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Abstract

Nonparametric Hierarchical Bayesian Models of Categorization

by

Kevin Robert Canini

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Thomas L. Griffiths, Co-chair
Professor Stuart J. Russell, Co-chair

Categorization, or classification, is a fundamental problem in both cognitive psychology
and machine learning. Classical psychological models of categorization fall into two main
groups: prototype models and exemplar models, which are equivalent, respectively, to the
statistical methods of parametric density estimation and kernel density estimation. Many
categorization studies in psychology attempt to understand how people solve this problem
by comparing their inferences to those of formal computational models such as prototype or
exemplar models. From this perspective, different models make different predictions about
the representations and mechanisms people use to make categorization judgments. Instead,
one can seek to understand categorization by viewing it as a problem of statistical inference
and attempting to characterize the inductive biases of human learners. These inductive bi-
ases can be directly exposed using an experimental method called iterated learning, which
provides direct insight into human categorization in a way that is independent of any pro-
posed models. I describe the results of an iterated learning study of human categorization
which supports previous findings by psychologists that people’s representations seem to be
more flexible than would be implied by either prototype or exemplar models alone.

Prototype and exemplar models both use a single, fixed level of complexity in their
representations of categories, with prototype models exhibiting the simplest representations,
and exemplar models using the most complex representations. Treating categorization as a
type of statistical inference, I describe a family of nonparametric Bayesian models of cate-
gorization based on the Dirichlet process mixture model (DPMM). These models represent
categories as combinations of clusters of objects and, together, produce a continuum of repre-
sentational complexities where prototype and exemplar models are special cases, occupying
opposite ends of the spectrum. DPMM models allow the level of complexity of category
representations to be chosen to suit the task at hand or to change over time; this flexibility
can explain psychological results demonstrating that people’s inferences are more congruent
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with prototype models at some times and exemplar models at other times.
The DPMM can be generalized into a larger framework of models based on the hi-

erarchical Dirichlet process (HDP). The HDP subsumes the DPMM and multiple previous
psychological models, including prototypes, exemplars, and the Rational Model of Catego-
rization. In addition, the HDP contains a family of previously unexplored models which
make interesting predictions about how information can be shared between multiple cate-
gories. While most other categorization models learn each individual category in isolation
and independently of the others, these HDP models share information between categories.
This sharing of information can improve the speed and accuracy of learning and explained
certain transfer learning effects that were observed in people’s judgments. I introduce an
extension of the HDP, called the tree-HDP, which is designed to infer systems of hierarchi-
cally related categories. The tree-HDP is able to simultaneously learn categories at multiple
levels of generality and infer the taxonomic relationships between them.

The original scientific contributions of this dissertation are a detailed characterization
of the inductive biases of human categorization via iterated learning, a unification of previous
psychological models of categorization into a common Bayesian statistical framework (the
HDP), a demonstration that this framework contains interesting and previously unexplored
models that predict and explain the integration of information from multiple categories, and a
proposal and exploration of a new statistical model, the tree-HDP, which can simultaneously
learn categories at multiple hierarchical levels and infer taxonomic relationships between
those categories.
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Chapter 1

Introduction

Categorization is one of the most fundamental abilities of intelligent systems. It allows
agents to make sense of a large number of high-dimensional, noisy observations by reducing
them to a much smaller number of discrete categories. Categorization is an integral part
of many higher-level operations, including understanding and using language (Gelman and
Coley, 1991), reasoning about the consequences of objects and actions in the world (Shep-
ard, 1987), interpreting visual information about one’s environment (Huttenlocher et al.,
2000), and processing auditory sensory input (Feldman et al., 2009). Organizing objects and
situations into coherent groups allows one to build models of the environment and to make
predictions about the future by generalizing from past experiences. Because of its basic
importance, categorization is actively studied in many fields, including psychology, cognitive
science, artificial intelligence, machine learning, and statistics. In more computationally-
oriented fields, such as statistics, artificial intelligence, and machine learning, categorization
is more often called “classification”. In these disciplines, it is often distilled into the purely
computational problem of optimizing the assignment of category labels to objects, where
there is always exactly one correct answer. In the psychological sciences, the study of cate-
gorization can be more multifaceted, reflecting the variety of ways and situations in which
humans learn to perform the task. For example, a seminal study of human categorization
by Rosch et al. (1976) explored the people’s tendency to categorize objects at a single basic
level of a multi-leveled taxonomy of category labels. However, many formal psychological
models eschew these nuances and focus on the core problem of classification.

The major difference between the study of categorization in the computational fields
and in the psychological fields is the overall goal of the research. In the computational fields,
one is typically concerned with building algorithms that optimize some objective measure of
performance; this is usually the number of test items correctly classified. In psychological
studies, the primary aim is to understand the ways in which humans solve categorization
problems. These two goals can often be aligned: most psychological studies of categorization
proceed by comparing the performance of formal computational models to that of human
experimental subjects; whenever people are highly competent at a categorization task, this
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Chapter 1. Introduction

leads psychological modelers to attempt to build systems that can replicate people’s optimal
(or near-optimal) performance. However, in studying human cognition, one may discover
that people tend to have certain systematic biases, inefficiencies, or inadequacies. In these
cases, psychological modelers may be more concerned with replicating the unique character-
istics of human learning, whereas models in the purely computational fields would often be
specifically designed to avoid those pitfalls. Nevertheless, focusing on human learning can
lead to new insights and advances in computational models. Human behavior that might
at first seem suboptimal may be a reflection of hidden assumptions or complexities in a
problem that were missing from the modeler’s interpretation of the problem. Categorization
problems that people face in the real world are often complex and challenging; by studying
these tasks and the ways in which people solve them, one can find inspiration for building
better computational models.

One of the central tenets of this dissertation is that it is possible for the psycholog-
ical sciences and the computational sciences to each benefit from advances in the others.
Although they have typically progressed as independent fields of study without much inter-
action, they often attempt to solve the same problems from different perspectives. This is
especially evident in the disciplines of computational cognitive science, which directly draws
on tools from computer science and statistics to build models of human cognition, and arti-
ficial intelligence and machine learning, which are directly rooted in attempts to systematize
human reasoning abilities (Newell and Simon, 1956). Indeed, people and computers solve
many of the same types of problems, and much effort has been directed towards building au-
tomated systems that can accomplish complex tasks that are routine for human beings, such
as understanding speech (Jurafsky et al., 2000), playing the game show Jeopardy! (Ferrucci
et al., 2010), and folding t-shirts (Cusumano-Towner et al., 2011). The work described in
this dissertation demonstrates that the study of human learning and the study of machine
learning can be mutually beneficial. I use statistical models to explain phenomena in human
categorization that have not been captured by previous psychological models, and in turn, I
use people’s ability to solve complex tasks as inspiration for building more advanced statis-
tical models. In this way, my work progresses both the psychological and the computational
sciences.

In fact, there has been a history of great overlap between the techniques used by
psychological and statistical models for solving categorization problems. People’s ability to
learn categories is the subject of some of the earliest studies of human cognition by psychol-
ogists (Hull, 1920). Throughout this long history of investigation, numerous computational
models of category learning have been proposed, including approaches based on decision
rules (Ashby and Gott, 1988), prototypes (Reed, 1972), and exemplars (Medin and Schaffer,
1978; Nosofsky, 1986), as well as combinations of these techniques (Nosofsky et al., 1994;
Anderson, 1990, 1991). Many of these models were described without making any explicit
reference to the fact that the techniques being used by psychologists in modeling human cat-
egorization were directly equivalent to models in the statistics literature. Many years after
their original publication, prototype models, exemplar models, and decision bound models

2



Chapter 1. Introduction

were all shown by Ashby and Alfonso-Reese (1995) to be mathematically identical to differ-
ent methods for performing density estimation in statistics. Likewise, several years after the
introduction of the Rational Model of Categorization (RMC; Anderson, 1990, 1991), Neal
(1998) pointed out that the RMC was equivalent to the celebrated Dirichlet process mixture
model from statistics.

Due to the complementary nature of psychology and statistics, new cognitive models
can be developed by drawing directly on methods from the statistics literature. In particular,
I argue that one statistical framework of models in particular, the hierarchical Dirichlet
process (HDP; Teh et al., 2006), is especially promising for modeling human categorization.
Not only does it subsume several previous psychological categorization models, including
prototype models, exemplar models, and the RMC, but it also contains new types of models
which exhibit some interesting properties. One key prediction of these new models is that
in categorization problems involving multiple categories, information about each category
should be able to influence what is learned about all the other categories. This idea that
information should be shared between categories seems quite sensible; however, it is absent
from nearly all previous categorization models in the psychology literature.

As mentioned above, the connections between cognitive and computational modeling
can work in the other direction as well, with the study of human capabilities leading to
inspiration for new statistical models. Although categorization has long been researched in
psychology, most psychological models are still limited to basic problems, with a small num-
ber of relatively simple categories. In the real world, categories are extremely numerous and
highly interrelated.1 Thus, in order to reach an adequate understanding of human catego-
rization, it is necessary to incorporate the complexity of the tasks that people encounter and
solve in their daily lives into one’s experiments and models. For example, categories are not
simply isolated collections of objects; rather, they can be situated in conceptual networks of
other categories which are often hierarchically structured. Learners may not always be given
direct information about the hierarchical relationships between categories in these taxonomy
structures, and they may be forced to infer them from indirect evidence. Hierarchies of cat-
egories have been studied in different capacities in psychology (Collins and Quillian, 1969;
Rosch et al., 1976), but the particular problem of automatically inferring taxonomical rela-
tionships has not been addressed to date. In this work, I introduce an extension of the HDP
to account for this aspect of human categorization. The resulting model, herein referred to
as the tree-HDP, technically subsumes the HDP itself, but, more importantly, it provides
an account of people’s ability to learn multiple related categories and infer the taxonomy
structures in which they are situated.

The statistical categorization models adopted in this dissertation are motivated not
only by reflecting upon the complex categorization problems that people solve, but also by

1In fact, every noun in the English language can be considered to be a category, containing all the entities
to which that noun can refer. Granted, under this interpretation, many categories, such as Barack Obama,
would be very sparsely populated.
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a careful study of the nature of human categorization in simpler settings. Human catego-
rization has traditionally been studied by performing experiments in which participants are
trained on a number of category examples and asked to generalize to new stimuli. Com-
putational models are then trained to perform the same task, and the models’ inferences
are compared to those of the human learners to assess how well the models account for
human learning. Despite the abundance of formal models of categorization that have been
proposed in the psychological literature, there have been relatively few conclusive empirical
evaluations of these competing accounts (Wills and Pothos, 2011). Rather than compar-
ing the predictions of different models to the results from human learners, one can seek to
characterize human categorization by understanding people’s inductive biases, that is, the a
priori preferences that people have for some category structures over others. For example,
if it is found that people expect and prefer categories which are defined by simple linear
boundaries that lie along one feature dimension, then one may rule out any categorization
model which does not share this preference. Recently, an experimental technique known as
iterated learning has been shown to be able to directly reveal people’s inductive biases with-
out the need for any independent models (Griffiths and Kalish, 2007). In this dissertation, I
describe an iterated learning experiment of categorization to characterize people’s inductive
biases. The results of this experiment motivate the idea that human categorization is not as
simple as would be implied by many previous psychological models, justifying the additional
complexity and flexibility inherent in statistical models such as the HDP and the tree-HDP.

The remainder of this dissertation is organized as follows. In Chapter 2, I present
a characterization of human categorization through an investigation of people’s inductive
biases, as revealed by the experimental method of iterated learning. Chapter 3 describes
how previous psychological models of categorization can be unified into a common framework
based on the statistical model known as the hierarchical Dirichlet process (HDP). The HDP
contains families of models that have been previously unexplored by psychologists and that
make novel predictions about how information can be shared between multiple categories; I
test these predictions through an experiment with human learners. In Chapter 4, I introduce
and formally define the problem of multi-level category learning and describe tree-HDP, a
model designed to solve the multi-level category learning problem. The tree-HDP can be
used to learn categories at multiple levels of a hierarchical structure and to reconstruct the
category hierarchy. I compare its performance on the taxonomy reconstruction task to that
of human learners through a number of experiments. Finally, in Chapter 5, I summarize
the findings and contributions of this work and discuss its limitations and potential future
directions.
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Chapter 2

Characterizing human categorization

The ability to learn new categories from examples is a basic component of human cogni-
tion, and one of the earliest to be studied by psychologists (Hull, 1920). This long history
of investigation has resulted in a number of computational models of category learning,
including approaches based on inferring decision rules (Ashby and Gott, 1988), extracting
prototypes (Reed, 1972), memorizing exemplars (Medin and Schaffer, 1978; Nosofsky, 1986),
and combinations of these methods (Nosofsky et al., 1994; Vanpaemel and Storms, 2008).
This proliferation of models has been complemented by an empirical literature comparing
the ability of different models to account for human behavior. In a typical experiment, par-
ticipants are taught the category membership of a set of training stimuli and then asked to
generalize to a set of test stimuli. Computational models are evaluated on their ability to
predict the resulting patterns of generalization.

Competing models of category learning are commonly presented in terms of their
different assumptions about people’s mental representations of categories and the processes
that translate these representations into behavior. These accounts of categorization typi-
cally describe human cognition at the algorithmic and representational level (Marr, 1982).
However, these models can also be thought about more abstractly at the computational
level (Marr, 1982): as methods of learning categories that have different inductive biases. In
machine learning, the inductive bias of a learner is defined to be those factors other than the
observed data that lead the learner to favor one hypothesis over another (Mitchell, 1997).
Different models of category learning posit that people favor different kinds of hypotheses
about the structure of categories. For example, a prototype model favors hypotheses in which
categories are coherent groups of stimuli, while an exemplar model is more flexible, and can
represent categories that consist of multiple clusters of stimuli spread out across a stimulus
space (Nosofsky, 1998). Therefore, an alternative way of viewing categorization models is in
terms of their different assumptions about the inductive biases of human learners. From this
perspective, to understand human categorization is to characterize people’s inductive biases,
so it would be preferable to directly observe these inductive biases rather than attempting
to find models which have similar inductive biases to those of human learners.
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Chapter 2. Characterizing human categorization

This chapter describes a novel approach to understanding human category learning.
Rather than studying the generalizations people make with different training stimuli, we use
an experimental method designed to provide direct access to learners’ inductive biases.1 In
this experimental method, iterated learning, each participant is trained with stimuli that
are selected from the responses of the previous participant. This results in a sequence of
category structures each produced by learning from the previous structure. Mathematical
analysis of this process shows that as the sequence gets longer, the structures that emerge
will be consistent with the inductive biases of the learners (Griffiths and Kalish, 2007).
Intuitively, iterated learning magnifies the small effects that inductive biases have on people’s
generalizations, until those biases are all that is reflected in the data. We use iterated learning
to expose the inductive biases of human learners. In our work, we demonstrate that iterated
learning complements traditional categorization experiments, and we provide a new dataset
to the community against which computational models can be compared.

This chapter is organized as follows. In the next section, we summarize the iterated
learning method. We then describe a multidimensional scaling experiment we conducted in
order to find a spatial representation of our stimulus sets that accords with people’s psycho-
logical representations. Next, we describe the iterated learning experiment that we conducted
for categorizing a number of different stimuli. We then explore multiple ways of analyzing
the data from this experiment to better understand and characterize people’s inductive bi-
ases. We conclude by considering the implications of these results for understanding how
people learn categories.

2.1 Iterated learning
Categorization research typically seeks to compare different models and proceeds by present-
ing each model (as well as human participants) with a set of training data and comparing
the generalization predictions made by the people to those made by the models. While this
method allows us to quantitatively measure the degree to which each model explains the
human data, it does not directly expose the underlying inductive biases of the learners. Iter-
ated learning is an experimental method designed to give a pure estimate of inductive biases
(Griffiths and Kalish, 2007). Using this methodology, we shift the focus away from testing
how well individual categorization models fit human data and towards directly studying the
nature of human categorization in a way that is independent of any proposed models.

The central concept of the iterated learning framework is that the training data given
to a learner (either a human participant or a learning model) are not directly specified by
the experimental design; rather, they are sampled from a previous learner’s generalization
responses. The learners are arranged into a chain, where the responses from the first learner
are used as training data for the second learner, and so on. Because each learner’s responses

1This chapter is based on work done in cooperation with Thomas L. Griffiths, Wolf Vanpaemel, and
Michael L. Kalish, so I use plural first-person pronouns throughout this chapter.
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Chapter 2. Characterizing human categorization

depend only on the previous learner’s, the chain is formally a Markov process, and therefore
the responses will converge to a stationary distribution.

Griffiths and Kalish (2007) provided an analysis of iterated learning under the as-
sumption that learners use Bayesian inference, sampling hypotheses from the posterior dis-
tribution given by Bayes’ rule: P (h|d) ∝ P (h)P (d|h). In this case, the observed responses
in the iterated learning chain will converge to the prior distribution P (h). Treating learners
as agents of Bayesian inference, their inductive biases are encapsulated by the choice of prior
distribution; therefore, iterated learning allows us to directly expose the inductive biases of
the learners in the form of the prior over hypotheses.

In recent years, the iterated learning experimental methodology has been successfully
used to study many phenomena in human cognition, including causal induction (Yeung and
Griffiths, 2011), language evolution (Reali and Griffiths, 2009), clustering of color terms (Xu
et al., 2010), function learning (Kalish et al., 2007), and predictions about everyday events
(Lewandowsky et al., 2009). In this chapter, we demonstrate that iterated learning provides
a new way to study human categorization, where the main focus is to reveal the underlying
biases of the learners rather than to evaluate the degree of fit of particular models.

2.2 Multidimensional scaling study of stimuli
The purpose of performing an iterated learning experiment of human categorization is to
understand people’s inductive biases in terms of which category structures they prefer a
priori. However, characterizing the properties of a category structure over a set of stimuli
must be done in the context of some representation scheme for the individual stimuli. We
adopt the common strategy of assuming that each stimulus is represented as a point in some
multidimensional space, where the similarity of two stimuli decreases as the distance increases
between the two points (Shepard, 1987). In order to determine the spatial representation of
a set of stimuli that best conforms to the mental representations used by human learners,
we performed a multidimensional scaling experiment.

