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Abstract

Finding Difficult Speakers in Automatic Speaker Recognition

by

Lara Lynn Stoll

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Co-chair

Dr. N. Nikki Mirghafori, Co-chair

The task of automatic speaker recognition, wherein a system verifies or determines a
speaker’s identity using a sample of speech, has been studied for a few decades. In that time,
a great deal of progress has been made in improving the accuracy of the system’s decisions,
through the use of more successful machine learning algorithms, and the application of
channel compensation techniques and other methodologies aimed at addressing sources of
errors such as noise or data mismatch. In general, errors can be expected to have one or more
causes, involving both intrinsic and extrinsic factors. Extrinsic factors correspond to external
influences, including reverberation, noise, and channel or microphone effects. Intrinsic factors
relate inherently to the speaker himself, and include sex, age, dialect, accent, emotion,
speaking style, and other voice characteristics. This dissertation focuses on the relatively
unexplored issue of dependence of system errors on intrinsic speaker characteristics. In
particular, I investigate the phenomenon that some speakers within a given population have
a tendency to cause a large proportion of errors, and explore ways of finding such speakers.

There are two main components to this thesis. First, I establish the dependence of sys-
tem performance on speaker characteristics, building upon and expanding previous work
demonstrating the existence of speakers with tendencies to cause false alarm or false rejec-
tion errors. To this end, I explore two different data sets: one that is an older collection
of telephone channel conversational speech, and one that is a more recent collection of con-
versational speech recorded on a variety of channels, including the telephone, as well as
various types of microphones. Furthermore, in addition to considering a traditional speaker
recognition system approach, for the second data set I utilize the outputs of a more con-
temporary approach that is better able to handle variations in channel. The results of such
analysis repeatedly show variations in behavior across speakers, both for true speaker and
impostor speaker cases. Variation occurs both at the level of speech utterances, wherein a
given speaker’s performance can depend on which of his speech utterances is used, as well as
on the speaker level, wherein some speakers have overall tendencies to cause false rejection
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or false alarm errors. Additionally, lamb-ish speaker behavior (where the speaker tends to
produce false alarms as the target) is correlated with wolf-ish behavior (where the speaker
tends to produce false alarms as the impostor). On the more recent data set, 50% of the
false rejection and false alarm errors are caused by only 15-25% of the speakers.

The second component of this thesis investigates a straightforward approach to predict
speakers that will be difficult for a system to correctly recognize. I use a variety of features
to calculate feature statistics that are then used to compute a measure of similarity between
speaker pairs. By ranking these similarity measures for a set of impostor speaker pairs, I
determine those speaker pairs that are easy for a system to distinguish and those that are
difficult-to-distinguish. A variety of these simple distance measures could successfully select
both easy- and difficult-to-distinguish speaker pairs, as evaluated by differences in detection
cost and false alarm probability across a large number of systems. Of the performance mea-
sures tested, the best feature-measure at finding the most and least difficult-to-distinguish
speaker pairs was the Euclidean distance between vectors of the mean first, second, and third
formant frequencies. Even greater success was attained by the Kullback-Liebler (KL) diver-
gence between pairs of speaker-specific GMMs. Furthermore, an examination of the smallest
and biggest distances (as computed by the KL divergence) revealed individual speaker ten-
dencies to consistently fall among the most (or least) difficult-to-distinguish speaker pairs.

I then develop an approach for finding those individual speakers who will be difficult for
the system, using a set of feature statistics calculated over regions of speech. In particular,
a support vector machine (SVM) classifier is trained to distinguish between difficult and
easy speaker examples, in order to produce an overall measure of speaker difficulty as a
target or impostor. The resulting precision and recall measures were over 0.8 for difficult
impostor speaker detection, and over 0.7 for difficult target speaker detection. Depending
on the application, the detection threshold can be tuned to improve precision, recall, or
specificity in order to best suit the needs of a particular task. The same approach can be
taken with single conversation sides, as with a set of conversation sides corresponding to the
same speaker, since the input feature statistics can be calculated over any number of speech
samples.
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Chapter 1

Introduction

1.1 Automatic Speaker Recognition

The task of automatic speaker recognition, wherein a system verifies or determines a
speaker’s identity using a sample of speech, has been studied for a few decades. In that time,
a great deal of progress has been made in improving the accuracy of the system’s decisions,
through the use of more successful machine learning algorithms, and the application of
channel compensation techniques and other methodologies aimed at addressing sources of
errors such as noise or data mismatch. This dissertation focuses on the relatively unexplored
issue of dependence of system errors on speaker characteristics. In particular, I investigate
the phenomenon that some speakers within a given population have a tendency to cause a
large proportion of errors, and explore ways of finding such speakers.

There are a number of tasks that fall into the category of speaker recognition. My
work uses the speaker verification paradigm, in which there is a hypothesized target speaker
identity, with an associated training speech utterance, and the system must decide whether
a given test utterance was spoken by the target speaker. In this case, there are two types of
errors: false rejections, in which the true speaker is rejected as such, and false acceptances, in
which an impostor speaker is accepted as the target speaker. In general, these errors can be
expected to have one or more causes, involving both intrinsic and extrinsic factors. Extrinsic
factors correspond to external influences, including reverberation, noise, and channel or
microphone effects. Intrinsic factors relate inherently to the speaker himself, and include
sex, age, dialect, accent, emotion, speaking style, and other voice characteristics. This
dissertation analyzes errors in terms of intrinsic speaker attributes.

1.2 Inherent Speaker Characteristics

As human listeners, we may observe that some speakers sound more alike than others, or
we may find it difficult to identify certain speakers because their voices do not always sound
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the same from time to time. Similarly, there may be speakers for which an automatic speaker
recognition system makes more decision errors. There are many sources of variation within
and across speakers that may contribute to causing such errors, including basic physical
attributes, language, accent, characteristics of speaking style, and changes in emotional
state or health.

This thesis is inspired by the analysis of Doddington et al. [22], in which the authors
characterized speakers in terms of their error tendencies. The default, well-behaved speakers
are “sheep.” Speakers who cause a proportionately high number of false rejection errors as
the target speaker are called “goats.” Those speakers who tend to cause false acceptance
errors as the target speaker are “lambs,” and those who tend to cause false acceptance
errors as the impostor speaker are labeled “wolves.” The existence of such speaker types was
demonstrated through statistical tests using the outputs of an automatic speaker recognition
system. Further analysis of additional data sets and different types of speaker recognition
systems can provide more insight into the dependence that system performance has on the
speakers.

Given that automatic speaker recognition system performance does depend on speaker
characteristics, knowing which speakers are likely to cause errors is information that could
prove useful for improving decision accuracy. Yet, limited work has been done to find these
difficult speakers without the benefit of having a system’s output.

Furthermore, there are a number of real-world applications that rely on automatic speaker
recognition technology, that could benefit from being able to find the most similar speakers
or the most difficult trials to make a decision about. Inherent to certain tasks are popu-
lations of in-set and out-of-set speakers. That is, there may be a set of known speakers
(i.e., in-set speakers), with associated speech samples, that needs to be distinguished from
other, unknown speakers (i.e., out-of-set speakers). One example of this type of real-world
application is that of fraud detection, where a company is trying to prevent fraud in the
use of a call center or other phone-base system. Given a database of speaker models trained
using speech samples from people known to have committed fraud, an automatic system may
compare new speech data from incoming calls to the database of fraudster speaker models
in order to detect possible fraudulent attempts, which must then be verified by a human
listener. However, a human expert would be unable to listen to all calls if there are a large
number of potential matches between new speech data and the fraudster models. A method
for selecting the most error-prone speakers could thus prove very useful for focusing the
efforts of a human listener in a smart way.

1.3 Thesis Goals and Overview

There are two main components to this thesis. First, I establish the dependence of
system performance on speakers, building upon the previous work of Doddington et al. To
this end, I explore two different data sets: one that is an older collection of telephone channel
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conversational speech, and one that is a more recent collection of both conversational speech
and interview-style speech, recorded on a variety of channels, including landline and cellular
telephone, as well as various types of microphones. Furthermore, in addition to considering a
traditional speaker recognition system approach, for the second data set I utilize the outputs
of a more contemporary approach that is better able to handle variations in channel.

The second component of this thesis investigates a straightforward approach to predict
speakers that will be difficult for a system to correctly recognize. I use a variety of features
to calculate feature statistics that are then used to compute a measure of similarity between
speaker pairs. By ranking these similarity measures for a set of impostor speaker pairs, I
determine those speaker pairs that are easy for a system to distinguish and those that are
difficult-to-distinguish. I then develop an approach for combining a set of feature statistics in
order to produce a comprehensive measure of how likely it is that a speaker will cause errors.
In particular, I use support vector machine (SVM) classifiers trained to distinguish between
difficult and easy examples, in order to detect difficult impostor and target speakers.

I begin by covering relevant background material in Chapter 2, including typical features
and systems for automatic speaker recognition, intrinsic speaker characteristics, and related
error analyses of speaker recognition systems. Next, I explore the speaker-dependent per-
formance of systems in Chapter 3. In Chapter 4, I introduce a simple approach to finding
difficult-to-distinguish speaker pairs. I then describe a technique for detecting difficult target
or impostor speakers in Chapter 5. Finally, I summarize and conclude my work in Chapter
6.
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Chapter 2

Background

There are several broad areas of prior work relevant to this dissertation. I begin in Section
2.1 by setting up the speaker recognition problem, while in Sections 2.2, 2.3, 2.4, and 2.5 I
provide details about features, system approaches, relevant speech corpora, and measures of
system performance, respectively. There are a number of intrinsic speaker qualities, which
account for intra-speaker variability, as well as differences between speakers, that I describe
in Section 2.6. The most directly related work involves error analysis pertaining to speaker
recognition systems, which I discuss in Section 2.7.

2.1 The Speaker Recognition Problem

As its name implies, automatic speaker recognition attempts to recognize, or identify, a
given speaker by processing his/her speech automatically, that is to say, in a fully objective
and reproducible manner, without the aid of human listening or analysis. In order to be
able to recognize the speaker of a given test utterance, it is necessary to have training data
first, so that the system can “learn” the speaker of interest. The term speaker recognition
can be used to refer to a variety of tasks. One type of task is speaker identification, where
the system must produce the identity of the speaker, given a test utterance, from a set of
speakers. With closed-set speaker identification, the number of speakers in the set is fixed,
and the system must choose which among the given speakers is a match to the speaker of
the test utterance. Open-set speaker identification adds a layer of complexity by allowing
the test utterance to belong to a speaker not in the set of speakers for whom there is training
data available. A second type of task is speaker verification, which involves a hypothetical
target speaker match to the test speaker, and the system must determine whether or not the
test speaker identity is as claimed.

Regardless of which type of task, the problem may be further characterized as being text-
dependent or text-independent. In the text-dependent case, the train and test utterances
are required to be a specific word or set of words; the system can then exploit the knowledge
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of what is spoken in order to better make a decision. For the text-independent case, there is
no constraint on what is said in the speech utterances, allowing for generalization to a wider
variety of situations.

The dissertation work focuses on the text-independent speaker verification task. For each
target (or hypothesis) speaker and test utterance pair, the system must decide whether or not
the speaker identities are the same. In this case, two types of errors arise: false acceptance
(or false alarm) and false rejection (or missed detection). A false accept occurs when the
system incorrectly verifies an impostor test speaker as the target speaker. A false reject
occurs when the system fails to verify a true test speaker as the target speaker. A trial refers
to a target speaker and test utterance pair. In general, the training data of a target speaker
may include one or more samples of speech, of varying lengths, and the test data may also
include varying lengths of speech samples. For my purposes, the train and test utterances
will both be a single conversation side, which is typically 2.5-3 minutes of speech. Therefore,
a trial will correspond to a pair of train and test conversation sides. For each trial, the
corresponding score simply refers to the output of a speaker recognition system given that
train and test data. The score may or may not correspond to a likelihood. Furthermore,
in order to make a decision for a trial given its score, there must be a decision threshold;
then, the system will decide that it’s a true speaker trial if the score is above the decision
threshold, or decide that it’s an impostor trial if the score is below the decision threshold.

