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Abstract

Sequential decision problems are often approximately solvable by simu-
lating possible future action sequences; such methods are a staple of game-
playing algorithms, robot path planners, model-predictive control sys-
tems, and logistical planners in operations research. Since the 1960s, re-
searchers have sought effective metareasoning methods for selecting which
action sequences to simulate, basing their approach on some estimate of
the expected improvement in decision quality resulting from any partic-
ular simulation. Recently, this approach has been applied successfully in
the context of Monte Carlo tree search, where each simulation takes the
form of a randomized sequence of actions leading to a terminal state. In
particular, the UCT algorithm borrows asymptotically optimal selection
rules from the theory of bandit problems and has led to a new generation
of master-level Go programs such as MoGo. We argue that, despite this
success, the bandit framework is inappropriate as a basis for selecting com-
putations. We propose instead a theoretical framework for metareasoning
that is isomorphic to the statistical framework of ranking and selection.
In this framework, we describe two apparently distinct conceptual ap-
proaches to the forward search metareasoning problem and prove them to
be equivalent. We derive a number of basic results applicable to simple
Monte Carlo selection problems, including asymptotic regret bounds, and
discuss prospects for their extension to combinatorial settings.
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1 Introduction

The broad family of sequential decision problems includes combinatorial search
problems, game playing, robotic path planning, model-predictive control prob-
lems, Markov decision processes (fully or partially observable), and a huge range
of applications. In almost all realistic instances, exact solution is intractable
and approximate methods are sought. Perhaps the most popular approach is
to simulate a limited number of possible future action sequences. For example,
a typical game-playing algorithm explores a tree or graph of action sequences
with some limit on depth, using pruning methods to avoid irrelevant subtrees;
based on what it finds in the explored portion of the state space, the algorithm
then selects a move.

Clearly, it is desirable to select the best possible move from the least possible
amount of exploration. For a given amount of exploration, decision quality can
be improved by directing exploration towards those actions sequences whose
outcomes are helpful in selecting a good move. Thus, the metalevel decision
problem is to choose what future action sequences to explore (or, more generally,
what deliberative computations to do), while the object-level decision problem
is to choose an action to execute in the real world.

That the metalevel decision problem can itself be formulated and solved decision-
theoretically was noted by Matheson (1968), borrowing directly from the related
concept of information value theory (Howard, 1966). In essence, computations
can be selected according to the expected improvement in decision quality re-
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sulting from their execution. I. J. Good (1968) independently proposed using
this idea to control search in chess, and later defined “Type II rationality” to re-
fer to agents that optimally solve the metalevel decision problem before acting.
As interest in probabilistic and decision-theoretic approaches in AI grew during
the 1980s, several authors explored these ideas further (Dean and Boddy, 1988;
Doyle, 1988; Fehling and Breese, 1988; Horvitz, 1987). Work by Russell and
Wefald (2008, 1988, 1989, 1991); andd Eric Wefald (1991) formulated the met-
alevel sequential decision problem, employing an explicit model of the results of
computational actions, and applied this to the control of game-playing search
in Othello with encouraging results.

An independent thread of research on metalevel control began with work by
Kocsis and Szepesvári (2006) on the UCT algorithm, which operates in the
context of Monte Carlo tree search (MCTS) algorithms. In MCTS, each com-
putation takes the form of a simulating a randomized sequence of actions leading
from a leaf of the current tree to a terminal state. UCT is primarily a method
for selecting a leaf from which to conduct the next simulation. It forms the
core of the successful MoGo algorithm for Go playing (Gelly and Silver, 2011).
It is situated within the theory of bandit problems (Berry and Fristedt, 1985),
applying the bandit algorithm UCB1 (Auer et al., 2002) recursively to select ac-
tions to perform within simulations. Kocsis and Szepesvári (2006) show UCT’s
estimates of the utility of the best action converges at rate O( logn

n ) in the num-
ber of simulations n, and that the probability of simulating a suboptimal action
at the root converges to zero polynomially.

We argue in this technical report that the problem of choosing the next simula-
tion computation in MCTS is, like all metalevel decision problems, fundamen-
tally distinct from the class of bandit problems:

• The goal of any metareasoning process is to choose simulations in order to
maximize the utility of the action eventually taken (less the cost of time
used to find it). The goal is not to avoid simulating suboptimal actions;
indeed, it may be useful to simulate suboptimal actions to eliminate them.

• The goal is not even to accurately estimate action utilities, for, if the
metareasoning process has determined one action is likely to be signifi-
cantly better than the rest, it will stop and take it rather than trying to
determine exactly how much better it is.

• Bandit algorithms pay a higher cost for choosing a worse bandit arm to
sample—in medical trials, for example, there is a real cost to trying an
ineffective or toxic drug on a patient. In metareasoning, on the other hand,
the costs of simulating good and bad moves are the same, regardless of
move quality. Thus, one expects UCT to be inappropriately biased away
from exploring actions whose current utility estimates are low.

• Bandit algorithms are designed to optimize over infinite sequences of trials,
with no notion of “stopping.” The metareasoning problem requires trading
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off the expected gains from computation against the cost of time, leading
to a natural stopping rule.

In order to develop better alternatives to UCT it pays to have a theoretical
understanding of MCTS as a metareasoning problem. We develop such an
understanding in the following, then sketch prospects for improved algorithms
for MCTS.

Section 2 sets the scene, precisely specifying MCTS and UCT, then outlining
some problematic aspects of UCT.

