
Towards Automated System Synthesis Using

SCIDUCTION

Susmit Kumar Jha

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-118

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-118.html

November 18, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was supported by NSF grants CNS-0644436 and CNS-
0627734, the FCRP/MARCO Multi-Scale Systems Center (MuSyC),
Microsoft Research, Intel, and the Berkeley Fellowship for Graduate
Studies from UC Berkeley.

Towards Automated System Synthesis Using SCIDUCTION

by

Susmit Kumar Jha

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair

Professor Claire Tomlin

Professor Dorit S. Hochbaum

Fall 2011

Towards Automated System Synthesis Using SCIDUCTION

Copyright 2011

by

Susmit Kumar Jha

1

Abstract

Towards Automated System Synthesis Using SCIDUCTION

by

Susmit Kumar Jha

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Automated synthesis of systems that are correct by construction has been a long-standing goal of

computer science. Synthesis is a creative task and requires human intuition and skill. Its complete

automation is currently beyond the capacity of programs that do automated reasoning. However,

there is a pressing need for tools and techniques that can automate non-intuitive and error-prone

synthesis tasks. This thesis proposes a novel synthesis approach to solve such tasks in the synthesis

of programs as well as the synthesis of switching logic for cyberphysical systems.

The common underlying theme of the proposed synthesis techniques is a novel combination of

deductive reasoning, inductive reasoning and structure hypotheses on the system under synthesis.

We call this combined reasoning technique SCIDUCTION that stands for ‘Structurally Constrained

Induction and Deduction’. SCIDUCTION constrains inductive and deductive reasoning using struc-

ture hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive

techniques generate examples for learning, and inductive techniques generate generalizations as

candidate designs to be proved or disproved by deduction.

We use the proposed synthesis approach for automated synthesis of loop-free programs from

black-box oracle specifications using functions from a library of component functions, synthesiz-

ing optimal cost fixed-point code with specified accuracy from floating-point code, and synthesiz-

ing switching logic of hybrid systems for safety and performance properties. We illustrate that our

approach can be used to automate system synthesis, and thus, can prove to be an effective aid to

designers and developers.

i

To

Sumit, Mum and Papa,

The Source of Never-ending Eternal Hope and Assurance

ii

Contents

Acknowledgements v

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Challenges in Automated Synthesis . 3

1.2.1 Motivating Examples . 4

1.2.2 Common Features and Challenges . 16

1.3 Thesis Contribution . 17

1.3.1 Elements of SCIDUCTION . 18

1.3.2 Soundness Guarantee of SCIDUCTION based Synthesis 20

1.3.3 Applications of SCIDUCTION . 20

1.4 Thesis Overview . 22

I Synthesis of Programs 23

2 Background 24

2.1 Formalism and Notations . 24

2.1.1 Bitvector Programs . 28

2.1.2 Floating-point and Fixed-point Programs 33

2.2 Related Work . 36

2.2.1 Deductive Program Synthesis . 36

2.2.2 Inductive Program Synthesis . 36

2.2.3 Synthesis from Functional Specification 37

2.2.4 Automated Synthesis for Program Completion 38

2.2.5 Program Optimization . 38

2.2.6 Fixed-point Program Synthesis . 39

2.2.7 Dimensions . 40

3 Oracle Based Synthesis of Loop-free Program 42

3.1 Introduction . 42

3.1.1 Contributions . 44

3.1.2 Problem Definition . 45

iii

3.1.3 Running Example . 46

3.2 SCIDUCTIVE Approach . 48

3.2.1 Encoding Programs . 48

3.2.2 Oracle-Guided Synthesis . 53

3.2.3 Illustration on Running Example . 54

3.2.4 Optimization . 55

3.3 Discussion . 57

3.3.1 Choosing Base Components . 57

3.3.2 Connections to Learning . 58

3.4 Results and Experiments . 59

3.4.1 Correctness Guarantee . 59

3.4.2 Experiments . 61

3.5 Conclusion . 72

4 Synthesis of Optimal Fixed-Point Code 73

4.1 Problem Definition . 75

4.1.1 Floating-point Implementation . 75

4.1.2 Input Domain . 77

4.1.3 Correctness Condition for Accuracy . 77

4.1.4 Implementation Cost Model . 78

4.1.5 Problem Definition . 79

4.2 SCIDUCTIVE Approach . 82

4.2.1 Synthesizing Optimal Types for a Finite Input Set 85

4.2.2 Verifying a Candidate Fixed-Point Program 88

4.2.3 Illustration on Running Example . 89

4.2.4 Theoretical Results . 90

4.3 Experiments . 93

4.3.1 Infinite Impulse Response (IIR) Filter 93

4.3.2 Finite Impulse Response (FIR) Filter 94

4.3.3 Field Controlled DC Motor . 95

4.3.4 Two-Wheeled Welding Mobile Robot 99

4.4 Conclusion . 103

II Synthesis of Switching Logic 104

5 Background 105

5.1 Formalism and Notations . 106

5.1.1 Hybrid Automata . 106

5.1.2 Boolean Properties . 109

5.1.3 Quantitative Properties . 111

5.2 Related Work . 114

5.2.1 Synthesis for Boolean Safety Properties 114

5.2.2 Synthesis for Quantitative Performance Properties 116

iv

5.2.3 Dimensions . 118

6 Synthesis of Switching Logic for Safety Specifications 121

6.1 Introduction . 121

6.1.1 Contributions . 122

6.1.2 Problem Definition . 123

6.1.3 Running Example . 126

6.2 SCIDUCTIVE Approach . 131

6.2.1 Switching Logic Synthesis for Safety 132

6.2.2 Switching Logic Synthesis for Safety and Dwell-time 135

6.2.3 Guards from Simulations . 139

6.3 Results and Experiments . 144

6.3.1 Thermostat Controller . 144

6.3.2 Traffic Collision and Avoidance System 145

6.3.3 Automatic Transmission . 149

6.3.4 Train Gate Controller . 150

6.3.5 Performance . 154

6.4 Discussion . 154

6.5 Conclusion . 155

7 Synthesis of Switching Logic for Performance Specifications 156

7.1 Introduction . 157

7.1.1 Contributions . 158

7.1.2 Problem Definition . 158

7.1.3 Running Example . 161

7.2 SCIDUCTIVE Approach . 163

7.2.1 Optimization over Finite Parameters . 163

7.2.2 Numerical Optimization . 167

7.2.3 Guard Inference Using Learning . 172

7.3 Results and Experiments . 177

7.3.1 Thermostat Controller . 177

7.3.2 Oil Pump Controller . 177

7.3.3 DC-DC Buck-Boost Converter . 179

7.3.4 Air Handling Unit in Buildings . 181

7.4 Conclusion . 189

8 Conclusion 190

8.1 Summary . 190

8.2 Future Work . 191

8.2.1 Program Synthesis . 191

8.2.2 Synthesis of Switching Logic . 192

Bibliography 194

v

Acknowledgments

First, and foremost, I would like to thank my parents and my elder brother, Sumit Jha, for their

love and understanding. I am ever indebted to my family and friends who I have always taken for

granted and whose undying faith and well wishes have never abandoned my side. Your uncondi-

tional affection shall always be my inspiration; and sneh, my guiding star.

I am also grateful to my advisor, Professor Sanjit A. Seshia, for making my tenure as a gradu-

ate student productive as well as filled with fun. His kind guidance and continued encouragement

has made this thesis possible. I am thankful to members of my dissertation committee: Professor

Claire Tomlin and Professor Dorit Hochbaum for their insightful comments and suggestions. I am

thankful to all my instructors at UC Berkeley and Indian Institute of Technology (IIT) Kharagpur.

In particular, I am grateful to Professor Alberto Sangiovanni-Vincentelli and the graduate student

instructor, Dr. Alessandro Pinto, who introduced me to the area of embedded systems. I am also

grateful to Professor Somesh Jha, Professor Michael Jordan, Professor George Necula, Profes-

sor Dawn Song, Professor Phil Spector and Professor David Wagner for stirring my interest in

programming languages, formal methods, computer security and machine learning.

I am also thankful to my internship mentors at Tata Institute of Fundamental Research (TIFR),

Bombay, Ecole Polytechnique Federale de Lausanne (EPFL) and SRI International: Professor

R.K. Shyamasundar, Professor Thomas Henzinger, Dr. Nir Piterman, Dr. Jasmin Fisher and Dr.

Ashish Tiwari. In particular, I thank Professor Shyamasundar for making me fall in love with

computer science. I am also grateful to Dr. Tiwari who is a continued source of inspiration for

research as well as trekking. I am thankful to Dr. John Rushby, Dr. Shankar Natarajan and other

researchers at SRI International for two wonderful and productive summers at Menlo Park. I am

also grateful to my collaborators: Prateek Bhanshali, Dr. Bryan Brady, Luigi Di Guglielmo, Dr.

Sumit Gulwani, Dan Holcomb, Professor Trent Jaeger, Wenchao Li, Rhishi Limaye, Dr. David

Molnar, Divya Muthukumaran, Dr. David King, John Kotker, Dorsa Sadigh, and Cynthia Sturton.

I am thankful to Professor S. Ramesh and Dr. Swarup Mohalik at General Motors Research, Dr.

Sriram Rajamani at Microsoft Research India, Dr. Mike Kishinevsky at Intel, and Dr. Aarti Gupta

at NEC Research for their continued encouragement.

Last but not the least, I am thankful to the squirrels of Berkeley for inspiring me with their

contagious enthusiasm, unbridled curiosity and complete absence of fear.

1

Chapter 1

Introduction

Automated synthesis of systems that are correct by construction has being a long standing

goal of computer science and engineering. But, even today, the design and analysis of systems

across different domains of hardware and software development remains a predominantly human

endeavor. Developers and designers still play a central role in both hardware design and software

development from the inception of the design and its specification to the final testing, deployment,

and system maintenance [93]. The creation of tools that can aid the designers and developers of

engineered systems remains an important goal in different areas of computer science including

programming languages [19], software engineering [80], formal verification [16] and electronic

design automation [80].

The complete automation of the synthesis process would be an unrealistic expectation. Soft-

ware development and hardware design are inherently creative tasks which require a lot of human

ingenuity and insight. Building systems often involves discovering new algorithms, designing

new architectures, and orchestrating details required for building larger systems as a composition

of its smaller components. The complete automation of these creative tasks seems improbable in

the near future, but there is definitely a pressing need for complementing human intelligence with

automated synthesis techniques in domains where manual design is tedious and error-prone.

In the recent past, a lot of progress has been made in automating the verification and testing

of engineered systems, and, to a lesser extent, towards automating the synthesis of such systems.

Automated verification techniques enable developers and designers to quickly verify their hypoth-

2

esized designs, and to discover and fix errors, if any. This undoubtedly lightens their burden by

freeing them from identifying corner case scenarios, and checking their design with respect to

the expected behavior manually. Automated synthesis techniques have also being proposed in

niche application areas to automate mechanical aspects of the design process. But, the absence of

complete specifications at the start of the design process and the computational hardness of syn-

thesis problems, even when specifications are available, are two main reasons that have prevented

a wider adoption of automated synthesis techniques.

Thus, the design and development of engineered systems still remains a trial and error pro-

cess, especially in domains where human intuition and insight are limited due to the inherent

complexity of the design problem, and the characteristic combinatorial nature of design space.

We make an effort to develop an automated approach to guide the tedious trial and error approach

to synthesis. We focus on automated synthesis for problems that are particularly challenging to

human designers. Our goal is not to replace human designers and developers; rather, we seek to

investigate the development of tools and techniques that can serve as an effective computational

aid in their work.

Our work on automated synthesis is motivated, in part, by the recent success in automated

verification of systems [108], which is chiefly driven by the advancements in deductive reasoning

techniques such as constraint solving [13, 37] and automated theorem proving [72, 111]. De-

duction techniques are useful in discovering corner-cases and overlooked scenarios on which a

candidate design can fail with respect to a specification provided by the user. Hence, they have

proved to be valuable work-horses for automated debugging to software developers as well as

hardware designers. However, purely deductive methods cannot handle many complex synthesis

tasks, including those considered in this thesis. Therefore, this thesis makes an effort to propose

a unified theme for automated synthesis by proposing a new approach that combines deductive

reasoning with inductive inference (algorithmic learning). A central idea is to use deduction to

discover example behaviors of the desired system, and then use induction to synthesize the system

as generalization of the discovered behaviors. Hypotheses on the structure of the system can be

provided by users to aid the induction engine in the generalization step, and to constrain the search

space of deduction engines.

3

1.1 Thesis Statement

The thesis we explore in this dissertation is the following:

The systematic combination of induction, deduction, and structure hypotheses is effective in au-

tomating tricky and tedious synthesis tasks in system design.

We call this combined reasoning technique SCIDUCTION, standing for ‘Structurally Constrained

Induction and Deduction’ [112]. SCIDUCTION constraint inductive and deductive reasoning us-

ing structure hypotheses, and actively combines inductive and deductive reasoning: for instance,

deductive techniques generate examples for learning, and inductive techniques generate general-

izations as candidate designs to be proved or disproved by deduction.

In the rest of the chapter, we first motivate the automated synthesis problem by identifying

particular applications where human insight and intuition would greatly benefit from automated

reasoning support. Then, we identify the common underlying challenge in developing an auto-

mated synthesis technique for such applications. We propose SCIDUCTION as an effective solu-

tion to the challenge, and discuss how it builds on existing techniques. Then, we summarize the

contributions of the thesis, and conclude this chapter by presenting the organization of the thesis.

1.2 Challenges in Automated Synthesis

In this section, we briefly present some design and programming problems that illustrate both

the need for automation, and the limitations of human ingenuity. These problems are from diverse

domains including software engineering, computer security, hardware design and cyber-physical

systems. The common thread connecting all these problems is their non-intuitive nature. They

clearly provide an opportunity to build techniques that can aid human designers and developers

in practice. Our synthesis approach based on SCIDUCTION is motivated by these applications.

While we detail our approach and show how they can be used to solve these problems later in this

thesis, in this section we introduce these problems and mention how human experts solve these

problems.

4

1.2.1 Motivating Examples

We enumerate the motivating applications along with a simple example to illustrate the need

for automated synthesis.

Bitvector Programs

Bitvector programs manipulate bitvectors (strings of bits) using arithmetic operators such as

addition and subtraction, and bitwise operators such as bitwise and, bitwise or, and right shift.

These programs are usually small loop-free code, but often involve very intricate and unintuitive

tricks. In fact, the upcoming 4th volume of the classic series “Art of Computer Programming” by

Knuth has a special chapter on bitwise tricks and techniques [70]. The use of both arithmetic and

logical operations makes these programs difficult for programmers, and they often rely on a com-

pendium of these algorithms published by expert programmers such as Hacker’s Delight [132].

But, if a particular scenario requires a new solution which has not being previously published,

programmers are forced to design these bitvector programs on their own. Such a design process

is both time-consuming and error-prone. Further, these bitvector programs are used in embedded

systems such as network routers and other systems where performance is important. Thus, it is

desirable to use as few operations as possible to accomplish a particular task.

The following is a simple example of a bitvector program from the Hacker’s Delight [132].

Given a bit-vector integer x, of finite but arbitrary length, construct a new bit-vector y
that corresponds to x with the rightmost string of contiguous 1s turned off, i.e., reset

to 0s.

Let us consider writing some sample input-output pairs, or examples, for the problem. For

any input x, it is easy to provide the corresponding output y. Some example (x, y) pairs are

(01101100, 01100000), (10100111, 10100000), (00000000, 00000000) and so on.

A straightforward, but inefficient, implementation is a loop that iterates through the bits of

x and zeroes out the rightmost contiguous string of 1s. We first present this simple implemen-

tation with a while loop in Procedure 1. The loopy implementation has O(n) comparisons and

O(n) arithmetic operations for bitvectors of size n. Such bitvector manipulation programs are

5

Procedure 1 Code for turning off rightmost contiguous 1s

Input: Bitvector x

Output: Bitvector y

currentIndex = length(x)− 1

while x[currentIndex] 6= 1 do

y[currentIndex] = x[currentIndex]

currentIndex = currentIndex− 1

end while

while x[currentIndex] 6= 0 do

y[currentIndex] = 1− (x[currentIndex])

currentIndex = currentIndex− 1

end while

return y

Procedure 2 Turning off rightmost contiguous 1s

Input: Bitvector x

Output: Bitvector y

t1 = x− 1

t2 = t1 | x

t3 = t2 + 1

y = t3 & x

return y

often used in embedded devices where they operate on large bitstrings such as network pack-

ets. Further, branching in the program in the form of the while loops makes this code less ef-

ficient than straight line code. It is well known that straight line code often shows better cache

performance. Can we synthesize a shorter and more efficient implementation? It is difficult to

answer this, but it is easy to speculate that the elementary operations that may be used inside

such an efficient implementation will be the standard bit-vector operators: bit-wise logical oper-

ations (OR |, AND &, XOR ⊕, NEGATION ¬), and basic arithmetic operations (ADD +, SUBTRACT −,

MULTIPLY ∗, DIVIDE /). The program presented in Procedure 2 can solve this problem with

6

a straight line program using only 4 operations. Further, the solution is independent of the

wordlength of the input bitvector.

A programmer will require considerable familiarity with bit-level manipulations to come up

with such an implementation. In order to better appreciate the ingenuity required to come up with

the program, we briefly discuss the intuition behind different operations in this program. In the

first step, subtracting 1 from the bitvector turns all the trailing 0s to 1s. For instance, on input

0111001100, subtracting 1 returns 0111001011. In the next step, we do a bitwise OR with the

initial input to get a bitvector which is the same except for the trailing 0 bits turned on. In our

example, we obtain 0111001111. Adding 1 turns off all the rightmost-ones as well as switches

back trailing 0s. The only difference from the final required result is a 1 after the rightmost string

of contiguous 1s in the given input. In the case of our example, we obtain 0111010000. In the

fourth and last-step, we do a bitwise AND with the initial input to obtain the final desired output

bitvector which has the rightmost contiguous 1s turned off. For our example, we get 0111000000.

This example illustrates the level of experience and insight into bitwise operations required

to write such bitvector programs. The insight required to write such bitvector programs becomes

more and more involved with the length of the code which can be as long as 15 operations. It is dif-

ficult to expect common programmers to be able to come up with such non-intuitive programs on

their own in a timely manner and without errors. Automatic synthesis of such bitvector programs

is one of the applications of our synthesis approach, and is discussed in detail in Chapter 3.

Program Understanding and Deobfuscation

The next application that we consider is that of program understanding and deobfuscation. A

very important component of software engineering is understanding programs. This is of even

greater importance to security experts working on tasks, such as auditing third-party code, or

understanding decompiled malware code.

The dependence on human experts for understanding code in order to release patches for vul-

nerable systems delays the response to new malware, and is often responsible for heavy economic

losses. Use of obfuscation techniques by malware writers [135] to make programs really difficult

to understand by humans coupled with inefficiencies of decompilers used to obtain source code

from malware binaries, makes program understanding a very challenging task. An effective aid for

7

program understanding would be the ability to select a particularly puzzling snippet of code and

have an automated synthesis engine resynthesize its simpler but functionally equivalent version.

Procedure 3 Obfuscated Code
Input: Bitvector x

Output: Bitvector y

a = 1, b = 0, z = 1, c = 0

while 1 do

if a == 0 then

if b == 0 then

y = z+ y, a = ¬a, b = ¬b, c = ¬c

if ¬c then

break

end if

else

z = z+ y, a = ¬a, b = ¬b, c = ¬c

if ¬c then

break

end if

end if

else

if b == 0 then

z = y << 2, a = ¬a

else

z = y << 3, a = ¬a, b = ¬b

end if

end if

end while

return y

8

Procedure 4 Multiply by 45

Input: Bitvector x

Output: Bitvector y

z = y << 2

y = z+ y

z = y << 3

y = z+ y

return y

We illustrate this problem with a small example snippet of obfuscated code in Procedure 3

from the decompiled code of the Conficker worm. This piece of code has an infinite loop with

non-intuitive branching in the control flow of the code. But, functionally, it is equivalent to

the code in Procedure 4 which multiplies a number with 45. This simpler version of the pro-

gram is synthesized using our synthesis technique presented in Chapter 3. It uses operators:

shift-left(<<) and add(+), present in the obfuscated code as the component functions. It

does not use multiply(∗) since it is not present in the obfuscated code.

Automatically inferring functionally equivalent but simpler version of obfuscated code is a

difficult and time-consuming task, and it would be useful to build an automated technique to assist

software engineers in this task. We discuss this application in Chapter 3 of the thesis, and show

how our synthesis approach can aid programmers in deobfuscation.

Fixed-point Implementation of Floating-point Code

Programs written in the domains of digital signal processing and embedded systems have two

important characteristics. First, they commonly contain procedures that compute functions of their

inputs, where these functions are mathematically specified as operating on the reals; examples in-

clude filters used in signal conditioning and the computation of control inputs. Second, they must

run in resource-constrained environments and/or at high performance, requiring their optimization

for low resource cost (e.g., low power, low area) as well as for performance.

Specifically, at the high-level design stage (which could involve manually writing a “reference”

program or using model-based design environments such as Simulink/Stateflow and LabVIEW),

9

the reals are approximated with floating-point arithmetic. Designers create signal processing or

control algorithms as programs based on floating-point arithmetic. However, when these algo-

rithms must be implemented in software, they must be optimized for power and performance. It

is common for embedded platforms to have processors without floating-point units due to their

added cost and performance penalty. Such platforms increasingly include hardware such as field-

programmable gate arrays (FPGAs), on which fixed-point arithmetic can be efficiently imple-

mented. The signal processing/control engineer must thus redesign her floating-point program

to instead use fixed-point arithmetic. Each floating-point variable and operation in the original

program is simply replaced by a corresponding fixed-point variable and operation, so the basic

structure of the program does not change. The tricky part of the redesign process is to find the

optimal fixed-point types, viz., the optimal bit-widths of fixed-point variables, so that the imple-

mentation on the platform is optimal — lowest cost and highest performance — and the resulting

fixed-point program is sufficiently accurate.

We present an example in Procedure 5 that illustrates this problem and the difficulty that pro-

grammers face in doing the floating-point to fixed-point translation manually. The floating-point

code in this example takes radius of a circle as the input, and computes the area of the circle.

Procedure 5 Floating-point code to compute area of circle

Input: radius

Output: area

double mypi, radius, t, area

mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

In addition to the inputs of the floating-point code, the fixed-point version of the code takes the

fixed-point type of the variables as an input. The fixed-point type is a 3-tuple 〈sj, iwlj, fwlj〉 for

j-th variable where sj denotes the signed-ness of the variable, iwlj denotes the integer wordlength

and fwlj denotes the fraction wordlength. For example 〈1, 3, 4〉 denotes a fixed-point variable that

is signed and has a total wordlength of 7 bits, where the first 3-bits denote the integers and the next

4 bits denote the fractional part. So, a constant 0010010 of the fixed-point type 〈1, 3, 4〉 denotes

16+2
24

= 1.125 in decimal.

10

Procedure 6 Fixed-point code to compute area of circle

Input: radius, 〈sj, iwlj, fwlj〉 for j = 1, 2, 3, 4

Output: area

fx〈s1, iwl1, fwl1〉 mypi

fx〈s2, iwl2, fwl2〉 radius

fx〈s3, iwl3, fwl3〉 t

fx〈s4, iwl4, fwl4〉 area

mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02
0.04
0.06
0.08
0.1

0.12

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05
0.1

0.15
0.2

0.25

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 1.1: Example of Fixed-point Code with Wordlength 8

Different choice of the fixed-point types leads to different costs of the implementation as well

as different accuracy of the fixed-point program with respect to the floating-point program. Typ-

ically, designers have a minimum threshold for accuracy. For example, they might require that

the output produced by the fixed-point code might not differ by more than 1% from that produced

by the floating-point code. While increasing the wordlength of the fixed-point variables will lead

to higher accuracy, it will also lead to higher implementation cost depending on the cost model.

11

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3

4

x 10
−4

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10
x 10

−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 1.2: Example of Fixed-point Code with Wordlength 16

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10
x 10

−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 1.3: Example of Fixed-point Code Synthesized Using SCIDUCTION based Approach

Using a standard cost model that models area cost of hardware implementation [38], we observe

the accuracy and the cost of the example at two extremes in Figure 1.1 and Figure 1.2. The figures

plot the relative and absolute difference between the floating-point and fixed-point program with

12

given wordlengths for different values of radius from 0.1 to 2, which is domain of the input. The

relative difference is the ratio between the absolute difference and the output of the floating-point

program. The horizontal line indicates the maximum relative error threshold suggested by the

user.

The wordlengths for all the four variables is 8 in the first case and 16 in the second case. We

assign sufficient integer wordlength to avoid overflow, and leave the remaining bits for fractions.

The fixed-point types in the first case are 〈0, 2, 6〉, 〈0, 1, 7〉, 〈0, 2, 6〉, 〈0, 4, 4〉. The cost for this

implementation is 81.80 units. In the second case, the fixed-point types are 〈0, 2, 14〉, 〈0, 1, 15〉,

〈0, 2, 14〉, 〈0, 4, 12〉 and the cost of implementation increases to 316.20. The first case clearly

violates the expected accuracy for a number of inputs, while the second one satisfies the accuracy

requirement but has a very high cost. The optimal cost fixed-point code with acceptable accuracy

lies in between these two extremes and a manual designer has to do a trial and error based search

to discover this optimal design.

In Chapter 4, we describe how our synthesis approach can be used to automatically discover

the optimal design with respect to a given cost model and expected accuracy constraint. For the

example presented above, the optimal wordlengths for the four variables are 5, 10, 13, 14, that is,

the optimal fixed-point types for mypi is 〈0, 2, 3〉, radius is 〈0, 1, 9〉, t is 〈0, 2, 11〉 and area is

〈0, 4, 10〉. The cost for this implementation is 104.65. This was discovered using our synthesis

techniques based on SCIDUCTION. The error plot for this implementation is shown in Figure 1.3.

Switching Logic Synthesis for Safety Properties

Cyber-physical systems, in which software interfaces with the physical world through sen-

sors and actuators, are increasingly becoming ubiquitous. These systems are modeled as hybrid

systems, that consist of multiple modes of operation of the physical plant. Controllers, often de-

signed as software, control the switching between different modes of operation. Each mode of

operation is a continuous dynamical system, and is relatively well-studied in literature on control

theory [119, 110, 67]. But, the discrete part that accomplishes switching between the mode has

often to be designed manually with very little computational support. These systems are used in

transportation, health-care, and other societal-scale applications where safe operation of systems

is very critical. Safety specifications of the system are often available as invariants on the continu-

13

ous variables that model the system state of the physical world. Synthesis of switching logic such

that the system stays safe is a challenging task, and often designers need to resort to simulations

with different switching conditions before identifying a safe switching logic.

OFF (F)

ON (N)
COOLING (C)

HEATING (H)

gCF

gFH

gNC

gHN

ẋ = −0.002(x− 16)

Ṫ = 0

ẋ = −0.002(x− T)

Ṫ = 0.1

ẋ = −0.002(x− T)

Ṫ = 0

ẋ = −0.002(x− T)

Ṫ = −0.1

Figure 1.4: 4-mode Thermostat Controller

We illustrate it with a simple example of a 4-mode thermostat controller. It is presented in Fig-

ure 1.4. The room temperature is represented by x and the temperature of the heater is represented

by T . The initial condition I is given by T = 20 degrees Celsius and x = 19 degrees Celsius.

The safety property φS to be enforced is that the room temperature lies between 18 and 20 degrees

Celsius, that is, φS is 18 ≤ x ≤ 20. (We omit the units in the sequel, for brevity.)

In the OFF mode, the temperature falls at a rate proportional to the difference between the

room temperature x and the temperature outside the room, which is assumed to be constant at 16.

In the HEATING mode, the heater heats up from 20 to 22. The heater cools down from 22 to 20

in the COOLING mode. In the ON mode, the heater is at a constant temperature of 22. In the

HEATING, ON and COOLING mode, the temperature of the room changes in proportion to the

difference between the room temperature and the heater temperature. We need to synthesize the

four guards: gFH , gHN , gNC and gCF such that the system must respect the safety property on the

room temperature x.

We discuss how our SCIDUCTION based synthesis approach can be used to solve this problem

in Chapter 6. The final guards synthesized by our technique are as follows.

14

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
e
m

p
e
ra

tu
re

(c
e
ls

iu
s
)

Room temperature

Heater temperature

Figure 1.5: Behavior of Thermostat Controller Synthesized for Safety Specifications

gFH : 18.00 ≤ x ≤ 18.01

gHN : 18.00 ≤ x ≤ 18.26

gNC : 19.94 ≤ x ≤ 19.95

gCF : 19.65 ≤ x ≤ 20.00

The behavior of the synthesized thermostat for the first 1000 seconds from the initial state is

shown in Figure 1.5. Our technique can aid designers by synthesizing switching logic for a given

safety specification.

Switching Logic Synthesis for Optimal Performance

Besides the safety properties, designers often want to synthesize switching logic for control-

ling the switching through different modes of operations of cyber-physical systems such that the

resulting system has optimal behavior with respect to a given cost metric. The cost metric may be

provided as a function over the values of the continuous variables used to model the continuous

plant that the controller interacts with. Further, the optimality may be desired over the long-term

behavior of the system as opposed to a finite horizon behavior of the system upto a fixed time.

We briefly explain this using a thermostat controller example similar to the one considered in

Section 1.2.1. This three mode dynamical system is presented in Figure 1.6. The temperature is

15

recorded in Celsius, and time is measured in minutes.

+0.15(temp)

˙temp = −0.1(temp− out)
+0.05(80− temp)

HEAT

gFH
gHFgCF

gFC

COOL

˙temp = −0.1(temp− out)
OFF

˙temp = −0.1(temp− out)

˙discomfort = (temp− 20)2, ˙fuel = (temp− out)2

˙swTear = 0, ˙time = 1

update(M, M′, swTear) = swTear+ 0.5

for any two different modes M, M′ in Q

Figure 1.6: 3-Mode Thermostat Controller

The performance requirement is to keep the temperature as close as possible to the target tem-

perature 20, and to consume as little fuel as possible in the long run. We also want to minimize the

wear and tear of the heater caused by switching. The performance metric provided by the user is

given by the tuple 〈PR, fPR, update〉, where penalty variables P = {discomfort, fuel, swTear}

denote the discomfort, fuel and wear-tear due to switching and reward variables R = {time} de-

note the time spent. The evolution (fPR) and update functions (update) for the penalty and reward

variables is shown in Figure 1.6. We need to synthesize the guards such that the following cost

metric is minimized.

lim
t→∞

10× discomfort(t) + fuel(t) + swTear(t)

time(t)

Since the reward variable is the time spent, minimizing this metric means minimizing the average

discomfort, fuel cost and wear-tear of the heater. We give a higher weight (10) to discomfort than

fuel cost and wear-tear. The behavior of room-temperature in the synthesized optimal system from

the initial room temperature of 20 is shown in Figure 1.7.

Human designers would require running a huge number of simulations followed by manual

reasoning from candidate switching conditions and their observed performance to synthesize a

switching logic which is optimal with respect to the given performance requirement. In Chap-

ter 7, we discuss how our automated synthesis approach based on SCIDUCTION can be used to

automatically infer a switching logic that is optimal with respect to the provided performance

metric.

16

0 50 100 150 200 250
19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

Time (seconds)

R
o

o
m

 T
e

m
p

e
ra

tu
re

 (
C

e
ls

iu
s
)

Figure 1.7: Behavior of Thermostat Controller Synthesized for Performance Specifications

1.2.2 Common Features and Challenges

The examples presented in the previous section illustrate that a number of design problems

across different domains can benefit from automation. The common features and challenges for

all these examples are as follows:

1. Non-intuitive Design: Design problems such as those presented in this section are not well-

structured for human reasoning. Manual insight and intuition is of very limited use for these

design problems. Designers and developers have to resort to trial and error. This process

is both time-consuming as well as error-prone. This makes automated synthesis techniques

pertinent for such applications.

2. Intricate but Small Designs: The synthesis problems are intricate but are relatively small.

While complete automated synthesis of operating systems and compilers appear to be infea-

sible, problems such as those presented in this section illustrate that automation is possible

for a number of synthesis problems, that are relatively small but difficult to solve manually.

Further, the fact that these small synthesis problems are often components of large com-

plex engineered system underscores the importance of correctly and optimally solving these

small but challenging synthesis problems.

17

3. Difficult to Verify: Verification of a candidate system against the user-provided specification

is either computationally expensive, making it practically infeasible such as equivalence

checking of obfuscated code with simplified version, or even theoretically undecidable such

as verification of multi-modal dynamical systems.

4. Easy Query on Particular System Behavior: It is easy to query about some specific behavior

of the target system. For example, it is easy to obtain output of the target bit-vector code

for a given input bitvector and it is easy to check whether a particular system trajectory of

a multi-mode dynamical system with a given switching logic satisfies the safety property or

not.

1.3 Thesis Contribution

The central contribution of this thesis is a new synthesis paradigm combing induction, deduc-

tion, and structure hypotheses, along with four demonstrations. We call this paradigm SCIDUC-

TION [112] based synthesis. SCIDUCTION can be used for synthesis as well as verification [112].

It builds on successful deductive techniques, such as satisfiability solving [13, 37], verification

techniques [31] and numerical optimization [74], with inductive techniques such as algorithmic

concept learning [6, 94]. Different instantiations of this paradigm by combining different inductive

and deductive reasoning techniques were used to solve synthesis problems in different application

domains. One of our main focus was on selecting applications where automated synthesis would

be of most help to designers and developers.

SCIDUCTION can be seen as a lens through which we view the key ideas amongst the synthesis

techniques presented in this thesis. SCIDUCTION uses structure hypothesis to integrate induction

and deduction. Induction is the process of inferring a general principle from observed instances.

Machine learning algorithms are typically inductive and learn a concept of classifier through gen-

eralization of examples [94, 7]. Deduction, on the other hand, involves the use of general rules and

axioms to infer conclusions about particular problem instances [108, 16, 39]. Traditional formal

verification and synthesis techniques, such as model checking or theorem proving, are deductive.

It is natural since synthesis and verification are inherently deductive processes. On the other hand,

inductive reasoning only ensures that the truth of its premises make it probable that its conclusion

18

is also true. The key is the use of structure hypothesis to combine inductive and deductive reason-

ing to obtain the kind of guarantees obtained in deductive synthesis and verification techniques.

These structure hypotheses are mathematical assumptions used to define the class of artifacts to

be synthesized.

Before describing the approach, it would be useful to reflect on the combined use of induction

and deduction. Looking back at manual design and development, it is easy to notice that we

often employ a combination of inductive and deductive reasoning while performing synthesis.

For example, while trying to synthesize a proof for a theorem, we start by working out some

examples and then try to find a pattern in the properties satisfied by those examples. This step

of generalizing to patterns is an inductive process. Very often, human intuition and experience

implicitly provides some guiding hypotheses for discovering these patterns. These patterns yield

lemma or background facts that then guide a deductive process of proving the statement of the

theorem from known facts and previously established theorems. Similarly, while synthesizing

a new design or developing a new program manually, one often starts by enumerating sample

behaviors that the design must satisfy and hypothesizing components that might be useful in the

design process. The next step is to systematically combine these components using some design

rules to obtain a candidate design or program. Thus, manual synthesis process usually iterates

between inductive and deductive reasoning. We attempt to formalize this combination of induction

and deduction using the notion of SCIDUCTION.

1.3.1 Elements of SCIDUCTION

Formally, a synthesis problem is a pair 〈CS, Cφ〉 where

• CS is the class of systems from which we need to synthesize the system, and

• the synthesized system must satisfy a given specification from the class of specifications Cφ.

An instance of SCIDUCTION can be described using a triple 〈H, I,D〉 where the three elements

are as follows:

1. Structure Hypothesis H: This encodes our hypothesis about the form of the design to be

synthesized. Formally, H encodes a hypothesis that the system to be synthesized falls in a

19

subclass CH of CS , that is, CH ⊆ CS . For example, consider the class of systems CS to be

the set of all finite automata over some set of variables and satisfying a specification φ. A

structure hypothesis H could restrict the finite automata to be the synchronous composition

of automata from a finite library L. Each possible system in CH is some composition of

automata from L.

2. Inductive Inference Engine I: This is an algorithm for learning from examples an artifact h

defined by H. The exact learning algorithm depends on the synthesis problem. It can be any

online learning algorithm that can infer concepts from examples generated by one or more

oracles. The oracles could be implemented using deductive procedures or a light-weight

procedure such as execution of concrete model or evaluation of a black-box specification.

3. Deductive Engine D: This is a lightweight decision procedure that applies deductive rea-

soning to answer queries generated in the synthesis process. The exact deduction engine

depends on the synthesis problem. Deductive engine D is used to answer queries generated

by inductive inference engine. Each query is typically formulated as a decision problem or

an optimization problem to be solved by D.

The combination of inductive and deductive reasoning and their connections have being long

studied in artificial intelligence [109]. Inductive inference has also being previously formulated

as deduction problem where inductive bias is provided as an additional input to the deductive en-

gine. Inductive logic programming [99], an approach to machine learning, blends induction and

deduction by performing inference in first-order theories using examples and background knowl-

edge. Combination of inductive and deductive reasoning have also been explored for synthesizing

plans in artificial intelligence; for example, the SSGP approach [35] generates plans by sampling

examples, generalizing from those examples, and then proving the correctness of the generaliza-

tion. The important distinction between the past work and our approach is the use of combined

inductive and deductive approach for automated synthesis, and we accomplish this using structure

hypothesis that the user can provide to the synthesis engine.

20

1.3.2 Soundness Guarantee of SCIDUCTION based Synthesis

A synthesis technique is sound if, given an arbitary synthesis instance 〈CS, φ〉, if it outputs S,

then S |= φ. The SCIDUCTION based synthesis approach must be proved sound if the structure

hypothesis H is true. Let φ ∈ Cφ be the specification and CS be the class of systems from which

we need to synthesize the system that satisfies φ using a SCIDUCTION based synthesis technique

denoted by synth〈H,I,D〉. The structure hypothesis H assumes that if a system is synthesizable

in the class CS for the given specification φ, the synthesized system falls in a subclass CH ⊆ CS .

Formally, “the structure hypothesis is valid” (s.h.i.v) is defined as

(s.h.i.v) , (∃c c ∈ CS . c |= φ) ⇒ (∃c c ∈ CH . c |= φ)

The soundness guarantee is as follows:

(s.h.i.v) ⇒ synth〈H,I,D〉(φ, CS) |= φ

1.3.3 Applications of SCIDUCTION

SCIDUCTION provides a common framework to our synthesis techniques and makes it easy

to identify and apply our techniques to new problems domains. The novel synthesis techniques

presented in this thesis are as follows:

• Synthesis of Loop-free Programs from Oracle Specification: Given a specification as an

input/output Oracle which produces desired output for a given input, we present a synthesis

technique to automatically synthesize programs using components functions from a given

library of primitive functions. We use this to automatically synthesize a number of bit-

vector programs. We also use it to automatically deobfuscate snippets of code by using

the obfuscated code as input/output oracle, and resynthesizing functionally equivalent but

easy-to-understand code. The novelty of our approach lies in using black-box specification

available only as an input/output oracle. Our approach does not rely on the availability of a

complete functional specification, and is more widely applicable. This enables us to handle

applications such as bit-vector programs and deobfuscation. We note that reasoning with

a complete specification is often difficult, as in the case of obfuscated programs. In many

21

other cases, a complete specification is not readily available, as in the case of bit-vector

programs.

• Synthesis of Fixed-point Code from Floating-Point Code: Given a floating-point code for a

numerical computation routine, an accuracy specification, and the cost model of the hard-

ware on which fixed-point code will be implemented, we present a synthesis technique

to automatically discover the correct length of fixed-point variables in the corresponding

fixed-point code. The synthesized fixed-point code meets the accuracy specification, and

is of optimal cost with respect to the given cost model. The novelty of our approach lies

identifying a small number of sufficient example executions of the floating-point code and

using them to discover minimal cost fixed-point code with an accuracy above the specificed

threshold.

• Synthesis of Switching Logic for Safety: Given a multi-mode dynamical system describing

the continuous plant representing the physical world, and a safety specification on the vari-

ables modeling the behavior of the continuous plant, we propose an automated technique to

synthesize the discrete controller that controls the switching between different modes of the

system. Our synthesized controller ensures that the hybrid system, consisting of the discrete

controllers and the continuous plant, remains safe. The novelty of our work lies in combin-

ing numerical simulation, fixed-point algorithm, and algorithmic learning for synthesis that

enables us to consider systems with arbitrary continuous behavior as long as they can be

simulated.

• Synthesis of Switching Logic for Performance: Given a mult-mode dynamical system de-

scribing the continuous plant and a cost function on the variables modeling a given perfor-

mance objective, we propose an automated technique to synthesize the discrete controller

for controlling the switching between different modes of the system such that the long-term

cost is minimized. The novelty of our work lies in long-term performance objectives, and

in combining numerical optimization and algorithmic learning to synthesize switching con-

ditions between different modes of the multi-mode dynamical system.