In general, speaker recognition errors may be caused by both extrinsic factors, such as
channel effects or noise, and intrinsic factors, such as age, sex, speaking style, or other
inherent speaker attributes. My focus is on the effects of intrinsic speaker characteristics.

In order to perform a speaker recognition task, a system must first parameterize the
speech in a meaningful way that will allow the system to distinguish and characterize speakers
and their speech; this step is addressed next in Section 2.2, which discusses some relevant
features commonly used in speech processing applications. A number of typical system
approaches and methods are then discussed in Section 2.3, while I describe commonly utilized
speech corpora and performance measures in Sections 2.4 and 2.5. In Section 2.6, I will
describe a variety of intrinsic factors that contribute to variations both within an individual
speaker and across different speakers, and consider the potential impacts of such speaker
characteristics, before concluding with an overview of relevant error analyses of speaker
recognition systems in Section 2.7.

2.2 Speech Features

The process of parameterizing a raw input, for example, speech, is referred to as feature
extraction. For speech processing, low-level features are those based directly on frames of
the speech signal, where frames correspond to a moving window, typically 25 ms long, with
a given step size of typically 10ms. A length of 25ms and step size of 10ms corresponds to
an overlap of 15ms between speech frames. High-level features, on the other hand, usually
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incorporate information from more than just one frame of speech, and include, for example,
speaker idiosyncrasies, prosodic patterns, pronunciation patterns, and word usage. The type
of low-level acoustic features most often used in speaker recognition tasks are Mel-frequency
cepstral coefficients, or MFCCs, which are described in Section 2.2.1. Section 2.2.2 provides
a brief introduction to other acoustic and prosodic features, such as formant frequencies.
Finally, Section 2.2.3 introduces various types of speech segments, which may be used to
calculate different types of features.

2.2.1 Cepstral Features

MFCCs are generated by the process shown in Figure 2.1. First, an optional pre-emphasis
filter is applied, to enhance the higher spectral frequencies and compensate for the unequal
perception of loudness at different frequencies. Next, the speech signal is windowed as
described above and the squared magnitude of the fast Fourier transform (FFT) is calculated
for each frame. A Mel-frequency triangular filter bank is then applied, where Mel refers to an
auditory scale based on pitch perception. There are different versions of the transformation
from linear frequency scale to Mel frequency. One example, taken from [57], is given by

fMel = 1127 · ln
(

1 +
flinear
700

)
(2.1)

A typical number of filters is 24 to 26. After the spectrum has been smoothed, the log is taken.
Finally, a discrete cosine transform (DCT) is applied to obtain the cepstral coefficients, cn:

cn =
K∑
k=1

Sk cos

[
n(k − 1

2
)
π

K

]
, n = 1, 2, . . . , L (2.2)

where Sk are the log-spectral vectors from the previous step, K is the total number of log-
spectral coefficients, and L is the number of coefficients to be kept (this is called the order
of the MFCCs), with L ≤ K.

Pre−emphasis

filter
Window FFT |  |

Speech

signal Filterbank

Mel−frequency
Log

Cepstral

coefficients
DCT2

Figure 2.1: Generation of MFCC features

In addition to using the MFCCs, it is common to include estimates of their first, second,
and possibly third derivatives as additional features. These are referred to as deltas, double-
deltas, and triple-deltas. The polynomial approximations of the first and second derivatives



CHAPTER 2. BACKGROUND 7

are as follows:

∆cm =

∑l
k=−l kcm+k∑l
k=−l|k|

∆∆cm =

∑l
k=−l k

2cm+k∑l
k=−l k

2

(2.3)

Furthermore, an energy term and/or its derivative can also be included in the feature pa-
rameterization.

Other commonly used cepstral features include linear-frequency cepstral coefficients (or
LFCCs), which use a linear rather than Mel-based frequency bank, as well as features based
on linear prediction, such as linear predictive coding coefficents (LPCCs) and perceptual
linear prediction features (PLPs).

2.2.2 Other Acoustic and Prosodic Features

Formant frequencies correspond to resonances of the vocal tract and can often be mea-
sured in spectrograms by amplitude peaks in the frequency spectrum. Vowels in particular
can be largely characterized by the first and second formants, though any voiced speech
segment will produce formants.

The fundamental frequency, or f0, is an acoustic property corresponding to the lowest
harmonic in the frequency spectrum. Pitch and fundamental frequency are often used in-
terchangeably as terms, though pitch is an auditory property that is perceived by human
listeners, who place sounds on a pitch scale ranging from low to high. The intonation of
speech is the pitch pattern. Jitter is a term to describe varying pitch in the voice. A related
feature is shimmer, which describes varying loudness in the voice.

Other commonly used prosodic features include energy distributions and dynamics, and
duration and timing information, such as speech rate or average duration of various speech
segments. Prosody will be revisited in more detail in Section 2.6.1.

2.2.3 Speech Segments

One concept that arises when considering higher-level features is that of speech segments.
The basic linguistic unit of speech is that of a phone, which corresponds to a vowel or conso-
nant speech sound that may be described in terms of articulatory movements and acoustic
properties. Phonemes are sounds that are used to differentiate words [42]. For instance, in
the words got and not, /g/ and /n/ are two different phonemes that lead to different mean-
ings. Phonemes may be pronounced in different ways, leading to different phones that are
all instances of the same phoneme; although there are differences in pronunciation of these
phones, their meaning does not change. In the remainder of this thesis, the term phone is
used to refer to phoneme.



CHAPTER 2. BACKGROUND 8

Going beyond the phone, segments may be defined as groups of phones or syllables, as
well as words, and sentences. All of these types of segments may be used as the basis for
calculating various types of features.

2.3 System Approaches and Methodologies

There are a number of statistical and discriminative-training based methods that have
been explored for the speaker recognition task. Two of the most successful modeling ap-
proaches that have been used are the Gaussian mixture model (GMM) and the support
vector machine (SVM), which are discussed here. Other techniques have utilized hidden
Markov models (HMMs), artificial neural networks such as multi-layer perceptrons (MLPs),
or vector quantization (VQ).

2.3.1 Gaussian Mixture Model (GMM)

The Gaussian mixture model is a powerful tool for modeling certain types of unknown
distributions effectively. The GMM uses a mixture of multivariate Gaussians to model the
probability density function of observed variables. That is, for a GMM with N Gaussians,
with variable x (n-dimensional), the probability density is given by

p(x|λ) =
N−1∑
i=0

πi N (x;µi,Σi) (2.4)

where πi are the mixture weights, which sum to 1, andN (x;µi,Σi) are Gaussian distributions
with mean vectors µi and covariance matrices Σi, specifically,

N (x;µi,Σi) =
1

(2π)n/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1i (x− µi)

)
(2.5)

The model parameters are denoted by λ = (πi, µi,Σi), for i = 0, . . . , N−1. The expectation-
maximization (EM) algorithm iteratively learns the model parameters from the data, which
are the observations. The covariance matrix is typically chosen to be diagonal, for improved
computational efficiency as well as better performance.

In the context of using features extracted from speech, each feature vector would corre-
spond to x in equation (2.4). Based on the assumption that speech frames are independent,
the individual frame probabilities can be multiplied to obtain the probability of a speech
utterance. That is, the probability of a speech segment X, composed of feature vectors
{x0, x1, ..., xM−1}, is given by

p(X|λ) =
M−1∏
j=0

N−1∑
i=0

πi N (xj;µi,Σi) (2.6)
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for a mixture of N Gaussians.
In a speaker recognition setting, there are several GMM approaches that can be taken.

Here, only the currently prevalent approach, referred to as UBM-GMM, is described. Two
GMM models are needed: one for the target speaker and one for the background model
[64]. Using training data from a large number of speakers, a speaker-independent universal
background model, or UBM, is generated. The UBM training data is a type of system-
level training data, which is chosen to be completely disjoint from the training data used to
train target models for a given set of trials. So that every target speaker model is in the
same space and can be compared to one another, the speaker-dependent models (using the
corresponding target speaker training data) are adapted from the UBM using maximum a
posteriori (MAP) adaptation. For a given test utterance X, and a given target speaker, a
log likelihood ratio (LLR) can then be calculated:

LLR(X) = log p (X|λtarget)− log p (X|λUBM) (2.7)

Comparing the LLR to a threshold, Θ, will determine the decision made about the test
speaker’s identity: if LLR(X) > Θ, the test speaker is identified as a true speaker match,
otherwise, the test speaker is determined to be an impostor. The LLR is the score for the
UBM-GMM system.

2.3.2 Support Vector Machine (SVM)

Support vector machines, or SVMs, are a supervised learning method that can be used
for pattern classification problems [11]. For binary classification, which is the task of interest
here, the SVM is a linear classifier that finds a separating hyperplane between data points
in each class. The SVM learns the maximum-margin hyperplane that will separate the
data, making it a maximum-margin classifier. The input can be transformed, possibly in
a nonlinear way, through the use of different kernel functions, allowing for more flexibility
and modeling power. With an SVM, the “model” for each target speaker is the defining
hyperplane, and instead of probabilities for data given a distribution, distances from the
hyperplane are used.

In mathematical terms, the SVM problem can be formulated as

min ‖w‖2 + C
∑
i

ξi

subject to yi(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n

(2.8)

where ξi are slack variables, xi are the training data points, yi are the corresponding class
labels (+1 or −1), C is a constant, and w and b are the hyperplane parameters. Essentially,
the goal is to find the hyperplane such that sign(w · xi − b) = yi, up to some soft margin
involving ξi.
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The SVM is used in speaker recognition by taking one or more positive examples of the
target speaker, as well as a set of negative examples of impostor speakers, and producing
a hyperplane decision boundary. Since there are far more impostor speaker examples than
target speaker examples, a weighting factor is typically used to make the target example(s)
count as much as all of the impostor examples. Once the hyperplane for a given target
speaker is known, the test speaker can be classified as belonging to either the target speaker
or impostor speaker class. Instead of a log likelihood ratio, a score can be produced by using
the distance of the test data from the hyperplane boundary.

2.3.3 A Brief Historical Overview of Types of Systems

Automatic speaker recognition systems can be categorized by the type of features they
use and by the type of statistical modeling tool that they use. Features may range from
low-level and short-term (based directly on the acoustics of the speech) to higher levels
incorporating longer lengths of time, including prosodic, lexical, or semantic. MFCCs are
an example of low-level, short-term features, while phone n-gram counts are higher-level,
longer-term features. The overview of systems provided here, while not exhaustive, covers a
variety of feature types and statistical learning methods, and is intended to give an idea of
a range of approaches that have proven successful. In some cases, although a system alone
may not have very good performance (compared to other systems), it may still be successful
by contributing in a system fusion.

One conventional approach that has already been described in Section 2.3 is the cepstral
GMM system [64, 61]. The cepstral SVM system utilizes a generalized linear discriminant
sequence kernel to train an SVM classifier on a sequence of input cepstral features [12].

Some methods attempt to combine the advantages of the generative modeling of GMMs
with the discriminative power of SVMs. One such approach is an SVM classifier that uses
GMM supervectors as features [14]. The supervectors are the concatenated mean vectors
from a GMM that has been MAP-adapted from a UBM to a speaker’s data, with the idea
that this mapping from an utterance into a high-dimensional supervector space is similar to
an SVM sequence kernel.

Another successful approach is the MLLR-SVM system, which uses maximum-likelihood
linear regression (MLLR) transforms from a speech recognition system as features for speaker
recognition [69, 68]. In the context of a speech recognition system, MLLR applies an affine
transform to the Gaussian mean vectors in order to map speaker-independent means to
speaker-dependent means. The coefficients from one of more of these MLLR adaptation
transforms are used in an SVM speaker recognition system with very good results.

One type of non-acoustic feature is the word n-gram, where n-gram can encompass uni-
grams, bigrams, and so forth. The motivation for using such a feature for speaker recognition
is that there are idiolectal differences among speakers, i.e., speakers vary in their word us-
age. Speaker-dependent unigram and bigram language models were first used in a target to
background likelihood ratio framework, with promising results [21].
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There are also phone-based approaches. Similar to the word n-gram modeling, the phone
n-gram system first used frequency counts of phone n-grams, where phones are found using a
phone recognizer, or possibly phone recognizers for multiple languages, in a likelihood ratio
framework [2]. The use of phonetic information was extended in a number of techniques,
including the use of binary trees [55], cross-stream modeling [30], and SVMs [13, 29]. An-
other example is a pronunciation modeling approach, where word-level automatic speech
recognition (ASR) phone streams are compared with open-loop phone streams [39].

