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Chapter 1

Introduction

Lazy linear hybrid automata (LLHA) model the discrete time behavior of control systems con-

taining finite-precision sensors and actuators interacting with their environment under bounded

inertial delays. In this report, we present a symbolic technique for reachability analysis of lazy

linear hybrid automata. The model permits invariants and guards to be nonlinear predicates but

requires flow values to be constants. Assuming finite precision, flows represented by uniform

linear predicates can be reduced to those containing valuesfrom a finite set of constants. We

present an abstraction hierarchy for LLHA. Our verificationtechnique is based on bounded model

checking and k-induction for reachability analysis at different levels of the abstraction hierarchy

within an abstraction-refinement framework. The counterexamples obtained during BMC are used

to construct refinements in each iteration. Our technique ispractical and compares favorably with

state-of-the-art tools, as demonstrated on examples that include the Air Traffic Alert and Collision

Avoidance System (TCAS).

A hybrid system is a dynamical system which exhibits both discrete and continuous behavior.

Hybrid automata [6] have proved to be useful mathematical structures for modeling systems com-

prising discrete transition systems interacting with continuous dynamical systems. However, it is

clear that in any implementation of a hybrid automaton, the state of the dynamical system reported

to the discrete controller is digitized with finite precision by sensors, and the output signals of

the controller transmitted to its actuators are also of finite precision. Further, the controller can

only observe continuous state variables at discrete time points. Hence, it is somewhat unrealis-

tic to assume that the controller can interact with its environment continuously and with infinite

precision.
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The inherent discrete nature of a controller of a hybrid system has led to recent efforts [25,

4, 5, 3] towards studying the discrete time behavior of hybrid systems. A similar argument in

favor of focusing on discrete time behavior is presented by Henzinger and Kopke [17].Lazy

linear hybrid automata(LLHA) [4, 5] model the discrete time behavior of hybrid systems having

finite precision and bounded delays in actuation and sensing. Further, the definition of LLHA

allows nonlinear invariants and guards. However, the discrete behavior in this model depends

on the sampling frequency of the controller as well as the precision of variables, and hence, the

discretized representations are very large and any enumerative analysis would not be feasible for

systems of appreciable size.

1.1 Contributions

In this report, we present a symbolic technique for reachability analysis of lazy linear hybrid

automata. We make the following novel contributions:

1. On the theoretical side, we present an abstraction hierarchy for LLHA that can be used for

reachability analysis within a counterexample-guided abstraction-refinement framework.

2. We give an implementation of a symbolic model checker for LLHA based on bounded model

checking andk-induction that operates at any level of abstraction.

3. We demonstrate the scalability of our methods in comparison to other state-of-the-art tools

on examples such as Automated Highway Control System (AHS) and the Air Traffic Alert

and Collision Avoidance System (TCAS).

This report is based on joint work with Bryan Brady and SanjitA. Seshia [20].

1.2 Related Work

PHAver (Polyhedral Hybrid Automaton Verifier) [16] is a toolfor verifying safety properties of hy-

brid systems. It uses on-the-fly over-approximation to handle affine flows by iterative partitioning

of the state space. PHAver considers a continuous time modelunlike the discrete time semantics

of LLHA. Our work is much more closer to the HYSDEL tool [25]. The discrete hybrid automata

underlying the HYSDEL tool is formed by the connection of a finite state machine with a switched
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affine system through an interface. Our work is similar to HYSDEL in its considering an inertial

interface between the digital and the continuous components of the hybrid system. Unlike our

symbolic approach, HYSDEL uses numerical simulation for analysis. Further, our technique al-

lows guards and invariants that use any computable function. HSolver [27, 12] also allows general

constraints over variables as invariants and guards. It uses interval arithmetic to check whether

trajectories can move over the boundaries in a rectangular grid. Our technique uses SAT-based

decision procedures for finite-precision arithmetic to do asymbolic analysis instead of an enumer-

ative analysis. Another closely related tool is HybridSAL [31, 30], which constructs discrete finite

state abstractions for hybrid systems using predicate abstraction. The tool uses decision procedures

and the SAL explicit state model checker. Our approach performs abstraction over the domain of

variables, and uses symbolic model checking based on bit-vector decision procedures.

The examples used in this report have been well-studied; fordetails on previous case studies,

we refer the reader to the relevant references on Train Gate Controller [26], Traffic Collision and

Avoidance System [24, 23] and Automated Highway System [13,19].
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Chapter 2

Reachability Analysis of Lazy Linear

Hybrid Automata

In this chapter, we present a new reachability analysis technique for lazy linear hybrid automata

(LLHA). Formally, LLHA is defined as follows.

Definition 1. A finite precision lazy linear hybrid automaton(LLHA) [5] isa tuple

(X, V, init, f low, inv, E, jump,D, ǫ, B, P )

. The components of LLHA are as follows:

• Variables : A finite ordered setX = {x1, x2, . . . , xn} of continuous variables.

• Control modes : A finite setV of control modes.

• Initial conditions : A labeling functioninit that assigns an initial condition to each control

modev ∈ V . The initial condition is a predicate over the variables inX.