22

1.4 Thesis Overview

The thesis is divided into two parts: the first part discusses techniques for automated synthesis

of programs and the second part discusses techniques for automated synthesis of switching logic

for cyber-physical systems. In Chapter 2, we discuss some preliminary material and notation along

with previous work on automated program synthesis. We present the technique for synthesizing

loop-free programs in Chapter 3. This is based on joint work with Sumit Gulwani, Sanjit A.

Seshia and Ashish Tiwari [58]. We illustrate how our technique can be used to synthesize bitvector

programs as well as perform program deobfuscation. We also contrast our work with related work

and highlight the novel contributions. In Chapter 4, we present the technique for synthesizing

fixed-point code from floating-point code, and demonstrate it over a set of case-studies. This

is based on joint work with Sanjit A. Seshia [60]. In Chapter 5, we discuss some preliminary

material and notations on automated synthesis of switching logic. We also discuss related work

on automated control synthesis for multi-mode dynamical systems (hybrid systems). We present

an automated synthesis technique to synthesize switching logic for hybrid systems with respect

to safety specifications in Chapter 6. We also present experimental results to demonstrate its

effectiveness. This is based on collaborations with Sumit Gulwani, Sanjit A. Seshia and Ashish

Tiwari [59]. In Chapter 7, we present an automated approach to synthesize switching logic for

hybrid systems with quantitative performance objectives. This is based on joint work with Sanjit

A. Seshia and Ashish Tiwari [61]. We highlight the novelty of our work, and present case studies

to demonstrate how it can be used in practice. We summarize the contributions made by the thesis

in Chapter 8, and conclude the thesis by identifying future research directions.

This research was supported by NSF grants CNS-0644436 and CNS-0627734, the FCRP/-

MARCO Multi-Scale Systems Center (MuSyC), Microsoft Research, Intel, and the Berkeley Fel-

lowship for Graduate Studies from UC Berkeley.

23

Part I

Synthesis of Programs

24

Chapter 2

Background

In this chapter, we present relevant background on programs that will be helpful in explain-

ing our technique for automated synthesis of loop-free programs from component functions in

Chapter 3 as well as fixed-point numerical computation code from its floating-point version in

Chapter 4.

2.1 Formalism and Notations

In this section, we formally present the syntax and semantics of programs. We begin by

introducing a simple programming language IMP which manipulates integers using some basic

arithmetic operations. The syntactic set associated with IMP are as follows.

• numbers N, consisting of positive and negative integers with zero,

• truth values T = {false, true},

• variables Var,

• arithmetic expressions Aexp,

• boolean expressions Bexp,

• commands Com.

25

We assume that the syntactic structure of numbers and locations is given. For instance, num-

bers N might be the set of signed decimal numerals for positive and negative whole numbers, and

the variables Var might consist of non-empty strings of letters or letters followed by digits. The

syntactic structure of the arithmetic expressions, boolean expressions and commands is given us-

ing Backus-Naur form (BNF). The convention in using metavariables over the syntactic categories

is as follows:

• n,m range over numbers N,

• X, Y range over variables Var,

• a range over arithmetic expressions Aexp,

• b range over boolean expressions Bexp,

• c range over commands Com.

These variables can be sub-scripted or primed to make reading the rules of syntactic structure

more convenient.

The arithmetic expressions Aexp are formed by the following expression rules.

a ::= n | X | ao ◦ a1

◦ ::= + | − | × |

The symbol “::=” can be read as “can be” and the symbol “|” as “or”. Thus, an arithmetic

expression in IMP can be a number n or a variable X or a0 + a1 or a0 − a1 or a0 × a1, built from

arithmetic expressions a0 and a1.

Similarly, the boolean expressions Bexp are formed by the following expression rules.

b ::= true | false | ao = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

The commands Com are formed by the following expression rules.

b ::= skip | X := a | if b then c0 else c1 | while b c

26

Evaluation of numbers: 〈n, σ〉 → n
Evaluation of variables: 〈X, σ〉 → X

Evaluation of sums:
〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0 + a1, σ〉 → n
where n is the sum of n0 and n1

Evaluation of subtractions:
〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0 + a1, σ〉 → n
where n is the result of subtraction n1 from n0

Evaluation of products:
〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0 × a1, σ〉 → n
where n is the product of n0 and n1

Evaluation of division:
〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0/a1, σ〉 → n
where n is the quotient on dividing n0 by n1

Table 2.1: Inductive Evaluation Rules for Aexp

We now describe the semantics of the language IMP. Underlying a programming language

is an idea of state determined by the contents of the variables Var. With respect to a state, an

arithmetic expression in IMP evaluates to an integer and a boolean expression evaluates to a truth

value. Commands change the state using the evaluated values of the arithmetic and boolean ex-

pressions in the commands. Thus, formally defining semantics of a language involves definition of

state and then, the evaluation of the arithmetic and boolean expressions, and finally the execution

of the commands.

A state is a function σ : Var → N from variables to numbers. The set of states is denoted

by Σ. Thus, σ(X) is the value of the variable X in state σ. The evaluation of an expression a

in a state σ is denoted by 〈a, σ〉. The inductive syntax-directed evaluation rules specify how an

arithmetic expression is evaluated in a state is presented in Table 2.1.

The rules can be read as consisting of a premise above a solid line and the conclusion below

the line. When there is no premise, the solid line is omitted and only the conclusion is given. For

example, the rule for sum can be read as: if 〈a0, σ〉 evaluates to n0 and 〈a1, σ〉 evaluates to n1,

then 〈a0 + a1, σ〉 evaluates to n where n is the sum of n0 and n1.

Similarly, the evaluation of boolean expressions is specified using the set of tables in Table 2.2.

27

true: 〈true, σ〉 → true
false: 〈false, σ〉 → false

Evaluation of equality:
〈a0, σ〉 → n 〈a1, σ〉 → m

〈a0 = a1, σ〉 → true
if n and m are equal

〈a0, σ〉 → n 〈a1, σ〉 → m

〈a0 = a1, σ〉 → false
if n and m are unequal

Evaluation of inequality ≤:
〈a0, σ〉 → n 〈a1, σ〉 → m

〈a0 ≤ a1, σ〉 → true
if n is less than or equal to m
〈a0, σ〉 → n 〈a1, σ〉 → m

〈a0 ≤ a1, σ〉 → false
if n is not less than or equal to m

Evaluation of negation:
〈b, σ〉 → true

〈¬b, σ〉 → false

〈b, σ〉 → false

〈¬b, σ〉 → true

Evaluation of conjunction:
〈b0, σ〉 → t0 〈b1, σ〉 → t1

〈b0 ∧ b1, σ〉 → t
where t is true if t0 is true and t1 is true,

and is false otherwise.

Evaluation of disjunction:
〈b0, σ〉 → t0 〈¬b1, σ〉 → t1

〈b0 ∨ b1, σ〉 → t
where t is true if t0 is true or t1 is true,

and is false otherwise

Table 2.2: Inductive Evaluation Rules for Bexp

28

Atomic Commands 〈skip, σ〉 → σ
〈a, σ〉 → m

〈X := a, σ〉 → σ[m/X]

Sequencing
〈c0, σ〉 → σ′′ 〈c1, σ

′′〉 → σ′

〈c0; c1, σ〉 → σ′

Conditionals
〈b, σ〉 → true 〈c0, σ〉 → σ′

〈if b then c0 else c1 , σ〉 → σ′

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈if b then c0 else c1 , σ〉 → σ′

While-loop
〈b, σ〉 → false

〈while b c, σ〉 → σ
〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b c〉, σ′′ → σ

〈while b c, σ〉 → σ

Table 2.3: Inductive Execution Rules for commands Com

The rules for execution of commands is given in Table 2.3. Similar to evaluation of arithmetic

and boolean expressions, 〈c, σ〉 → σ′ denotes that executing command c from state σ yields a new

program state σ′. For any number m ∈ N and X ∈ Var, we write σ[m/X] for the state obtained

from σ by replacing the contents in the variable X by m, that is,

σ[m/X](Y) =







m if Y = X

σ(Y) if Y 6= X

This completes the formal description of the simple IMP language. When the while command

is not used in a program, it is said to be a loop-free program. This simple IMP language needs

to be augmented in order to describe bit-vector programs, floating-point programs and fixed-point

programs. In the rest of this section, we discuss these augmentations.

2.1.1 Bitvector Programs

In digital computers, data in a variable are often stored in computer memory as a bitvector,

that is, a sequence of bits of some finite length. Sometimes, programs directly manipulate bitvec-

tors instead of treating them abstractly as integers. Motivation for this was presented earlier in

Section 1.2.1. Such programs that manipulate bitvectors are called bitvector programs. In order

29

to support bitvector programs, we need to extend IMP language with bitvector datatypes in ad-

dition to integers and also have bitvector operations in addition to integer arithmetic operations.

The program state σ is now a mapping from variables to numbers as well as bitvector variables

to bitvectors. We add bitvector constants bv, bitvector variables BV and bitvector expressions

BVexp to the syntax of IMP. bv ranges over the bitvector constants, BV ranges over the bitvec-

tor variables and p ranges over bitvector expressions. We also their use subscripted and primed

versions for clarity of the rules. The bitvector expressions BVexp are formed by the following

expression rules. We overload the arithmetic operations since their meaning can be inferred from

the used context.

p ::= bv | BV | po ◦ p1 | ⋆ p0 | concat p0 p1 | extract n m p0

◦ ::= && | || | ⊕ | + | − | ∗ | / | >> | <<

⋆ ::= − | ¬

The boolean expressions for IMP are expanded to include the comparison between bitvectors.

b ::= true | false | ao = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1 | p0 = p1 | p0 ≤ p1

We now give the semantics of bitvector operations. A bitvector of lengthm is a function whose

domain is the initial segment of the naturals [0 . . . m) and the co-domain is {0, 1}. The i-the bit of

a bitvector bv is denoted by bv[i] and the length of the bitvector is denoted by L(bv). In order to

define the semantics, we need the following additional helper functions.

• bv2nat: This takes a bitvector bv of length m and returns an integer in the range [0 . . . 2m)

and is defined as follows:

bv2nat(bv) = bv(m− 1)× 2m−1 + bv(m− 2)× 2m−2 + . . . bv(0)× 20

• nat2bv[m]: This takes a non-negative integer n and returns the unique bitvector bv :

[0 . . . m) → {0, 1} of length m such that

bv(m− 1)× 2m−1 + ...+ bv(0)× 20 = n mod 2m

The semantic evaluation rules for bitvector expressions BVexp in a program state σ is given by

inductive rules in Table 2.4.

30

Evaluation of bitvector constants: 〈bv, σ〉 → bv

Evaluation of bitvector variables: 〈BV, σ〉 → BV

Evaluation of concat:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈concat p0 p1, σ〉 → bv

where bv[i] is bv0[i] for 0 ≤ i < L(bv0) and

bv1[i− L(bv0)] for L(bv0) ≤ i < L(bv0) + L(bv1)

Evaluation of extract:
〈p0, σ〉 → bv0

〈extract n0 n1 p0, σ〉 → bv

where bv[i] is bv0[i+ n0] for 0 ≤ i < n1 − n0

Evaluation of bvnot:
〈p0, σ〉 → bv0

〈¬p0, σ〉 → bv

where bv[i] is ¬bv0[i] for 0 ≤ i < L(bv0)

Evaluation of bvand:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈(p0&&p1), σ〉 → bv

where bv[i] is 0 if bv0[i] is 0 else bv1[i]

Evaluation of bvor:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈(p0——p1), σ〉 → bv

where bv[i] is 1 if bv0[i] is 1 else bv1[i]

Evaluation of bvxor:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈p0 ⊕ p1, σ〉 → bv

where bv[i] is 1 if bv0[i] 6= bv1[i], 0 otherwise

Evaluation of bvneg:
〈p0, σ〉 → bv0

〈−p0, σ〉 → bv

where bv is nat2bv[L(bv0)](2
m − bv2nat(bv0)

Evaluation of bvadd:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈p0 + p1, σ〉 → bv

where bv0 and bv1 are of length m and

bv = nat2bv[m](bv2nat(bv0) + bv2nat(bv1))

31

Evaluation of bvsub:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈p0 − p1, σ〉 → bv

where bv0 and bv1 are of length m and

bv = bv0 + (−bv1)

Evaluation of bvmul:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈p0 × p1, σ〉 → bv

where bv0 and bv1 are of length m and

bv = nat2bv[m](bv2nat(bv0)× bv2nat(bv1))

Evaluation of bvdiv:
〈p0, σ〉 → bv0 〈p1, σ〉 → bv1

〈p0/p1, σ〉 → bv

where bv0 and bv1 are of length m and

bv = nat2bv[m](bv2nat(bv0)/bv2nat(bv1))

Evaluation of shift-left:
〈p0, σ〉 → bv0

〈p0 >> n, σ〉 → bv

where bv = nat2bv[L(bv0)](bv2nat(bv0)× 2n

Evaluation of shift-right:
〈p0, σ〉 → bv0

〈p0 << n, σ〉 → bv

where bv = nat2bv[L(bv0)](bv2nat(bv0)/2
n

Table 2.4: Inductive Evaluation Rules for BVexp

The evaluation of extended boolean expressions is done by adding more rules given in Ta-

ble 2.5.

In addition to the discussed operators, we can also use bv0 < bv1 as syntactic sugar when

bv0 ≤ bv1 but not bv0 = bv1. Similarly, bv0 > bv1 is syntactic sugar for “bv0 ≤ bv1 is not

true”, and bv0 ≥ bv1 is syntactic sugar for “bv0 < bv1 is not true”. This completes the formal

specification of the bitvector programs.

Bitvector programs are more difficult to write because they allow bit-wise logical operations

along with arithmetic operations. These programs can “sometimes stall programmers for hours or

32

Evaluation of bitvector equality:
〈BV0, σ〉 → bv0 〈BV1, σ〉 → bv1

〈bv0 = bv1, σ〉 → true
if bv2nat(bv0) = bv2nat(bv1)

〈BV0, σ〉 → bv0 〈BV1, σ〉 → bv1

〈bv0 = bv1, σ〉 → false
if bv2nat(bv0) 6= bv2nat(bv1)

Evaluation of bitvector inequality ≤:
〈BV0, σ〉 → bv0 〈BV1, σ〉 → bv1

〈bv0 ≤ bv1, σ〉 → true
if bv2nat(bv0) ≤ bv2nat(bv1)

〈BV0, σ〉 → bv0 〈BV1, σ〉 → bv1

〈bv0 ≤ bv1, σ〉 → false
if bv2nat(bv0) 6≤ bv2nat(bv1)

Table 2.5: Additional Bitvector Evaluation Rules for Bexp

days if they really want to understand why things work” [132]. These programs “typically describe

some plausible yet unusual operation on integers or bit-strings that can be programmed using ei-

ther longish fixed sequence of machine instructions or a loop, but the same thing can be done

much more cleverly using just four or three or two carefully chosen instruction whose interactions

are not at all obvious until explained or fathomed” [132]. Efficient bitvector code-fragments are of

great significance for people who write optimizing compilers or higher-performance code in ap-

plications such as graphics, hardware programming, encryption, networking and databases [104].

Apart from manual difficulty of synthesizing bitvector programs, there are two other char-

acteristics of these programs which make them an interesting target for automated synthesis.

These characteristics are based on a large compendium of programs presented in Hacker’s De-

light book [132] which is said to be the Bible of bitvector programs.

• These programs are usually small up to about 25 lines of code and do not have loops in

them. Hence, these programs are tricky but small loop-free programs.

• The operations used in these programs belong to a finite library of bit-wise operations and

arithmetic operations and thus, these programs are amenable to a component-based synthe-

sis technique.

We discuss an automated approach to synthesize bitvector program in Chapter 3.

33

2.1.2 Floating-point and Fixed-point Programs

Floating-point [40] is a system for approximately representing real numbers which supports

a wide range of values. It allows the use of a fixed number of significant digits which is scaled

using an exponent to represent real numbers approximately. The floating-point system is so called

because the radix point can float anywhere relative to the significant digits of the number. In

contrast to fixed-point numbers, floating-point representation can be used to support a much wider

range of values with the same number of digits. The most common floating-point representation

used in computers is that defined by IEEE 754 Standard [2].

In order to support floating-point programs, the IMP programming language needs to be aug-

mented with single-precision and double-precision floating types as defined in IEEE 754 Standard.

The storage layout of the floating-point numbers consist of three basic components: the sign, the

exponent, and the mantissa. The storage layout of the single-precision and double-precision float-

ing point numbers is presented in Table 2.6

• The sign bit is 0 for a positive number and 1 for a negative number. Flipping the value of

this bit flips the sign of the number.

• The mantissa, also known as the significand, represents the precision bits of the number. It is

composed of an implicit leading bit and the fraction bits. In order to maximize the quantity

of representable numbers, floating-point numbers are typically stored with the radix point

after the first non-zero digit. In base 2, the only possible non-zero digit is 1. Thus, we can

just assume a leading digit of 1, and don’t need to represent it explicitly. As a result, the

mantissa has effectively 24 bits of resolution, by way of 23 fraction bits in single-precision

floating-point numbers, and 53 bits of resolution, by way of 52 fractional bits in double-

precision.

• The exponent field needs to represent both positive and negative exponents. To do this, a

bias is added to the actual exponent in order to get the stored exponent. For IEEE single-

precision floats, this value is 127. Thus, an exponent of 0 means that 127 is stored in the

exponent field. A stored value of 200 indicates an exponent of (200−127), or 73. Exponents

of −127 (all 0s) and +128 (all 1s) are reserved for special numbers. For double precision,

the exponent field is 11 bits, and has a bias of 1023.

34

Sign Exponent Fraction Bias

Single Precision 1 [31] 8 [30− 23] 23 [22− 00] 127
Double Precision 1 [63] 11 [62− 52] 52 [51− 00] 1023

Table 2.6: Floating-point Number Layout

Precision Denormalized Normalized Approximate Decimal

Single ± 2−149 to (1− 2−23)× 2−126 ± 2−126 to (2− 2−23)× 2127 ± 10−44.85 to 1038.53

Double ± 2−1074 to (1− 2−52)× 2−1022 ± 2−1022 to (2− 2−52)× 21023 ± 10−323.3 to 10308.3

Table 2.7: Range of floating-point numbers

Floating-point solves a number of representation problems. Fixed-point has a fixed window of

representation, which limits it from representing very large or very small numbers. Floating-point,

on the other hand, employs a sort of “sliding window” of precision appropriate to the scale of the

number. The range of positive floating-point numbers can be split into normalized numbers (which

preserve the full precision of the mantissa), and denormalized numbers. The denormalized num-

bers do not have an implicit leading bit of 1 and allow representation of really small numbers but

with only a portion of the fraction’s precision. The exponent of all 0s (−127) and all 1s (128) are

reserved for denormalized numbers and representing infinity respectively. A complete discussion

on the semantics of floating-point operations can be found in the IEEE 754 Standard [2].

A floating-point unit (FPU) is used to carry out operations on floating-point numbers such

as addition, subtraction, multiplication, division and square root. Some floating-point operations

such as exponential and trigonometric calculation could be emulated in a software library routine

or supported explicitly by FPUs. The latter is more common with modern FPUs. FPUs are

integrated with CPUs in computers but most embedded processors do not have hardware support

for floating-point operations. Emulation of floating-point operations without hardware support

can be very slow. The high cost of FPUs make it prohibitively expensive to include them in many

low cost embedded systems. Inclusion of FPUs also increases the power consumption of the

processors. This has made the use of fixed-point arithmetic very common in embedded systems.

Fixed-point [134] is a system for representing real numbers in which there are fixed number

of digits and the radix point is also fixed. Fixed-point data consists of a sign mode bit, an integer

part and a fractional part. We denote the fixed-point type of a variable x by fxτ(x). A fixed-point

35

Number systems with WL = 32 Range Precision

Single-precision Floating-point ± 10−44.85 to 1038.53 Adaptive

Fixed-point type: 〈1, 8, 24〉 −102.11 to 102.11 10−7.22

Fixed-point type: 〈1, 16, 16〉 −104.52 to 104.52 10−4.82

Fixed-point type: 〈1, 24, 8〉 −106.93 to 106.93 10−2.41

Table 2.8: Range of 32 bit fixed-point and floating-point numbers

type is a 3-tuple.

〈Signedness, IWL, FWL〉

The sign mode bit Signedness is 0 if the data is unsigned and is 1 if the data is signed. The

number of bits used for representing integers is called the integer wordlength (IWL) and the number

of bits used for representing fraction is called the fractional wordlength (FWL). The fixed-point

wordlength (WL) is the sum of the integer wordlength and fractional wordlength, that is, WL =

IWL+ FWL. We denote the wordlength of a variable x by WL(x), its integer wordlength by IWL(x),

and its fractional wordlength by FWL(x). A fixed-point number with fractional word length (FWL)

is scaled by a factor of 1
2FWL

. For example, a fixed point number 01110 with 0 as sign mode bit,

integer wordlength of 2 and fractional wordlength of 2 represents 14× 1
22

, that is, 3.5. Converting a

fixed-point number with scaling factor R to another type with scaling factor S, requires multiplying

the underlying integer by R and dividing by S; that is, multiplying by the ratio R/S. For example,

converting 01110 with 0 as sign-bit, integer wordlength of 2 and fractional wordlength of 2 into

a fixed-point number with 0 as sign-bit, integer wordlength of 2 and fractional wordlength of 3

requires multiplying with 23

22
to obtain 011100. If the scaling factor is to be reduced, the new

integer will have to be rounded. For example, converting the same fixed-point number 01110

to a fixed-point number with fractional wordlength of 0 and integer wordlength of 2 yields 011,

that is, 3 which is obtained by rounding down from 3.5. The range of the fixed-point number is

much smaller compared to the range of floating-point numbers for the same number of bits since

the radix point is fixed and no dynamic adjustment of precision is possible. For example, let us

consider fixed-point numbers with 32 bits. Table 2.8 shows the comparison of range of fixed-

point numbers with different integer wordlengths and fractional wordlengths, and the range of the

normalized single-precision floating-point numbers.

Thus, translating a floating-point code into fixed-point code is non-trivial and requires careful

consideration of loss of precision and range. The integer wordlengths and fractional wordlengths

36

of the fixed-point variables need to be carefully selected to ensure computation does not loose ac-

curacy beyond the specified threshold. In Chapter 4, we present an automated synthesis technique

to derive fixed-point code from floating-point code. Fixed-point arithmetic is performed on custom

hardware and FPGA is often a natural choice for implementing these algorithms. The operations

supported by fixed-point arithmetic are the same as floating-point arithmetic standard [2] but the

semantics might be different on custom hardware. For example, the rounding mode for arithmetic

operations could be different, and the result could be specified to saturate or overflow/underflow in

case the wordlength of a variable is not sufficient to store a computed result. A complete semantics

of fixed-point operation is provided with the Fixed-point Toolbox in Maltab [1].

2.2 Related Work

In this section, we describe some of the different approaches used for program synthesis. Both

deductive and inductive techniques have been used for program synthesis. Automated program

synthesis has also been studied with slightly different goals such as automated completion of

partial programs and automated optimization of programs.

2.2.1 Deductive Program Synthesis

In deductive program synthesis [87, 122], a program is synthesized by constructively proving

a theorem which states that for all inputs in a given set, there exists an output, such that a given

functional specification predicate holds. Deductive program synthesis assumes that a full func-

tional specification is given. Moreover, it requires advanced deduction technology that is hard to

automate. In contrast, we require only an input/output oracle specification and use fully automated

SMT solvers [13] for deduction.

2.2.2 Inductive Program Synthesis

In inductive program synthesis [123, 69], recursive programs are generated from input-output

examples in two steps. In the first step, a set of I/O examples are written as one large conditional

37

expression. In the second step, this initial program is generalized into a recursive program by

searching for syntactic regularities in the initial program. In contrast, we do not require a “good”

set of I/O examples be given a-priori. Moreover, we do not explicitly generalize – generalization

happens implicitly from synthesizing a function using only a given set of components. Shapiro’s

Algorithmic Debugging System [114] performs synthesis by repeatedly using the oracle to iden-

tify errors in the current (incorrect) program and then fixing those errors. We do not fix incorrect

programs. We use the incorrect program to identify a distinguishing input and then re-synthesize

a new program that works on the new input-output pair as well. In programming by demonstra-

tion [75, 77, 29], the user demonstrates how to perform a task and the system learns an appropriate

representation of the task procedure. Another related work is the ADATE system [102] for auto-

mated functional programming. It uses specifications that contain few constraints on the programs

to be synthesized and that allows a wide range of correct programs. Successive better programs

are developed using incremental program transformations. A key to the success of ADATE is the

exact design of these transformations and how to systematically search for appropriate transfor-

mation sequences. Unlike our method, these approaches do not make active oracle queries, but

rely on the demonstrations or transformation rules which the user chooses. Making active queries

is important for efficiency and terminating quickly (so that user is not overwhelmed with queries).

2.2.3 Synthesis from Functional Specification

Synthesis from functional specification has being widely studied in literature. Brahma[46]

uses SMT solving technology to synthesize a straight-line sequence of instructions from func-

tional description of the desired code sequence. DIPACS [62] uses an AI planner to implement

a programmer-defined abstract algorithm using a sequence of library calls. The behavior of the

library procedures and the abstract algorithm is specified using high-level abstractions, e.g., pred-

icates sorted and permutation. It uses interaction with the programmer to prune undesirable com-

positions. Jungloid mining tool [86] synthesizes code-fragments (over a given set of API methods

annotated with their type signatures) given a simple query that describes the desired code using

input and output types.

38

2.2.4 Automated Synthesis for Program Completion

Another line of related work is on automated completion of partially written programs. The

Sketch [117, 116] system takes as input a sketch, that is, a program with holes of missing constants,

and synthesizes programs by correctly filling these holes such that the synthesized program is

consistent with the user-given complete specification. In contrast, we consider the component-

based synthesis problem in which we are provided with a finite set of component functions and

we need to synthesize a correct program using these components. Unlike Sketch, we are not

provided with a complete program specification and instead, we only have an input/output oracle

specification. The approach used in Sketch for synthesis is also based on constraint solving.

Sketch internally generates Boolean constraints, which are solved using Boolean satisfiability

solvers. Our technique generates formulas in a richer logic, which are solved using Satisfiability

Modulo Theory (SMT) solvers [13]. The SKETCH approach uses a counterexample-guided loop

that constantly interacts with a verifier to check candidate implementations against a complete

specification, where the verifier provides counterexamples until a correct solution has been found.

In contrast, we do not use counterexamples for synthesis. Further, we require a validation oracle

only when the specification cannot be realized using the provided components. This verifier is

not required to return a counter-example. Sketch relies on the developer to come up with the

algorithmic insight and uses the sketch compiler to fill in the missing details using counterexample

guided inductive synthesis. In contrast, our tool seeks to discover algorithmic insights, albeit at

the cost of being more suited for a special class of programs. We chose bitvector programs as our

main application domain since coming up with algorithmic insight is the hard part here.

2.2.5 Program Optimization

Another line of related work relevant to program synthesis is that of program optimization.

Super-optimization is the task of finding an optimal code sequence for a straight-line target se-

quence of instructions, and it is used in optimizing performance-critical inner loops. One approach

to super-optimization has been to simply enumerate sequences of increasing length or cost, testing

each for equality with the target specification [90]. Another approach has been to constrain the

search space to a set of equality-preserving transformations expressed by the system designer [63]

and then select the one with the lowest cost. Recent work has used super-optimization [11, 12] to

39

automatically generate general purpose peephole optimizers by optimizing a small set of instruc-

tions in the code. In these approaches, the exhaustive state space search is quite expensive making

them amenable to only discovering optimal instructions of length four or less in reasonable amount

of time.

2.2.6 Fixed-point Program Synthesis

Previous techniques for optimizing fixed-point types are based on statistical sampling of the

input space. These methods sample a large number of inputs and heuristically solve an optimiza-

tion problem such as Equation 4.1 that minimizes implementation cost while ensuring that some

correctness specification is met over the sampled inputs. The techniques differ in in the heuristic

search method employed, in the measure of cost, or in how accuracy of fixed-point implementa-

tion is determined. Sung and Kum [124] use a heuristic search technique which starts with the

minimum wordlength implementation as the initial guess. The wordlengths are increased one by

one till the error falls below an acceptable threshold. Han et al. [50, 51] use a gradient-based

sequential search method which starts with the minimum wordlength implementation as the initial

guess. The gradient (ratio of increase in accuracy and increase in wordlengths) is computed for a

set of wordlength changes at each step and the search moves in the direction with maximum gra-

dient. Shi et al. [115] propose a floating-point to fixed-point conversion methodology for digital

VLSI signal processing systems. Their approach is based on a perturbation theory which shows

that the change to the first order is a linear combination of all the first- and second-order statis-

tics of the quantization noise sources. Their technique works with general specification critera,

as long as these can be represented as large ensemble averages of functions of the signal outputs.

For example, they use mean-squared error (MSE) as the specification function. The cost of the

implementation is a quadratic function. Monte Carlo simulation of a large number of input ex-

amples is used to formulate a quadratic optimization problem based on perturbation theory. In

contrast, our specification requires that the accuracy condition holds for all inputs and not just on

an average. Further, the cost function can be any arbitrary function for our technique and need not

be quadratic. Perhaps most importantly, our technique does not rely on apriori random sampling

of a large number of input values, instead using optimization to discover a small set of interesting

examples which suffice to discover optimal fixed-point implementation.

40

Purely analytical methods [121, 68] based on dataflow analysis have also been proposed for

synthesizing fixed-point programs based on forward and backward propagation in the program’s

dataflow graph. The advantages of these techniques are that they do not rely on picking the

right inputs for simulation, can handle arbitrary programs (with approximation), and can provide

correctness guarantees. However, they tend to produce very conservative wordlength results.

Inductive synthesis based on satisfiability solving has been previously used for synthesizing

programs from functional specifications. These approaches [118, 58, 47] rely on constraint solving

in much the same way as we rely on optimization routines. However, these approaches only seek

to find a correct program, without any notion of cost and optimization. In contrast, our technique

is used to find a fixed-point program which is not only correct with respect to a condition on

accuracy but is also of minimal cost.

2.2.7 Dimensions

In summary, the related work on program synthesis can be broadly categorized along the

following dimensions. We also identify how the techniques proposed in this thesis are different

from existing work on program synthesis with respect to each dimension.

1. The first dimension is the specification required for program synthesis.Deductive program

techniques [87, 122] as well as the more recently developed SAT based techniques for pro-

gram completion [117, 116, 46] require a complete specification which can be an unopti-

mal code or a logical formula. Inductive techniques, such as program synthesis through

demonstration [123, 69, 75, 77, 29] or inference of API sequences from input-output exam-

ples [86], require a set of input/output pairs for the target program. The correctness of the

synthesized program depends on whether this set of input/output pairs is representative of

all possible input/outputs. In contrast, our method discovers a small but sufficient number

of input/output pairs to identify a correct program.

2. The second dimension is the user input regarding the target program. The Sketch sys-

tem [117, 116] requires user to provide the target program with missing constants as holes

which can be filled by the synthesis technique. The synthesis techniques for discover-

ing API sequence calls [86] are provided with a library of possible APIs and their type

41

signature. Deductive program synthesis techniques [87, 122] also require specification

of operations and commands in the programming language and their semantics. Super-

optimizers [90, 63, 11, 12] rely on user to provide a functionally correct program which can

then be optimized to synthesize a more efficient program. In our approach for automated

synthesis of bit-vector programs, we require a finite library of bit-vector operations to be

used in the program. In order to synthesize fixed-point code from the floating-point code,

we use the structure of the floating-point code and use the synthesis technique to discover

the correct wordlengths of fixed-point variables.

3. The third dimension is the approach used to solve the synthesis problem. Deductive pro-

gram synthesis techniques [87, 122] depend on manual or partially automated theorem prov-

ing techniques to infer the correct program. Inductive program synthesis techniques [123,

69, 75, 77, 29] use learning techniques to identify syntactic regularities and synthesize pro-

grams through generalization of these regularities. Shapiro’s Algorithmic Debugging Sys-

tem [114] and Sketch [117, 116] uses incremental identification and fixing of errors in a

program to synthesize the correct program. We use a combination of inductive and deduc-

tive techniques for program synthesis. The bit-vector programs are synthesized by using the

SMT solvers [13] to discover a set of inputs which identify a semantically unique combina-

tion of component functions which is consistent with the input/output oracle. The queries to

the oracle are made using the idea of distinguishing input from algorithmic learning which

is discussed in detail in Chapter 3. In the automated synthesis of fixed-point code from

floating-point code described in Chapter 4, we use numerical optimization to discover in-

put/output pairs which are then generalized to find a low cost fixed-point implementation.

42

Chapter 3

Oracle Based Synthesis of Loop-free

Program

In this chapter, we present an approach to automatic synthesis of loop-free programs using

SCIDUCTION. Our approach is based on a combination of oracle-guided learning from exam-

ples, and constraint-based synthesis from components using satisfiability modulo theories (SMT)

solvers. Our approach is suitable for many applications, including as an aid to program under-

standing tasks such as reverse engineering malware. We demonstrate the efficiency and effective-

ness of our approach by synthesizing bit-manipulating programs and by deobfuscating programs.

We begin by introducing the problem in Section 3.1 and presenting our solution in Section 3.2.

We discuss the performance and correctness guarantees of our approach in Section 3.3 and present

experimental results in Section 3.4.

3.1 Introduction

Automatic synthesis of programs has long been one of the holy grails of software engineering.

It has found many practical applications: generating optimal code sequences [90, 63], optimizing

performance-critical inner loops, generating general-purpose peephole optimizers [11, 12], au-

tomating repetitive programming tasks [75], and filling in low-level details after the higher-level

intent has been expressed [117]. Two applications of synthesis are of particular interest in this

43

chapter. The first is that of automating the discovery of non-intuitive algorithms (e.g., [46]). The

second application, as we show in this chapter, is program understanding, and more specifically,

program deobfuscation. The need for deobfuscation techniques has arisen in recent years, espe-

cially due to an increase in the amount of malicious code that is often obfuscated [125]. Currently,

human experts use decompilers and manually deobfuscate the resulting code (e.g., see [105, 132]).

Clearly, this is a tedious task that could benefit from automated tool support.

A traditional view of program synthesis is that of synthesis from complete specifications. One

approach is to give a specification as a formula in a suitable logic [87, 122, 62, 46]. Another

is to write the specification as a simpler, but possibly far less efficient program [90, 63, 117].

While these approaches have the advantage of completeness of specification, such specifications

are often unavailable, difficult to write, or expensive to check against using automated verification

techniques. Writing a logical specification for bitvector programs is difficult for users. In the case

of reverse engineering malware, complete specification is available in principle as the obfuscated

malware but automatically verifying against this code is practically infeasible due to obfuscation

techniques which hinder static analysis. In this chapter, we propose a novel oracle-guided ap-

proach to program synthesis, where an I/O oracle that maps a given program input to the desired

output is used as an alternative to having a complete specification. The key idea of our algorithm

is to query the I/O oracle on an input that can distinguish between non-equivalent programs that

are consistent with the past interaction with the I/O oracle. The process is repeated until a se-

mantically unique program is obtained. Our experimental results show that only few rounds of

interaction are needed.

We apply the oracle-guided approach to automated synthesis of loop-free programs, those that

compute functions of their input and terminate. Such programs arise in a variety of application

contexts, such as low-level bit-manipulating code, scientific computing kernels, parts of control

software in graphical languages such as LabVIEW, and even applications in high-level scripting

languages such as Javascript and Ruby that are formed by chaining multiple high-level operators.

A key characteristic of our method is that it is component-based, meaning that we synthesize a

program by performing a circuit-style, loop-free composition of components drawn from a given

component library. We can also address the challenge of identifying whether the given set of

components is insufficient to synthesize the desired program. For this purpose, we additionally

require making only one query to a more expensive validation oracle that checks whether the

44

program is correct or not.

Our synthesis algorithm is based on a novel constraint-based approach that reduces the synthe-

sis problem to that of solving two kinds of constraints: the I/O-behavioral constraint whose solu-

tion yields a candidate program consistent with the interaction with the I/O oracle, and the distin-

guishing constraint whose solution provides the input that distinguishes between non-equivalent

candidate programs. These constraints can be solved using off-the-shelf SMT (Satisfiability Mod-

ulo Theory) solvers. Traditional synthesis algorithms perform a expensive combinatorial search

over the space of all possible programs. In contrast, our technique leaves the inherent exponential

nature of the problem to the underlying SMT solver, whose engineering advances over the years

allow them to effectively deal with problem instances that arise in practice, which are usually not

hard, and hence end up not requiring exponential reasoning.

3.1.1 Contributions

• We propose a novel oracle-guided approach to synthesis, where an I/O oracle obviates the need

for complete specifications.

• We present an efficient SMT encoding of the space of possible programs formed using functions

from a finite library of component functions.

• We present an instantiation of the oracle-guided approach to synthesis of loop-free programs

over a given set of components (see problem definition in Section 3.1.2). This is enabled by a

novel constraint-based technique that involves an interaction between SMT solvers and the I/O

oracle (Section 3.2).

• We demonstrate the utility of our synthesis technique to discovery of bit-manipulating pro-

grams [132], which are often needed for optimizing performance (Section 3.4.2). These pro-

grams are quite unintuitive and can be difficult for even expert programmers to discover.

• We propose a novel application of program synthesis to program understanding. We demon-

strate this in the context of malware deobfuscation by deobfuscating examples drawn from and

inspired by the Conficker and MyDoom viruses using our synthesis technique (Section 3.4.2).

In the rest of the section, we first present a formal problem definition in Section 3.1.2 and then

illustrate it with a simple example in Section 3.1.3.

45

3.1.2 Problem Definition

The goal is to synthesize a loop-free program using a given set of base components and using

input-ouput examples. We assume the presence of an I/O oracle that can be queried on any input.

The I/O oracle, when given an input, returns the output of the desired program (that we wish

to synthesize) on that input. We also assume the presence of a validation oracle that validates

the correctness of a candidate program. Finally, we assume that we are given a set of (base)

components that should be used as building blocks in the synthesized program. Each component is

given in the form of its input-output specification, which is written as a logical formula relating the

inputs and the outputs of that component. For ease of presentation, we assume that all components

have exactly one output. We also assume that all inputs and outputs have the same type. These

restrictions are easily removed.

Formally, the synthesis problem in our proposed programming methodology requires the fol-

lowing:

• A validation oracle V that, given any candidate program (constructed from base components),

returns a Boolean answer indicating whether the candidate program is the desired one or not.

• An I/O oracle I that, given any program input, returns the output of the desired program on that

input.

• A set of specifications {〈~Ii, Oi, φi(~Ii, Oi)〉 | i = 1, . . . , N}, called a library, where (~Ii, Oi, φi(~Ii, Oi)〉

is the specification for the base component fi, which includes

– a tuple of input variables ~Ii and an output variable Oi

– an expression φi(~Ii, Oi) over variables ~Ii and Oi that specifies the input-output relationship

of the i-th component.

All variables ~Ii, Oi are assumed distinct.

The goal of the synthesis problem is to synthesize a program P that can be validated by the

validation oracle V , i.e., V(P) = true. Furthermore, program P should be constructed using

only the set of base components in the library, i.e.,, Program P should take ~I as its inputs and use

the set {O1, . . . , ON} as temporary variables in the following form:

46

P (~I):

Oπ1 := fπ1(Xπ1); . . . ; OπN
:= fπN

(XπN
);

return OπN
;

where

C1. each variable in Xπi
is either an input variable from ~I , or a temporary variable Oπj

such that

j < i, and

C2. π1, . . . , πN is a permutation of 1, . . . , N .

Program P above appears to be a straight-line program, but, in fact, it can be more complex

because the base components fi’s can be complex. In particular, base components can be “if-

then-else” functions, and using these components, Program P can describe arbitrary loop-free

programs.

We note that the program P above is using all components from the library. We can assume this

without any loss of generality. Even when there is a correct Program P using fewer components,

that program can always be extended to a program that uses all components by adding dead code.

Dead code can be easily statically identified and removed in a post-processing step.

We also note that program P above is using each base component only once. We can assume

this without any loss of generality. If there is a Program P using multiple copies of the same

base component, we assume that the user provides multiple copies explicitly in the library. Such

a restriction of using each base component only once is interesting in two regards. First, it can

be used to enforce efficient or minimal programs. Second, it prunes the search space of possible

programs making the synthesis problem finite and tractable.

Informally, the synthesis problem is to come up with a program – using only the base compo-

nents in the given library – that is accepted by the validation oracle.

3.1.3 Running Example

We present one example in this section to introduce the synthesis problem and motivate our

approach.

47

Consider the following programming problem: Given a bit-vector integer x, of finite but arbi-

trary length, construct a new bit-vector y that corresponds to x with the rightmost string of con-

tiguous 1s turned off, i.e., reset to 0s. Such programming problems often arise while developing

low level embedded code, network applications or in other domains where bit-level manipulation

is needed.

