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Chapter 1

Introduction

Lazy linear hybrid automata (LLHA) model the discrete timehhvior of control systems con-
taining finite-precision sensors and actuators intergotith their environment under bounded
inertial delays. In this report, we present a symbolic téghe for reachability analysis of lazy
linear hybrid automata. The model permits invariants anardgito be nonlinear predicates but
requires flow values to be constants. Assuming finite precjsilows represented by uniform
linear predicates can be reduced to those containing véilaesa finite set of constants. We
present an abstraction hierarchy for LLHA. Our verificatieohnique is based on bounded model
checking and k-induction for reachability analysis ate&liént levels of the abstraction hierarchy
within an abstraction-refinement framework. The countamgxles obtained during BMC are used
to construct refinements in each iteration. Our techniqyeastical and compares favorably with
state-of-the-art tools, as demonstrated on examplesrttlatdie the Air Traffic Alert and Collision
Avoidance System (TCAS).

A hybrid system is a dynamical system which exhibits botlerdite and continuous behavior.
Hybrid automata [6] have proved to be useful mathematicatsires for modeling systems com-
prising discrete transition systems interacting with ewmus dynamical systems. However, it is
clear that in any implementation of a hybrid automaton, theesof the dynamical system reported
to the discrete controller is digitized with finite precisiby sensors, and the output signals of
the controller transmitted to its actuators are also ofdipitecision. Further, the controller can
only observe continuous state variables at discrete tinletgoHence, it is somewhat unrealis-
tic to assume that the controller can interact with its emwvinent continuously and with infinite

precision.



The inherent discrete nature of a controller of a hybrideyshas led to recent efforts [25,
4, 5, 3] towards studying the discrete time behavior of hylsstems. A similar argument in
favor of focusing on discrete time behavior is presented leynzihger and Kopke [17].Lazy
linear hybrid automatgLLHA) [4, 5] model the discrete time behavior of hybrid sgsts having
finite precision and bounded delays in actuation and sendiugther, the definition of LLHA
allows nonlinear invariants and guards. However, the discbehavior in this model depends
on the sampling frequency of the controller as well as theipi@en of variables, and hence, the
discretized representations are very large and any entineeaaalysis would not be feasible for

systems of appreciable size.

1.1 Contributions

In this report, we present a symbolic technique for readtat@nalysis oflazy linear hybrid

automata We make the following novel contributions:

1. On the theoretical side, we present an abstraction kigydor LLHA that can be used for

reachability analysis within a counterexample-guidedrals§on-refinement framework.

2. We give an implementation of a symbolic model checker tddA based on bounded model
checking and:-induction that operates at any level of abstraction.

3. We demonstrate the scalability of our methods in comparis other state-of-the-art tools
on examples such as Automated Highway Control System (AlH8)tae Air Traffic Alert
and Collision Avoidance System (TCAS).

This report is based on joint work with Bryan Brady and SafjiSeshia [20].

1.2 Related Work

PHAver (Polyhedral Hybrid Automaton Verifier) [16] is a tdol verifying safety properties of hy-
brid systems. It uses on-the-fly over-approximation to feaffine flows by iterative partitioning
of the state space. PHAver considers a continuous time nundigk the discrete time semantics
of LLHA. Our work is much more closer to the HYSDEL tool [25]h& discrete hybrid automata

underlying the HYSDEL tool is formed by the connection of d@térstate machine with a switched



affine system through an interface. Our work is similar to HDER in its considering an inertial
interface between the digital and the continuous companeithe hybrid system. Unlike our
symbolic approach, HYSDEL uses numerical simulation falgsis. Further, our technique al-
lows guards and invariants that use any computable fundid&olver [27, 12] also allows general
constraints over variables as invariants and guards. H uderval arithmetic to check whether
trajectories can move over the boundaries in a rectanguidr @ur technique uses SAT-based
decision procedures for finite-precision arithmetic to diybolic analysis instead of an enumer-
ative analysis. Another closely related tool is HybridSAIL[ 30], which constructs discrete finite
state abstractions for hybrid systems using predicateaaitgtn. The tool uses decision procedures
and the SAL explicit state model checker. Our approach pagabstraction over the domain of
variables, and uses symbolic model checking based on bitwdecision procedures.

The examples used in this report have been well-studiedjdtails on previous case studies,
we refer the reader to the relevant references on Train Gater@ler [26], Traffic Collision and

Avoidance System [24, 23] and Automated Highway System 193,



Chapter 2

Reachability Analysis of Lazy Linear
Hybrid Automata

In this chapter, we present a new reachability analysisnigcie for lazy linear hybrid automata
(LLHA). Formally, LLHA is defined as follows.