• Flow: The possible values of rate of change of any variable ina control mode form a finite set

of constant values. Let the set representing the legal flow values for variablexi be denoted

by Ẋi. The predicateflow(v) ≡ (ẋ1 ∈ Ẋ1) ∧ (ẋ2 ∈ Ẋ2) . . . ∧ (ẋn ∈ Ẋn) represents legal

flows at locationv ∈ V .

• Invariant condition : A labeling functioninv that assigns an invariant condition to each

control modev ∈ V . The invariant conditioninv(v) is a convex predicate over the variables

in X.
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• Control switches : A setE of edges(v, v′) from a source modev ∈ V to a target mode

v′ ∈ V . A function “update(v,v′)” associates a variable assignment to each control switch

(v, v′).

• Jump conditions : A labeling functionjump that assigns a jump condition to each control

switche ∈ E. A jump condition from the control modev to v′, ψ(v,v′) is a predicate over the

variables inX.

• Delay parameters :D = {g, δg, h, δh} is the set of delay parameters such that0 ≤ g ≤

g + δg < h ≤ h+ δh ≤ P , whereh denotes the sensing delay,g denotes the actuation delay

andP is the sampling interval of the controller.

• Precision :ǫi is the precision of measurement of variablexi.

• Range :Bi = [Bimin
, Bimax

] is the range of the variablexi.

• PeriodP represents the time period associated with the discrete controller i.e. control mode

switches take place at timesT0, T1, T2, . . . whereTk+1 = Tk + P .

The lazy semantics of hybrid automata [4, 5] means that if a control mode switch took place at

timeTk, then the delay in actuating a change inflow lies between[Tk+g, Tk+g+δg]. Similarly, a

control decision made at timeTk+1 is based on the values of variables read by the controller at some

time in the interval[Tk+h, Tk+h+δh]. The parametersδg andδh represent the bounded uncertainty

in actuation and sensing delay respectively. Since the sampling frequency of any implementation

of a hybrid automata is always finite, this model focuses on the discrete time behavior of the hybrid

automata.

The precisionǫi depends on the accuracy of the sensors measuringxi from the continuous

dynamical system. Guards and state invariants are evaluated on the values of thexi variables that

have been rounded using the value ofǫi. The parameterB reflects the range of values which can be

taken by a state variable associated with a fixed width register. Unlike the conventional definition

of linear hybrid automata [17], invariants and guards in LLHA can be nonlinear.

The flows in linear hybrid automata are represented using convex linear predicates overonly the

rates of change of variables (also called uniform linear predicates [18]). Under the assumption of

finite precision, such flows can be considered as set of constant values of rate of change of different

continuous variables. Thus, LLHA can be used for representing hybrid systems with convex linear

flows.
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An intuitive explanation of how constant differential inclusion of uniform linear predicates [18]

are used in literature to model linear flows for reachabilityanalysis is as follows. Such a transfor-

mation is sufficient for determining reachability as we do not reason about the time taken to reach

a configuration.

This is illustrated in Figure 2.1. The convex polygon represents the rate of change of variables

(x, y) such that is(rx, ry) is a permitted flow, then(rxt, ryt) lies in the interior of the convex

polygon, wheret is one time unit.. The polygon is convex as we only consider convex linear flows.

Also, the polygon is constant and does not change with changein configurations(x, y) as the flow

condition is uniform and does not depend on(x, y). The configurations(x, y) reachable ink time

units would be(x0+k(rxt), y0+k(ryt)), where(x0, y0) is initial configuration,(rxt, ryt) is a point

in the convex polygon. Thus, the two rays with(x0, y0) as origin and touching the angular extremes

of the convex polygon represent the possible reachable configurations. If we form a rectangle using

the vertices of the polygon that touch the rays, the set of configurations reachable for flow values

lying in the rectangle is same as the previously reachable sets. The bound constraints arising

from the rectangle can be, thus, used in place of the uniform linear predicate for the purpose of

reachability analysis.

Definition 2. A configuration of a hybrid automaton, withn continuous variables, is a n+1-tuple,

c = (s, x1, x2, . . . , xn) wheres ∈ V is the control mode,x1, x2, . . . , xn is the valuation of the

continuous variables of the hybrid automaton.

The semantics of a hybrid automaton describes its evolutionin terms of change in configura-

tion. We use the notationc+ α to denote the configuration in which continuous state variables are

incremented byα. Also, we extend the order relation on the continuous variables to configurations.

We say thatc ≤ c′ if we know thatxi ≤ x′i for eachxi in c and the correspondingx′i in c′.

We define a symbolic collection of configurations as a state ofthe hybrid automaton and de-

scribe the evolution of the hybrid automaton in terms of change in its state. This definition is used

to present the bounded model checking algorithm later in thereport.

Definition 3. A state of the hybrid automaton is a pair(v, φ) consisting of a control modev ∈ V

and a predicateφ over the variablesX. We identify that the state of a hybrid automaton can

change in two ways - flow or jump.

• flow: The changed state of a hybrid automata due to flow at control mode v for timeT is

(v, φT ), where
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Figure 2.1: The flows given as uniform convex linear predicates can be represented using constant

differential inclusion for the purpose of reachability.

φT = ∃X1∃Ẋ {(φ ∧ inv(v))[X ← X1] ∧X = X1 + ẊT ∧ (Ẋ |= flow(v)) ∧ inv(v)}.

