
Feedback and Interference Alignment in Networks

Changho Suh

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-107

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-107.html

September 28, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Feedback and Interference Alignment in Networks

by

Changho Suh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Tse, Chair
Professor Kannan Ramchandran

Professor Jim Pitman
Professor Gerhard Kramer

Fall 2011



Feedback and Interference Alignment in Networks

Copyright 2011
by

Changho Suh



1

Abstract

Feedback and Interference Alignment in Networks

by

Changho Suh

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Tse, Chair

The increasing complexity of communication networks in size and density provides us enor-
mous opportunities to exploit interaction among multiple nodes, thus enabling higher date
rate of data streams. On the flip side, however, this complexity comes with challenges in
managing interference that multiple source-destination pairs in the network may cause to
each other. In this dissertation, we make progress on how we exploit the opportunities, as
well as how we overcome the challenges.

In the first part, we find that feedback - one of the common ways to enable interaction in
networks - has a promising role in improving the capacity performance of networks. Earlier
results on feedback capacity were somewhat discouraging. This is mainly due to Shannon’s
original result on feedback capacity where he showed that in point-to-point communication,
feedback does not increase capacity. Hence, traditionally it is believed that feedback has had
little impact on increasing capacity of communication links. Therefore, the use of feedback
has been limited to improving the reliability of communications, usually in the form of ARQ.
In this dissertation, we show that in stark contrast to the point-to-point case, feedback
can improve the capacity of interference-limited network. In fact, the improvement can be
unbounded. This result shows that feedback can have a potentially significant role to play
in mitigating interference. Also in the process of deriving this conclusion, we characterize
the feedback capacity of the two-user Gaussian interference channel to within 2 bits, one of
the longstanding open problems in network information theory.

In the second part, we propose a new interference management technique for widely
deployed cellular networks. Inspired by a recent breakthrough, the concept of interference
alignment, we develop an interference alignment technique for cellular networks. Our tech-
nique promises almost interference-free communication with the increase of the number of
clients in cellular networks. It shows substantial gain (around 30% to 60%) as compared to
one of the interference management techniques in current cellular systems. In addition, it
comes with implementation benefits: it can actually be implemented with small changes to
emerging 4G cellular standards and architectures at the base-stations and clients. In par-
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ticular, the required signal-processing circuitry, software control, and channel-state feedback
mechanisms are extensions of existing implementations and standards.

Lastly, we extend the interference alignment principle, developed in the context of wire-
less networks, into other fields of network research such as storage networks. In an effort to
protect information against node failures, storage networks employ coding techniques, such
as maximum distance separable (MDS) erasure codes, known as optimal codes in reliability
with respect to redundancy. However, these MDS codes come with prohibitive maintenance
cost when it comes to repairing failed storage nodes. While only partial information stored
in the failed node needs to be recovered, the conventional MDS codes focus on the complete
data recovery (including unwanted data, corresponding to interference) by downloading too
much information from survivor storage encoded nodes, thus causing the high repair cost.
Building on the connection between wireless and wireline networks, we leverage the interfer-
ence alignment principle to develop a new class of MDS codes that significantly reduces the
repair cost over the conventional MDS codes and also achieves information-theoretic optimal
bound on the repair cost for all admissible code parameters.
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Chapter 1

Introduction

Claude Shannon’s information theory has made a great impact on the design of point-
to-point communication. One of the major thrusts of information theory in the past 40
years has been to extend this theory to the network setting. In the general problem setup,
each node in the network wants to transmit observations from one or more sources to one
or more destination nodes in the network and we would like to characterize what is the best
achievable end-to-end performance. Developing such a complete theory will have significant
ramifications on how we architecture tomorrow’s communication networks of increasing size
and complexity. Although there has been success for certain network settings such as the
many-to-one multiple access channels and the one-to-many degraded broadcast channels,
many fundamental questions dealing with multiple sources and multiple destination nodes
have remained unanswered for decades. For example, what is the fundamental role of in-
teraction between multiple nodes that may frequently occur in complex network settings
to improve the network performance? How should multiple links code their information to
efficiently coexist despite of the interference they cause to each other? We are still lacking in
our understanding and far away from reaching the holy grail of network information theory.

Some of our results in this field have made progress on answering these two fundamental
questions by showing the significant role of interaction and developing interference man-
agement in certain interesting network settings. Going beyond answering these intriguing
theoretical questions, we have also contributed to transferring the theories into real world
working systems by developing an interference management scheme for cellular networks
that can be implemented while approaching the theoretical limitations. Furthermore, we
have found that the principles of interference management can be extended to address some
of the significant open problems in other fields of network research such as storage networks.
Especially, this interdisciplinary research experience has taught us that going backward and
forward across disciplines may lead us to address many of the interconnected open problems,
thus shedding light on many of the promising yet challenging fields of network research.
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1.1 Role of Feedback

In communication networks, interaction is enabled through the use of feedback. Traditionally,
it is believed that feedback has had little impact on increasing capacity. This is mainly due
to Shannon’s original result on feedback capacity, where he showed that feedback cannot
increase the capacity in point-to-point communication links. Hence the use of feedback has
been so far limited to improving the reliability of communication, usually in the form of
ARQ. However, we recently found a promising role of feedback in networks [62]. What
we have shown is that when there are two interfering point-to-point links, not only can
feedback increase capacity of each link, but it can in fact provide an unbounded increase
in capacity. This result promises a potentially huge gain of interaction in more general
networks, thus driving a new paradigm shift on the use of feedback. Also in the process
of deriving this conclusion, we characterize the feedback capacity of the two-user Gaussian
interference channel to within 2 bits, an open problem for more than 30 years, thus shedding
light on addressing many of the related open problems in network information theory.

Furthermore, we develop two enlightening interpretations to provide qualitative insights
as to where the feedback gain comes from: (1) resource hole interpretation; (2) side infor-
mation interpretation. The first interpretation says that the feedback gain comes from using
feedback to maximize resource utilization, thereby enabling more efficient resource sharing
between the interfering links. This will lead us to clearly understand how feedback helps
multiple interfering links to efficiently coexist with each other. The second interpretation
is that feedback enables destination nodes to exploit their received signals as side informa-
tion to increase the non-feedback capacity. With this interpretation, we make a connection
between our feedback problem and many other interesting problems in network information
theory.

1.2 Interference Alignment

Cellular Networks: A recent breakthrough in addressing how to deal with interference
is the concept of interference alignment: by aligning multiple interferers in signal space,
their aggregate footprint can be vastly reduced and the overall performance improved. Deep
understanding on this idea has recently led us to develop a new interference alignment
technique for cellular networks [60, 57]. Our technique promises almost interference-free
communication with the increase of the number of clients in cellular networks. It shows
substantial gain (around 30% to 60%) as compared to one of the interference management
techniques in current cellular systems. In addition, it comes with implementation benefits:
it can actually be implemented with small changes to emerging 4G cellular standards and
architectures at the base-stations and clients. In particular, the required signal-processing
circuitry, software control, and channel-state feedback mechanisms are extensions of existing
implementations and standards. The proposed technique is currently being discussed for
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inclusion to 4G standards such as 3GPP-LTE and WiMAX.
One observation on this result [60, 57] is that our interference alignment scheme can

provide huge gain especially when interference from the dominant interferer (the nearby
base-station) is much stronger than residual interference from many other base-stations.
This naturally leads us to believe that our scheme has great potential to heterogeneous
networks that merge a multitude of wireless networks, such as femto-cells, pico-cells, relays
and Wi-Fi networks, into macro cellular networks. Notice, for example, that in macro-pico
cellular networks, a user connected to a pico base-station may see significant interference
from the nearby macro base-station.

Distributed Storage Networks: We extend the interference alignment principle, de-
veloped in the context of wireless networks, to other networks such as storage network,
to find the interdisciplinary nature of this principle. Connecting wireless networks to dis-
tributed storage networks, we address one of the significant problems in storage networks:
the storage repair problem [59, 58, 22]. In an effort to protect information against node
failures, storage networks employ coding techniques, such as maximum distance separable
(MDS) erasure codes, known as optimal codes in reliability with respect to redundancy.
However, these MDS codes come with prohibitive maintenance cost when it comes to repair-
ing failed storage nodes. While only partial information stored in the failed node needs to
be recovered, the conventional MDS codes focus on the complete data recovery (including
unwanted data, corresponding to interference) by downloading too much information from
survivor storage encoded nodes, thus causing the high repair cost. Now a question is: how
much communication is necessary to decode only a desired subset of the entire information?
This motivates us to ponder over this problem from a communication perspective. We draw
parallels between wireless and storage networks to find a striking connection centered on the
interference alignment principle: specifically, we map wireless channels to the coefficients of
the MDS storage codes. Building on this connection, we leverage the interference alignment
principle to develop a new class of MDS codes that significantly reduces the repair cost over
the conventional MDS codes and also achieves information-theoretic optimal bound on the
repair cost for all admissible code parameters.

1.3 Dissertation Outline

The rest of the dissertation is divided into three major parts. In Chapter 2, we will show that
feedback has a great impact on improving the capacity of the two-user Gaussian interference
channel (IC). To show this, we characterize the capacity region to within 2 bits/s/Hz and
the symmetric capacity to within 1 bit/s/Hz for the two-user Gaussian IC with feedback.
We develop achievable schemes and derive a new outer bound to arrive at this conclusion.
The result makes use of a deterministic model to provide insights into the Gaussian channel.
This deterministic model is a special case of El Gamal-Costa deterministic model and as a
side-generalization, we establish the exact feedback capacity region of this general class of
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deterministic ICs.
In Chapter 3, we develop an interference alignment (IA) technique for a cellular system,

both uplink and downlink. This scheme can provide substantial gain especially when inter-
ference from a dominant interferer is significantly stronger than the remaining interference.
We also propose another IA scheme, which we call subspace IA, in an attempt to mitigate
the interference from multiple dominant interferers. We show that under some channel con-
ditions, our subspace IA scheme can asymptotically achieve the interference-free capacity
performance with an increase in the number of clients in each cell. We also remark that our
subspace IA scheme can be well exploited to address the failed storage-node repair problem.

In Chapter 4, we show the great potential to extend the interference alignment to other
network research such as storage networks. Drawing parallels between wireless and wireline
networks, we exploit the IA idea to develop a new class of MDS erasure codes that signif-
icantly reduce the repair cost over the conventional MDS codes. Specifically, we address
(n, k, d) Exact-Repair MDS codes, which allow for any failed node to be repaired exactly
with access to arbitrary d survivor nodes, where k ≤ d ≤ n − 1. We construct minimum
repair-bandwidth Exact-Repair MDS codes for the case of k/n ≤ 1/2 and d ≥ 2k − 1. We
also show the existence of optimal Exact-Repair codes for the entire admissible range of
possible (n, k, d), i.e., k < n and k ≤ d ≤ n − 1. Finally we conclude the dissertation in
Chapter 5.
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Chapter 2

Feedback in the Gaussian Interference
Channel

2.1 Introduction

Shannon showed that feedback does not increase capacity of memoryless point-to-point chan-
nels [55]. On the other hand, feedback can indeed increase capacity in channels with memory
such as colored Gaussian noise. However, the gain is bounded : feedback can provide a capac-
ity increase of at most one bit [18, 39, 12]. In the multiple access channel (MAC), Gaarder
and Wolf [26] showed that feedback could increase capacity even when the channel is mem-
oryless. Inspired by this result, Ozarow [47] found the feedback capacity region for the
two-user Gaussian MAC. Ozarow’s result reveals that feedback gain is bounded. The reason
for the bounded gain is that in the MAC, transmitters cooperation induced by feedback can
at most boost signal power via aligning signal directions. Boosting signal power provides a
capacity increase of a constant number of bits.

In the MAC, the receiver decodes the messages of all users. A natural question is to
ask whether feedback can provide more significant gain in channels where a receiver wants
to decode only desired message in the presence of interference. To answer this question, we
focus on the simple two-user Gaussian interference channel (IC) where each receiver wants
to decode the message only from its corresponding transmitter. We first make progress on
the symmetric capacity. Gaining insights from a deterministic model [7] and the Alamouti
scheme [6], we develop a simple two-staged achievable scheme. We then derive a new outer
bound to show that the proposed scheme achieves the symmetric capacity to within one bit
for all values of the channel parameters.

An interesting consequence of this result is that feedback can provide multiplicative gain
in interference channels at high SNR. This can be shown from the generalized degrees-of-
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Figure 2.1: The generalized degrees-of-freedom of the Gaussian interference channel (IC) with
feedback. For certain weak interference regimes (0 ≤ α ≤ 2

3) and for the very strong interference
regime (α ≥ 2), the gap between the non-feedback and the feedback capacity becomes arbitrarily
large as SNR and INR go to infinity. This implies that feedback can provide unbounded gain.

freedom in Fig. 2.1. The notion was defined in [25] as

d(α) , lim
SNR,INR→∞

Csym(SNR, INR)

log SNR
, (2.1)

where Csym(SNR, INR) = sup {R : (R,R) ∈ C} and C is the capacity region. In the figure, α
(x-axis) indicates the ratio of INR to SNR in dB scale: α ,

log INR

log SNR
. Notice that in certain

weak interference regimes (0 ≤ α ≤ 2
3
) and in the very strong interference regime (α ≥ 2),

feedback gain becomes arbitrarily large as SNR and INR go to infinity. For instance, when
α = 1

2
, the gap between the non-feedback and the feedback capacity becomes unbounded

with the increase of SNR and INR, i.e.,

CFB
sym − CNO

sym −→ 1

4
log SNR −→ ∞. (2.2)

Observing the ratio of the feedback to the non-feedback capacity in the high SNR regime,

one can see that feedback provides multiplicative gain (50% gain for α = 1
2
):

CFB
sym

CNO
sym

→ 1.5.

Moreover, we generalize the result to characterize the feedback capacity region to within
2 bits per user for all values of the channel parameters. Unlike the symmetric case, we
develop an infinite-staged achievable scheme that employs three techniques: (i) block Markov
encoding [16, 17]; (ii) backward decoding [69]; and (iii) Han-Kobayashi message splitting [32].
This result shows interesting contrast with the non-feedback capacity result. In the non-
feedback case, it has been shown that the inner and outer bounds [32, 25] that guarantee a
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1 bit gap to the optimality are described by five types of inequalities including the bounds
for R1 +2R2 and 2R1 +R2. On the other hand, our result shows that the feedback capacity
region approximated to within 2 bits requires only three types of inequalities without the
R1 + 2R2 and 2R1 +R2 bounds.

We also develop two interpretations to provide qualitative insights as to where feedback
gain comes from. The first interpretation, which we call resource hole interpretation, says
that the gain comes from using feedback to maximize resource utilization, thereby enabling
more efficient resource sharing between the interfering users. The second interpretation
is that feedback enables receivers to exploit their received signals as side information to
increase the non-feedback capacity. With this interpretation, we make a connection between
our feedback problem and many other interesting problems in network information theory.

Our results make use of a deterministic model [7] to provide insights into the Gaussian
channel. This deterministic model is a special case of the El Gamal-Costa model [24]. As
a side-generalization, we establish the exact feedback capacity region of this general class of
deterministic ICs. From this result, one can infer an approximate feedback capacity region
of two-user Gaussian MIMO ICs, as Teletar and Tse [64] did in the non-feedback case.

Interference channels with feedback have received previous attention [41, 42, 27, 63, 36].
Kramer [41, 42] developed a feedback strategy in the Gaussian IC; Kramer-Gastpar [27] and
Tandon-Ulukus [63] derived outer bounds. However, the gap between the inner and outer
bounds becomes arbitrarily large with the increase of SNR and INR. Although Kramer’s
scheme can be arbitrarily far from optimality, a careful analysis reveals that it can also
provide multiplicative feedback gain. See Fig. 2.14. Jiang-Xin-Garg [36] found an achievable
region in the discrete memoryless IC with feedback, based on block Markov encoding [16]
and binning. However, their scheme involves three auxiliary random variables and therefore
requires further optimization. Also no outer bounds are provided. We propose explicit
achievable schemes and derive a new tighter outer bound to characterize the capacity region
to within 2 bits and the symmetric capacity to within 1 bit universally. Subsequent to our
work, Prabhakaran and Viswanath [51] have found an interesting connection between our
feedback problem and the conferencing encoder problem. Making such a connection, they
have independently characterized the sum feedback capacity to within 19 bits/s/Hz.

2.2 Model

Fig. 2.2 describes the two-user Gaussian IC with feedback where each transmitter gets de-
layed channel-output feedback only from its own receiver. Without loss of generality, we
normalize signal power and noise power to 1, i.e., Pk = 1, Zk ∼ CN (0, 1), ∀k = 1, 2. Hence,
the signal-to-noise ratio and the interference-to-noise ratio can be defined to capture the
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Figure 2.2: The Gaussian IC with feedback.

channel gains:

SNR1 , |g11|2, SNR2 , |g22|2,
INR12 , |g12|2, INR21 , |g21|2.

(2.3)

There are two independent and uniformly distributed messages, Wk ∈ {1, 2, · · · , mk} , ∀k =
1, 2. Due to the delayed feedback, the encoded signal Xki of user k at time i is a function of
its own message and past output sequences:

Xki = f i
k

(
Wk, Yk1, · · · , Yk(i−1)

)
= f i

k

(
Wk, Y

i−1
k

)
, (2.4)

where we use shorthand notation Y i−1
k to indicate the sequence up to i − 1. A rate pair

(R1, R2) is achievable if there exists a family of codebook pairs with codewords (satisfying
power constraints) and decoding functions such that the average decoding error probabilities
go to zero as code length N goes to infinity. The capacity region C is the closure of the set
of the achievable rate pairs.

2.3 Symmetric Capacity to Within One Bit

We start with the symmetric channel setting where |g11| = |g22| = |gd| and |g12| = |g21| = |gc|:

SNR , SNR1 = SNR2, INR , INR12 = INR21. (2.5)
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Figure 2.3: The deterministic IC with feedback.

Not only is this symmetric case simple, it also provides the key ingredients to both achievable
scheme and outer bound needed for the characterization of the capacity region. Furthermore,
this case provides enough qualitative insights as to where feedback gain comes from. Hence,
we first focus on the symmetric channel.

Theorem 1. We can achieve a symmetric rate of

Rsym = max

{

1

2
log (1 + INR) ,

1

2
log

(

(1 + SNR+ INR)2 − SNR
1+INR

1 + 2INR

)}

. (2.6)

The symmetric capacity is upper-bounded by

Csym =
1

2
sup

0≤ρ≤1

[

log

(

1 +
(1− ρ2)SNR

1 + (1− ρ2)INR

)

+ log
(

1 + SNR + INR+ 2ρ
√
SNR · INR

)]

.

(2.7)

For all channel parameters of SNR and INR,

Csym − Rsym ≤ 1. (2.8)

Proof. See Sections 2.3.2 and 2.3.3.

2.3.1 Symmetric Capacity of a Deterministic Model

Deterministic Model: As a stepping stone towards the Gaussian IC, we use an inter-
mediate model: the linear deterministic model [7], illustrated in Fig. 2.3. This model is
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Figure 2.4: An achievable scheme for the deterministic IC: strong interference regime α := m
n = 3.

useful in the non-feedback Gaussian IC: it was shown in [10] that the deterministic IC can
approximate the Gaussian IC to within a constant number of bits irrespective of the chan-
nel parameter values. Our approach is to first develop insights from this model and then
translate them to the Gaussian channel.

The connection with the Gaussian channel is as follows. The deterministic IC is char-
acterized by four values: n11, n12, n21 and n22 where nij indicates the number of signal bit
levels (or resource levels) from transmitter i to receiver j. These values correspond to the
channel gains in dB scale, i.e., ∀i 6= j,

nii = ⌊log SNRi⌋, nij = ⌊log INRij⌋. (2.9)

In the symmetric channel, n , n11 = n22 and m , n12 = n21. Upper signal levels correspond
to more significant bits and lower signal levels correspond to less significant bits of the
received signal. A signal bit level observed by both the receivers above the noise level is
broadcasted. If multiple signal levels arrive at the same signal level at a receiver, we assume
a modulo-2-addition.

Achievable Scheme for the Strong Interference Regime (m ≥ n): We explain
the scheme through the simple example of α := m

n
= 3, illustrated in Fig. 2.4. Note that

each receiver can see only one signal level from its corresponding transmitter. Therefore,
in the non-feedback case, each transmitter can send only 1 bit through the top signal level.
However, feedback can create a better alternative path, e.g., [transmitter1 → receiver2 →
feedback → transmitter2 → receiver1]. This alternative path enables to increase the
non-feedback rate.

The feedback scheme consists of two stages. In the first stage, transmitters 1 and 2 send
independent binary symbols (a1, a2, a3) and (b1, b2, b3) respectively. Each receiver defers de-
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Figure 2.5: An achievable scheme for the weak interference regime, e.g., α = m
n = 1

2 .

coding to the second stage. In the second stage, using feedback, each transmitter decodes
information of the other user: transmitters 1 and 2 decode (b1, b2, b3) and (a1, a2, a3) respec-
tively. Each transmitter then sends the other user’s information. Each receiver gathers the
received bits sent during the two stages: the six linearly independent equations containing
the six unknown symbols. As a result, each receiver can solve the linear equations to decode
its desired bits. Notice that the second stage was used for refining all the bits sent previously,
without sending additional information. Therefore, the symmetric rate is 3

2
in this example.

Notice the 50% improvement from the non-feedback rate of 1. We can easily extend the
scheme to arbitrary (n,m). In the first stage, each transmitter sends m bits using all the
signal levels. Using two stages, these m bits can be decoded with the help of feedback. Thus,
we can achieve:

Rsym =
m

2
. (2.10)

Remark 1. The gain in the strong interference regime comes from the fact that feedback
provides a better alternative path through the two cross links. The cross links relay the other
user’s information through feedback. We can also explain this gain using a resource hole
interpretation. Notice that in the non-feedback case, each transmitter can send only 1 bit
through the top level and therefore there is a resource hole (in the second level) at each
receiver. However, with feedback, all of the resource levels at the two receivers can be filled
up. Feedback maximizes resource utilization by providing a better alternative path. This
concept coincides with correlation routing in [41].

On the other hand, in the weak interference regime, there is no better alternative path,
since the cross links are weaker than the direct links. Nevertheless, it turns out that feedback
gain can also be obtained in this regime.

Achievable Scheme for the Weak Interference Regime (m ≤ n): Let us start by
examining the scheme in the non-feedback case. Unlike the strong interference regime, only
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part of information is visible to the other receiver in the weak interference regime. Hence,
information can be split into two parts [32]: common m bits (visible to the other receiver)
and private (n−m) bits (invisible to the other receiver). Notice that using common levels
causes interference to the other receiver. Sending 1 bit through a common level consumes
a total of 2 levels at the two receivers (say $2), while using a private level costs only $1.
Because of this, a reasonable achievable scheme is to follow the two steps sequentially: (i)
sending all of the cheap (n−m) private bits on the lower levels; (ii) sending some number
of common bits on the upper levels. The number of common bits is decided depending on
m and n.

Consider the simple example of α = m
n
= 1

2
, illustrated in Fig. 2.5 (a). First transmitters

1 and 2 use the cheap private signal levels respectively. Once the bottom levels are used,
however using the top levels is precluded due to a conflict with the private bits already sent,
thus each transmitter can send only one bit.

Observe the two resource holes on the top levels at the two receivers. We find that
feedback helps fill up all of these resource holes to improve the performance. The scheme
uses two stages. As for the private levels, the same procedure is applied as that in the
non-feedback case. How to use the common levels is key to the scheme. In the first stage,
transmitters 1 and 2 send private bits a2 and b2 on the bottom levels respectively. Now
transmitter 1 squeezes one more bit a1 on its top level. While a1 is received cleanly at
receiver 1, it causes interference at receiver 2. Feedback can however resolve this conflict. In
the second stage, with feedback transmitter 2 can decode the common bit a1 of the other user.
As for the bottom levels, transmitters 1 and 2 send new private bits a3 and b3 respectively.
The idea now is that transmitter 2 sends the other user’s common bit a1 on its top level.
This transmission allows receiver 2 to refine the corrupted bit b2 from b2⊕a1 without causing
interference to receiver 1, since receiver 1 already had the side information of a1 from the
previous broadcasting. We paid $2 for the earlier transmission of a1, but now we can get a
rebate of $1. Similarly, with feedback, transmitter 2 can squeeze one more bit b1 on its top
level without causing interference. Therefore, we can achieve the symmetric rate of 3

2
in this

example, i.e., the 50% improvement from the non-feedback rate of 1.
This scheme can be easily generalized to arbitrary (n,m). In the first stage, each trans-

mitter sends m bits on the upper levels and (n−m) bits on the lower levels. In the second
stage, each transmitter forwards the m bits of the other user on the upper levels and sends
new (n−m) private bits on the lower levels. Then, each receiver can decode all of the n bits
sent in the first stage and new (n−m) private bits sent in the second stage. Therefore, we
can achieve:

Rsym =
n+ (n−m)

2
= n− m

2
. (2.11)

Remark 2 (Resource Hole Interpretation). Observe that all the resource levels are fully
packed after applying the feedback scheme. Thus, feedback maximizes resource utilization to
improve the performance significantly. We will discuss this interpretation in more details in
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Figure 2.6: Symmetric feedback rate (2.10), (2.11) for the deterministic IC. Feedback maximizes
resource utilization while it cannot reduce transmission costs. The “V” curve is obtained when all
of the resource levels are fully packed with feedback. This shows the optimality of the feedback
scheme.

Section 2.6.1.

We also develop another interpretation as to the role of feedback, which leads us to make
an intimate connection to many other interesting problems in network information theory.
We will discuss this connection later in Section 2.6.2.

Optimality of the Achievable Scheme: Now a natural question that arises is to ask
the optimality of the scheme. Using the resource hole interpretation, we provide an intuitive
explanation of the optimality. Later in Section 2.5, we will provide a rigorous proof.

From W to V Curve: Fig. 2.6 shows (i) the symmetric feedback rate (2.10), (2.11) of the
achievable scheme (representing the “V” curve); (ii) the non-feedback capacity [10] (repre-
senting the “W” curve). Using the resource hole interpretation, we will provide intuition as
to how we can go from the W curve to the V curve with feedback.

Observe that the total number of resource levels and transmission cost depend on (n,m).
Specifically, suppose that the two senders employ the same transmission strategy to achieve
the symmetric rate: using x private and y common levels. We then get:

# of resource levels at each receiver = max(n,m),

transmission cost = 1× x+ 2× y.
(2.12)

Here notice that using a private level costs 1 level, while using a common level costs 2 levels.
Now observe that for fixed n, as α = m

n
grows: for 0 ≤ α ≤ 1, transmission cost increases; for

α ≥ 1, the number of resource levels increases. Since all the resource levels are fully utilized
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with feedback, this observation implies that with feedback the total number of transmission
bits must decrease when 0 ≤ α ≤ 1 (inversely proportional to transmission cost) and must
increase when α ≥ 1 (proportional to the number of resource levels). This is reflected in
the V curve. In contrast, in the non-feedback case, for some range of α, resource levels are
not fully utilized, as shown in the α = 1

2
example of Fig. 2.5 (a). This is reflected in the W

curve.
Why We Cannot Go Beyond the V Curve: While feedback maximizes resource utilization

to fill up all of the resource holes, it cannot reduce transmission costs. To see this, consider
the example in Fig. 2.5 (b). Observe that even with feedback, a common bit still has to
consume two levels at the two receivers. For example, the common bit a1 needs to occupy
the top level at receiver 1 in time 1; and the top level at receiver 2 in time 2. In time 1, while
a1 is received cleanly at receiver 1, it interferes with the private bit b2. In order to refine b2,
receiver 2 needs to get a1 cleanly and therefore needs to reserve one resource level for a1.
Thus, in order not to interfere with the private bit b1, the common bit a1 needs to consume
a total of the two resource levels at the two receivers. As mentioned earlier, assuming that
transmission cost is not reduced, a total number of transmission bits is reflected in the V
curve. As a result, we cannot go beyond the “V” curve with feedback, showing the optimality
of the achievable scheme. Later in Section 2.5, we will prove this rigorously.

Remark 3 (Reminiscent of Shannon’s Comment in [56]). The fact that feedback cannot
reduce transmission costs reminds us of Shannon’s closing comment in [56]: “We may have
knowledge of the past and cannot control it; we may control the future but have no knowledge
of it.” This statement implies that feedback cannot control the past although it enables us
to know the past; so this coincides with our finding that feedback cannot reduce transmission
costs, as the costs already occurred in the past.

2.3.2 An Achievable Scheme for the Gaussian IC

Let us go back to the Gaussian channel. We will translate the deterministic IC scheme to
the Gaussian IC. Let us first consider the strong interference regime.

Strong Interference Regime (INR ≥ SNR): The structure of the transmitted signals
in Fig. 2.4 sheds some light on the Gaussian channel. Observe that in the second stage, each
transmitter sends the other user’s information sent in the first stage. This reminds us of the
Alamouti scheme [6]. The beauty of the Alamouti scheme is that received signals can be
designed to be orthogonal during two time slots, although the signals in the first time slot
are sent without any coding. This was exploited and pointed out in distributed space-time
codes [43]. With the Alamouti scheme, transmitters are able to encode their messages so that
received signals are orthogonal. Orthogonality between the two different signals guarantees
complete removal of the interfering signal.