Definition 1. A finite precision lazy linear hybrid automaton(LLHA) [5]astuple
(X, V,init, flow,inv, E, jump, D, €, B, P)
. The components of LLHA are as follows:
e Variables : A finite ordered set = {z;, xo, ..., x,} of continuous variables.
e Control modes : A finite sét of control modes.

e Initial conditions : A labeling functioninit that assigns an initial condition to each control
modev € V. The initial condition is a predicate over the variablesin

e Flow: The possible values of rate of change of any variabiedontrol mode form a finite set
of constant values. Let the set representing the legal flduegdor variabler; be denoted
by X;. The predicateflow(v) = (iy € X1) A (i5 € X3)... A (&, € X,,) represents legal
flows at locatiornv € V.

e Invariant condition : A labeling functiorinv that assigns an invariant condition to each
control modev € V. The invariant conditiorinv(v) is a convex predicate over the variables
in X.



e Control switches : A sel of edges(v, ) from a source mode € V to a target mode

v" € V. A function “update,, " associates a variable assignment to each control switch

(v, ).

e Jump conditions : A labeling functiofump that assigns a jump condition to each control
switche € E. A jump condition from the control modeto ', 7, ./ is a predicate over the
variables inX.

e Delay parameters :D = {g,d,, h,d,} is the set of delay parameters such that g <
g+, < h < h+6, < P,whereh denotes the sensing delgydenotes the actuation delay
and P is the sampling interval of the controller.

e Precision :¢; is the precision of measurement of variable

e Range :B;, = [B

Tmin?

B

inbaw ]

is the range of the variable;.

e Period P represents the time period associated with the discret&aiber i.e. control mode

switches take place at timé&g, 17, 15, ... whereT, ., = T}, + P.

The lazy semantics of hybrid automata [4, 5] means that ifrdrobmode switch took place at
time 7}, then the delay in actuating a changginw lies between?}, + g, T}, + g+ 9,]. Similarly, a
control decision made at tini#g, , ; is based on the values of variables read by the controllemaes
time in the interval7},+h, T}, +h+0,]. The parameters, andd;, represent the bounded uncertainty
in actuation and sensing delay respectively. Since the kagnipequency of any implementation
of a hybrid automata is always finite, this model focuses erdibcrete time behavior of the hybrid
automata.

The precisiore; depends on the accuracy of the sensors measutifiggm the continuous
dynamical system. Guards and state invariants are evdloatéhe values of the; variables that
have been rounded using the value,0fThe parameteB reflects the range of values which can be
taken by a state variable associated with a fixed width regisinlike the conventional definition
of linear hybrid automata [17], invariants and guards in IA_.ean be nonlinear.

The flows in linear hybrid automata are represented usingecdimear predicates ovenlythe
rates of change of variables (also called uniform lineadigaes [18]). Under the assumption of
finite precision, such flows can be considered as set of aonstlues of rate of change of different
continuous variables. Thus, LLHA can be used for represgmtybrid systems with convex linear
flows.



An intuitive explanation of how constant differential insion of uniform linear predicates [18]
are used in literature to model linear flows for reachabdityalysis is as follows. Such a transfor-
mation is sufficient for determining reachability as we do m@son about the time taken to reach
a configuration.

This is illustrated in Figure 2.1. The convex polygon reprégs the rate of change of variables
(x,y) such that is(r,,r,) is a permitted flow, therr,t,r,t) lies in the interior of the convex
polygon, wheré is one time unit.. The polygon is convex as we only considaver linear flows.
Also, the polygon is constant and does not change with chiangenfigurationgz, ) as the flow
condition is uniform and does not depend(any). The configurationsz, y) reachable irk time
units would be(z + k(r,t), yo+ k(r,t)), where(zo, o) is initial configurationr,t, r,t) is a point
in the convex polygon. Thus, the two rays withy, 1) as origin and touching the angular extremes
of the convex polygon represent the possible reachablegroations. If we form a rectangle using
the vertices of the polygon that touch the rays, the set ofigorations reachable for flow values
lying in the rectangle is same as the previously reachalike sehe bound constraints arising
from the rectangle can be, thus, used in place of the unifareat predicate for the purpose of

reachability analysis.

Definition 2. A configuration of a hybrid automaton, withcontinuous variables, is a n+1-tuple,
¢ = (s,x1,29,...,2,) Wheres € V is the control modez, zo, ..., x, is the valuation of the

continuous variables of the hybrid automaton.

The semantics of a hybrid automaton describes its evolutieerms of change in configura-
tion. We use the notation+ « to denote the configuration in which continuous state vémbre
incremented bwy. Also, we extend the order relation on the continuous véegato configurations.
We say that < ¢ if we know thatz; < z for eachz; in ¢ and the corresponding in ¢

We define a symbolic collection of configurations as a stathefhybrid automaton and de-
scribe the evolution of the hybrid automaton in terms of ¢jeaim its state. This definition is used
to present the bounded model checking algorithm later imetpert.

Definition 3. A state of the hybrid automaton is a pdir, ¢) consisting of a control mode € V/
and a predicatep over the variablesX. We identify that the state of a hybrid automaton can

change in two ways - flow or jump.

