from the definition; we obtain

σ2T1(êj; z̃
∗
j ) ≤ C2

(‖ζj‖2√
n

+ 1
){
σ0

σ√
n
F(|||Ê|||HS) + Ãr|||Ê|||2HS + Ãrε

2
m,n

}
for all j ∈ {1, . . . , r}, with probability at least that of (5.76) with t = εm,n and 2 replaced
with some constant c2 > 2, i.e. 1− c2 p1(εm,n). By concentration of χ2

n variables and union
bound, we have maxj n

−1‖ζj‖2
2 ≤ 3/2 with probability at least 1 − r exp(−n/64). Putting

together the pieces, we conclude that

σ2

r∑
j=1

T1(êj; z̃
∗
j ) ≤ C3

{
σ0

σ√
n
rF(|||Ê|||HS) + κ|||Ê|||2HS + κε2m,n

}
with probability at least 1− c2 p1(εm,n)− r exp(−n/64), as claimed.
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5.C.5 Proof of Lemma 39

As before, the problem of bounding T2(êj) can be reduced to controlling supv∈Eγ T2(v), by
invariance under orthogonal transformation. Applying Lemma 47 of Appendix 5.G with
with δ = κ

√
n t/σ yields

σ sup
v∈Eγ

√
T2(v) = sup

v ∈Eγ

σ√
n
‖Wv‖2 ≤ σ

{√
‖γ‖1

n
+
(
1 + κ

t

σ

)√
‖γ‖∞

}
≤ C1

{ σ√
n
F(t/

√
8) + σt+ κt2

}
≤ C1

{ σ√
n
F(t) + σt+

√
2κt
}

with probability at least 1− exp(−κ2n t2/2σ2), valid for all t ≤
√

2, Note that since ‖êj‖2 ≤√
2 (by proper alignment), it is enough to only have a bound for t ≤

√
2. Recall the

assumption (A1), σ ≤
√
κ and by (A3), σ√

n
F(t) ≤

√
κt. Assuming κ < 1, we obtain

σ2 sup
v ∈Eγ

T2(v) ≤ C2
1

(
2
√
κ t+

√
2κt
)2 ≤ C2κt

2

with the same probability. As before, applying technical Lemma 48, this time with tν =
r−1/2εm,n, we obtain

σ2T2(êj) ≤ C2κ
{

(2‖êj‖2)2 +
(

2
εm,n√
r

)2}
for all j ∈ {1, . . . ,m} with probability at least 1− c3 exp(−κ2r−2nε2m,n/2σ

2). Thus, we have

σ2

r∑
j=1

T2(êj) ≤ C3κ
{
|||Ê|||2HS + ε2m,n

}
with probability the same probability. Note that we have used |||Ê|||2HS =

∑
j ‖êj‖2

2.

Appendix 5.D Proofs for Theorem 12

In this appendix, we collect the proofs of various auxiliary lemmas involved in the proof of
Theorem 12.

5.D.1 Proof of Lemma 40

By definition, each ĥj lies in F̂, so that we have ĥj = Φ∗
(∑

iBijK
−1ẑi

)
for some B ∈

Rr×r. Recalling that [K−1ẐB]j denotes the j-th column of K−1ẐB, we can write ĥj =
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Φ∗[K−1ẐB]j. Recalling the formula (5.5) for the adjoint, observe that for any a, b ∈ Rm, we
have

〈Φ∗a,Φ∗b〉L2 = 〈
∑

i aiϕi,
∑

j bjϕj 〉L2 =
∑

i,j aibj〈ϕi, ϕj〉L2 = aTΘ b (5.77)

where Θ = (〈ϕi, ϕj〉L2) ∈ Sm+ , as previously defined in Lemma 30. Since the functions

{ĥj}rj=1 are orthonormal in L2, we must have 〈ĥj, ĥk〉L2 = [K−1ẐB]Tj Θ[K−1ẐB]k = δjk, or

in matrix form (K−1ẐB)TΘ(K−1ẐB) = Ir×r. This condition can be re-written as

BT Q̂B = Ir×r = I, where Q̂ := ẐTK−1ΘK−1Ẑ.