In accordance with the deterministic IC example, the scheme uses two stages (or blocks).
In the first stage, transmitters 1 and 2 send codewords XN

1 and XN
2 with rates R1 and R2
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Figure 2.7: An Alamouti-based achievable scheme for the Gaussian IC: strong interference regime.

respectively. In the second stage, using feedback, transmitters 1 and 2 decode XN
2 and XN

1

respectively. This can be decoded if

R1, R2 ≤
1

2
log (1 + INR) bits/s/Hz. (2.13)

We are now ready to apply the Alamouti scheme. Transmitters 1 and 2 send XN∗
2 and −XN∗

1

respectively. Receiver 1 can then gather the two received signals: for 1 ≤ i ≤ N ,
[

Y
(1)
1i

Y
(2)∗
1i

]

=

[
gd gc
−g∗c g∗d

] [
X1i

X2i

]

+

[

Z
(1)
1i

Z
(2)∗
1i

]

. (2.14)

To extract X1i, it multiplies the row vector orthogonal to the vector associated with X2i and
therefore we get:

[
g∗d −gc

]

[

Y
(1)
1i

Y
(2)∗
1i

]

= (|gd|2 + |gc|2)X1i + g∗dZ
(1)
2i − gcZ

(2)∗
1i . (2.15)

The codeword XN
1 can be decoded if

R1 ≤
1

2
log (1 + SNR + INR) bits/s/Hz. (2.16)

Similar operations are done at receiver 2. Since (2.16) is implied by (2.13), we get the desired
result: the left term in (2.6).
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Weak Interference Regime (INR ≤ SNR): Unlike the strong interference regime,
in the weak interference regime, there are two types of information: common and private
information. A natural idea is to apply the Alamouti scheme only for common information
and newly add private information. It was shown in [61] that this scheme can approximate
the symmetric capacity to within ≈ 1.7 bits/s/Hz. However, the scheme can be improved to
reduce the gap further. Unlike the deterministic IC, in the Gaussian IC, private signals have
some effects, i.e., these private signals cannot be completely ignored. Notice that the scheme
includes decode-and-forward operation at the transmitters after receiving the feedback. And
so when each transmitter decodes the other user’s common message while treating the other
user’s private signals as noise, private signals can incur performance loss.

This can be avoided by instead performing amplify-and-forward : with feedback, the trans-
mitters get the interference plus noise and then forward it subject to the power constraints.
This transmission allows each receiver to refine its corrupted signal sent in the previous
time, without causing significant interference.1 Importantly, notice that this scheme does
not require message-splitting. Even without splitting messages, we can refine the corrupted
signals (see Appendix 2.9.1 to understand this better). Therefore, there is no loss due to
private signals.

Specifically, the scheme uses two stages. In the first stage, each transmitter k sends
codeword XN

k with rate Rk. In the second stage, with feedback transmitter 1 gets the
interference plus noise:

SN
2 = gcX

N
2 + Z

(1),N
1 . (2.17)

Now the complex conjugate technique based on the Alamouti scheme is applied to make XN
1

and SN
2 well separable. Transmitters 1 and 2 send

SN∗

2√
1+INR

and − SN∗

1√
1+INR

respectively, where√
1 + INR is a normalization factor to meet the power constraint. Under Gaussian input dis-

tribution, we can compute the rate under MMSE demodulation: 1
2
I(X1i; Y

(1)
1i , Y

(2)
2i ). Straight-

forward calculations give the desired result: the right term in (2.6). See Appendix 2.9.1 for
detailed computations.

Remark 4. As mentioned earlier, unlike the decode-and-forward scheme, the amplify-and-
forward scheme does not require message-splitting, thereby removing the effect of private
signals. This improves the performance to reduce the gap further.

2.3.3 An Outer Bound and One-Bit Gap to the Symmetric Ca-
pacity

The symmetric rate upper bound is implied by the outer bound for the capacity region; we
defer the proof to Theorem 3 in Section 2.4.2.

1In Appendix 2.9.1, we provide intuition behind this scheme.
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Using the symmetric rate of (2.6) and the outer bound of (2.7), we get:

2(C̄sym −Rsym)
(a)

≤ log

(

1 +
SNR

1 + INR

)

+ log
(

1 + SNR+ INR+ 2
√
SNR · INR

)

− log

(

(1 + SNR+ INR)2 − SNR
1+INR

1 + 2INR

)

= log

(

1 + SNR+ INR(1 + SNR + INR+ 2
√
SNR · INR)

1 + INR

)

+ log

(
(1 + 2INR)(1 + INR)

(1 + SNR+ INR)2(1 + INR)− SNR

)

= log

(

1 + SNR+ INR+ 2
√
SNR · INR

1 + SNR + INR
· 1 + 2INR

1 + INR− SNR
(1+SNR+INR)2

)

(b)

≤ log



2 ·
2
(

1 + INR− SNR
(1+SNR+INR)2

)

− 1 + 2SNR
(1+SNR+INR)2

1 + INR− SNR
(1+SNR+INR)2





= log

(

2 ·
{

2−
(

1− 2SNR
(1+SNR+INR)2

1 + INR− SNR
(1+SNR+INR)2

)})

(c)

≤ log 4 = 2.

Step (a) follows from choosing the trivial maximum value of the outer bound (2.7) and
choosing a minimum value (the second term) of the lower bound (2.6). Note that the first
and second terms in (2.7) are maximized when ρ = 0 and ρ = 1 respectively. Step (b)
follows from 1 + SNR + INR + 2

√
SNR · INR ≤ 2(1 + SNR + INR); and (c) follows from

(1 + SNR+ INR)2 ≥ 2SNR and SNR
(1+SNR+INR)2

≤ 1.
Fig. 2.8 shows a numerical result for the gap between the inner and outer bounds.

Notice that the gap is upper-bounded by exactly one bit. The worst-case gap occurs when
SNR ≈ INR and these values go to infinity. Also note that in the strong interference regime,
the gap approaches 0 with the increase of SNR and INR, while in the weak interference
regime, the gap does not vanish. For example, when α = 1

2
, the gap is around 0.5 bits.

Remark 5 (Why does a 1-bit gap occur?). Observe in Figs. 2.7 and 2.16 that the
transmitted signals of the two senders are uncorrelated in our scheme. The scheme completely
loses power gain (also called beamforming gain). On the other hand, when deriving the outer
bound of (2.7), we allow for arbitrary correlation between the transmitters. Thus, the 1-bit
gap is based on the outer bound. In the actual system, correlation is in-between and therefore
one can expect that the actual gap to the capacity is less than 1 bit.
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Figure 2.8: The gap between our inner and upper bounds. The gap is upper-bounded by exactly
one bit. The worst-case gap occurs when SNR ≈ INR and these values go to infinity. In the
strong interference regime, the gap vanishes with the increase of SNR and INR, while in the weak
interference regime, the gap does not, e.g., the gap is around 0.5 bits for α = 1

2 .

Beamforming gain is important only when SNR and INR are quite close, i.e., α ≈ 1. This
is because when α = 1, the interference channel is equivalent to the multiple access channel
where the Ozarow scheme [47] and the Kramer scheme [41] (that capture beamforming gain)
are optimal. In fact, the capacity theorem in [42] shows that the Kramer scheme is optimal
for one specific case of INR = SNR−

√
2 · SNR, although it is arbitrarily far from optimality

for the other cases. This observation implies that our proposed scheme can be improved
further.
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Figure 2.9: A deterministic IC example where an infinite number of stages need to be employed
to achieve the rate pair of (2, 1) with feedback. This example motivates us to use (1) block Markov
encoding; and (2) Han-Kobayashi message splitting.

2.4 Capacity Region to Within 2 Bits

2.4.1 An Achievable Rate Region

We have developed an achievable scheme meant for the symmetric rate and provided a
resource hole interpretation. For the case of the capacity region, we find that while this
interpretation can also be useful, the two-staged scheme is not enough. A new achievable
scheme needs to be developed for the region characterization.

To see this, let us consider a deterministic IC example in Fig. 2.9 where an infinite
number of stages need to be employed to achieve a corner point of (2, 1) with feedback.
Observe that to guarantee R1 = 2, transmitter 1 needs to send 2 bits every time slot. Once
transmitter 1 sends (a1, a2), transmitter 2 cannot use its top level since the transmission
causes interference to receiver 1. It can use only the bottom level to send information. This
transmission however suffers from interference: receiver 2 gets the interfered signal b1 ⊕ a1.
We will show that this corrupted bit can be refined with feedback. In time 2, transmitter 2
can decode a1 with feedback. In an effort to achieve the rate pair of (2, 1), transmitter 1 sends
(a3, a4) and transmitter 2 sends b2 on the bottom level. Now apply the same idea used in the
symmetric case: transmitter 2 sends the other user’s information a1 on the top level. This
transmission allows receiver 2 to refine the corrupted signal b1 without causing interference
to receiver 1, since receiver 1 already had a1 as side information. Notice that during the
two time slots, receiver 1 can decode 4 bits (2 bits/time), while receiver 2 can decode 1 bits
(0.5 bits/time). The point (2, 1) is not achieved yet due to unavoidable loss occurred in time
1. This loss, however, can be amortized by iterating the same operation. As this example
shows, the previous two-staged scheme needs to be modified so as to incorporate an infinite
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number of stages.
Let us apply this idea to the Gaussian channel. The use of an infinite number of stages mo-

tivates the need for employing block Markov encoding [16, 17]. Similar to the symmetric case,
we can now think of two possible schemes: (1) decode-and-forward (with message-splitting);
and (2) amplify-and-forward (without message-splitting). As pointed out in Remark 4, in
the Gaussian channel, private signals cannot be completely ignored, thereby incurring per-
formance loss, thus the amplify-and-forward scheme without message-splitting has better
performance. However, it requires heavy computations to compute the rate region, so we
focus on the decode-and-forward scheme, although it induces a larger gap. As for a decoding
operation, we employ backward decoding [69].

Here is the outline of our scheme. We employ block Markov encoding with a total size B of
blocks. In block 1, each transmitter splits its own message into common and private parts and
then sends a codeword superimposing the common and private messages. For power splitting,
we adapt the idea of the simplified Han-Kobayashi scheme [25] where private power is set
such that a private signal is seen below the noise level at the other receiver. In block 2, with
feedback, each transmitter decodes the other user’s common message (sent in block 1) while
treating the other user’s private signal as noise. Two common messages are then available at
the transmitter: (1) its own message; and (2) the other user’s message decoded with the help
of feedback. Conditioned on these two common messages, each transmitter generates new
common and private messages. It then sends the corresponding codeword. Each transmitter
repeats this procedure until block B−1. In the last block B, to facilitate backward decoding,
each transmitter sends the predetermined common message and a new private message.
Each receiver waits until total B blocks have been received and then performs backward
decoding. We will show that this scheme enables us to obtain an achievable rate region that
approximates the capacity region.

Theorem 2. The feedback capacity region includes the set R of (R1, R2) such that

R1 ≤ log
(

1 + SNR1 + INR21 + 2ρ
√

SNR1 · INR21

)

− 1 (2.18)

R1 ≤ log (1 + (1− ρ)INR12) + log

(

2 +
SNR1

INR12

)

− 2 (2.19)

R2 ≤ log
(

1 + SNR2 + INR12 + 2ρ
√

SNR2 · INR12

)

− 1 (2.20)

R2 ≤ log (1 + (1− ρ)INR21) + log

(

2 +
SNR2

INR21

)

− 2 (2.21)

R1 +R2 ≤ log

(

2 +
SNR1

INR12

)

+ log
(

1 + SNR2 + INR12 + 2ρ
√

SNR2 · INR12

)

− 2 (2.22)

R1 +R2 ≤ log

(

2 +
SNR2

INR21

)

+ log
(

1 + SNR1 + INR21 + 2ρ
√

SNR1 · INR21

)

− 2 (2.23)

for 0 ≤ ρ ≤ 1.
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Proof. Our achievable scheme is generic, not limited to the Gaussian IC. We therefore char-
acterize an achievable rate region for discrete memoryless ICs and then choose an appropriate
joint distribution to obtain the desired result. In fact, this generic scheme can also be applied
to El Gamal-Costa deterministic IC (to be described in Section 2.5).

Lemma 1. The feedback capacity region of the two-user discrete memoryless IC includes the
set of (R1, R2) such that

R1 ≤ I(U, U2, X1; Y1) (2.24)

R1 ≤ I(U1; Y2|U,X2) + I(X1; Y1|U1, U2, U) (2.25)

R2 ≤ I(U, U1, X2; Y2) (2.26)

R2 ≤ I(U2; Y1|U,X1) + I(X2; Y2|U1, U2, U) (2.27)

R1 +R2 ≤ I(X1; Y1|U1, U2, U) + I(U, U1, X2; Y2) (2.28)

R1 +R2 ≤ I(X2; Y2|U1, U2, U) + I(U, U2, X1; Y1), (2.29)

over all joint distributions p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u).

Proof. See Appendix 2.9.2.

Now we will choose the following Gaussian input distribution to complete the proof:
∀k = 1, 2,

U ∼ CN (0, ρ);Uk ∼ CN (0, λck);Xpk ∼ CN (0, λpk), (2.30)

where Xk = U + Uk + Xkp; λck and λpk indicate the powers allocated to the common
and private message of transmitter k respectively; and (U, Uk, Xkp)’s are independent. By
symmetry, it suffices to prove (2.18), (2.19) and (2.22).

To prove (2.18), consider I(U, U2, X1; Y1) = h(Y1)− h(Y1|U, U2, X1). Note

|KY1|X1,U2,U | = 1 + λp2INR21. (2.31)

As mentioned earlier, for power splitting, we adapt the idea of the simplified Han-Kobayashi
scheme [25]. We set private power such that the private signal appears below the noise
level at the other receiver. This idea mimics that of the deterministic IC example where the
private bit is below the noise level so that it is invisible. The remaining power is assigned to
the common message. Specifically, we set:

λp2 = min

(
1

INR21
, 1

)

, λc2 = 1− λp2, (2.32)

This choice gives

I(U, U2, X1; Y1) = log
(

1 + SNR1 + INR21 + 2ρ
√

SNR1 · INR21

)

− 1, (2.33)
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which proves (2.18). With the same power setting, we can compute:

I(U1; Y2|U,X2) = log (1 + (1− ρ)INR12)− 1, (2.34)

I(X1; Y1|U, U1, U2) = log

(

2 +
SNR1

INR12

)

− 1. (2.35)

This proves (2.19). Lastly, by (2.33) and (2.35), we prove (2.22).

Remark 6 (Three Types of Inequalities). In the non-feedback case, it is shown in [25]
that an approximate capacity region is characterized by five types of inequalities including
the bounds for 2R1 + R2 and R1 + 2R2. In contrast, in the feedback case, our achievable
rate region is described by only three types of inequalities.2 In Section 2.6.1, we will provide
qualitative insights as to why the 2R1 +R2 bound is missing with feedback.

Remark 7 (Connection to Related Work [66]). Our achievable scheme is essentially the
same as the scheme introduced by Tuninetti [66] in a sense that the three techniques (message-
splitting, block Markov encoding and backward decoding) are jointly employed. Although the
author in [66] considers a different context (the conferencing encoder problem), Prabhakaran
and Viswanath [51] have made an interesting connection between the feedback problem and the
conferencing encoder problem. See [51] for details. Despite this close connection, however,
the scheme in [66] uses five auxiliary random variables and thus requires further optimization.
On the other hand, we obtain an explicit rate region by reducing those five auxiliary random
variables into three and then choosing a joint input distribution appropriately.

2It is still unknown whether or not the exact feedback capacity region includes only three types of
inequalities.
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2.4.2 An Outer Bound Region

Theorem 3. The feedback capacity region is included by the set C of (R1, R2) such that

R1 ≤ log
(

1 + SNR1 + INR21 + 2ρ
√

SNR1 · INR21

)

(2.36)

R1 ≤ log
(
1 + (1− ρ2)INR12

)
+ log

(

1 +
(1− ρ2)SNR1

1 + (1− ρ2)INR12

)

(2.37)

R2 ≤ log
(

1 + SNR2 + INR12 + 2ρ
√

SNR2 · INR12

)

(2.38)

R2 ≤ log
(
1 + (1− ρ2)INR21

)
+ log

(

1 +
(1− ρ2)SNR2

1 + (1− ρ2)INR21

)

(2.39)

R1 +R2 ≤ log

(

1 +
(1− ρ2)SNR1

1 + (1− ρ2)INR12

)

+ log
(

1 + SNR2 + INR12 + 2ρ
√

SNR2 · INR12

)

(2.40)

R1 +R2 ≤ log

(

1 +
(1− ρ2)SNR2

1 + (1− ρ2)INR21

)

+ log
(

1 + SNR1 + INR21 + 2ρ
√

SNR1 · INR21

)

(2.41)

for 0 ≤ ρ ≤ 1.

Proof. By symmetry, it suffices to prove the bounds of (2.36), (2.37) and (2.40). The bounds
of (2.36) and (2.37) are nothing but cutset bounds. Hence, proving the non-cutset bound
of (2.40) is the main focus of this proof. Also recall that this non-cutset bound is used to
obtain the outer bound of (2.7) for the symmetric capacity in Theorem 1. We go through the
proof of (2.36) and (2.37). We then focus on the proof of (2.40), where we will also provide
insights as to the proof idea.

Proof of (2.36): Starting with Fano’s inequality, we get:

N(R1 − ǫN ) ≤ I(W1; Y
N
1 )

(a)

≤
∑

[h(Y1i)− h(Z1i)],

where (a) follows from the fact that conditioning reduces entropy. Assume that X1 and X2

have covariance ρ, i.e., E[X1X
∗
2 ] = ρ. Then, we get:

h(Y1) ≤ log 2πe
(

1 + SNR1 + INR21 + 2|ρ|
√

SNR1 · INR21

)

.

If (R1, R2) is achievable, then ǫN → 0 as N → ∞. Therefore, we get the desired bound:

R1 ≤ h(Y1)− h(Z1) ≤ log
(

1 + SNR1 + INR21 + 2|ρ|
√

SNR1 · INR21

)

.
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Proof of (2.37): Starting with Fano’s inequality, we get:

N(R1 − ǫN) ≤ I(W1; Y
N
1 , Y N

2 ,W2)

(a)
=
∑

[h(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 )− h(Z1i)− h(Z2i)]

(b)
=
∑

[h(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 , X i
2)− h(Z1i)− h(Z2i)]

(c)
=
∑

[h(Y2i|W2, Y
i−1
1 , Y i−1

2 , X i
2)− h(Z2i)]

+
∑

[h(Y1i|W2, Y
i−1
1 , Y i−1

2 , X i
2, Y2i, S

i
1)− h(Z1i)]

(d)

≤
∑

[h(Y2i|X2i)− h(Z2i) + h(Y1i|X2i, S1i)− h(Z1i)]

where (a) follows from the fact that W1 is independent from W2 and h(Y N
1 , Y N

2 |W1,W2) =
h(Y N

1 , SN
1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (see Claim 1 below); (b) follows from the fact that

X i
2 is a function of (W2, Y

i−1
2 ); (c) follows from the fact that Si

1 is a function of (Y i
2 , X

i
2); (d)

follows from the fact that conditioning reduces entropy. Hence, we get the desired result:

R1 ≤ h(Y2|X2)− h(Z2) + h(Y1|X2, S1)− h(Z1)

(a)

≤ log
(
1 + (1− |ρ|2)INR12

)
+ log

(

1 +
(1− |ρ|2)SNR1

1 + (1− |ρ|2)INR12

)

where (a) follows from the fact that

h(Y2|X2) ≤ log 2πe
(
1 + (1− |ρ|2)INR12

)
, (2.42)

h(Y1|X2, S1) ≤ log 2πe

(

1 +
(1− |ρ|2)SNR1

1 + (1− |ρ|2)INR12

)

. (2.43)

The inequality of (2.43) is obtained as follows. Given (X2, S1), the variance of Y1 is upper-
bounded by

Var [Y1|X2, S1] ≤ KY1
−KY1(X2,S1)K

−1
(X2,S1)

K∗
Y1(X2,S1)

,

where

KY1
= E

[
|Y1|2

]
= 1 + SNR1 + INR21 + ρg∗11g21 + ρ∗g11g

∗
21,

KY1(X2,S1) = E [Y1[X
∗
2 , S

∗
1 ]] = [ρg11 + g21, g

∗
12g11 + ρ∗g21g

∗
12] ,

K(X2,S1) = E

[[
|X2|2 X2S

∗
1

X∗
2S1 |S1|2

]]

=

[
1 ρ∗g∗12

ρg12 1 + INR12

]

.

By further calculation, we can get (2.43).

Claim 1. h(Y N
1 , SN

1 |W1,W2) =
∑

[h(Z1i) + h(Z2i)] .
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Proof.

h(Y N
1 , SN

1 |W1,W2) =
∑

h(Y1i, S1i|W1,W2, Y
i−1
1 , Si−1

1 )

(a)
=
∑

h(Y1i, S1i|W1,W2, Y
i−1
1 , Si−1

1 , X1i, X2i)

(b)
=
∑

h(Z1i, Z2i|W1,W2, Y
i−1
1 , Si−1

1 , X1i, X2i)

(c)
=
∑

[h(Z1i) + h(Z2i)] ,

where (a) follows from the fact that X1i is a function of (W1, Y
i−1
1 ) and X2i is a function

of (W2, S
i−1
1 ) (by Claim 2 below); (b) follows from the fact that Y1i = g11X1i + g21X2i + Z1i

and S1i = g12X1i + Z2i; (c) follows from the memoryless property of the channel and the
independence assumption of Z1i and Z2i.

Claim 2. For all i ≥ 1, X i
1 is a function of (W1, S

i−1
2 ) and X i

2 is a function of (W2, S
i−1
1 ).

Proof. By symmetry, it is enough to prove only one. Notice that X i
2 is a function of

(W2, Y
i−1
2 ) and Y i−1

2 is a function of (X i−1
2 , Si−1

1 ). Hence, X i
2 is a function of (W2, X

i−1
2 , Si−1

1 ).
Iterating the same argument, we conclude that X i

2 is a function of (W2, X21, S
i−1
1 ). Since

X21 depends only on W2, we complete the proof.

Proof of (2.40): The proof idea is based on the genie-aided argument [24]. However,
finding an appropriate genie is not simple since there are many possible combinations of
the random variables. The deterministic IC example in Fig. 2.5 (b) gives insights into this.
Note that providing a1 and (b1, b2, b3) to receiver 1 does not increase the rate R1, i.e., these
are useless gifts. This may motivate us to choose a genie as (g12X1,W2). However, in the
Gaussian channel, providing g12X1 is equivalent to providing X1. This is of course too much
information, inducing a loose upper bound. Inspired by the technique in [25], we instead
consider a noisy version of g12X1:

S1 = g12X1 + Z2. (2.44)

Intuition behind this is that we cut off g12X1 at the noise level. Indeed this matches intuition
in the deterministic IC. This genie together with W2 turns out to lead to the desired tight
upper bound.
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Starting with Fano’s inequality, we get:

N(R1 +R2 − ǫN ) ≤ I(W1; Y
N
1 ) + I(W2; Y

N
2 )

(a)

≤ I(W1; Y
N
1 , SN

1 ,W2) + I(W2; Y
N
2 )

(b)
= h(Y N

1 , SN
1 |W2)− h(Y N

1 , SN
1 |W1,W2) + I(W2; Y

N
2 )

(c)
= h(Y N

1 , SN
1 |W2)−

∑

[h(Z1i) + h(Z2i)] + I(W2; Y
N
2 )

(d)
= h(Y N

1 |SN
1 ,W2)−

∑

h(Z1i) + h(Y N
2 )−

∑

h(Z2i)

(e)
= h(Y N

1 |SN
1 ,W2, X

N
2 )−

∑

h(Z1i) + h(Y N
2 )−

∑

h(Z2i)

(f)

≤
N∑

i=1

[h(Y1i|S1i, X2i)− h(Z1i) + h(Y2i)− h(Z2i)]

where (a) follows from the fact that adding information increases mutual information (provid-
ing a genie); (b) follows from the independence ofW1 andW2; (c) follows from h(Y N

1 , SN
1 |W1,W2) =∑

[h(Z1i) + h(Z2i)] (see Claim 1); (d) follows from h(SN
1 |W2) = h(Y N

2 |W2) (see Claim 3 be-
low); (e) follows from the fact that XN

2 is a function of (W2, S
N−1
1 ) (see Claim 2); (f) follows

from the fact that conditioning reduces entropy.
Hence, we get

R1 +R2 ≤ h(Y1|S1, X2)− h(Z1) + h(Y2)− h(Z2).

Note that

h(Y2) ≤ log 2πe
(

1 + SNR2 + INR12 + 2|ρ|
√

SNR2 · INR12

)

. (2.45)

From (2.43) and (2.45), we get the desired upper bound.

Claim 3. h(SN
1 |W2) = h(Y N

2 |W2).

Proof.

h(Y N
2 |W2) =

∑

h(Y2i|Y i−1
2 ,W2)

(a)
=
∑

h(S1i|Y i−1
2 ,W2)

(b)
=
∑

h(S1i|Y i−1
2 ,W2, X

i
2, S

i−1
1 )

(c)
=
∑

h(S1i|W2, S
i−1
1 ) = h(SN

1 |W2),

where (a) follows from the fact that Y2i is a function of (X2i, S1i) and X2i is a function of
(W2, Y

i−1
2 ); (b) follows from the fact that X i

2 is a function of (W2, Y
i−1
2 ) and Si−1

1 is a function
of (Y i−1

2 , X i−1
2 ); (c) follows from the fact that Y i−1

2 is a function of (X i−1
2 , Si−1

1 ) and X i
2 is a

function of (W2, S
i−1
1 ) (by Claim 2).
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2.4.3 2-Bit Gap to the Capacity Region

Theorem 4. The gap between the inner and outer bound regions (given in Theorems 2
and 3) is at most 2 bits/s/Hz/user:

R ⊆ C ⊆ C ⊆ R⊕ ([0, 2]× [0, 2]) . (2.46)

Proof. The proof is immediate by Theorem 2 and 3. We define δ1 to be the difference between
min {(2.36), (2.37)} and min {(2.18), (2.19)}. Similarly, we define δ2 and δ12. Straightforward
computation gives

δ1 ≤ max

{

1, log

(

1 +
SNR1

1 + INR12

)

− log

(

2 +
SNR1

INR12

)

+ 2

}

≤ 2.

Similarly, we get δ2 ≤ 2 and δ12 ≤ 2. This completes the proof.

Remark 8 (Why does a 2-bit gap occur?). The achievable scheme meant for the capacity
region involves message-splitting. As mentioned in Remark 4, message-splitting incurs some
loss in the process of decoding the common message while treating private signals as noise.
Accounting for the effect of private signals, the effective noise power becomes double, thus
incurring a 1-bit gap. The other 1-bit gap comes from a relay structure of the feedback IC.
To see this, consider an extreme case where user 2’s rate is completely ignored. In this case,
we can view the [transmitter2, receiver2] communication pair as a single relay which only
helps the [transmitter1, receiver1] communication pair. It has been shown in [7] that for this
single relay Gaussian channel, the worst-case gap between the best known inner bound [16]
and the outer bound is 1 bit/s/Hz. This incurs the other 1-bit gap. This 2-bit gap is based
on the outer bound region in Theorem 3, which allows for arbitrary correlation between the
transmitters. So, one can expect that the actual gap to the capacity region is less than 2 bits.

Remark 9 (Reducing the gap). As discussed, the amplify-and-forward scheme has the
potential to reduce the gap. However, due to the inherent relay structure, reducing the gap
into a less-than-one bit is challenging. As long as no significant progress is made on the
single relay Gaussian channel, one cannot easily reduce the gap further.

Remark 10 (Comparison with the two-staged scheme). Specializing to the symmetric
rate, it can be shown that the infinite-staged scheme in Theorem 2 can achieve the symmetric
capacity to within 1 bit. Coincidentally, this gap matches the gap result of the two-staged
scheme in Theorem 1. However, the 1-bit gap comes from different reasons. In the infinite-
staged scheme, the 1-bit gap comes from message-splitting. In contrast, in the two-staged
scheme, the gap is due to lack of beamforming gain. One needs to come up with a new
technique that well combines these two schemes to reduce the gap into a less-than-one bit.
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Figure 2.10: El Gamal-Costa deterministic IC with feedback

2.5 Feedback Capacity of the El Gamal-Costa Model

We have so far made use of the linear deterministic IC to provide insights into approximating
the feedback capacity region of the Gaussian IC. The deterministic IC is a special case of El
Gamal-Costa deterministic IC [24]. In this section, we establish the exact feedback capacity
region for this general class of deterministic ICs.

Fig. 2.10 (a) illustrates El Gamal-Costa deterministic IC with feedback. The key condi-
tion of this model is given by

H(V2|Y1, X1) = 0,

H(V1|Y2, X2) = 0,
(2.47)

where Vk is a part of Xk (k = 1, 2), visible to the other receiver. This implies that in any
working system where X1 and X2 are decodable at receivers 1 and 2 respectively, V1 and V2

are completely determined at receivers 2 and 1 respectively, i.e., these are common signals.

Theorem 5. The feedback capacity region of El Gamal-Costa deterministic IC is the set of
(R1, R2) such that

R1 ≤ min {H(Y1), H(Y2|X2, U) +H(Y1|V1, V2, U)}
R2 ≤ min {H(Y2), H(Y1|X1, U) +H(Y2|V1, V2, U)}

R1 +R2 ≤ min {H(Y1|V1, V2, U) +H(Y2), H(Y2|V2, V1, U) +H(Y1)}
for some joint distribution p(u, x1, x2) = p(u)p(x1|u)p(x2|u). Here U is a discrete random
variable which takes on values in the set U where |U| ≤ min(|V1||V2|, |Y1|, |Y2|) + 3.
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Proof. Achievability proof is straightforward by Lemma 1. Set Uk = Vk, ∀k. Fix a joint distri-
bution p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u). We now write a joint distribution p(u, x1, x2, u1, u2)
in two different ways:

p(u, x1, x2, u1, u2)

= p(u)p(x1|u)p(x2|u)δ(u1 − g1(x1))δ(u2 − g2(x2)

= p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u)

where δ(·) indicates the Kronecker delta function. This gives

p(x1|u) :=
p(x1|u1, u)p(u1|u)
δ(u1 − g1(x1))

,

p(x2|u) :=
p(x2|u2, u)p(u2|u)
δ(u2 − g2(x2))

.

Now we can generate a joint distribution p(u)p(x1|u)p(x2|u). Hence, we complete the achiev-
ability proof. See Appendix 2.9.3 for converse proof.