¢ flow: The changed state of a hybrid automata due to flow at contralendor time 7" is

(v, ¢1), where




Reachable Configurations (X,

Convex FlowUniform Linear)
(Uidiz + Biy < Cy)

Equivalent Constant Differential Inclusi
(Lt <X < Uz, Ly <Y < Uy)

Xo

Yo Y

Figure 2.1: The flows given as uniform convex linear predisaian be represented using constant
differential inclusion for the purpose of reachability.

o7 = 3IX13AX {(p Ninv(v))[X — X1 AX = X1 + XT A (X = flow(v)) A inv(v)}.

e jump:If (v, ¢) is state of a system, arid, v’) is a control switch such that = jump(v,v’),

then the state of the system can changéuvtoy’) such that ifupdate,, .y was the update
function overY C X,

¢ = IV {(6 A inv(©) A )Y Y] AY = updateq,(Y)}.

A states, = (v, ¢) is reachable from; = (u, ¢;) if and only if there is a sequence of flow or
jump transitions frons; to s,.

2.1 Hierarchy of Abstractions

We detail the theory underlying our hierarchical abstmacttechnique below. For brevity, proofs
of some theorems have been omitted.



Agrawal and Thiagarajan [4, 5] use two fundamental quastitn their analysis. Thiinda-
mental time intervais A = G.C.D of{P, ¢, d,, h, 0, }. The corresponding abstraction quantum is
I' = G.C.D of(_J{e;/2, B/"™", B/, V" i A}.

We begin vivith basic definitions on how abstraction is perfdm For ease of presentation,
all variables are abstracted in the same way; the theory eaabily extended to a non-uniform
abstraction.

Definition 4. Qy; is a surjection over the continuous variables usatigtraction quantudd = 2+T°

for some integek. That is,
Qu : R — R, andQn(x;) = k1Tiff z; = k11 + m;, wherek; € Z and0 < m; < II.

Abstract ConfigurationA configurationc? = (s, z¢, 24, ..., z¢) is all-abstraction of a con-

crete configuratior = (s, z1, 7, . .., x,) iff 57 = sandz? = Qn(z;).

Abstract Transition: Transitions are abstracted by abstracting jump and flow itond. This
must be done in order to ensure that transitions that aréfeas the concrete LLHA continue to
be feasible in the abstract transition system, at the plessilst of introducing additional (spurious)

behaviors.

1. The intuition behind the following definition of abstrapgtards and invariants is to relax the

atomic constraints so thatdf(x,, z», . . ., x,,) denotes a state invariant or guard, then the cor-
responding abstracted invariant or guar@®igz,, zo, . .., x,) suchthatb(xy, 2o, ..., z,) =
(1,9, ..., Ty).

2. The set of flow values are abstracted to overapproximateetichable configurations. If the
flow value in a setX is #, it is abstracted by including flow value$ andz? in its place,

wherei® < & < i (details given below).

We first describe how invariants and guards are abstraatddhan describe the over-approximation
of flow.
Abstraction of invariants and guardswvariants or guards can be expressed as a Boolean combi-

nation of atomic predicates in negation normal form (NNF)eve each predicate is of the form
flxy,z9...,2,) < bwhereb € Q. If & is an invariant or guard, theh = fy,,(c1,co,...,¢p)
where the constraint; is f; < b; and wheref,,,; represents an NNF Boolean combination of its

arguments.

10



Each predicate in the invariant or guard can be abstracteg tise monotonicity off with
respect to each variable , that is, f,, = (%f is of the same sign over the range of interest. In
particular, all polynomials which are linear in each vakelare always monotonic with respect to
each variable.

In order to define abstract state invariants and guards, steléscribe how to construct abstract
inequalities using the above observation about invariantsguards. Without loss of generality,
let us assume that(zy, z2 ..., x,) < bis an inequality whose partial derivatiye, with respect
to each variable; is of the same sign over the range of intel€t(z;), Qu(z; + IT)]. Then, its

(conservative) abstraction is thedaxedinequalityc; defined below:

Cg = f(k’l,k’g...,k’n) S b
wheret! = Qn(b + I1) and ki = Qu(x;) if fr, >0

This abstraction rounds up or down each variable to the searaltiple of [T depending on
whether the functiory decreases or increases with increase in the variable. Tin&ardb is
always rounded up. All assignments to the variables whitisfesd the earlier constraint also
satisfy therelaxedconstraint. Hence, this is an overapproximation of theioalgconstraint. If
O(x1, 0, ..., 1) = froar(f1 < b1,..., fn < by) is the invariant or guard, the abstract state invari-
ant or guard is defined as
DUk, kay .oy kn) = froot(Cl, oy ooy Cl)
where the relaxed inequalitiesare obtained fronf; < b; as described above.

Thus, this relaxation results into an upper approximatidh® behavior of the hybrid automa-
ton.