Additional methods seek to take advantage of the speaker information present in words,
by using word-conditioning. A keyword HMM system trains background HMMs for a number
of keywords, and adapts them to speaker; a likelihood ratio between the background and
speaker models for each word are then calculated for a given test utterance, and the likelihood
ratios are combined to produce a final system score [6]. The word-conditioned phone n-gram
system considers phone n-grams only for a specific set of keywords [43].

A number of approaches have used prosodic features, including pitch and energy distri-
butions or dynamics [1], and prosodic statistics including duration and pitch related features
[59]. Nonuniform Extraction Region Features (NERFs) consider a number of features, in-
cluding maximum or mean pitch, duration patterns, and energy contours, for various regions
of speech, which are delimited by some sort of event, such as short pauses, long pauses, or
schwas [35].

2.3.4 Channel Compensation Techniques

One obvious component to a speech signal that is unrelated to the speech (or speaker)
itself is the channel on which the speech is recorded. Although most speech corpora have
been collected using the telephone, there are different types of handsets, including cellular,
and there has also been a recent collection of data using different types of microphones. The
biggest effect of having different types of channels present in the data occurs when there is a
channel mismatch between the training and test data. That is, if a system’s target speaker
model is trained using data from an electret telephone handset, for instance, but the test
speech was collected from a carbon-button telephone handset, it will “sound” different to the
system, even if the speaker is the same for both. In speaker recognition systems, the effects
of channel variation are typically addressed using normalizations, on the feature-level, the
model-level, or the score-level. Since various approaches are taken in different domains and
in varying ways, they often improve performance when applied on top of each other.

Historically, channel effects have been the dominating cause of errors in automatic speaker
recognition tasks. In early speaker recognition work, mismatch in the type of telephone
handset of train and test data caused error rates over four times as great as in the case of
matched handsets [62]. In the most recent 2010 NIST Speaker Recognition Evaluation, the
effects of channel mismatch still exist, but to a far lesser extent, with very low overall error
rates for the best systems, despite increased amounts of channel variability.
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Feature-level Normalizations

Cepstral mean subtraction (CMS) is a fairly simple technique that is applied at the
feature-level [3]. CMS subtracts the time average from the output cepstrum in order to pro-
duce a zero mean log cepstrum. That is, for a temporal sequence of each cepstral coefficient
cm,

ĉm(t) = cm(t)− 1

T

T∑
τ=1

cm(τ) (2.9)

The purpose of CMS is to remove the effects of the transmission channel, yielding improved
robustness. However, any non-linear channel effects will remain, as will any time-varying
linear channel effects. Furthermore, CMS can remove some of the speaker characteristics, as
the average cepstrum does contain speaker-specific information.

Another feature-level channel compensation method is feature mapping [63]. Feature
mapping aims to map features from different channels into the same channel-independent
feature space. A channel-independent root GMM is trained, and channel-dependent back-
ground GMMs are adapted from the root. Feature-mapping functions are obtained from the
model parameter changes between the channel-independent and channel-dependent mod-
els. The most likely channel is detected for the speaker data, which is then mapped to the
channel-independent space. Adaptation to target speaker models is done using mapped fea-
tures, and during verification, the mapped features of the test utterance are used for scoring.
The root GMM is used as the UBM for calculating the log likelihood ratios.

Within-class covariance normalization (WCCN) is a feature normalization technique for
SVM systems [28]. In this method, a generalized linear kernel is trained, using class label
information (i.e., a target or impostor speaker), in order to find orthonormal directions in
the feature space that maximize information relevant to the task. The weights of those
directions are optimized to minimize an upper bound on the error rate.

Model-level Normalizations

Speaker model synthesis (SMS) is a GMM model-based technique that utilizes channel-
dependent models [70]. Rather than having one speaker-independent UBM, the SMS ap-
proach begins with a channel- and gender-independent root model, and then uses Bayesian
adaptation to obtain channel- and gender-dependent background models. Channel-specific
target speaker models are also adapted from the appropriate background model, after the
gender and channel of the target speaker’s training data have been detected. Furthermore,
a transformation for each pair of channels is calculated using the channel-dependent back-
ground models; this transformation maps the weights, means, and variances of a channel a
model to the corresponding parameters of a channel b model. During testing, if the detected
channel of the test utterance matches the type of channel of the target speaker model, then
that speaker model and the appropriate channel-dependent background model are used to
calculate the LLR for that test utterance. On the other hand, if the detected channel of the
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test utterance is not a match to the target speaker model, then a new speaker model is syn-
thesized using the previously calculated transformation between the target and test channels.
Then, the synthesized model and the corresponding channel-dependent background model
are used to calculate the LLR for the test utterance.

Nuisance attribute projection (NAP) is another model-based technique, designed for use
in SVM systems [67]. This method aims to remove “nuisance” dimensions, that is, those
irrelevant to the task of speaker recognition, by projecting points in the expansion space of
the SVM onto a subspace designed to be more resistant to channel effects. A projection
matrix is created (using a training data set) in order to minimize the average cross-channel
distance, with a weight matrix which can be formulated to not only reduce cross-channel
distances, but also increase cross-speaker distances. This minimization problem reduces to
an eigenvalue problem, where the eigenvectors with the largest eigenvalues must be found.

Score-level Normalizations

Although it does not specifically address the channel variation problem, one type of
score-level normalization is zero normalization, or Z-norm [44]. In Z-norm, an impostor
score distribution is obtained by testing a speaker model against impostor speech utterances.
Then, the statistics of this speaker-dependent impostor distribution, namely the mean and
variance, are used to normalize the scores produced for that speaker. That is, for a test
utterance X, and a target speaker model T ,

SZN(X) =
S(X)− µimpostor(T )

σimpostor(T )
(2.10)

where SZN(X) is the normalized score, S(X) is the original score, and µimpostor(T ) and
σimpostor(T ) are the mean and standard deviation of the distribution of impostor scores for
target model T .

A variant of Z-norm is handset normalization, or H-norm, which aims to address the
issue of having different handsets for the training and testing data [62]. H-norm tries to
remove the handset dependent biases present in the scores produced, and it requires having
a handset detector to label the handset of the speech segments. For each speaker, handset-
dependent means and variations are determined for each type of handset (typically electret
and carbon-button) by generating scores for a set of impostor test utterances from each
handset type. Then, the score is normalized by the mean and standard deviation of the
distribution corresponding to the handset of the test utterance, as determined by the handset
detector. For test utterance X,

SHN(X) =
S(X)− µ(HS(X))

σ(HS(X))
(2.11)

where SHN(X) is the new score, S(X) is the original score, and HS(X) is the handset label
of X.
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The final normalization of interest is test normalization, or T-norm, which generates
scores for a test utterance against impostor models (in addition to the target model), in
order to estimate the impostor score distribution’s statistics [4]. T-norm is a test-dependent
normalization, since the same test utterance is used for testing and for generating normal-
ization parameter estimates. In mathematical terms,

STN(X) =
S(X)− µimpostor(X)

σimpostor(X)
(2.12)

where STN(X) is the normalized score, S(X) is the original score, and µimpostor(X) and
σimpostor(X) are the mean and standard deviation of the distribution of scores for test utter-
ance X against the set of impostor speaker models.

2.3.5 Current State-of-the-Art Systems

One current state-of-the-art approach utilizes joint factor analysis (JFA), which models
speaker and session variability in GMMs [38]. A target speaker GMM is adapted from a
UBM, and the speaker is represented by the means, covariance, and weights of the GMM.
JFA assumes that a speaker- and channel-dependent supervector can be decomposed into
the sum of a speaker supervector, s, and a channel supervector, c. Furthermore, the speaker
supervector is modelled as

s = m+Dz + V y,

where m is the speaker- and channel-independent supervector from the UBM, D is a di-
agonal matrix, V is a low-rank rectangular matrix, and y and z are independent normally
distributed random vectors, with components corresponding to the speaker and residual
factors, respectively. The channel-dependent supervector is modelled as

c = Ux,

where U is a low-rank rectangular matrix and x is a normally distributed vector whose
components corresponding to the channel factors. By estimating the speaker space matrix
V , the channel space matrix U , and the residual matrix D, the speaker, channel, and residual
factors can be calculated, and a score for a trial can be computed using a simple linear
product. A simplified version of factor analysis can also be applied to a UBM-GMM system,
using only the channel space matrix U , to do eigenchannel MAP adaptation [71, 48].

Another current approach that developed from JFA is the i-vector system [19]. In this
method, the total variability is modeled in a single matrix, rather than as separate speaker
and channels, i.e.,

s = m+ Tw

where T is the total variability matrix, and w is the i-vector (which stands for an intermediate
size vector). The matrix T is trained in a similar way as V is in the previous approach, and
i-vectors are extracted. Linear discriminant analysis (LDA) and WCCN are applied to the
i-vectors as channel compensation, and a score is produced using cosine distance scoring.
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2.4 Speech Corpora

There are a number of conversational speech corpora utilized for speaker verification
tasks. Older corpora include Switchboard-1, Switchboard-2, and Fisher [45, 46, 17]. They
contain speech data collected from telephone conversations between pairs of speakers; these
conversations are typically around 5 minutes in length, so that each conversation side (i.e.,
the side of the conversation corresponding to one speaker) is roughly 2.5 minutes in length.
In addition to landline telephone data, there is a cellular telephone data set of Switchboard-2.

The National Institute of Standards and Technology (NIST) has coordinated Speaker
Recognition Evaluations since 1997, and there are multiple corpora available from these
evaluations; the most commonly used data sets correspond to the NIST 2004, 2005, 2006,
2008, and 2010 Speaker Recognition Evaluations (SREs) [50, 51, 52, 53, 54]. The evaluation
data is taken from various stages of the larger Mixer collection [15, 16]. Each of the afore-
mentioned SRE data sets include conversational telephone speech. Conversational speech
recorded on a variety of microphones was included starting in SRE05. SRE08 introduced
a different style of speech, specifically that of an interview; in these cases, most speech be-
longs to the interviewee, though some interviewer speech may be present. I will refer to
each speech sample or utterance, whether obtained from a conversation or an interview, as
a conversation side.

2.5 Performance Measures for the Speaker Verification

Task

The NIST Speaker Recognition Evaluations use two performance measures for speaker
recognition systems, namely the detection cost function (DCF) and the equal error rate
(EER). As mentioned previously, there are two types of errors that occur in speaker verifi-
cation tasks: false acceptances, or false alarms, in which an impostor speaker is incorrectly
verified as the target, and false rejections, or misses, in which a true speaker is rejected as the
target. For every decision threshold, there will be false alarm and miss rates that indicate
the probability of each type of error occurring.

The DCF is defined as a weighted sum of the miss and false alarm error probabilities:

DCF = CMiss × PMiss|Target × PTarget + CFalseAlarm × PFalseAlarm|NonTarget × (1− PTarget) (2.13)

In Equation (2.13), CMiss and CFalseAlarm are the relative costs of detection errors, and
PTarget is the a priori probability of the specified target speaker. I will use the values from
SRE08, namely, CMiss = 10, CFalseAlarm = 1, and PTarget = 0.01. When DCF is given here, it
refers to the minimum possible DCF, i.e., to a cost that has been minimized over possible
values of the decision threshold. The equal error rate (EER) is simply the rate at which false
alarm and miss probabilities are equal.
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The minimum DCF and EER capture only two possible operating points for a system.
In order get a better sense for how good a system is overall, there are detection error tradeoff
(DET) plots, which plot the false alarm rate against the miss rate over the entire range of
decision thresholds [47]. By using a logarithmic scale, a receiver operating characteristic
(ROC) curve becomes a line. The better the system, the closer the DET curve will be to
the lower left of the plot (i.e., smaller error rates).