As a by-product, we obtain the feedback capacity region of the linear deterministic IC.

Corollary 1. The feedback capacity region of the linear deterministic IC is the set of (R1, R2)
such that

R1 ≤ min {max(n11, n12),max(n11, n21)}
R2 ≤ min {max(n22, n21),max(n22, n12)}

R1 +R2 ≤ min
{
max(n22, n12) + (n11 − n12)

+,max(n11, n21) + (n22 − n21)
+
}
.

Proof. The proof is straightforward by Theorem 5. The capacity region is achieved when U
is constant; and X1 and X2 are independent and uniformly distributed.

2.6 Role of Feedback

Recall in Fig. 2.1 that feedback gain is bounded for 0 ≤ α ≤ 2
3
in terms of the symmetric

rate. So a natural question that arises is to ask whether feedback gain is marginal also
from a capacity-region perspective in this parameter range. With the help of Corollary 1,
we show that feedback can provide multiplicative gain even in this regime. We next revisit
the resource hole interpretation in Remark 2. With this interpretation, we address another
interesting question posed in Section 2.4: why is the 2R1+R2 bound missing with feedback?

Feedback Gain from a Capacity Region Perspective: Fig. 2.11 shows the feedback
capacity region of the linear deterministic IC under the symmetric channel setting: n = n11 =
n22 and m = n12 = n21. Interestingly, while for 2

3
≤ α ≤ 2, the symmetric capacity does not

improve with feedback, the feedback capacity region is enlarged even for this regime. This
implies that feedback gain could be significant in terms of the capacity region, even when
there is no improvement with feedback in terms of the symmetric capacity.



30

Figure 2.11: Feedback capacity region of the linear deterministic IC. This shows that feedback
gain could be significant in terms of the capacity region, even when there is no improvement due
to feedback in terms of the symmetric capacity.

2.6.1 Resource Hole Interpretation

Recall the role of feedback in Remark 2: feedback maximizes resource utilization by filling
up all the resource holes under-utilized in the non-feedback case. Using this interpretation,
we can provide an intuitive explanation why 2R1 +R2 bound is missing with feedback.

To see this, consider an example where 2R1+R2 bound is active in the non-feedback case.
Fig. 2.12 (a) shows an example where a corner point of (3, 0) can be achieved. Observe that
at the two receivers, the five signal levels are consumed out of the six signal levels. There is
one resource hole. This resource hole is closely related to the 2R1+R2 bound, which will be
shown in Fig. 2.12 (b).

Suppose the 2R1 +R2 bound is active. This implies that if R1 is reduced by 1 bit, then
R2 should be increased by 2 bits. Suppose that in order to decrease R1 by 1 bit, transmitter
1 sends no information on the second signal level. We then see the two empty signal levels at
the two receivers (marked as the gray balls): one at the second level at receiver 1; the other
at the bottom level at receiver 2. Transmitter 2 can now send 1 bit on the bottom level to
increase R2 by 1 bit (marked as the thick red line). Also it allows transmitter 2 to send one
more bit on the top level. This implies that the top level at receiver 2 must be a resource
hole in the previous case. This observation combined with the following observation can give



31

Figure 2.12: Relationship between a resource hole and 2R1 +R2 bound. The 2R1 +R2 bound is
missing with feedback.
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an answer to the question.
Fig. 2.12 (c) shows the feedback role that it fills up all the resource holes to maximize

resource utilization. We employ the same feedback strategy used in Fig. 2.9 to obtain the
result in Fig. 2.12 (c). Notice that with feedback, all of the resource holes are filled up except
a hole in the first stage, which can be amortized by employing an infinite number of stages.
Therefore, we can now see why the 2R1 +R2 bound is missing with feedback.

2.6.2 Side Information Interpretation

By carefully looking at the feedback scheme in Fig. 2.12(c), we develop another interpretation
as to the role of feedback. Recall that in the non-feedback case that achieves the (3, 0)
corner point, the broadcast nature of the wireless medium precludes transmitter 2 from
using any levels, as transmitter 1 is already using all of the levels. In contrast, if feedback is
allowed, transmitter 2 can now use some levels to improve the non-feedback rate. Suppose
that transmitters 1 and 2 send (a1, a2, a3) and b1 through their signal levels respectively.
Receivers 1 and 2 then get the bits (a1, a2, a3) and (a2, b1 ⊕ a2) respectively. With feedback,
in the second stage, the bit a2 - received cleanly at the desired receiver while interfering
with b1 at the other receiver - can be exploited as side information to increase the non-
feedback capacity. For example, with feedback transmitter 2 decodes the other user’s bit
a2 and forwards it through the top level. This transmission allows receiver 2 to refine the
corrupted bit b1 from b1 ⊕ a2. This seems to cause interference to receiver 1. But this
does not cause interference since receiver 1 already had the side information of a2 from
the previous broadcasting. We exploited the side information with the help of feedback to
refine the corrupted bit without causing interference. With this interpretation, we can now
make a connection between our feedback problem and a variety of other problems in network
information theory [5, 71, 38, 8, 28, 45].

Connection to Other Problems (Fig. 2.13): In 2000, Alshwede-Cai-Li-Yeung [5]
invented the breakthrough concept of network coding and came up with the butterfly ex-
ample where the network coding combined with the idea of exploiting side information can
significantly improve the routing performance. This result shows that exploiting side in-
formation plays an important role in decoding the desired signals from the network-coded
signals (equations). This network coding idea combined with the idea of exploiting side
information was shown to be powerful in wireless networks as well [71, 38]. Specifically, in
the context of two-way relay channels, it was shown that the broadcast nature of wireless
medium can be exploited to generate side information, and this generated side information
plays a crucial role in increasing capacity. Subsequently, the index coding problem was intro-
duced by Bar-Yossef, et.al. [8] where the significant impact of side information was directly
addressed.

In our work, as a consequence of addressing the two-user Gaussian IC with feedback, we
develop an interpretation as to the role of feedback: feedback enables receivers to exploit their
received signals as side information, thus improving the non-feedback capacity significantly.
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Figure 2.13: Connection to other problems in network information theory: network coding prob-
lems [5]; two-way relay channels [71]; general wireless networks [38]; index coding problems [8];
broadcast erasure channels with feedback [28]; and MIMO Gaussian broadcast channels with out-
dated channel state feedback [45].

With the help of this interpretation, we find that all of the above problems can be intimately
linked through the common idea of exploiting side information.

Very recently, the authors in [28, 45] came up with interesting results on feedback capacity.
Georgiadis and Tassiulas [28] showed that feedback can significantly increase the capacity of
the broadcast erasure channel. Maddah-Ali and Tse [45] showed that channel state feedback,
although it is outdated, can increase the non-feedback MIMO broadcast channel capacity.
We find that interestingly the role of feedback in these channels is the same as that in our
problem: feedback enables receivers to exploit their received signals as side information to
increase capacity. This reveals a connection to the above problems.

2.7 Discussion

Comparison to Related Work [41, 42, 27]: For the symmetric Gaussian IC, Kramer [41,
42] developed a feedback strategy based on the Schalkwijk-Kailath scheme [53] and the
Ozarow scheme [47]. Due to lack of closed-form rate-formula for the scheme, we cannot
see how the Kramer scheme is close to our symmetric rate in Theorem 1. To see this, we
compute the generalized degrees-of-freedom of the Kramer scheme.
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Figure 2.14: Generalized degrees-of-freedom comparison.

Lemma 2. The generalized degrees-of-freedom of the Kramer scheme is given by

d(α) =







1− α, 0 ≤ α < 1
3
;

3−α
4
, 1

3
≤ α < 1;

1+α
4
, α ≥ 1.

(2.48)

Proof. See Appendix 2.9.4.

Note in Fig. 2.14 that the Kramer scheme can be arbitrarily far from optimality, i.e., it
has an unbounded gap to the symmetric capacity for all values of α except α = 1. We also
plot the symmetric rate for finite channel parameters as shown in Fig. 2.15. Notice that
the Kramer scheme is very close to the outer bounds only when INR is similar to SNR. In
fact, the capacity theorem in [42] says that they match each other at INR = SNR−

√
2SNR.

However, if INR is quite different from SNR, it becomes far away from the outer bounds. Also
note that our new bound is much tighter than Gastpar-Kramer’s outer bounds in [41, 27].

Closing the Gap: Less than 1-bit gap to the symmetric capacity : Fig. 2.15 implies
that our achievable scheme can be improved especially when α ≈ 1 where beamforming
gain plays a significant role. As mentioned earlier, our two-staged scheme completely loses
beamforming gain. In contrast, the Kramer scheme captures the beamforming gain. As
discussed in Remark 10, one may develop a unified scheme that beats both the schemes for
all channel parameters to reduce the worst-case gap.

Less than 2-bit gap to the capacity region: As mentioned in Remark 8, a 2-bit gap
to the feedback capacity region can be improved up to a 1-bit gap. The idea is to remove
message splitting. Recall that the Alamouti-based amplify-and-forward scheme in Theorem 1
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Figure 2.15: Symmetric rate comparison.

improves the performance by removing message splitting. Translating the same idea to
the characterization of the capacity region is needed for the improvement. A noisy binary
expansion model in Fig. 2.17 may give insights into this.

Extension to Gaussian MIMO ICs with Feedback: The feedback capacity result
for El Gamal-Costa model can be extended to Teletar-Tse IC [64] where in Fig. 2.10, fk’s are
deterministic functions satisfying El Gamal-Costa condition (2.47) while gk’s follow arbitrary
probability distributions. Once extended, one can infer an approximate feedback capacity
region of the two-user Gaussian MIMO IC, as [64] did in the non-feedback case.

2.8 Summary

We have established the feedback capacity region to within 2 bits/s/Hz/user and the sym-
metric capacity to within 1 bit/s/Hz/user universally for the two-user Gaussian IC with
feedback. The Alamouti scheme inspires our two-staged achievable scheme meant for the
symmetric rate. For an achievable rate region, we have employed block Markov encoding
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Figure 2.16: An achievable scheme in the symmetric Gaussian IC: Alamouti-based amplify-and-
forward scheme

to incorporate an infinite number of stages. A new outer bound was derived to provide
an approximate characterization of the capacity region. As a side-generalization, we have
characterized the exact feedback capacity region of El Gamal-Costa deterministic IC.

An interesting consequence of our result is that feedback could provide multiplicative
gain in many-to-many channels unlike point-to-point, many-to-one, or one-to-many chan-
nels. We develop two interpretations as to how feedback can provide significant gain. One
interpretation is that feedback maximizes resource utilization by filling up all the resource
holes under-utilized in the non-feedback case. The other interpretation is that feedback can
exploit received signals as side information to increase capacity. The latter interpretation
leads us to make a connection to other problems.

2.9 Appendices

2.9.1 Achievable Scheme for the Symmetric Rate of (2.6)

The scheme uses two stages (blocks). In the first stage, each transmitter k sends codeword
XN

k with rate Rk. In the second stage, with feedback transmitter 1 gets the interference

plus noise: SN
2 = gcX

N
2 +Z

(1),N
1 . Now the complex conjugate technique based on Alamouti’s

scheme is applied to make XN
1 and SN

2 well separable. Transmitters 1 and 2 send
SN∗

2√
1+INR

and

− SN∗

1√
1+INR

respectively, where
√
1 + INR is a normalization factor to meet the power constraint.
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Receiver 1 can then gather the two received signals: for 1 ≤ i ≤ N ,

Yi ,

[

Y
(1)
1i

Y
(2)∗
1i

]

=

[

gd 1

− INR√
1+INR

g∗
d√

1+INR

] [
X1i

S2i

]

+

[

0

− g∗c√
1+INR

Z
(1)
2i + Z

(2)∗
1i

]

.

Under Gaussian input distribution, we can compute the rate under MMSE demodulation:

1

2
I(X1i;Yi) =

1

2
h(Yi)−

1

2
h(Yi|X1i) =

1

2
log

|KYi
|

|KYi|X1i
| .

Straightforward calculations give

|KYi
| =

∣
∣
∣
∣
∣

[

1 + SNR+ INR gd√
1+INR

g∗
d√

1+INR
1 + SNR+ INR

]∣
∣
∣
∣
∣
= (1 + SNR+ INR)2 − SNR

1 + INR

|KYi|X1i
| =

∣
∣
∣
∣

[
1 + INR gd

√
1 + INR

g∗d
√
1 + INR SNR+ 2INR+1

INR+1

]∣
∣
∣
∣
= 1 + 2INR.

Therefore, we get the desired result: the right term in (2.6).

Rsym =
1

2
log

(

(1 + SNR + INR)2 − SNR
1+INR

1 + 2INR

)

. (2.49)

Intuition Behind the Proposed Scheme: To provide intuition behind our proposed
scheme, we introduce a new model that we call a noisy binary expansion model, illustrated
in Fig. 2.17 (a). In the non-feedback Gaussian channel, due to the absence of noise infor-
mation at transmitter, transmitter has no chance to refine the corrupted received signal.
On the other hand, if feedback is allowed, noise can be learned. Sending noise informa-
tion (innovation) enables to refine the corrupted signal: the Schalkwijk-Kailath scheme [53].
However, the linear deterministic model cannot capture interplay between noise and signal.
To capture this issue, we slightly modify the deterministic model so as to reflect the effect
of noise. In this model, we assume that noise is a Ber(1

2
) random variable i.i.d. across time

slots (memoryless) and levels. This induces the same capacity as that of the deterministic
channel, so it matches the Gaussian channel capacity in the high SNR regime.

As a stepping stone towards the interpretation of the proposed scheme, let us first under-
stand Schalkwijk-Kailath scheme [53] using this model. Fig. 2.17 (b) illustrates an example
where 2 bits/time can be sent with feedback. In time 1, transmitter sends independent

bit streams (a1, a2, a3, a4, · · · ). Receiver then gets (a1, a2, a3 ⊕ z
(1)
1 , a4 ⊕ z

(1)
2 , · · · ) where z

(j)
i

indicates an i.i.d. Ber
(
1
2

)
random variable of noise level i at time j. With feedback, trans-

mitter can get noise information (0, 0, z
(1)
1 , z

(1)
2 , · · · ) by subtracting the transmitted signals

(sent previously) from the received feedback. This process corresponds to an MMSE op-
eration in Schalkwijk-Kailath scheme: computing innovation. Transmitter scales the noise
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(b) Interpretation of Schalkwijk-Kailath scheme(a) A noisy binary-expansion model

Figure 2.17: A noisy binary expansion model. Noise is assumed to be a Ber(12) random variable
i.i.d. across time slots (memoryless) and levels. This induces the same capacity as that of the
deterministic channel, so it matches the Gaussian channel capacity in the high SNR regime.

information to shift it by 2 levels and then sends the shifted version. The shifting operation
corresponds to a scaling operation in Schalkwijk-Kailath scheme. Receiver can now recover
(a3, a4) corrupted by (z

(1)
1 , z

(1)
2 ) in the previous slot. We repeat this procedure.

The viewpoint based on the binary expansion model can provide intuition behind our
proposed scheme. See Fig. 2.18. In the first stage, each transmitter sends three independent
bits: two bits above the noise level; one bit below the noise level. Transmitters 1 and 2 send
(a1, a2, a3) and (b1, b2, b3) respectively. Receiver 1 then gets: (1) the clean signal a1; (2) the

interfered signal a2 ⊕ b1; and (3) the interfered-and-noised signal a3 ⊕ b2 ⊕ z
(1)
1 . Similarly

for receiver 2. In the second stage, with feedback, each transmitter can get interference plus
noise by subtracting the transmitted signals from the feedback. Transmitters 1 and 2 get
(0, b1, b2⊕z

(1)
1 ) and (0, a1, a2⊕z

(1)
2 ) respectively. Next, each transmitter scales the subtracted

signal subject to the power constraint and then forwards the scaled signal. Transmitters 1
and 2 send (b1, b2 ⊕ z

(1)
1 ) and (a1, a2 ⊕ z

(1)
2 ) respectively. Each receiver can then gather the

two received signals to decode 3 bits. From this figure, one can see that it is not needed to
send additional information on top of innovation in the second stage. Therefore, this scheme
matches Alamouti-based amplify-and-forward scheme in the Gaussian channel.

2.9.2 Proof of Lemma 1

Codebook Generation: Fix a joint distribution p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u).
First generate 2N(R1c+R2c) independent codewords uN(i, j), i ∈ {1, · · · , 2NR1c}, j ∈ {1, · · · , 2NR2c},
according to

∏N
i=1 p(ui). For each codeword uN(i, j), encoder 1 generates 2NR1c indepen-

dent codewords uN
1 ((i, j), k), k ∈ {1, · · · , 2NR1c}, according to

∏N
i=1 p(u1i|ui). Subsequently,

for each pair of codewords
(
uN(i, j), uN

1 ((i, j), k)
)
, generate 2NR1p independent codewords

xN
1 ((i, j), k, l), l ∈ {1, · · · , 2NR1p}, according to

∏N
i=1 p(x1i|u1i, ui).
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Figure 2.18: Intuition behind the Alamouti-based amplify-and-forward scheme.

Similarly, for each codeword uN(i, j), encoder 2 generates 2NR2c independent codewords
uN
2 ((i, j), r), r ∈ {1, · · · , 2NR2c}, according to

∏N
i=1 p(u2i|ui). For

(
uN(i, j), uN

2 ((i, j), r)
)
,

generate 2NR2p independent codewords xN
2 ((i, j), r, s), s ∈ {1, · · · , 2NR2p}, according to

∏N
i=1 p(x2i|u2i, ui).
Notation: Notations are independently used only for this section. The index k indicates

the common message of user 1 instead of user index. The index i is used for both purposes:
(1) indicating the previous common message of user 1; (2) indicating time index. It could
be easily differentiated from contexts.

Encoding and Decoding: We employ block Markov encoding with a total size B of
blocks. Focus on the bth block transmission. With feedback y

N,(b−1)
1 , transmitter 1 tries to

decode the message ŵ
(b−1)
2c = k̂ (sent from transmitter 2 in the (b − 1)th block). In other

words, we find the unique k̂ such that
(

uN
(

w
(b−2)
1c , ŵ

(b−2)
2c

)

, uN
1

(

(w
(b−2)
1c , ŵ

(b−2)
2c ), w

(b−1)
1c

)

,

xN
1

(

(w
(b−2)
1c , ŵ

(b−2)
2c ), w

(b−1)
1c , w

(b−1)
1p

)

, uN
2

(

(w
(b−2)
1c , ŵ

(b−2)
2c ), k̂

)

, y
N,(b−1)
1

)

∈ A(N)
ǫ ,

where A
(N)
ǫ indicates the set of jointly typical sequences. Note that transmitter 1 already

knows its own messages (w
(b−2)
1c , w

(b−1)
1c , w

(b−1)
1p ). We assume that ŵ

(b−2)
2c is correctly decoded

from the previous block (b− 1). The decoding error occurs if one of two events happens: (1)

there is no typical sequence; (2) there is another ŵ
(b−1)
2c such that it is a typical sequence. By

AEP, the first error probability becomes negligible as N goes to infinity. By [19], the second
error probability becomes arbitrarily small (as N goes to infinity) if

R2c ≤ I(U2; Y1|X1, U). (2.50)
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Based on (w
(b−1)
1c , ŵ

(b−1)
2c ), transmitter 1 generates a new common message w

(b)
1c and a private

message w
(b)
1p . It then sends xN

1

(

(w
(b−1)
1c , ŵ

(b−1)
2c ), w

(b)
1c , w

(b)
1p

)

. Similarly transmitter 2 decodes

ŵ
(b−1)
1c , generates (w

(b)
2c , w

(b)
2p ) and then sends xN

2

(

(ŵ
(b−1)
1c , w

(b−1)
2c ), w

(b)
2c , w

(b)
2p

)

.

Each receiver waits until total B blocks have been received and then does backward
decoding. Notice that a block index b starts from the last B and ends to 1. For block b,
receiver 1 finds the unique triple (̂i, ĵ, k̂) such that

(

uN
(

î, ĵ
)

, uN
1

(

(̂i, ĵ), ŵ
(b)
1c

)

, xN
1

(

(̂i, ĵ), ŵ
(b)
1c , k̂

)

, uN
2

(

(̂i, ĵ), ŵ
(b)
2c

)

, y
N,(b)
1

)

∈ A(N)
ǫ ,

where we assumed that a pair of messages (ŵ
(b)
1c , ŵ

(b)
2c ) was successively decoded from block

(b+ 1). Similarly receiver 2 decodes (ŵ
(b−1)
1c , ŵ

(b−1)
2c , ŵ

(b)
2p ).

Error Probability: By symmetry, we consider the probability of error only for block b
and for a pair of transmitter 1 and receiver 1. We assume that (w

(b−1)
1c , w

(b−1)
2c , w

(b)
1p ) = (1, 1, 1)

was sent through block (b− 1) and block b; and there was no backward decoding error from

block B to (b+ 1), i.e., (ŵ
(b)
1c , ŵ

(b)
2c ) are successfully decoded.

Define an event:

Eijk =
{(

uN(i, j), uN
1 ((i, j), ŵ

(b)
1c ), x

N
1 ((i, j), ŵ

(b)
1c , k), u

N
2 ((i, j), ŵ

(b)
2c ), y

N,(b)
1

)

∈ A(N)
ǫ

}

.

By AEP, the first type of error becomes negligible. Hence, we focus only on the second type
of error. Using the union bound, we get

Pr




⋃

(i,j,k)6=(1,1,1)

Eijk



 ≤
∑

i 6=1,j 6=1,k 6=1

Pr(Eijk) +
∑

i 6=1,j 6=1,k=1

Pr(Eij1) +
∑

i 6=1,j=1,k 6=1

Pr(Ei1k)

+
∑

i 6=1,j=1,k=1

Pr(Ei11) +
∑

i=1,j 6=1,k 6=1

Pr(E1jk) +
∑

i=1,j 6=1,k=1

Pr(E1j1) +
∑

i=1,j=1,k 6=1

Pr(E11k)

≤ 2N(R1c+R2c+R1p−I(U,X1,U2;Y1)+4ǫ) + 2N(R1c+R2c−I(U,X1,U2;Y1)+4ǫ)

+ 2N(R1c+R1p−I(U,X1,U2;Y1)+4ǫ) + 2N(R1c−I(U,X1,U2;Y1)+4ǫ) + 2N(R2c+R1p−I(U,X1,U2;Y1)+4ǫ)

+ 2N(R2c−I(U,X1,U2;Y1)+4ǫ) + 2N(R1p−I(X1;Y1|U,U1,U2)+4ǫ).

(2.51)

From (2.50) and (2.51), we can say that the error probability can be made arbitrarily
small if







R2c ≤ I(U2; Y1|X1, U)
R1p ≤ I(X1; Y1|U1, U2, U)
R1c +R1p +R2c ≤ I(U,X1, U2; Y1)

(2.52)







R1c ≤ I(U1; Y2|X2, U)
R2p ≤ I(X2; Y2|U1, U2, U)
R2c +R2p +R1c ≤ I(U,X2, U1; Y2).

(2.53)
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Fourier-Motzkin Elimination: Applying Fourier-Motzkin elimination, we easily ob-
tain the desired inequalities. There are several steps to remove R1p, R2p, R1c, and R2c,
successively. First substitute R1p = R1 − R1c and R2p = R2 − R2c to get:

R2c ≤ I(U2; Y1|X1, U) := a1 (2.54)

R1 − R1c ≤ I(X1; Y1|U1, U2, U) := a2 (2.55)

R1 +R2c ≤ I(U,X1, U2; Y1) := a3 (2.56)

R1c ≤ I(U1; Y2|X2, U) := b1 (2.57)

R2 − R2c ≤ I(X2; Y2|U1, U2, U) := b2 (2.58)

R2 +R1c ≤ I(U,X2, U1; Y2) := b3 (2.59)

−R1c ≤ 0 (2.60)

−R1 +R1c ≤ 0 (2.61)

−R2c ≤ 0 (2.62)

−R2 +R2c ≤ 0 (2.63)

Categorize the above inequalities into the following three groups: (1) group 1 not con-
taining R1c; (2) group 2 containing negative R1c; (3) group 3 containing positive R1c. By
adding each inequality from groups 2 and 3, we remove R1c. Rearranging the inequalities
with respect to R2c, we get:

R1 ≤ b1 + a2 (2.64)

R2 +R1 ≤ b5 + a2 (2.65)

−R1 ≤ 0 (2.66)

R2c ≤ a1 (2.67)

R1 +R2c ≤ a5 (2.68)

−R2 +R2c ≤ 0 (2.69)

R2 −R2c ≤ b2 (2.70)

−R2c ≤ 0. (2.71)

Adding each inequality from groups 2 and 3, we remove R2c and finally obtain:

R1 ≤ min(a5, b1 + a2) (2.72)

R2 ≤ min(b5, a1 + b2) (2.73)

R1 +R2 ≤ min(b5 + a2, a5 + b2). (2.74)

2.9.3 Converse Proof of Theorem 5

For completeness, we provide the detailed proof, although there are many overlaps with the
proof in Theorem 3. The main point of the converse is how to introduce an auxiliary random
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variable U which satisfies that given Ui, X1i is conditionally independent of X2i. Claim 4
gives hint into this. It gives the choice of Ui := (V i−1

1 , V i−1
2 ).

First we consider the upper bound of an individual rate.

NR1 = H(W1)
(a)

≤ I(W1; Y
N
1 ) +NǫN

(b)

≤
∑

H(Y1i) +NǫN

where (a) follows from Fano’s inequality and (b) follows from the fact that entropy is non-
negative and conditioning reduces entropy.

Now consider the second bound.

NR1 = H(W1) = H(W1|W2)

≤ I(W1; Y
N
1 |W2) +NǫN ≤ I(W1; Y

N
1 , Y N

2 |W2) +NǫN
(a)
=
∑

H(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 ) +NǫN

(b)
=
∑

H(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 , X i
2) +NǫN

(c)
=
∑

H(Y2i|W2, Y
i−1
1 , Y i−1

2 , X i
2)

+
∑

H(Y1i|W2, Y
i−1
1 , Y i−1

2 , X i
2, Y2i, V

i
1 ) +NǫN

(d)

≤
∑

[H(Y2i|X2i, Ui) +H(Y1i|V1i, V2i, Ui)] +NǫN

where (a) follows from the fact that (Y N
1 , Y N

2 ) is a function of (W1,W2); (b) follows from the
fact that X i

2 is a function of (W2, Y
i−1
2 ); (c) follows from the fact that V i

1 is a function of
(Y i

2 , X
i
2); (d) follows from the fact that V i−1

1 is a function of (Y i−1
2 , X i−1

2 ), V i−1
2 is a function

of X i−1
2 , and conditioning reduces entropy. Similarly we get the outer bound for R2.
The sum rate bound is given as follows.

N(R1 +R2) = H(W1) +H(W2) = H(W1|W2) +H(W2)

≤ I(W1; Y
N
1 |W2) + I(W2; Y

N
2 ) +NǫN

= H(Y N
1 |W2) + I(W2; Y

N
2 ) +NǫN

= H(Y N
1 |W2) +H(Y N

2 )

−
{
H(Y N

1 , Y N
2 |W2)−H(Y N

1 |Y N
2 ,W2)

}
+NǫN

= H(Y N
1 |Y N

2 ,W2)−H(Y N
2 |Y N

1 ,W2) +H(Y N
2 ) +NǫN

(a)
=
∑

H(Y1i|Y i−1
1 , Y N

2 ,W2, X
i
2, V

i
1 ) +H(Y N

2 ) +NǫN

(b)

≤
∑

[H(Y1i|V1i, V2i, Ui) +H(Y2i)] +NǫN

where (a) follows from the fact that X i
2 is a function of (W2, Y

i−1
2 ) and V i

1 is a function
of (X i

2, Y
i
2 ); (b) follows from the fact that V i

2 is a function of X i
2 and conditioning reduces
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entropy. Similarly, we get the other outer bound:

N(R1 +R2) ≤
∑

[H(Y2i|V1i, V2i, Ui) +H(Y1i)] +NǫN .

Now let a time indexQ be a random variable uniformly distributed over the set {1, 2, · · · , N}
and independent of (W1,W2, X

N
1 , XN

2 , Y N
1 , Y N

2 ). We define

X1 = X1Q, V1 = V1Q; X2 = X2Q, V2 = V1Q,

Y1 = Y1Q, Y2 = Y2Q; U = (UQ, Q).
(2.75)

If (R1, R2) is achievable, then ǫN → 0 as N → ∞. By Claim 4, an input joint distribution
satisfies p(u, x1, x2) = p(u)p(x1|u)p(x2|u). This establishes the converse.

Claim 4. Given Ui = (V i−1
1 , V i−1

2 ), X1i and X2i are conditionally independent.

Proof. The proof is based on the dependence-balance-bound technique in [68, 33]. For com-
pleteness we describe details. First we show that I(W1;W2|Ui) = 0, which implies that W1

and W2 are independent given Ui. Based on this, we show that X1i and X2i are conditionally
independent given Ui.