Section 3 presents a general theory of probabilistic metareasoning and derives
general results. We give two equivalent ways to define a metalevel decision
problem, explore the properties of myopic policies and their relation to optimal
policies, and consider how adding context affects the optimal policy.

Section 4 gives results specific to metareasoning via Monte Carlo methods, i.e.,
by drawing noisy samples of action values. We consider two sampling models,
Bernoulli and normal, and consider myopic policies and optimal for solving
them. We compare these polices to the UCB algorithm. We proceed give some
regret bounds of our own for the Monte Carlo sampling problem.

Section 5 sketches how the above results can be applied to the design of improved
MCTS algorithms.

2 Monte Carlo tree search

2.1 Ranking and selection versus bandits

Suppose there are k actions available. Each action’s consequences are uncertain,
but an accurate generative model is available to stochastically simulate the
consequences of any action at a cost. Eventually one of the actions must be
selected for actual execution. Which strategy for sequentially simulating actions
maximizes the expected net utility of the actual consequences less the cost of
simulation?

Problems of this form have been studied under various headings. In statistics,
ranking and selection problems have been studied since the 1950s; Frazier (2009)
provides a useful survey. In machine learning, Madani et al. (2004) studied
budgeted learning problems. Here we’ll call them ranking and selection problems,
although it is important to note that the emphasis in statistics is on ranking
populations based on samples, with no underlying sequential decision problem.

Bandit problems (Robbins, 1952; Berry and Fristedt, 1985) are similar but im-
portantly different. In a bandit problem there are k actions, one of which can
be taken at each time step; each action’s reward at each time step is drawn
from a fixed distribution for that action and is independent of actions taken
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previously. The canonical example is a medical trial: given k different treat-
ments, how should they be allocated to each of a line of patients to maximize
the expected total number patients successfully treated? On the one hand, it is
good to experiment to learn which treatments are best, but on the other hand,
these are real patients so it is good to give them the best known treatment.
This conflict is an instance of the exploration vs. exploitation tradeoff that is
also seen in reinforcement learning (Sutton and Barto, 1998).

The essential difference between these two problems is that ranking and selection
algorithms simulate whereas bandit algorithms act. All other things equal, in a
bandit problem it is worse to take a bad action than a good one. In a ranking
and selection problem, on the other hand, both are equally good. Put differently,
ranking and selection problems are pure exploration.

For example, one can show quite generally in bandits that actions with higher
means and higher uncertainty are preferred (Yu, 2011). However, in the two-
action, normally distributed ranking and selection problem (see section 4.4) the
optimal policy selects the action with highest uncertainty, regardless of its mean
(Frazier, 2009).

2.2 Monte Carlo tree search

Consider the problem of deciding which action to take in a particular state of a
Markov Decision Process (MDP) given a generative model of that MDP. This is
similar to the ranking and selection problem in the previous section, except the
consequences of choosing an action are not immediate but depend on further
action choices the agent will make in the future. The generative model can be
used to perform Monte Carlo simulations of the consequences of each action,
and these simulations can be integrated together into a lookahead tree rooted
at the present state. Monte Carlo tree search (MCTS) must decide how best to
perform Monte Carlo simulations to build up such a tree, and how to use it to
decide which action to take.

To make this more precise, a generic framework for MCTS is given in Algo-
rithm 1. MCTS performs a sequence of simulations of potential futures from
the given state, building up a tree of all states visited in these simulations to
record the simulations’ results. Each node represents a state and keeps track of
certain statistics (updated by UpdateNode). Until a terminal state is reached,
actions are selected to be simulated in some fashion by ChooseAction. Sam-
pleNextNode then uses the generative model to sample a new state and re-
ward, returning the node corresponding to the new state (created if this state
hasn’t yet been visited) with the reward. Finally, where Finished decides to
stop simulating, BestAction returns the apparently best action at the root,
given the information in the tree.

Specific MCTS algorithms specify the workings of UpdateNode, ChooseAc-
tion, BestAction, and Finished.
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Algorithm 1 Monte Carlo Tree Search
function MCTS(state)

root = NewNode(state=state)
while not Finished(root) do

Simulate(root)
end while
return BestAction(root)

end function

function Simulate(node)
if Terminal(node) return 0
action ← SelectAction(node)
(next-node, reward) ← SampleNextNode(node, action)
q ← reward + γ Simulate(next-node)
UpdateNode(node, action, next-node, reward, q)
return q

end function

UCT (Kocsis and Szepesvári, 2006) is a special case of Algorithm 1 where:

• UpdateNode keeps track for each state s the number of times ns that
state has been visited in a simulation, the number of times nsa each ac-
tion a has been tried in that state and the average future reward rsa
received in those simulations.

• SelectAction implements the UCB algorithm (Auer et al., 2002) from
the theory of multi-armed bandits (Berry and Fristedt, 1985): if there are
any untried actions it selects one at random, otherwise selecting the action
a that maximizes

rsa + k

√
log ns
nsa

.

The first term favors actions that have performed well so far, the second
term favors actions that have been tried fewer times (so their value is more
uncertain), and the constant k tunes the balance between these two goals.

• Finished terminates either when a time limit is reached, or after a given
number of simulations.

• BestAction returns the action a at the root state s0 which maximizes
rs0a the average reward of all simulations which tried a as their first action.

As noted in the Introduction, there are a few problematic aspects of UCT:

• Choosing which simulation to perform is analogous to a ranking and se-
lection problem, not a bandit problem, i.e., it is pure exploration without

6



exploitation. Indeed, the special case where the MDP terminates after the
next action is exactly the ranking and selection problem.