2.6 Intrinsic Speaker Qualities

In general, a speech sample is affected by both intrinsic and extrinsic factors, where
extrinsic factors include noise, room acoustics, and channel effects. Since the focus of my
dissertation work is on intrinsic speaker characteristics, I now discuss a variety of issues
and concepts relevant to a discussion of inherent speaker qualities. A brief overview of
some of the major sources of variation within and among speakers is given in Section 2.6.1,
including physical attributes, accent or dialect, prosody, and emotion. Additionally, in
order to further explore the inherent difficulties of a speaker recognition task, the concept
of the distinctiveness or recognizability of a speaker is covered in Section 2.6.2, along with
various studies in which human listening has been applied to a speaker-related task. Finally,
Section 2.6.3 presents work that deals with voice modifications attempted in order to fool
an automatic speaker recognition system, as these studies are indicative of the effects that
varying speaker characteristics can have.

2.6.1 Sources of Speaker Variation

Physical Attributes

At the most basic level, a person’s voice is characterized by his vocal apparatus. The
length of the vocal tract, the size of the vocal folds in the larynx, the size and shape of
the nasal cavity, and other anatomical features all contribute to the acoustic properties of
a person’s speech, affecting formant frequencies of vowels, average pitch, pitch range, and
qualities such as breathiness and nasality [20]. While an individual has a certain amount of
control over the frequency characteristics of his speech and can speak outside of his typical
range of everyday speech frequencies, the effects of other physical attributes, such as the size
and shape of the nasal cavity, cannot be manipulated.

A person’s voice will also be affected by his age and health. Physical changes that occur
as a child grows into an adult are the most obvious example of aging effects, especially for
male voices. However, the voice quality also changes as an adult grows older. Examination
of voice spectrograms for a set of subjects over a period of years showed that the frequency
of the point of concentration of formants and the mean pitch frequency decreased with
increasing age, and the individual distribution curves of mean pitch frequency became more
narrow, i.e., the ability to vary fundamental frequency was lost in the aging process [23].
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Furthermore, a person’s health will impact the way his voice sounds; for instance, a cold
may make the voice hoarse or more nasal.

Language, Dialect, and Accent

The language choice of a speaker is another source of speaker individuality. In the case
of multi-lingual speakers, their native language will typically influence the way they produce
the speech sounds of other languages, giving rise to a foreign accent.

Furthermore, word and phone pronunciation can vary widely, even within the same lan-
guage, leading to accents among native speakers. There are many accents in English, for
instance: not only are there British, American, and Australian accents, but there are local
regional accents within each of those groups.

In addition to different accents, languages often include different dialects, which may
vary in the usage of certain words or grammatical forms, as well as word pronunciations.
Variations in dialect may reflect geographical, age, socio-economic, or educational differences
between speakers.

Variability in Speech Production and Prosody

Humans are able to listen to speech and identify the words and phones that are spoken.
However, the same word or phone may be produced in varying ways. Speakers will differ
in the precise ways of articulating a sound, as well as the degree of coarticulation between
consecutive sounds. Speech rate, often measured by the number of words or phones per
second, is another characteristic that will vary from speaker to speaker.

In linguistics, prosody refers to various acoustic properties of speech that can convey
additional information about the utterance or speaker. Types of prosodic information include
loudness, pitch, tone, intonation, rhythm, and lexical stress. Variations in prosody may
indicate things such as sarcasm, speaker emotion, emphasis, or whether an utterance is a
statement or a question. Furthermore, prosody is suprasegmental, meaning that prosodic
features are not limited to any one segment, but occur at a higher level, across multiple
segments.

The concept of speech rhythm involves a number of timing parameters, including the
tempo, pauses, and various durational patterns, which may for example, be measured as the
mean and standard deviation of word or phone lengths. The prosodic tendencies of a given
speaker help to define his speaking style. Additional lexical information such as word usage,
and the relative frequency of disfluency classes (including pause-fillers, discourse markers,
or backchannel expressions) can also contribute to a speaker’s individual speaking style. As
described in Section 2.3.3, several of the higher-level systems for speaker recognition attempt
to capture such individual variations in order to differentiate between speakers.



CHAPTER 2. BACKGROUND 18

Emotion

The emotional state of a speaker can also impact the characteristics of his speech. A
number of acoustic parameters can be involved in conveying an emotion: the level, range
and contour of the fundamental frequency (perceived as pitch); the vocal energy or ampli-
tude (perceived as voice intensity); the energy distribution across the frequency spectrum
(perceived in voice quality or timbre); formant location (related to articulation perception);
and a number of timing parameters, such as tempo and pauses [5].

As an example, joy typically manifests in speech as increases in the mean, range, and
variability of fundamental frequency, along with an increase in mean energy. Joy may also
cause a higher rate of articulation.

2.6.2 Speaker Recognizability or Inherent Challenges

A concept that is related to inherent speaker characteristics is the recognizability of a
person’s voice. One human listening experiment asked subjects to rate the distinctiveness
of different speakers, in terms of a seven point scale describing how easy or hard the voice
would be to remember [40]. An error analysis of a speaker recognition system that will be
discussed in Section 2.7 also attempted to find speakers who were hard for the system to
recognize. Though the results of human listening tasks may not always correspond to results
obtained by automatic systems, they provide insight into the nature of challenges inherent
to speaker recognition tasks.

Speaker verification by human listeners was compared to machine performance using
NIST 1998 Speaker Recognition Evaluation data [65]. The human task was designed to em-
ulate the paradigm of the NIST evaluation as closely as possible, though human constraints
due to memory and fatigue imposed a limit on both the number of the trials as well as the
length of speech samples. Listeners were asked to make a same or different speaker dis-
crimination with confidence ratings (10 levels). Results showed that human listening, when
individual decisions were combined, was comparable to or even better than typical computer
algorithms, especially in the case of mismatched train and test handsets.

Recently, the 2010 NIST Speaker Recognition Evaluation included a human assisted
speaker recognition task [27]. Participating sites evaluated a subset of trials, selected to
be difficult, using any human assisted technique, including listening and examination of
spectrograms or other features. The decision could be based on a group of humans, with no
restriction on the use of experts or naive listeners. Analysis of results showed that this was
largely a challenging task for humans, with fairly high error rates on many of the selected
trials. For these difficult trials, automatic systems performed better than humans.

A study of voice identification by human listeners, relating to the reliability of the tes-
timony of an earwitness (in a legal setting), examined a variety of issues, including familiar
versus unfamiliar voices, the reliability or accuracy of voice identification, reliability as a func-
tion of time, and reliability as a function of whether or not the listener is trying to remember
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the voice [18]. Examination of various studies yielded a number of conclusions. First, the
length of the heard speech does not seem to have too great of an effect. Voice disguise and
even unintentional changes in tone were found to greatly reduce identification accuracy, even
under ideal conditions. When comparing incidentally and intentionally memorized voices,
there was little evidence that voice identifications by witnesses who were unprepared or had
little time to initiate efficent encoding strategies would be reliable. In terms of delay between
the time of hearing the initial speech and making a voice identification, the greater the delay,
the greater the likelihood of error and unreliability. Examination of the relationship between
witness accuracy and confidence level showed promising, but inconclusive results.

2.6.3 Voice Modifications

As mentioned in Section 2.6.1, speakers can manipulate their voices in certain ways, even
if they cannot change certain physical attributes, like vocal tract lengths or the size and
shape of their nasal cavities. Changes in a speaker’s voice, intentional or not, can impact
speaker recognition performance.

One early study examined the effects of voice disguise and voice imitation on spectro-
grams [23]. For voice disguise, subjects kept the speech content the same across samples,
but were allowed to differ from their normal voice in terms of pitch frequency, rate of artic-
ulation, pronunciation, and dialect. Comparison of the formant positions indicated that the
formants could be shifted higher or lower than the normal voice, though the first formant
was comparatively stable. In terms of voice imitation, the imitator was able to vary his
mean fundamental frequency considerably in order to be more similar to a target, though
he was generally unable to precisely match the formants or instantaneous fundamental fre-
quencies of the speaker being imitated. It makes sense that the imitator could successfully
change his overall average fundamental frequency , even if precise instantaneous fundamental
frequencies could not be matched, given that the imitator is changing his voice according
to his memory of perceived pitch of the target speaker (which may not match the actual
instantaneous values). Similarly, although formant frequencies can potentially be changed, a
speaker has certain habits of articulating speech sounds (leading to certain formant frequen-
cies) that are often difficult to manipulate consciously over a continuous speech utterance.
The imitator was largely successful in imitating the speech melody of a given target.

A later study examining mimicry also aimed to determine how closely an impersonator
could match certain acoustic parameters of his speech to those of speech from the target
figure [24]. The professional impersonation artist was given three excerpts of speech from
well-known figures and asked to imitate these speakers as closely as possible, in terms of voice
quality, speech style, and speech rate. A comparative recording of the same speech material
was made with the artist using his natural voice and speaking style in order to find the extent
to which the artist had to change his voice. The impersonator was able to successfully change
his global speech rate, though he had less control over more local articulatory timing. Global
fundamental frequency was also successfully matched by the impersonator, who was able to
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both increase and decrease his mean fundamental frequency (by 15-30 Hz) in order to do
so. The impersonator had varying degrees in success at matching the first three formant
frequencies of his speech to the targets.

There have also been a number of studies exploring the effects of voice modification on
an automatic speaker recognition system. The effects of intentional voice alterations (such
as changing pitch or adopting an accent) were tested both for human listening experiments
as well as for automatic speaker recognition system performance [36]. The speech was col-
lected from normal subjects (that is, people who are not professional or expert mimics), in a
setting that simulated a telephone conversation. Speakers were asked to disguise their voice
in a variety of ways, including changing pitch, changing duration, and mimicking an accent.
Automatic speaker recognition performance using a cepstral UBM-GMM system was evalu-
ated for two conditions: training and test data from normal voice; and training from normal
voice and testing from disguised voice. The normal-normal condition produced an EER of
almost 0%, while the normal-disguised condition had an EER of 7.5%. However, using the
decision threshold from the normal-normal system on the normal-disguised trials yielded an
increase in false rejection rate from 7% to 40%, suggesting that systems are vulnerable to
intentional voice disguises. A human listening experiment asked subjects to listen to two
samples of about 5 seconds of speech and decide whether the utterances were spoken by the
same speaker; if unsure, listeners could hear additional 5 second speech utterances, up to
a limit of 20 seconds, when they had to make a final decision. The results indicated that
in the normal-normal condition, automatic performance was similar to the lower quartile
of human performance, though the automatic performance was better than humans in the
normal-disguised case.

Another study investigated the effects of a transfer function-based voice transformation
on automatic speaker recognition performance [8]. In the source-filter model of speech pro-
duction, speech is modeled as a convolution of a sound source (i.e., the vocal cords) and a
linear acoustic filter (i.e., the vocal tract). In the spectral domain, a speech signal X is then
given by X(f) = H(f)S(f), where S(f) is the Fourier transform of the source signal and
H(f) is the transfer function corresponding to the filter characteristics of a speaker, where
transfer function refers to the mapping of input to output in the frequency domain for a
linear time-invariant system (such as a filter). Given knowledge of the speaker recognition
method, the voices of impostors were modified to target a specific speaker. By transforming
the impostor speech in such a way as to match the transfer function of a targeted speaker,
they were able to increase the false alarm rate of the system from less than 1% to 97%, when
using the targeted speaker’s training utterance, and to 50% when using a different utterance
of the targeted speaker. A previous study also tested computer voice-altered impostors, us-
ing a speech synthesis algorithm to model the spectral characteristics of a target voice [58].
In this case, the false acceptance rate increased from 1.5% to 86%.
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2.7 Speaker Recognition Error Analysis

2.7.1 A Speaker Menagerie

One of the inspirations for this thesis is the work of Doddington et al., who classified
speakers in groups according to the types of speaker recognition errors they cause [22]. There
are 4 types of speakers defined: “goats,” speakers who cause a large number of false rejections
as a target speaker; “lambs,” speakers who cause a large number of false accepts as a target;
“wolves,” speakers who cause a large number of false accepts as an impostor test speaker;
and “sheep,” the default type of speaker. Through the use of statistical tests, the presence
of goats, lambs, and wolves was shown for a UBM-GMM system using data from NIST’s
1998 Speaker Recognition Evaluation, for female speakers only.