Since ĥj− ĝj = Φ∗[K−1Ẑ(B−Ir)]j, we have ‖ĥj− ĝj‖2
L2 = [K−1Ẑ(B−Ir)]Tj Θ[K−1Ẑ(B−Ir)]j,

using the definition of Θ. Consequently, we obtain

r∑
j=1

‖ĥj − ĝj‖2
L2 = tr

{(
K−1Ẑ(B − I)

)T
Θ
(
K−1Ẑ(B − I)

)}
= tr

{
I + Q̂− 2Q̂B

}
,

using the symmetry of Q̂ and the constraint BT Q̂B = I. Subject to this constraint, we are
free to choose B as we please; setting B = Q̂−1/2 yields

r∑
j=1

‖ĥj − ĝj‖2
L2 = tr

{(
I − Q̂1/2

)2}
= |||I − Q̂1/2|||2HS.

In order to upper bound |||I − Q̂1/2|||HS, we first control the closely related quantity

|||I − Q̂|||HS. We have

|||Ir − Q̂|||HS = |||ẐTK−1/2(K −K−1/2ΘK−1/2)K−1/2Ẑ|||HS
≤ |||K −K−1/2ΘK−1/2|||2 |||ẐTK−1Ẑ|||HS
≤ 2rρ2 Dm(Φ), (5.78)

where we have used inequality (5.92), Lemma 30, the trace-smoothness condition tr(ẐTK−1Ẑ) ≤ 2rρ2,
and the inequality |||M |||HS ≤ tr(M), valid for any M � 0.

In order to bound |||I − Q̂1/2|||HS, we apply the inequality

|||Aq −Dq||| ≤ qaq−1|||A−D|||, 0 < q < 1, (5.79)

valid for any operators A, D such that A � aI and D � aI for some positive number a,
where ||| · ||| is any unitarily invariant norm. (See Bhatia [15], equation (X.46) on p. 305). As

long as 2rρ2Dm(Φ) ≤ 1/2 so that the bound (5.78) implies that Q̂ � 1/2I, we may apply

the inequality (5.79) with A = Ir, D = Q̂, a = q = 1/2 and ||| · ||| = ||| · |||HS so as to obtain

the inequality |||Ir − Q̂1/2|||HS ≤ 1√
2
|||Ir − Q̂|||HS, which completes the proof.
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5.D.2 Proof of Lemma 41

By definition, we have h∗j =
∑r

i=1Eijf
∗
i for some E ∈ Rr×r. Since both {h∗j} and {f ∗j }

are assumed orthonormal in L2, the matrix E must be orthonormal. In addition, we have∑r
j=1 ‖h∗j‖2

H =
∑r

j=1 ‖f ∗j ‖2
H ≤ rρ2, implying that

r∑
j=1

‖h∗j − g∗j‖2
H ≤ 2

r∑
j=1

(
‖h∗j‖2

H + ‖g∗j‖2
H
)
≤ 2(rρ2 + 2rρ2) ≤ 6rρ2

where we have used the fact that
∑r

j=1 ‖g∗j‖2
H =

∑r
j=1 ‖z̃∗j ‖2

K ≤ 2rρ2.
Recall the argument leading to the bound (5.55); applying this same reasoning to the

pair (h∗j , g
∗
j ) with the choices A2 =

∑r
j=1 ‖h∗j − g∗j‖2

Φ and B2 = 6rρ2 leads to

r∑
j=1

‖h∗j − g∗j‖2
L2 ≤ c1

r∑
j=1

‖h∗j − g∗j‖2
Φ + 6rρ2Sm(Φ).

It remains to bound the term
∑r

j=1 ‖h∗j − g∗j‖2
Φ. Recalling that Φf ∗i = z∗i , we note

that Φh∗j =
∑

iEijz
∗
i = [Z∗E]j. It follows that

∑r
j=1 ‖h∗j − g∗j‖2

Φ = ‖Z∗E − Z̃∗‖2
HS. Since

Ra(Z∗) = Ra(Z̃∗), there exists a matrix R ∈ Rr×r such that Z∗ = Z̃∗R. Letting V1ΥV T
2

denote the SVD of R, we have

‖Z∗E − Z̃∗‖HS = ‖RE − Ir‖HS = ‖R− ET‖HS = ‖V1ΥV T
2 − ET‖HS,

where we have used the unitary invariance of the Hilbert-Schmidt norm. Take ET = V1V
T