• UCT uses the same decision process at each node recursively down the
tree. Except at the root, however, the decision as to which successor of a
given node to simulate next is not taken in a vacuum; instead, it is taken
in the context of the information obtained about the ancestors of the node
and about all their other descendants. As we show in Section 3.5, varying
the a node’s context can change the optimal metalevel policy below that
node.

• In UCT, the values of the actions are estimated by the average reward of
all simulations that take that action. Not all simulations use the same fu-
ture policy, however, and the correct estimate of an action’s value should
use the future policy the agent will actually take. A more accurate esti-
mate would take this into account, either by estimating an action’s value
using the apparently best future policy found so far (this corresponds to
expectimax backup of simulation values at the leaves up the tree) or a
more sophisticated estimate—e.g., those suggested by Baum and Smith
(1999).

In order to improve upon UCT, Section 3 below gives a general probabilistic
theory of metareasoning as an information collection problem, then Section 4
applies it to the study of controlling Monte Carlo sampling. Section 5 sketches
how this can be applied to the design of improved MCTS algorithms.

3 Theory of metareasoning

Metareasoning treats computation as evidence about the uncertain utility of
actions, choosing computations to find the best action in the least time. This
begs a formalization within decision theory, where uncertainty is modeled prob-
abilistically, and computations are selected to maximize expected utility.

This perspective places metareasoning within the wider class of information
collection problems (Frazier, 2009). Information collection problems are found
in many literatures under many different names, including ranking and selection
problems, multi-armed bandit problems, sequential analysis, sequential design
of experiments, foraging theory, consumer search theory, and information value
theory (see (Frazier, 2009) for review).

This section gives the formal definition of metalevel decision problems within
decision theory, investigating their general properties. The next section will
apply this theory to choosing Monte Carlo samples.

7



Ui The random variable equal to utility of object level action i for i = 1, . . . , k.
E The set of all possible computations.
E ∈ E A random variable denoting a computation whose random value, e, is

the result of that computation.
c Cost of performing a computation; c > 0.
S The set of all possible belief states, i.e., the set of all possible sequences

of computational results.
St ∈ S State at time t = 0, 1, . . . , equal to the sequence of results of

computations performed up to this time.
E⊥ E ∪ {⊥}, where ⊥ denotes the decision to stop computing and select an

action 1, . . . , k.
Et ∈ E⊥ The decision at time t: either to compute (Et ∈ E) or to stop (Et = ⊥).
π : S → E⊥ A metalevel policy, which prescribes what to do in each possible state s ∈ S.
ui : S → R The expected utility of action i in state s, defined by ui(s) = E[Ui|S0 = s].

Table 1: Metalevel probability model notation.

3.1 Metalevel probability models

Definition 1. A metalevel probability model M = (U1, . . . , Uk, E) consists
of jointly distributed random variables:

• U1, . . . , Uk, where Ui is the utility of performing action i, and

• E1, E2, · · · ∈ E , where Ej is a computation that can be performed and
whose value is the result of that computation.

A metalevel probability model, when combined with a cost c > 0 of computa-
tion,1 defines a metalevel decision problem: what is the optimal way to choose
a finite sequence of computations E ∈ E to observe in order to maximize the
expected utility of the action taken after that sequence less the cost of compu-
tation?

To get a precise answer to this question we need to give it mathematical form,
and to do that we need notation (see Table 1 for an overview).

After performing a sequence of computations E1, . . . , En ∈ E we have a se-
quence of results e1, . . . , en, namely the (random) values of these variables. Let
s = 〈e1, . . . , en〉 denote the sequence of results, and S the set of all such pos-
sible sequences. Such a sequence is the state of knowledge of the agent after
performing these computations.

A metalevel policy π : S → E⊥, where E⊥ = E ∪{⊥}, chooses either a compu-
tation π(s) ∈ E to perform in any given state s ∈ S, or decides to stop π(s) = ⊥

1The assumption of a fixed cost of computation is a simplification; precise conditions for
its validity are given by (Harada, 1997).
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and take one of the object-level actions 1, . . . , k. Given such a policy, the ran-
dom sequence of states it visits and the sequence of computations performed
when executing is defined by

S0 = 〈〉
Et = π(St)

St+1 = St · [Et] if Et ∈ E (1)

where Si ·[Et] denotes the sequence Si extended by the result of the computation
(i.e., the value of the random variable) Et. If Et = ⊥ the states are defined only
up to St. Denote by Nπ the (random) time of the final state St.2

Once the policy decides to stop, an object-level action must be taken. This will
be selected in order to maximize expected utility. If the final state SNπ is s,
the expected utility of performing Nπ computations and choosing the action
i ∈ {1, . . . , k} is

−cNπ + E[Ui|SNπ = s].

As the cost of computation is sunk, argmaxi Eπ[Ui|SNπ = s] is the optimal
choice, yielding an expected utility of

−cNπ + max
i

E[Ui|SNπ = s].

If we define ui(s) = E[Ui|S0 = s], the expected utility of a policy π without
knowing the results SNπ of its computations is

V πM = Eπ[−cNπ + max
i
ui(SNπ )] (2)

where the notation Eπ[. . . ] makes explicit the dependence of the outside expec-
tation on π, and where we make explicit the dependence of V πM on the metalevel
probability model M .

Now we can formally state our question: given a metalevel probability model M
defining V πM through equation (2), find argmaxπ V πM .