Abstraction of flow conditionslf i is a rate of change allowed bflow(s) for some locatiors,

then the following two rates of change represent its abstrad (i) |TT and[ (£ )]1I. Figures 2.2(a)
and 2.2(b) illustrate how flow conditions are abstractede @bstraction of flow witl2I" leads to
an overapproximation of the dynamics of the LLHA: origiyall € {3,4,5,6}, but in the2I'-
abstraction: € {2,4,6, 8}.

Definition 5. A k-abstraction £ > 1) of a lazy linear hybrid automaton is an abstraction of
LLHA obtained using the above explained abstraction of gonditions and transitions such that
II = 2. Theo0-abstraction is called thé-transition system as the quantization is done with
respect ta'.

11



Reachable values in transition system

10
9
8
7
6
5
X (kD) 4
3
2
1 2 3 4 5 6 7 8 9 10 11 1L
time ((A)
(a) 0-abstraction
Reachable values &I’
approximation
w0
9
8
7
6
5
X (kD) 4
3
2

1 2 3 4 5 6 7 8 9 10 11 1
time ((A)

(b) 1-abstraction

Figure 2.2: lllustration of flow abstraction
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We define a partial order relatiot between transition systems below.

Definition 6. Let7'S and7'S’ be two transition systems such that every staté®is mapped to
some state df'S’. If every state of'S reachable from some initial state 615 has its correspond-
ing state in7'S’ also reachable from an initial state @fs’, thenT'S < T'S".

Prior Results.

Our model of LLHA is the same as that of Agrawal and Thiagarg§d, who initially consider
a model with constant flow rate and linear invariants, anerlextend the result to invariants and
guards which are any “reasonable computable function”.rithim result of theirs which we utilize

is summarized in Theorem 1.

Theorem 1. Let a configuration of hybrid automata lee= (s, z1, 29, ..., z,) and itsI"-abstract
configuration be:? = (s, Qr(x1), Qr(z2), ..., Qr(x,)). A configuration is reachable fron iff

Qr(¢) = ¢4 wherec? is reachable frome? in I'-transition system.

Letz,,., andz,,;, be the maximum and minimum values that can be attained byartincious
variable andn be the number of control modes. The state space size @f-thansition system is
O(m?*2%" (2mee—2min)3n) [5] that is, exponential in the number of continuous vagabThis huge

state space makes it impractical to do any enumerative abditi analysis.

Our Results.

The main result is that the-abstractionof LLHA simulates the original LLHA. Further, for in-
creasing values of, we obtain coarser overapproximations of the LLHA whichrica hierarchy

of sound abstractions. Figure 2.3 illustrates the meanifidneorem 2.

Theorem 2. Let a configuration of hybrid automata be= (s, z1, s, ..., x,) and its abstraction
bec? = (s,Qn(z1), Qu(zs), . .., Qu(x,)), wherell = 2T, If a configuration
c is reachable from in time T = [A andQp(c') = ¢, thenc® is

reachable fromt? in the k-abstraction.

Proof. For configuratiore = (s, z1, xs, ..., x,), letiy, @5 . .., &, be the rates of change of contin-
uous variables satisfyinffow(s) andg‘:Al, i/'\g, ..., z, be the rates of change of continuous variables
satisfying flow(s) wheres is a predecessor state gfthat is,(s, s) € E. Letd be a configuration

reachable from:. In case of change due to reset of variables at jump, the aheegem follows

13



due to the adjustment to guards and invariants. We provedtheaheorem for the case where the
change is effected due to flow evolution.

Since, the relatiort for configurations is defined in terms of the ordering of indipal variable,
we consider an arbitrary variable in the rest of the proobwelf z; is the value of the variable in
c andz is the value in” after time7" such that the flow rate switched after an actuation delay of
then
@) = x; + @t + (T — t)

Using the definition of” and A,
z; = (m2% + )0 + v, A = (259 + ¢)T, andi; A = (25p + ¢)T,
where0 <n <28 0<~ <TI,0< ¢ <2%,0<q < 2~

S0, = (m2* +n)I + 5 + (2% + ¢) 5t + (2 + @) 2 (1A — 1)
= (m2"+ n)L + 4+ (2 —p) + (¢ — @) 5t + (2¥p + ¢)IT
Thus,z; = (m + pl)2"T + (n+ ¢)T +~; + (25(p' — p) + (¢ — q)) %t

Since0 < ¢t < T'in the above equation aiT" = II, «/ lies in the interval

o [(m+ pDIL (m+ (p + 1)l + DI if i; >
o [(m+ p/DIL (m+ (p+ 1)l + DI if &; >

So,Qn(z}) lies in the interval

o [(m + pIL, (m + (p + DO if &; > &;
o [(m+ pDIL (m + (p+ DO if &; > i;

The value ofi’ variable in any configuratior? reachable frona? in the k-abstractiong’? lies

in

o [(m+pDII, (m+ (¢ + VDI if &; > i,

o [(m+p DI, (m+ (p+ VDI if &; > i

Thus, for anyz/, there exists/? such thatr’? = Qu(«}). Using the same argument for each
variable independently, the theorem immediately follows. O O

Using reasoning exactly similar to the one used in Theoreme2¢can prove the hierarchy of

k-abstractions presented below.