2.2.1 Method
2.2.1.1 Participants

The experimental participants included 41 workers from Amazon Mechanical Turk, who each
received a payment of $1.50, and 50 students at the University of California, Berkeley, who
received course credit, for a total of 91. The experiment had four conditions, one for each
of four stimulus sets. The experiment was completed by between 21 and 25 participants for
each stimulus set.

7
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2.2.1.2 Stimuli

The experiment involved four different sets of stimuli, each of which varied on two dimensions.
Two of the stimulus sets had separable dimensions, meaning the dimensions on which they
varied are easily differentiated. These were rectangles that varied in their width and height,
and “Shepard circles” (Shepard, 1964): circles of a varying diameter with a radius drawn
at a varying angle. The other two stimulus sets had integral dimensions, meaning their
dimensions are not readily apparent, leaving no preferred coordinate systems for these stimuli
in psychological space. These were both sets of amorphous blobs, one from Cortese and Dyre
(1996), which we call “Cortese blobs”, and the other from Shepard and Cermak (1973)j,
which we call “Shepard blobs”. The construction of these stimulus sets involves varying the
amplitudes and phase-shifts of components of periodic, trigonometric functions, which are
then converted to closed loops (see Cortese and Dyre (1996) and Shepard and Cermak (1973)
for the exact formulas used to construct the stimuli). One stimulus from each set is shown
in the first row of images in Figure 2.2.

For each stimulus set, we constructed an equal-spaced, 8-by-8 square grid of stimuli
and used these 64 stimuli in the experiment. The grid of stimuli used for each stimulus set is
depicted in the second row of images in Figure 2.2. We refer to the position of a stimulus in
this 8-by-8 grid configuration as the canonical coordinates of that stimulus, to be contrasted
with the MDS coordinates that we seek to construct through the multidimensional scaling
experiment.

2.2.1.3 Procedure

Multidimensional scaling algorithms require as input a matrix of pairwise distance or simi-
larity measurements (Borg and Gorenen, 2005). Experiments typically proceed by collecting
similarity ratings for every pair of stimuli, and each pair is usually replicated more than once
to smooth out any noise in the collection process. However, this process can be extremely
laborious for large numbers of stimuli, as the number of pairs of stimuli that need to be
compared grows in proportion to the square of the number of stimuli. A number of alter-
native schemes have been proposed to collect pairwise similarity data more efficiently. In
this experiment, we follow the procedure of Goldstone (1994), where rather than rating the
similarity of pairs of stimuli, participants manually arrange a number of stimuli into a spatial
configuration that is intended to reflect their similarities to each other. This procedure can
be much more efficient than iteratively collecting pairwise similarity values, since a spatial
arrangement of n stimuli conveys n(n − 1)/2 ≈ n2/2 pairwise distance measurements, but
essentially requires only n decisions to be made about where to place the stimuli.

The experiment was conducted entirely over the web. It consisted of one practice
session, intended to orient participants with the experimental procedure, followed by six
regular sessions. In each session, the screen was populated with 32 square cards, each dis-
playing one stimulus. The participants could move the cards around the screen by dragging

8
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Figure 2.1: Screenshot of one session of the multidimensional scaling experiment.

and dropping them into a new location. Participants could move the cards individually, or
they could select a group of cards and move them all simultaneously. The participants were
instructed, “Move the shapes around so that similar shapes are close to each other. The
more similar two shapes are, the closer they should be.” A screenshot of one of the sessions
is shown in Figure 2.1.

We used the following procedure to decide which stimuli were shown in each of the
sessions. The 64 stimuli were first randomly split into four groups of 16 stimuli each. Each
session contained the 32 stimuli from two of these groups. The practice session always
contained the stimuli from groups 1 and 2. There are 4× 3÷ 2 = 6 possible pairs of the four
groups, and each of these pairs was used to construct one of the six regular sessions. As a
result, each stimulus appeared exactly three times with each of the other stimuli in its own
group and exactly once with each of the stimuli in another group. This ensured that every
participant ended up providing distance information about every pair of the 64 stimuli at
least once over the course of the six regular sessions.
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2.2.2 Results
For each session of each participant, we recorded the Euclidean distance in pixels between
each pair of the 32 stimuli in that session. We assumed that within a single session, the dis-
tance between one pair of stimuli was directly comparable to the distance between another
pair of stimuli. However, because participants could presumably have used different criteria
for arranging the stimuli in different sessions, and because different participants could have
been using screens of different sizes, distance measurements from two different sessions or
two different participants are not necessarily directly comparable. To correct for these dis-
crepancies, we normalized the pairwise distance measurements in each session by the average
distance between all pairs in that session. Next, we aggregated the normalized pairwise dis-
tance measurements across all participants who used the same stimulus set, leading to a
single overall pairwise distance matrix for each of the four stimulus sets. These distance ma-
trices were used as input to a non-metric multidimensional scaling algorithm to produce an
arrangement of the stimuli in a new set of two-dimensional MDS coordinates.2 The third and
fourth rows of images in Figure 2.2 show, respectively, the mapping between the canonical
coordinates and the MDS coordinates for each stimulus set.

For the Shepard circles, the MDS coordinates very closely approximate the canonical
coordinates, indicating that most people’s preferred mental representation for these stimuli
is in accordance with the canonical representation scheme using the two orthogonal dimen-
sions of diameter and angle. For the rectangles, we were surprised to find that the MDS
coordinates formed more of a one-dimensional horseshoe-shaped curve, with the tall and nar-
row rectangles at one end, the short and wide rectangles at the other end, the tall and wide
rectangles in the middle, and the short and narrow rectangles interspersed among the others.
For the Cortese blobs, the MDS coordinates seem to be a circular version of the canonical
coordinates, with only one main degree of variation. Finally, for the Shepard blobs, the
stimuli along the top of the canonical coordinates (the points in blue and pink) seemed to
form one elongated cluster, with the other stimuli (the points in green and orange) formed
a second elongated cluster; within each cluster, however, there seems to be no discernible
pattern.

2.3 Iterated learning experiment
Having used multidimensional scaling to construct a spatial representation of each stimulus
set that corresponds to people’s mental representations, we now explore the inductive biases
of human category learners using an iterated learning experiment.

2We used the mdscale algorithm from the Matlab Statistics Toolbox (version 2010a), which uses Kruskal’s
normalized stress1 criterion.
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Figure 2.2: The four stimulus sets, presented in both canonical and MDS coordinates. Each
of the four columns corresponds to one stimulus set, as specified by the titles along the top
of the figure. The first row of images are representative examples of each stimulus set. The
second row presents all 64 stimuli from each stimulus set in the 8-by-8 grid of the canonical
coordinate space. The third row represents each stimulus as a differently-colored square,
arranged in the same 8-by-8 grid of canonical coordinates. The final row represents the
stimulus sets in the coordinates of their respective multidimensional scaling solutions; in
these images, each marker represents one stimulus, where the color corresponds to the color
used to represent the same stimulus in the third row of images.
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2.3.1 Method
2.3.1.1 Participants

The experimental participants included 960 workers from Amazon Mechanical Turk, who
each received a payment of $0.50, and 480 students at the University of California, Berkeley,
who received course credit, for a total of 1440. The experiment had 16 conditions, resulting
from the combination of four stimulus sets and four initial category structures. Each condi-
tion was replicated with six chains, four of which were made up solely of Mechanical Turk
workers, and two of which were made up solely of Berkeley students. Each replication of
each condition consisted of an iterated learning chain of 15 generations. Each participant
was randomly assigned to an incomplete chain in their pool (either Mechanical Turk workers
or Berkeley students), occupying the next available generation in the chain.

2.3.1.2 Stimuli

The stimuli are described in Section 2.2 and pictured in Figure 2.2. We used the four stimulus
sets of Shepard circles, rectangles, Cortese blobs, and Shepard blobs.

2.3.1.3 Procedure

Each participant completed a training session and a test session. In the training session,
the participant was trained to reproduce the category memberships of a random selection of
32 of the 64 stimuli. In the test session, each participant classified all 64 items in random
order without feedback. In each training trial, the participant classified a single stimulus
from the training set with feedback. For first-generation learners, this feedback was based
on one of four initial category structures, which are shown in the first and second columns
of Figure 2.3. Two of the initializations—the first and third distinct ones—are simple linear
boundaries compatible with a prototype model. The other two are discretized versions of
category structures described by McKinley and Nosofsky (1995). For the remaining gener-
ations, feedback was provided according to the test session responses of the participant in
the previous generation. Participants were not made aware that their test responses would
be used in later generations and did not have any contact with other learners from different
generations. The training session was organized into blocks containing 32 trials each, with
the order of presentation of the stimuli randomized within each block.

If the participant correctly answered at least 22 of the 32 training trials in any training
block, they continued to the test session.3 Otherwise, they completed another block of the
training session. If after 20 blocks or 30 minutes, a participant had not yet reached the
learning threshold, the experiment was ended, and the participant’s data were not included in
further analyses. There were 38 participants who reached the maximum number of blocks and

322 correct responses out of 32 trials indicates with p < 0.05 that the responses are not purely random,
according to an exact binomial test.
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25 who reached the time limit without achieving the learning criterion. These participants
were replaced by others to fill in their positions in the chains. Additionally, there were 31
participants whose positions had to be replaced because some of their data were not properly
sent to the database server due to network connection issues. There were 31 additional
participants whose data were excluded because they were assigned to duplicate positions
in a chain that had already been filled by another participant; this occurred when many
participants attempted to take the experiment simultaneously and our system was unable to
properly allocate them all to a unique chain. Finally, to prevent degenerate solutions where
all the stimuli are assigned to one category, we replaced 445 participants who assigned more
than twice as many stimuli to one category than the other category in the test session.

2.3.2 Results
No significant differences were found between the two participant pools, so their data were
combined in all analyses. Figure 2.3 shows one chain of 15 generations for each of the 16
conditions, with gray vs. black pixels indicating category membership.4 In each row, the
first panel shows the initial category structure in canonical coordinates, the second panel
shows the initial category structure in MDS coordinates, and all other panels show, in MDS
coordinates, the category assignments made by a learner in the test session after being
trained on the category structure to its left.

Most of the Shepard circle chains converged to fairly simple structures using cate-
gorization boundaries aligned with one of the dimensions. For the rectangles, people seem
to prefer two main types of category structures: one that splits the horseshoe shape into
two roughly equal sides (corresponding to rectangles that are wider vs. rectangles that
are taller), and another with one category containing stimuli on the ends of the horseshoe
and the other category containing stimuli in the middle of the horseshoe (corresponding to
squares and square-like rectangles vs. eccentric rectangles). The Cortese blob chains seem to
favor a number of different category boundaries which are angular segments of the circular
structure, but never with a perfectly delineated boundary. The results for the Shepard blobs
seem quite noisy. Perhaps people interpreted these stimuli in feature spaces which are rather
different from the dimensions we used to plot the results, or perhaps because these stimuli
are difficult to interpret, people’s inductive biases about them are very weak.

2.4 Characterizing human inductive biases
The data collected in the iterated learning experiment offer a unique opportunity to study
human characterization in a variety of different ways than have traditionally been used. Not
only does each iteration of each chain provide a dataset that is along the lines of a traditional

4To promote further exploration of the results by other researchers, the full set of results is available
online at http://cocosci.berkeley.edu/iteratedCatData/.
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(a) Shepard circles

(b) Rectangles

(c) Cortese blobs

(d) Shepard blobs

Figure 2.3: Human data from the iterated learning experiment. Each row is one chain. One
chain is shown for each combination of stimulus set and initial category structure. Colors
indicate category membership, and each image shows the responses of a single learner. In
each chain, the first and second images show the initial category structure in canonical and
MDS coordinates, respectively. All subsequent images are presented in MDS coordinates.
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categorization experiment, with generalization judgments made on the basis of a training
set, but each chain provides a view into the dynamics of how category structures evolve over
time when people are learning from other people’s judgments, and all the chains together
offer a means by which we can characterize human inductive biases for each stimulus set.
While this rich dataset can be analyzed in many different ways, in this section, we present
two sample analyses.

The chains of category structures in Figure 2.3 produced by the human learners
in the iterated learning experiment show how people’s judgments dynamically evolve over
time. However, the purpose of iterated learning is to evoke people’s static inductive biases.
The theoretical basis of iterated learning is that people come into learning problems with a
set of prior expectations which shape their inferences, and iterated learning is designed to
expose these biases. The results produced by human learners eventually converge to their
prior distribution over category structures (Griffiths and Kalish, 2007), so by aggregating
the category structures produced during the later stages of the chains, we should be able to
develop a clear picture of people’s inductive biases.

2.4.1 Visualizing inductive biases
In order to characterize both the overall trend and the individual variation of the human
learners’ inductive biases, we executed a multidimensional scaling analysis of the category
structures they produced in the latter parts of the iterated learning chains.5 Taking a
conservative estimate of the point at which the chains had converged to their stationary
distributions, we used the results from iterations 6 through 15 of each chain. For each of the
four stimulus sets, we first constructed a matrix of the distances between each pair of the
category structures, using the variation of information (VI) metric (Meila, 2003) as a distance
function. The VI metric is a measure of the distance between partitions, so it depends only
on how stimuli are classified, and not the locations of those stimuli in the feature space. The
VI metric is invariant to relabelings of the categories, so two structures which are identical
but switch the category labels would have a VI distance of zero.

After constructing this pairwise distance matrix, we ran a metric (classical) multi-
dimensional scaling algorithm, plotting the results in two dimensions.6 The results of this
analysis for each stimulus set are shown in Figure 2.4. Overall, we found that each stimulus
set displayed a unique pattern of individual variations in the category structures.

For the Shepard circles, there is a cluster of category structures in the bottom-right
corner, exemplified by point D in Figure 2.4(a), which all exhibit a category boundary aligned
with the vertical axis, corresponding to categories defined on to the diameter of the circle.
There is a small number of results, exemplified by point B, where the category assignments
seem to be less structured. Finally, there is a range of results extending from around point A

5This multidimensional scaling procedure is separate and independent of that described in Section 2.2.
6We used the cmdscale algorithm from the Matlab Statistics Toolbox (version 2010a).
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Figure 2.4: Results of running a multidimensional scaling algorithm on the category struc-
tures produced by the human learners. Each medium-gray dot represents the category
structure produced by one participant. Only results from iterations 6 through 15 of each
chain are included. For each stimulus set, four individual category structures (labeled “A”
through “D”) are shown in detail to demonstrate the variation among people’s responses.
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to around point C, of category structures whose boundaries are aligned with the horizontal
axis, corresponding to categories defined on the angle of the radius.

For the rectangles, there seem to be two major clusters of category structures. The
first group, exemplified by point A in Figure 2.4(b), break the horseshoe shape into two
halves, corresponding to a category of rectangles that are taller than they are wide, and a
category that are wider than they are tall. The second group, exemplified by point D, seem
to correspond to a category of squares and square-like rectangles and a category of more
eccentric rectangles. There seems to be a gradation of responses between these two clusters,
as well as gradations of responses between each of these clusters and the region around point
C, where the category structure is somewhat similar to that of point D. As with the Shepard
circles, there seems to be a region of a few responses towards the middle where the category
structures apparently display less structure.

In Figure 2.4(c), the results appear less clustered and more evenly distributed around
a general region. Points A, B, and C all demonstrate category boundaries which are defined
as angular sections of the circular stimulus space, with each choosing different boundaries.
As with the previous stimulus sets, there seems to be a region containing a few responses,
such as point D, where the categories are less structured.

Finally, in Figure 2.4(c), the results are roughly evenly distributed around the inte-
rior of a three-pointed star-shaped region. The results near point B demonstrate category
boundaries which differentiate the two elongated clusters of the MDS coordinates, while the
other areas (around points A, C, and D) all consist of seemingly unstructured categories.

While each stimulus set displays a unique pattern of overall category structures and
individual variation, some generalizations can be made about the separable stimulus sets and
the integral stimulus sets. The category structures that the participants produced for the
separable stimuli, including the Shepard circles and the rectangles, are more tightly clustered
together into discrete groups. By contrast, the structures produced for the integral stimuli,
including the Cortese blobs and the Shepard blobs, are more evenly spread and less clustered
together. This suggests that for the separable stimuli, the human learners are biased towards
a relatively smaller number of discrete types of category structures, whereas for the integral
stimuli, people entertain a richer variety of hypotheses. These results support the notion
that people’s inductive biases for categorization problems are not monolithic, but rather,
can change between favoring a smaller set of simpler category structures, as demonstrated
with the separable stimulus sets, and ranging over a larger set of more complex category
structures, as demonstrated with the integral stimulus sets.

2.4.2 Aggregate category complexity
One of the most striking differences between competing models of human categorization is
the amount of complexity they assume people use when representing category structures. For
example, prototype models (Reed, 1972) use very simple category representations consisting
of just a category center (the prototype) and possibly some measure of the variation in
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each feature dimension. By contrast, exemplar models (Medin and Schaffer, 1978; Nosofsky,
1986), the most prominent competing class of models, assume that the complexity of category
representations grow with the observed data, meaning that they are essentially unlimited
in complexity. Given that iterated learning exposes the inductive biases of human learners,
this presents us with an opportunity to measure human categorization along a dimension
on which traditional categorization models are strongly divergent: the complexity of the
category representations that people prefer to use.

The complexity of sets like category structures can be quantified in many different
ways. Here, we take the approach of measuring complexity by counting the number of
coherent clusters of stimuli there are in each of the two categories that the participants
constructed. To achieve this, we use a Dirichlet process mixture model (DPMM; Ferguson,
1973), a model from nonparametric Bayesian statistics that finds a probabilistic clustering
of a set of data. One of the key properties of the DPMM is that the number of clusters that
it uses to model a dataset is not specified in advance by the modeler; instead, the DPMM
infers how many clusters need to be used to adequately represent the data. In this way, it
provides us a tool to measure the complexity of a category structure in terms of how many
clusters it uses to model the stimuli in each of the two categories. Using a Gibbs sampling
procedure, we ran a DPMM on each set of responses from the human learners, collecting a
set of samples from the posterior distribution over the number of clusters. The results of
this analysis are summarized in Figure 2.5.