It will be useful later to generalize the above notation to cover starting in an
arbitrary state s ∈ S:

V πM (s) = Eπ[−cNπ
s + max

i
ui(SNπs )|S0 = s] (3)

where Nπ
s denotes the number of computations performed if the the policy is

started in state s. Note that V πM (〈〉) = V πM and Nπ
〈〉 = Nπ.

Example 1. Suppose the computer is trying to decide between two actions.
The first is safe, achieving an outcome of known utility u. The second is risky,
achieving of an outcome of utility 1 (success) with probability Θ, and otherwise
an outcome of utility 0 (failure). This probability Θ is itself unknown, with

2We’ll assume all policies π are proper, i.e., that they halt with probability 1.
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value uniformly distributed between 0 and 1. The computer has an accurate
simulator of the risky action to aid in its choice. For cost c this simulator
will generate an outcome, which will be success with probability Θ and failure
otherwise. This problem is represented by the metalevel probability model with
utilities U1, U2 and computational variables E = {E1, . . . } under the following
generative model:

Θ ∼ Uniform(0, 1)
U1 = u

U2 | Θ ∼ Bernoulli(Θ)

Ei | Θ
iid∼ Bernoulli(Θ) for i = 1, . . .

See section 4.1 below for more on this model.

3.2 Metalevel MDP

In this section we show that metalevel decision processes are equivalent to a
particular kind of Markov Decision Process (MDP). This will allow us to apply
general results on MDPs to the metareasoning problem.

Definition 2. A metalevel MDP M = (S⊥, E⊥, T,R) is an undiscounted
MDP with state space S⊥, action set E⊥, transition model T , and reward func-
tion R, together with a constant c > 0 and functions ui : S → R for i = 1, . . . , k
such that:

• S⊥ = S ∪ {⊥} where ⊥ is the terminal state.

• E⊥ = E ∪ {⊥} where ⊥ transitions to ⊥ with probability 1.

• The utility estimates ui(s) are coherent:3

ui(s) =
∑
s′

T (s, E, s′)ui(s′)

for all s ∈ S, E ∈ E , and i = 1, . . . , k.

• The reward function is defined by

R(s, E, s′) = −c for s, s′ ∈ S and E ∈ E ,
R(s,⊥,⊥) = max

i
ui(s).

3This formulation assumes a discrete transition distribution, but can be generalized
straightforwardly to transition kernels in general.
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In a metalevel MDP M , policies are given by functions π : S → E⊥, which have
value functions defined in the usual way as the expected sum of rewards rt
received until termination at time T :

V πM (s) = Eπ

[
T∑
t=0

rt

]
. (4)

Theorem 1. Metalevel probability models and metalevel MDPs are equivalent
ways of specifying a metalevel decision problem: given a metalevel probability
model M with state space S and computation set E there is a metalevel MDP
M ′ with state space S ∪ {⊥} and action space E ∪ {⊥} such that

V πM (s) = V πM ′(s)

for all policies π and states s ∈ S, and conversely.

Proof. Given a metalevel probability model M = (U1, . . . , Uk, E) with state
space S and a cost c > 0 of computation, define a metalevel MDP by:

S⊥ = S ∪ {⊥}
E⊥ = E ∪ {⊥}

ui(s) = E[Ui|S0 = s]
T (s, E, s′) = P (S1 = s′|S0 = s, E0 = E)

T (s,⊥, s′) =

{
1 if s′ = ⊥,
0 otherwise.

R(s, E, s′) = −c
R(s,⊥,⊥) = max

i
ui(s)

To see that this is a metalevel MDP we need only check coherence:∑
s′

T (s, E, s′)ui(s′) =
∑
s′

P (S1 = s′|S0 = s, E0 = E)E[Ui|S0 = s′]

=
∑
s′

P (S1 = s′|S0 = s, E0 = E)E[Ui|S1 = s′]

= E[Ui|S0 = s, E0 = E]
= E[Ui|S0 = s]
= ui(s).

We’ll show that V πM (s) for the original metalevel probability model satisfies the
Bellman equations for the metalevel MDP, which implies that V πM = V πM ′ . Take
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any s ∈ S and observe that

V πM (s) = Eπ[−cNπ
s + max

i
ui(SNπs ) | S0 = s]

=

{
maxi ui(s) if π(s) = ⊥,
Eπ[−c (1 +Nπ

S1
) + maxi ui(S1+NπS1

) | S0 = s] otherwise.

=


maxi ui(s) + V πM (⊥) if π(s) = ⊥,
−c+

∑
s′ P (S1 = s′|S0 = s, E0 = π(s))

Eπ[−cNπ
S1

+ maxi ui(S1+NπS1
) | S1 = s′] otherwise.

=

{
maxi ui(s) + V πM (⊥) if π(s) = ⊥,
−c+

∑
s′ T (s, π(s), s′)Eπ[−cNπ

s′ + maxi ui(SNπ
s′

) | S0 = s′] otherwise.

=

{
maxi ui(s) + V πM (⊥) if π(s) = ⊥,
−c+

∑
s′ T (s, π(s), s′)V πM (s′) otherwise.

=
∑
s′

T (s, π(s), s′)[R(s, π(s), s′) + V πM (s′)]

The converse is straightforward.

In the following we’ll freely use both forms as convenient.

3.3 The myopic policy

In general it may be difficult to find the optimal policy for a metalevel MDP, so
approximations or simplifications are often made. The metagreedy assumption
(Russell and Wefald, 1991) is that there is at most one computation remaining
before action will be taken. A myopic policy (also known as a knowledge gra-
dient algorithm (Frazier, 2009)) selects computations based on this assumption.