The score for each trial of target-test pairs was considered a function of the test speaker
index j and the model speaker index k. Thus, a score probability density function for a given
test speaker (j) and model speaker (k) would be fs (•|j, k). By asserting the null hypothesis
that there are no speaker differences, the existence of goats, lambs, and wolves could be
shown by considering different score distributions and disproving the null hypothesis. For
the case of goats, the density function need only include the case where j = k, in which the
density should not depend on k if goats do not exist; that is, without goats, the distribution of
true speaker scores should be the same for each true speaker. For lambs and wolves analysis,
the case of interest is j 6= k, in which the density should not depend on k if lambs do not
exist, and should not depend on j if wolves do not exist. That is, if there are no lambs, the
distribution of impostor scores should be the same regardless of the model speaker, while if
there are no wolves, then the distribution of impostor scores should be the same regardless
of test speaker.

For goats, analysis comprised computing means and variances for the sets of scores belong-
ing to the same true speaker, and then determining if the means and variances depend on the
speaker. Under the assumption that the means and variances do not depend on the speaker,
only 5% of the true speaker score means should lie outside the 2.5 and 97.5 percentiles of the
hypothetical speaker-independent underlying score distribution with appropriate mean and
variance; if this does not hold true, then the speakers below the hypothetical 2.5 percentile
can be categorized as goats. The results showed that there were, in fact, more outliers than
could be accounted for by a single speaker-independent distribution.

For lambs, graphical analysis involved plotting the maximum impostor score for a model
speaker against each true speaker score for that model speaker. Although this plot did not
indicate any lamb sub-population of models in this analysis, the models with high maximum
impostor score may be considered lamb-like.

For wolves, after computing the maximum impostor score for each test utterance, then
the means and variances of sets of maximum impostor scores for the same test speaker can be
calculated. As with the distribution considered in the goat speaker analysis, the means are
compared with the 2.5 and 97.5 percentiles of a hypothetical speaker-independent underlying
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score distribution; if more than 5% of the means lie outside these hypothetical percentiles,
then there is a speaker dependence, and the test speakers with means above the hypothetical
97.5 percentile may be considered wolves. Once again, there were more outliers than could
be accounted for by a single distribution, indicating the existence of wolf-ish speakers.

Furthermore, the F-test, Kruskal-Wallis test, and Durbin test were used to reject the
null hypotheses at the 0.01 significance levels for goats, lambs, and wolves. The F-test is a
one-way analysis of variance test used to determine statistically whether there is a speaker
effect. The F-test was applied to test for potential goats by using all true speaker scores
for each speaker, while it tested for potential lambs and wolves by first averaging the scores
corresponding to the same model-test speaker pair (over all test utterances), and then using
all impostor trials for the model speakers (in the lamb case) or test speakers (in the wolf
case). The Kruskal-Wallis test is also a one-way analysis of variance, but it is non-parametric
and uses ranks. For speakers with at least 5 true speaker trials, all the true speaker scores
were used (goats). As with the F-test, the impostor scores were averaged for each model-test
speaker pair before the test is applied (for lambs and wolves). Ranks are assigned to all of
the mean scores, and ranks are summed for each speaker. Finally, the Durbin test is a two-
way analysis of variance by ranks test, and was applied only to impostor scores (for lambs
and wolves testing), for which the data could be viewed as conditioned on the two different
speakers (i.e., the model and test speakers for each impostor score). As with the previous
tests, impostor scores were first averaged across test utterances, and then the Durbin test
assigned ranks to the averaged scores. The ranks were then summed for each test or model
speaker, corresponding to the lamb or wolf test, respectively.

Using the rank sums from the Durbin test, a mild correlation of about 0.26 was found to
exist between lambs and wolves. There were no correlations found between goats and either
lambs or wolves. Furthermore, the speakers were ranked according to how goat-like they
were (using the Kruskal-Wallis test) and to how wolf-like and lamb-like they were (using the
Durbin test). Then, a cumulative distribution of errors for the rank ordered speakers showed
that the 25% most goat-like speakers contributed 75% of the false rejection errors, though
false alarm errors were more evenly distributed across speakers.

2.7.2 Related Work

Poh et al. extended the work of Doddington et al. by developing a user-specific score
normalization (referred to as F-norm’s variant) in order to address “badly behaved” users
of the system, i.e., those users who degrade system performance [60]. Furthermore, for a
multimodal biometrics context, Poh et al. developed a fusion technique that decides whether
or not to fuse the output of several systems on a per user basis.

For a closed set speaker identification task, Jin and Waibel implemented a “naive de-
lambing method” in order to reduce the effects of speakers who were likely to be identified
as another speaker [31]. In the context of a vector quantization (VQ) based technique, in
which codebooks are trained for each speaker, Jin and Waibel found that the closest match
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in cross-validation testing for some speakers was not the correct speaker himself, and thus
developed a method for modifying the codebooks in such cases. Additionally, to further
reduce the effects of lamb-like speakers, these lamb speakers were located in the set (using
cross-validation testing), and a threshold was set for each lamb speaker’s belief heuristic
value, so that identification as that lamb speaker could occur only if the score was above the
belief heuristic.

2.7.3 Session Variability

Beyond considering the effects of different types of speakers, there has also been work
investigating the impact that the particular training and test utterances used have on system
performance [34]. A UBM-GMM system with factor analysis on male telephone data from the
2008 NIST Speaker Recognition Evaluation was first analysed with respect to performance
dependence on the target speaker, focusing on the lambs and wolves of the aforementioned
Doddington menagerie. Results showed an uneven distribution of false alarm errors, with
26% of the speakers causing 50% of the errors, and the 6% worst speakers accounting for
17% of the errors. The distribution of false rejection errors was also uneven, with 8% of the
target speakers causing 50% of the false rejection errors, and 25% of these errors were due
to 6% of the speakers.

The study also investigated the effect of the training sample used for each target speaker.
Baseline performance corresponded to the training segment selected in the NIST evaluation.
The best and worst training utterances were also defined for each speaker by finding the
utterance that minimized or maximized the sum of false acceptance and false rejection rates,
respectively. The baseline NIST performance had an EER of 12.1%, while using the best
training data yielded an EER of 4.1% and using the worst training data generated an EER
of 21.9%. The variability in performance demonstrated that the choice of training segment
can have a significant impact.

Additional work investigated possible causes for the variable performance [33]. In partic-
ular, using data from NIST SRE08 as well as a French database of controlled read speech,
BREF 120, the dependence of performance on training session was further analyzed. When
switching the train and test segments of the sets used in the aforementioned work on SRE08,
they found that the ranking of performance remained the same. That is, the inverted case
corresponding to the original worst training segments (which become test segments in the
inversion) still had the highest EER (17%) and the inverted case corresponding to the orig-
inal best training segments (which are test segments in the inversion) had the lowest EER
(7.4%), with the inverted NIST set performing in between the two (at 13.5%). However, the
differences in performance were smaller than in the original case, suggesting that the choice
of training excerpts have a greater effect than the choice of testing excerpts.

Analysis of system performance on the BREF 120 database for both male and female
speakers also showed a range of performance between choosing the best training utterances
and the worst, with random selection of training segments yielding performance in between
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the best and the worst. The distribution of phonetic content between different training
excerpts was examined as a possible contributing cause for the difference in performance.
However, the results of MANOVA indicated that the phonetic distribution across the sets
did not differ significantly for either female or male speakers, nor did the number of selected
frames. A MANOVA testing differences across the acoustic features, in particular linear
frequency cepstral coefficients (LFCCs), delta LFCCs and, delta-delta LFCCs did show some
significant differences in the case of LFCCs and delta LFCCs.
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Chapter 3

Speaker-Dependent System
Performance

The first component of this thesis work is to establish the effects that inherent speaker
qualities have on automatic speaker recognition system performance. To this end, I analyze
scores from a GMM-UBM system, as well as UBM-GMM system with simplified factor
analysis, in several ways. I begin with a small subset of data with limited channel variability,
and gradually extend this to further exploration.

3.1 Preliminary UBM-GMM System Analysis

3.1.1 System and Data

The corpus under investigation in the following analysis is Switchboard-1 [45]. This
corpus of conversational telephone speech, which has roughly 2.5 minutes of speech per
conversation side, was chosen for several reasons. First, there is less channel variability than
in more recently collected corpora. This is desirable for my analysis because my focus is on
intrinsic speaker effects, rather than extrinsic factors like channel. Second, there is a variety
of information available for the speakers, including age, education level, and dialect area.

In order to further control for channel effects, I consider only those conversation sides
with electret handset labels (as determined by SRI’s automatic handset labeler). This results
in 3429 conversation sides from 407 speakers, of whom 199 are female and 208 are male. For
my analysis, I obtain the full set of one conversation side training and testing scores, i.e.,
training on each conversation side, and testing every model against every conversation side,
for a total of 11,754,612 trials (not including the trials where the train and test conversation
sides are the same). Of these, 38,676 are target trials.

The automatic speaker recognition system used for this data is a basic cepstral gender-
independent UBM-GMM. Specifically, the input features are 12th order MFCCs plus energy,
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with deltas and double-deltas, with CMS applied. There are 1024 Gaussian mixtures, and
the UBM is trained using a small set of 286 conversation sides from the Fisher corpus
[17], a conversational speech corpus collected on the telephone. This set was chosen to be
balanced in terms of sex and handset type. The conversations are about 5 minutes in length,
so each conversation side contains roughly 2.5 minutes. I use SRI’s UBM-GMM system
implementation [37].

For additional channel compensation, I apply T-norm to this UBM-GMM system, using
conversation sides from Fisher and Switchboard-1 (separate from conversation sides used for
the aforementioned Switchboard-1 experimental set) as the impostor cohort. There are 327
impostor models in total, 163 female and 164 male.

3.1.2 Speaker Subset

Due to the large number of trials in this experiment, it is not feasible to visualize all
of the scores at once. However, it is informative to consider a confusion matrix in order to
see how the system scores vary depending on the speaker(s). Thus, limiting the speakers to
those with 10 electret conversation sides, I obtain a set of scores for 15 male speakers and 19
female speakers, with a total of 340 conversation sides. A plot of the scores for these speakers
is shown in Figure 3.1 for the UBM-GMM system without T-norm applied. The blocks of
10 conversation sides are labeled according to speaker number. The first 15 speakers are
male, and the last 19 are female (labels 16-34). Thus, the target trials correspond to 10x10
blocks along the diagonal, with impostor trials elsewhere. The lower left and upper right
quadrants are same-sex trials (male and female, respectively), while the upper left and lower
right quadrants correspond to mixed-sex trials. The male only and female only quadrants
are shown in Figures 3.2 and 3.3 for closer examination.

One thing to notice is the variation among target trial scores. Different speakers vary in
the degree to which their target trials produce high scores. For instance, male speaker 14
and female speaker 29 tend to have higher target trial scores, while female speaker 33 tends
to have lower target scores. Furthermore, speakers vary in the degree of consistency across
their target scores. While some speakers appear to have fairly similar scores across all target
trials, e.g. male speaker 3 and female speaker 16, others have much more variation in the
range of target scores, e.g. male speaker 13 and female speaker 20.

In terms of impostor trials, it is also clear that scores are more confusable for certain
speaker pairs, such as male speakers 3 and 5 or female speakers 19 and 29, and less confusable
for other speaker pairs, such as male speakers 5 and 13 or female speakers 16 and 20.
Additionally, we can observe tendencies across the same speaker to produce higher or lower
scores as the impostor model or test segment. Those speakers with higher scores as the target
model (column blocks) are potential lambs, while those speakers with higher scores as the
test segment speaker (row blocks) are potential wolves. Another observation of note is that
some higher scores are even produced for mixed-sex trials, such as those for male speaker
8. Finally, it is apparent that scores are not symmetric, indicating that for the UBM-GMM
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Figure 3.1: Score confusion matrix for 34 Switchboard-1 speakers with 10 electret conversation
sides each.
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Figure 3.2: Score confusion matrix for 15 male speakers with 10 electret conversation sides
each.
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Figure 3.3: Score confusion matrix for 19 female speakers with 10 electret conversation sides
each.