14



next(c) : Succesors of ¢ intransition system

k—abstraction _
k-abstraction(next(c) next(?)

next?) : Succesors of? in k-abstraction

Figure 2.3: Simulation by k-abstraction

Lemma 1. Let a configuration of:-abstraction be

c= (S, QH(Z‘l), QH(IL‘Q), ey Qn(l‘n)), wherell = 2*T.
Its abstraction ir%-abstraction, wheré: >k

¢ = (s5,Qzn(z1), Qs(x2), . .., Qg (x,)) wherell = 2FT,

If a configurationc’ is reachable from: in k-abstraction, then

e Qu(¢) =7 wherell' = 2k-FT°

e 7 is reachable front in k-abstraction.

The Hierarchy Theorem 3 follows from Lemma 1 and Theorem 1.

Theorem 3. k-abstraction=< k’-abstraction if0 < k& < k’. Thus,k-abstractions, wheré > 0,
form an hierarchical abstractions of the lazy linear hybadtomata. Further)-abstraction is the

['-abstract transition system which bisimulates the ori¢laay linear hybrid automaton.

Theorem 3 provides a framework for use of progressive atigiraof lazy linear hybrid au-
tomata to develop a sound and complete abstraction-refimgmaeadigm for reachability analysis
of LLHA. Theorem 4 presents the relative reduction in stai@ce size withk.

Theorem 4. Let S, be the state space sizelehbstraction ands;, of k'-abstraction wheré’ > k.

Thenlogy(S}./Sk) = 3n(k — k') wheren is the number of continuous variables.

2.2 SMT based Reachability Analysis

Our implementation of a symbolic verifier of LLHA is based dinge techniques: bounded model

checking, k-induction”, and an overall counterexample-guided alotitva-refinement[11] frame-

15



work. We describe each of these below.

We first present a symbolic representatiorkedbstraction of the hybrid automata as stated in
Definition 5. The continuous variables = (z1, s, ..., z,) are symbolically represented with
integer variabled<’ = (ky, ko, ..., k,) with the intended mapping bein@n(x;) = k11, where
IT = 2k,

In the discussion below, we use the three components - g(&gs invariants {nv;) and the
flow conditionsflow(i) of the k-abstraction to define a symbolic transition relatibR. This is

then used to describe the bounded model checking and indwerification techniques.

2.2.1 Bounded Model Checking

We describe how the BMC formula is constructed, startindgpaitiseful definition.

Definition 7. A frame (F)is atuple(K,ty,ts,t,1) where K = (ky, ko ... k,,) represent the vari-
ables;t; is the sensing delay;, is the actuation delay,; ¢ is the time before transition to next
frame; [ denotes the control mode.

The initial state of the hybrid automata is the predidaté& (F) = (I = vstart) A po(K), Where
vsare denotes the initial control mode agg the initial predicate over continuous variables.

The transitionT' R is defined as a predicate over the previous frafig_() and the present
frame (¢),,). Itis a disjunction of all possible state switchés () and flow evolutions£;).

TR(Fp1,Fn)= \/ Gij(Fn-1,Fn)V ) Ei(Fpn-1, Fn)
(i,)eE eV

The switch predicate§’;; and the time evolution predicatés$ are defined in terms of three other
guantities:I; is a predicate that tests satisfiability of state invariant at control mode, pred-
icate g;; tests satisfiability of guard;;, ande;; deals with time evolution in control modewith
predecessor mode

Let us consider two functionscompensated for sensing delay (cadiicompensated for actu-
ation delay (cad) These map a set of valuations of the continuous variabblg¢s$q a set of possible
corresponding valuations obtained after compensatinggiosing and actuation delay respectively.
csd(K,iyty) = {(k1 — kt1, .. kp — knth) | (b1, kg, - den) = flow(d)}.
cad(K, hyi ty,t) = {(k1 4+ (ki — kig)to + k1it, .., kn + (knp — kni)to + knit)

| (k1ns kons - - nn) = flow(h) and(kyg, kai, . . . kni) | flow(i)}.

16



Let the current frame bg,, = (K™, t}", 5", t™, ™) and the previous frame be
oy = (Km=tgpmt gt gm=t pm=1y,

Li(Fpn) = (i=1")A3K'[K' € csd( K™, 1™ t7) A inv(K")]
eni(Fn—1,Fm) = (=1"""ANi=1")AK™ € cad(K™ ', h,i, t3~ 1 t™)
gij(Fm—la Fm) = (’L = lm_l /\j = lm) A\ HK,[K/ S CSd(Km_l, lm—l’tgn—l) A\ Q/JZJ(K,)]

Note that the existential quantification ou&f in the above identities simply reduces to a disjunc-
tion over possible flow values (see the descriptionsafandcsd functions).