The value of immediately stopping in a state s is:

max
i
ui(s),

and the value of performing the computation E then immediately stopping is:

−c+
∑
s′

T (s, E, s′) max
i
ui(s′).

Thus, the myopic policy will continue computing if there is some computation
E such that: ∑

s′

T (s, E, s′) max
i
ui(s′)−max

i
ui(s) ≥ c ; (5)

otherwise, it will stop. It will select the E that maximizes the excess of comput-
ing over stopping. Notice that for the myopic policy the cost of computation c
only affects the threshold for stopping, not which computation is selected if it
is optimal to continue. This is not true for optimal policies in general.
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3.4 Relation between myopic and optimal policies

Definition 3. In a metalevel MDP, a state s′ is reachable from a state s if
there exists a policy π such that there is positive probability of transitioning to
state s′ starting from state s under policy π.

Theorem 2. In a metalevel MDP, if the optimal policy stops in a state s then
the myopic policy stops too. As a partial converse, if the myopic policy stops in
all states reachable from a given state s, then the optimal policy stops at s.

Proof. The optimal policy stops in a state s if

V π(s) ≤ max
i
ui(s)

for all policies π, but this includes the policies which perform exactly one com-
putation before acting, so the myopic policy stops too.

For the partial converse, suppose that the myopic policy stops for all states s′

reachable from a state s. Then for all such s′ and all E ∈ E

−c+

(∑
s′′

T (s′, E, s′′) max
i
ui(s′′)

)
−max

i
ui(s′) ≤ 0. (6)

The results of Ng et al. (1999) show we can transform an MDP’s reward function
by shaping without affecting which policies are optimal. If we use the shaping
function

ϕ(s) =

{
maxi ui(s) if s ∈ S,
0 if s = ⊥,

to transform the reward function of the metalevel MDP, we get:

R′(s, E, s′) = R(s, E, s′) + ϕ(s′)− ϕ(s)

=

{
−c+ maxi ui(s′)−maxi ui(s) if E ∈ E ,
0 if E = ⊥ and s′ = ⊥.

Then equation (6) shows that the expected reward of any computation E is
non-positive for all s′ reachable from s:

R′(s′, E) =
∑
s′′

T (s′, E, s′′)R′(s′, E, s′′) ≤ 0.

Thus, the utility of the optimal policy is no greater than stopping at s, so the
optimal policy stops.
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3.5 Context effects

Suppose we place a metalevel MDP M within a wider context, where there is a
new external action of fixed utility u, but the computations and other actions
are as before. Let Mu be the metalevel MDP M augmented with this new
external action; the only change is that the terminal reward becomes

Ru(s,⊥,⊥) = max(u,R(s,⊥,⊥)) = max(u,max
i
ui(s)).

How does the optimal policy for Mu relate to that of M? How does it depend
on u?

If L is a lower bound on the utility of all actions in M , then ML is isomorphic
to M , and thus the utility of all polices are the same. This is because there is
no advantage to ever taking the augmenting action, i.e.,

max(L,max
i
ui(s)) = max

i
ui(s)

for any state s.

If U is an upper bound on the utility of all actions in M , then in MU it is
optimal to stop in all states, as the terminal reward equals U in all states, so
not stopping will only incur additional costs −c for computing to no benefit.

What happens for intermediate values L ≤ u ≤ U?

Theorem 3. Suppose we take a metalevel MDP M and add to it an external
action of fixed utility u yielding an augmented metalevel MDP Mu. Then there
is a function I(s) assigning an interval to each state s ∈ S such that it is optimal
to continue computing from state s in Mu iff the value of the fixed action u lies
within this interval I(s). Furthermore, whenever I(s) is non-empty it contains
maxi ui(s).

Proof. The utility of policy π starting in state s of Mu is

V πMu
(s) = Eπ[−cNπ

s + max(u,max
i
ui(SNπs )) | S0 = s],

and the utility of stopping in state s is

QπMu
(s,⊥) = max(u,max

i
ui(s)).

We need to show that the set I(s) of u such that

max
π

(
V πMu

(s)−QπMu
(s,⊥)

)
≥ 0

forms an interval.

Notice that the above expression has a simple form as a function of u:

g(u) ≡ max
π

(
V πMu

(s)−QπMu
(s,⊥)

)
= −w + max

π
Eπ[max(Xπ, u) | S0 = s]−max(v, u)

14



where

w = cEπ[Nπ
s | S0 = s]

Xπ = max
i
ui(SNπs )

v = max
i
ui(s) .

Functions of this form increase monotonically in u to a maximum at u = v, then
decrease monotonically there after, approaching −w in the limit. This is because
Eπ[max(X,u) | S0 = s] is convex in u by Jensen’s inequality, with subderivative
at most one everywhere. This property is preserved by maximization over π
and translation by −w. The term −max(v, u) is constant before u, so the
function is nondecreasing, and has derivative −1 there after, so the function is
nonincreasing.

Therefore, the set of u for which such a function is non-negative forms an interval
containing v if non-empty.

This result shows context can affect whether it is optimal to stop or not. Can
it affect which computation it is optimal to take? Yes, as the following example
shows.

Example 2. Suppose there are two actions:

• Action A has low expected utility and high variance: it is equally likely
to have values −1.5 or 1.5, so has prior mean 0.

• Action B has high expected utility and low variance: it is equally likely
to have values 0.25 or 1.75, so has prior mean 1.