CHAPTER 3. SPEAKER-DEPENDENT SYSTEM PERFORMANCE 30

system, there is a dependence which conversation is used to train the target model.
To further get a sense of speaker behavior, I average the scores in various ways. First,

consider on the true speaker trials. For each target model (of each speaker), I average the
true speaker scores over the nine such trials for that target model. A plot of these averages
is shown across all male and all female speakers, in Figures 3.4 and 3.5, respectively. Male
speaker 14 has high average true speaker scores (an observation consistent with the notes
from the confusion matrix plot), while male speakers 9 and 10 tend to have average true
speaker scores on the lower end of the range. Similarly, female speakers 21 and 29 have higher
average target scores and female speaker 33 has lower averages; again, such observations are
consistent with those made from examination of the plot of the confusion matrix, though
Figures 3.4 and 3.5 are better able to give a sense of the relative performance of speakers as
true targets. It is interesting to consider the differences between averages for different target
models corresponding to the same speaker. In certain cases, there are outlier target models,
whose average true speaker scores are much lower than the rest, as with male speakers 2
and 13 and female speakers 20 and 24. Female speaker 22 appears to have two sets of target
models, which cluster among relatively higher or lower average true speaker scores. Male
speaker 3 and female speakers 19 and 23 appear to be the most consistent across target
models. Clearly, the degree of consistency across true speaker trial scores is a factor in
how difficult it is for a system to make a correct decision about whether the train and test
speakers are the same.

Next, for a given target speaker, I average the impostor speaker scores for every test
segment over all the target models of the given speaker. To begin, Figure 3.6 shows these
average impostor scores for four of the male speakers. The plots in the figure contain clus-
ters of points denoted by a symbol+color combination. Each symbol+color combination
designates one particular (impostor) test speaker, and each point with that symbol+color
combination corresponds to one conversation side of that test speaker. The value at each
point is the average score for the given impostor conversation side, averaged over all models
of the target speaker (who is the constant across all points). If the average impostor scores
are typically on the high end of the range over all impostor speakers, this suggests the target
speaker in question has lamb-ish tendencies, i.e., a tendency to produce high impostor scores
as the target model.

Among the male target speakers, male speakers 1 and 3 have a lot of variation across the
average scores for different test segments of the same impostor speaker. Speaker 3 appears
to have more lamb-ish qualities, with higher average impostor scores across several impostor
speakers. On the other hand, speakers 8 and 15 appear to have greater consistency in average
scores across test segments of the same impostor speaker. Speaker 15 is the least lamb-ish,
with fairly low average impostor scores over all impostor speakers. In many instances, the
target speakers produce average impostor scores that vary across impostor speakers.

Figure 3.7 shows similar plots of average impostor scores for four of the female speakers.
Examination of the female speaker plots indicates the most lamb-ish tendencies for speaker
18, and the least lamb-ish for speaker 20. Female speaker 18 shows a great deal of variation
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Figure 3.4: Average true speaker score for each male target model.



CHAPTER 3. SPEAKER-DEPENDENT SYSTEM PERFORMANCE 32

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Female speaker number

A
ve

ra
ge

 tr
ue

 s
pe

ak
er

 s
co

re
 (

pe
r 

ta
rg

et
 m

od
el

)

Distribution of female average true speaker scores

Figure 3.5: Average true speaker score for each female target model.
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Figure 3.6: Average scores for each impostor test segment, averaged over all target models
of male speakers 1, 3, 8, and 15. Each color+symbol combination designates a particular
(impostor) test speaker, whose corresponding speaker number is labeled on the abscissa. Each
individual point within a color+symbol combination corresponds to a particular test utterance
of that test speaker.
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in average scores across impostor speakers, and impostor test segments of the same speaker.
In contrast, female speaker 33 (and to a lesser extent speaker 20) shows very similar average
scores across most of the impostor speakers.

These plots clearly show different types of score distributions depending on the speaker.
While some speakers produce low impostor scores and high target scores, making them less
likely to cause errors given a threshold, other speakers have tendencies towards high impostor
scores, or a wide range of target scores, making them more likely to produce false alarms or
false rejections. Furthermore, differences have been observed not only at the speaker level,
but also at the level of train and test conversation sides.

3.1.3 All Electret Trials

In order to see and analyze more speaker data, I extend the data to include all speakers,
and all trials with conversation sides labeled as electret, using scores from the UBM-GMM
system with T-norm. Again, the aim of such analysis is to gain better understanding of the
different types of speaker behavior.

Some interesting scatter plots are shown below for female speakers. Figure 3.8 shows the
average impostor score for each impostor speaker (averaged over all targets) versus the av-
erage impostor score for each target speaker (averaged over all impostors); these values have
a correlation coefficient ρ = 0.598, implying that lambs (target speakers with high impostor
scores) also have a tendency to be wolves (test speakers with high impostor scores). This cor-
relation is reasonable since the same speaker pairs are used in the trials for calculating both
impostor score averages; the only difference between the averages is whether the constant
speaker is the target or the impostor. Furthermore, if false acceptance errors are caused by
“average” speakers being confusable, then it makes sense that an “average” speaker would
be confusable with other speakers, both as the target and as the test.

Figure 3.9 shows the average impostor score versus the average target score for speakers
as the target speaker. With a correlation coefficient of ρ = −0.485, the implication is that
goats (speakers with low target scores) also have a possibility of being lambs (target speakers
with high impostor scores).

The same plots are shown for male speakers in Figures 3.10 and 3.11.
In the first plot, showing average impostor score as the test versus average impostor score

as the target, there is an even higher correlation of ρ = 0.682, again suggesting that lamb-ish
and wolf-ish behavior are related.

The second plot, showing average impostor score versus average target score as the target
speaker, yields a smaller correlation in the male case, with ρ = −0.277, though it is still
negative. There is less evidence to suggest that goats may have a tendency to also be
lambs. It is possible that the correlations in these plots may be due to other factors, such as
differing numbers of target and impostor trials per speaker, or poor audio quality for some
conversation sides.
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Figure 3.7: Average scores for each impostor test segment, averaged over all target models
of female speakers 3, 5, 6, and 18. Each color+symbol combination designates a particular
(impostor) test speaker, whose corresponding speaker number is labeled on the abscissa. Each
individual point within a color+symbol combination corresponds to a particular test utterance
of that test speaker.
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Figure 3.8: Average impostor score for speaker as the impostor versus average impostor score
for speaker as the target, for female speakers.
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Figure 3.9: Average impostor score versus average target score for female target speakers.
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Figure 3.10: Average impostor score for speaker as the impostor versus average impostor
score for speaker as the target, for male speakers.
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Figure 3.11: Average impostor score versus average target score for male target speakers.
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Next, I consider a number of plots focusing on showing evidence of goat-, lamb-, and
wolf-type speaker populations, similar to those shown in the prior work of Doddington, et al.
[22]. The first plot, addressing goat-like tendencies, that is, causing missed detection errors
in true speaker trials, is shown in Figures 3.12 and 3.13 for males and females, respectively.
Here, the average true speaker score is plotted against the number of true speaker trials for
each speaker. In these plots a large amount of outlying average target scores would indicate
greater variability across speakers. However, it is not clear in either plot that there are
more outliers than would be expected if the target score distribution did not depend on the
speaker, though there appear to be a handful of goat-ish speakers among females with fewer
than five target trials (indicated by those points showing the lowest average target scores).

To look for a population of lambs, namely those speakers who cause false alarm errors
as target speakers, I plot the true speaker scores for a target model against the highest
impostor score for that target model. This plot is shown in Figure 3.14 for males, and in
Figure 3.15 for female speakers. In both male and female plots there is a large cluster of
points indicating speakers without lamb-ish tendencies, i.e., those with maximum impostor
scores less than, or on par with, true speaker scores. However, there are also many instances
showing maximum impostor scores greater than the target scores for target models, and also
greater than most other maximum impostor scores, suggesting lamb-like tendencies for some
speakers.

Finally, in Figures 3.16 and 3.17, I plot the average maximum impostor score against the
number of test conversation sides for each impostor speaker, for male and female speakers,
respectively. As was the case with the earlier plots of average target scores, there is no clear
evidence that the average maximum impostor score distributions are speaker-dependent.
Interestingly, there seem to be more outliers on the low end, i.e., with low average maximum
impostor scores, than on the high end (which would indicate wolf-ish tendencies).

3.1.4 Effects of Speaker Demographics on System Scores

Continuing with the UBM-GMM system with T-norm, using Switchboard-1 electret con-
versation sides, I now switch focus to consider whether speaker demographics are evident in
system scores. For the Switchboard-1 corpus, the following information is available for each
speaker: sex, birth year, education level, and dialect area. The possible education levels are
less than high school, less than college, college, and more than college. The dialect area
corresponds to the region where the speaker lived for his first 10 years; the possible areas
include New England, North Midland, South Midland, Western, New York City, Northern,
Southern, and Mixed. In order to assess what characteristics have an impact on the scores
produced by the system, I performed an analysis of variance (ANOVA) test for a number of
different score distributions, described below. In each case, the probability (p) given to show
significance level is the probability of being incorrect in concluding that the distributions are
not the same.

Since trial independence is an incorrect assumption, target scores were averaged for target
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Figure 3.12: Average true speaker score versus number of true speaker trials, for male speak-
ers.
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Figure 3.13: Average true speaker score versus number of true speaker trials, for female
speakers.
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Figure 3.14: Highest impostor score for a target model versus the true speaker scores for that
target model, for male speakers.
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Figure 3.15: Highest impostor score for a target model versus the true speaker scores for that
target model, for female speakers.
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Figure 3.16: Average maximum impostor score versus number of test conversation sides, for
male impostor speakers.
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Figure 3.17: Average maximum impostor score versus number of test conversation sides, for
female impostor speakers.
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speakers over all target trials for each speaker before ANOVA analysis was done. I first looked
at the target scores for female speakers compared to the target scores for male speakers. In
this case, I found that the distribution of male target scores differed significantly from the
distribution of female target scores (p � 0.01), with male target trials having a higher
average score. Next, for female and male speakers separately, I considered the effect of age,
education level, and dialect. The target score distributions for different age groups (20-29,
30-39, 40-49, and 50-69) did show a significant difference (p = 0.054 for females and p = 0.013
for males), meaning that the score distribution for at least one age group differed from the
rest. However, a pair-wise comparison test (designed to keep the total probability of error
to less than 10%) showed that significant differences only occurred between two pairs of
distributions: 20-29 versus 30-39 (for males only) and 20-29 versus 50-69 (for both males
and females). Education level did not result in differing target score distributions for either
sex. Finally, although there appeared to be some differences in distributions for different
dialects, only males showed a significant difference (i.e., at least one dialects distribution
was different, with p = 0.013), and pair-wise comparisons found only two pairs of dialects
to have significantly different score distributions (New England versus New York City and
Northern versus New York City).

For impostor scores, the assumption of trial independence is again incorrect. In this
case, I considered three different approaches: an assumption of target-test speaker pair
independence, wherein impostor scores are averaged for each target-test speaker pair; an
assumption of target speaker independence, wherein impostor scores are averaged for each
target speaker; and an assumption of impostor speaker independence, wherein impostor
scores are averaged for each impostor speaker. As would be expected, there is a significant
difference in score distributions for same-sex speaker trials and different-sex speaker trials
(p � 0.001 for all averaging approaches). When comparing scores for which the target
and impostor speaker have an age difference of 5 years or less to scores for which the age
difference between speakers is greater than 5 years, there is also a significant difference for
both females and males (p � 0.001 when averaging for each speaker pair or for impostor
speakers, p < 0.028 when averaging for target speakers). A comparison of the scores where
the target and impostor speakers have the same education level to scores where the speakers
have different education levels did not show any significant differences for either sex. Finally,
looking at trials with speakers of the same dialect area versus trials with speakers of different
dialect areas, there were significant differences when treating the speaker pairs independently
(p = 0.079 for females and p = 0.013 for males), and for females when treating the impostor
speakers independently (p = 0.063). Perhaps more significant differences are not found in
this case because the dialect region information collected does not accurately reflect dialectal
differences for all the speakers.
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3.2 Analysis of Recent System and Data Set

I now move on from Switchboard-1 analysis to the more recent SRE08 corpus, which
contains greater degrees of channel variability. The SRE08 short2-short3 condition uses
roughly 2.5-3 minutes of speech for both training and testing [53]. This speech may be
taken from one side of a conversation between two people, or from part of an interview.
Furthermore, the data includes both telephone and microphone channels (there are 14 types
of microphones).