Let us contemplate writing a formal specification for this problem. The most natural and

easiest specification involves the use of alternating quantifiers, where n is the length of x:

∃i, j. { 0 ≤ i, j < n ∧ (∀k. j ≤ k ≤ i =⇒ x[k] = 1)

∧ (∀k. 0 ≤ k < j =⇒ x[k] = 0)

∧ (x[i+ 1] = 0 ∨ i = n− 1)

∧ (∀k. i < k < n =⇒ x[k] = y[k])

∧ (∀k. 0 ≤ k ≤ i =⇒ y[k] = 0) }

The above specification is not easy to write for a common programmer. Moreover, verifying any

candidate implementation against the above specification is challenging using current tools due to

the presence of quantifiers in the formula. For example, there is no sound and complete procedure

for first-order logic formulas of linear arithmetic with uninterpreted functions [49].

Let us consider writing some sample input-output pairs, or examples, for the problem. For

any input x, it is easy to provide the corresponding output y. Some example (x, y) pairs are

(0110, 0000), (0101, 0100), (110110, 110000).

Finally, let us contemplate writing a program for the above problem. A straightforward, but

inefficient, implementation is a loop that iterates through the bits of x and zeroes out the rightmost

contiguous string of 1s. Can we synthesize a shorter and more efficient implementation? It is

difficult to answer this, but it is easy to speculate that the elementary operations that may be used

inside such an efficient implementation will be the standard bit-vector operators: bit-wise logical

operations (|, &, ⊕ , ∼), and basic arithmetic operations (+,−, ∗, /,%).

Given a set of possible elementary operations, and an ability to generate outputs for given

inputs, our oracle-guided synthesis tool BRAHMA will synthesize the following nontrivial and

tricky procedure for solving the above problem.

48

turnOffRightMostOneBitString (x)

{ t1 = x-1;

t2 = (x || t1);

t3 = t2+1;

t4 = (t3 && x);

return t4; }

A programmer will require considerable familiarity with bit-level manipulations to come up

with such an implementation. Hence, automated synthesis of such difficult-to-write programs

would be helpful to programmers.

3.2 SCIDUCTIVE Approach

In this section, we provide our solution for the program synthesis problem formally described

above. Our solution is based on encoding the space of all possible programs by a formula (Sec-

tion 3.2.1). Given a set of input-output pairs, we then constrain this formula further so that it

encodes only those programs that work correctly on the given input-output pairs (Section 3.2.1).

By solving this constraint, we generate a candidate solution. If the candidate solution is not the

desired program, we provide a way to generate a new input-output pair (Section 3.2.1). The over-

all procedure that combines these parts to solve the program synthesis problem is presented in

Section 3.2.2. We present enhancements to our basic procedure in Section 3.2.4.

3.2.1 Encoding Programs

We present an encoding of the space of well-formed candidate programs, that is, of programs

P satisfying constraints C1 and C2, as formulas. Note, however, that the material in subsequent

sections depends only on the existence of such an encoding. Our proposed approach can be used

with alternative encodings as well.

Intuitively, the encoding we use involves viewing the space of candidate programs as all ways

of connecting components from the library that satisfy syntactic and semantic well-formedness

constraints. Each connection is encoded using an integer-valued location variable. Put another

49

way, the value of a location variable determines which component goes on which location (line-

number), and from which location (line-number or circuit input) it gets its input arguments.

The main property of the encoding that our approach relies upon is distilled into the following

theorem. This theorem states the existence of two formulas (encodings): the first formula ψwfp

represents the set of all syntactically well-formed programs; whereas the second formula φfunc

represents the set of all semantic input-output behaviors of a well-formed program.

Theorem 1. There exists a set of integer-valued location variables L, a well-formedness con-

straint ψwfp(L) over L, a mapping Lval2Prog, and a functional constraint φfunc(L, ~I, O) over

L ∪ {~I, O} such that the following properties hold:

• Lval2Prog is a bijective mapping from the set of values L that satisfy the constraint ψwfp(L) to

the set of programs that satisfy constraints C1 and C2.

• Let L0 be a satisfying assignment to the formula ψwfp. If α and β are any candidate input and

output values, then the formula φfunc(L0, α, β) is true iff the program Lval2Prog(L0) returns

the value β on the input α.

The proof of Theorem 1 follows from the results stated in [46].

We now describe the encoding more formally. Let P and R denote the union of all formal

inputs (parameters) and formal outputs (return variables) of the components respectively, that is,

P :=
⋃N

i=1
~Ii R :=

⋃N
i=1{Oi} = {O1, . . . , ON}

Any straight-line program constructed using N components can be described by a set of location

variables L

L := {lx | x ∈ P ∪R}

that contains one new variable lx for each variable x in P ∪ R with the following interpretation

associated with each of these variables.

• If x is the output variable Oi of the component fi, then lx is the line number in the program

where the component fi is used.

• If x is the jth input parameter of the component fi, then lx is the line number “from where

component fi gets its jth input”.

In the above description, line number refers to either a line of the program, or to some input.

For uniformity, each input in ~I is assigned a line number from 0, . . . , |~I| − 1 and the program line

50

numbers then take values from |~I|, . . . , |~I|+N−1. LetM = |~I|+N . The variables L take values

in the range 0, . . . ,M − 1 and these new line numbers have the following interpretation.

• For 0 ≤ j < |~I|, line number j is blank; it takes the value of the jth input of the program.

• For |~I| ≤ j < M , line number j contains the (j − |~I| + 1)-th assignment statement of the

original program P .

The well-formedness constraint ψwfp(L), defined below, encodes the interpretation of the loca-

tion variables lx along with syntactic well-formedness constraints, such as consistency and acyclic-

ity constraints.

ψwfp(L)
def
=

∧

x∈P

(0 ≤ lx < M) ∧
∧

x∈R

(|~I| ≤ lx < M)

∧ ψcons(L) ∧ ψacyc(L)

ψcons
def
=

∧

x,y∈R,x 6≡y

(lx 6= ly)

ψacyc
def
=

N
∧

i=1

∧

x∈~Ii,y≡Oi

lx < ly

The consistency constraint ψcons encodes that every line in the program should have at most

one component, while the acyclicity constraint ψacyc encodes that every variable should be initial-

ized before it is used.

The function Lval2Prog returns the program corresponding to a given valuation L as fol-

lows: in the ith line of Lval2Prog(L), we have the assignment Oj := fj(Oσ(1), . . , Oσ(t)) if

lOj
= i, lIkj = lOσ(k)

for k = 1, . . , t, where t is the arity of component fj , and (I1j , . . , I
t
j) is the

tuple of input variables ~Ij of fj . The well-formedness constraint describes syntactically correct

programs, but it does not describe the semantics of these programs.

The functional constraint φfunc(L, ~I, O) is obtained by taking ψwfp(L) and adding to it con-

straints capturing the dataflow semantics and semantics of components.

φfunc(L, ~I, O)
def
= ∃P,R ψwfp(L) ∧ φlib(P,R)

∧ ψconn(L, ~I, O,P,R)

φlib(P,R)
def
= (

N
∧

i=1

φi(~Ii, Oi))

51

ψconn(L, ~I, O,P,R)
def
=

∧

x,y∈P∪R∪~I∪{O}

(lx = ly ⇒ x = y)

where φlib represents the semantics of the base components (that relates the inputs and outputs of

each component), and ψconn represents the dataflow semantics (that matches the inputs and output

of the different components and the inputs and output of the overall program with each other, in

accordance with values of location variables).

The formula φfunc(L, ~I, O) represents the class of all syntactically well-formed programs P ,

constructed using only the N base components, that on input ~I return output O. Hence, we can

solve the program synthesis problem by finding appropriate values for the L variables. We need

to find values for L such that the input-output behavior of the resulting program matches the

input-output behavior specified by the I/O oracle.

A key step in our solution of the program synthesis problem is to synthesize programs that

work for finitely many input-output pairs. We discuss this next.

I/O-behavioral Constraint

In this section, we show how to generate a constraint whose solution provides a candidate

program whose input-output behavior matches a given finite set of input-output examples.

Given a set E of input-output examples {(αj , βj)}j , we use the notation BehaveE to denote

the following constraint, which we refer to as I/O-behavioral constraint.

BehaveE(L)
def
=

∧

(αj ,βj)∈E

φfunc(L, αj , βj)

Let L0 be a set of values such that BehaveE(L0) is true. It follows from the definition of the

I/O-behavioral constraint that the program encoded by L0 will give output βj , whenever it is given

an input αj , for all pairs (αj, βj) in E. This property of the I/O-behavioral constraint is stated

below.

Theorem 2 (I/O-behavioral Constraint). For any satisfying solution L0 to the I/O-behavioral con-

straint, the input-output behavior of the program Lval2Prog(L0) matches all the input-output

examples in the set E.

52

The proof of the above theorem is immediate from the definition of an I/O-behavioral contraint

and Theorem 1.

We next check if the program, which is synthesized by considering finitely many input-output

pairs, is the desired program. We want to avoid the use of the validation oracle, since it is expen-

sive. Here we use what is perhaps the central idea of our approach: generate a “distinguishing”

input that differentiates this program from another candidate program.

Distinguishing Constraint

In this section, we show how to generate a constraint whose solution provides an input that

distinguishes a given candidate program from another non-equivalent candidate program, both of

which have a given set of input-output pairs in their respective input-output behavior.

Let E be a set of input-output pairs. Let P be a candidate program, defined by values L,

whose input-output behavior matches the set E. Suppose P is not the desired program. Then,

there should be some input ~I such that P gives incorrect output on ~I . But, how do we find such

an ~I?

If P is not the desired program, then let us assume that there is a correct program P ′. Clearly,

for all input-output pairs (αj, βj) in E, the program P ′ should return βj when it is given input αj .

But since P is not the desired program, whereas P ′ is the desired program, P and P ′ should give

different outputs on some new input.

We say ~I is a distinguishing input if there is another program P ′ whose input-output be-

havior also matches E, but P and P ′ give different outputs on the input ~I . The constraint

DistinctE,P (~I), defined below, represents the set of all distinguishing inputs ~I and we refer

to it as distinguishing constraint.

DistinctE,L(~I)
def
= ∃L′, O,O′ BehaveE(L

′) ∧ φfunc(L, ~I, O)

∧ φfunc(L
′, ~I, O′) ∧ O 6= O′

Theorem 3 (Distinguishing Constraint). If α is a satisfying solution to the distinguishing con-

straint

DistinctE,P (~I), then there exists a program P ′ such that P and P ′ have different behaviors on

input α, but have the same behavior on all the inputs in the set E.

53

The proof of Theorem 3 follows from the definition of the distinguishing constraint, Theorem 2

and Theorem 1. We now have all the ingredients for describing our overall procedure for solving

the synthesis problem.

3.2.2 Oracle-Guided Synthesis

In this section, we describe our oracle-guided iterative synthesis procedure. The description

uses the I/O-behavioral constraint and the distinguishing constraint described above.

The procedure works by iteratively synthesizing new programs that work correctly on more

and more inputs. It starts with a set containing just one arbitrarily chosen input. In each iteration,

the procedure synthesizes a program that works correctly on the current finite set of inputs. If such

a program is found, then the procedure attempts to find a distinguishing input. If a distinguishing

input is found, then it is added into the set of inputs for subsequent iterations. In all other cases,

the procedure terminates. It either returns the correct program, or it notes that the components

provided are insufficient for synthesizing the correct program.

For solving the I/O-behavioral constraint and the distinguishing constraint, the procedure

makes use of a function T-SAT. Given a formula φ(A), the function T-SAT(φ(A)) searches

for values for A that will make the formula φ true. If successful, then T-SAT(φ(A)) returns one

such specific value forA. Otherwise, it returns ⊥. The function T-SAT is implemented as a call to

a Satisfiability Modulo Theory (SMT) solver. SMT solvers check for satisfiability of a first-order

formula with respect to underlying background theories [13].

The pseudo-code for the procedure is given in Figure 8. The procedure maintains a set E of

input-output examples constructed by querying the I/O oracle I on a new input at the start of the

while loop (Line 1) and in each iteration of the while loop (Line 16). In each iteration of the while

loop, the procedure attempts to synthesize a candidate program P (represented by L) that satisfies

the set E of input-output examples (Line 3). If it fails, then it returns failure (Line 5). Otherwise,

it checks (in Line 8) whether the candidate program P is the semantically unique program that

satisfies the given set of input-output examples. A program is semantically unique if any other

program that satisfies the given set of input-output examples produces the same output as the

program for any other input. If P is the semantically unique program, then the procedure either

54

returns P (Line 11) or failure (Line 14) depending on whether the validation oracle V validates

P or not. If the candidate program is not semantically unique, then an input α is obtained that is

added to E to help narrow down the choice of candidate programs (Line 16).

3.2.3 Illustration on Running Example

We illustrate the oracle-guided synthesis approach on the running example presented in Sec-

tion 3.1.3. The problem was, given a bit-vector integer x, of finite but arbitrary length, to construct

a new bit-vector y that corresponds to x with the rightmost string of contiguous 1s turned off.

Our technique starts with a random input 01011 and the I/O oracle I (the user) is used to

obtain the corresponding expected output 01000. This step corresponds to Line 1 of the algorithm

presented in Figure 8.

Given the input/output pair (01011, 01000), our technique generates the following candidate

program (Line 3): (we give only the expression returned)

(x+ 1)& (x− 1)

Then, it checks whether a semantically different program can be generated in Line 7. In this case,

our technique generates the following alternative program and the distinguishing input 00000:

(x+ 1)& x

The I/O oracle is used to obtain the output 00000 for this input (Line 16). This is added to the set

of input/output pairs E. Note that the newly added pair rules out one of the candidate programs,

namely, (x+ 1)& (x− 1).

In the next iteration, with the updated set E, the technique finds the program

−(¬x)& x

and the check in Line 7 generates the alternate program

(((x&− x) | − (x− 1))&x)⊕ x

and the input 00101. Hence, we add (00101, 00100) to E. This rules out (((x& − x) | − (x −

1))&x)⊕ x.

Note that at this stage, the program (x+1)&x remains a candidate, since it was not ruled out in

the earlier iterations. In next four iterations, BRAHMA generates (01111, 00000), (00110, 00000),

(01100, 00000) and (01010, 01000) as input-output examples and adds them to E. The semanti-

55

cally unique program generated from the resulting set E is the desired program:

(((x− 1)|x) + 1)&x.

3.2.4 Optimization

The basic procedure described above can be improved by using alternate ways to generate the

inputs that are used by the procedure for synthesis.

IterativeSynthesis uses an SMT solver in two ways:

(a) First, an SMT solver is used to generate a candidate program that works for the current set of

inputs.

(b) Second, an SMT solver is used to generate a new distinguishing input on which the currently

synthesized program and the desired program potentially differ.

Although SMT solvers are fast and capable of handling very large formulas, using them in

every iteration compromises efficiency. It is tempting to speculate that the use of SMT solvers

for generating a distinguishing input (case (b) above) can be avoided; for example, by replacing

it by a function that finds new inputs by sampling the input space in some way. We explore two

alternative ways for sampling the input space.

Sampling Uniformly at Random

Let Inputs be the set of all possible valuations for the input variables. Let sample(Inputs)

be a function that returns a particular input from the input space Inputs by sampling the set

Inputs uniformly at random. The function sample(Inputs) can be used to find a new input, in

place of the call to the SMT solver, in Line 7 of Procedure IterativeSynthesis. We will

call this new variant as Random.

Sampling With Bias

The second approach we consider is based on biasing the search for inputs towards a certain

part of the input space. Not all inputs in the input space are equally important. For example, a

56

program may take an integer input i, but have the same behavior for all i > 5 and have interesting

behaviors only on values 0 ≤ i ≤ 5. For many applications, the user knows a-priori which inputs

are more crucial in defining the overall program. The idea behind the sampling with bias strategy

is to search for distinguishing inputs by biasing the search to this part of the input space.

In the bitvector benchmarks, the input space consists of all (tuples of) bitvectors of a certain

bit width. It is well-known that, for a very large class of commonly-used bitvector functions, the

rightmost bits influence the output more than the leftmost bits.

Property 1 (See [132], Chapter 2). A function mapping bitvectors to bitvectors can be imple-

mented with add, subtract, bitwise and, bitwise or, and bitwise not instructions if and only if each

bit of the output depends only on bits at and to the right of that bit in each input operand.

This suggests that we should bias the sampling so that we get more variety on the rightmost

bits.

Procedure 7 ConstrainedRandomInput: Strategy for generating a new input based on sam-

pling from the input space with an application-dependent bias.

{cnt is a global variable initialized to 0}

{K is a parameter (number of rightmost bits to set) }

if cnt < 2K then

α := sample(Inputs);

α :=Set rightmost K bits of α to cnt;

cnt := cnt+ 1;

else

α := T-SAT(DistinctE,L(~I));

end if

The code ConstrainedRandomInput in Procedure 7 uses a constrained random strategy

for generating a new input. It starts with an input α that is sampled uniformly at random, but then

it sets its rightmost K bits to the (rightmost K bits in the) number cnt. Since cnt is incremented

each time, we get a new combination in each time. Specifically, if K = 2, then in four calls to

the Function ConstrainedRandomInput, we will get all four combinations – 00, 01, 10 and

11 – in the rightmost 2 digits of I . The code ConstrainedRandomInput finds the first 2K

57

inputs this way. If more are needed, then it goes back to using the SMT solver. The new variant

of IterativeSynthesis – obtained by replacing the call to the SMT solver in Line 7 by the

code ConstrainedRandomInput – will be called Constrained Random.

We will compare the performance of IterativeSynthesis, Random, and Constrained

Random in Section 3.4.

3.3 Discussion

3.3.1 Choosing Base Components

It is reasonable to ask how base components are chosen in our approach and what happens

when the given set of base components is either insufficient or very large.

The choice of base components is made by the user and is guided by the application domain.

This allows the user to use his/her knowledge to guide the synthesis and influence success. It is

not unreasonable to expect users to provide this information. In several application domains, there

is a natural choice for the set of base components. For example, a natural set of base components

for synthesizing bitvector algorithms will contain components that perform bitwise and, or, not,

xor, negation, increment and decrement operations. In our experiments on synthesizing bitvector

programs (Section 3.4), we started with such a set of base components, referred to as the standard

library. If the synthesis procedure found that this set of components was insufficient, the standard

library was augmented with a set of new components suggested by the user and the synthesis

procedure was re-run with this extended library.

Nevertheless, choosing a reasonable set of base components is crucial for the feasibility of

our synthesis approach. The search space of candidate programs grows exponentially with the

number of base components. The strategy of starting with a small set of base components, and

then incrementally adding components, can partly avoid the need to deal with very large set of

base components. However, it can be successful only if the synthesis engine not only synthesizes

correct programs quickly, but also reports infeasibility of the synthesis problem quickly. In our

experiments, we show that our technique can detect infeasibility efficiently.

58

When using our program synthesis approach for performing program deobfuscation, the base

components are picked from the assignment and conditional statements in the obfuscated code.

For the deobfuscation examples (reported in Section 3.4), the base components used for synthesis

contain only operators (such as left-shift and bitwise-xor) that appear explicitly in the obfuscated

code. For example, the deobfuscated program in P24 (Figure 3.4) multiplies the input by 45. It

uses operators: shift-left(<<) and add(+), present in the obfuscated code as the component

functions. It does not use multiply(∗) since it is not present in the obfuscated code.

3.3.2 Connections to Learning

Our oracle-guided synthesis framework has close connections to certain fundamental results

in computational learning theory. We explore these connections in this section.

Our oracle-based model is similar to the query-based learning model proposed by Angluin [6],

but with some important distinctions. In Angluin’s model, a learner interacts with an oracle

through the use of membership and equivalence queries in order to learn a target concept. In

our setting, the target concept is the program we seek to synthesize. A membership query is simi-

lar to the query we make to an I/O oracle, except that the former returns a binary answer whereas

the I/O oracle returns an output value. An equivalence query is similar to a query to the validation

oracle, except that, in Angluin’s model, if the candidate concept is not equivalent to the target

concept; the oracle returns a counterexample as evidence for this non-equivalence. In our context,

since the validation oracle is called only at the end, when we are left with a semantically unique

program consistent with the set of examples, such a counterexample is not needed. Moreover, An-

gluin’s model treats both kinds of queries as equally expensive. We make a distinction between the

cheaper queries to the I/O oracle and the more expensive queries to the validation oracle, which

allows us to optimize our implementation. Finally, our algorithm iterates by finding distinguishing

inputs, which is not an operation supported by Angluin’s model.

Two other results from learning theory also shed light on why our oracle-based approach is

effective in practice.

First, note that our focus on loop-free programs that compute functions of finite-precision

bit-vector inputs indicates a connection to the work on learning Boolean circuits. In particular,

the classic result on learning constant-depth Boolean (AC0) circuits from a few test inputs [78]

59

provides a partial explanation for the effectiveness of this strategy. The result relies on a theorem

stating that AC0 circuits can be approximated well by low-degree polynomials, which in turn are

known to be identifiable by their behavior on few inputs.

The second relevant result relates to the notion of teaching dimension introduced by Goldman

and Kearns [41]. Informally, the teaching dimension of a concept class is the minimum num-

ber of examples a teacher (oracle) must reveal to uniquely identify any target concept from that

class. As our experiments show, we need very few examples to synthesize our target programs

in practice, indicating that these programs form a concept class with a low teaching dimension.

Moreover, our algorithm fits closely with a result by Goldman and Kearns [41], showing that the

generation of an optimal teaching sequence of examples is equivalent to a minimum set cover

problem. In the set cover problem for a given target concept, the universe of elements is the set of

all incorrect concepts (programs) and each set Si, corresponding to example xi, contains concepts

that are differentiated from the target concept by this example xi. We can see that our Proce-

dure IterativeSynthesis computes such a distinguishing example in each iteration, and

terminates when it has computed a “set cover” that distinguishes the target concept from all other

candidate concepts (the “universe”). Given this close connection, it does seem that the classes

of functions corresponding to the bit-manipulating and deobfuscation examples we consider have

small teaching dimension, and also Procedure IterativeSynthesis is effective at generating

a sequence of examples close to the optimal teaching sequence.

3.4 Results and Experiments

3.4.1 Correctness Guarantee

The following theorem states the correctness of Procedure IterativeSynthesis. Note

that if the inputs ~I take values from a finite domain, then the number of iterations of the loop in

the procedure is bounded by the total number of different inputs; and hence, in such cases the

procedure is guaranteed to terminate.

Theorem 4. If Procedure IterativeSynthesis, given in Procedure 8, returns a program

P , then V(P) is true. If Procedure IterativeSynthesis returns “Components insufficient”,

60

then there does not exist any program P constructed from the set of base-components such that

V(P) is true. Furthermore, Procedure IterativeSynthesis is guaranteed to terminate

when the inputs ~I take values from a finite domain.

Proof. The proof of the correctness theorem follows immediately from the description of the pro-

cedure in Procedure 8, combined with the properties stated in Theorem 1, Theorem 2 and Theo-

rem 3. We also illustrate in Figure 3.1 all three cases in which Procedure IterativeSynthesis

terminates. The first case corresponds to step 7 and the second and third cases correspond to step

11 and step 12 respectively.

Procedure 8 IterativeSynthesis(): Oracle-guided Synthesis Procedure

Input: Set of base components used in construction of BehaveE and DistinctE,L

Output: Candidate Program

E := {(α0, I(α0))} // α0 is an arbitrary value for ~I

while 1 do

L := T-SAT(BehaveE(L));

if (L == ⊥) then

return ”Components insufficient”;

end if

α := T-SAT(DistinctE,L(~I));

if (α == ⊥) then

P := Lval2Prog(L);

if (V(P)) then

return P ;

end if

else

return ”Components insufficient”;

end if

E := E ∪ {α, I(α)};

end while

From Figure 3.1, we observe that the program synthesized by our SCIDUCTION based synthe-

sis technique is guaranteed to be correct if the structure hypothesis that “a correct program can by

61

Valid program exists with given components

 No program exists with given components

1

2

Step 12: Discovered semantically unique program P is found
b

a

for synthesizing valid program.
Step 7: Set E of I/O examples show components insufficient

incorrect by the validator − no synthesis feasible.

Step 11: Valid program P is returned.

Figure 3.1: Termination cases of Synthesis Procedure. The validation oracle is needed only to

ensure correctness in case 1b.

synthesized using components in the library” is correct.

3.4.2 Experiments

We present experimental evaluation of our technique and compare different approaches namely

IterativeSynthesis, Random, and Constrained Random discussed in Section 3.2.

Setup and Benchmarks We have implemented IterativeSynthesis in a tool called BRAHMA.

It uses Yices 1.0.21 [120] as the underlying SMT solver. We ran our experiments on 8x Intel(R)

Xeon(R) CPU 1.86GHz with 4GB of RAM. BRAHMA was able to synthesize the desired cir-

cuit for each of the benchmark examples. Semi-biased BRAHMA implements Constrained

Random with the parameter K = 2. Thus, it differs only in first 4 steps from BRAHMA. As

mentioned in Section 3.2, this is specially targetted towards synthesis of bitvector programs.

We selected a set of 25 benchmark examples to evaluate our technique. 22 benchmarks (P1-

P22) are bit-manipulation programs from the book Hacker’s Delight, commonly referred to as

the Bible of bit twiddling hacks [132]. 3 benchmarks were used as examples to illustrate the

use of our technique for deobfuscation. These benchmarks reflect obfuscation strategies from

literature on obfuscation techniques [27] (P23) and Internet worms - Conficker [105] (presented

in Section 1.2.1) and MyDoom [100] (P25).

62

P1(x) : Turn-off rightmost 1 bit.

1 o1=(x - 1)

2 res=(x && o1)

P2(x) : Test whether an unsigned inte-

ger is of the form 2n − 1

1 o1=(x + 1)

2 res=(x && o1)

P3(x) : Isolate the rightmost 1-bit

1 o1=(- x)

2 res=(x && o1)

P4(x) : Form a mask that identifies the

rightmost 1 bit and trailing 0s

1 o1=(x - 1)

2 res=(x ⊕ o1)

P5(x) : Right propagate rightmost 1-

bit

1 o1=(x - 1)

2 res=(x || o1)

P6(x) : Turn on the rightmost 0-bit

1 o1=(x + 1)

2 res=(x || o1)

P7(x) : Isolate the rightmost 0-bit

1 o1=(¬ x)

2 o2=(x + 1)

3 res=(o1 && o2)

P8(x) : Form a mask that identifies the

trailing 0’s

1 o1=(x - 1)

2 o2=(¬ x)

3 res=(o1 && o2)

P9(x) : Absolute Value Function

1 o1=(x >> 31)

2 o2=(x ⊕ o1)

3 res=(o2 - o1)

P10(x, y) : Test if nlz(x) == nlz(y)

where nlz is number of leading zeroes

1 o1=(x && y)

2 o2=(x ⊕ y)

3 res=(o2 ≤u o1)

P11(x, y) : Test if nlz(x) < nlz(y)

1 o1=(¬ y)

2 o2=(x && o1)

3 res=(o2 >uy)

63

P12(x, y) : Test if nlz(x) <= nlz(y)

where nlz is number of leading zeroes

1 o1=(¬ y)

2 o2=(x && o1)

3 res=(o2 ≤u y)

P13(x) : Sign Function

1 o1=(x >> 31)

2 o2=(- x)

3 o3=(o2 >> 31)

4 res=(o1 || o3)

P14 (x, k) : Round up x to a multiple

of k-th power of 2

1 o1=(-1 >> k)

2 o2=(o1 + 1)

3 o3=(x - o2)

4 res=(o3 && o1)

P15 (x, y) : Floor of average of two

integers without over-flowing

1 o1=(x && y)

2 o2=(x ⊕ y)

3 o3=(o2 >> 1)

4 res=(o1 + o3)

P16 (x, y) : Compute max of two inte-

gers

1 o1=(x ⊕ y)

2 o2=(- (x ≥u y))

3 o3=(o1 && o2)

4 res=(o3 ⊕ y)

P17 (x, y) : Compute min of two inte-

gers

1 o1=(x ⊕ y)

2 o2=(- (x ≤u y))

3 o3=(o1 && o2)

4 res=(o3 ⊕ y)

P18 (x, y) : Ceil of average of two in-

tegers without over-flowing

1 o1=(x || y)

2 o2=(x ⊕ y)

3 o3=(o2 >> 1)

4 res=(o1 - o3)

P19(x) : Turn-off the rightmost con-

tiguous string of 1 bits

1 o1=(x - 1)

2 o2=(x || o1)

3 o3=(o2 + 1)

4 res=(o3 && x)

64

P20(x) : Determine if an integer is a

power of 2 or not

1 o1=(x - 1)

2 o2=(o1 && x)

3 o3=bvredor (x)

4 o4=bvredor (o2)

5 o5=!(o4)

6 res=(o5 && o4)

P21(x) : Next higher unsigned number

with same number of 1 bits

1 o1=(- x)

2 o2=(x && o1)

3 o3=(x + o2)

4 o4=(x ⊕ o2)

5 o5=(o4 >> 2)

6 o6=(o5 / o2)

7 res=(o6 || o3)

P22(x) : Round up to the next highest

power of 2

1 o1=(x - 1)

2 o2=(o1 >> 1)

3 o3=(o1 || o2)

4 o4=(o3 >> 2)

5 o5=(o3 || o4)

6 o6=(o5 >> 4)

7 o7=(o5 || o6)

8 o8=(o7 >> 8)

9 o9=(o7 || o8)

10 o10=(o9 >> 16)

11 o11=(o9 || o10)

12 res=(o10 + 1)

Figure 3.2: Bit-vector Benchmarks

65

P23: Interchange the source and destination addresses.

1 interchangeObs(IPaddress* src , IPadress* dest)

2 { *src = *src ⊕ *dest ;

3 if (*src == *src ⊕ *dest)

4 { *src = *src ⊕ *dest ;

5 if (*src == *src ⊕ *dest)

6 { *dest = *src ⊕ *dest ;

7 if (*dest == *src ⊕ *dest)

8 { *src = *dest ⊕ *src ;

9 return; }

10 else

11 { *src = *src ⊕ *dest ;

12 *dest = *src ⊕ *dest ;

13 return;} }

14 else

15 *src = *src ⊕ *dest ; }

16 *dest = *src ⊕ *dest ; *src = *src ⊕ *dest ; return;

17 }

Deobfuscated Version

1 interchange(IPaddress* src , IPadress* dest)

2 {

3 *dest = *src ⊕ *dest ;

4 *src = *src ⊕ *dest ;

5 *dest = *src ⊕ *dest ;

6 return;

7 }

Figure 3.3: Deobfuscation Benchmark P23

66

P24: Multiply with 45.

1 mul45Obs(Bitvector x)

2 a = 1, b = 0, z = 1, c = 0

3 while {1}

4 if {a == 0} {

5 if b == 0 {

6 y = z+ y; a = ¬a; b = ¬b; c = ¬c;

7 if {¬c} break;

8 }

9 else {

10 z = z+ y; a = ¬a; b = ¬b; c = ¬c;

11 if {¬c} break;

12 }

13 }

14 else {

15 if{b == 0} {z = y << 2; a = ¬a;}

16 else {z = y << 3, a = ¬a, b = ¬b}

17 }

18 }

19 return y;

Deobfuscated Version

1 mul45(Bitvector x)

2 z = y << 2;

3 y = z+ y;

4 z = y << 3;

5 y = z+ y;

6 return y

Figure 3.4: Deobfuscation Benchmark P24

67

P25: SMTP example from MyDoom

1 genStringObs(int input)

2 {

3 a1 = 1; a2 = 0;b1 = 1; b2 = 0;c1 = 0; c2 = 0;;

4 if (input == 0) {

5 a1 = 0; a2 = 0;b1 = 0; b2 = 0; }

6 else if (input == 1) {

7 c1 = 0; c2 = 1; }

8 else if (input == 2) {

9 a1 = 1; a2 = 0;c1 = 1; c2 = 1; }

10 else if (input == 3) {

11 b1 = 0; b2 = 0;c1 = 1; c2 = 1; }

12 else return NULL;

13 c = 2 ∗ c1+ c2;

14 if(c == 1) {

15 return rot13(“EPCGGB, 7”); }

16 else

17 if (c == 2) {

18 if (input ∗ (input− 1) mod 2 == 0)

19 return rot13(“EPCGGB”, 7);

20 else

21 return rot13(“RUYB”, 4); }

22 else {

23 if (b1 ⊕ b2)

24 return rot13(“ZNVYSEBZ”, 9)

25 else if ((a1 ⊕ a2) 6= (b1 ⊕ b2))

26 return rot13(“RUYB”, 4);

27 else return rot13(“QNGN”, 4); } }

68

1 rot13(char *buf, int sz)

2 {

3 char *buf1 = malloc((sz+ 1) * sizeof(char));

4 char a;

5 while (a =˜ *buf)

6 {

7 *buf1 = (˜a-1/(˜((a || 32))/13*2-11)*13);

8 buf++; buf1++;

9 }

10 return buf1;

11 }

Deobfuscated Version

1 genString(int input)

2 { if(input == 0)

3 return “EHLO”;

4 else if (input == 1)

5 return “RCPTTO”;

6 else if (input == 2)

7 return “MAILFROM”;

8 else if (input == 3)

9 return “DATA”;

10 else return NULL;

11 }

Figure 3.5: Deobfuscation Benchmark P25

69

 0

 2

 4

 6

 8

 10

 12

 14

1 3 5 7 9 11 13 15 17 19 21
 0

 1

 2

 3

 4

 5

 6

 7

R
a

ti
o

 o
f

R
u

n
ti
m

e

R
a

ti
o

 o
f

It
e

ra
ti
o

n
 C

o
u

n
ts

Bitvector Benchmarks

Runtime
Iter Count

Figure 3.6: Ratio of Runtime for Random Input Generation to SemiBiased BRAHMA

Bit-Manipulating Programs

The bitvector benchmarks were run using a standard library of base components, and if nec-

essary, an extended library as discussed in Section 3.3.1. In Table 3.1, we report the runtime when

using the standard library (col. 4) and when using the user-augmented extended library (col. 5), in

case the standard library was not sufficient. Note that our tool quickly terminates when the given

library is insufficient.

For bitvector benchmarks, the user plays the role of the I/O oracle as well as the validation

oracle. If the user guarantees that the provided set of base components is sufficient to encode the

desired solution, then we do not require the validation oracle. Otherwise, it is theoretically impos-

sible to know whether or not the generated solution is the correct one without a validation oracle.

However, in practice, our algorithm detects insufficiency of the base components by discovering

inconsistency, and not by a query to the validation oracle. This suggests that in the absence of

any validation oracle, we can consider the semantically unique candidate program returned by our

algorithm to be the correct program for all practical purposes.

We now compare the three approaches on bit-vector benchmarks using two metrics - the total

runtime and the number of iterations. We present the ratio of runtimes of random input generation

(col 2 of Table 3.1) and semi-biased BRAHMA (col 5 of Table 3.1) in Figure 3.6. Semi-biased

BRAHMA is 1.5 times to 12 times faster than random technique. For P22, the random technique

70

 0

 1

 2

 3

 4

 5

 6

1 3 5 7 9 11 13 15 17 19 21
 0

 0.3

 0.6

 0.9

 1.2

 1.5

R
a
ti
o
 o

f
R

u
n
ti
m

e

R
a
ti
o
 o

f
It
e
ra

ti
o
n
 C

o
u
n
ts

Bitvector Benchmarks

Runtime
Iter Count

Figure 3.7: Ratio of Runtime for BRAHMA to SemiBiased BRAHMA

did not finish in 1 hour while semi-biased BRAHMA was able to synthesize it in 186 seconds. Also,

the number of iterations required to synthesize a program is also reduced significantly as shown in

Table 3.1. BRAHMA and semi-biased BRAHMA is compared in Figure 3.7. While the number of

iterations is more for semi-biased BRAHMA, it is faster than the BRAHMA on larger benchmarks.

It reduces the runtime for P18 from 140.65 seconds to 25.55 seconds, P21 from 527.91 seconds to

272.28 seconds and P22 from 1108.15 seconds to 187.17 seconds. This validates the optimization

proposed in Section 3.2.

Deobfuscation

The I/O oracle involves simply evaluating the obfuscated program on the given input. The

validation oracle can be a program equivalence checking tool or the user.

An additional challenge that this domain offers is the presence of arbitrary string constants.

Our synthesis framework can be easily extended to discovering such constants. For this purpose,

we introduce a generic base component fc that simply outputs some arbitrary constant c. The

component fc takes no input and returns one output O and its functional specification is written as

O = c. The only change to the framework is that since c is allowed to be arbitrary, we existentially

quantify over c in the functional constraint φfunc described in Section 3.2.1.

For the three examples that we used in experiments, observe that BRAHMA gives the best

71

Bench Random Inputs Semibiased BRAHMA

Names Runtime Iter Runtime Runtime Iter

Standard Lib Extended Lib

1 2 3 4 5 6

P1 1.48 5 0.80* 0.80 3

P2 7.35 11 4.75* 4.75 7

P3 1.60 8 0.65* 0.65 4

P4 1.65 11 0.86* 0.86 6

P5 3.92 8 2.28* 2.28 6

P6 6.22 23 1.64* 1.64 4

P7 1.39 5 0.50* 0.50 5

P8 2.20 11 1.42* 1.42 6

P9 4.95 10 3.85 4.90 6

P10 13.99 14 4.57 3.25 9

P11 24.31 16 2.86 14.27 10

P12 279.49 24 2.64 45.52 12

P13 32.50 9 3.02 6.95 7

P14 14.32 25 3.00 3.66 6

P15 167.84 7 4.50 13.57 6

P16 66.93 10 4.95 18.97 8

P17 217.34 17 5.89 20.62 13

P18 228.78 19 7.98 25.55 6

P19 163.82 13 65.45* 65.45 7

P20 214.14 17 19.30 63.23 8

P21 1074.04 15 13.28 272.28 8

P22 timeout NA 187.17 185.57 9

Table 3.1: Random input generation and Semi-biased BRAHMA on Bitvector Examples. NA

denotes not applicable. * denotes that the extended library was same as standard library. Runtimes

in sec.

Bench BRAHMA Random Semibiased BRAHMA

Names Runtime Iter Runtime Iter Runtime Iter

(sec) (sec) (sec)

P23 1.380 3 24.28 9 12.12 5

P24 5.28 2 11.96 4 2.94 2

P25 0.50 5 timeout NA 0.86 9

Table 3.2: Deobfuscation Examples

72

performance. The key observation from the experiments is that random input generation does not

work well for examples such as P25 where randomly generating integers has a rare chance of 1 in

232 to pick an input which produces any of the first 4 possible outputs. BRAHMA takes exactly 5

iterations to query the I/O oracle with inputs that generate all the 5 possible outputs.

The experimental results indicate that adding a distinguishing input is better than adding a

random input to E because it guarantees that at least one candidate program is definitely removed

from the search space. Thus, it guarantees progress. Moreover, it possibly also removes a set of

other similar designs from the search space.

3.5 Conclusion

We have presented a novel approach to program synthesis based on oracle-guided learning

from examples and SMT solvers. Applications to synthesis of bit-vector programs and deobfusca-

tion have been demonstrated. Experiments indicate that our approach can be efficient and effective

for discovering unintuitive code and for program understanding.

73

Chapter 4

Synthesis of Optimal Fixed-Point Code

Programs written in the domains of digital signal processing and embedded systems have two

important characteristics. First, they commonly contain procedures that compute functions of their

inputs, where these functions are mathematically specified as operating on the reals; examples in-

clude filters used in signal conditioning and the computation of control inputs. Second, they must

run in resource-constrained environments and/or at high performance, requiring their optimiza-

tion for low resource cost (e.g., low power) as well as for performance. This chapter addresses a

problem arising from the interaction of these two characteristics.

Specifically, at the high-level design stage (which could involve manually writing a “reference”

program or using model-based design environments such as Simulink/Stateflow and LabVIEW),

the reals are approximated with floating-point arithmetic. Designers create signal processing or

control algorithms as programs based on floating-point arithmetic. However, when these algo-

rithms must be implemented in software, they must be optimized for power and performance. It

is common for embedded platforms to have processors without floating-point units due to their

added cost and performance penalty. Such platforms increasingly include hardware such as field-

programmable gate arrays (FPGAs), on which fixed-point arithmetic can be efficiently imple-

mented. The signal processing/control engineer must, thus, redesign her floating-point program

to instead use fixed-point arithmetic. The tricky part of the redesign process is to find the optimal

fixed-point types, viz., the optimal bit-widths of fixed-point variables, so that the implementation

on the platform is optimal — lowest cost and highest performance — and the resulting fixed-point

program is sufficiently accurate. Accuracy is particularly important for safety-critical embedded

74

systems where the control input to actuators is the result of such a fixed-point computation. Thus,

to summarize, the conversion from floating-point to fixed-point is subject to two opposing con-

straints: (i) the width of fixed-point types must be minimized, and (ii) the outputs of the fixed-point

program must be accurate, lying within a specified distance of those of the floating-point version.