Consider

0 ≤ I(W1;W2|Ui)
(a)
= I(W1;W2|Ui)− I(W1;W2)

(b)
= −H(W1)−H(W2)−H(Ui) +H(W1,W2) +H(W1, Ui) +H(W2, Ui)−H(W1,W2, Ui)

(c)
= −H(Ui) +H(Ui|W1) +H(Ui|W2)

=

i−1∑

j=1

[
−H(V1j , V2j|V j−1

1 , V j−1
2 ) +H(V1j, V2j|W1, V

j−1
1 , V j−1

2 ) +H(V1j, V2j|W2, V
j−1
1 , V j−1

2 )
]

(d)
=

i−1∑

j=1

[
−H(V1j , V2j|V j−1

1 , V j−1
2 ) +H(V2j|W1, V

j
1 , V

j−1
2 ) +H(V1j |W2, V

j−1
1 , V j

2 )
]

=

i−1∑

j=1

[
−H(V1j |V j−1

1 , V j−1
2 ) +H(V1j|W2, V

j−1
1 , V j

2 )−H(V2j|V j
1 , V

j−1
2 ) +H(V2j|W1, V

j
1 , V

j−1
2 )

]

(e)

≤ 0

where (a) follows from I(W1;W2) = 0; (b) follows from the chain rule; (c) follows from
the chain rule and H(Ui|W1,W2) = 0; (d) follows from the fact that V j

1 is a function of
(W1, V

j−1
2 ) and V j

2 is a function of (W2, V
j−1
1 ) (see Claim 5); (e) follows from the fact that

conditioning reduces entropy. Therefore, I(W1;W2|Ui) = 0, which shows the independence
of W1 and W2 given Ui.
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Notice that X1i is a function of (W1, V
i−1
2 ) and X2i is a function of (W2, V

i−1
1 ) (see Claim

5). Hence, it follows easily that

I(X1i;X2i|Ui) = I(X1i;X2i|V i−1
1 , V i−1

2 ) = 0, (2.76)

which proves the independence of X1i and X2i given Ui.

Claim 5. For i ≥ 1, X i
1 is a function of (W1, V

i−1
2 ). Similarly, X i

2 is a function of
(W2, V

i−1
1 ).

Proof. By symmetry, it is enough to prove it only for X i
1. Since the channel is deterministic

(noiseless), X i
1 is a function of (W1,W2). In Fig. 2.10, we see that information of W2 to

the first link pair must pass through V2i. Also note that X1i depends on the past output
sequences until i− 1 (due to feedback delay). Therefore, X i

1 is a function of (W1, V
i−1
2 ).

2.9.4 Proof of Lemma 2

Let INR = SNRα. Then, by (29) in [41] and (77*) in [42], we get

Rsym = log

(

1 + SNR+ SNRα + 2ρ∗SNR
α+1

2

1 + (1− ρ∗2)SNRα

)

, (2.77)

where ρ∗ is the solution between 0 and 1 such that

2SNR
3α+1

2 ρ∗4 + SNRαρ∗3 − 4(SNR
3α+1

2 + SNR
α+1

2 )ρ∗2

− (2 + SNR + 2SNRα)ρ∗ + 2(SNR
3α+1

2 + SNR
α+1

2 ) = 0.

Notice that for 0 ≤ α ≤ 1
3
and for the high SNR regime, SNR is a dominant term and

0 < ρ∗ < 1. Hence, we get ρ∗ ≈ 2SNR
3α−1

2 . This gives limSNR→∞
Rsym

log(SNR)
= 1 − α. For

1
3
< α < 1, the first and second dominant terms become SNR

3α+1

2 and SNR respectively.

Also for this regime, ρ∗ ≈ 1. Hence, we approximately get 1 − ρ∗2 ≈ SNR
−3α+1

4 . This gives
limSNR→∞

Rsym

log(SNR)
= 3−α

4
. For α ≥ 1, note that the first and second dominant terms are

SNR
3α+1

2 and SNR; and ρ∗ is very close to 1. So we get 1 − ρ∗2 ≈ SNR−α+1

4 . This gives the
desired result in the last case.
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Chapter 3

Interference Alignment for Cellular
Networks

3.1 Introduction

One of the key performance metrics in the design of cellular systems is that of cell-edge
spectral efficiency. As a result, fourth-generation (4G) cellular systems, such as 3GPP-LTE
[1] and WiMAX [2], require at least a doubling in cell-edge throughput over previous 3G
systems [1]. Given the disparity between average and cell-edge spectral efficiencies (ratios of
about 4:1) [2], the desire to improve cell-edge throughput performance is likely to continue.

Since the throughput of cell-edge users is greatly limited by the presence of co-channel
interference from other cells, developing an intelligent interference management scheme is
the key to improving cell-edge throughput. One interesting recent development, called in-
terference alignment (IA) [44, 14], manages interference by aligning multiple interference
signals in a signal subspace with dimension smaller than the number of interferers. While
most of the work on IA [14, 31, 50] has focused on K point-to-point interfering links, in
this work we show that that IA can be used to improve the cell-edge user throughput in a
cellular network. Specifically we show that near interference-free throughput performance
can be achieved in the cellular network.

While IA promises substantial theoretical gain in cellular networks, it comes with chal-
lenges in implementation. First, our IA scheme that will described in Section 3.2 requires
extensive channel-state-information (CSI) to be exchanged over the backhaul between base-
stations (BSs) of different cells. A second challenge comes from realistic cellular environ-
ments that involve multiple unaligned out-of-cell interferers. Lastly, the integration of IA
with other system issues, such as scheduling, needs to be addressed.

We propose a new IA technique for downlink cellular systems that addresses many of
these practical concerns. Unlike the uplink IA scenario, our downlink IA scheme requires
feedback only within a cell. As a consequence, our technique can be implemented with small
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changes to existing 4G standards where the within-a-cell feedback mechanism is already
being considered for supporting multi-user MIMO.

This IA technique aims to cancel interference only from one neighboring BS, which does
well in a two-cell layout. In particular, the IA technique in Section 3.2 gives up the opportu-
nity of providing matched-filtered gain (also called beam-forming gain in the case of multiple
antennas) in the presence of a large number of interferers. This new technique balances the
two advantages of interference cancellation and matched-filtering gain, inspired by the idea
of the standard MMSE receiver that unifies a zero-forcing receiver (optimal in the high SNR

regime) and a matched filter (optimal in the low SNR regime). Through simulations, we show
that this provides approximately 60% and 28% gain in cell-edge throughput performance for
a linear cell layout and 19 hexagonal wrap-around-cell layout respectively, as compared to
a standard multi-user MIMO technique. We also find that our scheme has the potential
to provide significant performance for heterogeneous networks [4], e.g., macro-pico cellular
networks where dominant interference can be much stronger than the residual interference.
For instance, pico-users can be significantly interfered with by the nearby macro-BS, as com-
pared to the aggregated remaining BSs. We show that for these networks our scheme can
give around 40% to 200% gain over the standard technique. Furthermore, our scheme is
easily combined with a widely-employed opportunistic scheduler [65] for significant multi-
user-diversity gain.

Next, in order to mitigate the interference from multiple dominant interferers, we propose
another IA scheme, which we call subspace interference alignment. This scheme aligns the
interference of multiple interferers onto a restricted subspace simultaneously at multiple
non-intended receivers, whose dimension is negligible as compared to that of the subspace
spanned by the desired signals, thus achieving almost interference-free degrees-of-freedom
even in the multiple (more than 2) cellular networks. A key property of this scheme is that
the simultaneous interference alignment is achieved using only a finite number of dimensions.
This is in stark contrast to Cadambe-Jafar’s IA scheme which employs an infinite number
of dimensions to achieve the simultaneous interference alignment.

3.2 Uplink Interference Alignment

System Model: We develop uplink IA in [60]. Fig. 3.1 illustrates an example for the case
of two isolated cells α and β. Suppose that there are K users in each cell and each user (e.g.,
user k in cell α) sends one symbol (or stream) xαk ∈ C along a transmitted vector vαk ∈ CM .
We can generate multiple dimensions by using subcarriers (in an OFDM system), antennas,
or both:

M = (# of subcarriers)× (# of transmit antennas). (3.1)

We avoid employing multiple time slots for creating dimensions. This is because the inter-
ference alignment technique (to be described shortly) requires knowledge of the CSI, but
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Cell α

Cell β

1

2

K

...

1

2
...

K

BS α

BS β

Gβ1

Gβ1

Gβ1

dof(per cell) =
K

K + 1
−→ 1

vα1

vα2

vαK

vβ1

vβ2

vβK

Figure 3.1: Uplink interference alignment. Interference-free degrees-of-freedom can be asymp-
totically achieved with an increase in K. While this scheme provides promising theoretical gain,
it comes with implementation challenge. The scheme requires each user to know its cross-channel
information to the other BS and this may require exchange of cross-channel information over the
backhaul between BSs of different cells.

the future CSI is not available beforehand due to causality. Let S be the total number of
streams. In this case, S = K, as all of the users are sending their own symbols.

The received signal of BS α is given by

yα =

K∑

k=1

(Hαkvαk)xαk +

K∑

k=1

(Gαkvβk)xβk + zα, (3.2)

where Hαk ∈ CN×M indicates direct-channel from user k of cell α to BS α, and Gαk ∈
CN×M denotes cross-channel from user k of cell β to BS α. We assume that the channels
are constant over a few time slots with respect to channel estimation and CSI feedback
procedures. Here N is the number of dimensions at the receiver: N = (# of subcarriers) ×
(# of receive antennas). We focus on the symmetric configuration, i.e., M = N . In fact, the
extension to the asymmetric case is not straightforward, although we will provide a natural,
but potentially suboptimal, variant of the IA scheme (to be described) in Section 3.4.4.
We will discuss more details in Section 3.4.4. Note that the combined use of antennas and
subcarriers induces a block-diagonal structure for the channel matrices. We assume that
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noise is additive white Gaussian and without loss of generality assume that it has unit
power, i.e., zα ∼ CN (0, I).

Description: The idea of interference alignment is to design the transmitted vectors so
that they are aligned onto a one-dimensional linear subspace at the other BS. Specifically,
user k in cell β sets its transmitted vector as vβk = G−1

αkvref , where vref ∈ CM is an arbitrary
non-zero vector that can be fixed, independent of channel state information, e.g., vref =
[1, · · · , 1]t, where [·]t indicates a transpose. Similarly user k in cell α sets its transmitted
vector as vαk = G−1

βkvref . We use the same vref across the cells, although it can be different.
The received signal of BS α is then

yα =

K∑

k=1

(HαkG
−1
βkvref)xαk + vref

(
K∑

k=1

xβk

)

+ zα. (3.3)

Notice that the interference space collapses to a one-dimensional linear subspace spanned by
the vref . On the other hand, due to the randomness in wireless channels, the transmitted
vectors associated with the desired symbols xαk’s are likely to be linearly independent. Note
that forM = K+1, rank

[
Hα1G

−1
β1vref , · · · ,HαKG

−1
βKvref

]
= K, while the interference signals

only occupy a one-dimensional subspace. Hence, the BS can recover K desired symbols using
K + 1 dimensions. Notice that this full rank condition holds with high probability under
typical wireless channels and for the block-diagonal structure of the channel matrices. The
performance in the interference-limited regime can be captured by a notion of degrees-of-
freedom (dof). Here, the dof per cell = K

K+1
. We use the notion normalized by the total

number M = K + 1 of dimensions. Notice that as K gets large, we can asymptotically
achieve interference-free dof = 1.

While this IA technique provides promising theoretical gain, it comes with some im-
plementation challenge. The IA scheme requires each user to know its cross-channel in-
formation to the other BS. While in a time-division-multiplexing system, channels can be
estimated using reciprocity, in a frequency-division-multiplexing system, an implementa-
tion issue arises. One way to obtain the cross-channel is that the other-cell BS directly
feeds back the cross-channel information to the users. However, this requires additional
communication sessions between different cells, thus increasing the control channel over-
head. Another way (possibly more plausible) is to exchange such channel knowledge over
the backhaul between BSs of different cells. Fig. 3.1 shows a route to obtain the CSI of
Gβ1: BS β → backhaul → BS α → feedback → user 1 of cell α. However, this requires
the use of additional links (backhaul). On the contrary, in the downlink, we show that IA
can be applied without inter-cell communication sessions or backhaul cooperation, thereby
resolving this implementation issue.

3.3 Downlink Interference Alignment

Description: Fig. 3.2 illustrates an example of downlink IA where there are two users
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∗
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u
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β2Hβ2P

uα1

Gβ1P

Interference alignment

between out-of-cell and
intra-cell interference

Hα1Pvα1

Hα1Pvα2

Bα

Bβ

Figure 3.2: Downlink interference alignment. Interference alignment is achieved between out-of-
cell and intra-cell interference vectors at multiple users at the same time. Unlike the uplink IA, our
downlink IA scheme does not require backhaul cooperation or inter-cell communication sessions.

(K = 2) in each cell. The uplink-downlink duality theorem [60, 67, 37] states that the dof

of the uplink is the same as that of the downlink. Hence, in this example, the dof per cell =
K

K+1
= 2

3
. To achieve this, each BS needs to send two streams S = 2 over three dimensions

M = 3. The idea is similar to that of the uplink IA in a sense that two dimensions are used
for transmitting desired signals and the remaining one dimension is reserved for interference
signals. However, the method of interference alignment is different.

While in the uplink, we set the reference vector vref at receivers, in the downlink, we fix
a M-by-S precoder matrix P at transmitters. Remember that M = 3 and S = 2 in this
example. Notice that this fixed precoder is independent of channel gains. For simplicity we
use the same precoder, although it can be different across cells. Each BS (e.g., BS α) has a
second precoder Bα = [vα1,vα2] ∈ C2×2, which precedes the fixed precoder. Using these two
cascaded precoders, it sends two symbols (xα1, xα2), each of which is intended for each user
in the cell. The received signal of user k in cell α is then given by

yαk = HαkP(vα1xα1 + vα2xα2) +GβkP

2∑

k=1

vβkxβk

︸ ︷︷ ︸

out-of-cell interference

+zαk,
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where Hαk ∈ C3×3 indicates the direct-channel from BS α to user k of cell α, and Gβk ∈ C3×3

denotes the cross-channel from BS β. With a minor abuse of notation, we use the same
notation as we did in the uplink. We assume that zαk ∼ CN (0, I).

Next user k in cell α estimates the interference GβkP using pilots or a preamble. It then
generates a null vector uαk such that u∗

αkGβkP = 0 (and ||uαk|| = 1). Since the GβkP is of
dimension 3-by-2, such a vector uαk always exists, and when applied to the received signal, it
will null out the out-of-cell interference: ỹαk := u∗

αkyαk = u∗
αkHαkP(vα1xα1 + vα2xα2) + z̃αk,

where z̃αk := u∗
αkzαk ∼ CN (0, 1). Note that the receive vector uαk does not guarantee the

cancellation of intra-cell interference intended for the other user in the same cell α. This is
accomplished as follows. User k feeds back its equivalent channel u∗

αkHαkP (obtained after
applying the receive vector) to its own BS α. BS α then applies the following zero-forcing
precoder Bα (which precedes the fixed precoder P):

Bα := [vα1,vα2] =

[
u∗
α1Hα1P

u∗
α2Hα2P

]−1 [
γ1 0
0 γ2

]

∈ C
2×2,

where γk is a normalization factor for meeting the transmit power constraint. Considering
user 1’s received signal, this zero-forcing precoder guarantees that user 2’s transmitted signal
Hα1Pvα2 lies in the interference space Gβ1P. Note that u∗

α1(Hα1Pvα2) = 0. This enables
user 1 to recover its own signal. Similarly, user 2 can recover its signal and therefore BS
α can send 2 symbols using 3 dimensions, thus achieving dof per cell = 2

3
. In fact, a series

of these operations enables interference alignment, as will be explained in Remark 11. Also
this scheme makes use of zero-forcing receive vector. Hence, we call this scheme zero-forcing
IA.

Remark 11 (Interference Alignment Interpretation). Observing the interference plane
of user 1 in cell α, we can see this scheme achieves interference alignment. Note that
three interference vectors - two out-of-cell interference vectors and one intra-cell interfer-
ence vector - are aligned onto a two-dimensional linear subspace. Interference alignment is
achieved between out-of-cell and intra-cell interference signals. Without carefully designing
the transmit-and-receive vector pairs, three interfering vectors span three dimensions in gen-
eral. However, our IA technique enables us to constrain the interference within only two
dimensions (not three), thus enabling us to transmit in one dimension interference-free. �

Remark 12 (Feedback Mechanism). Note two key system aspects of the technique. First,
unlike the uplink IA, the exchange of cross-channel information between BSs or between
users in different cells is not needed. Each BS can fix precoder P, independent of channel
gains. Each user can then specify the null space orthogonal to the out-of-cell interference
signal space. This enables the user to design a zero-forcing receive vector without knowing
the interfering vectors that were actually transmitted. For example, user 1 in cell α can
compute uα1 without knowing BβP (the interfering vectors actually transmitted). Each user
then feeds back its equivalent channel uαkHαkP and the BS forms the zero-forcing transmit
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Figure 3.3: Performance of zero-forcing interference alignment for a two-isolated cell layout where
M = 4 (e.g., a 4-by-4 antenna configuration), the number S of streams is M − 1 = 3 and the total
number K of users in each cell is 3.

vectors only with the feedback of the equivalent channels. Hence, the scheme requires only
within-a-cell feedback mechanism. This is contrast to the uplink IA which requires inter-cell
communication sessions or backhaul cooperation between different BSs.

Secondly, while feedback is required from the user to the BS, this feedback is the same as
the feedback used for standard multi-user MIMO techniques. The only difference is that in
downlink IA, two cascaded precoders (e.g., Bα and P) are used and the receive vector of each
user is chosen as a null vector of out-of-cell interference signal space. Therefore, the scheme
can be implemented with little change to an existing cellular system supporting multi-user
MIMO. �

Performance and Limitations: Fig. 3.3 shows the sum-rate performance of zero-
forcing IA in a two-isolated cell layout where M = 4 (e.g., a 4-by-4 antenna configuration),
the number S of streams is M − 1 = 3 and the total number K of users in each cell is 3. As
a baseline scheme, we use a matched filter receiver : one of the standard multi-user MIMO
techniques [48, 30]. This baseline uses the dominant left-singular vector of the direct-channel
as a receive vector:

uMF
αk = a maximum left-singular vector of Hαk. (3.4)
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Note that the matched filter receiver maximizes beam-forming gain while ignoring the inter-
ference signal space. We assume a zero-forcing vector at the transmitter to null out intra-cell
interference. Nulling intra-cell interference is important as its power has the same order as
the desired signal power. The zero-forcing transmit vectors are designed as:

[vZF
α1 , · · · ,vZF

αS] = H∗(HH∗)−1diag {γ1, · · · , γS} ∈ C
M×S, (3.5)

where γk is a normalization factor and H := [uMF∗
α1 Hαk; · · · ;uMF∗

αS Hαk] ∈ CS×M denotes the
composite matrix.

Figure 3.4: Different layouts in a downlink cellular system. A parameter γ indicates the relative
strength of the interference power from a dominant interferer to the remaining interference power
(summed from the other BSs).

Note that in (3.4), receiver vectors are initially chosen as dominant left-singular vectors
of the channels, as transmit vectors are not decided yet. However, once transmit vectors are
designed as above, we can now update the receiver vectors so as to maximize beam-forming
gain by aligning them into the determined direction of the transmitted signals. Given the
updated received vectors, we can also update the transmit vectors accordingly. This iterative
algorithm was introduced in [48, 30] and we call this scheme iterative matched filtering.

While in matched filtering, this iterative procedure updates the receive-and-transmit
vector pairs to potentially improve the performance, in the zero-forcing IA, it does not
change the vector pairs. Recall that the receive vector in the IA scheme depends only on
the interference space, so it is irrelevant to the transmit vectors. Hence, for fair comparison
of CSI overhead, we assume no iteration for the matched filtering in Fig 3.3: the receive-
and-transmit vectors are designed successively according to (3.4) and (3.5) without any
iterations.
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In Fig. 3.3, one can clearly see that the zero-forcing IA provides significant performance
gain over the matched filtering. In fact, for large SNR, the scheme provides the asymptotically
optimal performance, since it achieves the optimal dof [60]. The gain comes from the fact
that in the two-isolated-cell case, there exists only a single interferer (no residual interferers)
and our IA scheme completely removes the interference from the single interferer.

However, for realistic multi-cellular environments, the performance may not be very good
due to the remaining interferers. In order to take multi-cellular environments into account,
we introduce a parameter γ that captures the relative strength of the interference power from
a dominant interferer to the remaining interference power (summed from the other BSs):

γ :=
INRrem

INRdom

, (3.6)

where INRdom and INRrem denote the ratios of the dominant and aggregate interference power
over the noise power, respectively. Note that by adapting γ, one can cover arbitrary mobile
location and cellular layouts.

While, at one extreme (γ = 0), the zero-forcing IA provides significant performance, at
the other extreme (γ ≫ 1), the scheme may not be good as it completely loses receive beam-
forming gain. Remember that the zero-forcing IA receiver depends only on the interference
space and therefore it is independent of the direct-channel, thus losing beam-forming gain.
In this case, one can expect that matched filtering will perform much better than the IA
scheme. This motivates the need for developing a new IA technique that can balance the
degrees-of-freedom gain with the matched-filtered power gain depending on the value of γ.

3.4 MMSE-based Downlink Inteference Alignment

3.4.1 Scheme Description

The zero-forcing IA and matched filtering schemes are analogous to a conventional zero-
forcing receiver and a matched-filter receiver in a point-to-point channel with colored noise.
So it is natural to think of a unified technique like the standard MMSE receiver. However, in
our cellular context, a straightforward design of an MMSE receiver requires the knowledge of
transmitted vectors from the other cell. Moreover, a chicken-and-egg problem arises between
different cells, due to the interconnection of the transmit-and-receive vector pairs. In order
to decouple the vector design between cells, we consider uncoordinated systems, i.e., transmit
vector information is not exchanged between different cells. Under this assumption, a goal
is to mimic an MMSE receiver.

Idea: The idea for accomplishing this goal consists of three parts: (1) coloring an inter-
ference signal space, independent of the actually transmitted vectors; (2) designing a coloring
parameter κ (to be defined shortly) to unify the two extreme cases: γ ≪ 1 and γ ≫ 1; (3)
designing an MMSE-like receiver based on the coloring parameter.
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Coloring the interference space: We employ two cascaded precoders: (1) a fixed precoder
P̄ ∈ CM×M located at the front-end; and (2) a zero-forcing precoder Bα ∈ CM×S which
precedes the P̄. To differentiate with the precoder P used for the zero-forcing IA, we use
different notation P̄. With this fixed precoder, we can color the interference space, to some
extent, to be independent of the zero-forcing precoder. To see this, we first consider the
covariance matrix of interference-plus-noise at user k in cell α:

Φk = (1 + INRrem)I+
SNR

S
(GβkP̄BβB

∗
βP̄

∗G∗
βk), (3.7)

where S is the total number of streams (S ≤ M) and Bβ indicates the zero-forcing pre-
coder of a dominant interferer (BS β): Bβ = [vβ1, · · · ,vβS] ∈ CM×S. Here we make several
assumptions: noise power is normalized to 1 (without loss of generality); the total trans-
mission power is equally allocated to each stream; and the aggregate interference except the
dominant interference is white Gaussian. To be more accurate, we may include two or three
dominant interferers in the process of computing Φk, assuming that the remaining interfer-
ence except the multiple dominant interferers is white Gaussian. We will further discuss this
issue in Section 3.4.4.

Since we consider uncoordinated systems, Bβ is unknown to each user in cell α and there-
fore it is impossible to compute Φk. This motivates us to use the expected value of the covari-
ance matrix averaged over Bβ: Φ̄k := E[Φk] = (1 + INRrem)I +

SNR
S

(GαkP̄E[BβB
∗
β]P̄

∗G∗
αk).

Without the knowledge of Bβ, we can then control the coloredness of interference signals by
carefully designing P̄. The idea is to differently weight the last (M − S) columns of P̄ with
a parameter κ (0 ≤ κ ≤ 1):

P̄ = [f1, · · · , fS, κfS+1, · · · , κfM ] ∈ C
M×M , (3.8)

where [f1, · · · , fM ] is an orthogonal matrix.
Before describing how to design κ and seeing how this colors interference signals, we will

first explain how to compute E[BβB
∗
β] and how to decide the norm of each column vector

of P̄ for meeting the transmit power constraint. In computing E[BβB
∗
β], we assume the

statistics of Bβ. Since Bβ is the zero-forcing precoder of BS β, it has the following form:
Bβ = H∗ (HH∗)−1

diag {γ1, · · · , γS}, where H :=
[
u∗
β1Hβ1P̄; · · · ;u∗

βSHβSP̄
]
. Note that Bβ

is coupled with P̄, so its statistics depend on κ. With a close observation of Bβ, one can see
that the last (M − S) rows of Bβ is biased by a factor of κ. This motivates us to assume

that each entry of Bβ of the first S rows is i.i.d CN
(

0, 1
S+(M−S)κ2

)

and each entry of the

last (M −S) rows is i.i.d. CN
(

0, κ2

S+(M−S)κ2

)

. Under this assumption, we can then compute

E[BβB
∗
β] to get:

Φ̄k :=E[Φk] = (1 + INRrem)I+
SNR

S + (M − S)κ2

(

GαkP̄

[
IS 0
0 κ2IM−S

]

P̄∗G∗
αk

)

. (3.9)
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Considering the transmit power constraint, we can now decide the norm of each column

vector of P̄: ||fi||2 = S+(M−S)κ2

S+(M−S)κ4 , ∀i. Note that this choice satisfies the transmit power

constraint, i.e., trace
[
P̄E[BβB

∗
β]P̄

∗] = S.
Designing a coloring parameter κ: We now present how to design the coloring parameter

κ. Two extreme cases give insights into this design. When the residual interference is
negligible, i.e., γ ≪ 1, the scheme should mimic the zero-forcing IA, so P̄ should be rank-
deficient, i.e., κ = 0. In this case, the null space of the interference signals can be specified,
independent of Bβ. As a result, the expected covariance matrix acts as the actual covariance
matrix, thus inducing the same solution as the zero-forcing IA. At the other extreme (γ ≫ 1),
the scheme should mimic matched filtering. This motivates us to choose a unitary matrix P̄
(i.e., κ = 1) so that the Φ̄k is close to aI for some scalar a. For an intermediate value of γ,
we propose the following to sweep between the two cases:

κ = min
(
γ1/4, 1

)
. (3.10)

The use of the function (·)1/4 which relates γ to κ is our heuristic choice based on simulation
results for some particular values of γ, SNR and other configurations. Specifically, for a 19
hexagonal cellular layout (γ ≈ 0.4) and (SNR = 20 dB,M = 4, S = 3, K = 3), we plot
the sum-rate of the proposed scheme as a function of κ and then find κ that maximizes the
sum-rate (via a grid search). From this experiment, we conjecture the relationship between
γ and κ. We find that the function (·)1/4 well matches the relationship, thus proposing this
heuristic. One may optimize κ in a more precise manner. For example, one may choose
optimal κ case-by-case for each configuration and with a finer grid-step-size.

In the above choice, κ varies with mobile location, since INRrem is a function of mobile
location. This can be undesirable because it requires frequent adaptation of BS precoder
which supports users from the cell center to the cell edge. Therefore, we propose to fix κ.
In the interests of improving the worst-case performance (cell-edge performance), we fix κ,
based on the cell-edge mobile location for a given network layout. For example, we use
κ ≈ 0.57 for the linear cell layout and κ ≈ 0.80 for the 19 hexagonal wrap-around cell
layout (see Fig. 3.4). Since our choice focuses on improving the cell-edge throughput, less
performance gain is expected for cell-interior users.

Alternatively, we can have different κ factors, depending on whether the BS is precoding
for cell-edge vs. cell-interior users. This would require different P̄ matrices, and would add
to the complexity of the system, but would optimize performance for all users in the cell.

Designing a MMSE-like receiver : With the above Φ̄k, we then use the standard formula

of an MMSE receiver: uαk =
Φ̄−1

k
HαkP̄vαk

||Φ̄−1

k
HαkP̄vαk||

∈ CM . Similar to the iterative matched filtering

technique, we also employ an iterative approach to compute transmit-and-receive vector
pairs.

Integration with a scheduler: We consider integration of our scheme with a scheduler:
one of the important system issues that need to be considered in cellular systems. Designing
the coloring parameter κ and controlling the number S of streams, our proposed scheme
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balances the degrees-of-freedom gain (IA gain) with matched-filtered power gain depending
on the value of γ. Importantly, scheduler gain is closely coupled with these gains, as it can
play significant role in providing beam-forming power gain. For instance, an opportunistic
scheduler [65] exploits multi-user diversity to provide good signal separation and power gain,
thus inducing the high SINR regime where degrees-of-freedom gain affects the performance
more significantly than beam-forming power gain does. Hence, it is important to carefully
design the scheme considering the integration with a scheduler, so as to well balance the
degrees-of-freedom gain and power gain.

In this work, we employ an opportunistic scheduler [65], which chooses a set of S users out
of total K users such that the sum rate is maximized. We consider uncoordinated schedulers,
i.e., scheduling information is not exchanged between different BSs.

Algorithm Description: We now describe an algorithm of the proposed IA scheme
incorporating an opportunistic scheduler. Here is the algorithm.

1. (Intialization): Each user initializes its receive vector as follows: ∀k ∈ {1, · · · , K},

u
(0)
αk =

Φ̄−1
k HαkP̄v

(0)
αk

||Φ̄−1
k HαkP̄v

(0)
αk ||

∈ C
M , (3.11)

where we set v
(0)
αk as a maximum eigenvector of P̄∗H∗

αkΦ̄
−1
k HαkP̄ to initially maximize

beam-forming gain. Each user then feeds back the equivalent channel u
(0)∗
αk HαkP̄ to its

own BS.

2. (Designing Transmit Vectors): Fix a set A ∈ K where K is a collection of subsets of
{1, · · · , K}. As for the elements in K, we consider all of the possible candidates that
have cardinality S, i.e., |K| =

(
K
S

)
. For the given A, with the feedback information,

the BS computes zero-forcing transmit vectors

Bα := [v
(1)
αk1

, · · · ,v(1)
αkS

] = H(1)∗(H(1)H(1)∗)−1diag
{

γ
(1)
1 , · · · , γ(1)

S

}

∈ C
M×S,

where kl ∈ A, γ
(1)
l is a normalization factor, andH(1) := [u

(0)∗
αk1

Hαk1P̄; · · · ;u(0)∗
αkS

HαkSP̄] ∈
CS×M . Remember that the fixed precoder P̄ is designed so that each column vector
of E[P̄Bα] is normalized. So P̄Bα is not guaranteed to be normalized. Hence, the BS

re-normalizes P̄Bα with γ̃
(1)
l so that each column vector of P̄Bαdiag

{

γ̃
(1)
1 , · · · , γ̃(1)

S

}

is

normalized.