• jump: If (v, φ) is state of a system, and(v, v′) is a control switch such thatφ |= jump(v, v′),

then the state of the system can change to(v′, φ′) such that ifupdate(v,v′) was the update

function overY ⊆ X,

φ′ = ∃Y1{(φ ∧ inv(v) ∧ ψ(v,v′))[Y ← Y1] ∧ Y = update(v,v′)(Y1)}.

A states2 = (v, φ2) is reachable froms1 = (u, φ1) if and only if there is a sequence of flow or

jump transitions froms1 to s2.

2.1 Hierarchy of Abstractions

We detail the theory underlying our hierarchical abstraction technique below. For brevity, proofs

of some theorems have been omitted.
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Agrawal and Thiagarajan [4, 5] use two fundamental quantities in their analysis. Thefunda-

mental time intervalis ∆ = G.C.D of{P, g, δg, h, δh}. The corresponding abstraction quantum is

Γ = G.C.D of
⋃

i

{ǫi/2, B
min
i , Bmax

i , V in
i , ẋi∆}.

We begin with basic definitions on how abstraction is performed. For ease of presentation,

all variables are abstracted in the same way; the theory can be easily extended to a non-uniform

abstraction.

Definition 4. QΠ is a surjection over the continuous variables usingabstraction quantumΠ = 2kΓ

for some integerk. That is,

QΠ : R→ R, andQΠ(xi) = kiΠ iff xi = kiΠ+ πi, whereki ∈ Z and0 ≤ πi < Π.

Abstract Configuration:A configurationcd = (sd, xd1, x
d
2, . . . , x

d
n) is aΠ-abstraction of a con-

crete configurationc = (s, x1, x2, . . . , xn) iff sd = s andxdi = QΠ(xi).

Abstract Transition:Transitions are abstracted by abstracting jump and flow conditions. This

must be done in order to ensure that transitions that are feasible in the concrete LLHA continue to

be feasible in the abstract transition system, at the possible cost of introducing additional (spurious)

behaviors.

1. The intuition behind the following definition of abstractguards and invariants is to relax the

atomic constraints so that ifΦ(x1, x2, . . . , xn) denotes a state invariant or guard, then the cor-

responding abstracted invariant or guard isΦa(x1, x2, . . . , xn) such thatΦ(x1, x2, . . . , xn) =⇒

Φa(x1, x2, . . . , xn).

2. The set of flow values are abstracted to overapproximate the reachable configurations. If the

flow value in a setẊ is ẋ, it is abstracted by including flow valuesẋa and ẋb in its place,

whereẋa ≤ ẋ ≤ ẋb (details given below).

We first describe how invariants and guards are abstracted, and then describe the over-approximation

of flow.

Abstraction of invariants and guards.Invariants or guards can be expressed as a Boolean combi-

nation of atomic predicates in negation normal form (NNF), where each predicate is of the form

f(x1, x2 . . . , xn) ≤ b whereb ∈ Q. If Φ is an invariant or guard, thenΦ = fbool(c1, c2, . . . , cn)

where the constraintci is fi ≤ bi and wherefbool represents an NNF Boolean combination of its

arguments.
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Each predicate in the invariant or guard can be abstracted using the monotonicity off with

respect to each variablexi , that is,fxi
= δf

δxi

is of the same sign over the range of interest. In

particular, all polynomials which are linear in each variable, are always monotonic with respect to

each variable.

In order to define abstract state invariants and guards, we first describe how to construct abstract

inequalities using the above observation about invariantsand guards. Without loss of generality,

let us assume thatf(x1, x2 . . . , xn) ≤ b is an inequality whose partial derivativefxi
with respect

to each variablexi is of the same sign over the range of interest[QΠ(xi), QΠ(xi + Π)]. Then, its

(conservative) abstraction is therelaxedinequalityc′i defined below:

c′i ≡ f(k1, k2 . . . , kn) ≤ b′

whereb′ = QΠ(b+Π) and ki = QΠ(xi) if fxi
≥ 0

= QΠ(xi +Π) if fxi
< 0

This abstraction rounds up or down each variable to the nearest multiple ofΠ depending on

whether the functionf decreases or increases with increase in the variable. The constantb is

always rounded up. All assignments to the variables which satisfied the earlier constraint also

satisfy therelaxedconstraint. Hence, this is an overapproximation of the original constraint. If

Φ(x1, x2, . . . , xn) = fbool(f1 ≤ b1, . . . , fn ≤ bn) is the invariant or guard, the abstract state invari-

ant or guard is defined as

Φa(k1, k2, . . . , kn) = fbool(c
′

1, c
′

2, . . . , c
′

n)

where the relaxed inequalitiesc′i are obtained fromfi ≤ bi as described above.

Thus, this relaxation results into an upper approximation of the behavior of the hybrid automa-

ton.

Abstraction of flow conditions.If ẋ is a rate of change allowed byflow(s) for some locations,

then the following two rates of change represent its abstraction ⌊( ẋ
Π
)⌋Π and⌈( ẋ

Π
)⌉Π. Figures 2.2(a)

and 2.2(b) illustrate how flow conditions are abstracted. The abstraction of flow with2Γ leads to

an overapproximation of the dynamics of the LLHA: originally ẋ ∈ {3, 4, 5, 6}, but in the2Γ-

abstractioṅx ∈ {2, 4, 6, 8}.