In this chapter, we propose a new approach to compute a fixed-point version of a floating-point

function based on inductive synthesis. Our technique , named SCIDUCTION, takes the floating-

point program, specified accuracy, and an implementation cost model as input, and generates

the fixed-point program with specified accuracy and optimal implementation cost. The core idea

in SCIDUCTIONis to perform inductive synthesis from input-output examples using optimization

oracles. The optimization oracles are iteratively invoked to generate candidate programs that are

optimal for a set of examples as well as to find new input-output examples to drive the synthesis

process. The following novel contributions are made:

• We present a new approach for inductive synthesis of fixed-point programs from floating-

point versions. The novelty stems in part from our use of optimization: we not only use

optimization routines to minimize fixed-point types (bit-widths of fixed-point variables), as

previous approaches have, but also show how to use an optimization oracle to systematically

generate input-output examples for inductive synthesis.

• We present theoretical guarantees on when our approach finds minimum fixed-point types

at specified accuracy: using optimization oracles that find globally-optimal solutions guar-

antees that we will find the optimal fixed-point program meeting the specified accuracy.

• We illustrate the practical effectiveness of our technique on programs drawn from the do-

mains of digital signal processing and control theory. For the control theory examples, we

not only exhibit the synthesized fixed-point programs, but also show that these programs,

when integrated in a feedback loop with the rest of the system, perform as accurately as the

original floating-point versions.

The chapter is organized as follows. Sec. 4.1 presents a formal definition of the problem and a

running example. Our approach is described in Sec. 4.2. We present our experimental results in

Sec. 4.3 and conclude in Sec. 4.4.

75

4.1 Problem Definition

Numerical computation with specified accuracy is of fundamental importance in many appli-

cations such as digital signal processing and control systems. Algorithms for these applications

are often designed ignoring the finite precision of computer arithmetic. Quantization errors due

to finite precision are analyzed later. Floating-point environments are very useful in providing

a convenient design and validation environment to designers who can use it to explore the al-

gorithm space and also quickly simulate the design using standard floating-point units available

on computers. When these algorithms need to be implemented on hardware, floating-point data

types are converted to fixed-point data types in order to reduce the cost of hardware needed as

well as to decrease the power requirement and increase the speed of computation. The conversion

from floating-point to fixed-point often results into decreased computation accuracy. An optimal

selection of word-lengths of fixed-point variables to ensure accuracy remains above the specified

threshold and the implementation cost is low, is a challenging task.

Along with a floating-point implementation of numerical computation, the user can provide

additional specification regarding the desired fixed-point implementation. The floating-point pro-

gram takes inputs from a given input domain. This input domain can be provided as a logical

condition on the inputs. Numerical computation is expected to have some specified threshold of

numerical accuracy which can be provided as a correctness condition for the fixed-point program.

Further, the fixed-point implementation has a cost associated with it and an optimal implementa-

tion is expected to take minimal cost. The user can provide a cost model for the implementation.

We use a simple illustrative example to explain the problem of synthesizing optimal fixed-point

program from floating-point program, and then present the formal problem definition.

4.1.1 Floating-point Implementation

Floating-point implementation of the numerical computation provides the scaffold of the fixed-

point program. Each floating-point variable needs to be translated to fixed-point datatype. and

hence, the synthesis task is that of discovering the appropriate wordlength of the fixed-point vari-

ables such that the correctness criteria is met for all inputs satisfying the input condition and the

implementation cost is minimized.

76

Example 4.1: We present an example in Procedure 9 that illustrates this problem and the dif-

ficulty that programmers face in doing the floating-point to fixed-point translation manually. The

floating-point program in this example takes radius as the input, and computes the area of the

circle with this radius.

Procedure 9 Floating-point program to compute area of circle

Input: radius

Output: area

double mypi, radius, t, area

mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

From the provided floating-point program, it is easy to extract the scaffold of the fixed-point

program. The only unknowns are the fixed-point type of the variables mypi, radius, t and area.

So, the scaffold fixed-point program takes as input both the radius and the wordlengths for the

fixed-point variables. Recall that the fixed-point type is a 3-tuple 〈sj, iwlj, fwlj〉 for j-th variable

where sj denotes the signed-ness of the variable, iwlj denotes the integer wordlength and fwlj

denotes the fraction wordlength.

Procedure 10 Fixed-point program to compute area of circle

Input: radius, 〈sj, iwlj, fwlj〉 for j = 1, 2, 3, 4

Output: area

fx〈s1, iwl1, fwl1〉 mypi

fx〈s2, iwl2, fwl2〉 radius

fx〈s3, iwl3, fwl3〉 t

fx〈s4, iwl4, fwl4〉 area

mypi = 3.14159265358979323846

t = radius× radius

area = mypi× t

return area

77

We use Ffl(X) to denote the floating-point program with inputs X = x1, x2, . . . , xn and

Ffx(X, fxτ) to denote the fixed-point version of the program with fixed-point type fxτ .

4.1.2 Input Domain

The context in which a numerical fixed-point program Ffx(X, fxτ) is executed often provides

a precondition that must be satisfied by valid inputs (x1, x2, . . . , xn). This defines the input do-

main denoted by Dom(X).

Example 4.2: In our example of computing area of a circle, our interest is in radius in the in-

terval [0.1, 2] and so the input domain Dom(radius) is

radius ≥ 0.1 ∧ radius < 2

4.1.3 Correctness Condition for Accuracy

Correctness condition for accuracy involves specification of a suitable error function and a

maximum threshold of error that the fixed-point program can have with respect to floating-point

program. Let Ffl(X) be floating-point and Ffx(X, fxτ) be the corresponding fixed-point function

with fixed-point type fxτ . The error function Err(Ffl(X), Ffx(X, fxτ)) is provided by the user

along with the maximum error threshold maxError. Some common error functions can be:

• Absolute difference between the floating-point function and fixed-point function, that is,

|Ffl(X)− Ffx(X, fxτ)|

.

• Relative difference between the floating-point function and fixed-point function, that is,

∣

∣

∣

∣

Ffl(X)− Ffx(X, fxτ)

Ffl(X)

∣

∣

∣

∣

.

78

• Moderated relative difference, that is,

∣

∣

∣

∣

Ffl(X)− Ffx(X, fxτ)

Ffl(X) + δ

∣

∣

∣

∣

which approaches relative difference for Ffl(X) >> δ and approaches weighted absolute

difference for Ffl(X) << δ. When Ffl(X) can be zero for some values of X , the mod-

erated relative difference remains bounded unlike the relative difference which becomes

unbounded.

The correctness condition for accuracy requires that for all inputs in the provided input do-

main Dom(X), the error function Err(Ffl(X), Ffx(X, fxτ)) is below the specified threshold

maxError, that is,

∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ)) ≤ maxError

Example 4.3: In our running example of computing area of a circle, the error function is chosen

to be relative difference, and the correctness condition for accuracy is

∀radius, such that, radius ≥ 0.1 ∧ radius < 2

Ffl(radius)− Ffx(radius, fxτ)

Ffl(radius)
≤ 0.1

4.1.4 Implementation Cost Model

The scaffold for the floating-point program is obtained from the fixed-point program. The

synthesis process discovers the fixed-point types of the variables used in the program. So, the cost

of different possible implementations differs only in the fixed-point types of the variables. Recall

that fixed-point type is 3-tuple 〈sj, iwlj, fwlj〉 for j-th variable where sj denotes the signed-ness

of the variable, iwlj denotes the integer wordlength and fwlj denotes the fraction wordlength.

The cost model of the implementation is a function of the chosen fixed-point types of the variables.

In practice, it is often just a function of the total wordlengths (WL = IWL + FWL) of the variables.

The cost model can incorporate implementation area, power and other metrics of interest. For a

given fixed-point program Ffx(X, fxτ), let T = {t1, t2, . . . , tk} be the set of fixed-point program

variables with corresponding types {fxτ(t1), fxτ(t2), . . . , fxτ(tk)}. The cost of the fixed-point

79

implementation is a function from the fixed-point types of the variables to a real value, that is, cost

of the fixed-point program Ffx is

cost : (fxτ(t1), fxτ(t2), . . . , fxτ(tk)) → R

A number of area-cost and power-cost models [76, 85, 26, 38] of hardware implementing fixed-

point program can be used as cost function in our technique.

Example 4.4: The area model proposed by Constantinides et al [38] for the running example

yields the following cost function. We use this cost model in all our examples.

cost(fxτ(mypi), fxτ(radius), fxτ(t), fxτ(area)) =

costdelay(IWL(mypi))

+costmul(IWL(radius), IWL(radius), IWL(t))

+costmul(IWL(mypi), IWL(t), IWL(area))

where

costdelay(l) = l + 1

and

costmul(l1, l2, l) = 0.6× (l1 + 1) ∗ l2 − 0.85 ∗ (l1 + l2 − l)

.

Our technique can be used with any cost model. In all our experiments as well as the running

example, we use the Constantinides model [38].

4.1.5 Problem Definition

Definition 1 (Optimal Fixed-point Program Synthesis). The optimal fixed-point program synthesis

problem is as follows. Given

1. a floating-point program Ffx(X, fxτ(T)) with fixed-point variables T ,

2. an input domain Dom(X)

80

3. a correctness condition Err(Ffl(X), Ffx(X, fxτ(T))) ≤ maxError

4. a cost model cost(fxτ(t1), fxτ(t2), . . . , fxτ(tk))

optimal fixed-point program synthesis problem is to discover fixed-point types

fxτ(T)∗ = {fxτ(t1), fxτ(t2), . . . , fxτ(tk)}

such that the fixed-point program Ffl(X) with the above types for fixed-point variables

• (a) is correct with respect to the correctness condition for accuracy, that is,

∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ(T)
∗)) ≤ maxError

• (b) has minimal cost with respect to the given cost function among all fixed-point types that

satisfy condition (a), that is,

fxτ(T)∗ = argmin
fxτ(T) satisfies (a)

cost(fxτ(T))

Our goal is to automated this search for fixed-point types in order to synthesize fixed-point

program that is firstly, correct with respect to the correctness condition for accuracy and then, op-

timal with respect to the given cost model. We illustrate this problem using the running example

below.

Example 4.5: In our running example of computing the area of a circle, we need to discover

fxτ(mypi), fxτ(radius), fxτ(t) and fxτ(area) such that the fixed-point program satisfies the

correctness condition

(a) ∀radius, such that, radius ≥ 0.1 ∧ radius < 2

Ffl(radius)− Ffx(radius, fxτ)

Ffl(radius)
≤ 0.1

and the cost is minimized, that is,

(b) argmin
fxτ satisfies (a)

cost(fxτ(mypi, radius, t, area))

We use this example to illustrate the trade-off between cost and error and how, a human would use

trial and error to discover the correct wordlengths.

81

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02
0.04
0.06
0.08
0.1

0.12
A

b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05
0.1

0.15
0.2

0.25

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 4.1: Wordlength 8

Case 1: In the first case, all wordlengths (WL) are fixed to 8. Integer wordlengths (IWL) are

selected to avoid overflow and the remaining bits are used for fractional wordlength (FWL). Since

all variables will always take positive values, we set the signed-ness bit to 0. Thus, the fixed-

point types for the variables are: fxτ(mypi) = 〈0, 2, 6〉, fxτ(radius) = 〈0, 1, 7〉, fxτ(t) =

〈0, 2, 6〉, fxτ(area) = 〈0, 4, 4〉 The cost of the implementation is 81.80 . Figure 4.1 illustrates

both the relative and absolute difference between the fixed-point and floating-point program with

this wordlength. It is obtained by simulating all radius in the given domain at intervals of 0.0001.

The horizontal line in the plots of relative error shows the maximum threshold of 0.01.

Case 2: Increasing the wordlengths of all the fixed-point variables to 12, increases the cost

of implementation to 179.80. The new fixed-point types for the variables are: fxτ(mypi) =

〈0, 2, 10〉, fxτ(radius) = 〈0, 1, 11〉, fxτ(t) = 〈0, 2, 10〉, fxτ(area) = 〈0, 4, 8〉 but the relative

and absolute difference between the fixed-point and floating-point program is reduced as illus-

trated in Figure 4.2. The correctness condition for accuracy is still not satisfied.

Case 3: Further increasing the wordlength to 16 decreases the error to satisfy the correctness

criteria as illustrated in Figure 4.3 but the cost of implementation rises to 316.20. The fixed-point

types for the variables are: fxτ(mypi) = 〈0, 2, 6〉, fxτ(radius) = 〈0, 1, 7〉, fxτ(t) = 〈0, 2, 6〉,

fxτ(area) = 〈0, 4, 4〉.

82

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

x 10
−3

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.005

0.01

0.015

0.02

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 4.2: Wordlength 12

Manual synthesis of fixed-point program would require the developer to try simulations of

this program with varying fixed-point types for different variables and identify the cases where

the correctness condition is satisfied. The next step would be to find the fixed-point type that

minimizes the cost from among all the types that satisfy the correctness condition. Such a manual

trial and error process is time-consuming and error prone. Another dimension of the problem is

finding the set of inputs for which the program needs to be simulated to check for the correctness

condition. Since the input domain can be very large, it is not possible to simulate the program for

all possible inputs. Intelligent choice of the inputs to use in simulating the program is important

for a practical synthesis approach. In the following section, we present an automated approach to

solve this problem.

4.2 SCIDUCTIVE Approach

A central idea behind our approach is to identify a small set of interesting inputs S(X) from

the input domain Dom(X) such that the optimal implementation satisfying the correctness con-

dition for the inputs in S(X) will be optimal and correct for all inputs in the given input domain

83

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3

4

x 10
−4

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10
x 10

−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 4.3: Wordlength 16

Dom(X).1 An optimization oracle OV is used to discover the elements of S(X). A different op-

timization oracle OS is used to compute the minimum cost implementation for inputs of S(X). If

the oracles OV and OS find globally-optimal solutions, we show that our procedure will compute

the minimum cost implementation for all inputs in Dom(X).

The top-level synthesis algorithm is presented in Procedure 11. We assume that there is a

(possibly very large) upper bound on wordlengths WLmax beyond which it is non-optimal to use

the fixed-point version. The algorithm starts with a randomly selected set of examples S0 from

the given input domain. Then, a fixed-point implementation that satisfies the accuracy condition

for each of these inputs and is of minimal cost is synthesized using the routine optimize (which

invokes OS). If no such implementation is found, the algorithm reports INFEASIBLE . Otherwise,

the testing routine getErr checks whether the implementation fails the correctness condition for

any input (using OV). If so, a set of inputs Badi on which the implementation violates the cor-

rectness condition are added to the set Si used for synthesis, and the process is repeated. If the

correctness condition is satisfied, the resulting fixed-point types are output.

In the rest of this section, we describe the main components of our approach in detail, including

the theoretical result.

1In this section, we will sometimes simply write S or Dom for brevity.

84

Procedure 11 Overall Synthesis Algorithm: syn

Input: Floating-point program Ffp,

Fixed-point program Ffx with fixed-point variables T ,

Domain of inputs Dom, Error function Err,

maximum error threshold maxError, Cost Model cost,

maximum wordlengths WLmax

Output: Fixed-point type fxτ for variables T

or INFEASIBLE

S0 = random sample from Dom, Bad0 = S0, i = 0

while Badi 6= ∅ do

i = i+ 1

Si = Si−1 ∪ Badi−1

fxτ i = optimize(Ffp, Ffx, Dom,Err, maxError,

cost, WLmax, S
i)

if fxτ i = ⊥ then

return INFEASIBLE

end if

Badi = getErr(Ffp, Ffx, fxτ
i, Dom,Err, maxError)

end while

return fxτ ∗ = fxτ i

85

4.2.1 Synthesizing Optimal Types for a Finite Input Set

The optimize function (see Procedure 12) is used to obtain optimum fixed-point types such

that the fixed-point program with these types satisfies the correctness condition for a finite input

set S and has minimal cost. First, the floating-point program Ffl is executed for all the inputs

in the sample S and the range of each variable ti as well as its Signedness is recorded by the

functions getRange and isSigned respectively. Then, the integer wordlength IWL sufficient to

represent the computed range is assigned to each variable ti and the Signedness is 1 if the vari-

able takes both positive and negative values, and 0 otherwise. If the fixed-point program with

maximum wordlengths WLmax fails the correctness condition, we conclude that the synthesis is not

feasible and return ⊥. If not, we search for the wordlength with minimum cost satisfying the cor-

rectness condition using our optimization oracle OS . The result is used to compute the fractional

wordlengths, and the resulting fixed-point types are returned.

More precisely, OS solves the following optimization problem over fxτ :

Minimize cost(fxτ) s.t.
∧

x∈S

Err(Ffx(x, fxτ), Ffl(x)) ≤ maxError (4.1)

Let us reflect on the nature of the above optimization problem. It is a discrete optimization problem

with a non-convex constraint space, a problem class that is hard to solve efficiently [34]. In

spite of this, since floating-point and fixed-point programs can ultimately be encoded to Boolean

satisfiability (SAT), due to the dramatic practical progress in SAT solving, one might be hopeful of

an efficient SAT-based pseudo-Boolean optimization procedure to solve this problem (e.g.,see [33,

22]). However, we note two main factors going against such a SAT-based approach. First, the

optimization is over wordlengths, rather than bits encoding variable values; thus, one must do

an explicit case-split over the large space of possible wordlengths for each vector of variables

X . Second, SAT solving is known to be notoriously difficult for reasoning about programs with

arbitrary floating-point arithmetic operations involving non-linear arithmetic. Additionally, the

size of the constraint that encodes correctness grows linearly in the number of input examples.

While a SAT-based approach may work for programs with a small number of variables and no

non-linear floating-point operators, for the general case, these factors effectively rule out such an

approach.

86

Hence, we implement OS using a greedy procedure getMinCostWL (see Procedure 13). The

wordlength of each variable is increased or decreased by 1 independently to construct a set of

candidate wordlength assignments candWL. We select a set of valid candidate wordlength assign-

ments valcandWL from candWL which satisfy the correctness condition. From these, the least-cost

assignment is then selected as our next greedy choice. This process is continued till no further

reduction in cost is possible and we have reached a local minimum.

This method can be used for any floating-point program because it relies only on executing the

program and does not require any explicit modeling of the operations. However, it only guarantees

finding a wordlength with a locally-minimum cost and not globally-minimum cost.

Procedure 12 Optimal Fixed-Point Types Synthesis: optimize

Input: Floating-point program Ffp,

Fixed-point program Ffx with fixed-point variables T , Domain of inputs Dom, Error function

Err,

maximum error threshold maxError, Cost Model cost,

max wordlengths WLmax, Input S

Output: Optimal wordlengths WL for inputs S or ⊥

for all fixed-point variable ti in Ffx do

IWL(ti) = ⌈log(getRange(ti, Ffl, S) + 1)⌉

Signedness(ti) = isSigned(ti, Ffl, S)

end for

if WLmax < IWL then

return ⊥

end if

fxτ = 〈Signedness, IWL, WLmax − IWL〉

if Err(Ffp(x), Ffx(x, fxτ)) > maxError then

return ⊥

end if

WL = getMinCostWL(Ffp, Ffx, Dom,Err, maxError,

cost, WLmax, S
i, IWL, Signedness)

return fxτ = 〈Signedness, IWL, WL− IWL〉

87

Procedure 13 getMinCostWL

Input: Floating-point program Ffp,

Fixed-point program Ffx with fixed-point variables T ,

Domain of inputs Dom, Error function Err,

maximum error threshold maxErr, Cost Model cost,

max wordlengths WLmax, Input S

Output: Optimal wordlengths WL

valcandWL = {WLmax}

while valcandWL is not empty do

WL = argmin
vcWL∈valcandWL

cost(vcWL)

fxτ = 〈Signedness, IWL, WL− IWL〉

candWL = ∅, valcandWL = ∅

for all fixed-point variable ti in Ffx do

WLi−(j) = WL(j) ∀j 6= i, WLi−(i) = WL(i)− 1

WLi+(j) = WL(j) ∀j 6= i, WLi+(i) = WL(i) + 1

candWL = candWL ∪ {WLi−, WLi+}

end for

for all cand in candWL do

candfxτ = 〈Signedness, IWL, candWL− IWL〉

if Err(Ffp(x), Ffx(x, cand)) ≤ maxErr ∀x ∈ S

and cost(candfxτ) < cost(fxτ) then

valcandWL = valcandWL ∪ {cand}

end if

end for

end while

return fxτ

88

4.2.2 Verifying a Candidate Fixed-Point Program

In order to verify that the fixed-point program Ffx(X, fxτ) satisfies the correctness condition,

we need to check if the following logical formula is satisfiable.

∃X ∈ Dom(X) Err(Ffx(X, fxτ), Ffp(X)) > maxError (4.2)

If the formula is unsatisfiable, there is no input on which the fixed-point program violates the

correctness condition.

Once again, in principle one can use a SAT-based approach to solve the above problem. How-

ever, for arbitrary floating-point and fixed-point arithmetic operations, it is extremely difficult to

solve such a problem in practice with current SAT solvers. Instead, we use a novel optimization-

based approach to verify the candidate fixed-point program. An optimization oracle OV is used

to maximize the error function Err(Ffx(X, fxτ), Ffp(X)) over the domain Dom(X). If there is

no input X ∈ Dom(X) for which the error function exceeds maxError, the fixed-point program

is correct and we terminate. Otherwise, we obtain an example input on which the fixed-point

program violates the correctness condition. Multiple inputs can also be generated where they

exist.

In practice, with the current state-of-the-art optimization routines, it is difficult to implement

OV to find a global optimum. Instead, we use a numerical optimization routine based on the

Nelder-Mead method [101] which can handle arbitrary non-linear functions and generates lo-

cal optima. Procedure 14 defines getErr which invokes the Nelder-Mead routine (indicated by

“argmaxlocal”). This routine requires one to supply a starting value of X , which we generate

randomly. To find multiple inputs, we invoke the routine from from different random initial points

and record all example inputs on which the fixed-point program violates the correctness condi-

tion. Since a global optimum is not guaranteed, we repeat this search maxAttempts times before

declaring that the fixed-point program is correct. Using an optimization oracle that finds a global

optimum would guarantee the soundness of our approach (see Sec. 4.2.4), but Procedure 14 works

well in practice. Importantly, this approach can be used for any floating-point program.

89

Procedure 14 Verification Routine getErr

Input: Floating-point program Ffp,

Fixed-point program Ffx, Fixed-point type fxτ ,

Domain of inputs Dom, Error function Err,

maximum error threshold maxError

Output: Inputs Bad on which Ffx violates correctness condition

Bad = ∅

while i ≤ maxAttempts do

i = i+ 1, X0 = random sample from Dom

Xcand = argmaxlocal
X

(Err(Ffp(X), Ffx(X, fxτ)), X0)

if Err(Ffp(Xcand), Ffx(Xcand, fxτ)) > maxError and X ∈ Dom then

Bad = Bad ∪ {X}

end if

end while

4.2.3 Illustration on Running Example

We illustrate the synthesis approach presented in Section 4.2 using the running example. Our

algorithm took 4 iterations. The (cumulative) number of samples used in iteration 2, 3, 4 after

adding examples discovered by getErr procedure was 18, 22 and 34 respectively. To evaluate

our approach, we exhaustively simulated the generated fixed-point program on the given domain

(0.1 ≤ radius < 2) at intervals of 0.0001. The results after iteration 2, 3, 4 are presented in

Figure 4.5 and Figure 4.6. As a point of comparison, we also show the result of synthesizing a

fixed-point program using the optimize routine with 100 inputs (3 times as many as our approach)

selected uniformly at random in Figure 4.4. The horizontal line in the plots denotes the maximum

error threshold of 0.01 on the relative difference error function. The cost of the fixed-point pro-

gram synthesized with random sampling is 89.65, and the fixed-point types of the variables are

fxτ(mypi) = 〈0, 2, 3〉, fxτ(radius) = 〈0, 1, 8〉, fxτ(t) = 〈0, 2, 10〉 and fxτ(area) = 〈0, 4, 8〉.

Notice, however, that it is incorrect for a large number of inputs. In contrast, the cost of the imple-

mentation produced using our technique is 104.65, and the fixed-point types of the variables are

fxτ(mypi) = 〈0, 2, 3〉, fxτ(radius) = 〈0, 1, 9〉, fxτ(t) = 〈0, 2, 11〉 and fxτ(area) = 〈0, 4, 10〉.

All outputs produced by our technique are within the error threshold.

90

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

0.1
A

b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.005

0.01

0.015

0.02

0.025

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 4.4: Running Example Using Random Inputs. The horizontal line indicates the error threshold

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02
0.04
0.06
0.08
0.1

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
4
6
8

10
12
14

x 10
−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

Figure 4.5: Our Approach on Running Example: Iteration 2

4.2.4 Theoretical Results

We now present the soundness guarantee of our SCIDUCTION based synthesis technique. The

following theorem summarizes the correctness and optimality guarantees of our approach.

91

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08
A

b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

x 10
−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

(a) Iteration 3 of Procedure syn

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

A
b
s
o
lu

te
 D

if
fe

re
n
c
e

Input

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10
x 10

−3

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Input

(b) Iteration 4 of Procedure syn

Figure 4.6: Our Approach on Running Example: Iteration 3 and 4

92

Theorem 5. The synthesis procedure presented in Procedure 11 is guaranteed to synthesize the

fixed-point program which is of minimal cost and satisfies the correctness condition for accuracy

if optimization oracles OS and OV find globally-optimal solutions (when they exist).

Proof. We first prove correctness and then optimality of the obtained solution. Consider Equa-

tion 4.2:

∃X ∈ Dom(X) Err(Ffx(X, fxτ), Ffp(X)) > maxError

If OV finds globally-optimal solutions, it will find the X ∈ Dom(X) that maximizes

Err(Ffx(X, fxτ), Ffp(X)), and hence determine where or not Equation 4.2 is satisfiable. Thus,

the correctness condition for accuracy is satisfied.

Next, let fxτ ∗ (6= ⊥) be the fixed-point type returned by Procedure 11. Let us assume that

there exists a fixed-point type fxτ ′ with a cost lower than fxτ ∗ which also satisfies the correctness

condition:

∀X ∈ Dom(X) Err(Ffx(X, fxτ
′), Ffp(X)) ≤ maxError

∧ cost(fxτ ′) < cost(fxτ ∗)

Hence, for any D ⊆ Dom(X),

∀X ∈ D Err(Ffx(X, fxτ
′), Ffp(X)) ≤ maxError

∧ cost(fxτ ′) < cost(fxτ ∗)

But fxτ ∗ is the solution generated by applying OS to the optimization problem of Equation 4.1:

Minimize cost(fxτ) s.t.
∧

x∈S

Err(Ffx(x, fxτ), Ffl(x)) ≤ maxError (4.3)

Since OS is guaranteed to generate globally-optimal solutions, setting D = S, we obtain a con-

tradiction. Hence, there exists no fixed-point type fxτ ′ with a cost lower than fxτ ∗ which also

satisfies the correctness condition. Hence, fxτ ∗ is the optimal correct solution.

As noted earlier, it is difficult to implement ideal OS and OV (that find global optima) with

current SAT and optimization methods for arbitrary floating-point programs. Nonetheless, our

experience with heuristic methods that find local optima has been very good. Also, improvements

93

in optimization/SAT methods can directly be leveraged with our inductive synthesis approach. In

contrast, the current techniques for synthesizing fixed-point versions of floating-point programs

perform heuristic optimization over a randomly selected set of inputs. Such techniques do not

provide any correctness guarantees and the number of inputs needed could be much larger, as

illustrated in Section 4.2.3. Our approach systematically discovers a small number of example

inputs such that the optimal fixed-point program for this set yields that for the entire input domain.

4.3 Experiments

We present case studies from DSP and control systems to illustrate the utility of the presented

synthesis approach. Our technique was implemented in Matlab, and Nelder-Mead implementation

available in Matlab as fminsearch function was used for numerical optimization. We use the

Constantinides et al [38] cost model.

4.3.1 Infinite Impulse Response (IIR) Filter

The first case study is an IIR filter which is used in digital signal processing applications. It

is a first-order direct form-II IIR filter with the schematic shown in Figure 4.7. The constants are

a1 = −0.5, b0 = 0.9 and b1 = 0.9. The fixed-point variables are identified in the schematic. We

use our synthesis technique to discover the appropriate fixed-point types of these variables. The

input domain used in synthesis is −2 < input < 2. The correctness condition for accuracy is to

ensure that the relative error between the floating-point and fixed-point program is less than 0.1.

In order to test the correctness of our implementation, we feed a common input signal to both

the IIR filter implementations: floating-point version and the fixed-point version obtained by our

synthesis technique. The input signal is a linear chirp from 0 to Fs
2

Hz in 1 second.

input = (1− 2−15)× sin(π ×
Fs

2
× t2)

where Fs = 256 and t = 0 to 1 − 1
Fs

and is sampled at intervals of 1
Fs

. Figure 4.8 shows the

input, outputs of both implementations and the relative error between the two outputs. We observe

that the implementation satisfies the correctness condition and the relative error remains below 0.1

throughout the simulation.

94

+ X +

XX

 delay

input

−a1

b0

b1

output

t1

t3

t4

t6

t7 t8

t5

Figure 4.7: IIR Filter Schematic

0 0.2 0.4 0.6 0.8

−2

0

2

Time

S
ig

n
a

l

Input

Floating−point output

Fixed−point output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

R
e

la
ti
v
e

 D
if
fe

re
n

c
e

Time

Figure 4.8: IIR Filter Using Floating-point and Fixed-point. In the top plot, the floating-point and fixed-

point outputs are virtually superimposed on each other.

4.3.2 Finite Impulse Response (FIR) Filter

The second case study is a low pass FIR filter of order 4 with tap coefficients 0.0346, 0.2405,

0.4499, 0.2405 and 0.0346. The input domain, correctness condition and input signal to test the

floating-point implementation and synthesized fixed-point program are same as the previous case

95

study. Figure 4.9 shows the input, outputs of both implementations and the relative error between

the two outputs. We observe that the implementation satisfies the correctness condition and the

relative error remains below 0.1 throughout the simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

Time

S
ig

n
a
l

 input

floating−point

fixed−point

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Time

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Relative Difference

Specified Threshold

Figure 4.9: FIR Filter Using Floating-point and Fixed-point. The floating-point/fixed-point outputs are

virtually superimposed on each other.

4.3.3 Field Controlled DC Motor

The next case study is a field controlled DC Motor. It is a classic non-linear control example

from Khalil [67]. The example used here is an adaptation of Khalil’s example presented in [129].

The system dynamics is described by the following ordinary differential equations.

v̇f = Rf if + Lf i̇f

v̇a = c1ifω + Lai̇a +Raia

J̇ ω̇ = c2if ia − c3ω

The first equation is for the field circuit with vf , if , Rf , Lf being its voltage, current, resistance,

and inductance. The variables va, ia, Ra, La are the corresponding voltage, current, resistance, and

inductance of the armature circuit described by the second equation. The third equation is a torque

96

equation for the shaft, with J as the rotor inertia and c3 as a damping coefficient. The term c1ifω

is the back electromotive force induced in the armature circuit, and c2if ia is the torque produced

by the interaction of the armature current with the field circuit flux. In the field controlled DC

motor, field voltage vf is the control input while va is held constant. The purpose of the control is

to drive the system to the desired set point for the angular velocity ω.

We can now rewrite the system dynamics in the following normal form where a =
Rf

Lf
, u =

vf
Lf

,

b = Ra

La
, ρ = va

La
, c = c1

La
, θ = c2

J
, d = c3

J
.

i̇f = −aif + u

i̇a = −bia + ρ− cifω

ω̇ = θif ia − dω

We assume no damping, that is, c3 = 0 and set all the other constants a, b, c, θ, ρ to 1 [129]. The

state feedback law to control the system is given by

u =
θ(a+ b)if ia + θρif − cθi2fω

θia

The corresponding floating-point code is shown below.

Input: if, ia, ω, θ, ρ, c, ǫ

Output: u

t1 = θ × ia; t2 = ǫ+ t1; t3 = 1/t2; t31 = a+ b;

t32 = if × ia; t33 = t31× t32; t4 = θ × t33; t41 = ρ× if;

t5 = θ × t41; t6 = if × if; t61 = t6× ω; t62 = t61× θ;

t7 = c× t62; t8 = t4+ t5; t9 = t8− t7; u = t3× t9;

return u

The system is initialized with field current if = 1, armature current ia = 1 and angular velocity

ω = 1.

The computed control law can be mathematically shown to be correct by designers who are

more comfortable in reasoning with real arithmetic but not with finite precision arithmetic. Its im-

plementation using floating-point computation also closely mimics the arithmetic in reals but the

control algorithms are often implemented using fixed-point computation on embedded platforms.

We use our synthesis technique to automatically derive a low cost fixed-point implementation of

the control law computing u. The input domain is 0 ≤ ia, if , ω ≤ 1.5. The correctness condition

97

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

V
a
ri
a
b
le

s

fixed−point field current

floating−point field current

fixed−point armature current

floating−point armature current

fixed−point angular velocity

floating−point angular velocity

2 2.5 3
0.63

0.64

0.65

2 2.5 3
0.005

0.01

0.015

0.02

2 2.5 3
1.555

1.56

1.565

1.57

Figure 4.10: DC Motor Using Floating-point and Fixed-point Controller with zoomed-in view for

2 to 3 seconds.

for accuracy is that the absolute difference between the u computed by fixed-point program and

the floating-point program is less than 0.1.

Figure 4.10 shows the simulation of the system using the fixed-point implementation of the

controller and the floating-point implementation. This end-to-end simulation shows that fixed-

point program generated by our technique can be used to control the system as effectively as the

floating-point program. This illustrates the practical utility of our technique. Figure 4.11(b) plots

the difference between the control input computed by the fixed-point program and the floating-

point program. It shows that the fixed-point types synthesized using our approach satisfy the

correctness condition, and the difference between the control input computed by the fixed-point

and floating-point program is within the specified maximum error threshold of 0.1. The number of

inputs needed in our approach was 127. In contrast, the fixed-point types found using 635(5X our

approach) randomly selected inputs violate the correctness condition for a large number of inputs.

98

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

C
o
n
tr

o
l
In

p
u
t

fixed−point

floating−point

(a) Computed Control Input

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

E
rr

o
r

Error with our Approach
Error Using Random Inputs
Specified Threshold

(b) Error

Figure 4.11: Error in Control Input Using Fixed-point and Floating-point Program

99

4.3.4 Two-Wheeled Welding Mobile Robot

The next case study is a nonlinear controller for a two-wheeled welding mobile robot (WMR) [20].

The robot consists of two wheels and a robotic arm. The wheels can roll and there is no slipping.

(x, y) represents the Cartesian coordinate of the WMR’s center point and φ is the heading angle

of the WMR. v and ω are the straight and angular velocities of the WMR at its center point. The

welding point coordinates (xw, yw) and the heading angle φw can be calculated from the WMR’s

center point:

xw = x− l sinφ

yw = y + l cosφ

φw = φ

So, the equation of motion for the welding point is as follows:

ẋw = v cosφ− lω cosφ− l̇ sinφ

ẏw = v sinφ− lω sinφ+ l̇ cosφ

φ̇w = ω

The objective of the WMR controller is to ensure that the robot tracks a reference point R.

The reference point R moving with a constant velocity of vr on the reference path has coordinates

(xr, yr) and the heading angle φr. The tracking error is the difference between the location of the

robot and the reference point.









e1

e2

e3









=









cosφ sinφ 0

− sinφ cosφ 0

0 0 1

















xr − xw

yr − yw

φr − φw









The two control parameters in the model are v and ω. In order to ensure that the error quickly

converges to 0, a nonlinear controller based on Lyapunov stability is as follows:

v = l(ωr + k2e2vr + k3 sin e3) + vr cos e3 + k1e1

ω = ωr + k2e2vr + k3 sin e3

100

where k1, k2 and k3 are positive constants. Table 4.1 provides the numerical values of constants

and initial values of the state variables from Bui et al [20]. All lengths are in meters, angle in

radians and time in seconds.

Table 4.1: Numerical and Constant Values

Parameters Values Parameters Values

k1 4.2 l 0.15

k2 5000 l̇ 0
k3 1 vr 7.5e− 3
xr 0.280 xw 0.270
yr 0.400 yw 0.390
φ 0 φw 15

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

x

y

Reference Welding Path

Figure 4.12: Reference Welding Line

We use our synthesis technique to automatically synthesize fixed-point program computing

both control inputs: v and ω. The error function used for v is the relative difference

vfloating−point − vfixed−point

vfloating−point

and the error function used for ω is the moderated relative difference

ωfloating−point − ωfixed−point

ωfloating−point + δ

101

0 20 40 60 80 100 120

0.005

0.01

0.015

0.02

0.025

Time

D
is

ta
n
c
e
 B

e
tw

e
e
n
 R

o
b
o
t
a
n
d
 R

e
fe

re
n
c
e
 P

a
th

Using Floating Point

Using Fixed Point

80 90 100 110 120
0

0.5

1

1.5

2
x 10

−3

Figure 4.13: Distance of WMR from Reference Line with zoomed-in view for 80 to 120 seconds.

0 20 40 60 80 100 120 140
−0.04

−0.02

0

0.02

0.04

0.06

0.08

R
e
la

ti
v
e
 E

rr
o
r

Time

Figure 4.14: Error in computing v

where δ = 0.001. The moderated relative difference is useful here since ωfloating−point can be 0.

We require that the difference values for both controllers are less than 0.1. Figure 4.12 shows the

reference line for welding and Figure 4.13 shows the distance of the WMR from the reference line

102

0 20 40 60 80 100 120 140
−0.1

−0.05

0

0.05

0.1
R

e
la

ti
v
e
 E

rr
o
r

Time

Figure 4.15: Error in computing ω

as a function of time for both cases: firstly, when the controller is implemented as a floating-point

program and secondly, when the controller is implemented as a fixed-point program synthesized

using our technique. The robot starts a little away from the reference line but quickly starts track-

ing the line in both cases. Figure 4.14 and Figure 4.15 show the error between the floating-point

controller and fixed-point controller for both control inputs: v and ω, respectively.

Table 4.2 summarizes the performance of our technique in the four case-studies.

Table 4.2: Performance

Case-study Runtime (seconds) # of Iterations of syn

IIR Filter 268 5

FIR Filter 379 4

DC Motor u 4436 8

WMR v 2218 7

ω 1720 4

103

4.4 Conclusion

In this chapter, we presented a SCIDUCTION based novel approach to automated synthesis

of fixed-point program from floating-point program by discovering the fixed-point types of the

variables. The program is synthesized to satisfy the provided correctness condition for accuracy

and to have optimal cost with respect to the provided cost model. We illustrated our approach on

a set of case studies from digital signal processing and control systems.

104

Part II

Synthesis of Switching Logic

105

Chapter 5

Background

In this chapter, we present relevant background on cyber-physical systems that will be help-

ful in explaining our technique for automated synthesis of switching logic. Cyber-physical sys-

tems [32, 4, 81] are dynamical systems with interacting continuous and discrete dynamics. This

mixed nature of the dynamics of these hybrid systems make their synthesis and analysis chal-

lenging. While continuous dynamics of a hybrid system is usually modeled using differential

equations, discrete dynamics is modeled using finite automata. The model of the continuous dy-

namics is also often referred to as the plant and the finite automata is often called the switching

logic. Hybrid systems arise in modeling a number of applications in different domains such as

electronic design and automation, analog and mixed signal circuits, real-time software, robotics

and automation, mechatronics, aeronautics, air and ground transportation systems, and process

control.

As cyber-physical systems (CPS) are increasingly deployed in transportation, health-care, and

other societal-scale applications, there is a pressing need for automated tool support to ensure

dependability while enabling designers to meet shortening time-to-market constraints. Model-

based design tools enable designers to work at a high level of abstraction, but there is still a need

to assist the designer in creating correct and efficient systems.

A holy grail for the design of cyber-physical systems is to automatically synthesize models

from safety and performance specifications. In its most general form, automated synthesis is very

difficult to achieve, in part because synthesis often involves human insight and intuition, and in

106

part because of system complexity – the tight integration of complex continuous dynamics with

discrete switching behavior can be tricky to get correct. Nevertheless, in some contexts, it may

be possible for automated tools to complete partial designs generated by a human designer, thus

enabling the designer to efficiently explore the space of design choices whilst ensuring that the

synthesized system remains safe.

5.1 Formalism and Notations

Just as purely dynamical systems are often modeled using ordinary differential equations,

hybrid systems are formally modeled using hybrid automata [81]. Hybrid automata combine the

expressiveness of differential equations with that of finite automata, and can, hence, express a

richer class of multi-modal dynamical systems. We discuss the associated formalism and notation

in this section.

5.1.1 Hybrid Automata

A hybrid system is obtained by composing a multi-modal dynamical system with a switching

logic governing how the system switches through its different modes. Each mode of the hybrid

automata models both the continuous physical world as well as the continuous control algorithms.