Using the short2 and short3 conversation sides, I generate a set of trials different from
those used in the NIST evaluation. For my purposes, I use conversation sides from all
speakers with at least 5 available speech utterances. In some cases, the same conversation
side was recorded on multiple channels (telephone and microphones, or just microphones).
In these cases, I selected only one instance of that conversation side, in order to prevent the
introduction of confounding factors due to having the same lexical content across different
speech samples. There are 416 speakers (256 female, 160 male), with 3049 conversation sides,
and a total of 22,210 target trials. For each impostor speaker pair, five impostor trials are
chosen (along with the corresponding trials that have the train and test data switched), for
a total of 453,600 impostor trials.

In order to better address the effects of channel variability, I use a UBM-GMM system
with simplified factor analysis applied, implemented with the ALIZE toolkit [9]. The UBM
is trained using 1553 conversation sides from Fisher and Switchboard-2. The rank 70 eigen-
channel U matrix for simplified factor analysis is trained using 1900 conversation sides from
SRE04 telephone data (99 speakers with 10 conversation sides each) and SRE05 microphone
data (91 speakers with 10 conversation sides each). For the given set of trials, the system
has a minimum DCF of 0.382 and an EER of 8.93%.

3.2.1 Target Trials and Goat-ish Behavior

I begin by performing an analysis of variance (ANOVA) test using all target trial scores
for each speaker in order to determine if there is a speaker effect on the means. With a
resulting p� 0.001, the null hypothesis that the target scores come from the same (speaker-
independent) distribution can be rejected. Figure 3.18 shows a box plot for the male target
scores, by speaker. It is clear that the distributions vary across speakers in this case.

Similarly, application of the Bartlett multiple-sample test for equal variances to the target
scores also rejects the hypothesis that the scores come from normal distributions with the
same variance.

Next, I perform a Kruskal-Wallis test, a non-parametric analysis of variance test that
uses ranks and avoids the need for an assumption that the scores are normally distributed.
Once again, the results of such a test for the target scores are conclusive in rejecting the null
hypothesis that the score distributions do not depend on speaker, with p� 0.001.
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Figure 3.18: Box plots of target score distributions per speaker, for male speakers, using
SRE08 data.
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3.2.2 Impostor Trials and Lamb-ish or Wolf-ish Behavior

After averaging impostor scores for each impostor speaker pair, I considered both the set
of these average impostor scores for each target speaker (looking for lambs) and the set of
average impostor scores for each test speaker (looking for wolves). In both cases, application
of ANOVA did not reject the null hypothesis (p > 0.44 for female, male, and all speakers).
Similarly, the Kruskal-Wallis Test did not reject the null hypothesis that these scores do not
depend on the speaker, though the female speakers came closest to significant differences,
with p = 0.11.

3.2.3 Distribution of Errors Across Speakers

Using the threshold corresponding to the minimum DCF, errors for each speaker are
counted. In particular, I count the number of false rejections (to find goats), the number
of false acceptance errors as the target speaker (to find lambs), and the number of false
acceptance errors as the test speaker (to find wolves). Cumulative distributions of these
errors are plotted for female and male speakers in Figures 3.19 and 3.20, respectively.

There is a very speaker-dependent distribution of errors for female speakers, for all three
types of errors. In the case of false rejections, 50% of the errors are due to 38, or roughly
15% of the speakers. This is even more drastic for false acceptances as the target speaker,
for which 18, or roughly 7% of the speakers cause 50% of the errors. For false acceptances
as the test speaker, 61, or about 24% of speakers account for 50% of the errors.

The story is similar for male speakers. Once again, a speaker-dependent distribution of
missed detection errors is observed, with 23, or about 14%, of the speakers producing 50% of
the errors. Only 25, or 16%, of the speakers account for 50% of the false alarms as targets,
while 33, or 21%, of the speakers produce 50% of false alarms as impostor speakers.

The uneven distribution of errors across speakers suggest goat-like, lamb-like, and wolf-
like tendencies for both male and female speakers.

3.3 Discussion

The examination and analysis of system scores presented here has demonstrated that
automatic speaker recognition system performance is dependent on the speakers. Speakers
may be difficult to correctly verify as the true speaker, and speakers may generate high
impostor scores, as either the target speaker, the test speaker, or both.

However, I have also observed a dependence on which segments are selected for training
and testing; certain conversation side train-test pairings may produce errors, while others
corresponding to the same speaker or speaker pair may not, and scores are not symmetric for
a given pair of conversation sides (i.e., switching which utterance is used to train the target
model will change the score). Such results suggest that any attempts to predict or use infor-
mation about how a system will respond to speakers may need to take an approach involving
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Figure 3.19: Cumulative distribution of errors across female speakers, for false rejections,
false acceptances as the target, and false acceptances as the impostor.
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Figure 3.20: Cumulative distribution of errors across male speakers, for false rejections, false
acceptances as the target, and false acceptances as the impostor.
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conversation pairs. At the same time, averaging scores over sets of trials corresponding to a
speaker can give a better sense of overall tendencies.

Furthermore, I have observed that there can often be a large degree of variation across
speaker pairs; for the same target speaker, impostor scores may change significantly from
impostor speaker to impostor speaker. As such, I move away from the separate concepts of
lamb and wolf, into a discussion of difficult-to-distinguish impostor speaker pairs, i.e., those
pairs for whom the system is likely to produce false alarm errors. At the same time, it is
useful to keep in mind that within a given speaker population, there may well be an overall
tendency for a particular speaker to cause false alarms, for a number of speaker pairings.

Finally, the preliminary work regarding the effects of speaker demographics suggests that
while sex is a factor in the score distributions, the other differences are not particularly
informative with respect to system scores. Besides the ANOVA analysis, I observed other
differences in behavior between male and female speakers. In general, male speakers appear
to vary more widely from one another, in the sense that a given male target speaker will
produce different ranges of scores for different male test speakers. On the other hand, female
target speakers may often produce similar scores for different female test speakers. Going
forward, my work will continue to consider results over the entire population, as well as for
males and females separately.
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Chapter 4

Predicting Difficult-to-distinguish
Speaker Pairs

As I have shown, automatic speaker recognition system performance depends at least
in part on intrinsic speaker characteristics, and speakers may have a tendency to produce
false alarms or false rejection errors. More specifically than a general per-speaker tendency
to produce false alarm errors, there is an expectation that automatic speaker recognition
systems will vary across impostor speaker pairs in how successfully those pairs are correctly
classified. By comparing the performance for a given speaker pair to performance over all
speaker pairs, one can determine which speaker pairs are most (or least) difficult for a given
system. Although these difficult-to-distinguish impostor speaker pairs may vary to some
degree from system to system, I am most interested in finding the speaker pairs that will
be poorly performing for any speaker recognition system. Thus, rather than relying on a
particular speaker recognition system’s output to select such speaker pairs, I aim to find
the universally difficult-to-distinguish speaker pairs by utilizing a variety of features, such as
pitch, formant frequencies, or energy.

There are several motivations for trying to predict the difficult-to-distinguish impostor
speaker pairs. First of all, if the speaker pairs most likely to cause errors can be identified,
such information may be able to open a line of research into determining some of the issues
related to intrinsic factors that remain in speaker recognition. Another possible application
of this work would be as a tool for NIST to select more difficult trials for future Speaker
Recognition Evaluations, in order to present an even more challenging task. Finally, being
able to find the speaker pairs that are difficult for an automatic system to distinguish could
prove particularly useful in selecting a focus for a human expert in a speaker recognition
task that utilizes both automatic system scores as well as human analysis, or as a method
for sub-sampling the most salient speech samples in a speaker recognition task where it is
impractical to fully process all the data that exists.

This investigation considers a basic set of features, including fundamental frequency
statistics, energy statistics, long-term average spectrum (LTAS) energy statistics, formant
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frequency statistics, histograms of frequencies obtained from linear predictive (LP) analysis,
and spectral slope statistics. These feature choices are motivated by prior work in speaker
recognition and other tasks involving characterization of speaker differences. For instance,
speaker recognition approaches have used features like pitch and energy distributions or dy-
namics [1], prosodic statistics including duration and pitch-related features [59], and jitter
and shimmer [25]. Formant frequencies and bandwidths, obtained using linear predictive
analysis, were used as descriptors for perceptual speaker characterization by Necioğlu et
al. [56], while McDougall and Nolan showed that formant frequency dynamics are speaker
discriminative [49]. Kuwabara and Sagisaka considered many acoustic parameters as influ-
ences upon voice individuality, including pitch frequency, contour and fluctuation, formant
frequencies, trajectories and bandwidths, and LTAS [41].

The aforementioned features, along with appropriate distance measures, are utilized as a
way to select speaker pairs that are closer, or more similar (in terms of that feature-measure
pair). The goal is to find feature-measures for which similar speaker pairs correspond to
speaker pairs that are difficult for automatic speaker recognition systems to distinguish. As
a more complex measure that may better predict speaker recognition system behavior, I also
test the approximated Kullback-Liebler (KL) divergence between speaker-adapted Gaussian
mixture models (trained on MFCC features).

I begin by describing my approach in greater detail in Section 4.1. Results are given in
Section 4.2, and Section 4.3 provides a summary and discussion of findings.

4.1 Approach

This approach tests a variety of measures calculated from different features as a criterion
for selecting similar (or dissimilar) speaker pairs for speaker recognition. I describe the
features considered in Section 4.1.1, and the measures and process of speaker pair selection
are discussed in Section 4.1.2. The data used is covered in Section 4.1.3.

4.1.1 Features

The features described below are examined as potentially useful for speaker pair selection.
Features are calculated either using MATLAB, and the Voicebox toolkit [10], or using Praat
[7]. The terms given in brackets indicate the terms we will use to refer to the features.
Note that the feature statistics calculated using Praat are computed over the entire input
file, including both speech and non-speech regions. The features calculated with MATLAB
compute statistics over only those regions of the input designated as speech by the voice
activity detection (VAD) provided by NIST.

1. Pitch statistics (Praat): mean, median, range, and mean average slope of the funda-
mental frequency [f0 mean, f0 med, f0 range, f0 mas]. The range was set to consider
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fundamental frequencies between 75Hz and 600Hz, with all other settings correspond-
ing to default Praat parameters.

2. Jitter and shimmer (Praat): jitter relative average perturbation, and shimmer 5-point
amplitude perturbation quotient [jitt rap, shim apq5]. Jitter describes the variations
in pitch. The relative average perturbation (RAP) computes the absolute difference
between a pitch period and the average of that period and its two neighbors, then takes
the average of this absolute difference and divides it by the average pitch period. Set-
tings for computing the jitter RAP include a minimum fundamental frequency of 75Hz,
a maximum fundamental frequency of 600Hz, a minimum period of 0.0001, a maxi-
mum period of 0.02, and a maximum period factor of 1.3 (which denotes the largest
difference between consecutive intervals that will be included in the jitter computation).
Shimmer describes varying loudness (or amplitude) in the voice. The five-point Ampli-
tude Perturbation Quotient (APQ5) calculates the average absolute difference between
the amplitude of a period and the average of the amplitudes of it and its four closest
neighbours, and then divides this average absolute difference by the average amplitude.
Parameter settings for computing the shimmer APQ5 include a minimum fundamental
frequency of 75Hz, a maximum fundamental frequency of 600Hz, a minimum period of
0.0001, a maximum period of 0.02, a maximum period factor of 1.3, and a maximum
amplitude factor of 1.6 (denoting the largest possible difference in amplitude between
consecutive intervals that will be included in the shimmer computation).

3. Formant frequency statistics (Praat): mean and median of the first three formants
[f1 mean, f1 med, f2 mean, f2 med, f3 mean, f3 med]. The relevant parameter settings
for formant frequency calculation include a window length of 25ms, a step size of
6.25ms, a +3 dB point for an inverted low-pass filter (with a slope of +6 dB/octave)
of 50Hz (this is a pre-emphasis filter used to create a flatter spectrum), a maximum
number of 4 formants, and a maximum formant frequency of 4000Hz (due to the
bandlimited nature of the data used here).

4. Energy statistics (Praat): mean and median energy [en mean, en med]. Default Praat
settings were used, including a designation to subtract the overall mean energy.