Definition 5. A k-abstraction (k ≥ 1) of a lazy linear hybrid automaton is an abstraction of

LLHA obtained using the above explained abstraction of configurations and transitions such that

Π = 2kΓ. The0-abstraction is called theΓ-transition system as the quantization is done with

respect toΓ.
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We define a partial order relation� between transition systems below.

Definition 6. LetTS andTS ′ be two transition systems such that every state ofTS is mapped to

some state ofTS ′. If every state ofTS reachable from some initial state ofTS has its correspond-

ing state inTS ′ also reachable from an initial state ofTS ′, thenTS � TS ′.

Prior Results.

Our model of LLHA is the same as that of Agrawal and Thiagarajan [5], who initially consider

a model with constant flow rate and linear invariants, and later extend the result to invariants and

guards which are any “reasonable computable function”. Themain result of theirs which we utilize

is summarized in Theorem 1.

Theorem 1. Let a configuration of hybrid automata bec = (s, x1, x2, . . . , xn) and itsΓ-abstract

configuration becd = (s,QΓ(x1), QΓ(x2), . . . , QΓ(xn)). A configurationc′ is reachable fromc iff

QΓ(c
′) = c′d wherec′d is reachable fromcd in Γ-transition system.

Letxmax andxmin be the maximum and minimum values that can be attained by any continuous

variable andm be the number of control modes. The state space size of theΓ-transition system is

O(m422n(xmax−xmin

Γ
)3n) [5], that is, exponential in the number of continuous variables. This huge

state space makes it impractical to do any enumerative reachability analysis.

Our Results.

The main result is that thek-abstractionof LLHA simulates the original LLHA. Further, for in-

creasing values ofk, we obtain coarser overapproximations of the LLHA which form a hierarchy

of sound abstractions. Figure 2.3 illustrates the meaning of Theorem 2.

Theorem 2. Let a configuration of hybrid automata bec = (s, x1, x2, . . . , xn) and its abstraction

becd = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), whereΠ = 2kΓ. If a configuration

c′ is reachable fromc in timeT = l∆ andQΠ(c
′) = c′d, thenc′d is

reachable fromcd in thek-abstraction.

Proof. For configurationc = (s, x1, x2, . . . , xn), let ẋ1, ẋ2 . . . , ẋn be the rates of change of contin-

uous variables satisfyingflow(s) and ̂̇x1, ̂̇x2, . . . , x̂n be the rates of change of continuous variables

satisfyingflow(ŝ) whereŝ is a predecessor state ofs, that is,(ŝ, s) ∈ E. Let c′ be a configuration

reachable fromc. In case of change due to reset of variables at jump, the abovetheorem follows
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due to the adjustment to guards and invariants. We prove the above theorem for the case where the

change is effected due to flow evolution.

Since, the relation≤ for configurations is defined in terms of the ordering of individual variable,

we consider an arbitrary variable in the rest of the proof below. If xi is the value of the variable in

c andx′i is the value inc′ after timeT such that the flow rate switched after an actuation delay oft,

then

x′i = xi + ̂̇xit+ ẋi(T − t)

Using the definition ofΓ and∆,

xi = (m2k + n)Γ + γi, ̂̇xi∆ = (2kp′ + q′)Γ, andẋi∆ = (2kp+ q)Γ,

where0 ≤ n < 2k, 0 ≤ γi < Γ, 0 ≤ q′ < 2k, 0 ≤ q < 2k.

So,x′i = (m2k + n)Γ + γi + (2kp′ + q′) Γ
∆
t + (2kp+ q) Γ

∆
(l∆− t)

= (m2k + n)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆
t+ (2kp + q)lΓ

Thus,x′i = (m+ pl)2kΓ + (n + ql)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆
t.

Since0 ≤ t < T in the above equation and2kΓ = Π, x′i lies in the interval

• [(m+ pl)Π, (m+ (p′ + 1)l + 1)Π) if ẋi ≥ ̂̇xi

• [(m+ p′l)Π, (m+ (p+ 1)l + 1)Π) if ̂̇xi ≥ ẋi

So,QΠ(x
′

i) lies in the interval

• [(m+ pl)Π, (m+ (p′ + 1)l)Π] if ẋi ≥ ̂̇xi

• [(m+ p′l)Π, (m+ (p+ 1)l)Π] if ̂̇xi ≥ ẋi

The value ofith variable in any configurationc′d reachable fromcd in thek-abstraction,x′di lies

in

• [(m+ pl)Π, (m+ (p′ + 1)l)Π] if ẋi ≥ ̂̇xi

• [(m+ p′l)Π, (m+ (p+ 1)l)Π] if ̂̇xi ≥ ẋi

Thus, for anyx′i, there existsx′di such thatx′di = QΠ(x
′

i). Using the same argument for each

variable independently, the theorem immediately follows.

Using reasoning exactly similar to the one used in Theorem 2,we can prove the hierarchy of

k-abstractions presented below.
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c

k−abstraction

next(cd) : Succesors ofcd in k-abstractioncd

k-abstraction(next(c))⊆ next(cd)

next(c) : Succesors of c inΓ transition system

Figure 2.3: Simulation by k-abstraction

Lemma 1. Let a configuration ofk-abstraction be

c = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), whereΠ = 2kΓ.