2

which is orthogonal, hence a valid choice. By unitary invariance, we have ‖Z∗E − Z̃∗‖HS =
‖Υ − Ir‖HS. We now apply inequality (5.79) with a = q = 1/2, A = Υ2, D = Ir, ||| ·
||| = ||| · |||HS. The condition rCm(f ∗) ≤ 1

2
implies Υ2 � 1

2
Ir. (See Appendix 5.B.3, in

particular the argument following (5.68).) Consequently, we have ‖Υ − Ir‖HS ≤ 1√
2
‖Υ2 −

Ir‖HS ≤ 1√
2
|||Z∗TZ∗ − Ir|||HS, where we have used V2Υ2V T

2 = RTR = Z∗TZ∗. Recalling

that |||Z∗TZ∗ − Ir|||HS ≤ rCm(f ∗) and putting together the pieces, we obtain the stated
inequality (5.58).

Appendix 5.E Proofs for Theorems 13 and 14

In this appendix, we prove various lemmas that are involved in the proofs of the lower bounds
given in Theorems 13 and 14.

5.E.1 Proof of Lemma 42

Let us introduce the shorthand notation u = Φ(f) and v = Φ(g). Under the model Pf ,
for each i = 1, 2, . . . , n, the vector yi ∈ Rm has a zero-mean Gaussian distribution with
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covariance matrix Σf := uuT +σ2
mI. Similarly, under the model Pg, it is zero-mean Gaussian

with covariance Σg := vvT + σ2
mI. Since the data is i.i.d. and using standard formula

for the Kullback-Leibler divergence between multivariate Gaussian distributions, we have
2
n
D(Pf ‖Pg) = log det Σg

det Σf
+ tr(Σ−1

g Σf )−m. Since ‖u‖2 = ‖v‖2 by construction, the matrices

Σf and Σg have the same eigenvalues, and so the first term vanishes. Using the matrix
inversion formula, we have

2

n
D(Pf ‖Pg) +m = 〈〈(σ2

mI + vvT )−1, σ2
mI + uuT 〉〉 = 〈〈σ−2

m I − σ−4
m

vvT

1 + ‖v‖2
2σ
−2
m

, σ2
mI + uuT 〉〉.

Using the fact that ‖u‖2 = ‖v‖2 =: a implies

2

n
D(Pf ‖Pg) = σ−2

m a2 − σ−2
m a2

1 + a2σ−2
m

− σ−4
m

1 + a2σ−2
m

〈u, v〉2 =
σ−4
m

1 + a2σ−2
m

(
a2 + 〈u, v〉

) ‖u− v‖2
2

2
.

Since |〈u, v〉| ≤ a2 by Cauchy-Schwarz, we have a2 + 〈u, v〉 ≤ 2a2, and hence

2

n
D(Pf ‖Pg) ≤

a2σ−2
m

1 + a2σ−2
m

‖u− v‖2
2

σ2
m

≤ ‖u− v‖2
2

σ2
m

,

as claimed.

5.E.2 Proof of Lemma 43

As previously observed, any function f ∈ Ra(Φ∗) ∩ BH(1) can be represented by a vector in
the ellipse E :=

{
θ ∈ Rm |

∑m
j=1 θ

2
j/µ̂j ≤ 1

}
such that ‖f‖Φ = ‖θ‖2. The proofs of both

parts (a) and (b) exploit this representation.

(a) Note that the ellipse E contains the `m2 -ball of radius
√
µ̂m. It is known [68] that there

exists a 1/2 packing of the `m2 -ball which has at least M = 4m elements, all of which have
unit norm. By rescaling this packing by σ0√

n
, we obtain a collection of M vectors {θ1, . . . , θM}

such that

‖θi‖2
2 =

σ2
0

n
and ‖θi − θj‖2

2 ≥
σ2

0

4n
, for all i 6= j ∈ [M ].

The condition m ≤ (c0n)
1

2α implies that ‖θi‖2
2 ≤ (c0σ

2
0)m−2α ≤ µ̂m, where the second in-

equality follows since by assumption (A1) we can take σ2
0 sufficiently small. Thus, these

vectors are also contained within the ellipse E , even after we rescale them further by 1/4,
which establishes the claim.