A number of results are apparent from this analysis. First, we can see that although
the chains within each stimulus set each start from different initial category structures of
differing complexity, they all converge to a common level of complexity over the course
of the iterated learning experiment. This provides empirical validation to the theory that
the chains will converge to a common prior distribution regardless of their initial starting
point. We can also see that there is significant variation in the level of complexity of the
category structures used across different stimulus sets. For the Shepard circles, each category
produced by the participants required about 1.6 clusters on average to be modeled by the
DPMM. The DPMM used about 2.6 clusters on average to represent each category for
the rectangle stimulus set. The categories for the Cortese blobs and the Shepard blobs
required significantly more clusters on average: about 3.4 and 4.9, respectively. In addition,
for the two separable stimulus sets (the Shepard circles and the rectangles), the category
complexities start higher and decrease over time, while for the integral stimuli, the numbers of
clusters stay consistently high over the entire chain. These results support the findings from
the study of the individual variations in Section 2.4.1 that human learners prefer relatively
simpler category representations when they encounter separable stimuli than when they are
presented with integral stimuli.
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Figure 2.5: Results of analyzing the complexity of the category structures produced in the
iterated learning chains. Each subplot shows the analysis for a different stimulus set. Within
a subplot, each line represents all the chains that start from a common initial category
structure and shows the evolution of the complexity of the category structures produced in
those chains. The x axis is the depth (the number of learning iterations completed in the
chain), starting from the initial category structure at a depth of 0 and going to the 15th
learning iteration. The y axis is the average number of clusters used by the Dirichlet process
mixture model to describe each category produced by the learners. Error bars extend ±1
standard error, under the assumption of normality.
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2.5 Conclusions
As a whole, our results suggest that the human learners’ inductive biases are highly depen-
dent on the stimuli they are categorizing. With separable stimuli, people seem to prefer a
smaller number of simpler categories, while with integral stimuli, people are capable of learn-
ing a wider variety of more complex categories. This indicates that one may not be able to
identify a single categorization model that can explain human learning for all stimuli. Indeed,
these results support previous findings that human learning seems to be better described by
prototype models during the early stages of learning and by exemplar models during later
stages of learning (Smith and Minda, 1998). Therefore, it may be beneficial to investigate
models of categorization which are capable of adopting flexible representations. In the next
chapter, it is demonstrated that in traditional categorization studies, a model called the hi-
erarchical Dirichlet process (HDP; Teh et al., 2006) is capable of explaining human data that
is not adequately modeled by either prototypes or exemplars, which both assume a single,
fixed level of representational complexity. Models like the HDP use representations that can
vary in complexity depending on the stimuli. This supports the idea that models which use
more flexible representations and can interpolate between the behavior of prototypes and
exemplars provide a better explanation of the variable nature of human categorization.
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Statistical models

Categorization is a fundamental aspect of human cognition, and consequently, a fundamental
area of research in cognitive psychology. Many common problems that people face in their
daily lives can be described as categorization or rely on categorization as a subproblem. In
essence, categorization is a way for people to understand and make sense of noisy, high-
dimensional sensory information by reducing it to a small, discrete set of possibilities that
can more easily be reasoned about. For example, a person can easily recognize an apple
sitting in front of her, despite the variable nature of its color, size, distance, viewing angle,
and lighting conditions. As a result of its central importance, categorization has received a
large amount of attention from researchers in psychology and cognitive science, and a variety
of different psychological models of categorization have been proposed, studied, and tested
(e.g., Reed, 1972; Medin and Schaffer, 1978; Nosofsky, 1986; Love et al., 2004; Vanpaemel
and Storms, 2008).

Recently, a class of psychological models has been developed based on the approach of
rational analysis, in which human thought and behavior is explained as an optimal solution
to a computational problem posed by the environment (Anderson, 1990, 1991; Chater and
Oaksford, 1999; Marr, 1982; Oaksford and Chater, 1998). This type of analysis has been
used in several rational models of category learning (e.g., Anderson, 1990; Nosofsky, 1998;
Ashby and Alfonso-Reese, 1995). These analyses essentially agree on the nature of the com-
putational problem involved, casting category learning as a problem of density estimation:
determining the probability distributions over objects associated with different category la-
bels. Viewing category learning in this way helps to clarify and contrast the assumptions
behind different categorization models. For example, prototype models (e.g., Reed, 1972),
which assume that a category is associated with a single prototype to which new stimuli are
compared, are mathematically equivalent to the strategy of parametric density estimation
from the statistics literature. Correspondingly, exemplar models (e.g., Medin and Schaffer,
1978; Nosofsky, 1986), which assume that a category is represented by a set of stored exem-
plars which are all compared to new stimuli, are equivalent to kernel density estimation in
statistics. These equivalences between psychological and statistical methods were first made
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explicit by Ashby and Alfonso-Reese (1995).
Rational models have also led to new ways of thinking about category representations,

and offer the potential to unify different accounts of categorization. Anderson’s 1990; 1991
Rational Model of Categorization represents categories as sets of clustered observations.
Prototypes and exemplars can be thought of as special cases of this kind of representa-
tion, where a prototype-based representation uses a single cluster for each category and an
exemplar-based representation assigns each object to its own cluster. The model can thus
behave similarly to a prototype model or an exemplar model, depending on its parameters
(Nosofsky, 1991). Subsequent categorization models have built on the idea that categories
are represented as sets of clusters (Vanpaemel and Storms, 2008; Rosseel, 2002; Love et al.,
2004), with this approach becoming a well-established intermediate strategy between exem-
plar and prototype models.

In this chapter, we use a rational analysis of categorization as the basis for an explo-
ration of what different models of categorization might have in common.1 Previous rational
analyses suggest that different models of categorization can all be construed as solutions to
the same computational problem. We go a step further, identifying a unifying framework for
rational models of categorization. This framework contains prototype and exemplar models,
Anderson’s 1990; 1991 rational model, and some interesting new models which have pre-
viously been unexplored, all as special cases. We present an empirical test of one of the
predictions that results from considering these new models, examining how people transfer
knowledge between categories when learning multiple categories simultaneously.

Our unifying framework for rational models of categorization is based on recent ad-
vances in nonparametric Bayesian statistics. Anderson’s 1990; 1991 Rational Model of Cat-
egorization (henceforth, RMC) can be shown to be equivalent to a Dirichlet process mixture
model (Antoniak, 1974; Ferguson, 1983), a seminal model in the field of nonparametric
Bayesian statistics (Neal, 1998). This connection was used by Sanborn et al. (2010a) to
demonstrate that the RMC can be applied with more sophisticated inference algorithms
than the local greedy algorithm first proposed by Anderson (1991), allowing the RMC to
make different predictions depending on the choice of inference algorithm. However, it also
provides a link to the growing literature on nonparametric Bayesian models. The Dirichlet
process was only one of the first models developed in the field of nonparametric Bayesian
statistics, and many new ideas have since been developed. In particular, people have begun to
design hierarchical models such as the hierarchical Dirichlet process (HDP; Teh et al., 2006),
which provides a clear way to define separate but related probability distributions associated
with different categories. The strong connections pointed out by Ashby and Alfonso-Reese
(1995) and Neal (1998) between psychological and statistical models suggest that these more
recent developments in nonparametric Bayesian statistics can lead to new improvements in
modeling categorization.

1This chapter is based on work done in cooperation with Thomas L. Griffiths and Mikhail M. Shashkov,
so I use plural first-person pronouns throughout this chapter.
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In this chapter we focus on a categorization model based on the HDP. This model
represents each category as a set of clusters, as does the RMC, but it also allows those clusters
to be shared between multiple categories with a particular probability. Other overarching
models have previously been proposed to bring prototypes, exemplars, and the RMC into a
common framework (Rosseel, 2002; Vanpaemel and Storms, 2008). These models successfully
demonstrated that prototypes, exemplars, and cluster-based models like the RMC all lie
along a single spectrum of strategies for representing categories; however, they do not do
not address the question of how a learner would decide which one of these representations
should be selected to solve a given categorization problem. The unifying model we propose,
the HDP, provides a rational solution to this problem, allowing the representation to change
based largely on the structure of the category observations.

The HDP model we introduce not only unifies previous models and provides a solution
to the problem of which representation should be used for a given categorization task; it also
allows us to identify previously unexplored models with interesting properties, extending the
set of rational models of categorization. One of these models introduces a new technique for
representing a way in which categories can interact: by sharing clusters. By allowing each
cluster used within a category to also be used in the representations of other categories, this
model is able to learn that two or more categories share similar objects. This gives it the
ability to learn more quickly in these situations than other models, which would have to
start from scratch each time the same cluster appears in a new category. Not only can this
improve the model’s learning rate, but it also allows the model to potentially explain effects
in human learning where knowledge about one category affects the inferences that people
make about other categories.

Modeling interactions between categories is an important step forward from previous
models towards a richer understanding of human categorization in the real world. Standard
categorization experiments reveal information about the mental constructs – the underlying
psychological spaces, the similarity functions, and the complexity of category representations
– that people may be using to represent and reason about one or two categories in isola-
tion. However, common sense suggests that when people learn new categories outside the
controlled setting of laboratory experiments, they draw on their knowledge of previously-
learned categories and take advantage of the relationships between them. For example, the
category mammal is typically learned by way of its relationship to other categories such
as dog, monkey, and dolphin, rather than by observing examples of individual mammals.
Through its cluster-sharing mechanism, the HDP allows us to test a common assumption
made implicitly by most categorization models: that categories are learned independently
and in isolation from each other.

The remainder of this chapter is organized as follows. We first review the two most
common classes of categorization models, prototype and exemplar models, and describe a
more recent group of models which treat these two models as extremes of a spectrum and
interpolate between them. We then describe how all of these models can be viewed from
the perspective of rational analysis as solutions to the problem of density estimation. From
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this perspective, we can identify a unifying model based on the hierarchical Dirichlet process
that subsumes prototypes, exemplars, and clustering models. We show how the HDP also
contains a new class of models which are able to learn a certain type of relationship between
multiple categories and use this information to make predictions about new categories. We
then describe a human learning experiment we performed to verify that people make the
same qualitative inferences and predictions about related categories, showing that the HDP
provides an explanation for this interesting effect in human learning. Finally, we conclude
with a discussion of our findings and contributions.

3.1 Prototypes, exemplars, and clusters
While early psychological models of categorization focused on creating systems of deter-
ministic rules to describe what objects belong to a category (Bruner et al., 1956), the shift
towards similarity-based characterizations of categories in the past few decades led to the
development of several models that belong to two general classes: prototype models and
exemplar models. These models are based on calculations of the resemblance between a
novel stimulus and each of the previously-observed categories. These models can be formally
described as follows. Given a set of N − 1 stimuli with features xN−1 = (x1, x2, . . . , xN−1)
and category labels yN−1 = (y1, y2, . . . , yN−1), prototype and exemplar models calculate the
probability that a novel stimulus xN has category label yN = j as

P (yN = j|xN ,xN−1,yN−1) = ηN,jβj∑
j′ ηN,j′βj′

, (3.1)

where ηN,j is the similarity of stimulus xN to category j, βj is the response bias for category
j, and the summation in the denominator is over all the categories. The response biases βj
are typically set either to 1 or proportional to the number of previously-observed objects in
each category. Thus, the decision is a function of how similar the novel stimulus is to each
of the categories, and the models use a straightforward application of the standard choice
rule (Luce, 1959). Prototype and exemplar models thus differ primarily on their choice of
the similarity function ηN,j.

3.1.1 Prototypes and exemplars
Prototype models (e.g., Reed, 1972) represent a category j by a single idealized instance that
captures the category’s central tendency and is called the category’s prototype, denoted pj.
The prototype is commonly defined as the centroid of all instances of the category in some
psychological space, i.e.,

pj = 1
Nj

∑
{i:yi=j}

xi, (3.2)
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Figure 3.1: Category similarity functions for a simple one-dimensional category. The panel
on the left shows the similarity function for a prototype model, with a single prototype
summarizing the structure of the category. The panel on the right shows the similarity
function for an exemplar model, with the overall similarity resulting from summing a set of
similarity functions centered on each exemplar. The similarity function shown in the middle
panel comes from an intermediate model that groups the three stimuli on the left and the
two stimuli on the right.

where Nj is the number of observed instances of category j (i.e., the number of stimuli for
which yi = j). The similarity between a novel stimulus xN and category j (denoted ηN , j in
Equation 3.1) is then defined as

ηN,j = s(xN , pj), (3.3)

where s(xN , pj) is the similarity between xN and pj, which can be defined in a number of
different ways. One common choice for the similarity function s(x, x′) between two stimuli
x and x′ is a decaying exponential function of either the Euclidean or city-block distance
between the feature vectors representing x and x′, following Shepard (1987). The distance
calculation is often augmented with dimension-specific weights, which are either learned
from the variability of each dimension in the observed data or fit to a set of observed human
responses in a categorization task. An example of the overall similarity function produced
by a prototype model is shown in the left panel of Figure 3.1.

In exemplar models (e.g., Medin and Schaffer, 1978; Nosofsky, 1986), all of the in-
stances of each category are stored. The similarity of a novel stimulus xN to category j is
calculated by summing the similarity of the stimulus to all the stored instances, which are
called the exemplars of the category:

ηN,j =
∑

{i:yi=j}
s(xN , xi), (3.4)

where s(xN , xi) is the similarity between the two stimuli xN and xi. An example of the
similarity function is illustrated in the right panel of Figure 3.1.
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3.1.2 Cluster-based models
Although prototypes and exemplars have dominated the modern literature, a number of
authors (e.g., Love et al., 2004; Vanpaemel and Storms, 2008) have proposed more general
classes of category representations that interpolate between prototype and exemplar models.
These models are based on the idea of partitioning the observed instances of each category
j into some number Kj of clusters (where Kj can range from 1 to Nj) and then representing
each cluster by a subprototype, a prototype for just the members of that cluster. Under this
type of model, the similarity of a novel stimulus xN to a category j is defined by summing
the similarity of the stimulus to each of the subprototypes:

ηN,j =
Kj∑
k=1

πj,ks(xN , pj,k), (3.5)

where πj,k is a weight attributed to cluster k in category j, and pj,k is the subprototype of
cluster k in category j. In the Varying Abstraction Model (Vanpaemel and Storms, 2008),
πk is set to 1, but another reasonable choice is to set πk to be proportional to the number of
objects assigned to cluster k. The middle panel of Figure 3.1 illustrates a category similarity
function for this class of models. If the number of clusters Kj is fixed at 1 for all categories,
this is equivalent to a prototype model, and when Kj = Nj for all j, this is equivalent to
an exemplar model. Thus, these clustering models are more flexible than either exemplar or
prototype models. However, they raise the question of how the stimuli should be partitioned
into clusters for any particular categorization task.

3.2 Rational models of categorization
The models discussed in the previous section all explain categorization behavior in terms of
cognitive processes: in particular, similarity and choice. An alternative approach is to seek an
explanation based on the form of the computational problem that underlies categorization.
Following the methodology outlined by Anderson (1990), rational models of categorization
explain human behavior as an adaptive solution to a computational problem posed by the
environment, rather than focusing on the cognitive processes involved. Existing analyses
tend to agree that the basic problem is one of prediction: identifying the category label
or some other unobserved property of an object using its observed properties (Anderson,
1990; Ashby and Alfonso-Reese, 1995; Rosseel, 2002). This prediction problem has a natural
interpretation as a form of Bayesian inference. In a standard classification task, for instance,
Bayes’ rule allows us to compute the probability that object xN belongs to category j given
the features and category labels of the N − 1 previous objects:

P (yN = j|xN ,xN−1,yN−1) = P (xN |yN = j,xN−1,yN−1)P (yN = j|yN−1)∑
j′ P (xN |yN = j′,xN−1,yN−1)P (yN = j′|yN−1) . (3.6)
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In this expression, the posterior probability of category j is proportional to the product
of the likelihood function P (xN |yN = j,xN−1,yN−1), which is the probability of sampling
an object with features xN from category j, and the prior probability P (yN = j|yN−1)
of choosing category j. Category learning, then, becomes a matter of determining these
probability functions, a problem known in the statistical literature as density estimation.

3.2.1 The rational basis for prototype and exemplar models
Ashby and Alfonso-Reese (1995) observed that both prototype and exemplar models can
be recast as rational solutions to the problem of categorization, highlighting the connection
between the Bayesian solution presented in Equation 3.6 and the choice probabilities in
the prototype and exemplar models, i.e., Equation 3.1. Specifically, the category similarity
ηN , j can be identified with the probability of the item under the category: P (xN |yN =
j,xN−1,yN−1), while the category bias βj corresponds naturally to the prior probability of
category j, P (yN = j|yN−1). The difference between prototype and exemplar models is
thus the different ways of estimating the likelihood function P (xN |yN = j,xN−1,yN−1). The
definition of ηN,j used in an exemplar model (Equation 3.4) corresponds to estimating the
likelihood function as a sum of a set of functions, known as kernels, centered on the stimuli
xi already labeled as belonging to category j:

P (xN |yN = j,xN−1,yN−1) = 1
Nj

∑
{i:yi=j}

f(xN , xi), (3.7)

where f(x, x′) is a probability distribution centered on xi. This method is widely used for
approximating probability distributions in statistics, being a simple form of nonparametric
density estimation called kernel density estimation (e.g., Silverman, 1986).

In contrast, the definition of ηN,j used in a prototype model (Equation 3.3) corre-
sponds to estimating the likelihood function by assuming that each category distribution
comes from an underlying parametric family and then, for each category, finding the param-
eters that provide the best fit to the observed data from that category. The prototype is
specified by these best-fitting parameters, with the centroid being an appropriate estimate
for distributions whose parameters characterize their mean. Again, this is a common method
for estimating a probability distribution, known as parametric density estimation, in which
the distribution is assumed to be of a known form but with unknown parameters (e.g., Rice,
1995).

3.2.2 The Mixture Model of Categorization
Casting exemplar and prototype models as different schemes for density estimation suggests
that a similar interpretation might be found for the interpolating, cluster-based models.
Rosseel (2002) proposed one such model – the Mixture Model of Categorization (MMC) –
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assuming that P (xN |yN = j,xN−1,yN−1) is a mixture distribution. Specifically, each object
xi comes from a cluster zi, and each cluster is associated with a probability distribution over
the features of the objects generated from that cluster. When evaluating the probability of
a new object xN , it is necessary to sum over all of the clusters from which that object might
have been drawn. Accordingly,

P (xN |yN = j,xN−1,yN−1) =
Kj∑
k=1

P (xN |zN = k,xN−1, zN−1)P (zN = k|zN−1, yN = j,yN−1),

(3.8)
where Kj is the total number of clusters for category j, P (xN |zN = k,xN−1, zN−1) is the
likelihood of xN under cluster k, and P (zN = k|zN−1, yN = j,yN−1) is the probability of
generating a new object from cluster k in category j. The clusters can either be shared
between categories, or be specific to a single category, in which case P (zN = k|zN−1, yN =
j,yN−1) would be equal to 0 for all clusters not belonging to category j. This model reduces
to kernel density estimation (i.e., an exemplar model) when each object has its own cluster
and the clusters are equally weighted, and it reduces to parametric density estimation (i.e.,
a prototype model) when each category is represented by a single cluster. By a similar
argument to that used for the exemplar model above, we can connect Equation 3.8 with the
definition of ηN,j in the clustering models (Equation 3.5), providing a rational justification
for this method of interpolating between prototypes and exemplars by partitioning objects
into clusters.