3. (Opportunistic Scheduling): The BS finds A∗ such that

A∗ = argmax
A∈K

∑

k∈A
log

(

1 +
SNR
S

||γ̃(1)
k u

(0)∗
αk HαkP̄v

(1)
αk ||2

1 + INRrem

)

.
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4. (Iteration): For the A∗, we iterate the following. The BS informs each user of v
(i)
αk via

precoded pilots. Each user updates the receive vector as follows:

u
(i)
αk =

Φ̄−1
k HαkP̄v

(i)
αk

||Φ̄−1
k HαkP̄v

(i)
αk||

∈ C
M , k ∈ A∗.

Each user then feeds back the updated equivalent channel to its own BS. With this
feedback information, the BS computes zero-forcing transmit vectors v

(i+1)
αk .

Remark 13. Although users can see out-of-cell interference, the scheduler at BS cannot
compute it without some side-information from the users. Hence, we assume that the sched-
uler makes a decision assuming no dominant interference. Note that the denominator inside
the logarithmic term contains only noise and residual interference. To reduce CSI overhead,
we assume that a scheduler decision is made before the iteration step. �

In practice, we may prefer not to iterate, since it requires more feedback information.
Note that the feedback overhead is exactly the same as that of iterative matched-filtering
(baseline). The only difference is that we use the fixed precoder P̄ and the MMSE-like
receiver employing Φ̄k. This requires little change to an existing cellular system supporting
multi-user MIMO.

3.4.2 Performance Evaluation: Simulation Results

Setup: Through simulations, we evaluate the performance of the proposed scheme for down-
link cellular systems. We consider one of the possible antenna configurations in the 4G stan-
dards [2, 1]: 4 transmit and 4 receive antennas. To minimize the change to the existing 4G
systems, we consider using only antennas for the multiple dimensions, i.e., M = 4. We focus
on three different cellular layouts, illustrated in Fig. 3.4.

In the interests of improving the worst-case throughput performance, we consider a cell-
edge mobile location. Specifically, we assume that all of the K users in each cell are placed
at the mid-point between two adjacent cells. This simulation setup can reflect the scenarios
where user locations, once chosen, are almost static, e.g., working places located in the
cell-edge. On the other hand, one may be interested in simulating per-user throughput
distribution assuming different user locations, so as to evaluate the system-wide benefits
of the proposed scheme. In this case, we expect less performance gain of our proposed IA
scheme, as it considers a single γ and the corresponding κ, which are based on cell-edge
users. Evaluating this system-level performance more precisely is beyond the scope of this
work, but eventually this needs to be considered as future work.

We use the standard ITU-Ped path-loss model, with i.i.d. Rayleigh fading components
for each of the antenna. We assume that inter-BS distance is 1 km and path-loss exponent is
3.76. As for an interference model, we exactly model the interference of the neighboring BS
(the dominant interferer), while assuming that the aggregated interference of the remaining
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BSs is white Gaussian. This white Gaussian assumption on the residual interference provides
the lower bound of the performance of all the schemes we will consider shortly. This is because
each of the techniques can exploit the knowledge of interference, and the white interference
is a worst case assumption.

Performance: Fig. 3.5 shows the sum-rate performance for a 19 hexagonal cellular
layout where γ ≈ 0.4. We assume that total number K of users in each cell is 3 and
consider the number S = 3 of streams. Note that the zero-forcing IA is worse than the
matched filtering (baseline). This implies that when γ ≈ 0.4 (residual interference is not
negligible), boosting power gain gives better performance than mitigating dominant out-of-
cell interference. However, the proposed unified IA technique outperforms both of them for
all regimes. It gives approximately 28% throughput gain when SNR = 20 dB.

We also investigate the convergence of the proposed scheme. Note in Fig. 3.5(b) that the
proposed scheme converges to the limits very fast, i.e., even one iteration is enough to derive
most of the asymptotic performance gain. This means that additional iterations provide
marginal gain, while requiring a larger overhead of CSI feedback. Another observation is
that the converged limits of the proposed technique is invariant to the initial values of
transmit-and-receive vectors. Note that random initialization induces the same limits as
that of our carefully chosen initial values, but it requires more iterations to achieve the
limits. Therefore, the initial values need to be carefully chosen to minimize the overhead
of CSI feedback. Through simulations, we have observed the same convergence behavior in
many other scenarios (different cellular layouts and different K,M and S), although it is not
proved here. So we conjecture that this convergence behavior occurs in general.

Fig. 3.6 shows the sum-rate performance when considering a scheduler. We assume that
K = 10 and consider an opportunistic scheduler. In fact, the number S of streams is related
to the scheduling effect. For a large value of K, the opportunistic scheduler provides good
signal separation and power gain, thereby inducing the high SINR regime where multiplexing
gain is more significant than the beamforming power gain. In this case, using more streams
provides better performance. We find through simulations that using three streams provides
the best performance for a practical number of users per cell (around 10). Hence, we consider
S = 3. The sum-rate reflects the 3 cell-edge users who are chosen at a time out of 10 via the
scheduler.

As shown in Fig. 3.6 (a), as compared to the non-scheduler case, the performance of
zero-forcing IA is significantly improved, although it is still worse than matched filtering.
Zero-forcing IA can now achieve power gain with the scheduler. Notice that the power gain
due to the scheduler is significant, thus making the additional matched-filter power gain
marginal. Our proposed scheme still outperforms both schemes, providing approximately
28% over the matched filtering.

Fig. 3.6 (b) shows the sum-rate performance for a linear cellular layout where γ ≈ 0.1. In
this case, the residual interference is reduced to γ ≈ 0.1, so mitigating dominant out-of-cell
interference improves the performance more significantly than beam-forming does. The gain
of the proposed scheme is significant, i.e., approximately 60% in the high SNR regime of
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Figure 3.5: Sum-rate performance for a 19 hexagonal cell layout where M = 4, the number K of
users per cell is 3 and the number S of streams is 3: (a) as a function of SNR (no iteration); (b) as
a function of the number of iteration.
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Figure 3.6: Sum-rate performance of the schemes integrated with an opportunistic scheduler when
the number K of users per cell is 10 and the number S of streams is 3: (a) 19 hexagonal cell layout;
(b) linear cell layout. The opportunistic scheduler chooses a set of 3 users out of 10 such that the
sum-rate is maximized.
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interest. Notice that a crossover point between the zero-forcing IA and the matched filtering
occurs at around SNR = 0 dB. The benefit of the zero-forcing IA is substantial.

Remark 14 (Comparison to Other Techniques). In addition to the matched-filtering
scheme, as other baselines, one may consider resource partitioning and cooperative schedul-
ing [29]. However, these techniques are not fair enough to be compared to our IA scheme,
since these incur signalling overhead while our scheme does not. Resource partitioning re-
quires explicit coordination of frequency resources for many neighboring cells, thus incurring
signalling overhead. Cooperative scheduling [29] requires additional communication between
different BSs to deliver user scheduling information across cells. On the contrary, our IA
scheme does not require explicit coordination, as it adapts only the number of streams un-
der frequency reuse of 1. While in this work, detailed comparisons are not provided, doing
comparative study needs to be done as future work especially for designing practical cellular
systems [1, 2], where many system factors should be simultaneously taken into consideration
with different weights of importance. In fact, this comparative study might give some insights
into developing another scheme which combines the IA scheme and cooperative scheduling to
provide the further performance gain.

3.4.3 Application to Macro-pico Cellular Networks

We have observed that our scheme shows promise especially when dominant interference is
much stronger than the remaining interference, i.e., γ ≪ 1. Such scenario occurs often in
heterogeneous networks [4] which use a mix of macro, pico, femto, and relay BSs to enable
flexible and low-cost deployment. In this section, we focus on a scenario of the macro-pico
cell deployment, illustrated in Fig. 3.7.

As shown in the figure, suppose that pico-BS is deployed at a distance d from the nearby
macro-BS and a user is connected to the pico-BS. The pico-user can then see significant
interference from the nearby macro-BS, and this interference can be much stronger than
the aggregated interference from the remaining macro-BSs, especially when d is small. The
interference problem can be further aggravated due to range extension techniques1 [4] and
the disparity between the transmit power levels of the macro-BS and the pico-BS. This
motivates the need for intelligent interference management techniques. We show that our
IA scheme can resolve this problem to provide substantial gain.

To show this, we evaluate the sum-rate performance of pico-users in the simple scenario
shown in Fig. 3.7. We assume the 19 hexagonal wrap-around cellular layout, and on top of
it we deploy one pico-BS, apart from the nearby macro-BS by a distance d. Based on [4],
we consider the power levels of 46 dBm and 30 dBm for the macro-BS and the pico-BS,
respectively, so the difference is 16 dB. This scenario reflects the case where the pico-cell,

1Range extension extends the footprint of pico-cells by allowing more users to connect even if users do
not see the pico-BS as the strongest downlink received power. The purpose for this is to better utilize
cell-splitting and maximize cell offloading gain.
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Figure 3.7: Macro-pico cellular networks. The pico-user can see significant interference from the
nearby macro-BS. The interference problem can be further aggravated when the pico-BS is close
to the nearby macro-BS (small d) and the power levels of the two BSs are quite different.
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Figure 3.8: Sum-rate performance of pico-users for a macro-pico cell layout where a single pico-
cell is deployed on top of 19 wrap-around macro cells (cell radius R) and the pico-BS is separated
from the nearby macro-BS by a distance d: (a) d

R = 0.5; (b) d
R = 1. The number K of users per

pico-cell (or macro-cell) is 10; the number S of streams is 3; and no iteration is performed. The
sum-rate reflects the 3 pico-users chosen out of 10 via an opportunistic scheduler.
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once chosen, is fixed once and for all. Consistent with previous simulation setups, we consider
a specific mobile location where the downlink received power from the pico-BS is the same as
that from the nearby macro-BS.Due to the disparity of the power levels, the pico-users are
closer to the pico-BS.2 We assume a 4-by-4 antenna configuration, i.e., M = 4. We assume
that each of the pico cell and macro-cells has K = 10 users placed at the specific location,
and 3 users are chosen at a time out of 10 via the opportunistic scheduler. We assume an
interference model where the precoder of the nearby macro-BS is actually computed and
this interferes with the users of interest, while the aggregated interference of the remaining
macro-BSs is white Gaussian.
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Figure 3.9: Comparison to resource partitioning. The sum-rate performance as a function of d
R

for SNR = 20 dB.

Fig. 3.8 shows the sum-rate performance of the pico-users as a function of SNR. We
assume that S = 3 and no iteration. Fig. 3.8 (a) considers the case of d

R
= 0.5 where pico-

users are interfered with by the nearby macro-BS. In this case, our IA scheme provides 170%

2In fact, this specific mobile location - where the downlink received power from the two BSs are the same
- is a conservative setting. When employing the range extension technique that expands the footprint of
pico-cells, one can expect a larger gain of our IA scheme, as the dominant interference power is stronger.
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gain over matched filtering. Fig. 3.8 (b) considers the case of d
R

= 1 where the minimum
gain of our scheme is expected. Even in this case, our proposed scheme gives approximately
41% gain over the matched filtering.

Remark 15 (Comparison to Resource Partitioning). In the macro-pico network sce-
nario, as an alternative to our IA scheme, one may consider resource partitioning to resolve
the interference problem. This is because unlike the conventional macro cellular networks
containing many neighboring cells, this macro-pico network scenario has a fewer number of
dominant interferers, thus making resource coordination simpler [3]. For example, we can
use a frequency reuse of 1

2
for the scenario in Fig. 3.7. So we provide simulation results

and find that even in this case, our scheme shows respectable gain over resource partitioning.
Fig. 3.9 shows the sum-rate performance of pico-users as a function of d

R
when SNR = 20 dB

and K = 10. We use S = 3 for the IA schemes and the matched filtering, while for resource
partitioning we optimize the number of streams to plot the best performance curve. In the
resource partitioning, we use frequency reuse 1

2
only between the the nearby macro-cell and

the pico-cell, while using frequency reuse 1 for the other macro-cells. Notice that our scheme
gives approximately 20% gain for d

R
= 0.5. The smaller the ratio of d

R
, the larger the gain,

while for large d
R
, the gain becomes marginal. �

3.4.4 Extension

Asymmetric Antenna Configuration: We discuss the asymmetric antenna configuration
where the BSs are equipped with more antennas, i.e., M > N . The extension to this
asymmetric case is not straightforward, since more transmit antennas at BSs provide the
possibility to null out interference at mobiles in other cells, thus requiring a sophisticated
technique which well combines interference nulling with interference alignment.

Here we instead provide a simple and natural, but possibly suboptimal, variant of the
proposed scheme. The scheme is to limit the number of streams with the minimum of M
and N , i.e., S ≤ min(M,N) = N . Specifically, each BS sets the precoder P̄ as:

P̄ = [f1, · · · , fS, κfS+1, · · · , κfM ] ∈ C
M×M , (3.12)

and sets the range of S as S ≤ N . Other operations remain the same. Each user computes
the expected covariance matrix by averaging over the transmitted signals from the other cell
and then applies the standard MMSE formula for a receive vector. The BS then computes
the zero-forcing transmit vectors with the feedback information. These steps can then be
iterated.

Notice that in this scheme, interference alignment interpretation needs to be carefully
made. For example, consider 4-by-2 antenna configuration in a two-cell layout. Our scheme
allows each BS to send one stream out of two and therefore each user sees only one interference
vector from the other cell. There is no aligned interference. Even in this configuration,
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however, interference alignment can be achieved if multiple subcarriers are incorporated, as
will be discussed in the following section.

Using Subcarriers: Recall in our simulations that only antennas are employed for
multiple dimensions. However, we can easily increase M by using multiple subcarriers.
With this increase of M , we can make two interesting observations. The first observation
is that the performance improves with an increase of M , since the dimension reserved for
interference signals becomes negligible as M gets larger. Secondly, increasing M , we can
make a chance to achieve interference alignment. To see this, consider 8-by-4 configuration
incorporating two subcarriers with a 4-by-2 antenna configuration. We will show that unlike
the 4-by-2 configuration, this 8-by-4 configuration enables interference alignment. Suppose
there are two cells and each cell has three users. Our scheme allows each BS to transmit three
streams out of four and thus each user sees five interfering vectors in total: three out-of-cell
and two intra-cell interfering vectors. Notice the five interfering vectors are aligned onto a
three dimensional linear subspace. This implies interference alignment.

Multiple Interferers: Our IA technique removes the interference from a single domi-
nant interferer. However, a slight modification can deal with the case of multiple dominant
interferers, to some extent. For example, consider a 19 hexagonal cell layout in Fig. 3.4 and
suppose that mobiles are located at the middle point of three neighboring BSs. In this case,
mobiles see the two dominant interferers. One simple way is to take multiple dominant inter-
ferers into account in the process of computing the expected covariance matrix. Specifically,
we use:

Φ̄k := E

[

(1 + INRrem)I+
SNR

S
GβkP̄BβB

∗
βP̄

∗G∗
βk +

SNR

S
GγkP̄BγB

∗
γP̄

∗G∗
γk

]

, (3.13)

where Gβk denotes cross-channel from BS β and Bβ indicates the zero-forcing precoder of
BS β. Similarly, we denote (Gγk,Bγ) for cell γ. For Bβ and Bγ , we assume that each entry

of the first S rows is i.i.d. CN
(

0, 1
S+(M−S)κ2

)

and each entry of the last (M − S) rows is

i.i.d. CN
(

0, κ2

S+(M−S)κ2

)

.

3.5 Subspace Interference Alignment

Our IA technique in Section 3.4 focuses on the removal of the dominant interference while
treating the residual interference as noise. This comes with limitations in applying this
scheme to many of the realistic scenarios. It can be useful only when the dominant interfer-
ence is much stronger than the residual interference, although the scenario can often occur
in macro-pico cellular networks as shown in Section 3.4.3. While a slightly modified scheme
in Section 3.4.4 has been developed in order to mitigate the interference from multiple domi-
nant interferers, it does not ensure the complete removal of the interference even in the high
SNR regime.
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In this section, we propose a novel IA scheme, which we call subspace interference align-
ment, to address this challenge with respect to multiple dominant interferers. This scheme
aligns the interference of multiple interferers onto a restricted subspace simultaneously at
multiple non-intended receivers, whose dimension is negligible as compared to that of the
subspace spanned by the desired signals, thus achieving almost interference-free dof even
in the multiple (more than 2) cellular networks. A key property of this scheme is that the
simultaneous interference alignment is achieved using only a finite number M of dimensions.
This is in stark contrast to Cadambe-Jafar’s IA scheme which employs an infinite number
of dimensions to achieve the simultaneous interference alignment. On the flip side, however,
this scheme comes with limitations on the wireless channel structure that the technique re-
lies on. It requires a decomposition property of wireless channels that will be described in
Section 3.5.1.

For illustrative purpose, we focus on the uplink scenario, while it can be easily adapted
to the downlink scenario as we did for the two-cell case in Section 3.3. For simplicity, we
do not consider the integration with schedulers that can be easily done as before. We start
with the simplest non-trivial case (3-cell scenario) and then generalize it to the G number of
cells. In Section 3.5.3, we remark that our subspace IA scheme can be exploited to address
one of the significant problems in storage networks, called the storage-node repair problem.

3.5.1 3-cell Scenario

Scheme Description: As shown in Fig. 3.1, achieving interference alignment in the two-
cell case is straightforward, since there is a single non-intended BS. We can easily design the
transmitted vectors of users in one cell so that those span only one dimensional subspace at
the other BS. However, it is not straightforward from the 3-cell case. Unlike the two-cell case,
there are multiple non-intended BSs and this requires simultaneous interference alignment.
We address this challenge by relaxing the interference alignment constraint: alignment of
the interference space into one dimensional subspace. The idea is to align the interference
into multi-dimensional subspace instead of one dimension.

Fig. 3 illustrates the idea. Here we use the number M = (
√
K + 1)2 of dimension and

assume that channel matrix from each user to BS can be decomposed into two sub channel
matrices with Kronecker product:

Hβ
αk = H

β,(1)
αk ⊗H

β,(2)
αk , (3.14)

where Hβ
αk ∈ CM denotes channel matrix from user k of cell α to BS β. Note that the

dimension of sub channel matrix H
β,(j)
αk is

√
M -by-

√
M . Later we will show the case where

this channel assumption holds. In an attempt to visualize subspace, we abstract the subspace
with grids. For instance, one grid represents one dimensional subspace, while two grids
represent the two-dimensional one. Each user in a cell transmits one symbol xαk along with
its transmitted vector designed using Kronecker product of two sub-vectors, e.g., vαk =
v
(1)
αk ⊗ v

(2)
αk .
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Figure 3.10: Subspace Interference Alignment: aligning interferences into multi-dimensional sub-
space (instead of one dimension)

Now the idea is to design each sub-vector so that it ensures to achieve IA partially at
each of non-intended BSs. For example, user k in cell α designs sub-vectors 1 and 2 so that
these are aligned with a fixed reference vector respectively at BS β and γ:

v
(1)
αk = (H

β,(1)
αk )−1vref ,

v
(2)
αk = (H

γ,(2)
αk )−1vref ,

(3.15)

where vref ∈ C

√
M is an arbitrary vector, independent of channels. Similarly we design the

transmitted sub-vectors for users in cells β and γ:

v
(1)
βk = (H

γ,(1)
βk )−1vref , v

(2)
βk = (H

α,(2)
βk )−1vref ;

v
(1)
γk = (H

α,(1)
γk )−1vref , v

(2)
γk = (H

β,(2)
γk )−1vref .

(3.16)
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Then the received signal yα of BS α is given by

yα =
K∑

k=1

(Hαkvαk)xαk +
K∑

k=1

(Hα
βkvβk)xβk +

K∑

k=1

(Hα
γkvγk)xγk + zα

(a)
=

K∑

k=1

[

(H
(1)
αkv

(1)
αk )⊗ (H

(2)
αkv

(2)
αk )
]

xαk

+
K∑

k=1

[

(H
α,(1)
βk v

(1)
βk )⊗ (H

α,(2)
βk v

(2)
βk )
]

xβk +
K∑

k=1

[

(H
α,(1)
γk v

(1)
γk )⊗ (H

α,(2)
γk v

(2)
γk )
]

xγk + zα

(b)
=

K∑

k=1

[{

H
(1)
αk (H

β,(1)
αk )−1vref

}

⊗
{

H
(2)
αk (H

γ,(2)
αk )−1vref

}]

xαk

+
K∑

k=1

[{

H
α,(1)
βk (H

γ,(1)
βk )−1vref)

}

⊗ vref

]

xβk +
K∑

k=1

[

vref ⊗
{

H
α,(2)
γk (H

β,(2)
γk )−1vref

}]

xγk + zα,

where (a) follows from a mixed product property as below and (b) follows from (3.15) and
(3.16). Note the mixed product property:

(A⊗B)(C⊗D) = (AC)⊗ (BD),

where A,B,C,D are matrices with appropriate dimensions.
Now let us consider the interference from cell β. It contains K interfering vectors with

dimension of M = (
√
K + 1)2 > K. So the dimension of the interference space can be up to

K. However, the dimension is limited by
√
K+1 due to its degenerated structure. Note that

the second sub-vector is fixed as vref for all of the users in cell β. The randomness comes

only from the first sub-vector
{

H
α,(1)
βk (H

γ,(1)
βk )−1vref)

}

with dimension of
√
K +1. Therefore,

the dimension is limited by
√
K + 1. Similarly, the dimension of the interference space with

respect to cell γ users is at most
√
K + 1.

On the other hand, no alignment is achieved with respect to the desired signals xαk’s.
Hence, with sufficient randomness of the channels, the dimension of the signal subspace
spanned by the desired signals is K. Also with high probability, the subspace is disjoint with
the interference subspace with respect to β and γ cell users. So we can decode K symbols
using M = (

√
K +1)2. Similarly, we do the same procedure for the received signals of BS β

and γ, thus obtaining 3K symbols in total. Therefore, we achieve the following dof:

dof(per cell) =
K

(
√
K + 1)2

−→ 1. (3.17)

Notice that our subspace IA scheme aligns K interfering vectors into
√
K + 1 dimensional

subspace, thus achieving simultaneous IA at multiple non-intended BSs. Since
√
K is neg-

ligible as compared to K for a large value of K, we can approach the interference-free dof

with an increase in K.
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Wireless Channel Structure: As mentioned earlier, our proposed scheme relies on the
decomposition property of wireless channels described in (3.14). We will show in the sequel
that this property holds for signle antenna single-path random delay channels.

Let H [f ] = hℓW
ℓf
NT

be the frequency response of single-path wireless channels where
f denotes subcarrier index and ℓ denotes discrete-time tap delay normalized to symbol
rate 1

W
where W indicates bandwidth. Here hℓ denotes the baseband discrete-time channel

coefficient with respect to the tap delay ℓ and WNT
= exp

(

−j 2π
NT

)

and NT is an IDFT/DFT

size. We now write f in terms of f1 and f2:

f = (
√
K + 1)f1 + f2, ∀ f1, f2 ∈

{

0, 1, · · · ,
√
K
}

,

We can then decompose the channel H [f ] as follows:

H [f ] =
(

hℓW
ℓ(
√
K+1)f1

N

)

·
(

W ℓf2
NT

)

. (3.18)

Let H(1)[f1] = hℓW
ℓ(
√
K+1)f1

NT
and H(2)[f2] = W ℓf2

NT
. We then get:

H = diag {H [f ]}f = diag
{
H(1)[f1]H

(2)[f2]
}

f1,f2

= diag
{
H(1)[f1]

}

f1
⊗ diag

{
H(2)[f2]

}

f2

= H(1) ⊗H(2).

(3.19)

A natural question that arises is to ask whether multi-path frequency-selective channels
are decomposable. Unfortunately, the answer is no in general. However, we can apply the
subspace IA scheme in an indirect manner. The idea is to chop up the whole band into
sub-bands within coherence bandwidth. We now show that the channel is decomposable
within the sub-band. To see this, suppose that the channel has two non-zero taps at ℓ1 and
ℓ2.

H [f ] = hℓ1W
ℓ1f
NT

+ hℓ2W
ℓ2f
NT

= W ℓ1f
NT

(

hℓ1 + hℓ2W
(ℓ2−ℓ1)f
NT

)

.

Since the coherence bandwidth is Wc , W
2(ℓ2−ℓ1)

, the term (hℓ1 + hℓ2W
(ℓ2−ℓ1)f
NT

) is almost
constant within Wc. This implies that the channel virtually has a single tap within sub-
band. Hence, we can apply the subspace IA scheme for each sub-band.

However, highly frequency selective channels come with some challenge in practice. This
is because the number of subcarriers within coherence bandwidth can be so small that we
significantly lose the efficiency in achieving the dof. While very fine subcarrier spacing might
resolve this challenge, it comes with significant inter-carrier interference due to Doppler effect
and therefore increase hardware complexity.
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3.5.2 Generalization

In this section, we extend the subspace IA scheme to an arbitrary number G of cells. Similar
to the 3-cell scenario, we assume that channels have the decomposition property: ∀i, j ∈
{0, 1, · · · , G− 1},

Hj
ik =

G−2⊗

g=0

Hj,g
ik , (3.20)

where Hj,g
ik ∈ C

G−1
√
M denotes the gth sub channel matrix from user k in cell i to BS j.

Here we use the number M = ( G−1
√
K + 1)G−1 of dimensions. To consider the general case,

we employ heavy notations. The idea is the same as before. So we design the transmitted
sub-vectors as: ∀i, g ∈ {0, 1, · · · , G− 1},

v
(g)
ik = (H

i+g+1,(g)
ik )−1vref . (3.21)

Then, one can easily verify that this aligns the interference space into G−1
√
M dimensional

subspace at all of the non-intended BSs while ensuring the full rank condition on the desired
signals. So we can achieve the following:

dof(per cell) =
K

( G−1
√
K + 1)G−1

−→ 1. (3.22)

3.5.3 Application to Storage Networks

Recently, the authors in [13] found that our subspace IA scheme can be exploited to develop
a practical repair strategy for failed storage nodes in the context of distributed storage
networks. A very promising fact is that while in the cellular network context, this subspace
IA scheme requires a special structure on wireless channels (determined by nature), this
practical challenge disappears in the distributed storage networks. This is because wireless
channels turn out to correspond to storage-code coefficients in the storage networks that are
man-made design choices. This will be discussed in more details in the next chapter.

3.6 Summary

We have observed that the zero-forcing IA scheme is analogous to the zero-forcing receiver,
and the iterative matched-filtering technique corresponds to the conventional matched-filter
receiver. Based on this observation, we proposed a unified IA technique similar to an MMSE
receiver that outperforms both techniques for all values of γ, where the power of the domi-
nant interferer may be much greater or smaller than the power of the remaining aggregate
interference.
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Of practical importance is the fact that our proposed scheme can be implemented with
small changes to an existing cellular system supporting multi-user MIMO, as it requires only
a localized within-a-cell feedback mechanism. This technique can be extended to asym-
metric antenna configurations and scenarios with more than one dominant interferer. Our
technique also shows even greater performance gains for macro-pico cellular networks where
the dominant interference is much stronger than the remaining interference.

We also propose another IA scheme, called subspace IA, in an attempt to mitigate the
interference from multiple dominant interferers. We have shown that under some channel
conditions, our subspace IA scheme can asymptotically achieve the interference-free dof with
an increase in the number K of users in each cell. Unlike Cadambe-Jafar’s IA scheme, it uses
a finite number of dimensions to achieve simultaneous IA. We also remark that our subspace
IA scheme can be well exploited to address one of the significant problems in distributed
storage networks: the failed storage-node repair problem.
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Chapter 4

Interference Alignment for Storage
Networks

4.1 Introduction

In distributed storage systems, maximum distance separable (MDS) erasure codes are well-
known coding schemes that can offer maximum reliability for a given storage overhead. For
an (n, k) MDS code for storage, a source file of size M bits is divided equally into k units
(of size M

k
bits each), and these k data units are expanded into n encoded units, and stored

at n nodes. The code guarantees that a user or Data Collector (DC) can reconstruct the
source file by connecting to any arbitrary k nodes. In other words, any (n− k) node failures
can be tolerated with a minimum storage cost of M

k
at each of n nodes. While MDS codes

are optimal in terms of reliability versus storage overhead, they come with a significant
maintenance overhead when it comes to repairing failed encoded nodes to restore the MDS
system-wide property. Specifically, consider failure of a single encoded node and the cost
needed to restore this node. It can be shown that this repair incurs an aggregate cost of
M bits of information from k nodes. Since each encoded unit contains only M

k
bits of

information, this represents a k-fold inefficiency with respect to the repair bandwidth.
This challenge has motivated a new class of coding schemes, called Regenerating Codes

[21, 73], which target the information-theoretic optimal tradeoff between storage cost and
repair bandwidth. Dimakis-Godfrey-Wu-Wainwright-Ramchandran [21, 73] have translated
the regenerating-codes problem into a multicast network problem. Employing the network
code results in [5, 40, 34] that well address the multicast network, they have shown that ran-
dom network coding schemes achieve the optimal repair bandwidth for a given storage cost.
On one end of this spectrum of Regenerating Codes are Minimum Storage Regenerating
(MSR) codes that can match the minimum storage cost of MDS codes while also signifi-
cantly reducing repair bandwidth. As shown in [21, 73], the fundamental tradeoff between
bandwidth and storage depends on the number of nodes that are connected to repair a failed



74

node, simply called the degee d where k ≤ d ≤ n− 1. The optimal tradeoff is characterized
by

(α, γ) =

(M
k
,
M
k

· d

d− k + 1

)

, (4.1)

where α and γ denote the optimal storage cost and repair bandwidth, respectively for re-
pairing a single failed node, while retaining the MDS-code property for the user. Note
that this code requires the same minimal storage cost (of size M

k
) as that of conventional

MDS codes, while substantially reducing repair bandwidth by a factor of k(d−k+1)
d

(e.g., for
(n, k, d) = (31, 6, 30), there is a 5x bandwidth reduction). This (n, k, d) MSR code can be
considered as a Repair MDS code (to be specifically defined in Section 4.2.1) that (a) have
an (n, k) MDS-code property; and (b) can repair single-node failures with minimum repair
bandwidth given a repair-degree of d. In this work, we assume that each repair link has the
equal bandwidth and its bandwidth (γ

d
) is normalized to 1, making M = k(d− k + 1). One

can partition a whole file into smaller chunks so that each has a size of k(d− k + 1).
While Repair MDS codes enjoy substantial benefits over conventional MDS codes, they

come with some limitations in construction. Specifically, the achievable schemes in [21, 73]
that meet the optimal tradeoff bound of (4.1) restore failed nodes in a functional manner
only, using a random-network-coding based framework. This means that the replacement
nodes maintain the MDS-code property (that any k out of n nodes can allow for the data to
be reconstructed) but do not exactly replicate the information content of the failed nodes.