(b) This part makes use of the elementary inequality

k log k − k
(`)

≤
k∑
j=1

log j
(u)

≤ (k + 1) log(k + 1)− (k + 1). (5.80)
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We use known results on the entropy numbers of diagonal operators, in particular for the
operator mapping the `2-ball to the ellipse E . By assumption, we have µ̂jj

2α ∈ [c`, cu] for
all j = 1, 2, . . . ,m. By Proposition 1.3.2 of [28] with p = 2, we have

logNΦ(ε; E) ≤ max
k=1,2,...,m

{1

2

k∑
j=1

log µ̂j + k log(1/ε)
}

+ log 6

≤ max
k=1,2,...,m

{
− α

k∑
j=1

log j + k log(1/ε)
}

+ log(6cu)

≤ max
1≤k≤m

f(k) + log(6cu),

where f(k) = α(k − k log k) + k log(1/ε). Since f ′(k) = −α log k + log(1/ε), the optimum is
achieved for k∗ = (1/ε)1/α, and has value f(k∗) = α(1/ε)1/α, which establishes the claim.

In the other direction, for all k ∈ {1, 2, . . . ,m}, we have

logMΦ(ε; E) ≥ 1

2

k∑
j=1

log µ̂j + k log(1/ε) ≥ −α
k∑
j=1

log j + k log(1/ε) + log c`.

Using the lower bound (5.80)(u), we obtain

logMΦ(ε; E) ≥ α((k + 1)− (k + 1) log(k + 1)) + k log(1/ε) + log c`.

The choice k+1 = (1/ε)1/α, which is valid under the given condition (1/ε)1/α ≤ m−1, yields
the claim.

5.E.3 Proof of Lemma 44

Any function f in the set Ψm
1 has the form f =

∑m
j=1 ajψj for a vector of coefficients

a ∈ Rm such that
∑m

j=1 a
2
j/µj ≤ 1. If g =

∑m
j=1 bjψj is a second function, then we

have ‖f − g‖L2 = ‖a− b‖2 by construction. Thus, the problem is equivalent to bound-
ing the covering/packing numbers of the m-dimensional ellipse specified by the eigenvalues
{µ1, . . . , µm}. The claim thus follows from the proof of Lemma 43(b).

Appendix 5.F Suprema involving Gaussian products

Given a diagonal matrix Q := diag(γ1, . . . , γm) ∈ Rm×m, this appendix provides bounds on
‖Q1/2ξ‖2 where ξ ∈ Rm is some random vector (product of Gaussians in particular). The
following bound, which follows from Jensen’s inequality, is useful:

E ‖Q1/2ξ‖2 ≤
√

E ‖Q1/2ξ‖2
2 =

√
tr(QΣξ), where Σξ := E ξξT . (5.81)
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We prove a bound for the random vector ξ := n−1
∑n

i=1 βiwi ∈ Rm, where βi ∼ N(0, 1),
independent of wi ∼ N(0, Im), and the pairs (βi, wi) i.i.d. for i = 1, . . . , n.

Lemma 45. For all t ≥ 0, we have

P
[
‖Q1/2

∑n
i=1 βiwi‖2

‖β‖2

>
√

tr(Q) + t
√
|||Q|||

]
≤ exp(−t2/2), (5.82)

where β = (β1, . . . , βn).

Proof. Define θ := β/‖β‖2, and observe that θ is uniformly distributed on the sphere Sn−1,
independent of (wi); we use σn−1 to denote this uniform distribution. The claim is a deviation
bound for ‖Q1/2

∑n
i=1 θiwi‖2. With θ held fixed, we have w̃ :=

∑n
i=1 θiwi ∼ N(0, Im).

The map w̃ 7→ ‖Q1/2w̃‖2 is Lipschitz, from `m2 to R, with Lipschitz constant bounded by
|||Q1/2||| =

√
|||Q|||. Hence, by concentration of the canonical Gaussian measure in Rm, with θ

held fixed, we have

P
[
‖Q1/2w̃‖2 − E ‖Q1/2w̃‖2 ≥ t

√
|||Q|||

]
≤ exp(−t2/2).