Its abstraction iñk-abstraction, wherẽk ≥ k

c̃ = (s,QΠ̃(x1), QΠ̃(x2), . . . , QΠ̃(xn)) whereΠ̃ = 2k̃Γ.

If a configurationc′ is reachable fromc in k-abstraction, then

• QΠ′(c′) = c̃′ whereΠ′ = 2k̃−kΓ

• c̃′ is reachable from̃c in k̃-abstraction.

The Hierarchy Theorem 3 follows from Lemma 1 and Theorem 1.

Theorem 3. k-abstraction� k′-abstraction if0 ≤ k < k′. Thus,k-abstractions, wherek ≥ 0,

form an hierarchical abstractions of the lazy linear hybridautomata. Further,0-abstraction is the

Γ-abstract transition system which bisimulates the original lazy linear hybrid automaton.

Theorem 3 provides a framework for use of progressive abstraction of lazy linear hybrid au-

tomata to develop a sound and complete abstraction-refinement paradigm for reachability analysis

of LLHA. Theorem 4 presents the relative reduction in state space size withk.

Theorem 4. LetSk be the state space size ofk-abstraction andS ′

k of k′-abstraction wherek′ > k.

Thenlog2(S ′

k/Sk) = 3n(k − k′) wheren is the number of continuous variables.

2.2 SMT based Reachability Analysis

Our implementation of a symbolic verifier of LLHA is based on three techniques: bounded model

checking, “k-induction”, and an overall counterexample-guided abstraction-refinement [11] frame-
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work. We describe each of these below.

We first present a symbolic representation ofk-abstraction of the hybrid automata as stated in

Definition 5. The continuous variablesX = (x1, x2, . . . , xn) are symbolically represented with

integer variablesK = (k1, k2, . . . , kn) with the intended mapping beingQΠ(xi) = kiΠ, where

Π = 2kΓ.

In the discussion below, we use the three components - guards(Ψij), invariants (invi) and the

flow conditionsflow(i) of thek-abstraction to define a symbolic transition relationTR. This is

then used to describe the bounded model checking and inductive verification techniques.

2.2.1 Bounded Model Checking

We describe how the BMC formula is constructed, starting with a useful definition.

Definition 7. A frame (F ) is a tuple(K, t1, t2, t, l) whereK = (k1, k2 . . . kn) represent the vari-

ables; t1 is the sensing delay;t2 is the actuation delayt2; t is the time before transition to next

frame;l denotes the control mode.

The initial state of the hybrid automata is the predicateInit(F0) ≡ (l = vstart)∧φ0(K), where

vstart denotes the initial control mode andφ0 the initial predicate over continuous variables.

The transitionTR is defined as a predicate over the previous frame (Fm−1) and the present

frame (Fm). It is a disjunction of all possible state switches (Gij) and flow evolutions (Ei).

TR(Fm−1, Fm) ≡
∨

(i,j)∈E

Gij(Fm−1, Fm) ∨
∨

i∈V

Ei(Fm−1, Fm)

The switch predicatesGij and the time evolution predicatesEi are defined in terms of three other

quantities:Ii is a predicate that tests satisfiability of state invariantinvi at control modei, pred-

icategij tests satisfiability of guardψij, andehi deals with time evolution in control modei with

predecessor modeh.

Let us consider two functions -compensated for sensing delay (csd)andcompensated for actu-

ation delay (cad). These map a set of valuations of the continuous variables (K) to a set of possible

corresponding valuations obtained after compensating forsensing and actuation delay respectively.

csd(K, i, t1) = {(k1 − k̇1t1, . . . , kn − k̇nt1) | (k̇1, k̇2, . . . k̇n) |= flow(i)}.

cad(K,h, i, t2 , t) = {(k1 + (k̇1h − k̇1i)t2 + k̇1it, . . . , kn + (k̇nh − k̇ni)t2 + k̇nit)

| (k̇1h, k̇2h, . . . k̇nh) |= flow(h) and(k̇1i, k̇2i, . . . k̇ni) |= flow(i)}.
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Let the current frame beFm = (Km, tm1 , t
m
2 , t

m, lm) and the previous frame be

Fm−1 = (Km−1, tm−1
1 , tm−1

2 , tm−1, lm−1).

Ii(Fm) ≡ (i = lm) ∧ ∃K ′[K ′ ∈ csd(Km, lm, tm1 ) ∧ invi(K
′)]

ehi(Fm−1, Fm) ≡ (i = lm−1 ∧ i = lm) ∧Km ∈ cad(Km−1, h, i, tm−1
2 , tm)

gij(Fm−1, Fm) ≡ (i = lm−1 ∧ j = lm) ∧ ∃K ′[K ′ ∈ csd(Km−1, lm−1, tm−1
1 ) ∧ ψij(K

′)]

Note that the existential quantification overK ′ in the above identities simply reduces to a disjunc-

tion over possible flow values (see the description ofcad andcsd functions).

The switch and evolution predicates can now be defined as follows:

Gij(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ij(Fm) ∧ gij(Fm−1, Fm) ∧ [Km = updateij(K
m−1)]

Ei(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ii(Fm) ∧ [
∨

h∈pred(i)

ehi(Fm−1, Fm)]

wherepred(i) denotes the set of predecessor locations ofi.