There are two computations which can be performed at cost 0.2: observe action
A’s value exactly, and observe action B’s value exactly. This forms a metalevel
MDP with 1 + 2 ∗ 2 + 4 = 9 states, so it straightforward to solve by backwards
induction:

Q∗u(〈〉,⊥) = max(u, 1)
Q∗u(〈〉, A) = 0.5 max(u, 1.5,−0.2 + 0.5 max(u, 1.5) + 0.5 max(u, 1.75))

+ 0.5 max(u, 1,−0.2 + 0.5 max(u, 0.25) + 0.5 max(u, 1.75))− 0.2
Q∗u(〈〉, B) = 0.5 max(u, 0.25,−0.2 + 0.5 max(u, 1.5) + 0.5 max(u, 0.25))

+ 0.5 max(u, 1.75,−0.2 + 0.5 max(u, 1.75) + 0.5 max(u, 1.75))− 0.2

Figure 1 plots these functions less Q∗u(〈〉,⊥). Observe that for u = 0 it is optimal
to observe B but for u = 1 it is optimal to observe A, showing that context
changes which computation is optimal.
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Figure 1: Utility of stopping, observing A, or observing B, relative to stopping,
as a function of the value of a fixed alternative u. Notice that as u increases it
is optimal to observe B, then to observe A, then to stop.

4 Monte Carlo Metareasoning

One important way to gain information about the expected utility of an action
is through Monte Carlo simulation of its consequences. This is more complex in
the sequential case, where the consequences include as yet undetermined future
actions by the agent, but it is interesting even in the one-shot case where they
do not.

In this section we apply the general theory above to controlling Monte Carlo
simulation of actions. This problem has been studied before in the ranking
and selection literature (Swisher et al., 2003) as Bayesian ranking and selection,
including the formulation as an MDP and myopic policies (called knowledge
gradient algorithms); see (Frazier, 2009) for review.

A Monte Carlo simulator stochastically simulates one possible sequence of con-
sequences following from a given action, returning the total utility of these con-
sequences. Statistically, this corresponds to sampling from the distribution over
the utility of taking a given action. Equivalently, this corresponds to making a
noisy measurement of the expected utility of the action.

Given such a simulator, the corresponding metareasoning problem is to choose
which actions to simulate and when to stop. These choices can depend on the
results of the simulations made so far.

Mathematically, to define such a problem we need to specify the prior distribu-
tion over action utilities U1, . . . , Uk, a cost c > 0 of sampling, and a distribution
for a sample E of action i’s utility conditional on action i having utility Ui = u.
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4.1 Bernoulli sampling

Perhaps the simplest case is the Bernoulli sampling model for a single ac-
tion with unknown utility U1, The model supposes that there is some latent
probability Θ, assumed uniformly distributed, of the action leading to success
(utility 1) rather than failure (utility 0). The samples (simulations) are assumed
well-calibrated, so they share this same probability of success. Formally:

Θ ∼ Beta(1, 1)
U1 | Θ ∼ Bernoulli(Θ)

Ei | Θ
iid∼ Bernoulli(Θ) for i = 1, . . .

where the density of a Beta(α, β) distribution is proportional to θα−1(1−θ)β−1,
so Beta(1, 1) is the uniform distribution. The beta distribution is convenient as
it is conjugate to the Bernoulli, so the posterior distribution over Θ conditioned
on n samples is also beta. In particular, given n samples E1, . . . , En of which
n1 have value 1 and n0 have value 0, it is easy to see that

Θ | E1, . . . , En ∼ Beta(1 + n1, 1 + n0).

Since U1, En+1, . . . are conditionally independent of E1, . . . , En given Θ, it is
sufficient to keep track of the parameters (α, β) of the posterior distribution
over Θ. In this case we have:

Ej | E1, . . . , En ∼ Bernoulli(α/(α+ β))
E[U1 | E1, . . . , En] = α/(α+ β)

for j > n. Under this model the parameters (α, β) form a Markov chain (see
Figure 2) that starts in state (1, 1) and, on sampling, transitions to (α + 1, β)
with probability α/(α, β) and to (α, β+ 1) otherwise. The expected value of U1

in state (α, β) is simply α/(α, β).

The above describes the Bernoulli model for sampling a single action’s value,
and how to convert this into an Markov chain. But we need at least two actions
to have a non-trivial metalevel decision problem: there is no point computing if
we have nothing to decide between. There are two natural ways to extend this
to a nontrivial metalevel decision problem:

1. Have k ≥ 2 Bernoulli actions with independently distributed utilities:

Θj
iid∼ Beta(1, 1) for j = 1, . . . , k

Uj | Θj ∼ Bernoulli(Θj) for j = 1, . . . , k

Eji | Θj
iid∼ Bernoulli(Θj) for j = 1, . . . , k, i = 1, . . .

Since these actions are completely independent, the equivalent metalevel
MDP has states of the form s = (α1, β1, . . . , αk, βk), sampling action j
increments αj with probability αj/(αj +βj) and increments βj otherwise,
and uj(s) = αj/(αj + βj).
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Figure 2: Fragment of the Bernoulli state space for a single action. States are
labeled with the parameters (α, β) of the posterior Beta distribution over the
action’s utility in that state. Outgoing edges are labeled with the probability
of following that transition upon sampling. The state space continues infinitely
out to the right.

18



2. Add a single action of known value U2 = u (call this the contextual
Bernoulli problem). This retains the same state space and transition
model as a single action (Figure 2). It is equivalent to the previous prob-
lem where k = 2 and (α2, β2) = (nu, n(1− u)) in the limit n→∞.