Since this bound holds for all realizations of θ, the tower property implies that the same
bound holds unconditionally. Finally, from the bound (5.81), we have E ‖Q1/2w̃‖2 ≤

√
tr(Q),

from which the claim follows.

We now turn to bounding ‖Q1/2(n−1
∑

i ηiwi − u)‖2, where u ∈ Rm is some fixed vector.
Let us patch u with u2, . . . , um so that {u, u2, . . . , um} is an orthonormal basis for `m2 . Let

us define the function ζ : Rn\{0} → R as ζ(x) :=
n−1‖x‖22−1

n−1‖x‖2 . With this notation, we have
the following:

Lemma 46. Let u ∈ Sm−1 and assume that U := (u U2) = (u u2 · · · um) ∈ Rm×m is
orthogonal. Let (wi, ηi) ∈ Rm+1 be i.i.d. Gaussian random vectors for i = 1, . . . , n with
distribution [

wi
ηi

]
∼ N

([
0
0

]
,

[
Im u
uT 1

])
.

Then for all t ≥ 0,

P
[∥∥Q1/2 (n−1

n∑
i=1

ηiwi − u)
∥∥

2
≥
(
1 +
‖η‖2√
n

) (√tr(Q)

n
+ t
√
|||Q|||

)]
≤ 2 exp(−nt ∧ t

2

16
),

where η = (η1, . . . , ηn).
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Proof. Since the pair (wi, η) is jointly Gaussian, vectors {wi} conditioned on η = (ηi) are
i.i.d. Gaussian with E [wi | ηi] = ηiu and cov(wi | ηi) = Im − uuT . Consequently, conditioned
on η, the variable ŵη := n−1

∑
i ηiwi−u is Gaussian with mean u(n−1‖η‖2

2−1) and covariance
n−2‖η‖2

2(Im − uuT ). Consequently, for w̃η := ŵη/(n
−1‖η‖2), we have

UT w̃η ∼ N

([
1
0

]
ζ(η),

[
0 0
0 Im−1

])
,

where we have used UTu = (1
0
). Note that UT w̃η is actually a degenerate Gaussian vector,

so that we can write UT w̃η =
(
ζ(η), w′

)
, for some w′ ∼ N(0, Im−1).

Defining Q̃ := UTQU , we have

‖Q1/2w̃η‖2 = ‖UTQ1/2UUT w̃η‖2 = ‖Q̃1/2 UT w̃η‖2 =
∥∥∥Q̃1/2

[ζ(η)

w′

]∥∥∥
2
.

The map w′ 7→
∥∥Q̃1/2

[
ζ(η)
w′

]∥∥
2

is Lipschitz, from `m−1
2 to R, with Lipschitz constant bounded

by |||Q̃1/2||| = |||Q1/2||| =
√
|||Q|||. By concentration of canonical Gaussian measure in Rm−1, we

have

P
[
‖Q1/2w̃η‖2 − E ‖Q1/2w̃η‖2 > t

√
|||Q|||

∣∣ η] ≤ exp(−t2/2).

Define the function κ(η) := 〈〈Q, Im + (ζ2(η)− 1)uuT 〉〉. Applying the inequality (5.81) with

ξ =
[
ζ(η)
w′

]
and Q̃ instead of Q, we obtain

E ‖Q1/2w̃η‖2 = E
∥∥∥Q̃1/2

[ζ(η)

w′

]∥∥∥
2
≤
{

tr
(
Q̃

[
ζ2(η) 0

0 Im−1

])}1/2

=
√
κ(η).

Since Q � 0, we have

κ(η) = trQ+ [ζ2(η)− 1]uTQu ≤ trQ+ ζ2(η)uTQu ≤ tr(Q) + ζ2(η)|||Q|||.

Applying the inequality
√
a+ b ≤

√
a+
√
b yields

√
κ(η) ≤

√
tr(Q) + |ζ(η)|

√
|||Q|||. Conse-

quently, we have shown the conditional bound,

P
{
‖Q1/2 (n−1

∑n
i=1 ηiwi − u)‖2

n−1‖η‖2

>
√

tr(Q) + (
√
nt+ |ζ(η)|)

√
|||Q|||

∣∣∣ η} ≤ exp(−nt2/2).