While design of control for continuous dynamical systems corresponding to each mode are rela-

tively well-understood [110, 67], the discovery of the switching logic between different modes is a

major challenge in design of hybrid systems. Hybrid automata is formally defined in Definition 2.

Definition 2. A hybrid automaton is a collection H = (Q,X, Init, f, E,G,R), where

• Q = {q0, q1, q2, . . . , qm} is a set of discrete states;

• X is a set of real-valued continuous variables and |X| = n;

• Init ⊆ Q× Rn is a set of initial states;

• f : Q× Rn → Rn is a vector field;

• E : Q×Q is a set of edges;

107

• G : E → P(Rn) is a guard condition,

where P(Rn) denotes the power-set of Rn.

The following definition of hybrid automata, that is equivalent to Definition 2, decomposes it

into a multi-modal dynamical system and a switching logic that controls the dynamical system

switching through these modes.

Definition 3. A hybrid automaton is a collection H = (MDS, SwL), where

• MDS is a multimode dynamical system (Q,X, Init, f)

– Q = {q0, q1, q2, . . . , qm} is a set of discrete states;

– X is a set of real-valued continuous variables and |X| = n;

– Init ⊆ Q× Rn is a set of initial states;

– f : Q× Rn → Rn is a vector field;

• SwL : Q×Q→ P(Rn) is a guard condition,

where P(Rn) denotes the power-set of Rn.

For any given hybrid system (Q,X, Init, f, E,G,R), the multimode dynamical system MDS is

(Q,X, Init, f) and the switching logic is given by

SwL(qi, qj) =

{

∅ if (qi, qj) 6∈ E

G(qi, qj) if (qi, qj) ∈ E

The state of the hybrid automata (qi, x) is a tuple consisting of the discrete state qi ∈ Q and the

continuous state x ∈ X . Starting from an initial value (q0, x0) ∈ Init, the continuous dynamics

of the state x in the initial mode q0 is given by the differential equation,

ẋ = f(q0, x), x(0) = x0,

while the discrete state q remains constant, i.e.,

q(t) = q0.

Continuous evolution of the state x continues until it reaches a guardG(q0, qj) ⊆ Rn of some edge

(q0, qi) ∈ E. When the continuous dynamics reaches the guard, the discrete state may change to

108

qj . After this discrete change, the continuous evolution resumes in the new mode qj . This process

of continuous evolution and discrete jumps continues. Formally, a trajectory of a hybrid system is

a continuous function τ(t) : [0,∞) 7→ Rn if there is an increasing sequence t0 := 0 < t1 < t2 . . .,

and a sequence of modes q0, q1, . . ., such that

• τ(0) ∈ I ,

• for each interval [ti, ti+1),
dτ
dt
(t) = fi(τ(t)) for all ti ≤ t < ti+1,

• τ(ti+1) ∈ G(qi, qi+1) for all i = 0, 1, 2 . . .

We use a simple example of a two tank system [5] to illustrate a hybrid automaton.

Example 1 (Two Tank System). The example is depicted in Figure 5.1. For i ∈ {1, 2}, xi denotes

the volume of water in Tank i and vi > 0 denotes the constant flow of water out of Tank i. w

denotes the constant flow of water into the system, dedicated exclusively to either Tank 1 or Tank

2 at any time instant. The objective is to keep the water volumes in Tank 1 and Tank 2 above

r1 and r2 respectively, assuming that the water volumes are above r1 and r2 initially. This is to

be achieved by a controller that switches the inflow to Tank 1 whenever x1 ≤ r1 and to Tank 2

whenever x2 ≤ r2.

1 2

ẋ1 = w − v1
ẋ2 = −v2

ẋ1 = −v1
ẋ2 = w − v2

x2 ≤ r2

x1 ≤ r1

x1 ≥ r1 ∧ x2 ≥ r2

Figure 5.1: Two-Tank System

The hybrid automata description of the two-tank system is as follows:

H2tank = (MDS2tank, SwL2tank),

where

109

• MDS2tank is a multi-modal dynamical system (Q2tank, X2tank, Init2tank, f2tank)

– Q2tank = {1, 2} is the set of discrete states;

– X = {x1, x2} is the set of continuous variables that takes values in R2;

– Init2tank = (1, {(x1, x2)|x1 ≥ r1 ∧ x2 ≥ r2}) is the set of initial states;

– f is the vector field with

∗ f(1, x1) = ẋ1 = w − v1

∗ f(1, x2) = ẋ2 = −v2

∗ f(2, x1) = ẋ1 = −v1

∗ f(2, x2) = ẋ2 = w − v2

• SwL is the switching logic with

– SwL(1, 2) = {(x1, x2)|x2 ≤ r2}

– SwL(2, 1) = {(x1, x2)|x1 ≤ r1}

5.1.2 Boolean Properties

We can define temporal properties [88, 25, 57] on the system trajectories. These properties

are either satisfied by the trajectories, or they are not satisfied. Hence, they are called Boolean

properties. We now discuss the formal definition of temporal formula and the evaluation of a

temporal formula on a given dynamical system.

A state formula φ is a predicate on state variables or a Boolean combination of predicates. A

state formula is evaluated over a state. The formula φ evaluates to true on a state x if x ∈ φ. A

state formula represents the set of states on which the formula evaluates to true. If φ, φ′ are sets

of states, then Gφ, Fφ, φWφ′ and φUφ′ are temporal formulas. A temporal formula is evaluated

over a given trajectory τ .

• The formula Gφ evaluates to true on a trajectory τ if and only if

∀t ≥ 0 : τ(t) ∈ φ (5.1)

110

Informally, the temporal formula Gφ is true if and only if φ is true on all states in the

trajectory τ .

• The formula Fφ evaluates to true on a trajectory τ if and only if

∃t ≥ 0 : τ(t) ∈ φ (5.2)

Informally, the temporal formula Fφ is true if and only if φ is true on at least some state in

the trajectory τ .

• The formula φUφ′ evaluates to true on a trajectory τ if and only if

∃t0 : τ(t0) ∈ φ′ ∧ (∀0 ≤ t < t0 : τ(t) ∈ φ) (5.3)

Informally, the temporal formula φUφ′ is true if and only if φ′ becomes true eventually and

until it becomes true, φ is true.

• The weak until operator, W, is a weaker specification than the U operator, and does not

require that φ′ necessarily becomes true. If φ, φ′ are sets of states, then the temporal formula

φWφ′ evaluates to true over a given trajectory τ if and only if

(∃t0 : τ(t0) ∈ φ′ ∧ (∀0 ≤ t < t0 : τ(t) ∈ φ)) ∨

(∀t ≥ 0 : τ(t) ∈ φ) (5.4)

A state formula can be evaluated on a trajectory as follows: a state formula φ evaluates to true

on a trajectory τ if and only if τ(0) ∈ φ. We can combine state and temporal formulas using

Boolean connectives and evaluate them over trajectories using the natural interpretation of the

Boolean connectives. If Φ is a state or temporal formula, then we write

Mode i, I |= Φ

to denote that the formula Φ evaluates to true on all trajectories of the system in mode i that start

from a state in I .

Hybrid systems are often required to satisfy some safety invariant safe which is a predicate

over the continuous variables. For all evolutions of the system starting from any initial state in

the set Init, all the reachable system states are required to lie in the safe region. These safety

111

invariants are written as a temporal property G(safe), and are of particular interest to us. To

familiarize our readers with the kind of requirements that can be stated as a safety property, we

present a few example of safety properties below:

• Temperature (temp) of a room is always between 18 and 20 degree Celsius. The safety

property is

18 ≤ temp ≤ 20

.

• If the distance between two air-crafts (dist) is below a certain threshold (THRES), the air-

crafts move away from each other, that is their relative velocity (relV) is positive. The

corresponding safety property is

dist < THRES ⇒ relV > 0

.

• Either of the two fuel tanks has a fuel level (level1, level2) above a minimum threshold

(TMIN) but the level in both fuels are below the maximum threshold (TMAX). The safety

property is

(level1 ≥ TMIN ∨ level2 ≥ TMIN) ∧ (level1 ≤ TMAX ∧ level2 ≤ TMAX)

.

5.1.3 Quantitative Properties

Designers often require that the hybrid systems satisfy certain quantitative performance prop-

erties. In our approach, quantitative performance metrics are defined using new continuous state

variables, that compute “rewards” or “penalties” accumulated over the course of a hybrid trajec-

tory. We also allow the new variables to be updated during discrete transitions. Such updates

enable us to penalize or reward discrete mode switches.

Definition 4. Performance Metric. A performance metric for a given multi-modal system MDS :=

〈Q,X, Init, f〉 is a tuple 〈PR, fPR, update〉, where PR := P ∪ R is a finite set of continuous

112

variables (disjoint from X), partitioned into penalty variables P and reward variables R, fPR :

Q × RX 7→ RPR defines the vector field that determines the evolution of the variables PR, and

update : Q×Q× RPR 7→ RPR defines the updates to the variables PR at mode switches.

Given a trajectory qx : [0,∞) 7→ (Q × RX) of a multi-modal or hybrid system with mode-

switching time sequence t1, t2, . . ., and given a performance metric, we define the extended tra-

jectory qxe : R+ 7→ (Q × RX × RPR) with respect to the same mode-switching time sequence

as a function that satisfies qxe(0) = (q(0),x(0),~0) and qxe(t) = (q(t),x(t),PR(t)), where PR

satisfies:
dPR(t)

dt
= fPR(qx(t)) for all t : ti < t < ti+1 and,

PR(ti) = update(q(ti−1),q(ti), lim
t→t−i

PR(t))

where t−i denotes the left-hand limit of ti.

In our approach, the cost of a trajectory qx is defined using its corresponding extended trajectory

qxe as

cost(qx) := lim
t→∞

|P |
∑

i=1

Pi(t)

Ri(t)
(5.5)

where Pi and Ri are the projection of qxe onto the i-th penalty variable and i-th reward variable,

and |P | = |R|.

We are only interested in trajectories where the above limit exists and is finite. As the definition

of cost indicates, we are interested in the long-run average (penalty per unit reward) cost rather

than (penalty or reward) cost over some bounded/finite time horizon. Some examples of auxiliary

performance variables (PR) and cost function are described below:

• the number of switches that take place in a trajectory can be tracked by defining an auxiliary

variable p1 that has dynamics dp1
dt

= 0 at all points in the state space, and that is incremented

by 1 at every mode switch, that is,

p1(ti) = update(q, q′, p1(t
−
i)) = p1(t

−
i) + 1

• the time elapsed since start can be tracked by defining an auxiliary variable r1 that has

dynamics dr1
dt

= 1 at all points and that is left unchanged at discrete transitions; that is,

r1(ti) = update(q, q′, r1(t
−
i)) = r1(t

−
i)

113

• the average switchings (per unit time) can be observed to be p1
r1

. If this cost becomes un-

bounded as the time duration of a trajectory increases, then this indicates zeno behavior [54].

Thus, if we use p1 and r1 as the penalty and reward variables in the performance metric, then

we are guaranteed that non-zeno systems will have “smaller” cost and thus be “better”.

• the power consumed could change in different modes of a multi-modal system and an aux-

iliary (penalty) variable p2 that has dynamics dp2
dt

= cj in mode j, where cj is the rate of

power consumption in mode j, can track the power consumed in a particular trajectory. p2

is left unchanged at discrete transitions; that is,

p2(ti) = update(q, q′, p2(t
−
i)) = p2(t

−
i)

• the distance from unsafe region can be tracked by an auxiliary reward variable r2 that evolves

based on the distance of the current state from the closest unsafe state. Let the unsafe region

be unsafe and the distance metric be D, the evolution of r2 is given by

dr2
dt

= min
y∈unsafe

D(y, x(t))

where x(t) is the state of the system at time t and y is some unsafe state. r2 is left unchanged

at discrete transitions; that is,

r2(ti) = update(q, q′, r2(t
−
i)) = r2(t

−
i)

Synthesis of switching logic for a given safety or performance specification is the focus of

this part of the thesis. For various choices of the switching logic, the hybrid automata will show

different behaviors. Because of the interactions between the discrete switching and the continuous

dynamics, it is difficult to compute the switching logic that enables the hybrid automaton to satisfy

a given safety or performance specification. We formally define the switching logic synthesis

problem below.

Definition 5 (Switching logic synthesis problem). Given a multi-modal continuous dynamical sys-

tem (MDS := (Q,X, Init, f)), a safety specification φS , and/or a performance metric 〈PR, fPR, update〉,

over the penalty and reward variables PR := P ∪R, the switching logic synthesis problem seeks to

synthesize a switching logic SwL such that the hybrid system HS := (MDS, SwL′) is safe with respect

to the safety property, and/or optimal with respect to the performance metric.

114

5.2 Related Work

Automated control of continuous systems has being widely studied. A detailed study of exist-

ing techniques in control theory can be found in textbooks [119], [110] and [67]. We focus on the

research literature on the automated synthesis of switching logic of hybrid systems and describe

the salient features of the related work.

5.2.1 Synthesis for Boolean Safety Properties

Control synthesis of hybrid systems for Boolean properties has been previously investigated

in literature.

Techniques Based on Reachability Analysis

One of the first automated synthesis approaches for hybrid systems is presented by Lygeros

et al. [82]. They consider the problem of controlling hybrid systems with controllable continu-

ous inputs as well as uncontrollable noises (disturbances) against two objectives having different

priorities. The first is a safety property, and has the highest priority. The second is an efficiency

objective, and has a lower priority. A class of least restrictive safe controllers can be identified

which satisfies the safety objective. The optimal controller, with respect to efficiency, can then

be found within this class of least restrictive safe controllers. The technique is used for discrete

systems, continuous systems, as well as hybrid systems. The hybrid system considered is the

industrial steam boiler benchmark problem [53]. Motivated by aircraft conflict resolution bench-

mark, Tomlin et al. [130, 128] presented a technique to synthesize controllers for nonlinear hybrid

systems. They showed a conceptual equivalence between a two player game on finite automata in

which the goal of one player is to keep the system inside a certain good subset of the state space

and the goal of the other player is force the system out of this good subset, to the Hamilton-Jacobi-

Bellman equation for differential games on continuous systems. Their technique is based on the

computation of the maximal safe set such that the controllable actions and continuous input keep

the system safe irrespective of the uncontrollable disturbances. The technique requires numerical

computation of the solution of Hamilton-Jacobi-Bellman partial differential equation (PDE) and,

115

hence, is limited in scalability by the number of dimensions. Also, numerical error needs to be

bounded to ensure that the synthesized controller guarantees safety. For hybrid systems, where

the continuous dynamics are defined by linear differential equations, Asarin et al. [8] present a

synthesis technique to discover the conditions upon which the controller should switch the behav-

ior of the system from one mode to another in order to avoid a set of bad states. Their approach

is based on iterative computation of reachable states. They use approximate reachability analysis

in linear systems to compute reachable states [9]. Raffard et al. [106] consider stochastic hybrid

systems where the continuous dynamics is governed by stochastic differential equations and the

discrete mode evolves according to a continuous time Markov chain. They synthesize feedback

control that keeps the state of the stochastic hybrid system within a prescribed region for at least an

expected amount of time. Their approach is based on replacing the Hamilton-Jacobi based tech-

nique with a PDE constrained optimization problem. Optimization is done using adjoint-based

gradient descent methods [79]. A constraint-based technique for synthesizing switching logic is

also proposed by Taly et al. [126, 127]. It involves generating and solving an ∃ − ∀ constraint.

However, the size of the constraint increases as the number of modes increase, and hence, the

technique is useful only with a small number of modes.

Techniques Based on Approximation and Abstraction

Approximation based techniques [98, 28] to synthesize control systems for hybrid systems

have also been proposed in literature. Moor et al. [98] suggest an approach for synthesizing

supervisory control for switched linear systems based on two conservative approximation tech-

niques. The switched linear system is approximated by sampling and state space partitioning.

Then, the resultant finite state machine is translated into a past induced finite state machine using

l-completion [97]. l-completion approximates a super set of the original behavior, and, hence,

the estimate of reachable states based on an l-completion is conservative, that is, the exact set of

reachable states is guaranteed to be contained in the estimate. Discrete techniques can then be

used to solve the supervisory control problem on the approximation level. Since the approxima-

tion is conservative, the desired closed loop properties are retained if the supervisor is connected

to the underlying switched linear system. Cury et al. [28] also describe an approximation based

approach to synthesizing discrete controllers for hybrid systems. Their approach uses finite-state

approximations of the hybrid system dynamics. Their synthesize a supervisory control that selects

116

the plant input signal based on the observed discrete events to assure the closed-loop system sat-

isfies the design specifications. They also present a technique to refine the coarse approximations,

and develop better solutions to the control synthesis problem.

5.2.2 Synthesis for Quantitative Performance Properties

Another line of related work is the optimal control of hybrid systems with respect to some

quantitative metric stemming from the seminal work of Branicky et al. [18]. They established

a necessary condition for the optimal trajectory under a general cost function in terms of quasi-

variational inequalities. But, they did not present an algorithm to compute the desired control.

Optimal Trajectory from Initial to Final State

Manon et al. [89] propose a method to synthesize a trajectory to drive a hybrid system with

linear vector fields from an initial state to a final state. Kamgarpour et al [64] and Gonzalez et

al. [43, 42] consider the problem of synthesizing optimal control of switched dynamical systems

with nonlinear continuous dynamics. The control inputs considered are both the discrete com-

ponent corresponding to the sequence of mode switches as well as the continuous component

corresponding to the time spent in each mode, and the continuous input in each mode. The goal

is to synthesize an optimal control that drives the system from an initial state to a target final

state. The cost function includes both the running cost of the trajectory and the cost of the final

state reached. They propose a bi-level hierarchical algorithm that divides the problem into two

nonlinear constrained optimization problems. The lower level corresponds to keeping the mode

sequence fixed, and discovering the optimal mode duration and the optimal continuous input. The

higher level corresponds to the discovery of the optimal mode sequence using single mode inser-

tion technique. The approach was extended by the authors [43] to allow multiple objectives in the

cost function, and penalize the number of hybrid jumps. Another gradient descent based approach

to the synthesis of hybrid controllers is presented by Axelsson et al. [10]. They also use a bi-level

hierarchical algorithm. At the lower level, their algorithm considers a fixed mode sequence, and

minimizes the cost function with respect to the modes durations. At the higher level, it updates

the mode-sequence by using a gradient technique.

117

Shortest Mode Switching Sequence

Koo et al. [71] present a synthesis technique for determining a switching sequence through low

level control modes to accomplish some high-level task. The continuous controllers are assumed

to have been pre-designed, and only mode switching conditions need to be synthesized. Their

approach exploits the structure of the output tracking controllers in order to extract a finite graph

where the mode switching problem is solved. The solution can then be implemented using the

continuous controllers. Thus, they decouple the problem of synthesizing discrete and continuous

controllers. Given an initial mode and the target mode, they discover the shortest consistent mode

switching sequence that can later be enforced by the synthesis of suitable continuous control

inputs.

Optimal Switching Times

Synthesis of optimal switching times for a given mode sequence has also been investigated in

literature by Shaikh et al. [113] and Kamgarpour et al [64]. Here, the mode switching sequence

is fixed but the optimal dwell times in each mode are discovered. The method can be combined

with combinatorial search methods to discover the most optimal switching sequence which is at

most k-Hamming distance from an initial given sequence. Xu et al. [133] also consider a similar

formulation where the sequence of mode switches is available. Their goal is to synthesize the

continuous control input that would result into the most optimal trajectory.

Long-run Cost

Notions of long-run cost similar to that presented in Section 5.1.3 have appeared in other ar-

eas. The notion of long-run average cost is used in economics to describe the cost per unit output

(reward) in the long-run. In computer science, long-run costs have been studied for graph opti-

mization problems [66]. Long-run average objectives have also been studied for Markov decision

processes (MDPs) [24, 73]. However, MDPs do not have any continuous dynamics. Another re-

lated work is optimal scheduling using the priced timed automata [107], in which timed automata

is extended by associating a fixed cost to each transition and a fixed cost rate per time unit in a loca-

tion. Game-theoretic synthesis techniques for discrete systems with quantitative objectives have

118

also being studied in literature where the long-run cost is expressed using lexicographic mean-

payoff conditions [14]. We consider multi-modal dynamical systems with possibly non-linear

dynamics, and our cost rates are functions of the continuous variables.

Nonlinear Optimization

In order to synthesize optimal switching logic, we need to solve possibly nonlinear optimiza-

tion problems where the function to be optimized is not available analytically but is provided only

as a black-box oracle. The oracle accepts finite precision arguments and returns the value of the

function with finite precision, that is, with a limited number of digits. Hence, our interest in solving

these optimization problems is in finding approximate solutions with some prescribed accuracy ǫ.

This concept of ǫ-accurate optimization was introduced by Hochbaum and Shantikumar [56], and

is discussed in detail in a recent survey paper [55]. A solution is said to be ǫ-accurate if it is at

most at a distance of ǫ from an optimal solution, that is, the solution is identical to the optimum

in O(log 1
ǫ
) decimal digits. It has been shown that any convex separable [23] optimization prob-

lem on totally unimodular constraints (or problems with constraint matrices that have bounded

subdeterminants) can be solved in polynomial time [56]. The polynomiality is in the input size

and the log of the accuracy required in the solution (1/ǫ). The optimization problem generated

by our technique is not guaranteed to be convex and hence, we rely on numerical optimization

techniques which work well in practice. We use Nelder-Mead method [101] which is available

as fminsearch function [91] in Matlab to solve the optimization problems. But the choice of

optimization routine is orthogonal to our proposed synthesis approach, and any optimization tech-

nique can be used as the backend of our approach. This allows us to levarage the progress in the

field of constraint optimization for further scaling our synthesis approach, and making it more

efficient.

5.2.3 Dimensions

The related work on synthesis of controllers for hybrid systems presented above can be broadly

classified along several different dimensions: (1) property of interest which the synthesized system

is expected to satisfy, (2) control inputs which need to be synthesized and (3) the approach used

for synthesis.

119

1. First, based on the property of interest, synthesis work broadly falls into one of the two

categories. The first category finds controllers that meet some safety specification [130,

128, 8]. The second category finds controllers that meet some liveness specifications, such

as synthesizing a trajectory to drive a hybrid system from an initial state to a desired fi-

nal state [18, 43, 42, 89, 71], while also minimizing some cost metric. Purely constraint

based approaches for solving switching logic synthesis problem have also being used for

reachability specifications [126, 127].

2. The second dimension that differentiates work on controller synthesis for hybrid systems

is the space of control inputs considered; that is, what is assumed to be controllable. The

space of controllable inputs could consist of any combination of continuous control inputs,

the mode sequence, and the dwell times within each mode. Gonzales et al. [43, 42] consider

all the three control parameters, whereas some other works either assume the mode sequence

is not controllable [133, 113] or there are no continuous control inputs [10, 71].

3. The third dimension for placing work on controller synthesis of hybrid systems is the ap-

proach used for solving the synthesis problem. There are direct approaches for synthesis

that compute the controlled reachable states in the style of solving a game [8, 128], and

abstraction-based approaches that do the same, but on an abstraction or approximation of

the system [98, 28]. The other class of approaches are based on using nonlinear optimization

techniques and gradient descent [42, 10].

With respect to related work, the categorization of our contributions using the three dimensions

of synthesis identified above is as follows:

1. Property of interest: Previous work on automated control synthesis for hybrid systems have

been targeted towards safety specifications [130, 128, 8] as well as reachability specifi-

cations [18, 43, 42, 89, 71]. In Chapter 6, we present an automated synthesis technique

targeted towards safety properties. In Chapter 7, we present an automated synthesis tech-

nique target-ted towards performance objectives where the goal is to minimize a specified

long-run cost metric.

2. Control Input: Previous work on synthesis of hybrid systems synthesize either all or some

of the following components of a hybrid system: continuous control inputs, dwell times in

120

each mode, and mode sequence for some high level tasks [43, 42, 133, 113, 10, 71]. In our

work in Chapter 6 and Chapter 7, we assume that there are no continuous control inputs

which need to be synthesized, and both the mode sequence and the dwell time within each

mode are controllable entities.

3. Approach: Previous approaches have used game-theoretic techniques either directly [8, 128]

or using abstraction or approximation [98, 28] as well as nonlinear optimization tech-

niques [42, 10]. We present a SCIDUCTIVEreasoning based approach to automatically syn-

thesize switching logic of hybrid systems which combines deductive reasoning techniques

such as SMT solving and numerical optimization with inductive techniques from algorith-

mic learning. Our approach is discussed in detail in Chapter 6 and Chapter 7.

121

Chapter 6

Synthesis of Switching Logic for Safety

Specifications

In this chapter, we present a new approach to assist designers of cyber-physical systems by

synthesizing the switching logic, given a partial system model, using a combination of fixpoint

computation, numerical simulation, and machine learning. Our technique begins with an over-

approximation of the guards on transitions between modes. In successive iterations, the over-

approximations are refined by eliminating points that will cause the system to reach unsafe states,

and such refinement is performed using numerical simulation and machine learning. In addition

to safety requirements, we synthesize models to satisfy dwell-time constraints, which impose

upper and/or lower bounds on the amount of time spent within a mode. We demonstrate using

case studies that our technique quickly generates intuitive system models and that dwell-time

constraints can help to tune the performance of a design.

6.1 Introduction

As discussed in Chapter 5, a multi-modal dynamical system (MDS) is a physical system (plant)

that can operate in different modes. The dynamics of the plant in each mode is known. However,

to achieve safe and efficient operation, it is often necessary to switch between the different operat-

ing modes. Designing correct switching logic can be tricky and tedious. We consider the problem

122

of automatically synthesizing switching logic, given the intra-mode dynamics, so as to preserve

safety in MDS. The human designer can guide the synthesis process by providing initial approxi-

mations of the switching guards and a library of expressions (components) using which the guards

can be synthesized.

Our synthesis approach performs reasoning within each mode and reasoning across modes in

two different ways. Within each mode, reasoning is based entirely on using numerical simula-

tions. While this can lead to potential unsoundness, it allows us to handle complex and nonlinear

dynamics that are difficult to reason about in any other way. Across modes, reasoning is per-

formed using fixpoint computation techniques. Similar to abstract interpretation, computation of

the fixpoint is performed over an “abstract domain,” which is specified by the user in the form of

a component library for the switching guards. Each step of the fixpoint computation involves the

use of machine learning to learn improved approximations of the switching guards based on the

results of numerical simulations.

6.1.1 Contributions

We make the following novel contributions in this chapter.

• The key contribution of our chapter is a new approach for synthesizing safe switching logic

based on integrating numerical simulation, machine learning, and fixpoint iterations.

• In addition to safety, our approach also extends to handling dwell-time requirements, which

impose upper and/or lower bounds on the amount of time spent within a mode.

• While numerical simulations have been used to perform formal verification (e.g., [65, 39,

30]), to our knowledge our approach is the first to use simulations to perform synthesis with

safety guarantees.

• We demonstrate using case studies (Sec. 6.1.3 and 6.3) that our technique generates intuitive

system models and that dwell-time constraints can help to tune the performance of a design.

123

6.1.2 Problem Definition

In this section, we describe the problem of synthesizing switching logic for a multi-modal

continuous dynamical system. We present two versions of the problem. In the first version, we

ask for a switching logic that only preserves safety. In the second version, we also require that

the synthesized system satisfy some dwell-time requirements in each mode. We begin with some

definitions.

A continuous dynamical system (CDS) is a tuple 〈X, f〉 where X is a finite set of |X| = n

real-valued variables that define the state space Rn of the continuous dynamical system, and f :

Rn 7→ Rn is a vector field that specifies the continuous dynamics as dx
dt

= f(x). The vector field

f is assumed to be locally Lipschitz at all points, which guarantees the existence and uniqueness

of solutions to the ordinary differential equations.

Often, a system has multiple modes and in each mode, its dynamics is different. Such a multi-

modal system behaves as a different continuous dynamical system in each mode.

Definition 6 (Multi-modal CDS (MDS)). An MDS is a tuple 〈X, I, f1, f2, . . . , fk〉 where

• 〈X, fi〉 is a continuous dynamical system (representing the i-th mode)

• I ⊆ Rn is the set of initial states

We will use Q = {1, 2, . . . , k} as the set of indices of the modes. A trajectory for MDS is a

continuous function τ(t) : [0,∞) 7→ Rn if there is an increasing sequence t0 := 0 < t1 < t2 . . .

such that

• τ(0) ∈ I ,

• for each interval [ti, ti+1), there is some mode j ∈ Q such that dτ
dt
(t) = fj(τ(t)) for all ti ≤ t <

ti+1, and

• j = 1 when ti = 0 (that is, we start in Mode 1.).

A multi-modal system can nondeterministically switch between its modes. The goal is to

control the switching between different modes to achieve safe operation.

Definition 7 (Switching logic (SwL)). A switching logic SwL for an MDS 〈X, I, (fi)i∈Q〉 is a tuple

〈(gij)i 6=j;i,j∈Q〉, containing guards gij ⊆ Rn.

124

A multi-modal system MDS can be combined with a switching logic SwL to create a hybrid

system HS := (MDS, SwL) in the following natural way: the hybrid system HS has k modes with

dynamics given by dX
dt

= fi in mode i, and with gij being the guard on the discrete transition from

mode i to mode j. The initial states of HS are I in Mode 1, where I is the set of initial states of

the MDS. The discrete transitions in HS have identity reset maps, that is, the continuous variables

do not change values during discrete jumps. The state invariant Inv i for a mode i ∈ I is the

(topological) closure of the complement of the union of all guards on outgoing transitions; in other

words Inv i := Closure(Rn −
⋃

j∈I gij). Note that we are assuming here that a discrete transition

is taken as soon as it is enabled.This completes the definition of the hybrid system. The semantics

of hybrid systems that defines the set of reachable states of hybrid systems is standard [3].

A safety property is a set φS ⊆ Rn of states. We will overload φS to also denote the predicate

φS(X). A state x is said to be safe if and only if x ∈ φS (or equivalently, if φS(x) is true). A

hybrid system HS is safe with respect to φS if and only if all the reachable states in HS are safe.

Coming up with the correct guards for the mode switches such that all reachable states are

safe is challenging and our proposed technique aims at automating this task. While controller

synthesis has been widely studied, what differentiates our work is that we provide the designer

an option to provide some initial partial design. Specifically, we assume that the designer can

provide an over-approximations for the guards. In the extreme case, if transition from mode i to

mode j is disallowed, then the designer can set gij = ∅, and if the designer knows nothing about

the possibility of a transition from mode i to mode j, then she can set gij = Rn. The designer can

specify partial information by picking an intermediate set as the initial guard.

If SwL := 〈(gij)i,j∈Q〉 and SwL′ := 〈(g′ij)i,j∈Q〉 are two switching logics, then we use the

notation SwL′ ⊆ SwL to denote that g′ij ⊆ gij for all i, j ∈ Q.

We provide two variants of the problem definition.

Definition 8 (Switching logic synthesis problem v1). Given a multi-modal continuous dynamical

system (MDS), a switching logic SwL, and the safety specification φS , the switching logic synthesis

problem seeks to synthesize a new switching logic SwL′ such that

(1) SwL′ ⊆ SwL and

(2) the hybrid system HS := (MDS, SwL′) is safe with respect to φS .

125

Consider the case when the designer provides no information and sets all guards to Rn. In

this case, it is trivial to synthesize a safe hybrid system by just setting all switching guards to be

φS . The reader can check that this is a solution for the switching logic synthesis problem defined

above. This solution is, however, undesirable since the resulting hybrid system has only zeno

behaviors, i.e., an infinite number of transitions can be made in finite time (as we are assuming

that a transition is taken as soon as it is enabled).

In order to rule out systems with zeno behaviors, we use dwell time specifications. Dwell time

is a well-known concept in hybrid systems [52, 95, 96], where it has been used for verification.

We use dwell time as a requirement for synthesis. The user can use it to guarantee synthesis of

non-zeno and desirable systems.

The second problem definition below gives the designer a way to explicitly rule out solutions

that have zeno behavious using dwell time specifications. Specifically, the user can specify (both

lower and upper) bounds on the amount of time every trajectory should spend in a mode.

Definition 9 (Switching logic synthesis problem v2). Given a multi-modal continuous dynamical

system (MDS), a switching logic SwL, a sequence 〈te1, . . . , tek〉 of non-negative minimum-dwell

time requirements, a sequence 〈tx1, . . . , txk〉 of non-negative maximum-dwell time requirements,

and a safety specification φS , the switching logic synthesis problem seeks to synthesize a new

switching logic SwL′ such that

(1) SwL′ ⊆ SwL,

(2) the hybrid system HS := (MDS, SwL′) is safe with respect to φS , and

(3) whenever any trajectory of HS enters mode i, it stays in mode i for atleast tei and atmost txi

time units.

The designer can now force the synthesis of only nonzeno systems by setting tei to a strict

positive number for selected modes. Note that if the designer sets tei to zero and txi to ∞ for all

modes, then the second problem is the same as the first problem.

We can defined state and temporal formulas over the trajectories as discussed in Section 5.1.

A state formula can be evaluated on a trajectory as follows: a state formula φ evaluates to true on a

trajectory τ if τ(0) ∈ φ. We can combine state and temporal formulas using Boolean connectives

and evaluate them over trajectories using the natural interpretation of the Boolean connectives.

126

If Φ is a state or temporal formula, then we write

Mode i, I |= Φ

to denote that the formula Φ evaluates to true on all trajectories of the CDS in mode i that start

from a state in I .

6.1.3 Running Example

OFF (F)

ON (N)
COOLING (C)

HEATING (H)

gCF

gFH

gNC

gHN

ẋ = −0.002(x− 16)

Ṫ = 0

ẋ = −0.002(x− T)

Ṫ = 0.1

ẋ = −0.002(x− T)

Ṫ = 0

ẋ = −0.002(x− T)

Ṫ = −0.1

Figure 6.1: Thermostat

In this section, we present an overview of our approach using a thermostat controller [81] as

an example. The 4-mode thermostat controller is presented in Figure 6.1. The room temperature

is represented by x and the temperature of the heater is represented by T . The initial condition I

is given by T = 20◦C and x = 19◦C. The safety requirement φS is that the room temperature lies

between 18◦C and 20◦C, that is, φS is 18 ≤ x ≤ 20. (We omit the units in the sequel, for brevity.)

In the OFF mode, the temperature falls at a rate proportional to the difference between the

room temperature x and the temperature outside the room which is assumed to be constant at 16.

In the HEATING mode, the heater heats up from 20 to 22 and in the COOLING mode, the heater

cools down from 22 to 20. In the ON mode, the heater is at a constant temperature of 22. In the

HEATING, ON and COOLING mode, the temperature of the room changes in proportion to the

127

difference between the room temperature and the heater temperature. We need to synthesize the

four guards: gFH , gHN , gNC and gCF .

The guards must respect the safety property on the room temperature x as well as the spec-

ification on the heater temperature T in HEATING and COOLING mode. So, from the given

specifications, we know that

gFH ⊆ 18 ≤ x ≤ 20 ∧ T = 20

gHN ⊆ 18 ≤ x ≤ 20 ∧ T = 22

gNC ⊆ 18 ≤ x ≤ 20 ∧ T = 22

gCF ⊆ 18 ≤ x ≤ 20 ∧ T = 20 (6.1)

In order that the MDS remains safe, we need to ensure that all states reachable within each mode

are safe. Consider the OFF mode. We need to ensure that all traces starting from some point

in the initial condition I or gCF do not reach an unsafe state before reaching some state in gFH .

Reaching some state in gFH enables a transition out of the OFF mode. In other words, the first two

temporal properties in Equation 6.2 must be satisfied by all traces in the OFF mode. Similarly,

for HEATING mode, all traces starting from some state in x ∈ gFH must not reach an unsafe

state before reaching an exit state in gHN , as indicated by the third property below. For the other

two modes, similar temporal properties on the traces need to be enforced. Overall, the following

temporal assertions can be written for the four guards.

F, I |= φS W gFH

F, gCF |= φS W gFH

H, gFH |= φS W gHN

N, gHN |= φS W gNC

C, gNC |= φS W gCF (6.2)

Switching Logic Synthesis Problem v1: We can synthesize a safe switching logic by computing the

fixpoint of the above 5 assertions in Equation 6.2. We initialize using the equations in Equation 6.1

obtained from the safety and other user provided specifications which put an upper bound on the

guards. We then perform a greatest fixpoint computation: in each iteration, we remove states from

the guards which would lead to some unsafe state in a mode. Fixpoint computation leads to the

following guards which ensure that all states reachable are safe. We compute only till the second

128

place of decimal.

gFH : 18.00 ≤ x ≤ 19.90 ∧ T = 20

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.00 ≤ x ≤ 20.00 ∧ T = 20

The behavior of the synthesized thermostat for the first 1000 seconds from the initial state is

shown in Figure 6.2. The room temperature gradually rises from its initial value of 19 and then

stays between 19.90 and 20.

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
e
m

p
e
ra

tu
re

(c
e
ls

iu
s
)

Room temperature

Heater temperature

Figure 6.2: Behavior of Synthesized Thermostat

Switching Logic Synthesis Problem v2: Though the system synthesized above satisfies the

safety specification, it has the undesirable behavior of switching frequently. It keeps the room

temperature in the narrow interval of 19.90 ≤ x ≤ 20, even though the safety condition only

required it to be in 18 ≤ x ≤ 20. Ideally, designers are interested not only in safe systems but

in systems with good performance. The dwell time specification provides a mechanism to the

designer to guide our synthesis technique to solutions with good performance.

Minimum dwell-time of 100 seconds in OFF mode (case A): We add an extra constraint in the

specification of our synthesis problem that the system must spend atleast 100 seconds in the OFF

mode. This would lead to less frequent switching as well as minimize energy consumption since

heater remains off in the OFF mode.

129

Let us add a timer variable t with dynamics ṫ = 1 in every mode. Assume that t is reset to

0 during every discrete transition. To enforce the minimum dwell-time, the following constraint

must also be satisfied in addition to the fixpoint constraints in Equation 6.2.

F, I |= φS W (gFH ∧ t ≥ 100)

F, gCF |= φS W (gFH ∧ t ≥ 100) (6.3)

The guards obtained by computing the fixpoint of equations in (6.2) and (6.3) are as follows.

gFH : 18.00 ≤ x ≤ 19.90 ∧ T = 20 ∧ t ≥ 100

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.35 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.45 ≤ x ≤ 20.00 ∧ T = 20

Since t was a timer variable we had introduced, we next eliminate it from gFH . We do so by

removing states from gFH which are reachable from any state in gCF in less than 100 seconds.

These set of states are 18.01 < x ≤ 20 ∧ T = 20. Hence, the final guards that respect the safety

property as well as enforce a minimum dwell-time of 100 seconds in OFF mode are as follows.

gFH : 18.00 ≤ x ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.00 ≤ x ≤ 20.00 ∧ T = 20

The behavior of the synthesized thermostat for the first 1000 seconds from the initial state is

shown in Figure 6.3. We observe that the number of switches has gone down from 21 to 5 and the

room temperature now stays between 18.01 and 18.45.

Minimum dwell-time of 300 seconds in both OFF and ON mode (case B): We observe that

the design synthesized with minimum dwell-time of 100 seconds in OFF mode has relatively less

switching but still, we would like to reduce its switching frequency. Also, the room temperature

can safely lie between 18 and 20 but in the above synthesized system, it is restricted to a narrow

interval of 18.01 and 18.45. So, we increase the minimum dwell-time in OFF mode to 300 seconds.

We also enforce a minimum dwell-time of 300 seconds in ON mode to ensure room heats up to a

higher temperature within the safe interval.

130

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
e
m

p
e
ra

tu
re

(c
e
ls

iu
s
)

Room temperature

Heater temperature

Figure 6.3: Behavior of Synthesized Thermostat with Dwell Time Specification: Minimum dwell

time of 100s in OFF mode.

We now get the following fixpoint equations.

F, I |= φS W gFH ∧ (t ≥ 300)

F, gCF |= φS W gFH ∧ (t ≥ 300)

H, gFH |= φS W gHN

N, gHN |= φS W gNC ∧ (t ≥ 300)

C, gNC |= φS W gCF

Fixpoint computation yields the following guards.

gFH : 18.00 ≤ x ≤ 18.14 ∧ T = 20 ∧ t ≥ 300

gHN : 18.00 ≤ x ≤ 18.26 ∧ T = 22

gNC : 19.60 ≤ x ≤ 19.95 ∧ T = 22 ∧ t ≥ 300

gCF : 19.65 ≤ x ≤ 20.00 ∧ T = 20

We restrict gNC and gFH in the same way as (Case A) by computing the set of states reachable

from gHN and gCF in less than 300 seconds respectively. The final synthesized guards are as

follows.

gFH : 18.00 ≤ x ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ x ≤ 18.26 ∧ T = 22

gNC : 19.94 ≤ x ≤ 19.95 ∧ T = 22

gCF : 19.65 ≤ x ≤ 20.00 ∧ T = 20

131

The behavior of the synthesized thermostat for the first 1000 seconds from the initial state is

shown in Figure 6.4. We observe that the number of switches has gone down to 1 and the room

temperature is still within the safe interval of 18 and 20. This example shows how our synthesis

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
e
m

p
e
ra

tu
re

(c
e
ls

iu
s
)

Room temperature

Heater temperature

Figure 6.4: Behavior of Synthesized Thermostat with Dwell Time Specification: Minimum dwell

time of 300s in OFF and ON modes.

approach can be used to synthesize not only safe systems but also systems with desired perfor-

mance. Dwell-time properties can be used by the user to explore designs with better performance.