This completes the definition of the transition predicate.

Let the state to be checked for reachability be(sr, φr). If reachability analysis is used to check

safety properties, then(Sr, φr) would be the error state violating the safety property, Then, the

predicateunsafe(F ) ≡ (l = sr ∧ φr(K)) represents the error state, that is thetarget state for

reachability analysis.

If d is the number of steps to which we want to check thek-abstraction for reachability of

(sr, φr), we need to check for the satisfiability of

BMCd ≡ Init(F0) ∧

d∧

n=1

(TR(Fn−1, Fn)) ∧ unsafe(Fd).

If BMCd is satisfied, then the target state(sr, φr(K)) is reachable ink-abstraction and the frames

F0, F1, . . . , Fd gives a trace from the start state to the target state.

Further, it is sufficient to do BMC forp steps to prove that a target state is not reachable wherep

is the diameter of the transition system. IfBMCj is unsatisfiable for allj ≤ p, then the target state

can not be reached in the transition system. Since the numberof reachable states of the transition

system provides an over-estimate of the diameter, it is sufficient (though unrealistic) to do BMC

for number of steps equal to the state space size of thek-abstraction.
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2.2.2 Induction

We now describe an induction procedure to guarantee the unreachability of a state in a model. This

can be used to prove the satisfaction of a safety property which can be expressed as a reachability

query.

If N steps of BMC are found to be not satisfiable, that is,BMCN is unsatisfiable, then we test

the satisfiability of

¬unsafe(F0) ∧
N+1∧

k=1

(TR(Fk−1, Fk)) ∧ unsafe(FN+1).

If the above is unsatisfiable, no further bounded model checking is required and all the states

of the model are guaranteed to satisfy the property. Based onthis, we present below a BMC algo-

rithm along with use of induction to check for safety properties in a LLHA. We define the following

predicates to be used in the algorithm.

N j(Fj) ≡ Init(F0) ∧

j∧

k=1

TR(Fk−1, Fk) andSj+1(Fj+1) ≡ ¬unsafe(F0) ∧

j+1∧

k=1

TR(Fk−1, Fk)

If at any step of the BMC, we find thatN j(Fj) is not satisfiable, it means that there does not

exist a path of lengthj or more, and hence we can terminate with the output that the model satisfies

the safety property.

The bounded model checking predicate and the induction steppredicate are

BMCj ≡ N j(Fj) ∧ unsafe(Fj) andINDj ≡ Sj+1(Fj+1) ∧ unsafe(Fj+1)

The sub-routine INDBMC is presented in Figure 2.4. The technique is sound and complete

due to the results of the preceding section; we present a detailed discussion of the abstraction-

refinement framework in the next section.

2.2.3 Counter-example Guided Refinement

We now describe an automated CEGAR [11] technique presentedin Figure 2.5 which exploits the

abstraction hierarchy presented in Section 2.1. An initialcoarse abstraction can be arbitrary chosen

ask0-abstraction depending on the size of the state space. In case the target state is not reachable in

k0-abstraction, the target state is also not reachable in the LLHA by Theorem 2. In case the target

state is reachable in LLHA, thenBMC will yield a pathp0 from the initial state to the target state

in thek0-abstraction. This needs to be validated with respect to the0-abstraction. If the abstract
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START

   

(all paths explored)

   STOP

Y

N

Y

N

NOT REACHABLE

Y

N

Y

N

Emit path
 REACHABLE

NOT REACHABLE
All paths explored

NOT REACHABLE

Emit induction proof

j = 0

SAT (INDj)

SAT (BMCj)

SAT (N j(Fj))

j ==MAXSTEPS

j ++

Figure 2.4: Symbolic reachability analysis based on Induction
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START

Run INDBMC on the abstraction

REACHABLE
emit path

NOT REACHABLE

NOT REACHABLE
emit induction proof or 
all paths exhausted

emit induction proof or 
all paths exhausted

Y

N

Not reachable

Not Reachable

Reachable

Reachable

REACHABLE
emit path

PRESENT

NOT PRESENT

      STOP

Run INDBMC on the0-abstraction

Generate initialk0-abstraction

Use binary seach to find suitablek-abstraction

refutingp.

Set the current abstraction tok-abstraction

k == 0

Check pathp in 0-abstraction using BMC

Figure 2.5: Reachability analysis of LLHA using iterative refinement

pathp0 found ink0-abstraction is present in0-abstraction, then the target state is reachable in the

LLHA too. If it is not present in0-abstraction, then we select a more finer refinementki-abstraction

which refutes the abstract spurious path. The same technique is repeated for progressively finer

abstractions until the target states is shown to be unreachable or a valid path to the target sate
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is found. If ku-abstraction is refined tokv-abstraction, thenkv < ku by Theorem 3. So, the

iterative refinement is guaranteed to terminate after analysis of the0-abstraction in the worst case.

The0-abstraction bisimulates the discrete behavior of lazy linear hybrid automata and hence, it is

sufficient to analyze it for the reachability of the target state. This is summarized in Theorem 5.

Theorem 5. The iterative abstraction refinement technique presented in Figure 2.5 is sound and

complete.