(5.83)

By χ2-tail bounds, we have P
[
|‖η‖

2
2

n
− 1| ≥ t] ≤ exp(−n t∧t2

16
). Conditioned on the comple-

ment of this event, we have |ζ(η)| ≤ t
n−1‖η‖2 , and hence conditioning also on the complement

of the event in bound (5.83), we are guaranteed that

‖Q1/2 (n−1

n∑
i=1

ηiwi − u)‖2 ≤ n−1‖η‖2

{√
tr(Q) + (

√
nt+

t

n−1‖η‖2

)
√
|||Q|||

}
≤
(
1 +
‖η‖2√
n

) (√tr(Q)

n
+ t
√
|||Q|||

)
,

with probability at least 1− 2 exp(−n t∧t2
16

).
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Appendix 5.G Bounding an operator norm of a Gaus-

sian matrix

Given a sequence positive numbers {γi}mi=1, consider the Eγ := {v ∈ Rm :
∑m

i=1 γ
−1
i v2

i ≤ 1}.
In this appendix, we derive an upper bound on the operator norm of a standard Gaussian
random matrix W ∈ Rn×m, viewed as an operator from Rm equipped with the norm induced
by Eγ, to Rn equipped with the standard Euclidean norm ‖ · ‖2.

Lemma 47. Let W ∈ Rn×m be a standard Gaussian matrix. Then for all t ≥ 0,

P
[

sup
v ∈ Eγ

‖Wv‖2 >
√
‖γ‖1 + (

√
n+ t)

√
‖γ‖∞

]
≤ exp

(
− t2

2

)
. (5.84)

Proof. Let Sn−1 := {u ∈ Rn | ‖u‖2 = 1} denote the Euclidean unit sphere in Rn. Defin-
ing S = {s = (u, v) | u ∈ Sn−1, v ∈ Eγ}, consider the Gaussian process {Zs}s∈S where
Zs = 〈〈W, uvT 〉〉. By construction, we have supv ∈Eγ ‖Wv‖2 = sups∈S Zs. Our approach
is to use Slepian’s comparison for Gaussian processes [66] in order to bound E[sups∈S Zs]
by E[sups∈S Xs], where Xs is a second Gaussian process. Concretely, we define Xs :=√
‖γ‖∞〈u, g〉+ 〈v, h〉, where g and h are independent canonical Gaussian vectors in Rn and

Rm, respectively. Let s = (u, v) and s′ = (u′, v′) belong to S; by an elementary calculation,
we have

E [(Zs − Zs′)]2 = |||uvT − u′v′T |||2HS ≤ ‖γ‖∞‖u− u′‖2
2 + ‖v − v′‖2

2 = E [(Xs −Xs′)
2],

Consequently, we may apply Slepian’s lemma to conclude

E [sup
s∈S

Zs] ≤ E [sup
s∈S

Xs] =
√
‖γ‖∞ E[ sup

u∈Sn−1

〈u, g〉] + E sup
v ∈Eγ

〈v, h〉

=
√
‖γ‖∞

(
E ‖g‖2

)
+ E ‖Q1/2h‖2

≤
√
‖γ‖∞

√
n+

√
‖γ‖1,

where the final inequality follows by Jensen’s inequality, and the relation tr(Q) = ‖γ‖1.
Finally, we note that ‖W‖Eγ ,B2 = supv ∈Eγ ‖Wv‖2 is a Lipschitz function of the Gaus-

sian matrix W , viewed as a vector in `mn2 with Lipschitz constant
√
‖γ‖∞. Indeed, it is

straighforward to verify that supv ∈Eγ ‖Wv‖2− supv′ ∈Eγ ‖W ′v′‖2 ≤ |||W −W ′|||HS

√
‖γ‖∞ so

that the claim follows by concentration of the canonical Gaussian measure in `mn2 (e.g., see
Ledoux [65]).

Appendix 5.H A uniform law

In this appendix, we state and prove a technical lemma used in parts of our analysis. Consider
some subset D of Rm. Let ν be an index taking values in some index set I. We assume that
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ν is indexing a collection of random (noise) matrices ∆ν . Suppose that there is a collection
of nonnegative nondecreasing (possibly random) functions rν : [0,∞)→ [0,∞) such that for
all t ≥ 0 and ν ∈ I

P
{

sup
v ∈D, ‖v‖2≤ t

G(v; ∆ν) > rν(t)
}
≤ c1 exp[−c2 θν(t ∧ t2)], (5.85)

where θν , ν ∈ I are some positive numbers and G is some function.