Mere functional repair can be limiting. First, in many applications of interest, there is a
need to maintain the code in systematic form, i.e., where the user data in the form of k infor-
mation units are exactly stored at k nodes and parity information (mixtures of k information
units) are stored at the remaining (n−k) nodes. Secondly, under functional repair, additional
overhead information needs to be exchanged for continually updating repairing-and-decoding
rules whenever a failure occurs. This can significantly increase system overhead. A third
problem is that the random-network-coding based solution of [21] can require a huge finite-
field size, which can significantly increase the computational complexity of encoding-and-
decoding1. Lastly, functional repair is undesirable in storage security applications in the face
of eavesdroppers. In this case, information leakage occurs continually due to the dynamics
of repairing-and-decoding rules that can be potentially observed by eavesdroppers [49].

These drawbacks motivate the need for exact repair of failed nodes. This leads to the
following question: is there a price for attaining the optimal tradeoff of (4.1) with the extra
constraint of exact repair: i.e., is there an overhead cost in terms of rate needed? Unlike
functional repair, this exact-repair problem can be translated into a non-multicast network

1Recall that the regenerating-codes problem can be translated into a multicast communication problem
where random-network-coding-based schemes require a huge field size especially for large networks. In storage
problems, the field size issue is further aggravated by the need to support a dynamically expanding network
size due to the need for continual repair.
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problem (to be specifically shown in Section 4.2.2) where the cutset bound might not be
achievable [74] and linear network codes might not suffice [23]. Due to this nature, the
problem has been open in general. The work in [54] sheds some light on this exact-repair
problem: specifically, it was shown that under scalar linear codes2, the optimal tradeoff
cannot be achieved when k

n
> 1

2
+ 2

n
. For large n, this case boils down to k

n
> 1

2
, i.e.,

redundancy less than two. Now what about for k
n
≤ 1

2
?

The first contribution of this work is to resolve this open problem by showing that scalar-
linear Exact-Repair MDS codes come with no extra cost over the optimal tradeoff of (4.1)
for the case of k

n
≤ 1

2
and d ≥ 2k− 13. Our codes are deterministic and require a field size of

at most 2(n − k). Our result draws its inspiration from the work in [54], which guarantees
exact repair of systematic node, while satisfying the MDS code property, but which does not
provide exact repair of failed parity nodes. In providing a constructive solution for the exact
repair of all nodes, we use geometric insights to propose a large family of repair codes. This
both provides insights into the structure of codes for exact repair of all nodes, as well as
opens up a rich design space for constructive solutions. This will be explained in Section 4.4.

The second contribution is to establish the following fact. Under vector linear codes
which allow for the break-up of stored symbols into arbitrarily small subsymbols, we show
the existence of Exact-Repair MDS codes that achieve the optimal tradoff of (4.1) for the
entire admissible spectrum of (n, k, d), i.e., k < n and k ≤ d ≤ n− 1.4 That is we show that
there is no theoretical gap between exact repair and functional repair codes for the entire
range of (n, k, d). This will be explained in Section 4.5.

Our results for both constructive scalar-linear codes and vector-linear codes build on the
concept of interference alignment, which was introduced in the context of wireless communi-
cation networks [44, 14]. The idea of interference alignment is to align multiple interference
signals in a signal subspace whose dimension is smaller than the number of interferers. Specif-
ically, consider the following setup where a decoder has to decode one desired signal which
is linearly interfered with by two separate undesired signals. How many linear equations
(relating to the number of channel uses) does the decoder need to recover its desired input
signal? As the aggregate signal dimension spanned by desired and undesired signals is at
most three, the decoder can naively recover its signal of interest with access to three linearly
independent equations in the three unknown signals. However, as the decoder is interested
in only one of the three signals, it can decode its desired unknown signal even if it has ac-
cess to only two equations, provided the two undesired signals are judiciously aligned in a
1-dimensional subspace. See [44, 14, 60] for details.

We will describe in the sequel how this concept relates intimately to our repair problem.
At a high level, the connection comes from our repair problem involving recovery of a subset

2In scalar linear codes, symbols are not allowed to be split into arbitrarily small sub-symbols as with vector
linear codes. This vector linear code is equivalent to having large block-lengths in the classical setting.

3Here we assume that all of the surviving systematic nodes participate in the repair
4Independently, Cadambe-Jafar-Maleki [15] have shown the existence of vector linear Exact-Repair MDS

codes that attain the optimal tradeoff of (4.1) for (n, k, d) where k < n and d = n− 1.
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(related to the subspace spanned by a failed node) of the overall aggregate signal space
(related to the entire user data dimension). There are, however, significant differences some
beneficial and some detrimental. On the positive side, while in the wireless problem, the
equations are provided by nature (in the form of channel gain coefficients), in our repair
problem, the coefficients of the equations are man-made choices, representing a part of
the overall design space. On the flip side, however, the MDS requirement of our repair
code and the multiple failure configurations that need to be simultaneously addressed with
a single code design generate multiple interference alignment constraints that need to be
simultaneously satisfied. This is particularly acute for a large value of k, as the number of
possible failure configurations increases with n (which increases with k). Finally, another
difference comes from the finite-field constraint of our repair problem.

4.2 Problem Statement

4.2.1 Definition of Repair MDS codes

While conventional MDS erasure codes are completely characterized by their encoding (gen-
erator) matrix, Repair MDS codes need more. They require not only the MDS property (as
in the classical case), but have the additional repair constraints corresponding to all single-
node failure patterns. This makes the code design problem considerably more challenging.
We discuss this here by defining Repair MDS codes through their complete code-design
space characterization. In the interests of keeping the notation simple without sacrificing
the conceptual insights behind this characterization, we will consciously avoid the formalism
associated with a general setting, and instead use illuminating examples to illustrate our
results while reserving the detailed formal proofs to the appendices.

Consider a simple example of a systematic (n, k, d) = (4, 2, 3) code in Fig. 4.1. Note that
the degree d indicates the number of nodes that are connected to repair a failed node. We
introduce matrix notation for illustrative purpose. This code has k(= 2) information units.
Let a = (a1, · · · , aα)t and b = (b1, · · · , bα)t be α-dimensional information-unit vectors, where
α denotes storage cost and (·)t indicates a transpose. Systematic node 1 and 2 store uncoded
information in the form of row vectors, i.e., at and bt, respectively. Let Ai and Bi be α-by-α
encoding submatrices (i.e., [Ai;Bi] corresponds to generator submatrices) for parity node i
(i = 1, 2). For example, parity node 1 stores information in the form of atA1 + btB1. The
encoding submatrices for systematic nodes are not explicitly defined, since those are trivially
inferred.

A failed node is repaired through the specification of α-dimensional projection vectors
associated with each survivor node that participates in the repair. As we assume a unit
per-link repair-bandwidth cost (γ

d
= 1), each survivor node projects its data into a scalar.

In the example, vαi (i = 1, 2, 3) are defined as the projection vectors needed for repair of
systematic node 1. A Repair MDS code is thus defined as having two functional components
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Figure 4.1: Definition of a Repair MDS code through the complete characterization of the code
design space using the example of a systematic (n, k, d) = (4, 2, 3) code. This is illustrated for
the case when systematic node 1 fails, and a unit per-link repair-bandwidth cost is assumed. Let
a = (a1, · · · , aα)t and b = (b1, · · · , bα)t be α-dimensional information-unit vectors, where α denotes
the storage cost per node. Systematic node 1 and 2 store uncoded information in the form of row
vectors, i.e., at and bt, respectively. Let Ai and Bi be α-by-α encoding submatrices (i.e., [Ai;Bi]
corresponds to generator submatrices) for parity node i (i = 1, 2). A failed node is repaired
through the specification of α-dimensional projection vectors associated with each surviving node
that participates in the repair. In the example, vαi (i = 1, 2, 3) are defined as the projection vectors
needed for repair of systematic node 1. A Repair MDS code is thus defined as having two functional
components that have to be designed jointly: (1) the encoding (generator) matrix associated with
the storage nodes; and (2) the projection vectors needed for node repair. Note that in this example,
the repair code involves 4 encoding submatrices and 12 projection vectors (3 projection vector for
each of 4 possible failure configurations) that need to be designed jointly.
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that have to be designed jointly:

1. the encoding (generator) matrix associated with the storage nodes;

2. the projection vectors needed for node repair.

Note that in this example, the repair code involves 4 α-by-α encoding submatrices and 12
projection vectors (3 projection vectors for each of 4 possible failure configurations) that
need to be jointly designed.

We categorize the Repair MDS code depending on whether or not the failed nodes are
exactly repaired. The code is called a functional -repair code if the repaired system maintains
the MDS-code property (the repaired node can however be different from that of the failed
node). The code is called an exact-repair code if the failed nodes are exactly repaired, thus
restoring lost encoded fragments with their exact replicas. The code is called a partial exact-
repair code if only the systematic nodes are repaired exactly, while parity nodes are repaired
only functionally. Finally, the code is also called the MSR code that achieves the optimal
tradeoff of (4.1).

The repair problem is to construct the repair code. For instance, the exact-repair problem
is to jointly design (1) the encoding (generator) matrix and (2) the projection vectors such
that the failed nodes are exactly repaired.

4.2.2 Translation into a Non-Multicast Network Problem

Unlike functional repair which is equivalent to a multicast network problem [21, 73], the
exact-repair problem we study here is a more complicated non-multicast network problem
which in general is an open problem in network coding today. It is known that in general
non-multicast networks, the cutset bound might not be achievable [74] and linear codes
might not suffice [23]. In this section, we explicitly show this translation to highlight the
difficulty of our exact-repair problem. As we will show in the sequel, we show that exploiting
the special structure of our non-multicast problem due to the exact repair constraints, we
can solve the problem for admissible values of (n, k, d).

Fig. 4.2 shows the translation of the (4, 2, 3) Exact-Repair MDS code into a non-multicast
network where destination nodes have asymmetric traffic demands. A source has k(= 2)
information units a and b, each having α symbols. We have n(= 4) storage nodes. The two
systematic nodes store at and bt, respectively, while the two parity nodes store mixtures
of a and b. Here we consider linear combination mixtures, although the mixtures can
also be arbitrary non-linear functions of the information. We have 4 repair nodes. When
node 1 fails, repair node 1 (denoted by R1) needs to decode â by connecting to d(= 3)
survivor nodes. Similarly we have the other three repair nodes. In addition to this, due
to the MDS-code constraint, there are

(
n
k

)
=
(
4
2

)
= 6 destination nodes which need to

decode all of the information units. Clearly the resulting network is a non-multicast network
which contains two types of destination nodes: (1) 4 destination nodes want the individual
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Figure 4.2: Translation of the (4, 2, 3) Exact-Repair MDS code into a non-multicast network
problem. A source has k(= 2) information units a and b, each having α symbols. We have n(= 4)
storage nodes. The two systematic nodes store at and bt, respectively, while the two parity nodes
store mixtures of a and b. When node 1 fails, repair node 1 (denoted by R1) needs to decode â by
connecting to d(= 3) survivor nodes. Similarly we have the other three repair nodes. In addition
to this, due to the MDS-code constraint, there are

(n
k

)
=
(4
2

)
= 6 destination nodes which need to

decode all of the information units.
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traffic corresponding to the storage node content; (2) 6 destination nodes have the multicast
demand. Therefore, the exact-repair problem is to design a network code which satisfies
all of these 10 constraints. Specifically, designing the first component of the repair code
corresponds to designing local encoding submatrices for the storage nodes, i.e., Ai’s and Bi’s.
The second component corresponds to designing coding coefficients for the links between the
storage nodes and repair nodes. Notice that as code parameters (n, k, d) get large, the
number of constraints grows exponentially, thereby making the problem harder.

4.2.3 Related Work

As stated earlier, Regenerating Codes, which cover an entire spectrum of optimal tradeoffs
between repair bandwidth and storage cost, were introduced in [21, 73]. As discussed, Repair
MDS codes (also called MSR codes) occupy one end of this spectrum corresponding to
minimum storage. At the other end of the spectrum live Minimum Bandwidth Regenerating
(MBR) repair codes corresponding to minimum repair bandwidth. The optimal tradeoffs
described in [21, 73] are based on random-network-coding based approaches, which guarantee
only functional repair.

The topic of exact-repair codes has received attention in the recent literature [72, 52, 54,
20, 70]. Wu and Dimakis in [72] showed that the MSR point (4.1) can be attained for the
cases of: k = 2 and k = n − 1. Rashmi-Shah-Kumar-Ramchandran in [52] showed that for
d = n − 1, the optimal MBR point can be achieved with a deterministic scheme requiring
a small finite-field size and zero repair-coding-cost. Subsequently, Shah-Rashmi-Kumar-
Ramchandran in [54] developed partial exact-repair codes for the MSR point corresponding
to k

n
≤ 1

2
+ 2

n
, where exact repair is limited to the systematic component of the code. See

Fig. 4.3. Finding the fundamental limits under exact repair of all nodes (including parity)
remained an open problem. The first contribution of this work is to resolve this open problem
by construction Exact-Repair MDS codes that attain the optimal tradeoff of (4.1) for the
case of k

n
≤ 1

2
and d ≥ 2k − 1. Here we assume that d helper nodes participating in the

repair contain all of the survivor systematic nodes. The second contribution is to show the
existence of Exact-Repair codes that achieves the optimal tradeoff (4.1) for all admissible
values of (n, k, d).

The constructive framework proposed in [54] forms the inspiration for our first result.
Indeed, we show that the partial exact-repair code introduced in [4] (meant for exact repair
of the systematic nodes only) can also be used to repair the non-systematic (parity) node
failures exactly, provided the second component of the repair code (i.e., the projection vectors
needed for node repair) are appropriately designed. Designing the projection-vectors of exact
repair codes is challenging and had remained an open problem: resolving this for the case of
k
n
≤ 1

2
and d ≥ 2k − 1 is our contribution. We also provide the systematic development of a

family of code structures. This family of codes provides conceptual insights into the structure
of solutions for the exact repair problem, while also offering a new large constructive design
space of solutions.
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Functional repair

Partial exact repair

Exact repair

Figure 4.3: Repair models for distributed storage systems. In exact-repair, the failed nodes are
exactly regenerated, thus restoring lost encoded fragments with their exact replicas. In functional-
repair, the requirement is relaxed: the newly generated node can contain different data from that of
the failed node as long as the repaired system maintains the MDS-code property. In partial exact-
repair, only systematic nodes are repaired exactly, while parity nodes are repaired only functionally.

The interference alignment scheme by Cadambe and Jafar [14] that permits an arbitrar-
ily large number of symbol extensions forms the basis of our second result. Building on the
connection described in [59] between the wireless interference channel problem and the stor-
age repair problem, we leverage the scheme introduced in [14] for our exact-repair problem,
showing the existence of Exact-Repair MDS codes that achieve minimum repair bandwidth
(matching the cutset lower bound) for all admissible values of (n, k, d).

4.3 Role of Interference Alignment

Network coding [5, 40, 34] (that allows multiple messages to be combined at network nodes)
has been established recently as a useful tool for addressing interference issues even in wire-
line networks where all the communication links are orthogonal and non-interfering. This
attribute was first observed in [72], where it was shown that interference alignment could
be exploited for storage networks, specifically for Exact-Repair MDS codes having small k
(k = 2). However, generalizing interference alignment to large values of k (even k = 3)
proves to be challenging, as we describe in the sequel. In order to appreciate this better, let
us first review the scheme of [72] that was applied to the exact repair problem. We will then
address the difficulty of extending interference alignment for larger systems and describe how
to address this in Sections 4.4 and 4.5.

(4, 2) Exact-Repair MDS Codes: Fig. 4.4 illustrates an interference alignment scheme
for a (4, 2, 3) Exact-Repair MDS code defined over GF(5). First one can easily check the MDS
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property of the code, i.e., all the source files can be reconstructed from any k(= 2) nodes
out of n(= 4) nodes. Let us see how failed node 1 (storing (a1, a2)) can be exactly repaired.
Assume a source file size M is 4 and repair-bandwidth-per-link γ

d
= 1. The cutset bound

(4.1) then gives the fundamental limits of storage cost α = 2.

Figure 4.4: Interference alignment for a (4, 2, 3) Exact-Repair MDS code defined over GF(5)
[72]. Designing appropriate projection vectors, we can align interference space of (b1, b2) into one-
dimensional linear space spanned by [1, 1]t. As a result, we can successfully decode 2 desired
unknowns (a1, a2) from 3 equations containing 4 unknowns (a1, a2, b1, b2).

The example illustrated in Fig. 4.4 shows that the parameter set described above is
achievable using interference alignment. Here is a summary of the scheme. First notice that
since the bandwidth-per-link is 1, each survivor node uses a projection vector to project its
data into a scalar. Choosing appropriate projection vectors, we get the equations: (b1 + b2);
a1+2a2+(b1+b2); 2a1+a2+(b1+b2). Observe that the undesired signals (b1, b2) (interference)
are aligned onto an 1-dimensional linear subspace, thereby achieving interference alignment.
Therefore, we can successfully decode (a1, a2) with three equations although there are four
unknowns. Similarly, we can repair (b1, b2) when it has failed.

For parity node repair, a remapping technique is introduced. The idea is to define parity
node symbols with new variables as follows:

Node 3: a′1 := a1 + b1; a′2 := 2a2 + b2;

Node 4: b′1 := 2a1 + b1; b′2 := a2 + b2.

We can then rewrite (a1, a2) and (b1, b2) with respect to (a′1, a
′
2) and (b′1, b

′
2). In terms of prime

notation, parity nodes turn into systematic nodes and vice versa. With this remapping, one
can easily design projection vectors for exact repair of parity nodes.
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Geometric Interpretation: Using matrix notation, we provide geometric interpre-
tation of interference alignment for the same example in Fig. 4.4. Let a = (a1, a2)

t and
b = (b1, b2)

t be 2-dimensional information-unit vectors. Let Ai and Bi be 2-by-2 encod-
ing submatrices for parity node i (i = 1, 2). Define 2-dimensional projection vectors vαi’s
(i = 1, 2, 3).

Let us consider exact repair of systematic node 1. By connecting to three nodes, we get:
btvα1; a

t(A1vα2)+bt(B1vα2); a
t(A2vα3)+bt(B2vα3). Recall the goal of decoding 2 desired

unknowns out of 3 equations including 4 unknowns. To achieve this goal, we need:

rank

([
(A1vα2)

t

(A2vα3)
t

])

= 2; rank









vt
α1

(B1vα2)
t

(B2vα3)
t







 = 1. (4.2)

The second condition can be met by setting vα2 = B−1
1 vα1 and vα3 = B−1

2 vα1. This choice
forces the interference space to be collapsed into a one-dimensional linear subspace, thereby
achieving interference alignment. With this setting, the first condition now becomes

rank
([
A1B

−1
1 vα1 A2B

−1
2 vα1

])
= 2. (4.3)

It can be easily verified that the choice of Ai’s and Bi’s given in Figs. 4.4 and 4.5 guarantees
the above condition. When the node 2 fails, we get a similar condition:

rank
([
B1A

−1
1 vβ1 B2A

−1
2 vβ1

])
= 2, (4.4)

where vβi’s denote projection vectors for node 2 repair. This condition also holds under the
given choice of encoding matrices. With this remapping, one can easily design projection
vectors for exact repair of parity nodes.

Connection To the Wireless Interference Channel Problem: Observe the three
equations shown in Fig. 4.5:





0
(A1vα2)

t

(A2vα3)
t



 a

︸ ︷︷ ︸

desired signals

+





vt
α1

(B1vα2)
t

(B2vα3)
t



b

︸ ︷︷ ︸

interference

.

Separating into two parts, we can view this problem as a wireless communication problem,
wherein a subset of the information is desired to be decoded in the presence of interference.
Note the following analogy for the terms of A1 and vα2.

Storage Repair Wireless Problem
A1 : Encoding Submatix Wireless Channel

vα2 : Projection Vector Beamforming Vector
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Figure 4.5: Geometric interpretation of interference alignment. The blue solid-line and red
dashed-line vectors indicate linear subspaces with respect to “a” and “b”, respectively. The choice
of vα2 = B−1

1 vα1 and vα3 = B−1
2 vα1 enables interference alignment. For the specific example of Fig.

4.4, the corresponding encoding submatrices are A1 = [1, 0; 0, 2], B1 = [1, 0; 0, 1]. A2 = [2, 0; 0, 1],
B2 = [1, 0; 0, 1].

The matrix A1 and vector vα2 correspond respectively to the channel matrix and beamform-
ing vector in the wireless problem.

There are, however, significant differences. In the wireless communication problem, the
channel matrices are provided by nature and therefore not controllable. The transmission
strategy alone (vector variables) can be controlled for achieving interference alignment. On
the other hand, in our storage repair problems, both matrices and vectors are controllable,
i.e., projection vectors and encoding submatrices can be arbitrarily designed, resulting in
more flexibility. However, our storage repair problem comes with unparalleled challenges
due to the MDS requirement and the multiple failure configurations. These induce multiple
interference alignment constraints that need to be simultaneously satisfied. What makes
this difficult is that the encoding submatrices, once designed, must be the same for all repair
configurations. This is particularly acute for large values of k (even k = 3), as the number
of possible failure configurations increases with n (which increases with k).

Remark 16 (Benefits of the Storage-Code Design Flexibility). As a side-note, we emphasize
the great potential to make use of the storage-code design flexibility in achieving interference
alignment. In addition to the work [59], a recent work [13] shows this potential as well.
Specifically [13] exploits the so-called subspace interference alignment [60] - which uses a
finite number of symbol extensions but faces some constraint on wireless channel structures -
to the storage-repair problem which is free from the constraint, thereby developing a practical
code construction in the exact repair problem. �
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4.4 Framework 1: Code Construction

We propose a common-eigenvector based constructive design framework to address the exact
repair problem. This framework draws its inspiration from the work in [54] which guarantees
the exact repair of systematic nodes, while satisfying the MDS code property, but which does
not provide exact repair of failed parity nodes. In providing a constructive solution for the
exact repair of all nodes, we use geometric insights to propose a large family of repair
codes. This both provides insights into the structure of codes for exact repair of all nodes
(particularly the projection-vectors code component), as well as opens up a rich and large
design space for constructive solutions. Specifically, we propose a common-eigenvector based
approach building on a certain elementary matrix property [35, 11]. This structure provides
the key geometric insights needed to facilitate the design of the key projection-vectors code
component of exact repair codes. Moreover, our proposed coding schemes are deterministic
and constructive, requiring a symbol alphabet-size of at most (2n− 2k).

Our framework consists of four components: (1) developing a family of codes5 for exact
repair of systematic codes based on the common-eigenvector concept; (2) drawing a dual
relationship between the systematic and parity node repair; (3) guaranteeing the MDS-code
property; (4) constructing codes with finite-field alphabets. Step (2) of our framework is a
significant distinction from that of [54] and is needed to tackle the full exact repair problem
not addressed there. The framework covers the case of n ≥ 2k and d ≥ 2k − 1. It turns
out that the (2k, k, 2k − 1) code case contains the key design ingredients and the case of
n ≥ 2k and d ≥ 2k − 1 can be derived from this (see Section 4.4.4). Hence, we first focus
on the simplest example: (6, 3, 5) Exact-Repair MDS codes. Later in Section 4.4.4, we will
generalize this to arbitrary (n, k, d) repair codes in the class.

4.4.1 Systematic Node Repair

For k ≥ 3 (more-than-two interfering information units), achieving interference alignment
for exact repair turns out to be significantly more complex than the k = 2 case. Fig. 4.6
illustrates this difficulty through the example of repairing node 1 for a (6, 3, 5) code. By the
optimal tradeoff (4.1), the choice of M = 9 and γ

d
= 1 gives α = 3. Let a = (a1, a2, a3)

t,
b = (b1, b2, b3)

t and c = (c1, c2, c3)
t. We define 3-by-3 encoding submatrices of Ai, Bi and

Ci (for i = 1, 2, 3); and 3-dimensional projection vectors vαi’s.

5Recall that our repair code consists of two components: (1) the encoding (generator) matrix; (2) the
projection vectors needed for node repair. Interestingly, the encoding matrix component of the code in [54]
turns out to work for the exact repair of both systematic and parity nodes provided the second component
of the repair code (projection vectors needed for repair) are appropriately designed.
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Figure 4.6: Difficulty of achieving simultaneous interference alignment.

Consider the 5 (= d) equations downloaded from the nodes:









0
0

(A1vα3)
t

(A2vα4)
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(A3vα5)
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vt
α1
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(B1vα3)
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(B2vα4)
t
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0
vt
α2

(C1vα3)
t

(C2vα4)
t

(C3vα5)
t









c.

In order to successfully recover the desired signal components of “a”, the matrices associated
with b and c should have rank 1, respectively, while the matrix associated with a should
have full rank of 3. In accordance with the (4, 2, 3) code example in Fig. 4.5, if one were to set
vα3 = B−1

1 vα1, vα4 = B−1
2 vα1 and vα5 = B−1

3 vα1, then it is possible to achieve interference
alignment with respect to b. However, this choice also specifies the interference space of c.
If the Bi’s and Ci’s are not designed judiciously, interference alignment is not guaranteed
for c. Hence, it is not evident how to achieve interference alignment at the same time.

In order to address the challenge of simultaneous interference alignment, we invoke a
common eigenvector concept. The idea consists of two parts: (i) designing the (Ai,Bi,Ci)’s
such that v1 is a common eigenvector of the Bi’s and Ci’s, but not of Ai’s

6; (ii) repairing
by having survivor nodes project their data onto a linear subspace spanned by this common
eigenvector v1. We can then achieve interference alignment for b and c at the same time,

6Of course, five additional constraints also need to be satisfied for the other five failure configurations for
this (6, 3, 5) code example.
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by setting vαi = v1, ∀i. As long as [A1v1,A2v1,A3v1] is invertible, we can also guarantee
the decodability of a. See Fig. 4.7.

Figure 4.7: Illustration of exact repair of systematic node 1 for (6, 3, 5) exact-repair MDS codes.
The idea consists of two parts: (i) designing (Ai,Bi,Ci)’s such that v1 is a common eigenvector of
the Bi’s and Ci’s, but not of Ai’s; (ii) repairing by having survivor nodes project their data onto
a linear subspace spanned by this common eigenvector v1.

The challenge is now to design encoding submatrices to guarantee the existence of a
common eigenvector while also satisfying the decodability of desired signals. The difficulty
comes from the fact that in our (6, 3, 5) repair code example, these constraints need to be
satisfied for all six possible failure configurations. The structure of elementary matrices [35,
11] (generalized matrices of Householder and Gauss matrices) gives insights into this. To see
this, consider a 3-by-3 elementary matrix A:

A = uvt + αI, (4.5)

where u and v are 3-dimensional vectors. Here is an observation that motivates our proposed
structure: the dimension of the null space of v is 2 and the null vector v⊥ is an eigenvector
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of A, i.e., Av⊥ = αv⊥. This motivates the following structure:

A1 = u1v
t
1 + α1I; B1 = u1v

t
2 + β1I; C1 = u1v

t
3 + γ1I

A2 = u2v
t
1 + α2I; B2 = u2v

t
2 + β2I; C2 = u2v

t
3 + γ2I

A3 = u3v
t
1 + α3I; B3 = u3v

t
2 + β3I; C3 = u3v

t
3 + γ3I,

(4.6)

where vi’s are 3-dimensional linearly independent vectors and so are ui’s. The values of the
αi’s, βi’s and γi’s can be arbitrary non-zero values. First consider the simple design where
the vi’s are orthonormal. This is for conceptual simplicity. Later we will generalize to the
case where the vi’s need not be orthogonal but only linearly independent. We see that for
i = 1, 2, 3,

Aiv1 = αiv1 + ui,

Biv1 = βiv1,

Civ1 = γiv1.

(4.7)

Importantly, notice that v1 is a common eigenvector of the Bi’s and Ci’s, while simultane-
ously ensuring that the vectors of Aiv1 are linearly independent. Hence, setting vαi = v1

for all i, it is possible to achieve simultaneous interference alignment while also guarantee-
ing the decodability of the desired signals. See Fig. 4.7. On the other hand, this structure
also guarantees exact repair for b and c. We use v2 for exact repair of b. It is a common
eigenvector of the Ci’s and Ai’s, while ensuring [B1v2,B2v2,B3v2] invertible. Similarly, v3

is used for exact repair of c.
We will see that a dual basis property gives insights into the general case where {v} :=

(v1,v2,v3) is not orthogonal but only linearly independent. In this case, defining a dual
basis {v′} := (v′

1,v
′
2,v

′
3) gives the solution:





v′t
1

v′t
2

v′t
3



 :=
[
v1 v2 v3

]−1
.

The definition gives the following property: v′t
i vj = δ(i − j), ∀i, j. Using this property, one

can see that v′
1 is a common eigenvector of the Bi’s and Ci’s while ensuring the invertibility

of the desired signals a:

Aiv
′
1 = αiv

′
1 + ui,

Biv
′
1 = βiv

′
1,

Civ
′
1 = γiv

′
1.