The switch and evolution predicates can now be defined asifsil
Gij(Fn-1,Fn) = Li(Fn—1) A Lj(Ep) A gij(Frn—1, Fip) A [K™ = update;j (K™ )]

Ei(Fp1, Fin) = L(Fn ) ANL(F) AL\ eni(Fine1, Fin)]
hepred(i)
wherepred(i) denotes the set of predecessor locations of

This completes the definition of the transition predicate.

Let the state to be checked for reachability(be ¢,). If reachability analysis is used to check
safety properties, thefS,, ¢,.) would be the error state violating the safety property, Ttika
predicateunsafe(F') = (I = s, A ¢.(K)) represents the error state, that is taget state for
reachability analysis.

If d is the number of steps to which we want to check thabstraction for reachability of

(s, &), we need to check for the satisfiability of
d

BMC? = Init(Fy) A /\ (TR(Fp—1, F,)) Nunsafe(Fy).

n=1

If BMC?is satisfied, then the target stdte, ¢, (K)) is reachable i-abstraction and the frames
Fy, F1, ..., F; gives a trace from the start state to the target state.

Further, it is sufficient to do BMC fop steps to prove that a target state is not reachable where
is the diameter of the transition systemBf\/C7 is unsatisfiable for alj < p, then the target state
can not be reached in the transition system. Since the nuofibeachable states of the transition
system provides an over-estimate of the diameter, it iscseffi (though unrealistic) to do BMC

for number of steps equal to the state space size of-diestraction.
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2.2.2 Induction

We now describe an induction procedure to guarantee thecima®ility of a state in a model. This
can be used to prove the satisfaction of a safety propertghwdan be expressed as a reachability
query.

If N steps of BMC are found to be not satisfiable, thafid/C?” is unsatisfiable, then we test

the satisfiability of
N+1

—unsafe(Fy) A /\ (TR(Fy—1, Fy)) Nunsafe(Fni1).
k=1
If the above is unsatisfiable, no further bounded model ahgak required and all the states
of the model are guaranteed to satisfy the property. Basekignve present below a BMC algo-
rithm along with use of induction to check for safety projeerin a LLHA. We define the following
predicates to be used ’in the algorithm.

J J+1
Ni(Fy) = Init(Fy) A /\ TR(Fy_1, Fy) and S (Fj 1) = —unsafe(Fy) A /\ TR(Fy_1, F)
k=1 k=1

If at any step of the BMC, we find thaY’(F}) is not satisfiable, it means that there does not
exist a path of length or more, and hence we can terminate with the output that tltehsatisfies
the safety property.

The bounded model checking predicate and the inductionmstsjpicate are
BMCY = N(F;) ANunsafe(F;) andIND? = ST F; 1) Aunsafe(Fj 1)

The sub-routine INDBMC is presented in Figure 2.4. The taplmis sound and complete
due to the results of the preceding section; we present datktdiscussion of the abstraction-

refinement framework in the next section.

2.2.3 Counter-example Guided Refinement

We now describe an automated CEGAR [11] technique presamtédure 2.5 which exploits the
abstraction hierarchy presented in Section 2.1. An initialrse abstraction can be arbitrary chosen
asky-abstraction depending on the size of the state space. drtlvasarget state is not reachable in
ko-abstraction, the target state is also not reachable inltiALby Theorem 2. In case the target
state is reachable in LLHA, theBM C will yield a pathp, from the initial state to the target state

in the ky-abstraction. This needs to be validated with respect t@)+alestraction. If the abstract
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Figure 2.4: Symbolic reachability analysis based on Induact
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Run INDBMC on theb-abstraction emit induction proof or
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REACHABLE (

—

emit path L STOP

Figure 2.5: Reachability analysis of LLHA using iterativfinement

pathp, found in ky-abstraction is present irabstraction, then the target state is reachable in the
LLHA too. Ifitis not present i)-abstraction, then we select a more finer refinemgabstraction
which refutes the abstract spurious path. The same teohmggepeated for progressively finer

abstractions until the target states is shown to be unrééeloa a valid path to the target sate
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is found. If k,-abstraction is refined té,-abstraction, thek, < k, by Theorem 3. So, the
iterative refinement is guaranteed to terminate after asabf the0-abstraction in the worst case.
The 0-abstraction bisimulates the discrete behavior of lazgdirhybrid automata and hence, it is
sufficient to analyze it for the reachability of the targettst This is summarized in Theorem 5.

Theorem 5. The iterative abstraction refinement technique presemdedure 2.5 is sound and
complete.

The key components of this technique are counter-examptiatian technique and automated
refinement step. The path obtained at any iteration is afgatisassignment td3 M/ CV, it can be
validated orn0-abstraction by doing a BMC oB M (" to identify the first spurious transition. If
BM (' has a satisfying assignment forabstraction too, then the path is valid. The hierarchy of
abstractions allows the use of binary search to find the sstalalue of such that thé-abstraction
refutes the path identified in the coarser abstraction. dhgptete technique for reachability analy-
sis of LLHA based on iterative refinement and bounded modsatking is presented as a flowchart

in Figure 2.5.