Lemma 48. Under (5.85) and for any collection {tν}ν ∈I such that inf
ν ∈I

θν(tν ∧ t2ν) > 0, we

have for any ν ∈ I,

sup
v ∈D

[
G(v; ∆ν)− rν(2‖v‖2)

]
≤ rν(2tν). (5.86)

with probability at least 1− c̃1 exp[−c2 θν(tν ∧ t2ν)].
Proof. The proof is based on a peeling argument (e.g., [93]). Define c := infν ∈I θνt

2
ν , and

fix some ν ∈ I. First, note that as v varies over D, the function v 7→ ‖v‖2 ∨ tν varies over
[tν ,∞). Define, for s ∈ {1, 2, . . . },

Ds :=
{
v ∈ D : 2s−1tν ≤

(
‖v‖2 ∨ tν

)
< 2stν

}
.

We have D =
⋃∞
s=1Ds. If there exists v ∈ D such that

G(v,∆ν) > rν
(
2‖v‖2 ∨ 2tν

)
, (5.87)

then there exist s ∈ {1, 2, . . . } and Ds 3 v such that (5.87) holds for v. Using union bound,

P
(
∃v ∈ D : G(v,∆ν) > rν

(
2‖v‖2 ∨ 2tν

))
≤

∞∑
s=1

P
(
∃v ∈ Ds : G(v,∆ν) > rν

(
2‖v‖2 ∨ 2tν

))
.

For v ∈ Ds, (5.87) implies

G(v,∆ν) > rν
(
2‖v‖2 ∨ 2tν

)
≥ rν(2 2s−1tν) = rν( 2stν)

where we have used rν being increasing. Since Ds ⊂ {v : ‖v‖2 < 2stν}, we conclude that

P
(
∃v ∈ D : G(v,∆ν) > rν

(
2‖v‖2 ∨ 2tν

))
≤

∞∑
s=1

P
(

sup
v∈D,

‖v‖2 < 2stν

G(v,∆ν) > rν(2
stν)
)

≤
∞∑
s=1

exp[−θν 2s(tν ∧ t2ν)]

from assumption (5.85). The last summation is bounded above by
∞∑
k=1

exp[−θν k (tν ∧ t2ν)] =
e−θν(tν∧t2ν)

1− e−θν(tν∧t2ν)
≤ e−θν(tν∧t2ν)

1− e−c
= C e−θν(tν∧t2ν).

We get the assertion by noting that for a, b ≥ 0, rν(a ∨ b) = rν(a) ∨ rν(b) ≤ rν(a) + rν(b)
because rν is assumed to be nondecreasing and nonnegative.
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Appendix 5.I Some useful matrix-theoretic inequalities

Fan’s inequality states that for symmetric matrices A and B and eigenvalues ordered as
λ1(A) ≥ . . . ≥ λm(A) (and similarly for B), we have tr(AB) ≤

∑m
i=1 λi(A)λi(B). As a

consequence, for a symmetric matrix B and symmetric matrix A � 0, we have

λmin(B) tr(A) ≤ tr(AB) ≤ λmax(B) tr(A). (5.88)

It follows that for a symmetric matrix D � 0 and R ∈ Rr×r, we have

λmin(RTR) tr(D) ≤ tr(DRRT ) = tr(RTDR) ≤ λmax(RTR) tr(D), (5.89)

where we have used the fact that RTR and RRT have the same eigenvalues.
For B � 0, we have

λmin(B)λ↓j(R
TR) ≤ λ↓j(R

TBR) ≤ λmax(B)λ↓j(R
TR), (5.90)

which can be established using the classical min-max formulation of the jth eigenvalue—
namely

λ↓j(C) = max
M: dim(M)=j

min
x ∈M ∩ Sr−1

zTCz (5.91)

where the maximum is taken over all j-dimensional subspaces of Rk. Finally, the inequal-
ity (5.90) implies that

|||RTBR|||HS ≤ |||B|||2 |||RTR|||HS. (5.92)
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