6.2 SCIDUCTIVE Approach

We are now ready to describe the procedure for solving the switching logic synthesis problem

in Definition 8.

Assume that we are given an MDS MDS, a safety property φS , and an over-approximation of

the guards SwL.

MDS := 〈X, I, f1, . . . , fk〉, φS ⊆ Rn, SwL := 〈(gij)i,j∈Q〉

We wish to solve the problem in Def. 8 for these inputs.

Let us say we find guards g′ij’s such that they have the following property: for every mode i,

if a trajectory enters mode i (via any of the incoming transitions with guard g′ji), then it remains

132

safe until one of the exit guards gik becomes true. This property can be written formally using the

weak until operator.

Mode1, I |= φSW(
∨

k∈Q

g′1k)

Mode i,
∨

j∈Q

g′ji |= φSW(
∨

k∈Q

g′ik) for i = 1..k (6.4)

If the guards in the switching logic SwL′ satisfy the collection of assertions in Equation 6.4,

then the resulting hybrid system is safe. The converse is also true.

Lemma 1. Given an MDS := 〈X, I, f1, . . . , fk〉, and a safety property φS , if SwL′ = 〈(g′ij)i,j∈Q〉

is a switching logic that satisfies all assertions in Equation 6.4, then the hybrid system HS :=

(MDS, SwL′) is safe with respect to φS .

Conversely, if there exists a switching logic SwL′ such that the hybrid system HS := (MDS, SwL′)

is safe with respect to φS , then there is a switching logic SwL′′ ⊆ SwL′ that satisfies the assertions

in Equation 6.4.

Proof. The first part follows directly from the definition of the semantics of the temporal operators

and our assumption that discrete transitions are taken as soon as they are enabled.

For the converse part, the desired SwL′′ := 〈(g′′ij)i,j∈Q〉 is obtained by intersecting the set Reach

of reachable states of HS with SwL′; that is, g′′ij := g′ij ∩ Reach. The reader can verify that SwL′′

will satisfy the assertions in Equation 6.4.

6.2.1 Switching Logic Synthesis for Safety

At a semantic level, we can solve the problem in Definition 8 by computing the fixpoint of the

assertions in Equation 6.4. This procedure is presented in Figure 6.5. The fixpoint iterations start

by picking the most liberal guards possible (which is the intersection of the safety property and the

user-specified bounds). In each successive step, the guards are made smaller by removing certain

“bad” states. Specifically, we remove from g′ji any state that reaches an unsafe state following the

dynamics of Mode i, before it reaches any exit guard. Thus, we reason locally about only one

mode at a time in each iteration. We stop when we reach a fixpoint.

133

SWITCHSYN1(MDS, φS, SwL):

1 // Input MDS := 〈X, I, f1, . . . , fk〉,

2 // Input φS ⊆ Rn,

3 // Input SwL := 〈(gij)i,j∈Q〉,

4 // Output synthesis successful/failed

5 for all i, j ∈ Q do g′ij := gij ∩ φS

6 repeat {

7 for all i ∈ Q do {

8 bad := {x | Mode i, {x} |= ¬(
∨

k g
′
ik)U¬φS}

9 for all j ∈ Q do g′ji := g′ji − bad

10 if (i == 1 and I ∩ bad 6= ∅)

11 return "synthesis failed"

12 }

13 } until (g′ij’s do not change)

14 if (I ⇒ φS)

15 return "synthesis successful"

16 else return "synthesis failed"

Figure 6.5: Procedure for solving the switching logic synthesis problem v1.

We state the soundness and completeness of the fixpoint algorithm for solving the switching

logic synthesis problem.

Lemma 2. If Procedure SWITCHSYN1 terminates with “synthesis successful” and g′ij are the

discovered guards, then these guards satisfy all the assertions in Equation 6.4.

Proof. If Procedure SWITCHSYN1 returns “synthesis successful”, then the condition in Step 10

must be false, that is, I ∩ bad = ∅. So, from the definition of bad , there does not exist x ∈ I such

that Mode1, {x} |= ¬(
∨

k g
′
1k)U¬φS . For all states x ∈ I ,

Mode1, {x} |= φSW(
∨

k∈Q

g′1k)

that is,

Mode1, I |= φSW(
∨

k∈Q

g′1k)

134

Also, if Procedure SWITCHSYN1 returns “synthesis successful”, the termination condition for

repeat loop at Step 13 must be true. So, for all i ∈ Q the g′ji = g′ji − bad for all j ∈ Q, that

is g′ji ∩ bad is empty. So, for all i ∈ Q, there does not exist any x ∈ g′ji for any j such that

Mode i, {x} |= ¬(
∨

k g
′
ik)U¬φS . So, for all i ∈ Q, for any state x in

∨

j∈Q g′ji,

Mode i, {x} |= φSW(
∨

k∈Q

g′ik)

that is,

Mode i,
∨

j∈Q

g′ji |= φSW(
∨

k∈Q

g′ik)

Thus, the discovered guards g′ij satisfy all the assertions in Equation 6.4.

Theorem 6 (Soundness of Procedure SWITCHSYN1). If Procedure SWITCHSYN1 terminates with

“synthesis successful” and g′ij are the discovered guards, then the hybrid system HS := (MDS, 〈(g′ij)i,j∈Q〉)

is safe for φS .

Proof. Using Lemma 1 and Lemma 2, we conclude that the hybrid system HS := (MDS, SwL′) is

safe with respect to φS .

Even when it terminates with success, note that the Procedure SWITCHSYN1 does not guarantee

that the synthesized hybrid system HS has nonzeno behaviors. In a post-processing step, one can

perform sufficient checks to guarantee the absence of zeno behaviors.

We can also show that our procedure is complete.

Theorem 7 (Completeness of Procedure SWITCHSYN1). If Procedure SWITCHSYN1 terminates

with “synthesis failed”, then there is no SwL′ ⊆ SwL such that the hybrid system HS := (MDS, SwL′)

is safe.

Proof. Assume that the claim is false and there is a switching logic SwL′ ⊆ SwL such that HS :=

(MDS, SwL′) is safe. By Lemma 1, there is a switching logic SwL′′ := Reach ∩ SwL′ that satisfies

Equation 6.4. Recall that Reach is the set of reachable states of HS. Let SwL′i, i = 0, 1, . . ., be

the intermediate switching logics computed by Procedure SWITCHSYN1. Clearly, SwL′0 ⊇ SwL′1 ⊇

135

SwL′2 ⊇ · · · and SwL′0 := SwL ∩ φS . Since Reach ⊆ φS by assumption, we can easily verify that

SwL′′ ⊆ SwL′0. We will inductively show that SwL′′ ⊆ SwL′i for all i.

Suppose SwL′′ ⊆ SwL′N . Suppose we go from SwL′N to SwL′N+1 by deleting the set bad from g′ji.

We need to show that SwL′′ ⊆ SwL′N+1. Let SwL′N := 〈(g′Nij)i,j∈Q〉 and let SwL′′ := 〈(g′′ij)i,j∈Q〉.

x ∈ bad

⇒ Modei, {x} |= ¬(
∨

k

g′Nik)U¬φS

⇒ Modei, {x} |= ¬(
∨

k

g′′ik)U¬φS ,∵ g′′ik ⊆ g′Nik

⇒ Modei, {x} |= ¬(φSW
∨

k

g′′ik)

⇒ Modei, {x} 6|= φSW
∨

k

g′′ik

⇒ x 6∈ g′′ji, ∵ SwL′′ satisfies Equation 6.4

x 6∈ I if i == 1, ∵ SwL′′ satisfies Equation 6.4

This shows that SwL′′ ⊆ SwL′N+1 and Procedure SWITCHSYN1 cannot return at Line 11. Since HS

is assumed to be safe, I ⇒ φS and hence Procedure SWITCHSYN1 cannot return at Line 16. Hence,

Procedure SWITCHSYN1 can only return “synthesis successful” contradicting our assumption.

6.2.2 Switching Logic Synthesis for Safety and Dwell-time

We now consider the switching logic synthesis problem in Definition 9. Recall that apart from

the bounds on the guards, the user can provide minimum and maximum dwell time requirements

for each mode. The goal is to synthesize a switching logic where the guards satisfy the specified

bounds and the trajectories of the resulting hybrid system satisfy the minimum and maximum

dwell time requirements.

Procedure SWITCHSYN2 for solving the problem in Definition 9 is outlined in Figure 6.6.

Procedure SWITCHSYN2 runs in three phases. In the first step, the new problem is transformed

to the old problem. In the second step, Procedure SWITCHSYN1 is used to solve the generated

problem. In the third step, the result is transformed back to get a result of the given problem.

136

Suppose that we are given

MDS := 〈X, I, f1, . . . , fk〉, φS ⊆ Rn, SwL := 〈(gij)i,j∈Q〉,

Te := {te1, . . . , tek}, Tx := {tx1, . . . , txk}

In the first step, the problem in Definition 9 is reduced to the previous problem. This reduction is

achieved by introducing a new state variable t such that

(1) the dynamics of t is given by ṫ = 1 in each mode

(2) the variable t is reset to 0 in each discrete transition

These two steps are performed by the function Add timer t. Now, the dwell time requirements

can be specified as bounds on the variable t. Specifically, the over-approximation SwL of the

guards can be updated as follows:

gij := gij ∧ (tei ≤ t ≤ txi)

In the second step, a call to Procedure SWITCHSYN1 is made, but with the updated SwL. Re-

call that Procedure SWITCHSYN1 essentially performs an iterative fixpoint computation to solve

Equation 6.4. Equation 6.4 assumes that discrete transitions do not reset any continuous vari-

ables. Since we now have discrete transitions that reset t to 0, we need a slightly modified Proce-

dure SWITCHSYN1 that solves the modified equations below:

Mode1, R(I) |= φSW
∨

k∈Q

g′1k

Mode i,
∨

j∈Q

R(g′ji) |= φSW
∨

k∈Q

g′ik for i = 1..k (6.5)

where R(S) is the set of states obtained by resetting the t-component of every state in the set S to

0. If φ is a formula denoting the set S, then R(φ) is ∃s(φ[s/t]∧ t = 0) (the notation φ[s/t] means

replace t by s in φ). Informally, R(φ) can be computed by first removing facts about t from φ and

then adding the new fact t = 0 to it.

The guards synthesized by Procedure SWITCHSYN1 will use the new state variable t. However

t was not part of our original problem specification. In the third step, the variable t is eliminated

from the guards synthesized by Procedure SWITCHSYN1. Suppose SwL′ := 〈(g′ij)i,j∈Q〉 is the

switching logic synthesized by Procedure SWITCHSYN1. We first project out the t-component

from SwL′ to get our first guess for the desired SwL. Then, for every mode i, and for each entry

137

guard, say g′ji, and for each exit guard g′ik, we compute pairs of states (x,x′) such that x ∈ gji,

x′ ∈ gik, there is a trajectory in mode i that starts from state 〈x, t = 0〉 and reaches 〈x′, t′〉 in time

t′, and 〈x′, t′〉 is not in g′ik. A behavior where mode i in entered in state x and exited in x′ was

disallowed in SwL′, but it is allowed in SwL (since SwL ignores t). Hence, we need to either remove

x from gji, or remove x′ from gik. Procedure SWITCHSYN2 procedure non-deterministically makes

this choice.

Removal of states from the guards can potentially cause the modified switching logic to be-

come unsafe. Hence, in the final step, we need to verify that the updated guards still satisfy Equa-

tion 6.4. This is performed by the function Verify. The function Verify can be implemented by

calling Procedure SWITCHSYN1 and checking its return value.

We can now state the soundness and completeness of Procedure SWITCHSYN2 for solving the

switching logic synthesis problem in Def. 9.

Theorem 8 (Soundness of Procedure SWITCHSYN2). If Procedure SWITCHSYN2 terminates with

“synthesis successful” and g′ij are the discovered guards, then the hybrid system HS := (MDS, 〈(g′ij)i,j∈Q〉)

is safe for φS and it satisfies the dwell time requirements specified by Te and Tx.

Proof. The final Verify check guarantees that HS is safe with respect to φS . The over-approximation

defined in Step 6 of Procedure SWITCHSYN2 ensures that the switching logic SwL′ synthesized by

Procedure SWITCHSYN1 on Line 8 satisfies the dwell time requirements. From Theorem 6, the

guards also satisfy the following.

Mi,
∨

j∈Q

g′ji |= φSW(
∨

k∈Q

g′ik)

From Step 16, it follows that

Mi,
∨

j∈Q

g′ji |= (¬
∨

k∈Q

g′ik)W(t ≥ tei)

So, the guards g′ij’s synthesized by Procedure SWITCHSYN2 satisfy the following assertions

Mi,
∨

j∈Q

g′ji |= (φS ∧ ¬
∨

k∈Q

g′ik)W(t ≥ tei)

for all i ∈ Q (6.6)

So, the synthesized guards define a switching logic that satisfies the requirements in Problem

Definition 9.

138

SWITCHSYN2(MDS, φS, SwL, Te, Tx):

1 // Input MDS, φS, SwL: As in Figure 6.5

2 // Input Te := 〈te1, . . . , tek〉

3 // Input Tx := 〈tx1, . . . , txk〉

4 // Output synth. successful/failed

5 MDSe := Add timer t(MDS)

6 SwLe := 〈(gij ∧ (tei ≤ t ≤ txi))i,j∈Q〉

7 // Call SWITCHSYN1 with the updated SwL

8 res := SWITCHSYN1(MDSe, φS, SwL
e)

9 if res == "synthesis failed"

10 return "synthesis failed"

11 else let SwL′ be the synthesized guards

12 // post processing step

13 for all i, j ∈ Q do

14 gij := {x | 〈x, t〉 ∈ g′ij}

15 for all i, j, k ∈ Q do {

16 bad:= {〈x,x′〉 | x ∈ gji ∧ x′ ∈ gik ∧ 〈x′, t′〉 6∈ g′ik

17 ∧Mi, {〈x, t = 0〉} |= trueU{〈x′, t′〉}}

18 Guess B1, B2 s.t. B1 × B2 ⊇ bad

19 gji := gji −B1; gik := gik − B2

20 }

21 if (Verify(MDS, φS, 〈(gij)i,j∈Q〉))

22 return "synthesis successful"

23 else return "synthesis failed"

Figure 6.6: Procedure for solving the switching logic synthesis problem v2.

We can also state and prove completeness of Procedure SWITCHSYN2.

Theorem 9 (Completeness of Procedure SWITCHSYN2). If, for every possible guess on Line 18,

the Procedure SWITCHSYN2 terminates with “synthesis failed”, then there is no SwL′ ⊆ SwL such

that the hybrid system HS := (MDS, SwL′) is safe and it satisfies the dwell time requirements.

139

Proof. The completeness of the algorithm follows from the non-deterministic guesses in Step 18.

The Procedure SWITCHSYN2 first transforms the problem to an extended MDS and uses Proce-

dure SWITCHSYN1 to compute the guards (Step 8). By Theorem 7, we know that Procedure SWITCH-

SYN1 is complete. So, if there is a switching logic that produces a MDS which is safe and satisfies

dwell-time properties, then guards computed in Step 8 will contain this switching logic. Hence,

the only place where completeness might be compromised is in the post-processing step. How-

ever, we make non-deterministic guesses for removing states from the guards computed by Pro-

cedure SWITCHSYN1 and hence, if a solution exists, we can always guess the correct sets to be

substracted from the computed guards in Step 18 such that we obtain the desired solution. This

gives us the desired completeness result.

Procedure SWITCHSYN2 is nondeterministic and involves making the correct guesses in the

postprocessing stage. We can get a deterministic version of the procedure by making arbitrary

guesses at each point. This deterministic version will be sound: whenever the procedure outputs

“synthesis successful”, the synthesis problem in Definition 9 indeed has a positive answer. How-

ever, it will not be complete: even when there is a positive answer for the synthesis problem,

the deterministic variant can fail to find the appropriate guards because it can make the wrong

choices. Some form of backtracking appears to be required. In practice, our implementation’s

heuristically-guided choices have always obtained a positive answer.

6.2.3 Guards from Simulations

A key step in the implementation of Algorithms SWITCHSYN1 and SWITCHSYN2 is the com-

putation of the bad state sets. In general, since the mode dynamics can be non-linear and quite

complex, exactly computing the bad sets through analytical means is computationally infeasible.

However, it is easier to perform numerical simulation of even complex, non-linear dynamics from

individual points. In particular, in many cases, numerical simulation can be used to check whether

a point x is a member of bad . Given such a membership check, our approach uses machine learn-

ing to compute an over-approximation of bad . While such over-approximation can result in a loss

of completeness, it is guaranteed to generate safe switching logic.

140

Machine Learning

Our procedure assumes the availability of a machine learning algorithm L that can learn any

target set from a concept class C. L uses an oracle that can label points x as being in the target

concept (i.e., x ∈ bad) or not in it (i.e. x 6∈ bad).

L is parameterized by C, a point we sometimes make explicit by writing LC rather than L.

Formally, given the following three inputs: (i) an over-approximation c ∈ C of the set bad ; (ii)

a simulation oracle that can label a point x as x ∈ bad or x 6∈ bad ; and (iii) (optionally) a sample

of examples P ⊆ bad (if they exist), LC must generate as output a set outL ∈ C with the following

properties: if bad ∈ C, then outL = bad ; otherwise, outL ⊇ bad .

For simplicity, we first describe below how L can be implemented when bad is an interval

constraint on a single variable. It is also possible to extend this method to conjunctions of interval

constraints on multiple variables. Conjunctions of interval constraints define hyperboxes.

Simulation Oracles

We assume the availability of the following two kinds of simulation-based oracles:

• Oracle SOA: This is an oracle that, given a state x, the dynamics of a mode Mode i, and state

sets φ1 and φ2, returns a Boolean answer indicating whether the following property holds:

Mode i, {x} |= (φ1Uφ2)

Note that definition of SOA is motivated by the need to compute bad in Line 8 of Procedure

SWITCHSYN1.

• Oracle SOB: This is an oracle that, given a state pair 〈x,x′〉, the dynamics of a mode Mode i,

extended-state set ψ, and state sets φ1 and φ2, returns a Boolean answer indicating whether the

following property holds:

x ∈ φ1 ∧ x′ ∈ φ2 ∧ 〈x′, t′〉 6∈ ψ

∧ Mode i, {〈x, 0〉} |= (trueU〈x′, t′〉)

The definition of SOB is motivated by the need to compute bad in Line 17 of Procedure

SWITCHSYN2.

141

Implementing these oracles involves performing a simulation from state x according to the (de-

terministic) dynamics in Mode i, checking whether the condition on the RHS of the U operator

has become true, and if not, checking that the LHS condition remains true. We assume the pres-

ence of a numerical simulator that can, for the mode dynamics of interest, select an appropriate

discretization of time so as to check the above formulas with the U operator.

Learning Interval Constraints

We now describe how one can implement L for learning an interval constraint over a sin-

gle variable x ∈ X . We give conditions under which the algorithm presented here satisfies the

conditions required of L as stated above.

An interval constraint is of the form x ∈ [li, ui] where li, ui ∈ Q. This constraint can also be

expressed using inequalities as li ≤ x ≤ ui.

Thus, the concept class I is the set of all constraints of the form x ∈ [li, ui] for any li, ui ∈ Q

and for any x ∈ X . The initial over-approximation c and the set outL generated by L are both

representable as an interval constraint. Algorithm LI to learn interval constraints is given below

in Procedure 15.

Algorithm LI begins by checking the end-points of c = [l, u] for membership in bad . If both

l and u are in bad , it simply outputs outL = c. Otherwise, it selects the minimum and maximum

elements xmin and xmax in the set of examples P ∈ bad . (If P is not provided as input, L will

randomly sample elements of outL until an example P ∈ bad is found).

We assume that the interval [l, u] can be suitably discretized so that the extreme points of bad are

members of this discretized set of points. Since guards are implemented using finite-precision

software, this assumption is not restrictive. L then performs binary search in the ranges [l, xmin]

and [xmax, u] until it finds two examples xl ∈ [l, xmin] and xu ∈ [xmax, u] such that xl, xu ∈ bad

where xl is the smallest such point and xu is the largest. It then outputs outL = [xl, xu].

It is easy to see that if bad ∈ C, then outL = bad .

However, if bad 6∈ C, then bad must be a disjoint union of intervals. Under the condition that

P contains one point from each interval in this union, we obtain outL ⊃ bad .

Alternatively, suppose that the dynamics within each mode i is such that each state variable

142

Procedure 15 Learning Interval Constraints

Input: An over-approximation c = [l, u] of the set bad ,

A simulation oracle that can label a point x as x ∈ bad or x 6∈ bad ,

P ⊆ bad

Precision ǫ

Output: The target concept bad which belongs to the class I

l = min(P)

u = max(P)

while l − l < ǫ do

m = l+l
2

if m ∈ bad then

l = m

else

l = m

end if

end while

while u− u < ǫ do

m = l+u
2

if m ∈ bad then

u = m

else

u = m

end if

end while

143

evolves monotonically with time – i.e., its value within that mode either increases with time or it

decreases, but not both. In this case, bad cannot be a disjoint union of intervals, and so outL =

bad .

Learning Hyperboxes

It is possible to extend the above procedure to learn interval constraints to learn a conjunction

of interval constraints, viz., where C is the set of all n-dimensional boxes in Rn. The extension is

based on identifying diagonally-opposite corners of the n-dimensional hyperbox. The diagonally

opposite corners of the hyperbox can be identified using binary search from the corners of the

starting overapproximate hyperbox, assuming points in the hyperbox can be labeled as safe/unsafe

(positive/negative) using the simulation oracle. The search terminates when we have found the

lower and upper diagonal corners as positive examples with their immediate outer neighbours as

negative examples; for further details, see the hyperbox learning problem discussed by Goldman

and Kearns [41]. In the case that bad is not of this form, an over-approximation is obtained by

applying the Procedure LI to each x ∈ X separately and taking the disjunction of the generated

intervals. The same technique can be used to directly learn good guards if good is known to be an

hyperbox.

Example of Learning Guards

We illustrate this with an example from our experiments. For the thermostat example in Fig-

ure 6.1, the room temperature x varies monotonically in the heating mode. We also start with an

over-approximation for the guard from off to heating mode gFH that gFH ⊆ 18 ≤ x ≤ 20 ∧ T =

20. We query the simulation oracle SOA at x = 18.00 and x = 20.00. SOA returns ‘yes’

for x = 18 indicating that the evolution from x = 18 is safe, but it returns ‘no’ for x = 20.

We can then perform a binary search for the revised end point of the interval. SOA also re-

turns ‘no’ for x = 19.96 and ‘yes’ for x = 19.95, then we know (e.g., by monotonicity) that

it will return ‘no’ for all x ∈ [19.96, 20]. So, we revise the over-approximation of the guard to

gFH ⊆ 18 ≤ x ≤ 19.95 ∧ T = 20 at the end of the first iteration.

144

Iter. lFH , uFH lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00
1 18.00, 19.95 18.00, 20.00 18.00, 19.95 18.00, 20.00
2 18.00, 19.95 18.00, 19.95 18.00, 19.95 18.00, 20.00
3 18.00, 19.90 18.00, 19.95 18.00, 19.95 18.00, 20.00
4 18.00, 19.90 18.00, 19.95 18.00, 19.95 18.00, 20.00

Table 6.1: Steps of Fixpoint Computation for Thermostat v1

6.3 Results and Experiments

We have implemented our technique using a Matlab-based numerical simulator. Here we

present three case studies to illustrate how our technique can be used in practice to synthesize

switching logic for multi-modal continuous dynamical systems. For the Thermostat Controller

described earlier in Section 6.1.3, we give only the intermediate steps of our approach. For two

other case studies, we describe synthesis problems and present its solution obtained by our tech-

nique.

6.3.1 Thermostat Controller

This example is described in Section 6.1.3 with the results we obtained. Here, we only briefly

explain how the final guards were obtained.

Table 6.1 shows the intermediate steps of the fixpoint computation, indicating how guards

shrink in each iteration of the algorithm. In the first iteration, the reduction of uFH and uNC to

19.95 occurs as the system must spend some time in the HEATING mode as T goes from 20 to

22, and during that period x cannot increase beyond 20. Thus, a simulation from x = 19.96 for

example, would reach an unsafe state. The subsequent iterations propagate the restrictions on the

exit guards of modes (e.g., uNC for ON) to apply to the entry guards to those modes (e.g., uHN).

Similarly, for the synthesis problems with dwell-time constraints, we show intermediate steps

of the fixpoint computation in Tables 6.2 and 6.3. Consider Table 6.2. One can observe the impact

of the min-dwell-time constraint in the value of lNC and lCF in iteration 1, where the need to spend

at least 100 sec. in the OFF mode causes the controller to switch to COOLING or OFF only when

145

Iter. lFH , uFH lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00
1 18.00, 19.95 18.00, 20.00 18.35, 19.95 18.45, 20.00
2 18.00, 19.95 18.00, 19.95 18.35, 19.95 18.45, 20.00
3 18.00, 19.90 18.00, 19.95 18.35, 19.95 18.45, 20.00
4 18.00, 19.90 18.00, 19.95 18.35, 19.95 18.45, 20.00

Table 6.2: Steps of Fixpoint Computation for Thermostat v2 Case A

Iter. lFH , uFH lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00
1 18.00, 19.95 18.00, 18.35 19.60, 19.95 19.65, 20.00
2 18.00, 18.14 18.00, 18.26 19.60, 19.95 19.65, 20.00
3 18.00, 18.14 18.00, 18.26 19.60, 19.95 19.65, 20.00

Table 6.3: Steps of Fixpoint Computation for Thermostat v2 Case B

the temperature is higher than 18.35. Similarly, for the last problem (see Table 6.3), imposing the

min-dwell-time constraint on the ON mode causes the lower bound lNC to be higher.

For the problem Thermostat v2 Case B, we can additionally restrict gNC and gFH using the

post-processing step in the algorithm described in Figure 6.6. The final synthesized guards are

then as follows.

gFH : 18.00 ≤ y ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ y ≤ 18.26 ∧ T = 22

gNC : 19.94 ≤ y ≤ 19.95 ∧ T = 22

gCF : 19.65 ≤ y ≤ 20.00 ∧ T = 20

6.3.2 Traffic Collision and Avoidance System

Consider a simplified version of the Traffic Collision and Avoidance System (TCAS) [103],

which seeks to ensure that two planes flying in opposite directions do not collide and maintain a

specified safe distance (200 meters in our example). It operates by guiding the planes through a

turn-left/fly-straight/turn-right maneuver as shown in the Figure 6.7. The three recovery maneu-

vers are indicated by corresponding mode names. We need to synthesize switching logic between

146

Mode S

Mode R

Mode N

Mode L

Mode N Mode N

Mode S

Mode N

Mode L
Mode R

Figure 6.7: Simplified Traffic Collision and Avoidance System

the modes such that the planes are always at least 200 meters apart at all times.

gLSgRN

Mode N (normal) Mode L (left)

Mode S (straight)
Mode R (right)

Ḃx = −100
Ȧy = 0
Ȧx = 100

Ḃy = 0

Ȧx = 50
Ȧy = −50
Ḃx = −50
Ḃy = 50

gSR

gNL
Ȧx = 50
Ȧy = 50
Ḃx = −50
Ḃy = −50

Ȧx = 100
Ȧy = 0
Ḃx = −100
Ḃy = 0

Figure 6.8: Simplified Traffic Collision and Avoidance System

The dynamics of the four modes of TCAS are given in Figure 6.7. We limit the movement of

the plane in 2 dimensions (X−Y) to simplify the example. Let (Ȧx, Ȧy), and (Ḃx, Ḃy) denote the

(X, Y) velocities of the two planes A and B. Let d(A,B) denote the Euclidean distance between

the two planes, that is, d(A,B) =
√

(Ax −Bx)2 + (Ay − By)2. Hence we have the following

safety property: d(A,B) ≥ 200. In addition to this safety property, we also require that the planes

at the end of the maneuver must regain their original orientation, that is, along the X-axis. So,

Ay = 0 and By = 0 when returning to the normal mode at the end of the maneuver. Further, we

would like to switch away from the straight mode only after the planes have crossed each other,

that is, Ax − Bx > 0. We initialize the guards as given in Equation 6.7 using the safety property

147

and the other specifications mentioned above.

g0NL : d(A,B) ≥ 200

g0LS : d(A,B) ≥ 200

g0SR : d(A,B) ≥ 200 ∧Ax −Bx > 0

g0RN : d(A,B) ≥ 200 ∧Ay = 0 ∧By = 0 (6.7)

Consider two cases for the synthesis problem - one with just the minimum dwell-time constraint

and the second with both the minimum and the maximum dwell-time constraint. This example

illustrates how designers can use maximum dwell-time constraints to synthesize systems with

desired behavior and not just safe behavior.

Case A: Only a minimum dwell-time requirement of 1 second in the straight mode is provided,

ensuring that the planes spend some time in the straight mode before turning again. The final

guards synthesized by computing fixpoint are as follows.

gNL : g0NL ∧Bx −Ax ≥ 283

gLS : g0LS ∧Ay −By ≥ 200

gSR : g0SR ∧Ax −Bx ≥ 117

gRN : g0RN ∧ (Ax −Bx ≥ 0 ∨Bx −Ax ≥ 283) (6.8)

The behavior of the system synthesized above is illustrated in Figure 6.9. The initial state is

Ax = 0, Ay = 0, Bx = 600, By = 0. X and Y denote the distance between the planes in X

and Y co-ordinates and D denotes the distance between the planes. The minimum value of D is

200m. The synthesized system is safe and satisfies the minimum dwell-time requirement but it

has the undesirable behavior of switching from normal mode to maneuver modes immediately at

the initial state. The planes could have delayed their entry into the maneuver mode.

Case B: In this case, we also provide a maximum dwell-time requirement of 1.1 second in the

straight mode. This ensures that the planes fly towards each other till it is necessary to switch to

maneuver modes. By specifying the maximum dwell-time requirement on the straight mode, we

effectively limit the time spend in maneuver and hence, force the system to stay in the normal

148

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

Time(sec)

D
is

ta
n
c
e
(m

)

X

Y

D

Figure 6.9: Sample Behavior of Synthesized TCAS

0 1 2 3 4 5 6 7 8
0

200

400

600

800

Time(sec)

D
is

ta
n
c
e
(m

)

X

Y

D

Figure 6.10: Sample Behavior of Synthesized TCAS with Max Dwell-time

mode for a longer time. The final guards synthesized by computing the fixpoint are as follows.

gNL : g0NL ∧ 303 ≥ Bx −Ax ≥ 283

gLS : g0LS ∧Ay −By ≥ 200 ∧Bx −Ax ≤ 103

gSR : g0SR ∧Ax −Bx ≥ 117

gRN : g0RN ∧ (Ax −Bx ≥ 0 ∨Bx −Ax ≥ 283) (6.9)

We again plot the behavior of the synthesized system with the same initial state as Case A in

Figure 6.10. The time spent in maneuver is now limited and we stay in normal mode till the

planes are 303 meters far from each other and then switch to the collision avoidance maneuver.

149

6.3.3 Automatic Transmission

Our next example is a 3-gear automated transmission system [81]. The transmission system

is illustrated in Figure 6.11; notice that the mode dynamics are non-linear. u and d denote the

throttle in accelerating and deaccelerating mode. The transmission efficiency η is ηi when the

system is in mode i.

ηi = 0.99e−(ω−ai)
2/64 + 0.01

where a1 = 10, a2 = 20, a3 = 30 and ω is the speed. The distance covered is denoted by θ.

The acceleration in mode i is given by the product of the throttle and transmission efficiency. For

simplicity, we fix u = 1 and d = −1. From an initial state of θ = 0, ω = 0, the system must reach

θ = θmax = 1700 with ω = 0. The synthesis problem is to find the guards between the modes

such that the efficiency η is high for speeds greater than some threshold, that is, ω ≥ 5 ⇒ η ≥ 0.5.

Also, ω must be less than an upper limit of 60. So, the safety property φS to be enforced would be

(ω ≥ 5 ⇒ η ≥ 0.5) ∧ (0 ≤ ω ≤ 60)

Neutral(N)

ω̇ = 0
θ̇ = 0

θ̇ = ω θ̇ = ω θ̇ = ω

G1U G2U G3U

gN1U

g1ND

g12U g23U

G1D G2D G3D

θ̇ = ω θ̇ = ω
ω̇ = η2(ω)d

ω̇ = η1(ω)u ω̇ = η2(ω)u ω̇ = η3(ω)u

g22U g33U

g32Dg21D

ω̇ = η3(ω)d

g11U

g11D

g22D g33D

θ̇ = ω

ω̇ = η(ω)d

Figure 6.11: Automatic Transmission System

Since the speed must reduce to 0 on reaching θmax, the guard g1ND is initialized to φS ∧ θ =

θmax ∧ ω = 0. All the other guards are initialized to φS .

150

The final set of guards obtained after fixpoint computation are as follows.

gN1U , g11U : 0 ≤ ω ≤ 16.70

g12U , g22U : 13.29 ≤ ω ≤ 26.70

g23U , g33U : 23.29 ≤ ω ≤ 36.70 , g33D : 23.29 ≤ ω ≤ 36.70

g32D, g22D : 13.29 ≤ ω ≤ 26.70

g21D, g11D : 0 ≤ ω ≤ 16.70 , ; g1ND : θ = θmax ∧ ω = 0 (6.10)

We now impose a minimum dwell-time of 5 seconds on all the six gear modes. The guards

obtained by computing the fixpoint are as follows.

gN1U : ω = 0 , g11U : ω = 0

g1ND : θ = θmax ∧ ω = 0 , g12U : 13.29 ≤ ω ≤ 23.42

g11D : 1.31 ≤ ω ≤ 16.70 , g23U : 26.70 ≤ ω ≤ 33.42

g22D : ω = 26.70 , g33D : ω = 36.70

g32D : 16.58 ≤ ω ≤ 26.70 , g33U : 23.29 ≤ ω ≤ 33.42

g21D : 1.31 ≤ ω ≤ 16.70 , g22U : 13.29 ≤ ω = 23.42 (6.11)

The plot of the behavior of the transmission system when it is made to switch from Neutral mode

through the six gear modes and back to the Neutral mode is shown in Figure 6.12. The efficiency

η is always greater than 0.5 when the speed is higher than 5 and we spend atleast 5 seconds in the

six gear modes. Starting from θ = 0, ω = 0, the synthesized system reaches θ = θmax with ω = 0.

6.3.4 Train Gate Controller

The example is a four mode train-gate controller system illustrated in Figure 6.13. The purpose

of the train gate controller is to close the gate when the train approaches and to open the gate when

the train has passed.

The system has two variables {d, a} where d is the distance of the train from the gate and a

is the angle of the gate. The distance d is negative when the train is approaching the train and

is positive when the train has passed. The speed of the train is constant, ḋ = 40 m/s. The gate

151

0 20 40 60 80 100
0

0.5

1

E
ff
ic

ie
n
c
y

Time

0 20 40 60 80 100
0

20

40

S
p
e
e
d

Efficiency η

Speed ω

G1U G2U G3U G3D G2D G1D

Figure 6.12: Transmission efficiency and speed with changing gears

Mode O (open) Mode D (closing)

Mode C (closed)
Mode U (opening)

ȧ = 0

gOD

gDC

gCU

gUO

ḋ = 40 ḋ = 40

ḋ = 40ḋ = 40

ȧ = 0

ȧ = −15

ȧ = 15

Figure 6.13: Train Gate Control System

152

closes or opens at a constant rate of ȧ = 15 degrees/sec. The controller has four modes - open (O),

closing (D), closed (C) and opening (U), that is, Q = {O,D,C, U}. The continuous dynamical

system in each mode are described by a set of ordinary differential equations as illustrated in

Figure 6.13.

Starting from an open gate mode, the controller will eventually start closing the gate when the

train approaches and eventually train would be closed. The gate would start opening after the train

has passed and would reach the open mode. The gate closes at 0 degree and the gate opens to 90

degrees. So, closing mode takes a from 90 degrees to 0 degree and the opening mode takes a from

0 degree to 90 degrees. The mode switch from mode C happens only when the train has atleast

reached the gate, that is, d ≥ 0.

In order for the above system to be safe, we would like to enforce the following safety property

φS

−50 < d < 50 ⇐⇒ a = 0

that is, when the train is within 50 metres from the gate, the gate remains closed. We need to

synthesize the switching logic SwL such that the above property is ensured in all reachable states.

Case A: We initialize the guards using the safety property and other constraints on mode

switches mentioned above.

gOD : φS , gDC : φS ∧ (a = 0)

gCU : φS ∧ d ≥ 0 , gUO : φS ∧ (a = 90) (6.12)

Solving the fixpoint equations yields the following guards.

gOD : d ≤ −290 , gDC : d ≤ −50 ∧ (a = 0)

gCU : d ≥ 50 , gUO : (d ≥ 50 ∨ d ≤ −290) ∧ (a = 90) (6.13)

The behavior of the system is shown in Figure 6.14.

Case B: We consider a max-dwell time of 5 seconds in the close mode C. The

gOD : φS , gDC : φS ∧ (a = 0)

gCU : φS ∧ t ≤ 5 ∧ d ≥ 0 , gUO : φS ∧ (a = 90) (6.14)

153

0 10 20 30 40
−1000

0

1000

Time

0 10 20 30 40

−100

0

100

Distance

Angle

Figure 6.14: Sample Behavior of Synthesized Gate Controller

where t denotes the time spent in the closed mode C. The guards synthesized using fixpoint

computation are as follows. The behavior of the system is shown in Figure 6.15.

gOD : (d ≤ −290 ∧ d ≥ −390)

gDC : (d ≤ −50 ∧ d ≥ −150) ∧ (a = 0)

gCU : d ≥ 50

gUO : (d ≥ 50 ∨ d ≤ −290) ∧ (a = 90) (6.15)

0 10 20 30 40
−1000

0

1000

Time

0 10 20 30 40

−100

0

100
Distance

Angle

Figure 6.15: Sample Behavior of Synthesized Gate Controller with Max-dwell Time

154

6.3.5 Performance

We summarize the number of iterations needed to reach the fixed point and total runtime

in Table below. The total runtime includes the time to obtain simulation traces from different

initial states, time to label these traces as good or bad and the time to synthesize the new guards

cumulative over all the iterations.

Example # of Iterations Runtime

(seconds)

Thermostat Controller

v1 5 21.6

v2 Case A 6 26.2

v2 Case B 6 25.7

TCAS

Case A 4 55.3

Case B 5 59.1

Automatic Transmission 6 83.6

Train Gate Controller

Case A 3 22.5

Case B 4 28.3

6.4 Discussion

We make some remarks on the synthesis procedure. First, note that restricting outL to be an

interval constraint does not require the final guards to also be of this form, since the designer is

free to specify a starting switching logic using arbitrary expression syntax. The restriction only

means that the set of points removed from the guards at each iteration of the fixpoint computation

must be representable as an interval constraint to avoid losing completeness by removing too many

points. As we demonstrate in our experimental results, we are able to synthesize interesting and

non-trivial switching logic in spite of this restriction to the guard syntax.

We also observe that to employ the binary search procedure, we need to discretize the domains

of variables in X . In general, such discretization is induced by a corresponding discretization of

time chosen by the numerical simulator. Since controllers are in any case implemented using

finite-precision computer arithmetic, we believe this finitization of intervals is not a restriction in

practice.

155

6.5 Conclusion

We presented a new approach for synthesizing safe hybrid systems that uses numerical simu-

lations and fixpoint computation. The user can guide synthesis by specifying dwell time require-

ments and the form of the guards. In the following chapter, we extend our SCIDUCTION based

approach to automated synthesis of switching logic for quantitative performance properties.

156

Chapter 7

Synthesis of Switching Logic for

Performance Specifications

Given a multi-modal dynamical system, optimal switching logic synthesis involves generating

conditions for switching between the system modes such that the resulting hybrid system satis-

fies a quantitative specification. In this chapter, we formalize and solve the problem of optimal

switching logic synthesis for quantitative specifications over long run behavior. We present an ap-

proach for specifying quantitative measures using reward and penalty functions, and illustrate its

effectiveness using several examples. Each trajectory of the system, and each state of the system,

is associated with a cost. Our goal is to synthesize a system that minimizes this cost from each

initial state. We present an automated technique to synthesize switching logic for such quantitative

measures. Our algorithm works in two steps. For a single initial state, we reduce the synthesis

problem to an unconstrained numerical optimization problem which can be solved by any off-

the-shelf numerical optimization engine. In the next step, optimal switching condition is learnt

as a generalization of the optimal switching states discovered for each initial state. We prove the

correctness of our technique and demonstrate the effectiveness of this approach with experimental

results.