2.2.4 Bitvector SMT Solving

We use bitvector SMT solving technique to check the satiditialof constraints in Section 2.2.1
and Section 2.2.2. A detailed discussion on SMT solving é&se@nted by Barrett et al [7]. While
we use UCLID [28, 22] as decision procedure for bitvectothanietic in our experiments, other
bitvector SMT solvers such as Beaver [21], Boolector [8]] afices [14] can also be used. The
SMT solving problems generated in our experiments were gtduto SMTLIB [2], and are part

of the benchmarks used to evaluate bitvector SMT solvers [1]

2.3 Experimental Results

In this section, we present the results of experiments arethase studies. All experiments were
performed on a workstation with Intel Xeon 3.06 GHz processmd 4GB RAM. UCLID bit-
vector decision procedure [9] was used with MiniSat as trdetging SAT engine. Any other bit-

vector decision procedure could alternatively be usedasehfication engine in our technique.
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2.3.1 Train Gate Controller

The train gate controller [26] ensures that the gate is dedeen the train is within some specified
distance of the gate. The example is described in Figurerhé distance of the train is measured
in meters, the angle of the gate in degrees and the time imdsc@ set of legal parameter values
is given below.

dimaz = 400, dypsare = 160,v = 40,u = 15,e = 1072, g = 1073, h = 1073, 6y =107°,0, = 1077
andP = .01.

Correspondingly, quantization factors axe= 10> andI’ = 1075,

dZ_dm(m
d=v d=v
a=0 a=—u
d< —dpe N0 <a <90 0<a<90
a>90 a<0
d=v d=v
a=u a=0
0<a<90 d<dpwN0<a<90
dzdm(w

Figure 2.6: Train Gate Controller

The train is assumed to move at a constant speald the gate begins to close at a constant
angular speed when the train isl,,,, distance from the train. Once the train has movggd,
distance away from the gate, the gate begins to open agaime®@éto ensure that the system is
safe, thatis, the train is never closer to gate tgp. unless the gate is completely closed. Hence,
the safety property to be verified is

_dsafe <d< dsafe =a=0

The runtime using different levels of abstraction are showigure 2.7. This example illus-
trates how the runtime generally reduces with increasingl lef abstraction. The system can be
shown to be safe by constructing@abstraction.
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Plot for our technique with different levels of abstraction

6 T T T T T

Runtime(seconds)

0 5 10 15 20 25 30
Level of abstraction (k)

Figure 2.7: Runtime for Train Gate Controller

2.3.2 Air Traffic Alert and Collision Avoidance System

TCAS is a predictive warning system used for avoiding calfisof aircrafts using a sequence
of preventive and corrective resolution advisories. Thelehdor TCAS resolution used here is
similar to the one used by Pappas et al [24]. We make a few esaioghe model to make it more
realistic. The TCAS specification [10] usespected time to collisidior detecting collision threats
and not distance between aircrafts used in Pappas et al &@dp Themax in the constraint
avoids division by zero. Thé/z, term ensures that slow approaches are avoided by triggering
threat if z,. is small. This makes the problem harder since these inuarae non-linear. Hence,
LHA tools like Phaver can not be used for this example.Wenatlwe input for speed of aircrafts
to be an interval. It is realistic to expect the speed of aitsrto be in a range rather than assuming
them to be a constant input. We also allow inertial delaystoation and sensing.

The parameters used in the experiment were taken from tlefispgons in TCAS 2, Version
7 documentation [15] and TCAS-201 simulator [29] specifma. The time-zone considered
for advisory is30 — 120 secondst(,.., andt,,., respectively). The distanceis taken to be 15
nautical miles (that is, 27.78 kms.). The range of speediforadt is allowed to range between
100 knots to 510 knots (nearly 200 km/hr to 1000 km/hr). It rhayoted that the maximum speed

23



(xr — k/zr)/maz(e,r) < tnear
A

(yr — k/yr)/mazx(e, 9r) < tnear
ac'r = ,co08AP + yrsinAg¢

’ )
Y, = —T-5INAP + yrcosN¢ LEFT
CRUISE .
(@r — k/z,)/maz(e, &) > ¢ ¥=0 T §/ (s = ¢
r I y4r) Z tnear V
N d/(va X sin(Ag¢)) >t
(o k e ) "r > tnea'r ; -
(yr = k/y )/t.m_ag(6 Yyr) 2 i=1
R : z! = x,.cosAp — yrsinAgp
#, = 2,c0sAp + y,sinAg e s Uy ZFromAe T yreoshs
Yy = —Tr8inAP + yrcosA¢ L . : .
Y — 0 L Yp = U2 % Sing, : d/(v1 X sin(A¢)) <t
t<0 . or : ;
< : d/(v2 x sin(A¢)) <t
———————————————————————————————— : STRAIGHT
RIGHT (zr — k/zr)/mazx(e, &r) < tfar
A
120 (yr — k/ys)/maz(e,ir) < trar
=1 = | t=0

! = T,.co0sAP — yrsinAep

r

Yyl = z.8inA¢ + yr.cosA¢p
(zr — k/zr)/max(e, &r) > trar
\Y

(yT - k/y"")/mam(eﬁy’r) > tfav‘

Figure 2.8: Air Traffic Alert and Collision Avoidance System

of Airbus 380 is Mach 0.88 (nearly 505 knots). The LLHA paraeng used in our example are
128us < g, h < 256us ande = 2715 nautical miles [29].