In the following we’ll call both the Bernoulli sampling problem, the latter special
case being the contextual version.

4.2 Myopic Bernoulli sampling

Section 3.3 derived the general form for the myopic sampling policy. Combining
its results with the Bernoulli metalevel MDP from the previous section, we find
the advantage of sampling action i and stopping, versus immediately stopping,
is

a(i, ui) = −c+
(
µi max

(
µ+
i , ui

)
+ (1− µi) max

(
µ−i , ui

))
−max (µi, ui) (7)

where

µi =
αi
ni

µ+
i =

αi + 1
ni + 1

= µi +
1

ni + 1
(1− µi)

µ−i =
αi

ni + 1
= µi −

1
ni + 1

µi

ui = max
j 6=i

µj

and where ni = αi + βi. Figure 3 illustrates a(i, ui) as a function of ui.

The myopic policy samples the action that maximizes a(i, ui) so long as that
maximum exceeds zero, stopping otherwise. Intuitively, one expects that that
the expected improvement in decision quality from one additional sample will
decrease as more samples are obtained, because the action utility estimates
change less and less. This is in fact the case:

Theorem 4. The myopic policy for the Bernoulli sampling problem is guaran-
teed to halt in any state such that

1
4c
− 1 ≤ min

i
ni (8)

and will eventually reach such a state or halt earlier.

Proof. We can bound a(i, ui) below zero as follows:

a(i, ui) ≤ −c+ a(i, µi)
= −c+ µi(1− µi)/(ni + 1)
≤ −c+ 1/4(ni + 1)
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Figure 3: Equation 7 for parameters (α, β) = (1, 2) and cost c = 0.01. The
derivative changes at the points (µ−, µ, µ+) = (1/4, 1/3, 2/4). Notice that the
maximum value of µ(1− µ)/(n+ 1)− c = 1/18− c is attained at u = µ.

where this inequality is tight when µi = ui = 1/2. The myopic policy halts if
all options have nonpositive net value, in particular as soon as:

max
i

1
4(ni + 1)

≤ c,

or equivalently 1
4c − 1 ≤ mini ni. That it will eventually reach such a state (if

it does not halt earlier) follows from the fact that it can allocate at most 1
4c − 1

samples to a given action before abandoning it, so after k
4c − k samples it must

have halted.

4.3 Optimal Bernoulli sampling

There is no general solution for the optimal policy in a metalevel MDP. As the
state space of the Bernoulli model is infinite (Figure 2), it is not clear whether
this can even be numerically solved. Fortunately, we can extend the result of
the preceding section from myopic to optimal policies:

Theorem 5. The optimal policy is guaranteed to halt in any state such that

1
4c
− 1 ≤ min

i
ni (9)

and will eventually reach such a state or halt earlier.

Proof. Theorem 4 established that the myopic policy will halt if a state satisfies

1
4c
− 1 ≤ min

i
ni.
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Moreover, all states reachable from such a state (in the sense of definition 3)
must satisfy the same condition, since the counts ni can only increase. Hence,
by Theorem 2 we know that the optimal policy will halt if this same bound
holds.

Thus, we can compute the optimal policy exactly via dynamic programming,
backtracking from states with 1

4c − 1 samples per action.

4.4 Normal sampling

The normal sampling model is defined by

M ∼ Normal(0, σ2
0)

U1 |M ∼ Normal(M, 1)

Ei |M
iid∼ Normal(M, 1) for i = 1, . . .

for some prior variance σ2
0 .

We briefly state the results analogous to those in sections 4.1 through 4.3 for
the Bernoulli model.

A state is given by the mean and precision of the posterior normal over M given
the samples observed so far, i.e., a pair (µ, λ) ∈ R2 where λ > 0. The initial
state is (0, σ−2

0 ). Upon sampling, the state (µ, λ) transitions to

(µ+ sN, λ+ 1)

where
s2 = 1/λ− 1/(λ+ 1) =

1
λ(λ+ 1)

and where N ∼ Normal(0, 1).

With k independent normal actions, the myopic advantage of sampling i is

a(i, ui) = −c+ sif(|µi − ui|/si)

where

s2i = 1/λi − 1/(λi + 1)
f(δ) = φ(|δ|)− |δ|Φ(|δ|) (See Figure 4.)
ui = max

j 6=i
µj

and where φ and Φ are the unit normal PDF and CDF, respectively.
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Figure 4: The value f(δ) of sampling a normally distributed action where δ is
the difference between the utility of the sampled action and the next best one.
The graph is scaled so that the distribution of the posterior mean given the
sample is a standard normal distribution.

Finally, observe that

a(i, ui) ≤ −c+ a(i, µi)

= −c+ (2π)−1/2(λi(λi + 1))−1/2

≤ −c+ (2π)−1/2λ−1
i

so the normal myopic policy, and thus the normal optimal policy, will stop
sampling when

1
c
√

2π
≤ max

i
λi.

4.5 Regret bounds for sampling

UCB1 (Auer et al., 2002), the selection algorithm used within UCT, is dis-
tinguished by meeting the optimal regret bound of bandit proved by Lai and
Robbins (1985). Is there an analogous algorithm with optimal regret for the
ranking and selection problem? This may be a more appropriate choice for
selection within UCT, particularly close to the root.

The regret Rπ of a metalevel policy π is the gap between the expected utility
of π and the expected utility of the best choice given the results of all possible
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computations E :

Rπc = E[max
i

E[Ui|E ]]− V π

= cEπ[Nπ] + E max
i

E[Ui|E ]− Eπ max
i

E[Ui|SNπ ] .