The key components of this technique are counter-example validation technique and automated

refinement step. The path obtained at any iteration is a satisfying assignment toBMCj , it can be

validated on0-abstraction by doing a BMC onBMCj to identify the first spurious transition. If

BMCj has a satisfying assignment for0-abstraction too, then the path is valid. The hierarchy of

abstractions allows the use of binary search to find the smallest value ofl such that thel-abstraction

refutes the path identified in the coarser abstraction. The complete technique for reachability analy-

sis of LLHA based on iterative refinement and bounded model checking is presented as a flowchart

in Figure 2.5.

2.2.4 Bitvector SMT Solving

We use bitvector SMT solving technique to check the satisfiability of constraints in Section 2.2.1

and Section 2.2.2. A detailed discussion on SMT solving is presented by Barrett et al [7]. While

we use UCLID [28, 22] as decision procedure for bitvector arithmetic in our experiments, other

bitvector SMT solvers such as Beaver [21], Boolector [8], and Yices [14] can also be used. The

SMT solving problems generated in our experiments were submitted to SMTLIB [2], and are part

of the benchmarks used to evaluate bitvector SMT solvers [1].

2.3 Experimental Results

In this section, we present the results of experiments on three case studies. All experiments were

performed on a workstation with Intel Xeon 3.06 GHz processors and 4GB RAM. UCLID bit-

vector decision procedure [9] was used with MiniSat as the underlying SAT engine. Any other bit-

vector decision procedure could alternatively be used as the verification engine in our technique.

21



2.3.1 Train Gate Controller

The train gate controller [26] ensures that the gate is closed when the train is within some specified

distance of the gate. The example is described in Figure 2.6.The distance of the train is measured

in meters, the angle of the gate in degrees and the time in seconds. A set of legal parameter values

is given below.

dmax = 400, dunsafe = 160, v = 40, u = 15, ǫ = 10−5, g = 10−3, h = 10−3, δg = 10−5, δh = 10−5

andP = .01.

Correspondingly, quantization factors are∆ = 10−5 andΓ = 10−5.

ȧ = 0

a ≤ 0

0 ≤ a ≤ 90

ȧ = 0

0 ≤ a ≤ 90

a ≥ 90

d ≤ −dmax ∧ 0 ≤ a ≤ 90

d ≤ dmax ∧ 0 ≤ a ≤ 90

d ≥ −dmax

d ≥ dmax

ḋ = v

ḋ = v ḋ = v

ḋ = v

ȧ = −u

ȧ = u

Figure 2.6: Train Gate Controller

The train is assumed to move at a constant speedv and the gate begins to close at a constant

angular speedu when the train isdmax distance from the train. Once the train has moveddmax

distance away from the gate, the gate begins to open again. Weneed to ensure that the system is

safe, that is, the train is never closer to gate thandsafe unless the gate is completely closed. Hence,

the safety property to be verified is

−dsafe ≤ d ≤ dsafe ⇒ a = 0

The runtime using different levels of abstraction are show in Figure 2.7. This example illus-

trates how the runtime generally reduces with increasing level of abstraction. The system can be

shown to be safe by constructing a30-abstraction.
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Figure 2.7: Runtime for Train Gate Controller

2.3.2 Air Traffic Alert and Collision Avoidance System

TCAS is a predictive warning system used for avoiding collision of aircrafts using a sequence

of preventive and corrective resolution advisories. The model for TCAS resolution used here is

similar to the one used by Pappas et al [24]. We make a few changes to the model to make it more

realistic. The TCAS specification [10] usesexpected time to collisionfor detecting collision threats

and not distance between aircrafts used in Pappas et al example [24]. Themax in the constraint

avoids division by zero. Thek/xr term ensures that slow approaches are avoided by triggering

threat ifxr is small. This makes the problem harder since these invariants are non-linear. Hence,

LHA tools like Phaver can not be used for this example.We allow the input for speed of aircrafts

to be an interval. It is realistic to expect the speed of aircrafts to be in a range rather than assuming

them to be a constant input. We also allow inertial delays in actuation and sensing.

The parameters used in the experiment were taken from the specifications in TCAS 2, Version

7 documentation [15] and TCAS-201 simulator [29] specifications. The time-zone considered

for advisory is30 − 120 seconds (tnear andtfar, respectively). The distanced is taken to be 15

nautical miles (that is, 27.78 kms.). The range of speed for aircraft is allowed to range between

100 knots to 510 knots (nearly 200 km/hr to 1000 km/hr). It maybe noted that the maximum speed
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COMMON DYNAMICS