3.2.3 The Rational Model of Categorization
The MMC elegantly defines a rational model that interpolates between prototypes and ex-
emplars, but does not determine how many clusters are appropriate for representing each
category, or how to assign stimuli to those clusters, based on the available data. Anderson
(1990) introduced the Rational Model of Categorization (RMC), which presents a partial
solution to this problem. The RMC differs from the other models discussed in this section
by treating category labels like features. Thus, the RMC specifies a joint distribution on
features and category labels, rather than assuming that the distribution on category labels
is estimated separately and then combined with a distribution on features for each category.
As in the MMC, this distribution is a mixture, with

P (xN ,yN) =
∑
zN

P (xN ,yN |zN)P (zN), (3.9)

where P (zN) is a distribution over clusterings of the N objects. The key difference from
the MMC is that the RMC provides an explicit prior distribution over possible partitions.
Importantly, this distribution allows the number of clusters to be unbounded, with

P (zN) = (1− c)Kc(N−K)∏N−1
i=0 [(1− c) + ci]

K∏
k=1

(Mk − 1)!, (3.10)
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where c is a parameter called the coupling probability, and Mk is the number of objects as-
signed to cluster k. Equation 3.10 is the distribution that results from sequentially assigning
objects to clusters with probability

P (zN = k|zN−1) =


cMk

(1−c)+c(N−1) if Mk > 0 (i.e., k is old)
(1−c)

(1−c)+c(N−1) if Mk = 0 (i.e., k is new),
(3.11)

where the counts Mk are accumulated over zN−1. Thus, each object can be assigned to an
existing cluster with probability proportional to the number of objects already assigned to
that cluster, or to a new cluster with probability determined by c and N .

As the number of objects increases, it quickly becomes infeasible to enumerate all
the different ways to partition them into clusters, so the summation in Equation 3.9 is
intractable to compute exactly. To overcome this difficulty, Anderson implemented the RMC
using a greedy algorithm which approximates the summation in Equation 3.9 using a single
partition zN . The algorithm, called local MAP by Sanborn et al. (2010a), builds up this
approximating partition by assigning observations to clusters in the order in which they are
seen, never backtracking to revise these assignments. When a new labeled example (xN , yN)
is observed, it is assigned to the cluster k which maximizes the posterior probability

P (zN = k|zN−1,xN ,yN) ∝ P (xN , yN |zN = k, zN−1,xN−1,yN−1)P (zN = k|zN−1), (3.12)

with k being chosen from the set of previously-used clusters and a brand new cluster. Since
these cluster assignments are permanent, the local MAP algorithm has the property that the
order in which examples are presented can dramatically affect the resulting set of clusters
that are inferred, and consequently, the model’s predictions for new stimuli.

Despite having been defined in terms of the joint distribution of xN and yN , the
assumption that features and category labels are independent given the cluster assignments
makes it possible to write P (xN |yN = j,xN−1,yN−1) in the same form as Equation 3.8. To
do so, note that in the RMC, the probability that the Nth observation belongs to the kth
cluster is given by

P (zN = k|zN−1, yN = j,yN−1) ∝ P (yN = j|zN = k, zN−1,yN−1)P (zN = k|zN−1). (3.13)

The second term on the right hand side is given by Equation 3.11. This defines a distribution
over the sameK clusters regardless of j, but the value ofK depends on the number of clusters
in zN−1. Substituting this expression into Equation 3.8 provides the relevant mixture model
for the RMC. In general, the probabilities in Equation 3.13 will never be precisely zero: as
a consequence, all clusters contribute to all categories. The RMC can therefore be viewed
as a form of the mixture model in which all clusters are shared between categories but the
number of clusters is inferred from the data. However, the two models are not directly
equivalent because the RMC assumes that both features and category labels are generated
from the clusters. This assumption induces a dependence between labels and features such
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that the prior over yN depends on xN−1 as well as yN−1, violating the (arguably sensible)
prior independence assumption made by the other models and embodied in Equation 3.6.

The RMC comes close to specifying a unifying rational model of categorization, cap-
turing many of the ideas embodied in other models and allowing the representation to be
inferred from the data. However, the model is still significantly limited. First, the RMC as-
sumes a single set of clusters that spans all the categories, an assumption that is inconsistent
with many models that interpolate between prototypes and exemplars (e.g., Vanpaemel and
Storms, 2008). Second, the idea that category labels should be treated like other features has
odd implications, such as the dependence between features and category labels mentioned
above. Third, the approximate learning algorithm proposed by Anderson (1991) has serious
drawbacks. In order to address these issues, we turn to nonparametric Bayesian statistics.

3.3 Dirichlet process mixtures: nonparametric Bayes
and the RMC

Anderson’s 1990 Rational Model of Categorization has a surprising connection to a popular
model used in nonparametric Bayesian statistics (Neal, 1998; Sanborn et al., 2010a). The
rationale for using nonparametric methods is that real data are not generally sampled from a
known, finite-dimensional family of distributions, so it is best to avoid this assumption at the
outset. From a Bayesian perspective, the nonparametric approach requires us to use priors
that include as broad a range of densities of possible, thereby allowing us to infer very complex
densities if they are warranted by data. The most commonly used method for placing broad
priors over probability distributions is the Dirichlet process (DP; Ferguson, 1973). The
distributions indexed by the Dirichlet process can be expressed as countably infinite mixtures
of point masses (Sethuraman, 1994), making them ideally suited to act as priors in infinite
mixture models (Escobar and West, 1995; Rasmussen, 2000). When used in this fashion, the
resulting model is referred to as a Dirichlet process mixture model (DPMM; Antoniak, 1974;
Ferguson, 1983; Neal, 1998). Although a complete description of the Dirichlet process is
beyond the scope of the current chapter, what matters for our purposes is that the Dirichlet
process implies a distribution over partitions: any two observations in the sample that were
generated from the same mixture component may be treated as members of the same cluster,
allowing us to specify priors over an unbounded number of clusters. In the case where N
observations have been made, the prior probability that a Dirichlet process will partition
those observations into the clusters zN is

P (zN) = αK∏N−1
i=0 (α + i)

K∏
k=1

(Mk − 1)! (3.14)

where α is the dispersion parameter of the Dirichlet process, and as in the RMC, Mk is the
number of objects assigned to cluster k. This distribution over partitions can be produced
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Figure 3.2: (a) The relation between the clustering implied by the DP, (b) the distribution
over parameters that is sampled from the DP, and (c) the resulting mixture distribution
over stimuli that results in the DPMM. The clustering assignments in (a) are produced
by drawing sequentially from the stochastic process defined in Equation 3.15, and each
cluster is associated with a parameter value θ. After an arbitrarily large number of cluster
assignments have been made, we can estimate the probability of each cluster, and hence
of the corresponding parameter value. The resulting probability distribution is shown in
(b). If each value of θ is treated as the mean of a simple normal distribution (with fixed
variance) over the value of some continuous stimulus dimension (e.g., weight), then the
resulting mixture distribution drawn from the DPMM is the one illustrated in (c). Note
that in the applications considered in this chapter, the stimuli vary along multiple discrete
features, not a single continuous dimension as the illustration in (c) suggests. However, the
continuous version makes the concept clearer.

by a sequential stochastic process called the Chinese restaurant process (Blackwell and Mac-
Queen, 1973). If observations are assigned to clusters one after another and the probability
that observation i+ 1 is assigned to cluster k is

P (zi = k|zi−1) =


Mk

i−1+α if Mk > 0 (i.e., k is old),
α

i−1+α if Mk = 0 (i.e., k is new),
(3.15)

then we obtain Equation 3.14 for the probability of the resulting partition. This distribu-
tion has a number of nice properties, with one of the most important being exchangeability:
the prior probability of a partition is unaffected by the order in which the observations are
received (Aldous, 1985). To make some of these ideas more concrete, Figure 3.2 presents a
visual depiction of the relationship between the partitioning implied by the DP, the distri-
bution over parameters that is sampled from the DP, and the resulting mixture distribution
over stimuli that results in the DPMM.

It should be apparent from our description of the DPMM that it is similar in spirit
to the probabilistic model underlying the RMC. In fact, the two are directly equivalent, a
point that was first made in the statistics literature by Neal (1998). If we let α = (1 −
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c)/c, Equations 3.10 and 3.14 are equivalent, as are Equations 3.11 and 3.15. Thus the
prior over cluster assignments used in the RMC is exactly the same as that used in the
DPMM. Anderson (1990, 1991) (impressively) thus independently discovered one of the most
celebrated models in nonparametric Bayesian statistics, deriving this distribution from first
principles: the RMC is a DPMM that uses Equation 3.9 to specify the mixture distribution.
Recognizing this correspondence allows us to explore alternatives to the greedy algorithm first
proposed by Anderson for implementing the RMC. Sanborn et al. (2010a) give a thorough
account of some alternative algorithms that have been designed for the DPMM, showing how
they can overcome some of the limitations of Anderson’s local MAP algorithm. In the same
spirit, we use the correspondence between the RMC and the DPMM to apply more recent
developments from nonparametric Bayesian statistics towards building new categorization
models.

3.4 Hierarchical Dirichlet processes
The Dirichlet process formalizes the idea that probability distributions (and therefore cat-
egories) can be thought of as being composed of distinct clusters of objects. To model a
set of data from multiple categories with the DP, one could represent each category with its
own independent DP. This solution works well in many cases, but it misses the opportunity
to take advantages of similarities between the categories. The hierarchical Dirichlet process
(HDP), introduced by Teh et al. (2006), was developed as an extension to the DP which can
capture a particular type of similarity between multiple probability distributions, thereby
forming a more accurate representation from fewer observations.

In the HDP, multiple distributions are not treated as independent, but rather as
related to each other probabilistically. Formally, observations are divided into groups, and
each group is modeled using a Dirichlet process (with dispersion parameter α). These group-
specific DPs are linked together through a top-level Dirichlet process, which allows clusters
to be shared between multiple groups. The nature of this mechanism is best understood by
considering an example of the HDP’s generative process, by which the model assumes new
observations are formed.

When a new observation is generated from a group, it must first be assigned to a
particular cluster from that group. Since every group is a DP, the probability of each cluster
being chosen is determined by Equation 3.15. If the observation is to be assigned to a new
cluster, the new cluster is not created from scratch, but rather, drawn from the special
Dirichlet process shared among groups. In this top-level Dirichlet process, all the clusters
used in all the groups are represented, so there is some probability that the new observation
will be assigned to a cluster that was previously used by another group. The top-level
Dirichlet process is governed by the parameter γ, analogous to α, and the prior probability
of each cluster is proportional to the number of times that the cluster has been selected by
any group, instead of the number of observations in each cluster. The new observation is
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Figure 3.3: Illustration of the HDP prior. The prior probability for each cluster at the lower
level is based on the number of observations assigned to that cluster. If a cluster is selected
from the top level, the prior probability of clusters is based on the number of times they
have been selected at the top level. Completely new clusters can only be created at the top
level.

only assigned to a completely new cluster if both Dirichlet processes (at the group level and
the top level) select a new cluster. In this manner, observations from different groups can
end up belonging to the same mixture component, simply by being drawn from the same
cluster at the top level. An illustration of this procedure is shown in Figure 3.3.

The HDP provides a method for modeling related probability distributions across
groups of observations. Each distribution is a countably infinite mixture of clusters, but the
clusters can be shared between groups. Shared clusters allow the model to pool together
examples from different groups to better estimate a cluster’s parameters, thereby sharing
statistical strength between groups. The number of clusters in each group and the extent
to which clusters are shared between groups are influenced by the parameters α and γ,
respectively. When α is small, groups will have fewer clusters, and when α is large, the
number of clusters will be closer to the number of observations. When γ is small, groups are
more likely to share clusters, but when γ is large, the clusters in each group are likely to be
unique. By varying the parameters α and γ, a wide range of behaviors can be exhibited by
the HDP, through the structure of the clusters that it forms for a set of categories.
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3.5 Unifying previous models using hierarchical Dirich-
let processes

As described above, the HDP represents a set of probability distributions as countably
infinite mixtures, where the mixture components are shared between groups. If we view
each group as a category, each mixture component as a cluster, and each observation from a
group as an example from the associated category, the HDP becomes a flexible and powerful
categorization model. The HDP’s two parameters α and γ control, respectively, the amount
of clustering within groups and the extent to which clusters are shared between groups.
Changing these parameters changes the inferences and predictions made by the HDP, so
they effectively index particular variants or instantiations of the HDP. In this way, the HDP
can be thought of as a framework of different individual models, each one with a different
setting of the α and γ parameters.

We can now use the HDP to define a unifying rational model of categorization, sub-
suming all previous rational models through different settings of α and γ. Figure 3.4 identifies
six models we can obtain by considering limiting values of α and γ.2 We denote an HDP
model with particular settings of the α and γ parameters by HDPα,γ, with the relevant
parameter values being either 0, ∞, or +, where + denotes some finite, positive number.3
Three of the models shown in Figure 3.4 are exactly isomorphic to existing models. The
HDP∞,∞ is an exemplar model, with one cluster per object and no sharing of clusters. The
HDP0,∞ is a prototype model, with one cluster per category and no sharing of clusters. The
HDP∞,+ is the RMC, provided that category labels are treated as features. In the HDP∞,+,
every object has its own cluster, but those clusters are generated from the top-level Dirichlet
process. Consequently, group membership is ignored and the model reduces to a Dirichlet
process.

As well as unifying previous categorization models, the HDP framework makes it
clear that there are new, unexplored models available. The HDP0,+ makes the same basic
assumptions as the prototype model, with a single cluster per category, but makes it possible
for different categories to share the same prototype – something that might be appropriate
in an environment where the same category can have different labels. However, the most
interesting models are the HDP+,+ and the HDP+,∞. These models are essentially the MMC,
with clusters shared between categories or unique to different categories respectively, but the
number of clusters in each category can differ and be learned from the data. Consequently,
these models make it possible to answer the question of whether a particular category is
best represented using prototypes, exemplars, or something in between, simply based on
the structure of that category. Furthermore, the HDP+,+ provides a formal account of how

2The case of γ → 0 is omitted, since it simply corresponds to a model in which all observations belong to
the same cluster across both categories, for all values of α.

3The HDP is technically undefined when α or γ are set to 0 or ∞, but its behavior converges in the limit
as either parameter goes towards 0 or ∞.
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0 < γ <∞ γ →∞

α→ 0

HDP0,+ HDP0,∞
(prototype model)

0 < α <∞

HDP+,+ HDP+,∞

α→∞

HDP∞,+
(RMC)

HDP∞,∞
(exemplar model)

Figure 3.4: Structural assumptions underlying different parameterizations of the HDPα,γ
model. The unfilled circles are clusters, the filled circles are exemplars, and the boxes
indicate which exemplars belong to the same categories. Descriptions of the properties of
these six models and their correspondence to existing models are given in the text.

clusters that are shared between categories can be automatically inferred from the observed
data.

3.6 Cluster-sharing in the HDP+,+ model
Not only does the HDP serve as a unifying model to tie together several previous mod-
els of categorization in a coherent framework, but one of its variants, the HDP+,+, which
corresponds to a previously-unexplored category model, provides an interesting new way
to capture relationships between multiple categories through its cluster-sharing mechanism.
Viewing categorization models as methods for solving the density estimation problem (as de-
scribed by Ashby and Alfonso-Reese, 1995), we can characterize previous models as placing
independence assumptions on the probability density functions for each category. Through
the top-level DP, the HDP+,+ explicitly makes the set of category density functions statisti-
cally dependent on each other, dropping these independence assumptions and adding more
flexibility to the inferences it can make.

Specifically, the HDP+,+ model allows a cluster that was previously learned in the
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context of one category to be reused in the context of another category. Because of this,
when a small number of objects from such a cluster (even just one) is seen in a new category,
the model increases the chance of that cluster being associated with other members of the
new category. In this way, the model can form a prediction that all the other objects that
belong to that cluster are automatically more likely to belong to the new category. Another
way to think about how the HDP+,+ accomplishes this is that it builds up a “vocabulary”
of clusters of objects which can be arbitrarily composed with each other to form category
representations. Because the vocabulary is shared across all categories, the characteristics
of each cluster need only be learned once, even if a cluster appears in multiple categories.

This cluster-sharing ability of the HDP+,+ model predicts a specific type of transfer
learning – the abstraction and reuse of information from one learning problem to another
(Thrun and Pratt, 1998) – in cases where a set of multiple categories is being learned. This
phenomenon is closely related to the concepts of overhypotheses and learning to learn in
the psychology literature. For example, Kemp et al. (2007) demonstrated a hierarchical
parametric model (related to the HDP, but using parametric distributions instead of infinite
mixtures of clusters) which can recognize and infer similarities between categories, thereby
speeding up learning about new categories. However, because their model uses parametric
distributions, its inferences are constrained to limited parametric families. Similar transfer
learning effects can be achieved by using categorization models that incorporate dimensional
attention parameters, such as the generalized context model (Nosofsky, 1986) and ALCOVE
(Kruschke, 1992). These models can learn that certain dimensions of the stimulus feature
space are more salient than others, and they accordingly tune a set of dimension-specific
weights to improve learning performance. If these dimensional attention weights are shared
globally among all categories, then observations from one category can influence the infer-
ences made about other categories. However, this mechanism is a more restrictive form of
learning to learn than the ability of the HDP+,+ to learn a vocabulary of clusters of stimuli
that can be arbitrarily composed together to form category representations.