(4.8)

So it can be used as a projection vector for exact repair of a. Similarly, we can use v′
2 and

v′
3 for exact repair of b and c, respectively.
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4.4.2 Parity Node Repair

We have seen so far how to ensure exact repair of the systematic nodes. We have known that
if {v} is linearly independent and so {u} is, then using the structure of (4.6) together with
projection vectors enables repair, for arbitrary values of (αi, βi, γi)’s. A natural question is
now: will this structure also guarantee exact repair of parity nodes? It turns out that for
exact repair of all nodes, we need a special relationship between {v} and {u} through the
correct choice of the (αi, βi, γi)’s.

We will show that parity nodes can be repaired by drawing a dual relationship with
systematic nodes. The procedure has two steps. The first is to remap parity nodes with a′,
b′, and c′, respectively:





a′

b′

c′



 :=





At
1 Bt

1 Ct
1

At
2 Bt

2 Ct
2

At
3 Bt

3 Ct
3









a
b
c



 .

Systematic nodes can then be rewritten in terms of the prime notations:

at = a′tA′
1 + b′tB′

1 + c′tC′
1,

bt = a′tA′
2 + b′tB′

2 + c′tC′
2,

ct = a′tA′
3 + b′tB′

3 + c′tC′
3,

(4.9)

where the newly mapped encoding submatrices (A′
i,B

′
i,Ci)’s are defined as:





A′
1 A′

2 A′
3

B′
1 B′

2 B′
3

C′
1 C′

2 C′
3



 :=





A1 A2 A3

B1 B2 B3

C1 C2 C3





−1

. (4.10)

With this remapping, one can dualize the relationship between systematic and parity node
repair. Specifically, if all of the A′

i’s, B
′
i’s, and C′

i’s are elementary matrices and form a
similar structure as in (4.6), exact repair of the parity nodes becomes transparent.

The challenge is now how to guarantee the dual structure. In Lemma 3, we show that
a special relationship between {u} and {v} through (αi, βi, γi)’s can guarantee this dual
relationship of (4.13).

Lemma 3. Suppose

P :=





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3



 is invertible. (4.11)

Also assume

κU = V′P. (4.12)
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Figure 4.8: Exact repair of parity node 1 for a (6, 3, 5) exact-repair MDS code. The idea is
to construct the dual structure of (4.13) by remapping parity nodes and then adding sufficient
conditions of (4.11) and (4.12).
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where U = [u1,u2,u3], V
′ = [v′

1,v
′
2,v

′
3], {v′} := {v′

1,v
′
2,v

′
3} is the dual basis of {v}, i.e.,

v′t
i vj = δ(i − j) and κ is an arbitrary non-zero value s.t. 1 − κ2 6= 0. Then, we can obtain

the following structure dual to (4.6):

A′
1 =

1

1− κ2

(
v′
1u

′t
1 − κ2α′

1I
)
;B′

1 =
1

1− κ2

(
v′
1u

′t
2 − κ2α′

2I
)
;C′

1 =
1

1− κ2

(
v′
1u

′t
3 − κ2α′

3I
)

A′
2 =

1

1− κ2

(
v′
2u

′t
1 − κ2β ′

1I
)
;B′

2 =
1

1− κ2

(
v′
2u

′t
2 − κ2β ′

2I
)
;C′

2 =
1

1− κ2

(
v′
2u

′t
3 − κ2β ′

3I
)

A′
3 =

1

1− κ2

(
v′
3u

′t
1 − κ2γ′

1I
)
;B′

3 =
1

1− κ2

(
v′
3u

′t
2 − κ2γ′

2I
)
;C′

3 =
1

1− κ2

(
v′
3u

′t
3 − κ2γ′

3I
)
,

(4.13)

where {u′} is the dual basis of {u}, i.e., u′t
i uj = δ(i− j) and (α′

i, β
′
i, γ

′
i)’s are the dual basis

vectors of (αi, βi, γi)’s, i.e., < (α′
i, β

′
i, γ

′
i), (αj, βj, γj) >= δ(i− j):





α′
1 β ′

1 γ′
1

α′
2 β ′

2 γ′
2

α′
3 β ′

3 γ′
3



 :=





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3





−1

. (4.14)

Proof. See Appendix 4.7.1.

Remark 17. The dual structure (4.13) now gives projection vector solutions for parity node
repair. For exact repair of parity node 1, we can use vector u1 (a common eigenvector of
the B′

i’s and C′
i’s), since it enables simultaneous interference alignment for b′ and c′, while

ensuring the decodability of a′. See Fig. 4.8. Notice that more conditions of (4.11) and (4.12)
are added to ensure exact repair of all nodes, while these conditions were unnecessary for
exact repair of systematic nodes only. Also note that these are only sufficient conditions.

Remark 18. Note that the dual structure (4.13) is quite similar to the primary structure
(4.6). The only difference is that in the dual structure, {u} and {v} are interchanged to
form a transpose-like structure. This reveals insights into how to design projection vectors
for exact repair of parity nodes in a transparent manner.

4.4.3 MDS-Code Property

The third part of the framework is to guarantee the MDS-code property, which allows us
to identify specific constraints on the (αi, βi, γi)’s and/or ({v}, {u}). Consider four cases,
associated in the Data Collector (DC) who is intended in the source file data: (a) 3 systematic
nodes; (b) 3 parity nodes; (c) 2 systematic and 1 parity nodes; (d) 1 systematic and 2 parity
nodes.

The first is a trivial case. The second case has been already verified in the process of
forming the dual structure (4.13). The invertibility condition of (4.11) together with (4.12)
suffices to ensure the invertibility of the composite matrix [A1 A2 A3;B1 B2 B3;C1 C2 C3].
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The third case requires the invertibility of all of each encoding submatrix. In this case, it is
necessary that the αi’s, βi’s and γi’s are non-zero values; otherwise, each encoding submatrix
has rank 1. Also the non-zero values together with (4.12) guarantee the invertibility of each
encoding submatrix. To see this, for example, consider

VtA1V
′ = (Vtu1)e

t
1 + α1I =





α1

κ
+ α1 0 0
β1

κ
α1 0

γ1
κ

0 α1



 ,

where the second equality follows from vt
1u1 =

α1

κ
, vt

2u1 =
β1

κ
and vt

3u1 = γ1
κ

due to (4.12).
Here e1 indicates a standard basis, i.e., e1 = (1, 0, 0)t. Clearly this resulting matrix is
invertible. Since V is invertible, so is A1.

The last case requires some non-trivial work. Consider a specific example where the DC
connects to nodes 3, 4 and 5. In this case, we first recover c from node 3 and subtract the
terms associated with c from nodes 4 and 5. We then get:

[
at bt

]
[
A1 A2

B1 B2

]

. (4.15)

Now consider

[
Vt 0
0 Vt

] [
A1 A2

B1 B2

] [
V′ 0
0 V′

]

=











α1

κ
+ α1 0 0 α2

κ
+ α2 0 0

β1

κ
α1 0 β2

κ
α2 0

γ1
κ

0 α1
γ2
κ

0 α2

β1
α1

κ
0 β2

α2

κ
0

0 β1 +
β1

κ
0 0 β2 +

β2

κ
0

0 γ1
κ

β1 0 γ2
κ

β2











,

where the equality follows from the fact that VtAiV
′ = (Vtui)e

t
1 + αiI and VtBiV

′ =
(Vtui)e

t
2 + βiI, for i = 1, 2. Using a Gaussian elimination method, one can now easily show

that this resulting matrix is invertible and so is [A1 A2;B1 B2] if

P2 :=

[
α1 α2

β1 β2

]

is invertible. (4.16)

Considering the above 4 cases, the following condition together with (4.11) and (4.12)
suffices for guaranteeing the MDS-code property:

Any submatrix of P of (4.11) is invertible. (4.17)

Code Construction with Finite-Field Alphabets: The last part is to design P
of (4.11) and {v} := (v1,v2,v3) in (4.6) such that {v} is linearly independent and the
conditions of (4.12) and (4.17) are satisfied. As for the matrices that satisfy (4.17), one
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can think of a Cauchy matrix or a Vandermonde matrix [9, 54]. Specifically, we employ the
Cauchy matrix to construct explicit codes with the guarantee on the minimum finite-field
size. Notice that the Cauchy matrix is an example that guarantees (4.17). One may use any
other matrices that satisfy (4.17).

Definition 1 (A Cauchy Matrix [9]). A Cauchy matrix P is an m× n matrix with entries
pij in the form:

pij =
1

xi − yj
, ∀i = 1, · · · , m, j = 1, · · ·n, xi 6= yj,

where xi and yj are elements of a field and {xi} and {yj} are injective sequences, i.e.,
elements of the sequence are distinct.

The injective property of {xi} and {yj} requires a finite field size of 2s for an s-by-
s Cauchy matrix. Therefore, in our (6, 3, 5) repair code example, the finite field size of 6
suffices. The field size condition for guaranteeing linear independence of {v} is more relaxed.

Using the structure of (4.6) and the conditions of (4.11), (4.12) and (4.17), we can now
state the following theorem.

Theorem 6 ((6, 3, 5) Exact-Repair MDS Codes). Suppose P of (4.11) is a Cauchy matrix,
i.e., every submatrix of is invertible. Each element of P is in GF(q) and q ≥ 6. Suppose
encoding submatrices form the structure of (4.6), {v} := (v1,v2,v3) is linearly independent,
and {u} satisfies the condition of (4.12). Then, the repair code comprising the encoding
matrix and the projection vectors achieves the optimal tradeoff of (4.1).

We provide two numerical examples: (1) V = [v1,v2,v3] is orthogonal, e.g., V = I; (2)
U is orthogonal, e.g., U = I. We will also discuss the complexity of repair construction
schemes for each of these examples. It turns out that the first code has significantly lower
complexity for exact repair of systematic nodes, as compared to that of parity nodes. On
the other hand, the second case provides much simpler parity-node repair schemes instead.
Depending on applications of interest, one can choose an appropriate code among our family
of codes.

Example 1 (V = I): We present an example of (6, 3, 5) Exact-Repair MDS codes
defined over GF(5) where V = I and

P =





1 1 1
1 2 3
1 3 4



 ,U = κ−1V′P = 3





1 1 1
1 2 3
1 3 4



 =





3 3 3
3 1 4
3 4 2



 ,

where U is set based on (4.12) and κ = 2. Notice that we employ a non-Cauchy-type
matrix to construct a field-size q = 5 code (smaller than q = 6 required when using a
Cauchy matrix). Remember that a Cauchy matrix provides only a sufficient condition for
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ensuring the invertibility of any submatrices of P. By (4.6) and (4.13), the primary and dual
structures for encoding matrices are given by

G =

















4 0 0 4 0 0 4 0 0
3 1 0 1 1 0 4 1 0
3 0 1 4 0 1 2 0 1
1 3 0 2 3 0 3 3 0
0 4 0 0 3 0 0 2 0
0 3 1 0 4 2 0 2 3
1 0 3 3 0 3 4 0 3
0 1 3 0 3 1 0 4 4
0 0 4 0 0 2 0 0 1

















;G−1 =

















4 1 4 3 0 0 2 0 0
0 3 0 1 4 4 0 2 0
0 0 3 0 0 3 1 1 1
4 2 2 1 0 0 1 0 0
0 3 0 1 3 2 0 1 0
0 0 3 0 0 1 1 2 3
1 2 4 1 0 0 2 0 0
0 2 0 4 3 4 0 2 0
0 0 2 0 0 1 4 2 1

















, (4.18)

where

G :=





A1 A2 A3

B1 B2 B3

C1 C2 C3



 ;G−1 =





A′
1 A′

2 A′
3

B′
1 B′

2 B′
3

C′
1 C′

2 C′
3



 . (4.19)

Fig. 4.9 shows an example for exact repair of (a) systematic node 1 and (b) parity node
1. Note that the projection vector solution for systematic node repair is quite simple: vαi =
v1 = (1, 0, 0)t, ∀i. We download only the first equation from each survivor node. Notice
that the downloaded five equations contain only five unknown variables of (a1, a2, a3, b1, c1)
and three equations associated with a are linearly independent. Hence, we can successfully
recover a.

On the other hand, exact repair of parity nodes seems non-straightforward. However,
our framework provides quite a simple repair scheme: setting all of the projection vectors
as 2−1u1 = (1, 1, 1)t. This enables simultaneous interference alignment, while guaranteeing
the decodability of a′. Notice that (b′1, b

′
2, b

′
3) and (c′1, c

′
2, c

′
3) are aligned into b′1 + b′2 + b′3 and

c′1 + c′2 + c′3, respectively, while three equations associated with a′ are linearly independent.
As one can see, the complexity of systematic node repair is a little bit lower than that

of parity node repair, although both repair schemes are simple. Hence, one can expect that
this example is useful for the applications where the complexity of systematic node repair
needs to be significantly low.

Example 2 (U = I): We provide another example of (6, 3, 5) Exact-Repair MDS codes
where U is orthogonal. We use the same field size of 5 and the same P. Instead we
choose a non-orthogonal V in order to significantly reduce the complexity of parity node
repair. Our framework provides a concrete guideline for accomplishing this. Remember
that the projection vector solutions are u1, u2 and u3 for exact repair of each parity node,
respectively. For low complexity, we can first set U = I. The condition (4.12) then gives the
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Figure 4.9: Example 1: V = I. A (6, 3, 5) Exact-Repair MDS code defined over GF(5). The
projection vector solution for systematic node repair is quite simple: vαi = v1 = (1, 0, 0)t,∀i. This
example employs the same encoding matrix and projection vectors for systematic node repair as
those in [54]. We download only the first equation from each survivor node; For parity node repair,
our new framework provides a simple scheme: setting all of the projection vectors as 2−1u1 =
(1, 1, 1)t . This enables simultaneous interference alignment, while guaranteeing the decodability of
a.
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following choice:

V = Ptκ−1 =





3 3 3
3 1 4
3 4 2



 ,

where we use κ = 2. By (4.6) and (4.13), the primary and dual structures are given by

G =

















4 3 3 1 0 0 1 0 0
0 1 0 3 4 3 0 1 0
0 0 1 0 0 1 3 3 4
4 1 4 2 0 0 3 0 0
0 1 0 3 3 4 0 3 0
0 0 1 0 0 2 3 1 2
4 4 2 3 0 0 4 0 0
0 1 0 3 2 2 0 4 0
0 0 1 0 0 3 3 4 1

















;G−1 =

















4 0 0 4 0 0 1 0 0
1 3 0 2 3 0 2 2 0
4 0 3 2 0 3 4 0 3
3 1 0 1 1 0 1 4 0
0 4 0 0 3 0 0 3 0
0 4 3 0 2 1 0 4 1
2 0 1 1 0 1 2 0 4
0 2 1 0 1 2 0 2 2
0 0 1 0 0 3 0 0 1

















, (4.20)

where G is defined as (4.19). Notice that the matrices of (4.20) have exactly the transpose
structure of the matrices of (4.18). Hence, this structure of (4.20) is a dual solution to that
of (4.18), thereby ensuring the transfer of the lowered complexity property for parity node
repair.

Fig. 4.10 shows an example for exact repair of (a) systematic node 1 and (b) parity
node 1. In contrast to our previous case, exact repair of parity nodes is now much simpler.
In this example, by downloading only the first equation from each survivor node, we can
successfully recover a′. On the contrary, systematic node repair is more involved, with all
of the projection vectors being set as 2−1v′

1 = (1, 1, 4)t. Using this vector, we can achieve
simultaneous interference alignment, thereby decoding the desired components of a.

4.4.4 Generalization

Theorem 6 gives insights into generalization to (2k, k, 2k−1) Exact-Repair MDS codes. The
key observation is that assuming M = k(d−k+1), storage cost is α = M/k = d−k+1 = k
and this number is equal to the number of systematic nodes and furthermore matches the
number of parity nodes. Notice that the storage size matches the size of encoding subma-
trices, which determines the number of linearly independent vectors of {v} := {v1, · · · }. In
this case, therefore, we can generate k linearly independent vectors {v} := {v1, · · · ,vk} and
corresponding {u} := {u1, · · · ,uk} through the appropriate choice of P. This immediately
provides (2k, k, 2k − 1) Exact-Repair MDS codes.
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Figure 4.10: Example 2: U = I. A (6, 3, 5) Exact-Repair MDS code defined over GF(5). Since we
choose U = I, the projection vector solution for parity node repair, is much simpler. We download
only the first equation from each survivor node; systematic node repair is more involved, with all
of the projection vectors being set as 2−1v′

1 = (1, 1, 4)t .
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Theorem 7 ((2k, k, 2k − 1) Exact-Repair MDS Codes). Let P be a Cauchy matrix:

P =








p
(1)
1 p

(2)
1 · · · p

(k)
1

p
(1)
2 p

(2)
2 · · · p

(k)
2

...
...

. . .
...

p
(1)
k p

(2)
k · · · p

(k)
k







,

where each element p
(i)
j ∈ GF(q), where q ≥ 2k. Suppose

V = [v1, · · · ,vk] is invertible and U = κ−1V′P, (4.21)

where V′ = (Vt)−1 and κ is an arbitrary non-zero value ∈ Fq such that 1 − κ2 6= 0. Also
assume that encoding submatrices are given by

G
(1)
1 = u1v

t
1 + p

(1)
1 I, · · · ,G(1)

k = u1v
t
k + p

(1)
k I,

...
. . .

...

G
(k)
1 = ukv

t
1 + p

(k)
1 I, · · · ,G(k)

k = ukv
t
k + p

(k)
k I,

(4.22)

where G
(i)
l indicates an encoding submatrix for parity node i, associated with information

unit l. Then, the repair code achieves the optimal tradeoff of (4.1).

Proof. See Appendix 4.7.2.

Remark 19. Note that the minimum required alphabet size is 2k. As mentioned earlier, this
is because we employ a Cauchy matrix for ensuring the invertibility of any submatrices of P.
One may customize codes to find smaller alphabet-size codes.

Now what if k is less than the size (= α = d − k + 1) of encoding submatrices, i.e.,
d ≥ 2k−1? Note that this case automatically implies that n ≥ 2k, since n ≥ d+1. The key
observation in this case is that the encoding submatrix size is bigger than k, and therefore
we have more degrees of freedom (a larger number of linearly independent vectors) than
the number of constraints. Hence, exact repair of systematic nodes becomes transparent.
This was observed in [54], where it was shown that for d = n − 1 ≥ 2k − 1, exact repair
of systematic nodes only can be guaranteed by carefully manipulating (2k, k, 2k − 1) codes
through a pruning operation.

We propose a generalized pruning algorithm that ensures exact repair of all nodes for
n ≥ 2k and d ≥ 2k − 1. The recipe for this has two parts:

1. Constructing a target code from a larger code.

2. Showing that the resulting target code ensures exact repair of all nodes as well as the
MDS-code property.



99

We provide detailed procedures7 of the first part.

1(a) Using Theorem 7, construct a larger (2n − 2k, n − k, 2n − 2k − 1) code with a finite
field size of q ≥ 2n− 2k.

1(b) Remove all the elements associated with the (n− 2k) information units (e.g., from the
(k + 1)th to the (n − k)th information unit). The number of nodes is then reduced
by (n − 2k) and so are the number of information units and the number of degrees.
Hence, we obtain the (n, k, n− 1) code.

1(c) Prune the last (n− 1− d) equations in each storage node and also the last (n− 1− d)
symbols of each information unit, while keeping the number of information units and
storage nodes. We can then get the (n, k, d) target code.

Indeed, based on our framework of Section 4.4, it can be shown that the resulting code
described above guarantees exact repair of all nodes while retaining the MDS-code property.

Theorem 8 ( k
n
≤ 1

2
, d ≥ 2k−1). Suppose that all of the survivor systematic nodes participate

in the repair. Then, under exact repair constraints of all nodes, the optimal tradeoff of (4.1)
can be attained with a deterministic scheme requiring a field size of at most 2(n− k).

Proof. See Appendix 4.7.3.

Example 1. Fig. 4.11 illustrates how to construct an (n, k, d) = (5, 2, 3) target code based
on the above recipe. First construct the (2n− 2k, n− k, 2n− 2k − 1) = (6, 3, 5) code, which
is larger than the (5, 2, 3) target code, but which belongs to the category of n = 2k. For this
code, we employ the example in Fig. 4.9. We now remove all the elements associated with
the last (n− 2k) = 1 information unit, which corresponds to (c1, c2, c3). Next, prune the last
symbol (a3, b3) of each information unit and associated elements to shrink the storage size
into 2. We can then obtain the (5, 2, 3) target code. Based on the proposed framework in
Section 4.4, it can be shown that the resulting code guarantees exact repair of all nodes and
the MDS-code property.

4.5 Framework 2: Code Existence

We propose the second framework, which has a similar structure as that of framework 1, but
which encompasses all admissible values of (n, k, d). This framework draws its inspiration
from the symbol-extended interference alignment technique by Cadambe and Jafar [14],
meant for the wireless interference channel. Here the symbol extension is analogous to the
idea of vector linear codes in the network coding field.

7While Steps (1a) and (1b) come from the pruning technique in [54], Step (1c) is a significant distinction
from that of [54].
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a1
a2
a3

b1
b2
b3

c1
c2
c3

4a1 + 3a2 + 3a3 + b1 + c1
a2 + 3b1 + 4b2 + 3b3 + c2

a3 + b3 + 3c1 + 3c2 + 4c3

4a1 + a2 + 4a3 + 2b1 + 3c1

a2 + 3b1 + 3b2 + 4b3 + 3c2

4a1 + 4a2 + 2a3 + 3b1 + 4c1

a2 + 3b1 + 2b2 + 2b3 + 4c2
a3 + 3b3 + 3c1 + 4c2 + c3

a3 + 2b3 + 3c1 + c2 + 2c3

Remove (c1, c2, c3), (a3, b3)
and associated elements.

of each storage node.
Also remove the third equation

(6,3,5) Exact-Repair MDS code
a1
a2

b1
b2

4a1 + 3a2 + b1

a2 + 3b1 + 4b2

4a1 + a2 + 2b1

a2 + 3b1 + 3b2

4a1 + 4a2 + 3b1

a2 + 3b1 + 2b2

(5,2,3)
Exact-Repair MDS code

Figure 4.11: Illustration of the construction of a (5, 2, 3) Exact-Repair MDS code from a (6, 3, 5)
Exact-Repair MDS code defined over GF(5). For a larger code, we adopt the (6, 3, 5) code in
Fig. 4.9. First, we remove all the elements associated with the last (n − 2k) = 1 information unit
(“c”). Next, we prune symbols (a3, b3) and associated elements. Also we remove the last equation
of each storage node. Finally we obtain the (n, k, d) = (5, 2, 3) target code.
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Similar to the previous framework, it consists of four components: (1) developing a code
structure for exact repair of systematic nodes; (2) drawing a dual structure between the
systematic and parity node repair; (3) guaranteeing the MDS-code property; (4) providing
a probabilistic guarantee of the existence of the code for a large enough alphabet size. In
particular, the diagonal structure of single-antenna wireless channels (exploited in [14]) forms
the basis of the structure of encoding submatrices of our codes.

The framework covers all admissible values of (n, k, d). This contrasts the scalar-linear
code based framework which covers a subset of all admissible values, but which provides
a deterministic code construction with small alphabet size and guaranteed zero error. In
contrast, here we target only the existence of exact-repair codes without specifying con-
structions. This allows for a simpler characterization of the solution space for the entire
range of admissible repair code parameters. In order to convey the concepts in a clear and
concise manner, we first focus on the simplest example which does not belong to the previous
framework: (6, 3, 4) Exact-Repair MDS codes. This example is a representative of the gen-
eral case of k < n and k ≤ d ≤ n− 1, with the generalization following in a straightforward
way from this example. This will be discussed in Section 4.5.4.

4.5.1 Systematic Node Repair

In order to address the challenge of this simultaneous interference alignment, we invoke the
idea of symbol extension introduced in [14], which is equivalent to the concept of vector
linear codes in the storage repair problem. Fig. 4.12 illustrates the idea of vector linear
codes through storage node 1 in the (6, 3, 4) code example. While scalar linear codes do not
allow symbol splitting, vector linear codes permit the splitting of symbols into arbitrarily
small subsymbols. In this example, each node stores α = 2 symbols, each of which has
unit capacity. In vector linear codes, this unit-capacity symbol is allowed to be split into
subsymbols with arbitrarily small fractional capacity. In this example, we split each symbol
into B number of subsymbols, so each subsymbol has 1

B
capacity.

This idea of vector linear codes is the key to interference alignment for the storage repair
problem. Fig. 4.13 illustrates exact repair of systematic node 1 for (6, 3, 4) Exact-Repair
MDS codes. Using vector linear codes, we split each symbol into B = mN number of
subsymbols, where m is an arbitrarily large positive integer and the exponent N is carefully
chosen depending on code parameters. Specifically,

N = (k − 1)(d− k + 1). (4.23)

This choice of N and the form of B = mN are closely related to the scheme to be described in
the sequel. In this example, N = 4. The maximum file size (based on the cutset bound (4.1))
is M = 6 units, inducing a storage cost α = 2 units. Since each subsymbol has 1

m4 capacity,
each storage node contains αm4(= 2m4) number of subsymbols, e.g., at = (a1, · · · , a2m4),
where ai indicates a subsymbol. Note that the size of encoding submatrices (Ai,Bi,Ci)
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a1

a2

Scalar linear code

1

a1

Vector linear code

a2

aB
aB+1
aB+2

a2B

1

B

symbol

subsymbol

Figure 4.12: Illustration of the idea of vector linear codes through storage node 1 in the (6, 3, 4)
code example. In scalar linear codes, symbols are not allowed to be split. On the other hand,
vector linear codes allow to split symbols into arbitrarily small subsymbols. In this example, node
1 stores α = 2 symbols, each of which has unit capacity. In vector linear codes, this unit-capacity
symbol can be split into subsymbols with arbitrarily small fractional capacity. For example, we
can split each symbol into B number of subsymbols, so each subsymbol has 1

B capacity.
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is 2m4-by-2m4. We consider diagonal encoding submatrices. As pointed out in [14], the
diagonal matrix structure ensures a commutative property which provides the key to the
interference alignment scheme (to be described shortly):

Ai =








αi,1 0 · · · 0
0 αi,2 · · · 0
...

...
. . .

...
0 · · · 0 αi,2m4







(commutative property holds). (4.24)

A failed node 1 is exactly repaired through the following steps. Assume that survivor
nodes (2, 3, 4, 5) participate in exact repair of node 1, i.e., k − 1 = 2 systematic nodes and
d− k+ 1 = 2 parity nodes. One can alternatively use 1 systematic node and 3 parity nodes
for repair instead. This does not fundamentally alter the analysis, and will be covered in
Section 20. For the time being, assume the above configuration for the connection: (k − 1)
systematic nodes and (d− k+1) parity nodes. The parity survivor nodes project their data
using the following projection matrix :

V := [v1, · · · ,vm4 ] ∈ F
2m4×m4

q , (4.25)

where vi ∈ V. The set V is defined as:

V := {(Be1
1 Be2

2 Ce3
1 Ce4

2 )w : e1, e2, e3, e4 ∈ {0, · · · , m− 1}} , (4.26)

where w = [1, · · · , 1]t. Note that |V| ≤ m4. The vector vi maps to a different sequence of
(e1, e2, e3, e4). For example, we can map:

v1 = w, v2 = C2w, v3 = C2
2w, · · · ,

vm4−2 = Bm−1
1 Bm−1

2 Cm−1
1 Cm−3

2 w,

vm4−1 = Bm−1
1 Bm−1

2 Cm−1
1 Cm−2

2 w,

vm4 = Bm−1
1 Bm−1

2 Cm−1
1 Cm−1

2 w.

(4.27)

Consider the equations downloaded from parity nodes 1 and 2 (nodes 4 and 5):

From parity node 1: at(A1V) + bt(B1V) + ct(C1V);

From parity node 2: at(A2V) + bt(B2V) + ct(C2V).
(4.28)

Note that B1V contains the following column vectors:

B1v1 = B1w, B1v2 = B1C2w, B1v3 = B1C
2
2w, · · · ,

B1vm4−2 = Bm
1 B

m−1
2 Cm−1

1 Cm−3
2 w,

B1vm4−1 = Bm
1 B

m−1
2 Cm−1

1 Cm−2
2 w,

B1vm4 = Bm
1 B

m−1
2 Cm−1

1 Cm−1
2 w.
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Figure 4.13: Illustration of exact repair of systematic node 1 for a (6, 3, 4) Exact-Repair MDS code.
We split each symbol into B = mN number of subsymbols, where m is an arbitrarily large positive
integer and the exponent N is equal to 4 and is carefully chosen depending on code parameters,
specifically N = (k−1)(d−k+1) = 4. This corresponds to the total number of encoding submatrices
involved in the connection except for those associated with desired signals. Note that each subsym-
bol has 1

m4 capacity. The maximum file size (based on the optimal tradeoff of (4.1)) is M = 6 units,
inducing a storage cost α = 2 units. Hence, each storage contains 2m4 number of subsymbols and
the size of encoding submatrices is 2m4-by-2m4. We consider diagonal encoding submatrices. A
failed node is exactly repaired by having systematic and parity survivor nodes project their data
onto linear subspaces spanned by column vectors of V̄ := [v̄1, · · · , v̄(m+1)4 ] and V := [v1, · · · ,vm4 ],
respectively. Here v̄i ∈ V̄ and vi ∈ V. Notice that B1vi,B2vi,C1vi,C2vi ∈ V̄,∀i = 1, · · · ,m4.
Hence, the matrix associated with interference b has rank of at most (m + 1)4 instead of 2m4.
Similarly the matrix associated with interference c has rank of at most (m + 1)4. This enables
simultaneous interference alignment as m → ∞. On the other hand, rank[A1V,A2V] = 2m4 with
probability 1, providing a probabilistic guarantee of decodability of desired signals. Finally, notice

that the total repair bandwidth γ = 2 (m+1)4

m4 + 2 · 1 approaches the cutset lower bound of 4 units
as m goes to infinity. Therefore, we can ensure exact repair of systematic node 1 with minimum
repair bandwidth matching the cutset lower bound.
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An important observation is that any column vector B1vi is an element of V̄ defined as:

V̄ := {(Be1
1 Be2

2 Ce3
1 Ce4

2 )w : e1, e2, e3, e4 ∈ {0, · · · , m}} . (4.29)

Similarly any column vector in B2V, C1V or C2V is an element of V̄. This implies that
[B1V,B2V] ∈ F2m4×2m4

q is a rank-deficient matrix, i.e., rank[B1V,B2V] ≤ (m+1)4. Similarly
rank[C1V,C2V] ≤ (m + 1)4. This allows for simultaneous interference alignment although
the same projection matrix V is used for b and c. This observation motivates the systematic
survivor nodes to project their data using the following projection matrix:

V̄ := [v̄1, · · · , v̄(m+1)4 ] ∈ F
2m4×(m+1)4

q , (4.30)

where v̄i ∈ V̄ and is mapped to a difference sequence of (e1, e2, e3, e4) as in (4.27). We can
then guarantee that:

colspan[B1V,B2V] ⊂ colspan[V̄]

colspan[C1V,C2V] ⊂ colspan[V̄].
(4.31)

Hence, using btV̄ and ctV̄ (downloaded from systematic survivor nodes), we can completely
remove any interference (bt(B1V),bt(B2V), ct(C1V), ct(C2V)) from (4.28), thereby obtain-
ing at[A1V,A2V]. To successfully recover a, we need:

rank[A1V,A2V] = 2m4. (4.32)

In other words, [A1V,A2V] must have full rank. The proof of equation (4.32) is the existence
proof stemming from the Schwartz-Zippel Lemma [46]. Specifically, we show that there exist
diagonal encoding submatrices Ai,Bi,Ci so that this is satisfied. The argument is as follows.