157

7.1 Introduction

As discussed in Chapter 5, multi-modal dynamical systems (MDS) is a physical system (plant)

that can operate in different modes. The dynamics of the plant in each mode is known. In order

to achieve safe and efficient operation, one needs to design the controller for the plant (typically

implemented in software) that switches between the different operating modes. Designing correct

and optimal switching logic can be tricky and tedious for a human designer.

In this chapter, we consider the problem of synthesizing the switching logic for an MDS so

that the resulting system is optimal. Optimality is formalized as minimizing a quantitative cost

measure over the long-run behavior of the system. Specifically, we formulate cost as penalty per

unit reward motivated by similar cost measure in Economics. For a given initial state, the optimal

long-term behavior corresponds to a trajectory of infinite length with infinite number of mode

switches which has minimum cost. So, discovering the optimal long-term behavior requires

• discovering this infinite chain of mode switches, and

• the switching states from one mode to another.

Thus, this problem would seem to involve optimization over an infinitely-long trajectory, involving

an unbounded set of parameters. However, we reduce this problem to optimization over bounded

set of parameters representing the repetitive long-term behavior. The key insight is that the long-

term cost is essentially the cost of the repetitive part of the behavior. We only require the user to

provide a guess of a number of switches which could suffice to reach the repetitive behavior from

an initial state. The system stays in repetitive behavior after reaching it and hence, the user can

pick any large enough bound. We consider the super-sequence of all possible mode sequences with

the given number of mode switches and use the times spent in each mode in this super-sequence

as the parameters for optimization. If the time spent in a particular mode is zero, the mode is

removed from the optimum mode sequence. The optimization problem is then formulated as an

unconstrained numerical optimization problem which can be solved by off-the-shelf tools. Solving

this optimization problem yields the time spent in each mode which in turn gives us the optimum

mode switching sequence. So, to summarize, for a given initial state, we obtain a sequence of

switching states at which mode transitions must occur so as to minimize the long-run cost. The

final step involves generalizing from a sample of switching states to a switching condition, or

158

guard. Given an assumption on the structure of guards, an inductive learning algorithm is used

to combine switching states for different initial states to yield the optimum switching logic for

the entire hybrid system. This combination of structure assumption on guards, deduction and

inductive learning is another instance of the SCIDUCTION approach proposed in the thesis.

7.1.1 Contributions

To summarize, the novel contributions of this chapter are as follows:

• We formalize the problem of synthesizing optimal switching logic by introducing the notion of

long-run cost which needs to be minimized for optimality (Section 7.1.2).

• The synthesis problem requires optimization over infinite trajectories and not just a finite time

horizon. We show how to reduce optimization over an infinite trajectory to an equivalent opti-

mization over a bounded set of parameters representing the limit behavior. (Section 7.2);

• We present an algorithm to solve this optimization problem for a single initial state based on

unconstrained numerical optimization (Section 7.2.2). Our algorithm makes no assumptions

on the intra-mode continuous dynamics other than locally-Lipschitz continuity and relies only

on the ability to accurately simulate the dynamics, making it applicable even for nonlinear

dynamics, and

• An inductive learning algorithm based on randomly sampling initial states is used to generalize

from optimal switching states for individual initial states to an optimal switching guard for the

set of all initial states. This generated switching logic is guaranteed to be the true optimal

switching logic with high probability (Section 7.2.3).

Experimental results demonstrate our approach on a range of examples drawn from embedded

systems design (Section 7.3).

7.1.2 Problem Definition

As in the previous chapter, we model a hybrid system as a combination of a multimodal dy-

namical system and a switching logic.

159

Definition 10. Multimodal Dynamical System (MDS). A multimodal dynamical system is a tu-

ple 〈Q,X, f, Init〉, where Q := {1, . . . , N} is a set of modes, X := {x1, . . . , xn} is a set of

continuous variables, f : Q × R|X| 7→ R|X| defines a vector field for each mode in Q, and

Init ⊆ Q× RX is a set of initial states. The state space of such an MDS is Q× RX . A function

qx : R+ 7→ (Q × RX) is said to be a trajectory of this MDS with respect to a sequence t1, t2, . . .

of switching times if

(i) qx(0) ∈ Init and

(ii) for all i and for all t such that ti < t and t < ti+1, it is the case that q(t) = q(ti) and

dx(t)

dt
= f(q(t),x(t)), (7.1)

where q and x denote the projection of qx into the mode and continuous state components. The

function x is continuous. The switching sequence is the sequence of modes q(t1),q(t2),

If MDS is a multimodal dynamical system, then its semantics, denoted [[MDS]], is the set of its

trajectories with respect to all possible switching time sequences.

Definition 11. Switching Logic (SwL). A switching logic for a multimodal system MDS :=

〈Q,X, f, Init〉 is a tuple 〈(gq1q2)q1,q2∈Q〉 where gq1q2 ⊆ RX is the guard defining the switch

from mode q1 to mode q2.

Given a multimodal system and a switching logic, we can now define a hybrid system by

considering only those trajectories of the multimodal system that are consistent with the switching

logic.

Definition 12. Hybrid System (HS). A hybrid system is a tuple 〈MDS, SwL〉 consisting of a mul-

timodal system MDS := 〈Q,X, f, Init〉 and a switching logic SwL := 〈(gq1q2)q1,q2∈Q〉. The state

space of the hybrid system is the same as the state space of MDS. A function qx : R+ 7→ (Q×RX)

is said to be a trajectory of this hybrid system if there is a a sequence t1, t2, . . . of switching times

such that

(a) qx is a trajectory of MDS with respect to this switching time sequence and

(b) setting t0 = 0, for all ti in the switching time sequence with i ≥ 1, x(ti) ∈ gq(ti−1)q(ti) and for

all t such that ti−1 < t < ti, x(t) 6∈ ∪q∈Qgq(ti−1)q.

Discrete jumps are taken as soon as they are enabled and they do not change the continuous

variables. For the notion of a trajectory to be well-defined, guards are required to be closed sets.

160

The semantics of a hybrid system HS, denoted [[HS]], is the collection of all its trajectories as defined

above.

Quantitative Measures for Hybrid Systems

Our interest is in automatically synthesizing hybrid systems which are optimal in the long-

run. Quantitative measure for a hybrid system HS is defined in Section 5.1. To recapitulate, a

quantitative measure on a hybrid system HS is defined by extending HS with new continuous state

variables. The new continuous variables compute “rewards” or “penalties” that are accumulated

over the course of a hybrid trajectory. We also allow the new variables to be updated during

discrete transitions, which enables us to penalize or reward discrete mode switches.

Definition 13. Performance Metric. A performance metric for a given multimodal system MDS :=

〈Q,X, f, Init〉 is a tuple 〈PR, fPR, update〉, where PR := P ∪ R is a finite set of continuous

variables (disjoint from X), partitioned into penalty variables P and reward variables R, fPR :

Q × RX 7→ RPR defines the vector field that determines the evolution of the variables PR, and

update : Q×Q× RPR 7→ RPR defines the updates to the variables PR at mode switches.

Given a trajectory qx : R+ 7→ (Q × RX) of a multimodal or hybrid system with mode-

switching time sequence t1, t2, . . ., and given a performance metric, we define the extended tra-

jectory qxe : R+ 7→ (Q× RX × RPR) with respect to the same mode-switching time sequence as

any function that satisfies qxe(0) = (q(0),x(0),~0) and qxe(t) = (q(t),x(t),PR(t)), where PR

satisfies:
dPR(t)

dt
= fPR(qx(t)) for all t : ti < t < ti+1 and,

PR(ti) = update(q(ti−1),q(ti), lim
t→t−i

PR(t))

.

The cost of a trajectory qx is defined using its corresponding extended trajectory qxe as

cost(qx) := lim
t→∞

|P |
∑

i=1

Pi(t)

Ri(t)
(7.2)

where Pi and Ri are the projection of qxe onto the i-th penalty variable and i-th reward variable,

and |P | = |R|.

161

We are only interested in trajectories where the above limit exists and is finite. We will further

define cost of a part of a trajectory from time instant t1 to a time instant t2 (t2 > t1) as follows:

cost(qx, t1, t2) :=

|P |
∑

i=1

Pi(t2)−Pi(t1)

Ri(t2)−Ri(t1)
(7.3)

where Pi and Ri are components of PR as before.

As the definition of cost indicates, we are interested in the long-run average (penalty per unit

reward) cost rather than (penalty or reward) cost over some bounded/finite time horizon.

Optimal Switching Logic Synthesis

Definition 14. Optimal Switching Synthesis Problem. Given a multimodal system MDS =

〈Q,X, f, Init〉 , and a performance metric, the optimal switching logic synthesis problem seeks

to find a switching logic SwL∗ such that the cost of a trajectory from any initial state in the result-

ing hybrid system HS∗ := HS(MDS, SwL∗) is no more than the cost of corresponding trajectory from

the same initial state in an arbitrary hybrid system HS := HS(MDS, SwL) obtained using an arbi-

trary switching logic SwL, that is, ∀(x, q) ∈ Init . cost(qx∗) ≤ cost(qx) where qx∗(0) =

qx(0) = (x, q),qx ∈ [[HS∗]],qx ∈ [[HS]]

We will assume, without loss of any generality, that we are given an over-approximation

of the switching logic SwLover := 〈(goverqq′)q,q′∈Q〉. In this case, the optimal synthesis problem

seeks to find a switching logic SwL∗ := 〈(g∗qq′)q,q′∈Q〉 that also satisfies the constraint that g∗qq′ ⊆

goverqq′ for all q, q′ ∈ Q, which is also written in short as SwL∗ ⊆ SwLover .

The over-approximation SwLover of the switching set can be used to restrict the search space

for switching conditions. The set goverqq′ can be an empty set if switches are disallowed from q to

q′. The set goverqq′ can be RX if there is no restriction on switching from q to q′.

7.1.3 Running Example

Let us consider a simple three mode thermostat controller as our running example. The

multimode dynamical system describing this system is presented in Figure 7.1. The thermo-

stat controller is described by the tuple 〈Q,X, f, Init〉 where Q = {OFF, HEAT, COOL}, X =

162

{temp, out}, f is fOFF : ˙temp = −0.1(temp − out) in mode OFF, fHEAT : ˙temp = −0.1(temp −

out) + 0.05(80 − temp) in mode HEAT and fCOOL : ˙temp = −0.1(temp − out) − 0.15(temp) in

mode COOL, and Init = OFF × [18, 20] × [12, 26]. For simplicity, we assume that the outside

temperature out does not change.

+0.15(temp)

˙temp = −0.1(temp− out)
+0.05(80− temp)

HEAT

gFH
gHFgCF

gFC

COOL

˙temp = −0.1(temp− out)
OFF

˙temp = −0.1(temp− out)

˙discomfort = (temp− 20)2, ˙fuel = (temp− out)2

˙swTear = 0, ˙time = 1

update(M, M′, swTear) = swTear+ 0.5

for any two different modes M, M′ in Q

Figure 7.1: Thermostat Controller

The performance requirement is to keep the temperature as close as possible to the target

temperature 20 and to consume as little fuel as possible in the long run. We also want to minimize

the wear and tear of the heater caused by switching. The performance metric is given by the

tuple 〈PR, fPR, update〉, where penalty variables P = {discomfort, fuel, swTear} denote the

discomfort, fuel and wear and tear due to switching and reward variables R = {time} denote the

time spent. The evolution and update functions for the penalty and reward variables is shown in

Figure 7.1. We need to synthesize the guards such that the following cost metric is minimized.

Since the reward variable is the time spent, minimizing this metric means minimizing the average

discomfort, fuel cost and wear and tear of the heater. We give a higher weight (10) to discomfort

than fuel cost and wear and tear.

lim
t→∞

10× discomfort(t) + fuel(t) + swTear(t)

time(t)

163

7.2 SCIDUCTIVE Approach

In this section, we present a SCIDUCTION based approach for automated synthesis of optimal

switching logic which minimizes long-run cost. We use numerical optimization to discover opti-

mal switching points for a single initial state and then, sample over the initial states to inductively

infer the optimal switching logic.

Given a multi-modal system MDS = 〈Q,X, f, d, Inv, Init〉, an initial state (q0,x0) ∈ Init and

the performance metric tuple (Y, fY , update), we need to find the switching times t1, t2, . . . and

the mode switching sequence q such that the corresponding trajectory qx is of minimum cost.

min
q,t1,t2,...

cost(qx) subject to

(1)[Init] : qx(0) = (q0,x0) (2)[Guards] : ∀i x(ti) ∈ goverq(i)q(i+1)

(3)[Time elapse] : ∀t . ti < t < ti+1 . q(t) = q(ti), i = 1, 2, . . . ;

(4)[Flow] : ∀t
dx(t)

dt
= f(q(t),x(t)) (7.4)

Since the switching sequence t1, t2, . . . could be of infinite length, it is not a-priori evident how

to solve the above problem. In the rest of the section, we formulate an equivalent optimization

problem with finite number of switching times as variables.

7.2.1 Optimization over Finite Parameters

We now show how to reduce the above optimization problem with infinite number of switching

times as parameters to an optimization problem with finite parameters. Let trajectory segment

qx[tf,te] of a trajectory qx of length L = tf − te be the restriction of the trajectory to tf ≤ t ≤ te,

that is, qx[tf,te] : T 7→ (Q × RX) where T = [tf, te] ⊆ R+ and qx[tf,te](t) = qx(t) for tf ≤

t ≤ te. The switching times of the trajectory segment is a finite sub-sequence tm, tm+1, . . . tn of

the switching times t1 . . . , tm, . . . , tn, . . . of the trajectory qx and tm−1 < tf ≤ tm and tn ≤ te <

tn+1. The special case of a trajectory segment is a trajectory prefix in which the trace starts at time

ts = 0.

Our goal is to minimize the lifetime cost. The lifetime cost is dominated by the the cost of the

limit behavior of the system. We are only interested in the following stable limit behaviors when

the lifetime cost is defined by the limit in Equation 7.2.

164

• asymptotic: for any ǫ, there exists a time tǫ after which the trajectory gets asymptotically

ǫ-close to some state (qT ,xT), ||qx(t) − (qT ,xT)||
2 < ǫ for all t ≥ tǫ where ||., .|| denotes

the Euclidean norm, or

• converging: there exists a time tconv after which the trajectory converges, qx(t) = qx(tconv)

for all t ≥ tconv, or

• cyclic: there exists a time tcyc after which the trajectory enters a cycle with period L,

qx(t) = qx(t+ kP) for all t ≥ tcyc and k ≥ 1.

In all these cases, we can reason about the long-run cost by considering some finite, but ar-

bitrarily long, trajectory prefixes. Suppose the trajectory qx is asymptotic to some hybrid state

qx∞ = (q∞,x∞). In this case, we assume that the penalty and reward variables PR also asymp-

totically approach some values PR∞ = (P∞, R∞). Now consider the trajectory prefix qx[0,te]. We

have

cost(qx) =
∑

i

P∞
i

R∞
i

and

cost(qx[0,te]) =
∑

i

Pi(te)

Ri(te)
<

∑

i

P∞
i + ǫ

R∞
i − ǫ

< cost(qx) + δǫ

Hence, by choosing te appropriately, we can find a trajectory prefix whose cost is arbitrarily close

to the cost of the asymptotic trajectory.

Any repetitive trajectory qx can be decomposed into a finite prefix qxpref = qx[0,tp] followed

by a trajectory segment qxrep = qx[tp,tP] repeated infinitely. We say

qx = qxpref . (qxrep)
ω

when ∀t ≤ tp . qx(t) = qxpref (t) and ∀t ≥ tp . qx(t) = qxrep(tp + r) where r = (t − tp)

mod L and L = tP − tp. The case when the trajectory converges to some hybrid state can be

treated in the same way as a repetitive trajectory.

In Lemma 3 and Theorem 10, we summarize how cost converges to a limit for trajectories

with repetitive limit behavior.

Lemma 3. For each repetition of the segment qxrep = qx[tp,tP], the change in penalty and reward

variables is constant, that is, for P = tP − tp.

165

∀k ≥ 1 . Pi(tp+ kP)− Pi(tp+ (k − 1)P)

= Pi(tp+ P)− Pi(tp) = ∆Pi

∀k ≥ 1 . Ri(tp+ kP)−Ri(tp+ (k − 1)P)

= Ri(tp+ P)−Ri(tp) = ∆Ri

Proof. The change in penalty and reward variables is given by the evolution function fPR and the

update on switch function update. We know that qxrep is repetitive and so, qx(tp + kP + t) =

qx(tp+ t) for all t < tP − tp and k ≥ 1 and hence,

fPR(qx(tp+ kP + t)) = fPR(qx(tp+ t))

Also, for any mode switch time tp ≤ ti ≤ tP , t′i = ti + kP is also a switch time because hybrid

states at ti and t′i are the same. Further,

update(q(ti−1), q(ti), lim
t→t−i

PR(t))

= update(q(t′i−1), q(t
′
i), lim

t→t′−i

PR(t))

So, integrating fPR over continuous evolution and applying update function at mode switches,

we observe that

Pi(tp+ kP)− Pi(tp+ (k − 1)P) = Pi(tp+ P)− Pi(tp)

= ∆Pi

Ri(tp+ kP)−Ri(tp+ (k − 1)P) = Ri(tp+ P)−Ri(tp)

= ∆Ri

Theorem 10. For a trajectory qx which can be decomposed into qxpref . (qxrep)
ω, the cost of the

trajectory is equal to the cost of the repetitive segment qxrep, that is, cost(qx) = cost(qxrep).

166

Proof.

cost(qx) := lim
t→∞

|P |
∑

i=1

Pi(t)

Ri(t)
[Equation 7.2]

= lim
t→∞

|P |
∑

i=1

Pi(tp) +Pi(t)−Pi(tp)

Ri(tp) +Ri(t)−Ri(tp)

= lim
k→∞

|P |
∑

i=1

Pi(tp) + k∆Pi

Ri(tp) + k∆Ri

[Lemma 3]

=
∆Pi

∆Ri

[Pi(tp),Ri(tp) are finite]

=

|P |
∑

i=1

Pi(tP)−Pi(tp)

Ri(tP)−Ri(tp)

= cost(qx, tp, tP) [Equation 7.3]

= cost(qxrep) [Definition of qxrep]

Using Theorem 10, the optimization problem in Equation 7.4 is equivalent to the following

optimization problem. Intuitively, if the repetitive part of the trajectory and the finite prefix before

the repetitive part have finite cost, then the long run cost of a trajectory in the limit is the cost of

the repetitive part of the trajectory. More generally, to also handle the case when the (optimal)

trajectory is asymptotic, we can replace the cyclicity requirement, qx(tp) = qx(tP), in the opti-

mization problem by the weaker requirement that the state qx(tP) at time tP be very “close” to

the state qx(tp) at time tp; see also Section 7.2.2.

min
q,t1,t2,...

cost(qx) subject to (7.5)

(1)[Init] : qx(0) = (q0,x0) (2)[Guards] : ∀i x(ti) ∈ goverq(i)q(i+1)

(3)[Time elapse] : ∀t . ti < t < ti+1 . q(t) = q(ti), i = 1, 2, . . . ;

(4)[Flow] : ∀t
dx(t)

dt
= f(q(t),x(t))

(5)[Repetitive Trajectory] : qx = qxpref . (qxrep)
ω

(6)[Repetitive Time] : qxpref = qx[0,tp], qxrep = qx[tp,tP]

where 0 ≤ t1 ≤ . . . tn ≤ tP, 0 ≤ tp < tP

167

7.2.2 Numerical Optimization

In this section, we present an algorithm to solve the above optimization problem. The key

idea is to construct a scalar function F (q, t1, t2, . . . , tn, tp, tP) where q is the switching mode se-

quence; t1, t2, . . . , tn are the switching times, and tp, tP are the times denoting repetitive behavior,

such that the minimum value of F is attained when the switching mode sequence and switching

times correspond to the trajectory qx with minimum long-run cost, and qx[tp,tP] is the repetitive

part of the trajectory.

Once we have constructed F , we need to minimize F . Apart from q, all arguments of F

are real-valued. Suppose we fix q and let Fq(t1, t2, . . . , tn, tp, tP) denote the function F with

fixed mode sequence q. Now Fq is a function from multiple real variables to a real, and hence

(approximate) minimization of F can be performed using unconstrained nonlinear numerical

optimization techniques [17]. These techniques only require that we are able to evaluate F once

its arguments are fixed. This we accomplish using numerical simulation of the multimodal system.

Defining F

The optimization problem in Equation 7.5 is a constrained optimization problem. The con-

straint qx = qxpref . (qxrep)
ω requires identifying a trajectory qx starting from the given

initial state (q0,x0) such that it enters repetitive behavior at time tp, and q(tp) = q(tP) and

x(tp) = x(tP) where tp < tP . We call this constraint the repetition constraint. A standard tech-

nique for solving some constrained optimization problems is to translate it into an unconstrained

optimization problem by modifying the optimization objective such that optimization automati-

cally enforces the constraint. This is done by quantifying the violation using some metric and then

minimizing the sum of the earlier minimization objective and the weighted violation measure. In

order to enforce the repetition constraint by suitably modifying the optimization objective, we in-

troduce a distance function between the hybrid states. Let d be the distance function between two

hybrid states such that

d((q1,x1), (q2,x2)) = ||x1 − x2||
2 if q1 = q2 and ∞ o.w.

where ||x1−x2|| is the Euclidean norm. (Q×X, d) forms a metric space. So, the distance between

the hybrid states is 0 if and only if q1 = q2 and x1 = x2.

168

Let F (q, t1, . . . , tn, tp, tP) =



































cost(qx[tp,tP]) +M × d(qx(tp),qx(tP))

if (a) 0 ≤ t1 ≤ . . . tn ≤ tP, tp < tP and

(b) ∀i x(ti) ∈ goverq(i)q(i+1)

∞ otherwise

where M is any positive constant and qx is a trajectory starting from the given initial state, that is,

qx(0) = (q0,x0); ∀t ti < t < ti+1 q(t) = q(ti) , i = 1, 2, . . .

and ∀t
dx(t)

dt
= f(q(t),x(t))

It is easy to see that the minimum value of the function F is attained when the hybrid states

at time tp and tP are the same, that is, the trajectory segment qx[tp,tP] is the repetitive part of

the trajectory and the cost of this segment is minimum. Using Theorem 10, we conclude that the

optimization problem in Equation 7.5 of Section 7.2 can be reduced to the following unconstrained

multivariate numerical optimization problem

min
t1,...,tn,tp,tP

F (t1, . . . , tn, tp, tP) (7.6)

As remarked above, if the arguments of F are fixed, then F can be evaluated using a numerical

simulator. Also, for a fixed q, we can use a numerical nonlinear optimization engine to find the

minimum value of the function Fq.

Running Example

We illustrate our technique for the running example with a fixed sequence of modes say q =

OFF, HEAT, OFF starting from the initial state

(OFF, temp = 22, out = 16)

The outside temperature out does not change with time and remains the same as the initial state.

Only the room temperature temp changes with time. The switching time sequence is t1, t2. Let

169

tp denote the time when the thermostat enters the repetitive behavior and tP be the time such that

temp(tp) = temp(tP). When t1 ≤ t2 ≤ tp ≤ tP and tp < tP , the function

Fq(t1, t2, tp, tP) = cost(qx[tp,tP]) + 1000(temp(tp)− temp(tP))2

and it is set to 2000 otherwise (approximating infinity in the formulation with a very high constant).

We use ode45 function in MATLAB [92] for numerically simulating the ordinary differential

equations representing continuous dynamics in each mode. In order to find the minimum value

of Fq and the corresponding arguments that minimize the function, we use the implementation of

Nelder-Mead simplex algorithm [101]. The minimum value of Fq is obtained at

t0 t1 t2 tp tP

t 0 5.02 5.24 3.54 5.24

temp 22.0 19.6 20.2 20.2 20.2

So, the switch states corresponding to the minimum long-run cost for the given initial state

(OFF, temp = 22, out = 16)

and given switching sequence of modes

OFF, HEAT, OFF

is gHF = {20.2} and gFH = {19.6}.

We repeat the experiments with different initial states but with the same mode switching se-

quence. Even with different initial states (OFF, temp = 20.5, out = 16), (OFF, temp = 21, out =

16) and (OFF, temp = 21.5, out = 16), we obtain the same switching states in this example:

gHF = {20.2} and gFH = {19.6}.

When we change the mode switching sequence to OFF, HEAT, OFF, HEAT, OFF, we discover the

optimal switching sequence to be

t0 t1 t2 t3 t4 tp tP

t 0 5.02 5.24 6.73 6.95 3.54 6.95

temp 22.0 19.6 20.2 19.6 20.2 20.2 20.2

170

t1 = 5.02, t2 = 5.24, t3 = 6.73, t4 = 6.95, tp = 3.54, tP = 6.95 which again yields the same

optimal switching states gHF = {20.2} and gFH = {19.6}.

We observe that the optimal behavior with respect to the given cost metric would be to switch

from OFF mode to HEAT mode at temp = 19.6 and then switch from HEAT to OFF mode at temp =

20.2 regardless of the initial room temperature as long as the outside temperature out = 16. The

optimal mode cycle is between OFF and HEAT modes.

For an initial state with outside temperature higher than the outside room temperature out >

20, the optimal cycle would be between OFF and COOLmodes. With the mode sequence OFF, COOL, OFF

and the initial state (OFF, temp = 20.5, out = 26), we discover the optimal switching states to be

gCF = {20} and gFC = {20.3}.

Finding Optimal Mode Sequence

The algorithm above assumed that the switching mode sequence q was fixed. It can be easily

adapted to also automatically discover the optimal switching mode sequence. Any mode sequence

starting in mode 1 and with at most k switches in a system with N modes Q = {1, 2, . . . N} is

a subsequence of 1(2 . . . N 1)k, that is, mode 1 followed by (2 . . . N 1) repeated k times.

Let dwell-time of a mode i be the time spent in the mode ti+1 − ti. Given the switching times

t1, t2, ...tNk and tp, tP , we define the NZ function which removes the switch times and modes

from the switching sequence with zero dwell-times, that is,

NZ(q, t1, t2, . . . , tNk, tp, tP) = (q, ti1 , ti2 , . . . , tiK , tp, tP)

where q = qi1 , qi2 , . . . , qiK , 0 < ti1 < ti2 < . . . < tiK < tP

and tm = tij for all ij < m < ij+1

For example, given the sequence of switching times 5, 6, 6, 11, 12, 12 and tp = 6.5, tP = 12.5

with the switching mode sequence q = 1, 2, 3, 1, 2, 3, 1,

NZ(q, 5, 6, 6, 11, 12, 12, 6.5, 12.5) = (q, 5, 6, 11, 12, 6.5, 12.5)

where q = 1, 2, 1, 2, 1.

Given a guess on the number of mode switches k such that k or less switches are needed to

reach the optimal repetitive behavior, we can use q = 1(2 . . . N 1)k as the over-approximate

171

switching mode sequence and then find the optimal switching subsequence corresponding to the

minimal long-run cost behavior using the following modified optimization formulation.

min
t1,...,tNk,tp,tP

F (NZ(q, t1, . . . , tNk, tp, tP)) (7.7)

If the optimal value returned by minimizing the above function is attained with the arguments

t∗1, . . . , t
∗
Nk, tp

∗, tP ∗, then the optimal switching sequence q and the optimal switching time se-

quence is given by

(q, ti1 , . . . , tik , tp, tP) = NZ(q, t∗1, . . . , t
∗
Nk, tp

∗, tP ∗)

Running Example

We illustrate the above technique on the running example below. Let us guess that reaching

the optimal repetitive behavior from the initial state OFF, temp = 22, out = 16 takes at most 2

switches. We consider the mode sequence OFF, HEAT, COOL, OFF, HEAT, COOL, OFF which would

contain all mode sequences with 2 switches (it also contains some mode sequences with more

than 2 switches). We try to minimize the corresponding function F (NZ(t1, t2, . . . , t6, tp, tP)).

The minimum value obtained for the function F with the starting state (OFF, temp = 22, out =

16) by our optimization engine corresponds to the following trajectory.

t0 t1 t2 t3 t4 t5 t6 tp tP

t 0 5.08 5.32 5.32 6.97 7.23 7.23 4.87 8.66

temp 22.0 19.6 20.2 20.2 19.6 20.2 20.2 19.7 19.7

The optimal mode sequence and the switching times points are obtained as

NZ(q, 5.08, 5.32, 5.32, 6.97, 7.23, 7.23, 4.87, 8.66) =

(OFF, HEAT, OFF, HEAT, OFF, 5.08, 5.32, 6.97, 7.23, 4.87, 8.66)

Since tp = 4.87 and tP = 8.66, the repetitive part of the mode sequence is HEAT, OFF. The switch

from mode OFF to HEAT occurs at times t1 and t4. We observe that temp(t1) = temp(t4) = 19.6.

So, the optimal trajectory switches from OFF to HEAT at temp = 19.6. The switches from HEAT

172

to COOL and then to OFF occur at the same times: t2 = t3 and t5 = t6. So, the dwell-time in the

mode COOL is 0 and it needs to be removed from the optimal switching sequence. The switch into

mode OFF occurs at times t3 and t6 with temp(t3) = temp(t6) = 20.2. Thus, the optimal mode

sequence is OFF, (HEAT, OFF)ω and the guards discovered from this trajectory are gFH = 19.6 and

gHF = 20.2.

Thus, the approach presented so far can be used to synthesize switching conditions for mini-

mum cost long-run behavior for a given initial state. We need a guess on the number of switches

k such that the optimal behavior has at most k switches.

We summarize the guarantee of our approach for a single initial state in the following theorem

Theorem 11. For a single initial state, our technique discovers the switching states correspond-

ing to the optimal trajectory with minimum long-run cost if numerical optimization engine can

discover global minimum of the numerical function F .

The proof of the above theorem follows from the definition of F . If numerical optimization

engines are guaranteed to only find local minima of F , our technique will find trajectories of

minimal cost. We employ the Nelder-Mead simplex algorithm as described by Lagarias et al [74,

101] for minimizing F since it is a derivative-free method and it can better handle discontinuities

in function F . We use its implementation available as the fminsearch [91] function in MATLAB.

7.2.3 Guard Inference Using Learning

In this section, we present an approach to synthesize optimal switching logic from the dis-

covered optimal switching states for sampled initial states. The numerical optimization based

approach presented in Section 7.2.2 can find the switching state for each mode switch along the

trajectory corresponding to optimal long-run behavior for a given initial state. However, since

systems are generally designed to operate in more than one initial state, we need to synthesize

the guard condition for mode switches such that the trajectory from each initial state has opti-

mal long-run cost. In this section, we present a technique for synthesizing guard conditions in

a probabilistic setting, where we assume the ability to sample initial states from their (arbitrary)

probability distribution. Our technique samples initial states and obtains corresponding optimal

switching states for each mode switch. From the individual optimal switching states, we gener-

173

alize to obtain the guard condition for the mode switch using inductive learning (learning from

examples). In order to employ learning, we make a structure assumption on the form of guards

and use concept learning algorithms to efficiently learn the guards from sampled switching states.

We assume that the guard condition is a halfspace, that is, a linear inequality over the continuous

variables X .

In the rest of the section, we discuss how the existing results from algorithmic concept learning

can be used efficiently to learn a halfspace representing the guard condition from the discovered

switching states for each mode-switch. We first mention results which prove the efficient learn-

ability of halfspaces and then present an algorithm which can be used to learn halfspaces in the

probabilistically approximately correct (PAC) learning framework [131]. In this framework, the

learner receives samples marked as positive or negative for points lying inside and outside the con-

cept respectively, and the goal is to select a generalization concept from a certain class of possible

concepts such that the selected concept has low generalization error with very high probability. In

our case, the concept class is the set of all possible halfspaces in Rn and the concept to be learnt

is the halfspace that is the correct guard in the optimal switching logic. The points in a concept

to be learnt are the states in the guard and the points outside the concept are the states outside the

guard.

A halfspace can be learnt with a very high accuracy using polynomial-sized sample [15]. We

briefly summarize the relevant results from learning theory that establish the efficient learnability

of halfspaces in the PAC learning framework. A concept class is said to shatter a set of points if for

any classification of the points as positive and negative, there is some concept in the class which

would correctly classify the points. Any concept class is associated with a combinatorial parameter

of the class, namely, the Vapnik-Chervonenkis (VC) dimension defined as the cardinality of the

largest set of points (arbitrarily labeled as positive or negative) that the algorithm can shatter. For

example, consider the concept class to be partitions in R2 using straight lines, that is, halfspaces in

R2. The straight line should separate positive points in the true concept and negative points outside

the concept. There exist sets of 3 points that can indeed be shattered using this model; in fact, any 3

points that are not collinear can be shattered, no matter how one labels them as positive or negative.

However, it can be shown using Radon’s theorem that no set of 4 points can be shattered [44].

Thus, the VC dimension of straight lines is 3. In general, the VC dimension for halfspaces in Rn

is known to be n + 1 [15]. The following theorem from Blumer et al [15] establishes the relation

174

between efficient learnability of a concept class in the PAC learning framework and VC dimension

of the concept class.

Theorem 12. Let C be a concept class with a finite VC dimension d. Then, any concept in C

can be learnt in the following sense: with probability at least 1 − δ a concept C is learnt which

incorrectly labels a point with a probability of at most ǫ, where C is generated using a random

sample of labeled points of size at least

max(
4

ǫ
log

2

δ
,
8d

ǫ
log

13

ǫ
)

.

Since the VC dimension for the class of halfspaces in Rn is n+ 1, a halfspace can be learnt in

PAC learning framework using a sample of size at least

max(
4

ǫ
log

2

δ
,
8n+ 8

ǫ
log

13

ǫ
)

This, learning halfspaces in Rn requires samples polynomial in n, 1
ǫ

and 1
δ

and by increasing

the probabilistic accuracy of the learnt halfspace requires polynomial increase in the number of

samples. This is critical for efficiently learning guards in our algorithm.

We first discuss Halfspace learning algorithm: HSinfer which, as the name suggests, can

be used to learn halfspaces in the PAC framework from a given sample and then, describe the

switching logic synthesis algorithm. In Rn, a halfspace is given by θ · X + θ0 ≥ 0 where θ ∈

Rn, θ ∈ R and X is any point in Rn which satisfied the above inequality if and only if the point is

in the concept halfspace to be learnt. For any point Xi, let Yi be 1 if Xi is in the concept and −1 if

it is outside the concept. The algorithm below is the standard Perceptron Learning algorithm and

is known to converge after k iterations where k ≤ (maxi||Xi||)/(mini
Yi(θXi+θ0)

||θ||
)2 [36].

We now describe the algorithm to learn guards for multiple initial states using the technique

presented in Section 7.2.2 and the halfspace learning algorithm HSinfer. The algorithm simply

involves finding optimal switching points for each mode-switch and then using halfspace learning

to infer the guards. The key idea is to use the optimal switching states as positive points for

the concept learning problem and the non-optimal states explored during optimization (which

preceded the optimal switching states along any trajectory) as negative points since these states

cannot be in the guard for an optimal switching logic.

175

Procedure 16 Halfspace learning algorithm HSinfer [36]

Input: Set of labeled sample points {(Xi, Yi)}

Output: θ, θ0 such that θX + θ0 ≥ 0 is the halfspace Set θ0 = 0, θ00 = 0, t = 0

for each i do

if θ0X + θ00 ≥ 0 then

Predicted yi = 1

else

Predicted yi = −1

end if

end for

while some i has Yi 6= yi do

pick some i with Yi 6= yi

θt+1 := θt + YiXi

θt+1
0 := θt0 + Y1

t := t+ 1

for each i do

if θtX + θt0 ≥ 0 then

Predicted yi = 1

else

Predicted yi = −1

end if

end for

end while

return θ, θ0

176

Procedure 17 Finding optimal switching logic SLopt

Input: MDS(X,Q), initial states I , tolerance of generalization error δ and maximum probability

of error ǫ

Output: Optimal Switching Logic SLopt

1. Sample initial states from I for provided δ, ǫ.

2. For each initial state, obtain optimal trajectory in MDS(X,Q) and switching states for the

mode switches along the trajectory.

3. Label the obtained switching states as positive points.

4. Label the states preceding switching states along any trajectory to be negative points.

5. Using obtained sample of positive and negative states, learn the guard for the mode switch

as generalization of these states using HSinfer.

6. Output these guards as synthesized optimal switching logic SLopt.

We now discuss the guarantees provided by our technique. Under the structure assumption that

guards are halfspaces, our PAC learning algorithm algorithm computes guards with probability at

least 1−δ such that the probability that a guard contains any state which is not a switching-state or

misses any switching-state is at most ǫ. Further, the guards inferred by the above algorithm can be

made probabilistically more and more accurate by choosing suitable values of ǫ, δ and considering

correspondingly larger and larger samples of initial states as given by Theorem 12. For a trajectory

to be a non-optimal trajectory, any one switching point along the trajectory needs to be classified

correctly. Thus, the following theorem establishes the probabilistic guarantees of our switching

logic synthesis algorithm.

Theorem 13. Given a MDS(X,Q), using random sampling from the set of initial states which

has a sample size polynomial in n,1
ǫ

and 1
δ
, Algorithm 17 synthesizes a switching logic SwL with

probability at least 1− δ such that any trajectory in the synthesized hybrid system HS(MDS, SwL) is

not optimal with probability at most mǫ, where m is the number of guards in the switching logic,

that is, m = |SwL| ≤ |Q|2 and n is the number of variables, that is, n = |X|.

Running Example

Given the set of initial states 16 ≤ temp ≤ 26 and out ∈ {16, 26}. The set of initial states

is partitioned into subsets where each subset is a 0.1 interval of room temperature temp and the

177

outside temperature is 16 or 26. The guards discovered are: gHF : temp ≥ 20.2 ∧ out =

16, gFH : temp ≤ 19.6 ∧ out = 16, gCF : temp ≤ 20.0 ∧ out = 26, gFC : temp ≥

20.3 ∧ out = 26.

7.3 Results and Experiments

Apart from the running example of Thermostat controller, we applied our technique to three

other case studies: (i) an Oil Pump Controller, which is an industrial case study from [21], and

(ii) a DC-DC Buck-Boost Converter, motivated by the problem of minimizing voltage fluctuation

in a distributed aircraft power system, and (iii) an air-handling unit in buildings. We employ

the implementation of Nelder-Mead simplex algorithm as described by Lagarias et al [74, 101]

and available as the fminsearch [91] function in MATLAB for numerical optimization. All

experiments were performed on a dual-core 1.66GHz processor with 4GB memory.

7.3.1 Thermostat Controller

If we change the cost metric in the thermostat controller to limt→∞
discomfort(t)+fuel(t)+swTear(t)

time(t)

giving equal weight to all the three penalties (instead of 10 : 1 : 1 weight ratio used earlier)

the optimal switching logic discovered with this cost metric are: gHF : temp ≥ 20.0 ∧ out =

16, gFH : temp ≤ 18.8 ∧ out = 16, gCF : temp ≤ 21.9 ∧ out = 26, gFC : temp ≥

22.7∧ out = 26. We observe that the room temperature oscillates closer to the target temperature

when the discomfort penalty is given relatively higher weight in the cost metric. This case study

illustrates that a designer can suitably define a cost metric which reflects their priorities and, then,

our technique can be used to automatically synthesize switching logic for the given cost metric.

The runtime for simulation and numerical optimization is 284 seconds.

7.3.2 Oil Pump Controller

Our second case study is an Oil Pump Controller, adapted from the industrial case study in

[21]. The example consists of three components - a machine which consumes oil in a periodic

178

manner, a reservoir containing oil, an accumulator containing oil and a fixed amount of gas in

order to put the oil under pressure, and a pump. The simplification we make is to use a periodic

function to model the machine’s oil consumption and we do not model any noise (stochastic

variance) in oil consumption.

The state variable is the volume V of oil in the accumulator. The system has two modes: mode

ON when the pump is ON and mode OFF when the pump is OFF. Let the rate of consumption of oil

by the machine be given by m = 3 ∗ (cos(t) + 1) where t is the time. The rate at which oil gets

filled in the accumulator is p. p = 4 when the pump is on and p = 0 when the pump is off. The

change in volume of oil in the accumulator is given by the following equation V̇ = p−m where

p and m take different values depending on the mode of operation of the pump. For synthesis, we

consider two different sets of requirements [21].

In the first set of requirements, the volume of oil in the tank must be within some safe limit,

that is, 1 ≤ V ≤ 8 and the average volume of oil in the accumulator should be minimized. We

model these requirements using our cost definition by defining one penalty variable p1 and one

reward variable r1. Let the evolution of penalty p1 be ṗ1 = V if 1 ≤ V ≤ 8, M otherwise where

M is a very large (M ≥ 105p1) constant (106 in our experiments) and that of reward r1 be ṙ1 = 1.