3.7 Exploring cluster sharing with human learners
In the previous section, we discussed how the HDP+,+ model is designed to be able to share
clusters between categories in order to facilitate learning with multiple categories. This raises
some interesting empirical questions regarding human learners: are people able to recognize
discrete clusters of objects within individual categories, and do they reuse these clusters
when learning new categories? The HDP+,+ model makes a specific empirical prediction,
novel to the categorization literature, that learners would be more likely to incorporate a
previously learned cluster of objects into a new category after observing just one member of
that cluster in the new category. In order to test this prediction, we conducted an experiment
where people were trained on categories composed of shared clusters and asked to make
generalization judgments about new categories.
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In particular, the experiment is different from those that have tested attention to
dimensions. Previous work has shown that people are able to learn that particular dimensions
are useful for both describing the structure of a category (Austerweil and Griffiths, 2010;
Kruschke, 1992) and for generalizing to new categories (Perfors and Tenenbaum, 2009). Here,
the generalization trials are balanced so that attention to a single dimension or subset of
dimensions would not lead to any generalization of the type that we aim to measure.

3.7.1 Method
3.7.1.1 Participants

The experiment was completed by 23 undergraduate students at the University of California,
Berkeley, who received course credit, and 53 participants recruited online via the Amazon
Mechanical Turk website (http://mturk.com), who were paid roughly $6 per hour, for a total
of 76 participants.

3.7.1.2 Stimuli

Participants were given a cover story about being a farmer’s apprentice and having to learn
about four different types of crops. The stimuli were fruit-like images adopted from Sanborn
et al. (2010b). They were generated using six parameters, but we selected a three-dimensional
subspace within the original six-dimensional space to create our stimulus set. The three di-
mensions we selected correspond to size, lightness, and hue. Within this 3-dimensional space,
we chose three multivariate normal distributions to serve as the clusters which comprised
the categories. The three clusters are depicted in Figure 3.5. Each cluster is axis-aligned,
meaning it has non-negligible variance in only one of the dimensions. Furthermore, there is
exactly one cluster that varies along any given dimension, so after observing examples from
all three clusters, the dimensions should be about equally salient. Figure 3.6(a) depicts the
arrangement of the three clusters in the three-dimensional feature space. In its dimension of
primary extent (the dimension along which its black edge extends), a multivariate normal
distribution has standard deviation equal to 1

3 the length of the edges of the cube in Fig-
ure 3.6(a). Along the other two dimensions, a distribution has standard deviation equal to
only 1

10 of an edge’s length.
The three clusters were paired together to form three categories, as shown in Fig-

ure 3.7. Each category is composed of two clusters, and each cluster appears in two categories.
These categories were taught to the participants through the course of the experiment, but
the underlying clusters that compose them were never explicitly referenced. During the ex-
periment, the categories were referred to using the randomly-assigned nonsense-word labels
pasps, worbs, and broms.
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Cluster 2:

Figure 3.5: Examples of stimuli from the three clusters used in the experiment. Each row
contains ten examples from a cluster. Each cluster varies along one of the three dimensions:
size, lightness, and hue.
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Figure 3.6: Structure of stimuli used in training and testing. (a) The orientation of the
feature space of the stimuli used in the experiment. The stimuli span the region encompassed
by a cube in the three dimensions of size, lightness, and hue. The three clusters used in the
experiment are depicted as thick black edges of the cube. Each cluster has a probability
density function which is an axis-aligned multivariate normal distribution, centered on and
primarily extending along the corresponding edge. Along its edge, the standard deviation
of a cluster’s distribution is 1

3 of the edge’s length. The standard deviation along the other
two dimensions is 1

10 of an edge’s length. (b) A schematic diagram of the arrangement of
the stimuli used in the pre-test and post-test trials, for one example trial. Here, the two
alternatives (indicated by question marks) are equally distant from the observed stimulus
(indicated by a star), but one is in the same cluster and the other is not. This allows us to
test the extent to which participants prefer to generalize to within-cluster alternatives vs.
out-of-cluster alternatives.
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Figure 3.7: The assignment of clusters to categories in the experiment. Three categories
were constructed by taking each pair of the three clusters.

3.7.1.3 Procedure

The experiment was comprised of three sessions: a pre-test, a training session, and a post-
test. The two test sessions were identical, except that their individual trials were randomly
shuffled for each participant. The test sessions were designed to measure the degree to
which participants learned the clusters comprising the categories and used those clusters
when making generalization judgments about new categories. Thus, the experiment allows
us to measure the extent to which the training session altered participants’ inferences by
comparing their performance in the pre-test and the post-test.

The pre-test and post-test consisted of a set of trials in which participants were
presented with a single stimulus and told to imagine that it belonged to a novel category
called relts. They were then asked to choose one of two alternative stimuli that appeared
below the relt, indicating which one they believed to be more likely to also belong to the
category relts. The configuration of the observed stimulus and the two alternative stimuli in
the feature space for one example trial is depicted in Figure 3.6(b). In each trial, the observed
stimulus and the two alternatives were all chosen from the set of six cluster endpoints. The
cluster endpoints are the leftmost and rightmost stimuli in each of the rows of Figure 3.5;
they are also seen as the six corners of the cube in Figure 3.6 that are connected to a black
edge. For a given observed stimulus, one of the two alternatives was always chosen to be
the other endpoint of the same cluster (this is called the within-cluster alternative), leaving
four remaining choices for the second alternative (the out-of-cluster alternative). Combining
all possible choices of the observed stimulus and two alternatives gives 6 × 4 = 24 possible
trials. We presented each of these trials twice, once with the within-cluster alternative on
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the left, and once with it on the right, for a total of 24× 2 = 48 trials for each test session.
In our analysis of the results, we only considered those 12 trials per test session for which
the two alternatives are equidistant from the observed stimulus.

Between the pre-test and post-test, there was a training session in which participants
were asked to help the farmer harvest three different types of crops. As mentioned above,
the three clusters were grouped into pairs to form the three categories, and participants
repeated training blocks until they learned which stimuli belonged to each category. First,
an 8-by-8 grid of crops was displayed on the screen. Twenty-one stimuli were generated from
each cluster and randomly positioned to fill the grid (leaving one random grid space blank).
Participants were then asked to harvest all the crops belonging to one of the three categories.
Participants harvested crops by clicking on them, and each time a correct stimulus was
chosen, it was moved to the right side of the screen in a region corresponding to the target
category. Once all the category members were harvested, the grid was randomly repopulated
and the participant was asked to harvest the next category of crops. Each of these is called
a new training block. Participants rotated through all three categories, repeating as many
training blocks as was necessary until a performance criterion (no more than three errors
in the last four blocks of training) was met. A screenshot of the training session is shown
in Figure 3.8. Once a participant completed the training session, they have demonstrated
their ability to select the members of each of the three categories. The question we are
interested in is whether, in learning these categories, they formed mental representations
of the categories’ underlying clusters, and whether they would use these clusters in future
inferences about new categories.

Following the training session, the participants completed the post-test, which was
identical in format to the pre-test described above. During the post-test, the participants
were able to view the right side of the screen, which contained the crops they had harvested
during the training session.4 This was designed to eliminate the memory demands of the
experiment, so that the results depended more on how the participants learned and gen-
eralized, rather than how well they memorized the training examples. A screenshot of the
post-test is shown in Figure 3.9.

The experiment was designed to test whether the training session affected the judg-
ments made by the participants in the post-test, compared to their performance in the pre-
test. Specifically, we hypothesized that in learning the categories during the training session,
the participants would form mental representations of the underlying clusters (despite never
being told about them), and then prefer to generalize to within-cluster alternatives rather
than out-of-cluster alternatives when given a single observation from a new category. In or-
der to test this hypothesis, we focused on the test trials in which the two alternative stimuli
were equidistant from the observed stimulus, as they are in the example illustrated in Fig-

4Once this region of the screen ran out of room, the least recently-harvested crop was removed to make
room for each newly-harvested crop. Despite this, a large and representative collection of category examples
always remained in view.
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Figure 3.8: A screenshot from the training session in the experiment. The participant is
asked to harvest the crops on the grid which belong to a particular category by clicking on
them. Correctly chosen stimuli are moved to the right side of the screen for later reference.
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Figure 3.9: A screenshot from the post-test session in the experiment. The pre-test session
is identical, but the training examples do not appear on the right side of the screen.
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ure 3.6(b). These comprised 12 of the 48 trials from each test session. During the pre-test,
because the trials were balanced across the three dimensions, the participants should have
had no reason to prefer the within-cluster over the out-of-cluster alternative. During the
post-test, any consistent preference for the within-cluster alternative should be due to the
observations of the categories in the training session.

3.7.2 Results
No significant differences were found between the data from the two groups of participants, so
their data were combined for all analyses. The average number of training blocks completed
by the participants before reaching the performance criterion was 6.83; the median was 5, and
the most common number was 3 (the enforced minimum, since there were three categories
to learn). The maximum number of blocks required for any participant was 25.

We analyzed the percentage of test trials for which participants selected the within-
cluster alternative vs. the out-of-cluster alternative. This percentage is called the pre-test
score for the pre-test and the post-test score for the post-test. Because the participants had
not yet been exposed to the constructed categories before the training session, they should
have had no reason to prefer the within-cluster alternative during the pre-test. For this
reason, we expect the pre-test scores to be distributed around 50%. This result should be
expected even if the three dimensions are not equally psychologically salient to the partic-
ipants, since the trials were balanced across all three dimensions. During the post-test, if
the participants preferred to generalize more often to the within-cluster alternatives, as we
hypothesize, their post-test scores should be statistically higher than 50%.

A summary of the participants’ pre-test scores and post-test scores is shown in Fig-
ure 3.10(a). The participants’ pre-test scores are clustered around 50%, as expected. Al-
though many of the post-test scores are also near 50%, the majority are above 50%, and
there is a clear trend towards higher post-test scores. A significant number of the human
learners exhibited post-test scores well above 50%, suggesting they recognized the underlying
clusters and preferred to generalize to stimuli in the same cluster as an observed stimulus
from the new category. Most of the participants had a post-test score that was higher than
their pre-test score, as shown in the second plot of Figure 3.10(a). A two-tailed t-test failed
to reject the null hypothesis that the mean of the pre-test scores was 50% (t(75) = −0.97,
p = 0.33) and successfully rejected the null hypothesis that the mean of the post-test scores
was 50% (t(75) = 6.34, p < 0.01). Furthermore, a two-tailed, paired t-test rejected the
null hypothesis that the difference between the pre-test and post-test scores has mean zero
(t(75) = 6.71, p < 0.01).

Breaking down the pre-test scores and post-test scores by the cluster of the observed
stimulus, as shown in Table 3.1, we can see that the assumption that the dimensions were
roughly equally salient did not hold true. In both the pre-test and the post-test, the par-
ticipants clearly preferred to generalize within cluster 1, then cluster 2, then cluster 3, in
that order. This might be because the stimuli resemble fruit or vegetables and participants
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Figure 3.10: Experimental results from the human learners and the two models. In the
first row of plots, each marker represents a number of participants or a model’s probability,
with the size of the markers proportional to the number of participants represented or the
model’s probability. The horizontal axis is the percentage of pre-test trials where the learner
generalized a novel category to a stimulus within the same cluster as the observed stimulus
(the “pre-test score”). The vertical axis is the same percentage for the post-test trials (the
“post-test score”). Marginal histograms are shown on each axis. The plots in the second
row are histograms of the differences between the pre-test scores and the post-test scores.
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Table 3.1: Average per-cluster pre-test and post-test scores of the human learners

Cluster Dimension Endpoints spre spost spost − spre t-statistic p-value
1 size – 80.66% 86.79% +6.13% t(75) = 0.85 p = 0.40

2 lightness – 51.89% 68.40% +16.51% t(75) = 4.75 p < 0.01

3 hue – 12.74% 25.94% +13.21% t(75) = 4.70 p < 0.01
All — — 48.43% 60.38% +11.95% t(75) = 6.71 p < 0.01

Note: The average pre-test score and the average post-test score are denoted by spre and
spost, respectively. The second column shows which dimension each cluster primarily varies
along. The third column shows images of each cluster’s endpoints (the two stimuli used in
the test sessions). The sixth column shows the average difference between the pre-test and
post-test scores. The last two columns show the statistics of the two-tailed, paired t-test for
the difference between the cluster-specific pre-test and post-test scores. The last row shows
these same quantities aggregated across all clusters.

were told that they were assisting a farmer in harvesting crops. Individual varieties of fruits
and vegetables tend to vary more in size than in color as they grow, so cluster 1, which
varies primarily along the size dimension, seems most plausible to be a single type of fruit
or vegetable. Nonetheless, the scores increased from the pre-test to the post-test for all
three clusters (see Table 3.1 for cluster-specific paired t-test statistics), which shows that
participants consistently exhibited the expected transfer learning effect.

We also checked whether the participants who spent more time in the training session
were more or less likely to exhibit higher post-test scores. The correlation between the
number of training sessions a participant completed and their post-test score was −0.10,
which is not statistically significantly different from zero according to a t-test (t(74) = −0.82,
p = 0.41).

3.7.3 Modeling
The experimental results indicate that human learners were able to recognize the set of
clusters underlying the categories and preferred to generalize within these clusters when
making inferences about new categories. We have discussed how the HDP+,+ categorization
model is theoretically able to predict this type of behavior. In order to empirically test
this property of the model, we repeated the experiment using the HDP+,+ model, which
allows cluster-sharing between categories, and the HDP+,∞ model, which does not allow
cluster-sharing.

It can be shown that for every trial in the pre-test where both alternatives are equidis-
tant from the observed stimulus, all rational models will assign exactly 50% probability to
both of the two alternatives. This is because during the pre-test, no feedback or training has
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been given, and the models are ignorant of the psychological significance of the dimensions
of the stimulus feature space. For this reason, for both the HDP+,∞ and HDP+,+ models,
we represent the pre-test score as a binomial distribution with 12 samples and probability
50% (recall that in each test session, we are interested in the 12 trials for which the two
alternatives are equidistant from the observed stimulus). Because the HDP+,∞ model per-
forms learning and inference independently for each category, the clusters that are learned
in the context of the other categories have no way to influence the representation of the new
category. Therefore, the HDP+,∞ model will also assign 50% probability to both alternatives
in the post-test, so we represent its post-test score, again, as a binomial distribution with 12
samples and probability 50%.

The HDP+,+ model allows clusters learned in the training session to affect the infer-
ences made in the post-test, so its post-test predictions must be computed explicitly. We
implemented the model using a computer program written by Teh (2004) and designed for
inference with HDP models. The software uses the Gibbs sampling algorithm described by
Teh et al. (2006). For each participant, we trained a separate instance of the HDP+,+ model
using the same number of observations that the participant saw during their training session,
then estimated the resulting distribution over the post-test scores. These distributions were
summed across all model instances to construct a final post-test score distribution that can
be compared to that of the participants. The model was assumed to choose each alterna-
tive stimulus in the post-test trials according to its posterior probability, using a strategy of
probability matching rather than always choosing the more probable alternative.

The HDP+,+ model constrains the α and γ parameters only to be positive and finite;
for each distinct choice of these parameters, the model will make different quantitative
predictions. Rather than fixing these parameters at particular values, it is common to
perform Bayesian inference over α and γ by specifying a prior distribution over each of
them. This method essentially allows their values to be inferred from the observed data.
Following this strategy, we used exponential prior distributions with mean 1 to learn both
parameters. This is a weak prior which allows a wide range of parameter values to be
explored, essentially allowing the model to find the best-fitting values of α and γ for a given
data set.

The model results are shown in Figure 3.10(b) and 3.10(c). The models, using the bi-
nomial assumption described above, exhibited much higher variance than the human learners
in their pre-test scores. Presumably, this is because the participants preferred to generalize
along the three dimensions unequally, preferring size, then lightness, then hue, as discussed
earlier. A participant answering in strict accordance with this preference rule would achieve
a pre-test score of exactly 50%, since the trials are balanced across the three dimensions.
If the models were given information about the relative psychological salience of the three
dimensions, they would perhaps be able to provide a better account of the pre-test scores in
the human data. However, the main focus of this experiment is how training affects people’s
judgments about new categories, which is revealed by the post-test scores.

Because the HDP+,∞ model has post-test scores distributed according to a binomial
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distribution centered at 50%, it does not capture the increased post-test scores of the hu-
man learners. The HDP+,+ model, on the other hand, shows a strong transfer effect. The
HDP+,+ model clearly preferred to assign the observed stimuli of the new category to the
clusters learned during the training session. Its post-test score distribution is significantly
higher than that of the human learners (with a mean of 71.51%, vs. a mean of 60.38% for the
human data). One potential explanation for this difference is that the participants may have
exhibited individual differences in the degree to which they used information about other cat-
egories when making judgments about the new category in the post-test. Another possibility
is that the imbalance in the salience of the three dimensions mitigated the transfer learning
effect. Participants already strongly preferred to generalize along the size dimension (see
Table 3.1), so test trials using cluster 1 already had high pre-test scores, leaving little room
for the post-test scores to increase. On the other hand, participants showed a strong aversion
to generalizing along the hue dimension in the pre-test, so the observed examples of cluster
3 (the hue-varying cluster) in the training session might not have provided enough evidence
to convince participants to generalize within this cluster in the post-test. Cluster 2, which
was the only cluster which had roughly the expected 50% average pre-test score, showed
the largest difference between the average pre-test score and the average post-test score.
Therefore, we might expect that if the dimensions were more equally balanced, the expected
transfer learning effect would be greater in the human data. Although the HDP+,+ model
does not provide a perfect quantitative fit to the human data, our experiment successfully
demonstrates a novel effect in human categorization, and the HDP+,+ model demonstrates
the same qualitative effect, providing a formal account of how people might be achieving
this behavior.

3.8 Discussion
One of the most valuable aspects of rational models of cognition is their ability to establish
connections across different fields. Here, we were able to exploit the correspondence between
Anderson’s 1990 Rational Model of Categorization and the Dirichlet process to draw on
recent work in nonparametric Bayesian statistics. Using this correspondence, we defined a
more general rational model, based on the hierarchical Dirichlet process. This model sub-
sumes previous rational analyses of human category learning, and provides a general solution
to the problem of selecting the number of clusters to represent a category. In addition, one
of its variants, the HDP+,+, corresponds to a categorization model in which categories are
not learned separately, but can influence each other through sharing of clusters. The result
is a picture of human categorization in which people do not use a fixed representation of cat-
egories across all contexts, but instead select a representation whose complexity is warranted
by the available data.