Consider equation (4.32). In the matrix on the left hand side, notice that the design of
V in (4.26) does not depend on A1 and A2. Therefore, it can be noted that each entry
of the matrix is a different monomial in the diagonal entries of the encoding submatrices
Ai,Bi,Ci. Based on this observation, it can be shown that the determinant of the matrix in
(4.32) is a non-zero polynomial in the diagonal entries of Ai,Bi,Ci, i = 1, 2, 3. Let us denote
this polynomial by g(·). Note that for (4.32) to be satisfied, we need g(·) to evaluate to a
non-zero value in the field. Therefore, it suffices to show that there exists a realization of
diagonal entries for the coding submatrices so that the polynomial g(·) evaluate to a non-zero
value in the field. To do so, we invoke the Schwartz-Zippel Lemma. Over a sufficiently large
field, the lemma guarantees, via a probabilistic argument, the existence of diagonal matrices
Ai,Bi,Ci so that this polynomial evaluates to some non-zero value.

We now validate that total repair bandwidth approaches γ = 4 units as the number of
subsymbols goes to infinity:

γ = (k − 1)
(m+ 1)4

m4
+ (d− k + 1) · m

4

m4

= 2
(m+ 1)4

m4
+ 2 · 1

−→ 4 units, m → ∞.

(4.33)
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The first equality is because each subsymbol has capacity of 1
m4 and we use projection matrix

V̄ ∈ F
2m4×(m+1)4

q and V ∈ F2m4×m4

q when connecting to systematic nodes and parity nodes
respectively. Note that asm goes to infinity, the total repair bandwidth approaches minimum
repair bandwidth matching the cutset lower bound (4.1).

4.5.2 Parity Node Repair

The code Ai,Bi,Ci constructed here can also be used to create an optimal repair strategy
for a failed parity node in the same manner. The key idea is the following. In an MDS code,
any k nodes are information equivalent to the original information in a system and therefore
can be interpreted as k systematic nodes. The data stored in the remaining (n − k) nodes
are functions of these k nodes and can therefore be interpreted as parity nodes. Hence,
through a remapping of the nodes and an appropriate transformation, a parity node of a
code can be interpreted as a systematic node of a virtual alternate code - a parity node
failure can therefore be interpreted as a systematic node failure under a virtual alternate
code. Specifically, for linear MDS codes, by using a change of basis, a parity node in the
original code can be virtually interpreted as a systematic node of a virtual alternate code. As
long as the alternate code shares properties similar to the original code (diagonal encoding
submatrices etc.), the ideas of systematic node repair can be applied to parity node repair as
well. Let us crystallize this idea in the context of an example. Suppose that a parity node,
say node 6, fails. We can now remap the nodes so that this failed node is systematic node
c′t. Therefore, in this alternate virtual code, we have three systematic nodes a′,b′, c′:

Node 1: a′t = at

Node 2: b′t = bt

Node 3: c′t = atA3 + btB3 + ctC3.

(4.34)

With this remaping, ct is now a parity node. The three parity nodes can be expressed as

Node 4: a′t{A1 +A3(C3)
−1C1}+ b′t{B1 +B3(C3)

−1C1}+ c′t(C3)
−1C1

Node 5: a′t{A2 +A3(C3)
−1C2}+ b′t{B2 +B3(C3)

−1C2}+ c′t(C3)
−1C2.

Node 6: ct = a′tA3(C3)
−1 + b′tB3(C3)

−1 + c′t(C3)
−1.

(4.35)

Let us denote the ith parity node (i.e., node i + k = i + 3) as a′tA′
i + b′tB′

i + c′tC′
i so

that for example A′
1 = A1 + A3(C3)

−1C1 and so on. From the above expressions, all the
encoding submatrices A′

i,B
′
i,C

′
i are diagonal. This is because the sum, product and inverse

of two diagonal matrices are diagonal. The diagonal property ensures that the encoding
submatrices commute even in this virtual code. This means that by picking the repair
vectors in a manner analogous to (4.26) and (4.29) aligns interference so that an equation
analogous to (4.31) is satisfied. Using an argument similar to the previous section, it can be
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shown that the desired signal can also be completely recovered as well. The detailed proof
is omitted here to avoid tedious notation.

Remark 20 (Participation of Arbitrary d Nodes for Exact Repair). We have considered
a somewhat restrictive connection configuration for exact repair: namely connecting to sur-
viving (k − 1) systematic nodes and to other (d − k + 1) parity nodes. We now consider
more general connection configurations. For example, consider the case when node 1 fails.
Suppose we connect to nodes (2, 4, 5, 6) for exact repair of node 1: 1 systematic node and 3
parity nodes. We use the idea similar to the idea of parity node repair. We remap one parity
node to make it look like a systematic node. We then virtually connect to 2 systematic and
to 2 parity nodes. Specifically we can remap node 6 with c′t and perform conversions similar
to (4.34) and (4.35). Then applying the same procedures as before, we can guarantee the
exact repair of a.

4.5.3 MDS-Code Property

The MDS property means that the code must be able to tolerate the failure of any three stor-
age nodes in the system. Equivalently, any set of three nodes in the system, when interpreted
as equations in a,b, c must have full rank of M = 6m4 and hence the matrix representing
these equations, must have a non-zero determinant. Note that there are

(
6
3

)
possible sets of

three nodes in the storage system. The MDS property is therefore equivalent to showing that
(
6
3

)
= 20 determinants are all non-zero. Note that each determinant is a polynomial in the

entries of the encoding submatrices. In the next section, we will show in the more general
context of arbitrary n and k that even with diagonal coding submatrices chosen here, all
these polynomials are non-zero. To summarize, we show that the MDS property corresponds
to 20 non-zero polynomials in the entries of the diagonal elements of Ai,Bi,Ci each evalu-
ating to a non-zero value. We will denote these polynomials by f1, f2, . . . , f20. Again using
the Schwartz-Zippel Lemma, one can show that there exists a realization of diagonal entries
for the coding submatrices so that the product of the polynomials f1(·) · · ·f2(·) evaluates to
a non-zero value in the field.

As mentioned, for a sufficiently large field size, a random construction for encoding sub-
matrices suffices to guarantee exact repair of all nodes and MDS-code property with proba-
bility 1. Hence, we obtain the following theorem.

Theorem 9 ((6, 3, 4) Exact-Repair MDS Codes). There exist vector linear Exact-Repair
MDS codes that achieve the minimum repair bandwidth corresponding to the cutset bound (4.1),
allowing for any failed node to be exactly repaired with access to any arbitrary d = 4 survivor
nodes, provided storage symbols can be split into a sufficiently large number of subsymbols,
and the field size can be made sufficiently large.
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4.5.4 Generalization

The interference alignment technique described in the previous sections can be generalized
to all admissible values of (n, k, d), i.e., k < n and k ≤ d ≤ n− 1.

Theorem 10 ((n, k, d) Exact-Repair MDS Codes). There exist vector linear Exact-Repair
MDS codes that achieve the minimum repair bandwidth corresponding to the cutset bound (4.1),
allowing for any failed node to be exactly repaired with access to any arbitrary d survivor
nodes, where k ≤ d ≤ n − 1, provided storage symbols can be split into a sufficiently large
number of subsymbols, and the field size can be made sufficiently large.

Proof. In the interests of conceptual simplicity, and to parallel the analysis of the (6, 4, 3)
example described earlier, we provide only a sketch of the proof for the general case. This
can be formalized to be precise at the cost of much heavier notational clutter, which we
consciously avoid.

Systematic Node Repair: Let G
(i)
l indicate an encoding submatrix for parity node i,

associated with information packet l, where 1 ≤ i ≤ n − k and 1 ≤ l ≤ k. Let wl be lth
information packet vector. Without loss of generality, consider exact repair of systematic
node 1. Using vector linear codes, we split each symbol into B = mN number of subsymbols,
where m is an arbitrarily large positive integer and the exponent N is given by

N = (k − 1)(d− k + 1). (4.36)

The maximum file size (based on the cutset bound (4.1)) isM = k(d−k+1) units, inducing a
storage cost α = d−k+1 units. Since each subsymbol has 1

mN capacity, each storage contains
αmN number of subsymbols. Note that the size of encoding submatrices is αmN -by-αm4.

A failed node 1 is exactly repaired through the following steps. Suppose without loss of
generality that we connect to (k− 1) systematic nodes and to first (d− k+1) parity nodes8.
The parity survivor nodes project their data using the following projection matrix:

V := [v1, · · · ,vmN ] ∈ F
αmN×mN

q , (4.37)

where vi ∈ V. The set V is defined as:

V :=

{
∏

i=1,··· ,d−k+1,l=2,··· ,k

[

G
(i)
l

]ei,l
w : ei,l ∈ {0, · · · , m− 1}

}

, (4.38)

where w = [1, · · · , 1]t. Note that |V| ≤ mN .

8As mentioned earlier, we can convert the other connection configurations into this particular configura-
tion with the remapping technique.
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Let us consider the equations downloaded from parity nodes:

wt
1(G

(1)
1 V) +wt

2(G
(1)
2 V) + · · ·+wt

k(G
(1)
k V);

...

wt
1(G

(d−k+1)
1 V) +wt

2(G
(d−k+1)
2 V) + · · ·+wt

k(G
(d−k+1)
k V).

(4.39)

Note that by (4.38), for l 6= 1, any column vector in [G
(1)
l V, · · · ,G(d−k+1)

l V] is an element
of V̄ defined as:

V̄ :=

{
∏

i=1,··· ,d−k+1,l=2,··· ,k

[

G
(i)
l

]ei,l
w : ei,l ∈ {0, · · · , m}

}

, (4.40)

This implies that for l 6= 1, rank[G
(1)
l V, · · · ,G(d−k+1)

l V] ≤ (m + 1)N . This allows for
simultaneous interference alignment. The systematic survivor nodes project their data using
the following projection matrix :

V̄ := [v̄1, · · · , v̄(m+1)N ] ∈ F
αmN×(m+1)N

q , (4.41)

where v̄i ∈ V̄. We can then guarantee that for l 6= 1:

span[G
(1)
l V, · · · ,G(d−k+1)

l V] ⊂ span[V̄]. (4.42)

Hence, using wt
iV̄ (i 6= 1) obtained from systematic survivor nodes, we can clean out any

interference of wt
i(GiV) (i 6= 1) from (4.39). Now let us consider the decodability of desired

signals. To successfully recover w1, we need:

rank[G
(1)
1 V, · · · ,G(d−k+1)

1 V] = (d− k + 1)mN = αmN . (4.43)

Using the same argument based on Schwartz-Zippel lemma, we can ensure (4.43) with prob-
ability 1 for a sufficiently large field size.

Finally we validate that total repair bandwidth is:

γ = (k − 1)
(m+ 1)N

mN
+ (d− k + 1) · m

N

mN

−→ d units.

(4.44)

Note that as m goes to infinity, the total repair bandwidth approaches minimum repair
bandwidth matching the cutset lower bound (4.1).

Parity Node Repair: As discussed in the previous sections, we can draw a dual struc-
ture by remapping parity nodes with primed new notations. The key observation is that
newly mapped encoding submatrices are still diagonal matrices. Hence, we can apply the
same technique used in systematic node repair.

MDS-Code Property: We check the invertibility of a composite matrix when a Data
Collector connects to i systematic nodes and to (k − i) parity nodes for i = 0, · · · , k. As
mentioned earlier, for a sufficiently large field size, the composite matrix has non-zero deter-
minant with probability 1.
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4.6 Summary

Unlike wireless communication problems, our storage repair problems have more flexibility
in designing encoding matrices which correspond to wireless channel coefficients (provided
by nature) in communication problems. Exploiting this fact, we developed the common-
eigenvector-based interference alignment technique to provide a constructive code framework
for optimal exact repair codes for the case of k

n
≤ 1

2
and d ≥ 2k−1. This framework provides

insights into a dual relationship between the systematic and parity node repair, as well as
opens up a larger constructive design space of solutions.

Leveraging the strong connection between the wireless interference channel problem and
the storage repair problem, we could make use of Cadambe-Jafar’s interference alignment
scheme to develop optimal exact-repair MDS codes for all admissible values of (n, k, d).
This code requires an infinite file size to achieve the minimum repair bandwidth. Exploring
whether or not a finite file size is sufficient to achieve the minimum repair bandwidth is an
interesting direction of future work.

4.7 Appendices

4.7.1 Proof of Lemma 3

It suffices to show that




A′
1 A′

2 A′
3

B′
1 B′

2 B′
3

C′
1 C′

2 C′
3









A1 A2 A3

B1 B2 B3

C1 C2 C3



 =





I 0 0
0 I 0
0 0 I



 .

Using (4.6) and (4.13), we compute:

(1− κ2)(A′
1A1 +A′

2B1 +A′
3C1)

=
(
v′
1u

′t
1 − κ2α′

1I
)
(u1v

t
1 + α1I) +

(
v′
2u

′t
1 − κ2β ′

1I
)
(u1v

t
2 + β1I) +

(
v′
3u

′t
1 − κ2γ′

1I
)
(u1v

t
3 + γ1I)

(a)
= (v′

1v
t
1 + v′

2v
t
2 + v′

3v
t
3) + (α1v

′
1 + β1v

′
2 + γ1v

′
3)u

′t
1 − κ2u1(α

′
1v1 + β ′

1v2 + γ′
1v3)

t − κ2I

(b)
= (v′

1v
t
1 + v′

2v
t
2 + v′

3v
t
3) + κu1u

′t
1 − κ2u1(α

′
1v1 + β ′

1v2 + γ′
1v3)

t − κ2I

(c)
= (v′

1v
t
1 + v′

2v
t
2 + v′

3v
t
3)− κ2I

(d)
= (1− κ2)I

where (a) follows from α1α
′
1 + β1β

′
1 + γ1γ

′
1 = 1 due to (4.11); (b) follows from (4.12); (c)

follows from u′
1 = κ(α′

1v1 + β ′
1v2 + γ′

1v3) (See Claim 6); and (d) follows from the fact that
v′
1v

t
1 + v′

2v
t
2 + v′

3v
t
3 = I, since (v′

1,v
′
2,v

′
3) are dual basis vectors.
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Similarly, one can check that B′
1A2 +B′

2B2 +B′
3C2 = I and C′

1A3 +C′
2B3 +C′

3C3 = I.
Now let us compute one of the cross terms:

(1− κ2)(A′
1A2 +A′

2B2 +A′
3C2)

=
(
v′
1u

′t
1 − κ2α′

1I
)
(u2v

t
1 + α2I) +

(
v′
2u

′t
1 − κ2β ′

1I
)
(u2v

t
2 + β2I) +

(
v′
3u

′t
1 − κ2γ′

1I
)
(u2v

t
3 + γ2I)

(a)
= (α2v

′
1 + β2v

′
2 + γ2v

′
3)u

′t
1 − κ2u2(α

′
1v1 + β ′

1v2 + γ′
1v3)

t

(b)
= 0

where (a) follows from u′t
i uj = δ(i− j) and < (α′

1, β
′
1, γ

′
1), (α2, β2, γ2) >= 0; (b) follows from

(4.12) and Claim 6. Similarly, we can check that the other cross terms are zero matrices.
This completes the proof.

Claim 6. For all i, u′
i = κ(α′

iv1 + β ′
iv2 + γ′

iv3).

Proof. By (4.12), we can rewrite

[u1,u2,u3] =
1

κ
[v′

1,v
′
2,v

′
3]





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3



 .

Using the fact that (u′
1,u

′
2,u

′
3) are dual basis vectors, we get




u′t
1

u′t
2

u′t
3



 = κ





α′
1 β ′

1 γ′
1

α′
2 β ′

2 γ′
2

α′
3 β ′

3 γ′
3









vt
1

vt
2

vt
3



 .

This completes the proof.

4.7.2 Proof of Theorem 7

For generalization, we are forced to use some heavy notation but only for this section and the
related appendices. Let wj ∈ Fk

q be a message vector for information unit j. Let G
(i)
j ∈ Fk×k

q

be an encoding submatrix for parity node i, associated with the jth information unit.
Exact Repair of Systematic Nodes: By symmetry, we consider only systematic node

1. We have each survivor node project their data with projection vector v′
1, which is the

first column vector of V′ = (Vt)−1. We then get:

From systematic node j: wt
jv

′
1,

From parity node i: wt
1(ui + p

(i)
1 v′

1) +

k∑

j=2

p
(i)
j (wt

jv
′
1)

︸ ︷︷ ︸

interference

,
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where 2 ≤ j ≤ k and 1 ≤ i ≤ k. Note that we can achieve simultaneous interference
alignment for non-intended signals. Since ui’s are linearly independent, we can decode
desired signals w1, thus ensuring exact repair.

Exact Repair of Parity Nodes: The idea is the same as that of Theorem 6. First we
remap parity nodes with new variables:








w′
1

w′
2
...
w′

k







:=








G
(1)t
1 G

(1)t
2 · · · G

(1)t
k

G
(2)t
1 G

(2)t
2 · · · G

(2)t
k

...
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Define the newly remapped encoding submatrices as:








G
′(1)
1 G

′(2)
1 · · · G

′(k)
1

G
′(1)
2 G

′(2)
2 · · · G

′(k)
2

...
...

. . .
...

G
′(1)
k G

′(2)
k · · · G

′(k)
k







:=








G
(1)
1 G

(2)
1 · · · G

(k)
1

G
(1)
2 G

(2)
2 · · · G

(k)
2

...
...

. . .
...

G
(1)
k G

(2)
k · · · G

(k)
k








−1

. (4.45)

We can now apply the generalization of Lemma 3 to obtain the dual structure:
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where the dual basis vectors are defined as:
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By symmetry, we consider only parity node 1. Choosing the projection vector u1, we get:

From systematic node j:
w′t

1

1− κ2
(u′

j − κ2p
′(j)
1 v′

1)−
κ2

1− κ2

k∑

i=2

p
′(j)
i (w′t

i u1),

From parity node i : w′t
i u1,

where 1 ≤ j ≤ k and 2 ≤ i ≤ k. Note that we can achieve simultaneous interference
alignment for non-intended signals. Since u′

i’s are linearly independent, we can decode
desired signals w′

1, thus ensuring exact repair of parity node 1.
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The MDS-Code Property: We check the invertibility of a composite encoding sub-
matrix when a Data Collector connects to i systematic nodes and (k − i) parity nodes for
i = 0, · · · , k. The main idea is to use a Gaussian elimination method as we did in Sec-
tion 4.4.3. The verification is tedious and therefore details are omitted.

Minimum Required Finite-Field Size: Note that the dimension of a Cauchy matrix
P is k-by-k. Therefore, the minimum finite-field size required to generate the Cauchy matrix
is 2k, i.e., q ≥ 2k.

4.7.3 Proof of Theorem 8

According to the proposed pruning algorithm, we start with an larger (2n− 2k, n− k, 2n−
2k − 1) code which has encoding submatrices as follows:
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(4.46)

where G
(i)
j ∈ F

(n−k)×(n−k)
q indicates an encoding submatrix for parity node i, associated with

the jth information unit. We use an invertible matrix for V = [v1, · · · ,vn−k] and set

U = [u1, · · · ,un−k] = κ−1V′P, (4.47)

where V′ = (Vt)−1 and κ ∈ Fq is an arbitrary non-zero value such that 1 − κ2 6= 0. We

use a Cauchy matrix P and let p
(i)
j be the (j, i) element of P. Notice that we have (n− k)

information units wj ∈ F
n−k
q , 1 ≤ j ≤ n− k.

Next we remove the last (n−2k) information units and associated elements to obtain the
(n, k, n− 1) code. This code has information units (w1, · · · ,wk) and encoding submatrices

G
(i)
j for 1 ≤ j ≤ k and 1 ≤ i ≤ n − k. Lastly, we prune the last (n − 1 − d) equations in

each storage node and also the last (n − 1 − d) symbols of each information unit. We then
obtain the (n, k, d) target code which has encoding submatrices:
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Ḡ
(n−k)
1 = ūn−kv̄
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(4.48)

where ūi, v̄j ∈ Fd−k+1
q indicate the top (d − k + 1) symbols of ui,vj ∈ Fn−k

q , respectively.
Here the size of an identity matrix I is (d−k+1). For simplicity, we use the same notation for
a different dimension of an identity matrix. It can be easily differentiated from the context.

Let us now prove that the resulting code ensures exact repair of all nodes and MDS-code
property. We will provide the detailed proof for a simple case of V = [v1, · · · ,vn−k] = I.
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Exact Repair of Systematic Nodes: By symmetry, we consider only systematic node
1. We connect to (k − 1) systematic nodes and (d − k + 1) parity nodes. Without loss
of generality, we consider parity nodes from 1 to d − l. As for a projection vector, we use
e1 = [1, 0, · · · , 0]t. We then get:

From systematic node j: w̄t
je1,

From parity node i: w̄t
1(ūi + p

(i)
1 e1) +

k∑

j=2

p
(i)
j (w̄t

je1)

where 2 ≤ j ≤ k and 1 ≤ i ≤ d− k + 1. Note that we can achieve simultaneous interference
alignment for non-intended signals. The interference term can be canceled with side infor-
mation obtained from systematic nodes. After cancelation, we rewrite (d− k+ 1) equations
obtained from parity nodes:

w̄t
1

[

ū1 + p
(1)
1 e1, ū2 + p
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1 e1, · · · , ūd−k+1 + p

(d−k+1)
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By (4.47), ūi = κ−1(p
(i)
1 , · · · , p(i)d−k+1)

t, ∀i = 1, · · · , n− k. Using the fact that any submatrix
of P is invertible, it can be shown that the matrix in the right-hand-side is invertible. This
guarantees the decodability of the desired message vector w̄1.

Exact Repair of Parity Nodes: By symmetry, it suffices to consider parity node 1.
We connect to k systematic nodes and (d − k) parity nodes. Without loss of generality,
we consider parity nodes from 2 to d − k + 1. As for a projection vector, we use ū1 =
κ−1(p

(1)
1 , · · · , p(1)d−k+1)

t. We then get:
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where 1 ≤ j ≤ k and 2 ≤ i ≤ d − k + 1. Here the equality follows from the fact that
etjū1 = κ−1p

(1)
j . Note that the second term in the parity node equation can be canceled with

side information (w̄t
1ū1, · · · , w̄t

kū1) obtained from systematic nodes. After cancelation, we
rewrite (d− k) equations obtained from parity nodes:
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Since we know w̄t
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ū1,

1
κ
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Using the fact that any submatrix of P is invertible, we can show that the right-hand-side
matrix is invertible. This enables to decode the left-hand-side vector, thus obtaining:

w̄t
1ū1, · · · , w̄t

kū1,
k∑

j=1

p
(1)
j w̄t

j , (4.49)

Using this information, we can now regenerate
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jḠ

(1)
j .

This matches the content of parity node 1, thus ensuring exact repair of the parity node.
The MDS-Code Property: We check the invertibility of a composite encoding sub-

matrix when a Data Collector connects to i systematic nodes and (k − i) parity nodes for
i = 0, · · · , k. The main idea is to use a Gaussian elimination method as we did in Sec-
tion 4.4.3. The verification is tedious and therefore details are omitted.

Minimum Required Finite-Field Size: Note that the dimension of a Cauchy matrix
P is (n − k)-by-(n − k). Therefore, the minimum finite-field size required to generate the
Cauchy matrix is 2(n− k), i.e., q ≥ 2(n− k).
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Chapter 5

Conclusion

In this dissertation, we have made progress on addressing the following two questions: (1)
What is the fundamental role of feedback in interference networks? (2) How should multiple
links code their information to mitigate the interference they cause to each other?

Role of Feedback: The first part of the dissertation addressed the first question. Specif-
ically, we showed that feedback has a significant role to mitigate interference, thus improving
the non-feedback capacity. To show this, we have established the feedback capacity region to
within 2 bits/s/Hz/user and the symmetric capacity to within 1 bit/s/Hz/user universally
for the two-user Gaussian IC with feedback. We develop both new achievable scheme and
outer bound to provide an approximate characterization of the capacity region. As a side-
generalization, we have characterized the exact feedback capacity region of El Gamal-Costa
deterministic IC. We also develop two interpretations as to how feedback can provide signifi-
cant gain. One interpretation is that feedback maximizes resource utilization by filling up all
the resource holes under-utilized in the non-feedback case. The other interpretation is that
feedback can exploit received signals as side information to increase capacity. Interestingly,
the latter interpretation leads us to make a connection to other problems.

Our feedback result considers a case where feedback is given for free from each receiver
to its corresponding transmitter. One natural question that arises is: What if feedback
cost is taken into account, i.e., can 1 bit of feedback provide more than 1 bit of a capacity
increase? Surprisingly, our recent preliminary result gives us a positive answer. Specifically,
we consider the two-way interference channel where feedback can be provided through the
backward interference channel. We show that 1 bit of feedback can provide a capacity
increase of an arbitrarily large number of bits. The next step is to extend this to more
general network settings.

We believe this research topic may provide insights into developing a new communication
network infrastructure for smart grids. This belief is motivated by the observation that
smart grids are facing a very frequent information exchange between smart meters at home,
Independent System Operators and power generators, thus making information flows highly
interactive. Existing infrastructures such as Wi-Fi networks and cellular networks may not
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be efficient to deal with highly interactive information flows.
Interference Alignment: Exploiting a recent breakthrough, the concept of interference

alignment, we develop an interference alignment technique for cellular networks. Our IA
technique shows significant performance especially when the power of the dominant interferer
is much greater than the power of the remaining aggregate interference. We also proposed
subspace IA scheme in order to mitigate the interference from multiple dominant interferers,
which achieves almost interference-free dof even for more-than-two cell cases. Of practical
importance is the fact that our downlink IA scheme can be implemented with small changes
to an existing cellular system supporting multi-user MIMO, as it requires only a localized
within-a-cell feedback mechanism. This technique can be extended to asymmetric antenna
configurations and scenarios with more than one dominant interferer.

As mentioned earlier, our IA scheme can provide huge gain especially when interference
from the dominant interferer (the nearby base-station) is much stronger than residual inter-
ference from many other base-stations. This naturally leads us to believe that our scheme has
great potential to heterogeneous networks that merge a multitude of wireless networks, such
as femto-cells, pico-cells, relays and Wi-Fi networks, into macro cellular networks. Notice,
for example, that in macro-pico cellular networks, a user connected to a pico base-station
may see significant interference from the nearby macro base-station.

In Chapter 4, we found the universality of the IA principle developed in the context of
wireless networks. Deep understanding on the IA principle has enabled us to find the in-
terdisciplinary nature of this principle. Connecting wireless networks to distributed storage
networks, we developed a new class of MDS codes that significantly reduces the repair cost
over the conventional MDS codes and also achieves information-theoretic optimal bound on
the repair cost for all admissible code parameters. Specifically, under scalar-linear codes, we
have constructed Exact-Repair MDS codes that achieve the cutset lower bound on repair
band for the case of k

n
≤ 1

2
; and d ≥ 2k − 1. Furthermore, we have shown the existence of

vector-linear Exact-Repair MDS codes that are optimal in repair bandwidth, for all admis-
sible values of (n, k, d).

This result comes from applying the principle developed in communication networks into
the other field of networks, storage networks. Now what if we go back to communication
networks with this result? Our recent observation finds an intimate connection between the
storage repair problem and a class of multiple unicast flow problems (an open problem for
decades in network coding fields). We now intend to exploit the principles learned from
storage networks to address the class of multiple unicast problems.

We believe that ultimately this research will give insights into cracking general class
of multiple unicast problems. Also this research - exploiting the interference alignment
principle in the context of wireline networks - will have much greater impact in practice, as
compared to wireless networks where the principle originates. In wireless networks, many
of the IA techniques are faced with significant challenges in implementation: they require
global channel state information and high signal-to-noise ratio. In wireline networks, on the
other hand, these challenges disappear. Since the wireless channels - that may need to be
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fed back frequently due to variation over time - are mapped to network coding coefficients
in wireline networks, much less frequent feedback is required in the wireline networks. Also
there is no concept of signal-to-noise ratio in wireline networks.
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