Phaver cannot handle this example due to non-linear imviarend guards. Figure 2.9 depicts
how the run-time of our tool and state space size vary foetbfiit levels of abstraction (the x-
axis gives the value of for k-abstraction). There is an initial increase due to additbextra
flows but for larger abstractions, the time taken is much ¢esspared to the actual model. Since
no refinement is needed for any valuekgfthe points in the graph represent run-time for only a
particular abstraction level. The analysis of ttteabstraction of the original model allows us to
conclude in less thak0 seconds that the model is safe, abbtutimes faster than analyzing the
original model (-abstraction).

2.3.3 Automated Highway Control System

Automated Highway Control System (AHS) is an arbiter whidlsw@es that there is no collision
between cars running on a highway by imposing legal speegeganThis example has being
widely used in literature [13, 19]. We use the descriptionJbg et al [19] and extend it to handle
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Plot for our technique with different levels of abstraction
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(a) A¢ =45 degree
Plot for our technique with different levels of abstraction
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Level of abstraction (k)

(b) A¢p =60 degree

Figure 2.9: Plot comparing runtimes of our technique fofedént levels of abstraction

inertial delays. The number of cars is used as a parameteate the example. The example is
illustrated in Figure 2.10(a).
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Figure 2.10: Automated Highway Control System with 4 vedscl
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A set of legal parameter values is given below. All distan@asures are in km, time is in hr
and all speeds are in km/hr)

a =.002, o/ =.0005,a = 10,7l = 20,b = 30,c = 40,d = 50,e = 60, ru = 70, f = 100
e=10"%9g=10"3%h=5x%x10"%0,=5x10"%4, =5 x 10~ andP = .01,
Correspondingly, quantization factors axe= 5 x 107° andI’ = 5 x 107°.

The safety property to be verified was that the control modeeigr the “error” mode. Fig-
ure 2.10(b) compares the runtime of our technique and thiahater on this example for different
number of cars. It shows that our approach is more scalahble Btnaver. Our technique could
handle large instances with 150 cars in less than 2 minutde Whaver took more than 10 hours
to analyze model with 15 cars. For this example, did not do any abstraction-abstraction
for AHS with even large number of cars could be easily hantthge@dur BMC+induction tech-
nique and did not necessitate any abstraction-refinenmeatitn as shown by the runtime plot in
Figure 2.10(b).
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Chapter 3

Conclusion

3.1 Summary

In this report, we presented a symbolic technique for reaitibaanalysis of lazy linear hybrid au-
tomata (LLHA). On the theoretical side, we presented arnrabisbn hierarchy for LLHA that can
be used for reachability analysis within a counterexangpligled abstraction-refinement frame-
work. We presented an implementation of a symbolic modetkdrefor LLHA based on bounded
model checking and k-induction that operates at each |évabstraction. We demonstrated the
scalability of our methods in comparison to other statéhefart tools on examples such as Auto-
mated Highway Control System (AHS) and the Air Traffic AlemtdaCollision Avoidance System
(TCAS).

3.2 Future Work

We identify four dimensions in which our work can be furthgtemded.

e More complicated system dynamicé: next step would be extending this technique to han-
dle non-linear flows. We would also like to extend it to hylsygtems with flow dependence
between the variables. Approximate reachability analgsibniques can be used instead of

bounded model checking in the counter-example guidedatigin refinement framework.

e Modeling uncertainty: The dynamics of a system is often not exactly known and cab&ot

described using ordinary differential equations. Unéertlynamics can be described using
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stochastic differential equations. Symbolic reachabaihalysis of such systems would be

of great significance in applications such as systems byadog computational finance.

e Using incremental satisfiability solvingthe BMC steps can be solved using incremental
satisfiability solving which would reuse the work done in mabchecking previous steps in
every additional BMC step. Incremental satisfiability sofycan also be used to speed-up
k-induction.

e Using predicate abstractiont would also be interesting to explore a combination of pred
icate abstraction based techniques with our method to leetakdnalyze even larger case
studies. Predicate abstraction could overcome the coritylexsatisfiability solving due to

functions in guards which are difficult to encode as satigfiglzonstraints.

In conclusion, we presented a practically useful approadhis report to verify lazy linear
hybrid automata against safety properties and illustratedffectiveness on examples of hybrid

systems from past literature.
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