In the remainder of the chapter, we discuss three issues raised by our analyses. First,
we consider other forms of transfer learning, and how they relate to our model and our
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experiments. We then address the question of how the mixture models that have been the
focus of our approach relate to rule-based models of categorization. Finally, we identify some
of the limitations of our approach, and outline some possible extensions of the HDP that
address these limitations.

3.8.1 Other forms of transfer learning
Transfer learning simply means using information learned in one context to inform learning
in another (Thrun and Pratt, 1998). This kind of learning is a common focus of rational
models of cognition, falling naturally out of the properties of hierarchical Bayesian models
(Tenenbaum et al., 2006; Kemp et al., 2007). However, simple forms of transfer learning
have also been investigated in previous models of categorization. As mentioned earlier in
the chapter, dimensional attention can be construed as a kind of information that is shared
among categories, with changes in the weights assigned to different dimensions being some-
thing that can be learned from one category and then generalized to another. Models such as
the Generalized Context Model (Nosofsky, 1986) or ALCOVE (Kruschke, 1992) incorporate
mechanisms that allow them to engage in this kind of transfer learning.

The influence of dimensional attention can be captured in rational models similar
to those that we have presented. In the RMC and HDP models, each cluster is associated
with parameters that characterize its variance along each dimension of the stimuli. These
parameters can be estimated separately for each cluster, producing dimensional-attention
effects within clusters, jointly for all clusters, producing dimensional-attention effects across
clusters, or separately but with a jointly estimated prior, combining these two effects. While
this property of these rational models has not been investigated extensively, recent work
has begun to explore how generalizations about variability can be accommodated. Kemp
et al. (2007) presented a model that inferred the variability of distributions, which Perfors
and Tenenbaum (2009) applied to modeling transfer learning in categorization. Heller et al.
(2010) described a hierarchical model based on the RMC that learns which dimensions are
more likely to vary among a set of categories and infers that new categories are more likely
to also vary along these common dimensions.

Despite its importance in categorization more generally, dimensional attention is not
sufficient to account for the transfer effect seen in our experiment. The test trials in our ex-
periment were constructed so that they would not be affected by differences in the salience of
the three dimensions used to generate the stimuli, being balanced across those three dimen-
sions. Models that incorporate mechanisms supporting changes in dimensional attention,
but not the possibility of sharing of clusters between categories, should therefore not be able
to reproduce this transfer effect. We view sharing of clusters as a novel form of transfer
learning in the context of categorization, and hope that future work will complement our
rational analysis with richer process models that can accommodate this kind of effect.
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3.8.2 Connections to rule-based models
One question explored by many researchers is whether the mind contains a separate rule-
based system for learning concepts and categories. The earliest categorization models focused
on developing rule-based systems for describing categories (Bruner et al., 1956), but these
models lost favor due to their difficulty handling uncertainty and typicality (for a review,
see Murphy, 2002). The work on exemplar and prototype models that we have focused on in
this chapter was complemented by work on decision-bound models, in which categorization is
modeled by assuming that people learn the boundaries between categories, which can appear
rule-like when boundaries align with stimulus dimensions (Ashby and Gott, 1988; Ashby,
1992). Models that explicitly form rules characterizing categories have begun to return to
popularity recently, with the introduction of new models such as RULEX (Nosofsky and
Palmeri, 1998), which represents categories as combinations of simple logical rules along
with stored exceptions to these rules.

Decision-bound models have a clear formal relationship to the rational models that
we have presented. Estimating the probability densities associated with categories and iden-
tifying category boundaries are closely related problems. Every set of probability densities
implies a set of category boundaries, and particular classes of density estimation methods
correspond to particular schemes for estimating category boundaries (Ashby and Maddox,
1993; Ashby and Alfonso-Reese, 1995). For example, using parametric density estimation
where the parametric family is Gaussian and the covariance matrices of two categories are
the same will result in a linear decision boundary. More generally, density estimation using
multivariate Gaussians will result in decision boundaries that are conic sections – hyperbo-
las, parabolas, and ellipses (for details, see Duda et al., 2000). These approaches are thus
closely related at the rational level, although the different way in which they construe the
learning problem can have implications for the conclusions that rational learners draw (e.g.,
Hsu and Griffiths, 2010).

Although probabilistic methods seem to be quite different from rule-based catego-
rization models that aim to find a logical formula that defines a category, there are also
some interesting connections between these approaches. First, it is possible to explicitly
formulate a rule-based categorization model within the same kind of probabilistic framework
that we have used to define the rational models in this chapter. The Rational Rules model
introduced by Goodman et al. (2008) uses probabilistic grammars to define a prior distribu-
tion over logical formulas describing categories, which are then connected to observations by
assuming that the category labels of objects are assigned with some small amount of noise.
However, it is not necessary to go beyond the HDP framework to find a probabilistic model
that can be given a logical interpretation.

There is also a sense in which mixture models such as the Dirichlet process and
hierarchical Dirichlet process can be loosely thought of as rule-based models, since their
representations are combinations of individual components. Each cluster in a mixture model
can be thought of as a conjunction of constraints on the feature values of a stimulus. This
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is clearest with discrete features, where the distribution over feature values associated with
the cluster will prefer a certain conjunction of features. A mixture of multiple clusters
is then similar to disjunctive combination of these constraints. Intuitively, the mixture
indicates that members of the category could come from any of these clusters, making the
category a disjunction of the conjunctions of features represented by the clusters. Under
this interpretation, these mixture models can be thought of as probabilistic analogues of
rule-based models using logical formulas in disjunctive normal form to define categories.

3.8.3 Limitations and extensions
While we have argued that the HDP provides a unifying framework for rational models
of categorization, we do not expect this framework to contain all possible rational models.
The cluster-based categorization models that we have described all support a method of
building up arbitrarily-complex category representations by learning and combining clusters
of similar objects. While this technique has interesting theoretical properties and has been
used to explain certain aspects of human categorization (Griffiths et al., 2007; Sanborn
et al., 2010a; Canini et al., 2010), these models take advantage of just one of many ways
in which categories can exhibit interesting structure. We anticipate that future work on
rational models of categorization will explore how the kind of models we have discussed can
be extended to capture some of these richer aspects of category structure.

Taxonomic structures are one way in which natural categories go beyond merely
sharing clusters of members. For example, the well-known biological taxonomic system of
classification has at least seven levels of categories: kingdom, phylum, class, order, family,
genus, and species. In these hierarchically-organized systems, categories in higher levels of
the taxonomy are supersets of those categories at the lower levels. This level-based analysis of
categories underpins some of the seminal work in the study of categorization in psychology,
in which categories are thought of as occupying basic-level, superordinate, or subordinate
roles (Rosch et al., 1976). Learning in these settings requires not only discovering what
objects belong to which categories, but also how the categories are related to each other
in the hierarchical system. The hierarchical nature of the HDP can be used to perform
category learning in multi-level systems such as these. Canini and Griffiths (2011) provided
a preliminary investigation of this possibility, extending the HDP to allow the structure of
these taxonomic systems to be automatically inferred by the model, and showing that people
are similarly capable of learning in these settings.

Systems of categories can also exhibit other kinds of relationships. For example, con-
sider learning categories corresponding to spotted and striped as well as dog, cat, dalmatian
and tabby. Here, we might consider representing dalmatian as the intersection of spotted and
dog, and tabby as the intersection of striped and cat. The capacity to logically combine cate-
gories is part of what makes human learners capable of learning in a way that builds on their
previous experience, and one of the most powerful forms of transfer learning. At present, this
kind of logical combination is beyond the capacity of the nonparametric Bayesian models
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we have discussed, but the relationship between the HDP and logical representations men-
tioned in the previous section, together with other work on rational models of rule learning
(Goodman et al., 2008), provides a foundation for developing models that have this capacity.

3.8.4 Conclusion
Strategies for learning and using categories that might appear quite different from one an-
other can be seen to have common properties when considered from the perspective of ra-
tional analysis. By considering the computational problem that underlies categorization, we
have defined a unifying model in which different models appear as variants. This approach
has two consequences. First, it allows us to conceive of different approaches to categorization
as varying in their appropriateness for different kinds of data, creating the possibility that
learners might adapt their strategies between these models in a way that is guided by the
data. Second, it lets us identify new models that go beyond existing rational models of cat-
egorization, and predict novel empirical phenomena. In this chapter, we showed that people
can transfer knowledge between instances of category learning by sharing clusters between
categories. This result provides a first step towards understanding the rich structures that
characterize people’s representations of categories, and identifying how they are able to use
existing knowledge to learn new categories quickly.
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Multi-level category learning

Taxonomic structures are a ubiquitous part of the way that people think about the world,
appearing in biological phylogenies (Atran, 1998), linguistic ontologies (Keil, 1979), and
many natural kind concepts (Rosch et al., 1976). In a taxonomy, categories are organized
into different hierarchical levels, with the higher-level categories representing broader, more
inclusive groups of entities, and the lower-level concepts representing narrower, more specific
groups. When a category is a direct descendent of another category in a taxonomy, most or
all the members of the first are also members of the second. For example, in our intuitive
phylogenetic tree for animals, all dogs are mammals, and all border collies are dogs. This
taxonomic structure supports efficient inferences about the properties of entities belonging
to these categories (Collins and Quillian, 1969).

The ubiquity of taxonomies raises a natural question: How can such structures be
learned? While we might get some explicit information about the taxonomic relationships
between categories, neither children nor artificial systems can rely on such information.
Consequently, in this chapter I focus on the question of how taxonomies might be learned
just from labeled examples of category members. Consider the problem faced by a learner
who sees a collection of objects given the labels “animal”, “mammal”, “dog”, and “border
collie”. The challenge is to induce an appropriate representation for the categories associated
with each of these labels, supporting future generalizations, and to determine how these
categories are related to one another. For example, our learner would need to identify
categories corresponding to “dog” and “border collie”, and learn that “border collie” is a kind
of “dog”. Since the objects can each be associated with multiple labels, and the categories
are defined at different levels of abstraction, I refer to this problem as multi-level category
learning.

The complex relationships between categories make the problem of multi-level cate-
gory learning quite different from the standard treatment of category learning (or multi-class
classification) in cognitive science and machine learning. Most methods for learning cate-
gories do not allow complex relationships to exist between those categories. Typically, either
categories are treated as independent (for example, by learning conditional distributions
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over the observed features of the objects separately for each category) or algorithms consider
only basic interactions between categories (for example, discriminative methods attempt to
discover the boundaries between categories). Multi-level category learning is also different
from unsupervised methods for inducing hierarchies, such as hierarchical clustering (Duda
et al., 2000; Heller and Ghahramani, 2005), structure learning (Kemp and Tenenbaum, 2009),
learning ontologies (Kemp et al., 2006), or learning hierarchies (Roy et al., 2007; Blei et al.,
2010). These unsupervised methods find a way to organize a set of objects into a hierarchi-
cal structure, but do so on the basis of the similarity of the objects, rather than using the
category labels of those objects.

In this chapter, we investigate multi-level category learning in both artificial and
natural systems.1 First, we propose a novel method of learning and representing categories
which are organized in taxonomic systems. Our model is a nonparametric Bayesian statistical
model which we call the tree-HDP. We demonstrate that this model can recover simple
taxonomies from just labeled examples of category members. We then turn to natural
systems, conducting an experiment studying the performance of human learners in a similar
task. A comparison of the model with the experiment results shows that the tree-HDP is
able to do just as well—or better than—human learners.

4.1 Multi-level categories and the tree-HDP
The multi-level category learning problem reduces to being provided with a set of observa-
tions drawn from different categories, together with the information that these categories
form a taxonomy, and estimating the probability distribution associated with each category
and the structure of the taxonomy. In this section, we introduce the tree-HDP model, de-
scribe an efficient inference algorithm, and demonstrate that it can be used to solve this
problem.

4.1.1 The tree-HDP model
The tree-HDP is a generalization of the HDP, described above. In the typical formulation of
the HDP, the latent structure Gj of each category j is a draw from a Dirichlet process (DP)
with a base measure G0 that is shared between all the categories. In turn, G0 is a draw from
a higher-level DP with base measure H, a hyperparameter chosen by the modeler. Although
the HDP is typically used to model collections of categories arranged in a flat hierarchy, the
same statistical definitions can be recursively applied to multiple levels of hierarchy. That
is, instead of all the categories inheriting from G0, some of them can inherit from others.

In practice, each draw from a DP yields a refinement or specialization of its base
measure. In the flat HDP, this means that each category is a specialization of the global

1This chapter is based on work done in cooperation with Thomas L. Griffiths, so I use plural first-person
pronouns throughout this chapter.
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base measure H, which is typically chosen to give broad, flat coverage over a wide range
of parameters. Although the categories will exhibit random fluctuations in their degree of
specialization, the use of a flat hierarchy means that each one is, a priori, at the same level
of refinement. By contrast, if we push some of the categories down into deeper levels of the
tree, they become specializations of their respective parent categories. This is the mechanism
that the tree-HDP uses to model taxonomy systems. Intuitively, the tree structure of the
HDP is intended to mirror the true hierarchical relationships between the categories.

Formally, we relax the assumption that the random measures Gj are drawn from a
Dirichlet process with a common base measure G0. Instead, we allow the categories to form
any valid tree structure with G0 as the root. We introduce a new set of random variables
τ = {τ1, . . . , τJ} to describe the tree structure, with τj denoting the index of category j’s
parent. If Gj is a child of G0, then τj = 0, and if it is a child of some other category Gj′ ,
then τj = j′. We restrict τ to form a valid tree structure, i.e., cycles are not allowed.

To specify the full Bayesian probability model of the tree-HDP, it is necessary to
choose a prior distribution for the random variables τ . Since the number of nodes is fixed,
there are only a finite number of possible tree structures. Any discrete distribution over
these tree structures is valid; in this chapter, we use a uniform distribution over all trees in
order to simplify the inference and reveal the model’s underlying strengths and weaknesses.
By performing Bayesian inference on the τ variables along with the other hidden parameters
of the HDP, we can infer the posterior distribution over taxonomy structures for any set of
observed data.

The tree-HDP takes a different strategy than previous work for combining hierarchical
structure with nonparametric Bayesian models, such as the nested CRP (Blei et al., 2010). In
the nested CRP, objects are associated with paths in an infinitely deep, infinitely wide tree,
and overlapping paths represent similarities between objects at multiple levels of abstraction.
In contrast, in the tree-HDP, objects are associated with nodes in a finite tree, and edges
represent subset relations between categories. This latter strategy is what makes the tree-
HDP natural for modeling multi-level category learning, where an object can have high
probability under distributions at multiple levels of the tree. More recently, Adams et al.
(2011) have proposed a tree-structured stick-breaking prior for modeling hierarchical data
which is very similar to our approach.

4.1.2 Inference in the tree-HDP
We now give a brief review of the inference procedure described by Teh et al. (2006) for the
flat HDP and describe the steps necessary to extend the algorithm for the tree-HDP. Let
zji denote the mixture component associated with xji, the ith observation from category j.
Let mjk denote the number of tables in category j assigned to mixture component k. The
weight of mixture component k is denoted by β0k in the global measure G0 and by βjk in the
measure Gj of category j. Note that this differs from the notation of Teh et al. (2006), where
the global component weights are called βk and the category-specific weights are called πjk.
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The index of the parent of category j is given by τj. We relax the assumption that all the
categories share a common concentration parameter α0; instead, the concentration parameter
for category j is denoted αj, and the concentration parameter for the global measure G0 is
denoted α0 instead of γ.

We use the “posterior sampling by direct assignment” method of Gibbs sampling
inference, described in Section 5.3 of Teh et al. (2006). In this method, MCMC inference is
performed over the variables z = {zji}, m = {mjk}, and β0 = {β0k}. In the flat HDP, the
βjk variables can be integrated out because the categories always occupy the leaves of the
tree. However, in the tree-HDP, because categories can have other categories as children,
the βj variables must be explicitly represented and sampled in the MCMC algorithm.

For notational convenience, we also define the following variables. Let njk denote
the number of observations from category j assigned to mixture component k. Let vjk =∑
j′:τj′ =jmj′k denote the number of tables among the children of category j that are assigned

to mixture component k. Each such table constitutes a “virtual” observation from mixture
component k in category j, and these counts are necessary for computing many of the
quantities used in the inference algorithm. These counts do not appear in the standard HDP
formulation because categories do not have other categories as children, making vjk = 0 for
all categories.

The Gibbs sampling equations are as follows (Teh et al., 2006). To sample zji, the
cluster assignment of observation i from category j, we have

P (zji = k|z−ji,m,β, τ ) =

(n−jijk + vjk + αjβτjk)f
−xji

k (xji) for old k,
αjβτjuf

−xji

knew (xji) for k = knew.
(4.1)

To sample mjk, the number of tables in category j assigned to mixture component k, we
have

P (mjk = m|z,m−jk,β, τ ) =
Γ(αjβτjk)

Γ(αjβτjk + njk + vjk)
s(njk + vjk,m)(αjβτjk)m, (4.2)

where s(n,m) are unsigned Stirling numbers of the first kind. For β0 and βj, we have

(β01 . . . β0K , β0u)|z,m,β−0, τ ∼ Dir(v01 . . . v0K , α0) (4.3)

and

(βj1 . . . βjK , βju)|z,m,β−j, τ ∼ Dir(pj1 . . . pjK , αjβτju), (4.4)

where “Dir” is the Dirichlet distribution and pjk is notational shorthand for njk+vjk+αjβτjk.
Finally, for sampling the new τ variables, we have

P (τj = t|z,m,β, τ−j) ∝ P (τj = t|τ−j)P (z,m,β|τj = t, τ−j). (4.5)
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Figure 4.1: Tree structures used to create the simulated data.

Because we use a uniform prior, we have P (τj = t|τ−j) ∝ 1, so

P (τj = t|z,m,β, τ−j) ∝ P (z,m,β|τj = t, τ−j) (4.6)
= P (β0·)

∏
j

P (βj·|βτ j ·)P (zj·|βτj ·)P (mj·|βτj ·, zj·). (4.7)

Now we break down each term in this product:

βj·|βτ j · ∼ Dir(αjβτj1, . . . , αjβτjK , αjβτju), (4.8)

P (zj·|βτj ·) =
∏
k

Γ(njk + αjβτjk)
Γ(αjβτjk)

, and (4.9)

P (mj·|βτj ·, zj·) =
∏
k

Γ(αjβτjk)s(njk,mjk)(αjβτjk)mjk

Γ(αjβτjk + njk)
. (4.10)

Combining these terms and dropping out the terms that do not depend on t, we have

P (τj = t|z,m,β, τ−j) ∝ P (βj·|βt·)P (zj·|βt·)P (mj·|βt·, zj·) (4.11)
∝ (βju)αjβtu

∏
k

(βjk)αjβtk(αjβtk)mjk . (4.12)

Since τj can only take on a finite number of values, we can compute the normalization factor
by summing over t.