Minimizing the cost function cost1 = limt→∞
p1(t)
r1(t)

minimizes the average volume limt→∞

∫ t

0 V (t)

t

and also enforces the safety requirement ∀t . 1 ≤ V (t) ≤ 8.

In the second set of requirements, we add an additional requirement to those in the first set.

We require that the the oil volume is mostly below some threshold Vhigh = 4.5 in the long run.

We model this requirement by adding an additional penalty and an additional reward variable

p2 and r2 with evolution functions: ṗ2 = 1 if V > Vhigh, 0 otherwise and ṙ2 = 1 if V <

Vhigh, 0 otherwise. The new cost function is cost2 = limt→∞(p1(t)
r1(t)

+ p2(t)
r2(t)

). Let thigh be the

total duration when the volume is above Vhigh and tlow be the duration that it is below Vhigh.

Minimizing p2/r2 = thigh/tlow would ensure that we spend more time with volume less than Vhigh

in the accumulator.

The guards: gFN from OFF to ON and gNF from ON to OFF obtained for the above cost1 objec-

tive are gFN : V ≤ 3.71 gNF : V ≥ 4.62 and for cost2 objective are gFN : V ≤ 4.07 gNF :

V ≥ 4.71. The runtimes are 438 seconds and 479 seconds respectively.

We simulate from an initial state V = 4 and the behavior for both objectives is presented in

179

Figure 7.3.2. In both cases, the behavior satisfies the safety property that the volume is within

1 and 8. Since, we minimize oil volume, the volume is close to the lower limit of 1. We also

observe that using the second cost metric causes decrease in duration of time when oil volume is

higher than the 4.5 but the average volume of oil increases. This illustrates how designers can use

different cost metrics to better reflect their requirements.

0 5 10 15 20 25
0

1

2

3

4

5

Time

V
o
lu

m
e

cost2

cost1

Figure 7.2: Oil Pump Controller: Volume in accumulator

7.3.3 DC-DC Buck-Boost Converter

In this case study, we synthesize switching logic for controlling DC-DC buck-boost converter

circuits described in [48]. The goal is to maintain the output voltage VR across a varying load R

at some target voltage Vd. The converter can be modeled as a hybrid system with three modes

of operation. The state space of the system is X = 〈iL uC〉 where iL is the current through

the inductor and uC is the load voltage. The dynamics in the three modes are given by the state

space equation Ẋ = AkX + BkE where k = 1, 2, 3 is the mode and E is the input voltage. The

180

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

x 10
−3

0

2

4

6

8

10

12

Time

V
o
lt
a
g
e
 (

 V
o
lt
s
)

a
n
d
 C

u
rr

e
n
t(

A
m

p
)

Inductor Current

Capacitor Voltage

R = 100 R = 100R = 200 R = 200

Figure 7.3: DC-DC Boost Converter

coefficients of the equations are

A1 =

[

−rL−rs
L

0

0 −1
C∗(R+rC)

]

, B1 =

[

1
L

0

]

,

A2 =

[

−rL−rd
L

−1
L

R
R+rC

∗ (1
C
− rC∗(rL+rd)

L
) −R

R+rC
∗ (rC

L
+ 1

R∗C
)

]

,

B2 =





1
L

R
(R+rC)∗ rC

L



 , A3 =

[

0 0

0 −1
(R+rC)∗C

]

, B3 =

[

0

0

]

We mention two key performance requirements of the DC-DC Boost Converter described in [48].

The first requirement is that the converter be resilient to load variations. The second requirement

is to minimize the variance of the voltage across the load VR from the target voltage. This variance

is called the ripple voltage. We define penalty variable p1 with the following evolution functions:

ṗ1 = (VR−Vd)
2. We want to minimize the average deviation from the target voltage. So, we define

the reward variable r1 with ṙ1 = 1. The cost function is cost = limt→∞
p1(t)
r1(t)

. This minimizes

the average variance of VR from the target voltage Vd. This corresponds to minimizing the ripple

voltage. Since the load R also changes periodically, it also minimizes the transient variance in

voltage.

181

Given the dynamics in each of the three modes and the cost function, the synthesis problem

is to automatically synthesize the guards g12, g23, g31 which minimizes the cost. We are given the

over-approximation of the guard gover23 : il = 0. The guards obtained are as follows: g12 : iL > 1.9,

g23 : iL = 0 and g23 : vC > 4.6. The runtime is 394 seconds. The system remains in the first

mode until the inductor current reaches the reference current Iref . The system remains in the

second mode until the inductor current becomes 0. Then, the system switches to the third mode

where it remains as long as the capacitor voltage remains over the reference voltage Vref . We

simulate the synthesized system and the behavior is shown in Figure 7.3.

7.3.4 Air Handling Unit in Buildings

We consider a switched model of air handling unit in a building presented by Haghighi et

al [84]. The original model inferred from real data on the campus of University of California

at Berkeley, USA is non-deterministic. We choose unique value of parameters in the model and

eliminate noise to make the model deterministic. The model consists of a set of thermal zones and

an air handling unit supplying air to these zones. Air handling unit (AHU) serves different thermal

zones (called “rooms” for brevity) with a mixture of outside air and return air which is heated or

cooled depending on target temperature and outside temperature. Each room j is modeled as a

two-mass system: Cj
1 is the fast-dynamic mass (e.g. air around the diffusers of AHU) that has low

heat capacity, and Cj
2 represents the slow-dynamic mass (e.g. the solid part which includes floors,

walls and furniture) that has higher heat capacity. The phenomenon of fast and slow dynamics has

been presented previously by Shavit et al [45]. The temperature of low heat capacity mass is T j
1

and the temperature of high heat capacity mass is T j
2 . The perceived temperature Tj of room j is

assumed to be equal to the temperature of the mass of lower heat capacity, that is, Tj = T j
2 . The

air enters the room j with a mass flow rate ṁj and temperature T j
s = Toa − ∆, where Toa is the

outside temperature and ∆ is the temperature of the AHU cooling/heating coil. N j is the set of

all rooms neighboring room j. Figure 7.4 illustrates the model for two rooms.

The thermodynamic model of room j is given by the following ordinary differential equations.

Cj
1Ṫ

j
1 = ṁjCpT

j
s +

T j
2 − T j

1

Rj
+

∑

i∈N j

T i
1 − T j

1

Rij
+
Toa − T j

1

Rj
oa

182

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

R11

Rj
oa

Room 1 Room 2

C1
2 , T

1
2

C1
1 , T

1
1

R1

C2
1 , T

2
1

R2

C2
2 , T

2
2

ṁ1,∆ ṁ2,∆

Toa

Figure 7.4: Two Rooms

Cj
2Ṫ

j
2 =

T j
1 − T j

2

Rj

The outside temperature Toa is 300K and the target temperature Tg for all rooms is 290K. The

initial room temperature is also 290K for both low and high heat capacity masses. Each room can

be either in cooling mode or the heating mode. ∆ = 6.3 in the cooling mode and 0 in the heating

mode. The other parameters used in the model are given in the table below. Cj
1 , C

j
2 , R

j, Rj
oa, R

ij

are the same as the original model [84, 83], and ṁj is the mid-value of the interval in the original

model.

Parameter Value Parameter Value

Cj
1 9.163× 103 kJ/K Cj

2 1.694× 105 kJ/K

Rj 1.700× 10−3 K/W Rj
oa 5.700× 10−2 K/W

Rij 2.000× 10−3 K/W ṁj 1.250 kg/s

The goal of the switching logic controller is to ensure that the temperature in each room is at the

target temperature. We associate the following penalty for each room j:

penaltyj = α discomfortj + fuelj

where discomfortj represents the penalty of the temperature in room j being away from the

target temperature, and fuel is the fuel cost of cooling room j, that is, ˙discomfortj = 2|T j−Tg|

183

and ˙fuelj = ṁj∆. α is a weighing factor used to give different weights to discomfort and fuel

cost. The total penalty is the sum of penalty for each room, that is, penalty =
∑

j

penaltyj.

The reward rewardj is the time, that is, ˙rewardj = 1 . The total reward is the sum of rewards for

each room. Thus, the cost represents the average weighted discomfort and fuel consumption per

room. We use different weighing parameter α in our experiments and illustrate how the optimal

switching logic varies with different choices of α.

In general, each room can switch from heating to cooling mode and back at different tempera-

tures. We call the model where each room independently switches from heating to cooling mode

and vice versa as the independent model. Secondly, we consider a symmetric model in which all

rooms switch modes at the same temperature. In the first case, the space of switching parame-

ters grows linearly with the number of rooms in the building. In the second case, the space of

switching parameters is only 2, independent of the number of rooms in the building. For both

these models, we consider two scenarios: a building with 3 rooms and 5 rooms. We denote the

temperature at which room j switches from heating to cooling mode by T j
c and the one at which

it switches from cooling mode to heating by T j
h . In case of symmetric model, since all the rooms

switch into cooling or heating mode at same temperatures, we drop the superscripts and denote

the respective switching temperatures by Tc and Th.

Three Rooms

First, we consider a model with three rooms which are all connected to each other with respect

to heat-transfer. The results of our synthesis approach is presented in the table below.

α Model Switch Cost Runtime(s)

2.5 Independent 290.26, 289.79, 291.01, 289.90, 295.51, 286.36 16.32 860.74

Symmetric Tc = 290.06, Th = 289.96 12.71 721.65

1 Independent 293.83, 289.84, 293.81, 289.82, 293.84, 282.55 14.20 892.54

Symmetric Tc = 293.20, Th = 289.85 13.25 547.20

1/2.5 Independent 299.05, 289.63, 299.04, 280.20, 297.93, 281.40 24.72 3437.24

Symmetric Tc = 298.11, Th = 298.01 17.16 223.60

We make the following observations about the synthesized switching logic using both the

independent and the symmetric model. We observe that using the symmetric model helps the

184

minimization engine to discover switching logic of lesser cost that the independent model in all

the three cases. It also takes less time to discover switching logic of minimal cost using the

symmetric model. The increase in the number of parameters for minimization in the independent

model results into the Nelder-Mead method [74, 101] getting stuck at a local minimum which is

of higher cost than the switching logic discovered using the symmetric model. The behavior of

the system and the cost of the behavior for the case where α = 1 is also shown in Figure 7.5 and

Figure 7.6. We observe that in the independent model for α = 1, one of the rooms is never cooled

externally and instead, relies on the heat transfer with other two rooms to keep the temperature

of the room close to the target temperature. Such behavior is possible only in the independent

model. Thus, independent model allows greater dexterity in the choice of switching logic than the

symmetric model. But the limitation of minimization engine leads to the discovery of higher cost

switching logic for independent model than the one for symmetric model. Further, we observe that

the synthesized switching logic results into a system where the room temperature stays close to

the target temperature (290) when the cost of discomfort is much higher than that of the cost of the

fuel (α = 2.5), and it stays close to the outside temperature when the cost of fuel is much higher

than discomfort (α = 1/2.5). The room temperature oscillates close to the target temperature

when the cost of discomfort and fuel is given equal weight (α = 1).

Five Rooms

Next, we consider a model with five rooms which are all connected to each other with respect

to heat-transfer. The results of our synthesis approach is presented in the table below.

α Model Switch Cost Runtime(s)

2.5 Independent 293.20, 289.33, 292.52, 289.32, 293.26, 289.34 18.61 1752.70

297.96, 287.70, 294.46, 286.04
Symmetric Tc = 290.06, Th = 289.96 12.71 1443.2

1 Independent 293.56, 289.51, 293.56, 289.51, 293.55, 289.50 29.21 1850.21

298.48, 288.39, 293.19, 283.76
Symmetric Tc = 293.20, Th = 289.85 13.25 862.56

1/2.5 Independent 298.93, 294.71, 299.12, 291.84, 297.70, 271.30 25.68 2909.35

297.55, 283.59, 296.69, 281.26
Symmetric Tc = 298.11, Th = 298.01 17.16 290.70

185

0 50 100 150 200 250
289

290

291

292

293

294
T

e
m

p
e
ra

tu
re

 (
K

)

Time (s)

(a) Temperature of 3 Rooms: Temperature of each room is shown in different color

0 50 100 150 200 250
0

5

10

15

C
o
s
t

Time (s)

(b) Cost

Figure 7.5: 3 Rooms in Symmetric Model

186

0 20 40 60 80 100 120 140
288

289

290

291

292

293

294
T

e
m

p
e
ra

tu
re

 (
K

)

Time (s)

(a) Temperature of 3 Rooms: Temperature of each room is shown in different color

0 20 40 60 80 100 120 140
0

5

10

15

C
o
s
t

Time (s)

(b) Cost

Figure 7.6: 3 Rooms in Independent Model

187

0 50 100 150 200 250
289

290

291

292

293

294
T

e
m

p
e
ra

tu
re

 (
K

)

Time (s)

(a) Temperature of 5 Rooms: Temperature of each room is shown in different color

0 50 100 150 200 250
0

5

10

15

C
o
s
t

Time (s)

(b) Cost

Figure 7.7: 5 Rooms in Symmetric Model

188

0 20 40 60 80 100 120
288

289

290

291

292

293

294

295

296
T

e
m

p
e
ra

tu
re

 (
K

)

Time (s)

(a) Temperature of 5 Rooms: Temperature of each room is shown in different color

0 20 40 60 80 100 120
0

5

10

15

20

25

30

C
o
s
t

Time (s)

(b) Cost

Figure 7.8: 5 Rooms in Independent Model

189

The observations about the synthesized switching logic using both the independent and the

symmetric model is similar to the case with 3 rooms. We observe that using the symmetric model

again helps the minimization engine to discover switching logic of lesser cost than the independent

model in all the three cases. It also takes less time to discover switching logic of minimal cost

using the symmetric model. This was also the case with 3 rooms. The behavior of the system and

the cost of the behavior for the case where α = 1 is also shown in Figure 7.7 and Figure 7.8. We

observe that in the independent model for α = 1, two of the rooms are never cooled externally.

They rely on the heat transfer with other three rooms to keep the temperature of the rooms close

to the target temperature. This is a consequence of the minimization engine failing to further

minimize the cost of the switching logic and getting stuck in the local minimum. Further, we

observe that the synthesized switching logic results into a system where the room temperature

stays close to the target temperature (290) when the cost of discomfort is much higher than that of

the cost of the fuel (α = 2.5), and it stays close to the outside temperature when the cost of fuel

is much higher than discomfort (α = 1/2.5). The room temperature oscillates close to the target

temperature when the cost of discomfort and fuel is given equal weight (α = 1). This observation

is again similar to the case with three rooms.

7.4 Conclusion

In this chapter, we presented an algorithm for automated synthesis of switching logic in or-

der to achieve minimum long-run cost. Our algorithm is based on reducing the switching logic

synthesis problem to an unconstrained numerical optimization problem which can then be solved

by existing optimization techniques. We also give a learning-based approach to generalize from

a sample of switching states to a switching condition, where the learnt condition is optimal with

high probability.

190

Chapter 8

Conclusion

This chapter summarizes the main results presented in this thesis and suggests avenues of

future work.

8.1 Summary

This thesis proposes a unified theme for automated synthesis that combines deductive reason-

ing techniques with inductive inference techniques based on algorithmic learning. The central

idea is to use deduction to discover example behaviors of the desired system, and then use induc-

tion to synthesize the system as generalization of the discovered behaviors. Hypotheses on the

structure of the system can be provided by users to aid the induction engine in the generaliza-

tion step, and to constrain the search space of deduction engines. This systematic combination

of induction, deduction, and structure hypotheses, termed SCIDUCTION, is used for automating

tricky and tedious tasks in system design. This paradigm of SCIDUCTION builds on successful

deductive techniques, such as satisfiability solving [13, 37], verification techniques [31] and nu-

merical optimization [74], with inductive techniques such as algorithmic concept learning [6, 94].

Different instantiations of this paradigm by combining different inductive and deductive reason-

ing techniques were used to solve synthesis problems in different application domains. We use

our technique for automated synthesis of loop-free programs from black-box oracle specifications

using functions from a library of component functions, synthesizing optimal cost floating-point

191

code with specified accuracy from floating-point code, and synthesizing switching logic of hybrid

systems for safety and performance properties. These applications illustrate the practical utility of

the proposed synthesis approach based on SCIDUCTION.

8.2 Future Work

In this section, we identify present avenues for future work in automated program synthesis as

well as automated synthesis of switching logic.

8.2.1 Program Synthesis

1. Discovering composition of high-level API calls:

In practice, software development often involves building new applications using existing

code packaged as application program interface (API). For example, scientific code relies

on nonlinear algebra and statistical packages and web-services are built using composition

of web-modules. Programming languages often provide large library of functions for dif-

ferent tasks in addition to the core language. Languages such as Python, C++ and Java have

gained widespread use because of their support for libraries. Automated program synthesis

techniques that can compose API functions using function summaries would be very useful

to programmers and developers. This will require improvement in deductive reasoning tech-

niques to support theories in which API function summaries can be expressed. For example,

web-modules require effective decision procedures for the theory of strings.

2. Synthesis of parallel implementation from sequential code:

One of the dreams of parallel and concurrent computing has being to build a compiler which

takes sequential code as an input and produces a semantically equivalent but efficient par-

allel program. The increasing use of multi-core processors has further fueled this quest.

While it is hard to exactly characterize the efficiency of a parallel program for all inputs, it

is relatively easy to run the program on a sample input and observe its performance. Hence,

use of a technique that combines induction from examples and deductive program synthesis

could provide an interesting approach to this long-standing problem.

192

3. Interactive synthesis of user-interface design:

Computational devices are now ubiquitous and this has made the design of user-interface

become more important. It is often difficult to have complete user-interface specifications. A

black-box oracle based approach that interacts with user to resolve different design choices

of user-interface would be useful in creating more user friendly user-interface designs. Such

a technique could be used to personalize websites and cell-phone applications for different

users. This requires identification of different design choices in user-interface design and

formal expression of the relation between different design choices. Since an user might

make different choice for same query at different time instants, the synthesis technique must

support an imperfect oracle specification which is not guaranteed to make similar choices

for same queries. Hence, the goal of the synthesis algorithm would be to construct an user-

interface which is most likely going to satisfy the user.

8.2.2 Synthesis of Switching Logic

1. Synthesis in presence of uncertainty:

We assume in our work on switching logic synthesis that the dynamics in each mode of

operation of the system is deterministic and known to us. In practice, the dynamics might

be stochastic due to inherent uncertainty in the system parameters or due to our limited

knowledge about them. Biological systems and market models in computational finance are

two examples of such scenarios. Automated synthesis of switching logic for such systems

would require reachability analysis for stochastic hybrid systems. Further, the guarantee of

safety would only be probabilistic, and the synthesis task would be to construct a system

which is likely to remain safe.

2. Exploiting symmetry in presence of large number of modes:

Many systems have inherent symmetry in them. For example, consider a building with

a large number of identical rooms, and with each room having an identical heater with a

switch which can be on or off. If there are k such rooms, 2k configurations of the building

are possible depending on whether heater is on or off in different rooms. But since the rooms

are identical, the control law for governing each of the heaters in the room is expected to be

similar. A switching logic synthesis approach that can exploit such symmetry would enable

193

automated synthesis for systems with very large number of modes.

3. Actuation and sensing delays:

Using hybrid systems as model of cyber-physical systems assumes that the system variables

are immediately observed and the controlled variables can be changed instantly. In practice,

observation of system variables takes place through a network of sensors and there is a

non-zero latency in observing the variables and reporting it to the controller. The control

decision also takes time to be implemented. Another dimension to extend our work is to take

into account these actuation and sensing delays during synthesis. These delays would be

inherently non-deterministic and the synthesis techniques must also address the uncertainty

in these delays.

In conclusion, we presented a novel automated synthesis paradigm in this thesis and illustrated

its utility on diverse applications. Further progress on automated synthesis can be achieved by

pursuing this combination of induction and deduction using the structure hypothesis on the system

under synthesis.

194

Bibliography

[1] Matlab: Fixed-point toolbox. http://www.mathworks.com/help/toolbox/fixedpoint.

[2] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, 1985.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer

Science, 138(1):3–34, February 1995.

[4] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid au-

tomata: An algorithmic approach to the specification and verification of hybrid systems. In

Hybrid Systems, pages 209–229, 1993.

[5] Rajeev Alur and Thomas A. Henzinger. Modularity for timed and hybrid systems. In

CONCUR, pages 74–88. Springer-Verlag, 1997.

[6] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.

[7] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods. ACM Comput.

Surv., 15:237–269, September 1983.

[8] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of switching

controllers for linear systems. Proc. of the IEEE, 88(7):1011–1025, 2000.

[9] Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez. Approximate reachability

analysis of piecewise-linear dynamical systems. In Proceedings of the Third International

Workshop on Hybrid Systems: Computation and Control, HSCC, pages 20–31, London,

UK, 2000. Springer-Verlag.

http://www.mathworks.com/help/toolbox/fixedpoint

195

[10] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest. Gradient descent approach to opti-

mal mode scheduling in hybrid dynamical systems. Journal of Optimization Theory and

Applications, 136:167–186, 2008.

[11] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In

ASPLOS, 2006.

[12] Sorav Bansal and Alex Aiken. Binary translation using peephole superoptimizers. In OSDI,

2008.

[13] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability mod-

ulo theories. In Armin Biere, Hans van Maaren, and Toby Walsh, editors, Handbook of

Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[14] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.

Better quality in synthesis through quantitative objectives. In CAV, pages 140–156, 2009.

[15] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-

ability and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, 1989.

[16] P.P. Boca, J.P. Bowen, and J.I. Siddiqi. Formal Methods: State of the Art and New Direc-

tions. Springer, 2009.

[17] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization

– Theoretical and Practical Aspects, Second Edition. 2006.

[18] M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid control: Model and

optimal control theory. IEEE Trans. on Aut. Cntrl., 43(1):31–45, 1998.

[19] J.R. Buchanan. A study in automatic programming. Memo (Stanford Artificial Intelligence

Laboratory). Stanford University, 1974.

[20] T.H. Bui, T.T. Nguyen, T.L. Chung, and S.B. Kim. A simple nonlinear control of a two-

wheeled welding mobile robot. INTERNATIONAL JOURNAL OF CONTROL, AUTOMA-

TION AND SYSTEMS, 1, 2003.

196

[21] Franck Cassez, Jan Jakob Jessen, Kim Guldstrand Larsen, Jean-François Raskin, and

Pierre-Alain Reynier. Automatic synthesis of robust and optimal controllers - an indus-

trial case study. In HSCC, pages 90–104, 2009.

[22] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. In Pro-

ceedings of the 40th annual Design Automation Conference, DAC ’03, pages 830–835.

ACM, 2003.

[23] A. Charnes and C. E. Lemke. Minimization of non-linear separable convex functionals.

Naval Research Logistics Quarterly, 1(4):301–312, 1954.

[24] K. Chatterjee. Markov decision processes with multiple long-run average objectives. In

FSTTCS, pages 473–484, 2007.

[25] E.M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

[26] Jonathan A. Clarke, Altaf Abdul Gaffar, George A. Constantinides, and Peter Y. K. Cheung.

Fast word-level power models for synthesis of FPGA-based arithmetic. In ISCAS, 2006.

[27] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating

transformations. Technical Report 148, Dept. Comp. Sci., The Univ. of Auckland, July

1997.

[28] J. Cury, B. Brogh, and T. Niinomi. Supervisory controllers for hybrid systems based on

approximating automata. IEEE Trans. Aut. Cntrl., 43:564–568, 1998.

[29] A. Cypher, editor. Watch what I do: Programming by demonstration. MIT Press, 1993.

[30] A. Donze and O. Maler. Systematic simulation using sensitivity analysis. In HSCC, volume

4416 of LNCS, pages 174–189, 2007.

[31] A. Engel. Verification, Validation and Testing of Engineered Systems. Wiley Series in

Systems Engineering and Management. John Wiley & Sons, 2010.

[32] S. Engell, G. Frehse, and E. Schnieder. Modelling, analysis, and design of hybrid systems.

Lecture notes in control and information sciences. Springer, 2002.

197

[33] Niklas En and Niklas Srensson. Translating pseudo-boolean constraints into SAT. Journal

on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[34] R. Fletcher. Practical Methods of Optimization. J. Wiley, 1986.

[35] Harold Fox. Agent problem solving by inductive and deductive program synthesis. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2008. AAI0821530.

[36] Yoav Freund and Robert E. Schapire. Large Margin Classification Using the Perceptron

Algorithm. In Machine Learning, pages 277–296, 1998.

[37] M. Ganai, A. Gupta, and A. Gupta. SAT-based scalable formal verification solutions. Series

on integrated circuits and systems. Springer Science+Business Media, 2007.

[38] Peter Y. K. Cheung George A. Constantinides and Wayne Luk. Wordlength optimization

for linear digital signal processing. In IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol 22, No. 10, pages 1432–1443, 2003.

[39] A. Girard and G. J. Pappas. Verification by simulation. In HSCC, volume 3927 of LNCS,

pages 272–286, 2006.

[40] David Goldberg. What every computer scientist should know about floating-point arith-

metic. ACM Computing Surveys, 23:5–48, 1991.

[41] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. Journal of

Computer and System Sciences, 50:20–31, 1995.

[42] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy, and C. J. Tomlin.

A descent algorithm for the optimal control of constrained nonlinear switched dynamical

systems. In HSCC, pages 51–60, 2010.

[43] Humberto González, Ramanarayan Vasudevan, Maryam Kamgarpour, Shankar Sastry,

Ruzena Bajcsy, and Claire Tomlin. A numerical method for the optimal control of switched

systems. In CDC, pages 7519–7526, 2010.

[44] P. M. Gruber and J. M. Wills, editors. Handbook of Convex Geometry : Two-Volume Set.

North Holland, 1993.

198

[45] G.Shaavit and S.G. Brandt. The dynamic performance of a discharge air temperature sys-

tem with a pi controller, technical report. Technical report, Honeywell Inc., commercial

division., Arlington heights,IL, 1982.

[46] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Component

based synthesis applied to bitvector circuits. Technical Report MSR-TR-2010-12, Mi-

crosoft Research, Feb 2010.

[47] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of

loop-free programs. In PLDI, pages 62–73, 2011.

[48] P. Gupta and A. Patra. Super-stable energy based switching control scheme for DC-DC

buck converter circuits. In ISCAS (4), pages 3063–3066, 2005.

[49] Joseph Y. Halpern. Presburger Arithmetic with Unary Predicates is Π1
1 Complete. The

Journal of Symbolic Logic, 56(2):637–642, 1991.

[50] Kyungtae Han, Iksu Eo, Kyungsu Kim, and Hanjin Cho. Numerical word-length optimiza-

tion for cdma demodulator. In Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE

International Symposium on, volume 4, pages 290 –293 vol. 4, may 2001.

[51] Kyungtae Han and B.L. Evans. Wordlength optimization with complexity-and-distortion

measure and its application to broadband wireless demodulator design. In Acoustics,

Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Con-

ference on, volume 5, pages V – 37–40 vol.5, may 2004.

[52] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid sys-

tems. IEEE Trans. on Automatic Control, 43:540–554, 1998.

[53] Thomas A. Henzinger and Howard Wong-Toi. Using HyTech to synthesize control param-

eters for a steam boiler. In Formal Methods for Industrial Applications, Specifying and

Programming the Steam Boiler Control (Dagstuhl Seminar, June 1995)., pages 265–282,

London, UK, 1996. Springer-Verlag.

[54] Michael Heymann, George Meyer, and Stefan Resmerita. Analysis of zeno behaviors in

hybrid systems. In Proceedings of the 41st IEEE Conference on Decision and Control,

pages 2379–2384, 2002.

199

[55] Dorit Hochbaum. Complexity and algorithms for nonlinear optimizationproblems. Annals

of Operations Research, 153:257–296, 2007.

[56] Dorit S. Hochbaum and J. George Shanthikumar. The complexity of nonlinear separable

optimization. In ICALP, pages 461–472, 1989.

[57] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and reason-

ing about systems (2. ed.). Cambridge University Press, 2004.

[58] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided

component-based program synthesis. In ICSE, pages 215–224, 2010.

[59] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Synthesizing switching

logic for safety and dwell-time requirements. In ICCPS, pages 22–31, 2010.

[60] Susmit Jha and Sanjit A. Seshia. Automated synthesis of fixed-point code. In Under

submission, 2011.

[61] Susmit Jha, Sanjit A. Seshia, and Ashish Tiwari. Synthesizing switching logic to minimize

long-run cost. In EMSOFT, pages to–appear, 2011.

[62] T. A. Johnson and R. Eigenmann. Context-sensitive domain-independent algorithm com-

position and selection. In PLDI, 2006.

[63] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Denali: A goal-directed superoptimizer.

In PLDI, 2002.

[64] M. Kamgarpour and C. Tomlin. On optimal control of non-autonomous switched systems

under a fixed switching sequence. Automatica, 2011. To appear.

[65] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg. On systematic simulation of open

continuous systems. In HSCC, volume 2623 of LNCS. Springer, 2003.

[66] R. Karp. A characterization of the minimum cycle mean in a digraph. Dis. Math., pages

309–311, 1978.

[67] H.K. Khalil. Nonlinear systems. Macmillan Pub. Co., 1992.

200

[68] Seehyun Kim, Ki-Il Kum, and Wonyong Sung. Fixed-point optimization utility for c and

c++ based digital signal processing programs. Circuits and Systems II: Analog and Digital

Signal Processing, IEEE Transactions on, 45(11):1455 –1464, nov 1998.

[69] Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of functional programs: An

explanation based generalization approach. J. Machine Learning Res., 7:429–454, 2006.

[70] Donald E. Knuth. The art of computer programming.

http://www-cs-faculty.stanford.edu/˜knuth/taocp.html.

[71] T. Koo and S. Sastry. Mode switching synthesis for reachability specification. In Proc.

HSCC 2001, LNCS 2034, pages 333–346, 2001.

[72] D. Kroening and O. Strichman. Decision procedures: an algorithmic point of view. Texts

in theoretical computer science. Springer, 2008.

[73] A. Kucera and O. Strazovsky. On the controller synthesis for finite-state markov decision

processes. Fundamenta Informaticae, 82(1-2):141–153, 2008.

[74] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Conver-

gence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of

Optimization, 9:112–147, 1998.

[75] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra and its application

to programming by demonstration. In ICML, pages 527–534, 2000.

[76] Mike Tien-Chien Lee, V. Tiwari, S. Malik, and M. Fujita. Power analysis and minimization

techniques for embedded DSP software. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 5(1):123 –135, march 1997.

[77] H. Lieberman, editor. Your wish is my command: Giving users the power to instruct their

software. Morgan Kaufmann, 2001.

[78] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier trans-

form, and learnability. In FOCS, pages 574–579, 1989.

[79] J.L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. (trans-

lated by S.K.Mitter). Springer-Verlag New York, Inc.

http://www-cs-faculty.stanford.edu/~knuth/taocp.html

201

[80] M.R. Lowry and R.D. McCartney. Automating software design. AAAI Press, 1991.

[81] J. Lygeros. Lecture notes on hybrid systems. 2004.

[82] John Lygeros, Claire Tomlin, and Shankar Sastry. Multiobjective hybrid controller synthe-

sis. In Oded Maler, editor, Hybrid and Real-Time Systems, volume 1201 of Lecture Notes

in Computer Science, pages 109–123. Springer Berlin / Heidelberg, 1997.

[83] Yudong Ma and Mehdi Maasoumy. Optimal control of the operation of building cooling

systems with vav boxes. Technical report, UC Berkeley, 2011.

[84] Mehdi Maasoumy Haghighi. Master’s thesis, modeling and optimal control algorithm de-

sign for hvac systems in energy efficient buildings. Master’s thesis, EECS Department,

University of California, Berkeley, Feb 2011.

[85] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling, estimation, and opti-

mization. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 17(11):1061 –1079, nov 1998.

[86] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimelman. Jungloid mining: Helping

to navigate the API jungle. In PLDI, pages 48–61, 2005.

[87] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM TOPLAS,

2(1):90–121, 1980.

[88] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In PODC, pages 377–

410, 1990.

[89] P. Manon and C. Valentin-Roubinet. Controller synthesis for hybrid systems with linear

vector fields. In Proc. IEEE Intl. Symp. on Intelligent Control, pages 17–22, 1999.

[90] Henry Massalin. Superoptimizer - a look at the smallest program. In ASPLOS, pages

122–126, 1987.

[91] MathWorks. Minimum of unconstrained multivariable function using derivative-free

method. http://www.mathworks.com/help/techdoc/ref/fminsearch.html.

http://www.mathworks.com/help/techdoc/ref/fminsearch.html

202

[92] MathWorks. Solve initial value problems for ordinary differential equations.

http://www.mathworks.com/help/techdoc/ref/ode23.html.

[93] D. Meister and T.P. Enderwick. Human factors in system design, development, and testing.

Human factors and ergonomics. L. Erlbaum, 2002.

[94] T. M. Mitchell. Machine learning. McGraw Hill, New York, 1997.

[95] S. Mitra, D. Liberzon, and N. Lynch. Verifying average dwell time of hybrid systems. ACM

Trans. Embedded Comput. Syst., 8(1), 2008.

[96] C. Mitrohin, A. Podelski, and S. Wagner. Dwell time refinement, 2009. Personal commu-

nication.

[97] T. Moor and J. Raisch. Estimating reachable states of hybrid systems via l-complete ap-

proximations. In SSCC’98, 1998.

[98] T. Moor and J. Raisch. Discrete control of switched linear systems. In ECC’99, 1999.

[99] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods.

JOURNAL OF LOGIC PROGRAMMING, 19(20):629–679, 1994.

[100] MyDoom Wikipedia Article. http://en.wikipedia.org/wiki/Mydoom, URL

accessed Sep. 2009.

[101] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7(4):308–313, January 1965.

[102] Roland Olsson. Inductive functional programming using incremental program transforma-

tion. Artif. Intell., 74:55–81, March 1995.

[103] G. J. Pappas, C. Tomlin, and S. Sastry. Conflict resolution for multi-agent hybrid systems.

In IEEE Control and Decision Conference, pages 1184–1189, 1996.

[104] Vreda Pieterse, Derrick G. Kourie, Loek Cleophas, and Bruce W. Watson. Performance of

c++ bit-vector implementations. In SAICSIT ’10, pages 242–250, 2010.

[105] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An analysis of Conficker’s logic and

rendezvous points. Technical report, SRI International, March 2009.

http://www.mathworks.com/help/techdoc/ref/ode23.html
http://en.wikipedia. org/wiki/Mydoom

203

[106] Robin L. Raffard, Jianghai Hu, and Claire J. Tomlin. Adjoint-based optimal control of

the expected exit time for stochastic hybrid systems. In Hybrid Systems: Computation

and Control, 8th Int. Workshop (HSCC 2005), volume 3414 of Lecture Notes in Computer

Science, pages 557–572. Springer Verlag, 2005.

[107] J. I. Rasmussen, K. G. Larsen, and K. Subramani. On using priced timed automata to

achieve optimal scheduling. FMSD, 29:97–114, July 2006.

[108] S. Ray. Scalable Techniques for Formal Verification. Springer, 2010.

[109] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.

ed.). 2010.

[110] S. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer, 1999.

[111] J.M. Schumann. Automated theorem proving in software engineering. Springer, 2001.

[112] Sanjit A. Seshia. Sciduction: Combining induction, deduction, and structure for verification

and synthesis. Technical Report UCB/EECS-2011-68, EECS Department, University of

California, Berkeley, May 2011.

[113] M. Shaikh and P. Caines. On the optimal control of hybrid systems: Optimization of tra-

jectories, switching times, and location schedules. In HSCC, 2003.

[114] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA,

1983.

[115] Changchun Shi and Robert W. Brodersen. An automated floating-point to fixed-point con-

version methodology. In Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Processing,

pages 529–532, 2003.

[116] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodı́k, Vijay A. Saraswat,

and Sanjit A. Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

[117] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay

Saraswat. Combinatorial sketching for finite programs. In ASPLOS, 2006.

204

[118] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit A. Seshia, and Vijay A.

Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

[119] Eduardo D. Sontag. Mathematical control theory: deterministic finite dimensional systems

(2nd ed.). Springer-Verlag New York, Inc., New York, NY, USA, 1998.

[120] SRI Intl. Yices: An SMT solver.

[121] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth analysis with appli-

cation to silicon compilation. SIGPLAN Not., 35:108–120, May 2000.

[122] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deductive compo-

sition of astronomical software from subroutine libraries. In CADE, 1994.

[123] Phillip D. Summers. A methodology for lisp program construction from examples. J. ACM,

24(1), 1977.

[124] Wonyong Sung and Ki-Il Kum. Simulation-based word-length optimization method for

fixed-point digital signal processing systems. Signal Processing, IEEE Transactions on,

43(12):3087 –3090, dec 1995.

[125] Symantec Corporation. Internet security threat report volume XIV.

http://www.symantec.com/business/theme.jsp?themeid=threatreport,

April 2009.

[126] Ankur Taly, Sumit Gulwani, and Ashish Tiwari. Synthesizing switching logic using con-

straint solving. In VMCAI, pages 305–319, 2009.

[127] Ankur Taly and Ashish Tiwari. Switching logic synthesis for reachability. In EMSOFT,

pages 19–28, 2010.

[128] C. Tomlin, L. Lygeros, and S. Sastry. A game-theoretic approach to controller design for

hybridsystems. Proc. of the IEEE, 88(7):949–970, 2000.

[129] Claire Tomlin. Field-controlled DC motor. In Lecture Notes from Graduate Course in

Non-linear Control Theory (EE222 Spring, 2011) at UC Berkeley.

http://www.symantec.com/business/theme.jsp?themeid=threatreport

205

[130] Claire Tomlin, John Lygeros, and Shankar Sastry. Synthesizing controllers for nonlinear

hybrid systems. In HSCC, pages 360–373, 1998.

[131] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[132] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman, Boston, MA, USA, 2002.

[133] X. Xu and P. Antsaklis. Optimal control of switched systems via nonlinear optimization

based on direct differentiation of value functions. Intl. journal of control, 75(16):1406–

1426, 2002.

[134] Randy Yates. Fixed-point arithmetic: An introduction. In Technical Reference Digital

Signal Labs, 2009.

[135] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In Interna-

tional Conference on Broadband, Wireless Computing, Communication and Applications

(BWCCA), pages 297 –300, 2010.

	Acknowledgements
	Introduction
	Thesis Statement
	Challenges in Automated Synthesis
	Motivating Examples
	Common Features and Challenges

	Thesis Contribution
	Elements of Sciduction
	Soundness Guarantee of Sciduction based Synthesis
	Applications of Sciduction

	Thesis Overview

	I Synthesis of Programs
	Background
	Formalism and Notations
	Bitvector Programs
	Floating-point and Fixed-point Programs

	Related Work
	Deductive Program Synthesis
	Inductive Program Synthesis
	Synthesis from Functional Specification
	Automated Synthesis for Program Completion
	Program Optimization
	Fixed-point Program Synthesis
	Dimensions

	Oracle Based Synthesis of Loop-free Program
	Introduction
	Contributions
	Problem Definition
	Running Example

	Sciductive Approach
	Encoding Programs
	Oracle-Guided Synthesis
	Illustration on Running Example
	Optimization

	Discussion
	Choosing Base Components
	Connections to Learning

	Results and Experiments
	Correctness Guarantee
	Experiments

	Conclusion

	Synthesis of Optimal Fixed-Point Code
	Problem Definition
	Floating-point Implementation
	Input Domain
	Correctness Condition for Accuracy
	Implementation Cost Model
	Problem Definition

	Sciductive Approach
	Synthesizing Optimal Types for a Finite Input Set
	Verifying a Candidate Fixed-Point Program
	Illustration on Running Example
	Theoretical Results

	Experiments
	Infinite Impulse Response (IIR) Filter
	Finite Impulse Response (FIR) Filter
	Field Controlled DC Motor
	Two-Wheeled Welding Mobile Robot

	Conclusion

	II Synthesis of Switching Logic
	Background
	Formalism and Notations
	Hybrid Automata
	Boolean Properties
	Quantitative Properties

	Related Work
	Synthesis for Boolean Safety Properties
	Synthesis for Quantitative Performance Properties
	Dimensions

	Synthesis of Switching Logic for Safety Specifications
	Introduction
	Contributions
	Problem Definition
	Running Example

	Sciductive Approach
	Switching Logic Synthesis for Safety
	Switching Logic Synthesis for Safety and Dwell-time
	Guards from Simulations

	Results and Experiments
	Thermostat Controller
	Traffic Collision and Avoidance System
	Automatic Transmission
	Train Gate Controller
	Performance

	Discussion
	Conclusion

	Synthesis of Switching Logic for Performance Specifications
	Introduction
	Contributions
	Problem Definition
	Running Example

	Sciductive Approach
	Optimization over Finite Parameters
	Numerical Optimization
	Guard Inference Using Learning

	Results and Experiments
	Thermostat Controller
	Oil Pump Controller
	DC-DC Buck-Boost Converter
	Air Handling Unit in Buildings

	Conclusion

	Conclusion
	Summary
	Future Work
	Program Synthesis
	Synthesis of Switching Logic

	Bibliography