Define the optimal regret to be R∗c = supπ Rπ. The rest of this section derives
an asymptotic lower bound on the optimal regret. Note that the bound due
to Lai and Robbins assumes an exogenously determined number of samples n
and examines the regret as n→∞. In the context of metareasoning problems,
where the sampling policy also includes its own stopping decision, this limit
does not make sense. Instead, we consider the limit as the cost of computation
c→ 0.

Theorem 6. For any metareasoning problem, the optimal regret tends to zero
as the cost of computation does;

lim
c→0

R∗c = 0.

Proof. As E is countable it can be ordered, let En denote the first n variables of
E , and let πn be the policy that observes exactly the n variables in En. Then,

V πn = −cn+ E max
i

E[Ui|En].

We have
lim
n→∞

E[Ui|En] = E[Ui|E ] a.s.

by Lévy’s zero-one law, and so

lim
n→∞

E max
i

E[Ui|En] = E max
i

E[Ui|E ] a.s.

But then for any desired ε > 0 we can choose n and let c = ε/n such that

R∗c ≤ Rπnc = cn+ E max
i

E[Ui|E ]− E max
i

E[Ui|En] ≤ 2ε.

Now consider a metareasoning problem with k external actions to choose from.
The policy robinn samples each of the k actions n times. It is clear from the
proof of Theorem 6 the the regret of the round robin policy tends to zero as c
does for suitably increasing n. In fact, we can give a tighter bound:

Theorem 7. Consider the normal sampling model, where k actions have inde-
pendent unit normal prior and unit normal error distribution. Then the regret
of the round robin policy is

Rrobinn
c = cn+

√
1

n+ 1
M(k)

min
n
Rrobinn
c ≈ (2−2/3 + 21/3)M(k)2/3c1/3

where M(k) is the expected maximum of k independent unit normals (see Fig-
ure 5), and where the approximation converges in the limit 1/c→∞.
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Figure 5: The expected value of M(k), the maximum of k independent normal
distributions.

Proof. For the first equation observe that after observing n samples of the ith
action its mean is distributed according to N(0, 1/(n + 1)), which equals a

unit normal scaled by
√

1
n+1 . The maximum of k of these is, therefore, M(k)

multiplied by
√

1
n+1 .

For the second equation, we approximate
√

1
n+1 as

√
1
n then maximize over n

(treating it as a continuous variable) by finding the critical point and verifying
it is a maximum. Both approximations result in overestimating the true value
of minnRrobinn

c , but as 1/c → ∞ we have n → ∞ and the error introduced
tends to zero.

Note that (2−2/3 + 21/3) ≈ 1.8899.

By extending the round-robin policy to allow stopping to be dependent on the
sampling results, rather than being fixed in advance, we get a lower bound on
the regret of the optimal policy:

Theorem 8. Consider the normal sampling model, where k actions have inde-
pendent unit normal prior and unit normal error distribution. Then

R∗c ≥ sup
T
RrobinT
c/k

where the supremum is over all policies for stopping dependent on past sampling
results.

Proof. Observe that any policy π can be expanded to a round robin policy
robinT with a random number T of samples by sampling all actions whenever π
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samples one, and choosing when to stop according to only the information that
π would have, i.e., ignoring the extra samples. Then

RrobinT
c/k = (c/k)ErobinT [N robinT ] + E max

i
E[Ui|E ]− ErobinT max

i
E[Ui|SNrobinT ]

≤ cEπ[Nπ] + E max
i

E[Ui|E ]− Eπ max
i

E[Ui|SNπ ]

= Rπc .

thus R∗c ≥ supT R
robinT
c/k .

It may be possible to extend Theorem 7 to this wider class of round-robin policy,
perhaps with the same O(c1/3) growth rate.

5 Prospects for MCTS

The preceding sections have studied metareasoning in general as well as its
application to Monte Carlo sampling. How can these results be applied to the
design of improved MCTS algorithms?

One obvious possibility is to find a drop-in replacement policy for UCB1 within
the UCT algorithm. For example, we might explore the use of the myopic
normal policy and variants thereof.

A more substantial alternative would be to apply reinforcement learning tech-
niques to learn a metalevel policy (Russell and Wefald, 1991; Russell, 1997).
This is particularly natural as Section 3 modeled the metalevel decision prob-
lem as a metalevel MDP. There are two primary difficulties to such an approach:

• Credit assignment: An agent might do millions or billions of computations
for each external action, so external rewards are extremely sparse in the
metalevel trace. This can be addressed by reward shaping (Dorigo and
Colombetti, 1994; Ng et al., 1999), whereby intermediate rewards can be
given that guide the learning process. One option is the shaping reward
ϕ(s) used in the proof of Theorem 2.

• Function approximation: The state space is exceedingly large—in fact,
infinite—and intricately structured. A single metalevel state is an entire
tree of millions of object-level states and their evaluations. Function ap-
proximation is necessary to represent the learned value functions. The
above theory suggests certain general features, such as the myopic value
of various actions, which may be useful to such an approximation. It may
also be necessary to use recursive function approximators to represent the
Q-functions over leaf expansions. Gradients for these functions can be
computed with automatic differentiation (Griewank and Walther, 2008),
allowing standard reinforcement learning algorithms to be applied.
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A natural first step is to develop metalevel reinforcement learning for the simple
Monte Carlo sampling problems of section 4 before proceeding to the more
complex, sequential decision settings.
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