4.1.3 Evaluation on recovering simulated taxonomies
To verify the ability of the tree-HDP to reconstruct taxonomies, we used it to infer some
small taxonomies with simulated data. We built four different hierarchies of four categories
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Figure 4.2: Inference results for the tree-HDP model on the simulated datasets. Curves show
the proportion of MCMC samples which perfectly reconstruct the correct tree. The four tree
structures are depicted in Figure 4.1.

each (see Figure 4.1) and used the HDP generative model conditioned on these taxonomy
structures to sample 1000 observations from each category. Each category was modeled
as mixture of Gaussian distributions with two independent dimensions. To make inference
more tractable, we used a conjugate base measure (Normal-scaled inverse gamma) on each
dimension, which had hyperparameters of λ = 0, ν = 0.01, α = 3, and β = 1. λ and ν
control the prior distribution over the mixture components’ locations, while α and β control
the prior distribution over the mixture components’ variance parameters. The Dirichlet
process concentration parameter αj was set to 10 for every category.

For each of the four taxonomies, we ran the tree-HDP inference algorithm on the
generated data, where the number of observations given to the model ranged from 10 to
1000. The base measure hyperparameters were matched to those used to generate the data.
The Gibbs sampling procedure was run for 51,000 iterations in total, with samples being
taken every 10 iterations after a burn-in period of 1000 iterations. The tree structure was
initialized to a flat hierarchy (all τj variables set to 0), and sampling of the τj variables was
not performed until halfway through the burn-in period to allow the model to find good
clusterings of the observations before constraining the probabilities of the clusterings by
committing to a deep tree structure.

The results of the inference are summarized in Figure 4.2. The model’s performance
was similar for all four trees. The proportion of samples which perfectly reconstructed the
correct tree rose from less than 20% with 10 observations per category, to close to 100%
with 400 observations per category. These results show that for these data, the method is
consistent: with enough observations, it converges to the correct hidden taxonomy structure.

57



Chapter 4. Multi-level category learning

4.2 Experiment 1: Comparing to human learners
In the previous section, we evaluated the performance of the tree-HDP on simulated data.
Since we know that people are good at solving this problem, we were interested in comparing
the model’s performance to that of human learners. We conducted an experiment where the
model and human learners performed a multi-level category learning task using a taxonomy
structure was designed to be reminiscent of a real-world hierarchy.

4.2.1 Method
4.2.1.1 Participants

We recruited 95 participants from Amazon Mechanical Turk who received $1.00 as compen-
sation. In addition, 95 undergraduate students participated for course credit. No significant
differences were found between the two participant pools, so their data were pooled for
analysis.

4.2.1.2 Stimuli

We constructed an artificial taxonomy of 14 categories, depicted in Figure 4.3. The categories
were composed of a total of 8 clusters of visual stimuli from (Sanborn et al., 2009). The
appearance of each stimulus is controlled by six continuous-valued parameters, and each
cluster was defined by a multivariate Gaussian distribution over the values of these six
parameters. Each of the eight categories at the leaves of the trees contained observations from
only a single cluster; each of the four categories in the middle level contained observations
from the two clusters of its descendants, and each of the two top-level categories contained
observations from the four clusters below it.

4.2.1.3 Procedure

The experiment was completed entirely online. The participants first read a short introduc-
tion explaining that many categories in the real world are hierarchically organized, including
examples with some common categories. The remainder of the experiment was divided into
a training session, in which participants were taught to discriminate between each of the 14
categories of stimuli, and a test session, in which they were asked to reconstruct the category
hierarchy that the 14 categories belonged to. The training session was divided into a num-
ber of blocks, each containing a set of observation trials followed by a set of discrimination
trials. In the set of observation trials within a training block, participants were shown four
examples of each category, for a total of 56 observations. For each category, the examples
were equally distributed among the category’s clusters; so, for categories consisting of one,
two, or four clusters, participants observed, respectively, four, two, or one stimuli per clus-
ter. These observations were grouped on the computer screen according to their category
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Figure 4.3: The category hierarchy used in Experiment 1.

labels, and they remained on the screen for the duration of the experiment. A screenshot of
an observation trial is shown in Figure 4.4. The observation trials were randomly ordered
within each block.

After completing a set of 56 observation trials, participants continued to a set of 28
discrimination trials. In each discrimination trial, a stimulus was presented on the screen
along with an attached category label. The participants were asked whether or not the
displayed stimulus actually belonged to the category. For each of the 14 categories, there
was one trial where that category label was shown with a stimulus that belonged to the
category (meaning that the correct answer was “Yes”) and one trial where that category
label was shown with a stimulus that belonged to the category’s sibling (meaning that the
correct answer was “No”), for a total of 28 trials. A screenshot of a discrimination trial is
shown in Figure 4.5. The discrimination trials were randomly ordered within each block.
Participants’ responses were recorded, but corrective feedback was not given during these
trials. If participants answered at least 26 of the 28 discrimination trials correctly, they
proceeded to the test session; otherwise they repeated another block of 56 observation trials
and 28 discrimination trials.

Once the participants reached the performance criterion by correctly answering 26 out
of 28 discrimination trials, they continued on from the training session to the test session.
In the test session, participants were asked to reconstruct the taxonomy corresponding to
the 14 categories they had just learned. Labels containing the names of the 14 categories
were laid out in a random configuration on the screen. Participants could drag and drop
the labels into whatever configuration they desired, and they could draw arrows between
the category labels, meant to indicate parent-child hierarchical relationships, by clicking on
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Figure 4.4: A screenshot of Experiment 1 during an observation trial in the training session.
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Figure 4.5: A screenshot of Experiment 1 during a discrimination trial in the training session.
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Figure 4.6: A screenshot of Experiment 1 during the test session.

the two endpoints of the arrow they wished to create. Accidentally-created arrows could
be deleted by clicking on them. A screenshot of the test session is shown in Figure 4.6.
Participants first completed this task with a taxonomy of fruit and vegetable categories to
confirm that they properly understood the instructions and the user interface for constructing
the taxonomy.

4.2.2 Results
On average, the participants completed 1.3 blocks in the training session before achieving the
performance criterion necessary to move on to the test session. Out of the 190 participants,
78 (41.1%) perfectly reconstructed the correct taxonomy structure, and the average number
of taxonomy edges in participants’ responses was 11.2. The total number of incorrect edges
among all participants, including both incorrectly chosen edges and missing correct edges,
was 1401, for an average of 7.4 errors per participant.

Table 4.1 lists the edges which were chosen statistically significantly often, with the
number and percentage of participants who chose each one. Boldfaced rows indicate the
12 edges that are present in the correct taxonomy; the other edges were chosen mistakenly.
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Figure 4.7: The aggregate results for Experiment 1 for the human learners. Black arrows
were chosen by a majority of participants (with percentages ranging between 61–72%), and
gray arrows were chosen by a small but statistically significant number of participants (with
percentages ranging between 5–15%).

Figure 4.7 shows the aggregate taxonomy resulting from averaging over all the participants.
Black arrows, corresponding to edges in the correct taxonomy, were chosen by 61–72% of the
participants, while gray arrows were chosen by 5–15% of the participants. The gray arrows
are those that are not in the correct taxonomy but appeared with statistically significant
frequency.2

These results show that human learners are able to accurately reconstruct taxonomy
structures from a limited number of examples. The types of errors made are very systematic
and give insight into the mental representations that people use to solve the problem. With
one exception, all of the incorrect edges either point in the wrong direction (towards a
category’s ancestor) or point in the right direction but skip a level. The first type of error can
be explained by people not adequately understanding the meaning of the arrows they were
drawing; perhaps they had accidentally reversed the meaning of parent-child relationships.
The second type of error shows that people sometimes do not classify categories at the
lowest possible level, but occasionally produce taxonomies which are flatter than they could
be otherwise.

2p < 0.05 according to an exact binomial test with success probability equal to 6.1%, the overall average
frequency of edges across all results.
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Table 4.1: Edge frequencies from Experiment 1

From category To category Frequency Percentage
mul wam 136 71.6%
vad mul 130 68.4%
rel lar 127 66.8%
rel zim 127 66.8%
tis som 126 66.3%
com bot 125 65.8%
bot pim 125 65.8%
mul nop 124 65.3%
tis fac 124 65.3%
vad tis 124 65.3%
bot hob 118 62.1%
com rel 115 60.5%
vad som 28 14.7%
vad fac 27 14.2%
nop mul 27 14.2%
com hob 26 13.7%
vad nop 26 13.7%
com pim 26 13.7%
lar rel 25 13.2%
fac tis 22 11.6%
hob bot 22 11.6%
com zim 21 11.1%
com lar 19 10.0%
vad wam 18 9.5%
lar com 17 8.9%
som tis 15 7.9%
zim rel 13 6.8%
lar zim 13 6.8%
nop vad 10 5.3%
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Figure 4.8: Performance of the tree-HDP on the experimental data. Results are shown for
five different settings of r, the inverse temperature of the sampling distribution over tree
structures. Each curve shows the proportion of samples which perfectly reconstruct the
correct tree structure.

4.2.3 Modeling
We simulated the tree-HDP model on the same task that the human learners completed.
In order to explore the variability of the model’s performance, we trained it on a range of
4–80 observations per category. The human learners observed 5.3 examples per category, on
average. As with the simulated data, the model represented each category as a mixture of
Gaussian distributions with six independent dimensions. The hyperparameters of the the
conjugate base measure (again, Normal-scaled inverse gamma) were fit to the training data,
with parameters λ = 0, ν = 0.01, α = 1.6, and β = 6.3. The Dirichlet process concentration
parameters were inferred from the data separately for each category, using a Gamma(1, 0.01)
prior distribution. To focus the posterior more on high-probability trees, we ran versions
of the model at “temperatures” of 1/r for values of r between 1 and 20, corresponding to
raising the Gibbs sampling distribution for τj in the MCMC algorithm to the power of r.

The model results are shown in Figure 4.8. In general, more observations per category
and higher values of r both led to better performance. The model’s performance covers a wide
range of values (4–91%) depending on these two parameters. The aggregated samples from
one version of the model (with 8 observations per category and r = 3) is shown in Figure 4.9.
In general, the model very accurately reconstructed the taxonomy, and interestingly, the
mistakes it makes are very similar to those of the human learners. Ignoring the “backwards”
edges produced by the human learners, there is only a single difference in the significant
mistakes made by the model and the people: the edge from “lar” to “zim”. The correlation
between the edge frequencies in people’s reconstructed hierarchies and the model’s samples
was 0.988.

65



Chapter 4. Multi-level category learning

com

bot rel

pim hob lar zim wam

mul

nop somfac

vad

tis

90-93%
8-9%

Figure 4.9: Results for Experiment 1 for the tree-HDPmodel with 8 observations per category
and an inverse temperature parameter of r = 3. Black arrows were chosen by a majority of
model samples, and gray arrows were chosen by a small but statistically significant number
of samples.

4.3 Experiment 2: Testing implicit knowledge and in-
ferences

Experiment 1 demonstrated people’s ability to perform multi-level category learning by ex-
plicitly reconstructing the taxonomy structure underlying a set of hierarchically related cat-
egories. However, a more realistic use of one’s knowledge about multi-level categories is
making inferences or generalizations. Hence, in this experiment, we test people’s knowledge
about the taxonomy structure in a more implicit way, using inferences about pairs of related
categories.

4.3.1 Method
4.3.1.1 Participants

The participants consisted of 43 undergraduate students from the University of California,
Berkeley, who received course credit.

4.3.1.2 Stimuli

The stimuli were identical to those from Experiment 1.
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4.3.1.3 Procedure

The procedure was identical to that of Experiment 1, with the exception of the format of
the test session. Rather than testing participants’ explicit knowledge of the category taxon-
omy by asking them to reconstruct the hierarchical system, we instead tested their implicit
knowledge by asking questions of the form “Is every hob a com?” (with different category
names appearing in place of hob and com). These questions test the type of knowledge used
in the well-known deductive arguments known as syllogisms: for example, “Object X is a
hob. Every hob is a com. Therefore, object X is a com.” With respect to a participant’s in-
ferred category hierarchy (or with respect to the correct hierarchy), the correct answer to this
question is “Yes” when the first category is a descendent (either a child or a grandchild) of
the second, and “No” otherwise. An example trial in the test session is shown in Figure 4.10.
The test session consisted of 48 trials of this format. There were 12 trials corresponding to
each of the 12 direct edges in the correct hierarchy and 8 trials corresponding to each of
the 8 indirect ancestor/descendent relationships in the correct hierarchy; the correct answer
was “Yes” in each of these trials. For each of these 20 trials, there was an additional trial in
which the order of the category names was reversed, so that the correct answer was “No”.
Finally, there were 8 additional trials in which the pair of categories in the question were
selected randomly from all the pairs that hadn’t been chosen to appear yet. These 48 trials
were randomly ordered for each participant.

This procedure allows us to make different measurements from those in Experiment
1, focusing more on implicit knowledge than explicit knowledge. Instead of asking partici-
pants to directly draw edges between categories to reconstruct the category taxonomy, this
experiment tests the indirect consequences of the inferred hierarchy. If a participant learns
that category A is a subtype of category B, even if that knowledge is not able to be recalled
explicitly, the participant may still be able to recognize that every member of category B is
also a member of category A.

4.3.2 Results
On average, participants completed 1.78 blocks in the training session before achieving the
performance criterion necessary to move on to the test session. Out of the 43 participants,
9 (20.9%) correctly answered all 48 trials in the test session, and the average number of
“Yes” answers given was 17.84 out of the 48 test trials. The results are summarized in
Table 4.2. Each row lists the number and percentage of participants who answered that
the first category is an ancestor of the second category – that is, those who answered “Yes”
to the question “Is every A a B?” for the appropriate categories A and B. Each of the 20
ancestor relationships from the correct taxonomy structure are listed in the table; none of
the other pairs of categories were answered in the affirmative by a statistically significant
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Figure 4.10: A screenshot of Experiment 2 during the test session.
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Table 4.2: Ancestor frequencies from Experiment 2

Ancestor category Descendent category Frequency Percentage
rel zim 39 90.7%
bot hob 39 90.7%
com hob 38 88.4%
mul nop 37 86.0%
tis som 36 83.7%
vad fac 36 83.7%
com pim 36 83.7%
vad nop 35 81.4%
com lar 35 81.4%
tis fac 35 81.4%
mul wam 35 81.4%
rel lar 34 79.1%
vad wam 33 76.7%
vad mul 33 76.7%
com zim 32 74.4%
com bot 32 74.4%
bot pim 31 72.1%
com rel 29 67.4%
vad tis 28 65.1%
vad som 26 60.5%

number of participants.3
As in Experiment 1, we also observed that a low percentage of the participants re-

sponded with answers that were consistent with the correct taxonomy structure, but “back-
wards”. In other words, they responded “Yes” to questions where the relationship was invalid,
but would have been valid if the categories had switched places. These questions received
“Yes” answers with frequencies between 4.7% and 18.6%, which is roughly the same range of
frequencies with which backwards arrows appeared in the results from Experiment 1. How-
ever, since there were fewer participants in this experiment than there were in Experiment
1, these frequencies were not large enough to be statistically significant in this experiment.

3As before, statistical significance was determined by an exact binomial test, with the criterion of p < 0.05
and the probability of selection equal to 37.2%, the average frequency of “Yes” answers across all trials.
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Figure 4.11: Results for Experiment 2. The bar graph shows the percentage of trials on
which participants correctly or incorrectly answered “Yes” to questions in the test session of
the form “Is every A a B?”, along with standard error bars for each estimated frequency.

4.4 Experiment 3: Learning unbalanced taxonomies
The results from Experiments 1 and 2 indicate that people an learn these relatively simple,
balanced taxonomies, consistent with the Bayesian tree-HDP model. We now test more sub-
tle predictions of the model, examining the inferences and errors that are made for different
taxonomy structures. In this experiment, we investigate the ability of human learners and
the tree-HDP model to infer category hierarchies that are less symmetrical than those in
Experiments 1 and 2.

4.4.1 Method
4.4.1.1 Participants

The participants consisted of 55 undergraduate students from the University of California,
Berkeley, who received course credit, and 185 workers from the website Amazon Mechanical
Turk, who received a payment of $1.00, for a total of 240 participants.

4.4.1.2 Stimuli

This experiment involved the same set of stimuli as the previous experiments, but it differed
in the way the stimuli were arranged into taxonomy structures. The hierarchies to be learned
were constructed by starting with the same 14-category hierarchy used in Experiment 1.
From each of the two separate trees (rooted at com and vad in Figure 4.3), one of the two
mid-level categories was chosen at random to be “pruned”, meaning that its two subcategories
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Figure 4.12: An example hierarchy used in Experiment 3. In this example, the categories
labeled com and vad are “root” categories in their respective trees, rel and tis are “pruned”
categories, bot and mul are “sibling” categories, and pim, hob, wam, and nop are “nephew”
categories. rel is the “double pruned category” because it contains two clusters, and tis is
the “single pruned category” because it contains one cluster.

were removed from the hierarchy. One of the pruned categories was randomly chosen to be
the “double pruned category”, meaning that it inherited both of its subcategories’ clusters.
The other, called the “single pruned category”, inherited just one randomly-chosen cluster
from its two subcategories. This resulted in the construction of a 10-category hierarchy split
into two disjoint trees of 5 categories each, as shown in Figure 4.12.

4.4.1.3 Procedure

The procedure of Experiment 3 was identical to that of Experiment 1. Because there were
only 10 categories instead of 14, however, each training block contained 40 observation trials
instead of 56 (with four observations per category, as in Experiment 1) and 20 discrimination
trials instead of 28 (with two trials per category, as in Experiment 1). The performance crite-
rion for completion of the training session was 18 correct answers out of the 20 discrimination
trials.