    RIGHT

CRUISE
LEFT

STRAIGHT
d/(v2 × sin(∆φ)) ≤ t

∧

(xr − k/xr)/max(ǫ, ẋr) ≤ tnear

(yr − k/yr)/max(ǫ, ẏr) ≤ tnear

∧

(xr − k/xr)/max(ǫ, ẋr) > tfar

∨

(yr − k/yr)/max(ǫ, ẏr) > tfar

(xr − k/xr)/max(ǫ, ẋr) ≥ tnear

(yr − k/yr)/max(ǫ, ẏr) ≥ tnear

∧

d/(v1 × sin(∆φ)) ≥ t

d/(v2 × sin(∆φ)) ≥ t

∨

(xr − k/xr)/max(ǫ, ẋr) ≤ tfar

∧

(yr − k/yr)/max(ǫ, ẏr) ≤ tfar

x′

r = xrcos∆φ+ yrsin∆φ
y′

r = −xrsin∆φ + yrcos∆φ

t ≤ 0

t′ = 0

x′

r = xrcos∆φ− yrsin∆φ
y′

r = xrsin∆φ + yrcos∆φ
t′ = t

y′

r = −xrsin∆φ + yrcos∆φ

t′ = 0

x′

r = xrcos∆φ+ yrsin∆φ

t′ = t

x′

r = xrcos∆φ− yrsin∆φ

y′

r = xrsin∆φ + yrcos∆φ

t ≥ 0

ẋr = −v1 + v2 ∗ cosφr

ẏr = v2 ∗ sinφr

φ̇r = 0

ṫ = 0

ṫ = 0

ṫ = 1

ṫ = −1

d/(v1 × sin(∆φ)) ≤ t

Figure 2.8: Air Traffic Alert and Collision Avoidance System

of Airbus 380 is Mach 0.88 (nearly 505 knots). The LLHA parameters used in our example are

128µs ≤ g, h ≤ 256µs andǫ = 2−15 nautical miles [29].

Phaver cannot handle this example due to non-linear invariants and guards. Figure 2.9 depicts

how the run-time of our tool and state space size vary for different levels of abstraction (the x-

axis gives the value ofk for k-abstraction). There is an initial increase due to additionof extra

flows but for larger abstractions, the time taken is much lesscompared to the actual model. Since

no refinement is needed for any value ofk, the points in the graph represent run-time for only a

particular abstraction level. The analysis of the16-abstraction of the original model allows us to

conclude in less than20 seconds that the model is safe, about10 times faster than analyzing the

original model (0-abstraction).

2.3.3 Automated Highway Control System

Automated Highway Control System (AHS) is an arbiter which ensures that there is no collision

between cars running on a highway by imposing legal speed ranges. This example has being

widely used in literature [13, 19]. We use the description byJha et al [19] and extend it to handle
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Figure 2.9: Plot comparing runtimes of our technique for different levels of abstraction

inertial delays. The number of cars is used as a parameter to scale the example. The example is

illustrated in Figure 2.10(a).
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Figure 2.10: Automated Highway Control System with 4 vehicles
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A set of legal parameter values is given below. All distance measures are in km, time is in hr

and all speeds are in km/hr)

α = .002, α′ = .0005, a = 10, rl = 20, b = 30, c = 40, d = 50, e = 60, ru = 70, f = 100

ǫ = 10−5, g = 10−3, h = 5× 10−4, δg = 5× 10−4, δh = 5× 10−5 andP = .01.

Correspondingly, quantization factors are∆ = 5× 10−5 andΓ = 5× 10−5.

The safety property to be verified was that the control mode isnever the “error” mode. Fig-

ure 2.10(b) compares the runtime of our technique and that ofPhaver on this example for different

number of cars. It shows that our approach is more scalable than Phaver. Our technique could

handle large instances with 150 cars in less than 2 minutes while Phaver took more than 10 hours

to analyze model with 15 cars. For this example,we did not do any abstraction. Γ-abstraction

for AHS with even large number of cars could be easily handledby our BMC+induction tech-

nique and did not necessitate any abstraction-refinement iteration as shown by the runtime plot in

Figure 2.10(b).
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Chapter 3

Conclusion

3.1 Summary

In this report, we presented a symbolic technique for reachability analysis of lazy linear hybrid au-

tomata (LLHA). On the theoretical side, we presented an abstraction hierarchy for LLHA that can

be used for reachability analysis within a counterexample-guided abstraction-refinement frame-

work. We presented an implementation of a symbolic model checker for LLHA based on bounded

model checking and k-induction that operates at each level of abstraction. We demonstrated the

scalability of our methods in comparison to other state-of-the-art tools on examples such as Auto-

mated Highway Control System (AHS) and the Air Traffic Alert and Collision Avoidance System

(TCAS).

3.2 Future Work

We identify four dimensions in which our work can be further extended.

• More complicated system dynamics:A next step would be extending this technique to han-

dle non-linear flows. We would also like to extend it to hybridsystems with flow dependence

between the variables. Approximate reachability analysistechniques can be used instead of

bounded model checking in the counter-example guided abstraction refinement framework.

• Modeling uncertainty:The dynamics of a system is often not exactly known and can notbe

described using ordinary differential equations. Uncertain dynamics can be described using
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stochastic differential equations. Symbolic reachability analysis of such systems would be

of great significance in applications such as systems biology and computational finance.

• Using incremental satisfiability solving:The BMC steps can be solved using incremental

satisfiability solving which would reuse the work done in model checking previous steps in

every additional BMC step. Incremental satisfiability solving can also be used to speed-up

k-induction.

• Using predicate abstraction:It would also be interesting to explore a combination of pred-

icate abstraction based techniques with our method to be able to analyze even larger case

studies. Predicate abstraction could overcome the complexity in satisfiability solving due to

functions in guards which are difficult to encode as satisfiability constraints.

In conclusion, we presented a practically useful approach in this report to verify lazy linear

hybrid automata against safety properties and illustratedits effectiveness on examples of hybrid

systems from past literature.
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