4.4.2 Results
On average, participants completed 1.5 blocks in the training session before achieving the
performance criterion necessary to move on to the test session. Of the 240 participants, 36
(24.6%) perfectly reconstructed the correct taxonomy structure, and the average number of
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taxonomy edges in participants’ responses was 7.2. The total number of errors among all
participants, including both incorrectly chosen edges and missing correct edges, was 1463,
for an average of 6.10 errors per participant.

Due to the random selection of the pruned categories (as described in Section 4.4.1.2
above), each participant was trained on a different category hierarchy, so their responses
cannot be directly aggregated together for analysis. Although the categories played different
structural roles in each participant’s hierarchy, each participant learned a taxonomy that had
the same overall structure, displayed by the example in Figure 4.12. In order to evaluate
the inferences made by the human learners, we assign structural roles to the categories
and aggregate across participants according to these roles. Each hierarchy contains two
trees which both consist of a “root” category at the top level, a “pruned” category and a
“sibling” category at the middle level, and two “nephew” categories at the bottom level,
which are both subcategories of the “sibling” category. We can distinguish between the two
trees according to the number of clusters in the pruned category. As described above, one
pruned category is randomly selected to contain a single cluster (called the “single pruned
category”); the tree containing this category is called the “single pruned tree”, and the other
is called the “double pruned tree”. Having identified each category in a participant’s hierarchy
with a structural role, we measured the frequencies with which participants selected edges
connecting categories of each role in each tree. For example, we counted the frequency with
which the model selected edges from the root to the pruned category in each tree, and edges
from the sibling to either of the nephews in each tree.

Among all possible edges in the hierarchy, the types that were selected statistically
significantly often by the participants were root→pruned, root→sibling, sibling→nephew,
and root→nephew edges.4 Note that root→nephew edges are not part of the correct hier-
archy, but were selected by many participants nonetheless. Figure 4.13 shows the frequency
with which participants selected edges of each type in each tree.

One of the purposes of conducting this experiment was to test the effect of manip-
ulating the number of clusters in one of the categories of a taxonomy structure. Because
participants learned hierarchies consisting of two trees which were identical except for the
number of clusters in the pruned category, we can observe the effects of this difference by
comparing which edges were chosen for the single pruned tree vs. the double pruned tree.
By counting the cases where a participant selected more edges of a given type in one tree
than in other tree, we can discover whether the number of clusters in the pruned category
affects the participants’ inferences about the underlying hierarchies.

For each of the four types of edges that were selected significantly often, we measured
Ns, the number of participants who chosen more edges of that type in the single pruned tree
than in the double pruned tree, and Nd, the number of participants who chose more edges

4These are the types of edges whose observed frequency of being chosen, averaged across all participants,
were statistically significant according to an exact binomial test with p < 0.05 and probability of selection
equal to 8.0%, which was the average frequency which which all possible edges in the hierarchy were chosen.
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Figure 4.13: The aggregate results for Experiment 4 for the human learners. Black arrows
indicate edge types that are part of the correct hierarchy, and gray arrows indicate edge types
that are incorrect. Each edge type is labeled with the frequency with which it was chosen
by participants. Since each participant learned a randomly-generated taxonomy structure,
results were aggregated according to the structural roles played by each category, as described
in Section 4.4.2. The particular hierarchy shown here is the same that appears in Figure 4.12.
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Table 4.3: Results for Experiment 3 by edge type

Edge type Single pruned edges Double pruned edges Ns Nd p-value
root→pruned vad→tis com→rel 19 23 0.32
root→sibling vad→mul com→bot 22 18 0.32

sibling→nephew mul→wam, mul→nop bot→pim, bot→hob 33 50 0.04
root→nephew vad→wam, vad→nop com→pim, com→hob 49 31 0.03

Note: Boldface type indicates the larger of Ns and Nd in each row. The p-values were
calculated according to an exact binomial test of the null hypothesis that each edge type
is equally likely to occur in the single and double pruned trees. The binomial tests are
one-tailed because the model results described below predict a direction for effect.

of that type in the double pruned tree than in the single pruned tree. For the root→pruned
and root→sibling edge types, there is only one possible edge of this type in each of the two
trees. For these two edge types, Ns is the number of participants who chose that edge in the
single pruned tree but did not choose it in the double pruned tree, and Nd is the number of
participants who chose it in the double pruned tree but not in the single pruned tree. For
the sibling→nephew and root→nephew edge types, there are two possible edges of that type
in each tree, because there are two nephews in each tree. So for these two edge types, Ns

is the number of participants who chose more edges of that type in the single pruned tree
than in the double pruned tree, and correspondingly for Nd. Table 4.3 lists these frequencies
for each edge type, along with example edges from the hierarchy in Figure 4.12 which are of
each type. Also listed for each edge type is the p-value of an exact binomial test of the null
hypothesis that the expected values of Ns and Nd are equal.

The number of clusters in the pruned category seems to have had an effect on each of
the four edge types. Participants more often selected root→sibling and root→nephew edges
in the single pruned tree, while they more often selected root→pruned and sibling→nephew
edges in the double pruned tree. Two of the four edge types demonstrate statistically signif-
icant effects (p < 0.05).

4.4.3 Tree-HDP model predictions
The tree-HDP model was trained on labeled examples of the 10 categories in the hierarchy
shown in Figure 4.12 and then used to reconstruct the taxonomy structure. As explained in
Section 4.2.3, the model results can vary according to how many observations per category
the model is given, as well as the inverse temperature parameter r of the model’s posterior
distribution that is used during the Gibbs sampling procedure. We ran the model for a
wide range of these two parameters: the number of observations per category ranged from
4 to 80 in increments of 4 (recall that participants received about 1.5 × 4 = 6 observations
per category on average), and r took on the values 1, 2, 3, 4, 5, 10, 15, and 20, which
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made a total of 160 variants of the model. We ran each of the 160 variants of the tree-HDP
model using the same type of data given to the human learners. Rather than randomizing
the hierarchy for each model, we always trained the model on the same hierarchy: the one
shown in Figure 4.12.

Every single one of the 160 variants of the tree-HDP model displayed the same biases
as the human learners displayed in Table 4.3: root→sibling and root→nephew edges were
always more common in the single pruned tree than in the double pruned tree, while the
opposite was true for root→pruned and sibling→nephew edges.

Although two of the effects found in the human data were not statistically significant
on their own, when we consider that all four effects are consistent with the model predictions,
we can pool them together to find a statistically significant combined effect. We combine
the number of cases where a participant chose more edges of a particular edge type in the
same tree (either single pruned or double pruned) that the model predicted, for a total of
23 + 22 + 50 + 49 = 144 (the bold numbers in Table 4.3). Similarly, we combine the number
of cases where a participant chose more edges of a particular edge type in the tree that was
not predicted by the model, for a total of 19 + 18 + 33 + 31 = 101. An exact binomial test
of the null hypothesis that the human data are independent of the model predictions (that
is, that these two totals are generated by a binomial distribution with a success parameter
of 50%) yields a p-value of 0.002. Therefore, we find that the overall model predictions are
consistent with the human data; both the human learners and the model display the same
types of learning effects when learning unbalanced trees with differing numbers of clusters
in one of the categories.

4.5 Conclusion
Learning the conceptual structures that characterize our world requires being able to induce
relationships between categories from examples of their members. We have presented a non-
parametric Bayesian model that can be used to solve the problem of multi-level category
learning and shown that its performance is similar to that of humans. This analysis helps
explain how it is possible for learners to induce taxonomies from only labeled observations,
and provides a new tool for learning categories in contexts where the assumption that cat-
egories are independent of one another is invalid. In future work, we hope to extend this
analysis to incorporate direct statements of the relations between categories, as might be
provided in verbal instruction or found through text mining, and consider how our approach
can be extended to more complex conceptual structures.
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Conclusions

The findings described in the previous three chapters support the following conclusions about
human categorization.

1. Human categorization is characterized by flexible category representations.

In Chapter 2, I described an iterated learning experiment of categorization to reveal the
inductive biases of human learners for four different stimulus sets. For separable stimuli,
people preferred a small number of relatively simple category structures, while for integral
stimuli, a larger number of more complex category structures were preferred. These results
imply that people’s inductive biases for categorization problems vary according to the stim-
uli being learned. This conclusion supports previous findings in psychology that neither
prototype nor exemplar models always provide a better account of people’s generalizations
in category learning experiments. It seems that human categorization is characterized not
by a single rigid representation or model, but rather it is flexible and adaptable. Therefore,
we should strive to build models which can account for this versatility.

2. When learning new categories, people incorporate information about other
categories.

Chapter 3 introduced the HDP as a unifying categorization model which makes a key pre-
diction that people should transfer information from one category to others when learning
about multiple categories. An experiment designed to test this prediction found that when
making predictions about new categories, people are sensitive to information about other
categories to which they have had previous exposure. This demonstrates that categories are
not learned in isolation from other categories, as implicitly assumed by most psychological
models. Instead, people are aware of a great variety of interrelated categories and use their
knowledge about past categories to inform the inferences they make about new categories.
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3. People are able to learn category taxonomies from only indirect evidence.

In Chapter 4, I defined the problem of multi-level category learning, in which a learner
observes examples of categories at multiple hierarchical levels and must not only predict the
category label of a new object, but must also reconstruct the category taxonomy. I introduced
the tree-HDP model for solving this problem and experimentally demonstrated that both
human learners and the tree-HDP are able to solve the multi-level category learning problem.
In addition, the model seems to be able to explain not only the successful inferences that
people make, but also most of their mistakes.

5.1 Limitations and future directions
While the approaches to categorization described in this dissertation are designed to extend
the state of the art of psychological and statistical modeling, they are not without their own
limitations. Some of these limitations are now discussed in turn, along with some ideas for
future directions for this research.

5.1.1 Spatial representations
The HDP-based models presented in this dissertation assume a low-dimensional spatial rep-
resentation for the input received by a category learner for each stimulus. Clearly, this is not
a realistic assumption for the actual sensory input received by human learners. However,
it may be a reasonable approximation of the output of human sensory processing systems
for highly constrained sets of stimuli which vary in only a few unambiguous dimensions.
For stimulus sets such as Shepard circles and rectangles, this assumption seems justifiable;
however, for more complex stimulus sets with integral dimensions, it is not clear that there
exists a single cognitive spatial representation with unambiguous dimensions. Furthermore,
in situations where the stimuli are not limited to a small set of similar objects, learners may
not know ahead of time the full extent of all the stimuli they will be presented with, so
assuming a single, fixed spatial representation from the onset of learning seems problematic.
Following this line of thought, a truly universal categorization model should be able to rep-
resent any set of objects in a common representational scheme; however, it is not evident
that there even exists a common spatial representation for the wide variety of entities that
people are able to categorize. For example, it would be quite challenging to find a natural
spatial representation for a collection of objects consisting of a slice of pizza, a whiteboard
marker, and the number seven.

Although most formal categorization models start with this basic assumption of a
low-dimensional spatial representation for the stimuli, there have also been attempts to
characterize human categorization using different representational schemes. One of the more
successful of these approaches is based on representing stimuli with a list of features that
they possess (see, for example, Tversky, 1977). These feature-based representations have

77



Chapter 5. Conclusions

some unique strengths, such as being able to account for the asymmetry of human similarity
judgments. It should be noted that feature-based representations are technically equivalent
to a high-dimensional, binary spatial representation, where each dimension represents one
distinct feature, and stimuli take on the value of 0 or 1 for each dimension to indicate whether
or not they possess that feature. Nonetheless, as we have demonstrated that human catego-
rization adopts flexible category representations, it is quite possible that people also adopt
flexible representations for stimuli, using spatial representations at some times and feature
representations at other times. Additionally, the basic ideas underlying the HDP-based mod-
els (that categories are composed of clusters of objects that are shared between categories
in particular ways) can theoretically be extended from spatial stimulus representations to
feature-based stimulus representations.

5.1.2 Clusters as the atomic unit
The Bayesian statistical models described in this dissertation all adopt their flexible category
representations through the use of clusters. In a sense, for all of these HDP-based models,
the cluster is the atomic representational unit of a category. These models learn categories
by building up clusters of objects which can be arbitrarily composed together. While this
ability is a major step forward from the static representational schemes of prototypes and
exemplars, it is also somewhat limited itself. First, the fundamental motivation for the HDP
and the tree-HDP is that sharing information between categories should facilitate learning.
However, the only way in which these models share information is by using clusters to
represent more than one category; this approach is only useful in situations where there are
multiple categories which can be described in terms of overlapping clusters. Moreover, this
representation uses only a single layer of abstraction (the clusters) to define categories. It
is unlikely that this is the only way in which information about multiple categories can be
learned and used. For example, it seems plausible that people are capable of learning that
clusters are themselves composed of sub-clusters, and so on. Therefore, one a more plausible
account might involve learning a multi-layered system of clusters to represent a category.
In addition, shared clusters certainly aren’t the only way in which categories can be related
to each other. For example, Heller et al. (2010) argue that “categories of materials such as
gold, ice, and wood all display a characteristic color while being relatively unconstrained as
to the shapes and sizes that they take,” (p. 2) while “size is often constrained in [categories of
artifacts] such as books and cars, while color can vary across a very wide range.” (p. 2) From
this perspective, it is apparent that categories such as gold, ice, and wood are all related to
each other not because of any shared category members, but because they each extend along
the same dimensions (shape and size) and are constrained along the same dimensions (color
and texture). Heller et al. (2010) propose a hierarchical Bayesian model that is somewhat
related to the HDP but is designed to learn that categories tend to be organized along
the same dimensions rather than that categories can share overlapping clusters. This is
just one example of how one can take the approach of designing statistical models to learn
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things about categories by observing members of other categories; this general strategy is
not limited to the specific type of cluster-based learning performed by the HDP.

5.1.3 Cluster-based and rule-based representations
The cluster-based representations used in the models presented in this dissertation are all, in
a sense, agglomerative. The HDP and related models build up category representations by
combining individual observations into clusters and combining clusters into categories. This
procedure inevitably leads to category representations which are combinations of somewhat
amorphous collections of objects. It seems intuitive that human categorization is often based
more on simple rule-based structures involving logical quantifications, more akin to first-order
logical representations. Although these seem like distinct types of representation, there is a
sense in which the representations used by the HDP and HDP-based models can be thought
of as rule-based, as discussed in Section 3.8.2. Each cluster of objects is essentially a region
of the multidimensional stimulus space, which is roughly a conjunction of constraints on
each dimension. Each category is a combination of clusters, and thus can be described as a a
disjunctive combination of the conjunctive constraints embodied by its constituent clusters.

In addition to the interpretation of HDP models as probabilistic analogs of logical
formulae in disjunctive normal form, other connections can be drawn between cluster-based
and rule-based models. The tree-HDP is just one way that the flat category taxonomy in the
HDP can be extended to account for richer relationships between the categories. In the tree-
HDP, these relationships are restricted to pairs of subcategories and supercategories, which
are instantiated mathematically by each child category using its parent’s mixture distribution
over clusters as the base distribution for its own Dirichlet process. The tree-HDP can be
generalized even further, allowing for arrangements of categories into directed acyclic graphs
(DAGs), which are hierarchical systems where categories can have multiple parents. In
these more general graphical HDPs, each child category could use either the sum or the
product of its parents’ mixture distributions as the base distribution for its own Dirichlet
process, leading to a system where categories act like either disjunctions or conjunctions
(depending on the operation used) of their parents. These sums and products could even be
intermixed, allowing categories to be represented as general logical combinations of multiple
other categories. Such a model would be a slight extension of the tree-HDP model presented
in this dissertation, and the same type of Gibbs sampling-based algorithm should be able
to be used to perform inference. This would bring the HDP models of categorization much
closer in spirit and expressibility to logical, rule-based models.

5.1.4 Bayesian inference algorithms
Most psychological models of categorization are process models; that is, they posit a par-
ticular set of representations and algorithms that are used to solve categorization problems.
By contrast, the models proposed in this dissertation are at the computational level (Marr,
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1982): they posit that people view categorization as a statistical problem and use Bayesian
inference to identify the likely categories for a given stimulus. These models do not, how-
ever, make claims about the particular algorithm used to perform this inference. In ma-
chine learning, there is a clear distinction between models and algorithms; this distinction
is roughly equivalent to the difference in psychology between computational-level models
and algorithmic-level models. The HDP-based models presented in the previous chapters
define probability distributions over the potential conclusions that can be drawn, but they
do not presuppose that any particular algorithm is used to calculate these probabilities. If a
computational-level model is to be taken as a serious account of human cognition, however,
it must be able to be plausibly implemented in some way by the human mind. In general,
performing Bayesian inference for complicated models like the HDP and the tree-HDP is
intractable with modern computers: it cannot be done both exactly and within a reasonable
amount of time. To work around this limitation, approximation algorithms must be used. In
executing the HDP-based categorization models, I have used Gibbs sampling algorithms, but
this choice was motivated purely out of considerations of convenience. By its nature, Gibbs
sampling is a relatively slow, serial computation; therefore, it is not a very realistic proposal
as an algorithm that might be used by human learners, whose inferences are made more
quickly and with a brain that operates in a massively parallel fashion. However, alternatives
to Gibbs sampling have been proposed as more realistic algorithmic accounts of how people
might implement Bayesian inference. For example, particle filters (Doucet et al., 2001) oper-
ate in a way that is more congruent with what is known about the mechanics of the human
brain; their computations are highly parallel and require less time. Particle filters have been
proposed as an algorithmic-level account of how people might implement rational models of
categorization such as the HDP (Sanborn et al., 2010a). Nonetheless, finding a convincing
account of how such complicated Bayesian statistical models could be implemented by the
human mind remains an elusive goal for computational cognitive psychologists.

5.2 Conclusion
In this dissertation, I have demonstrated that human categorization is characterized by flexi-
ble representations, that when learning new categories, people incorporate information about
other categories, and that people are able to learn category taxonomies from only indirect
evidence. I have proposed and tested a family of statistical models, based on the hierarchical
Dirichlet process, that account for and explain these capabilities of human learning in cate-
gorization. Although this is far from a complete explanation of all the nuances and abilities
of human categorization and there is still a long way to go before computational models
match the flexibility and ingenuity of human learners, this work has demonstrated some
important principles. Human learning is much more reliant upon flexible, interconnected
representations than past models have supposed. To make significant progress in study-
ing cognition, we should focus on models that use representations that grow in complexity
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and that recognize and take advantage of complex relationships between large collections of
concepts, rather than attempting to learn individual tasks and domains in isolation.
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