5. Long term average spectrum energy statistics (Praat): mean, standard deviation,
range, slope, and local peak height of LTAS energy [ltas mean, ltas stddev, ltas range,
ltas slope, ltas lph]. Praat parameter settings include a filter bandwidth of 100Hz and
a frequency range from 0 to 4000Hz. Furthermore, for local peak height calculation,
there is a minimum peak height of 2400 and a maximum peak height of 3200.

6. Histograms of frequencies from roots of the LPC polynomial (MATLAB/Voicebox):
frequencies obtained from linear predictive coding (LPC) order 8 or order 14 polynomial
coefficient roots (both with and without a minimum magnitude requirement of 0.78
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and 0.88, respectively1) contribute to a histogram with a bin size of 5 Hz covering the
5-3995 Hz range [hist8all, hist8minmag, hist14all, hist14minmag]. A frame length of
25ms and step size of 10ms were used for calculating the LPC coefficients.

7. Spectral slope statistics (MATLAB): mode and median of spectral slope, calculated
over frequency range 0-4000 Hz [mode specsl, med specsl]. A frame length of 30ms and
step size of 10ms were used to calculate per-frame spectral slope values, from which
the mode and median values were computed.

4.1.2 Measures and speaker pair selection

Features are calculated for each speech sample, and a measure is computed for every
unique speaker pair in two different ways. First is to average the feature values over all
conversation sides of each speaker, and then calculate the measure for each speaker pair
using these average per-speaker feature values [featavg]. The second method calculates a
measure for each possible pairing of conversation sides for a given speaker pair (with one
conversation side for each speaker), and then averages these measure values to obtain a single
value for each unique speaker pair [measavg].

For scalar features, absolute difference [absdiff] and percent difference [pctdiff] are used
as measures, where percent difference for values x and y is defined as

Percent difference =
|x− y|
(x+y)

2

, (4.1)

when x and y have the same sign (it is not used for features with both positive and negative
values). In addition to the individual formants, sums of formants are used as scalar features
(with absolute and percent difference measures), and the Euclidean distance [eucldist] is also
calculated for vectors of formant frequencies, e.g. (f1,f2,f3). For the histograms of frequencies
from LP analysis, a correlation coefficient [corr] is calculated as a measure of similarity. Table
4.1 summarizes the possible feature-measure combinations, grouped according to feature
type.

Based on the measure for each unique speaker pair, those pairs with the highest and lowest
1% (or 5%) of values are selected to determine if the measure of speaker similarity corresponds
to the degree of difficulty for a speaker recognition system. For absolute difference, percent
difference, and Euclidean distance, smaller values should indicate more similar speakers,
while for correlation coefficients, higher values indicate greater speaker similarity.

1These values were chosen based on a preliminary inspection of histograms, and were not optimized for
selecting speaker pairs.
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Feature group Features Measures

Pitch f0 mean f0 med absdiff
statistics f0 range f0 mas pctdiff
Jitter and jitt rap absdiff
shimmer shim apq5 pctdiff
Formant f1 mean f1 med absdiff
statistics f2 mean f2 med pctdiff

f3 mean f3 med
Sum of formant f1+f2+f3 med absdiff

frequencies f1+f2+f3 mean pctdiff
(f1, f2) mean
(f1, f3) mean

Formant (f2, f3) mean
frequency (f1, f2) med eucldist

vectors (f1, f3) med
(f2, f3) med

(f1, f2, f3) mean
(f1, f2, f3) med

Energy en mean absdiff
statistics en med pctdiff

LTAS energy ltas mean ltas stddev absdiff
statistics ltas range ltas slope pctdiff

ltas lph
LPC frequency hist14all corr

histograms hist14minmag
Spectral slope mode specsl absdiff

statistics med specsl pctdiff

Table 4.1: Feature and measure combinations.
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4.1.3 Speech corpora

The 2008 NIST Speaker Recognition Evaluation (SRE08) includes a condition (short2-
short3) which uses roughly 2.5-3 minutes of speech for each training and testing [53]. This
speech is taken either from one side of a conversation between two people over the telephone
(possibly recorded on a microphone), or from part of an interview recorded on a microphone
(some interviewer speech may be present). Additional interview data was released for a
followup evaluation experiment designed to further explore the new interview style of data
collection.

Corpus for feature-measure calculation

Speech data from the followup evaluation is used to calculate features for the speakers.
In particular, speech recorded on microphone 2 (a lavalier microphone placed on the subject)
is used since it has good sound quality. These speaker features are then used in conjunction
with a similarity measure in order to predict difficult- and easy-to-distinguish speaker pairs.
The majority of speakers have four conversation sides used for the measure calculation (a
small minority have three or five conversation sides).

Corpus for evaluation of selected speaker pairs

The data used to evaluate speaker-pair selection is different in several respects from the
data used to perform the selection. Specifically, the selection data were collected in an
interview, while the evaluation data were collected in either an interview or a telephone
conversation. Also, the selection data were collected using a lavalier microphone, whereas
the evaluation data were collected using a variety of microphones, including a telephone
handset. Furthermore, though the speakers contained in each set are the same, the selection
data does not overlap with evaluation data.

Speaker recognition system submissions from the SRE08 short2-short3 condition are used
to compute performance on trials for the selected 1% (or 5%) of most and least similar speaker
pairs. Of the 34 sites who shared their system submissions for the short2-short3 condition, 33
of these are used in the results. The total number of trials for short2-short3 (after removing
trials for speakers not found in the selection data) is 55013, with 1815 unique impostor
speaker pairs. When keeping 1% (or 19) of the speaker pairs, there are around 4000 trials
on average, while 5% (or 91) of the speaker pairs corresponds to an average of roughly 11000
trials. When filtering trials for selected speaker pairs, I removed target trials of speakers not
included in any of the selected speaker pairs.
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4.2 Results

System performance for the selected speaker pairs is reported using the minimum de-
tection cost function (DCF) and false alarm (FA) rate, since I am concerned with finding
difficult-to-distinguish impostor pairs. The DCF is defined as a weighted sum of the miss
(i.e., not identifying a target speaker match) and false alarm (i.e., identifying an impostor
speaker as the target speaker) error probabilities:

DCF = CMiss × PMiss|Target × PTarget + CFalseAlarm × PFalseAlarm|NonTarget × (1− PTarget) (4.2)

In Equation (4.2), CMiss and CFalseAlarm are the relative costs of detection errors, and PTarget is
the a priori probability of the specified target speaker. SRE08 used CMiss = 10, CFalseAlarm =
1, and PTarget = 0.01. For a given decision threshold, the FA rate is defined as:

PFalseAlarm =
number of false alarm errors

total number of nontarget trials
(4.3)

For each speaker recognition system, I compute the percent difference in minimum DCF
for the most (and least) similar speaker pairs relative to the minimum DCF over all speaker
pairs. Relative to a FA rate of 1% on all speaker pairs, I calculate the percent difference in FA
rate (at the decision threshold yielding 1% FA on all trials) for the most (and least) similar
pairs. These relative differences are then averaged over all systems. With each feature-
measure, if more similar (i.e., closer) speaker pairs correspond to difficult-to-distinguish
speaker pairs, then differences in the DCF and FA rate should be positive and significant. The
converse holds for less similar speaker pairs, which will have significant negative differences
if they are easier for systems to distinguish.

Figures 4.1 and 4.2 show performance differences for the top 1% most and least similar
speaker pairs, respectively. For each feature group, the feature-measure pair yielding the
largest DCF and FA changes is presented. Similarly, Figures 4.3 and 4.4 show results when
considering the top 5% most and least similar speaker pairs, respectively.

Features of each type can select speaker pairs for which the most (or least) similar have
worse (or better) performance than all speaker pairs. Furthermore, this difference in per-
formance typically increases when a smaller fraction of speaker pairs is used, i.e., there is
a bigger difference for the most similar 1% of speaker pairs than for the most similar 5%.
It should be noted that differences in performance are not uniform across different speaker
verification systems.

The feature-measure that yields the largest average difference in performance for the 1%
most similar speaker pairs is the Euclidean distance between vectors of the mean first, second,
and third formant frequencies. The next best feature-measures include other formant-based
measures, the percent difference of median energy, and the correlation of histograms of LPC
freqencies with minimum magnitude requirement. For the 1% least similar speaker pairs,
results are fairly similar across feature-measures, with the correlation of LPC frequency
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Figure 4.1: Relative differences in DCF and FA rate for the most similar 1% of speaker pairs,
compared to all speaker pairs.
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Figure 4.2: Relative differences in DCF and FA rate for the least similar 1% of speaker pairs,
compared to all speaker pairs.
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Figure 4.3: Relative differences in DCF and FA rate for the most similar 5% of speaker pairs,
compared to all speaker pairs.
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Figure 4.4: Relative differences in DCF and FA rate for the least similar 5% of speaker pairs,
compared to all speaker pairs.



CHAPTER 4. PREDICTING DIFFICULT-TO-DISTINGUISH SPEAKER PAIRS 65

histograms and spectral slope yielding the smallest differences. The Euclidean distance
between vectors of the mean, first, second, and third formant frequencies also appears to
be the best feature-measures for finding the 5% most difficult-to-distinguish speaker pairs,
with the percent difference of the sum of formants and the absolute difference in LTAS local
peak height being the next best. As with the 1% least similar speaker pairs, the 5% least
similar show very consistent results across feature-measures, with reduced effectiveness for
the correlation of LPC frequency histograms and spectral slope.

Detection error tradeoff (DET) curves are shown for example systems in Figures 4.5 and
4.6, using the Euclidean distance between vectors of the means of the first, second and third
formants, and the percent difference of the median energy, respectively. Although the system
in Figure 4.6 has good separation among the different DET curves, there is more overlap in
the DET curves of Figure 4.5. Furthermore, Figure 4.5 reveals an asymmetry in behavior for
dissimilar and similar speaker pairs, showing that the performance on difficult-to-distinguish
speaker pairs is closer to performance on all speaker pairs. While this asymmetry does not
exist for all systems and all sets of selected speaker pairs (as evidenced by Figure 4.6), the
trend does hold in most cases.

Given that I am using at most a few coarsely calculated features, it is impressive to see
the differences in performance that can be obtained using these measures to select easy- or
difficult-to-distinguish speaker pairs. It is worth noting that a large reason for such success is
due to the information gained by the relative ranking of speaker pairs. As a single, standalone
number, a feature-measure may not have much use. However, when taken in the context of
a group of feature-measures corresponding to a set of speaker pairs, the absolute values of
the feature-measures no longer matter; instead, the gain lies in being able to order a set of
speaker pairs from least to most similar.

While the results presented thus far are indeed promising, the differences in performance
for similar speaker pairs (relative to all speaker pairs) still have potential to increase further.
Accordingly, I test a measure that utilizes Gaussian mixture models, with the motivation
that GMMs may better predict speaker recognition system performance, given that many
systems utilize cepstral feature-trained GMMs. Using SRI’s tools for training GMMs for
speaker recognition [37], I trained speaker-specific GMMs via maximum a posteriori (MAP)
adaptation from a universal background model trained on Fisher data. The input features
were 12th order MFCCs plus energy, with deltas and double-deltas, and the models used
1024 Gaussians. For each unique pair of speaker-specific GMMs, an approximation to the
Kullback-Leibler (KL) divergence (based on the unscented transform [26]) was used to mea-
sure similarity. Results are shown in Figure 4.7.

Compared to previous feature-measures, the KL divergence is indeed more effective at
finding difficult- and easy-to-distinguish speaker pairs. DET curves for an example system
are shown in Figure 4.8. Again, relative to performance on all speaker pairs, there is a larger
performance gap for dissimilar speaker pairs than for similar speaker pairs.

Returning to the groups of speaker pairs selected by the KL divergence approximation for
GMMs, I more closely examine the 1%, 3%, 5%, 10%, and 20% most and least similar speaker
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Figure 4.5: DET curves for an illustrative speaker recognition system, using the Euclidean
distance between vectors of the mean first, second, and third formant frequencies for speaker
pair selection.
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Figure 4.6: DET curves for an illustrative speaker recognition system, using the percent
difference of median energy for speaker pair selection.
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Figure 4.7: Relative differences in DCF and FA rate for the most and least similar 1% and 5%
of speaker pairs selected by the approximated KL divergence between speaker-specific GMMs.
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Figure 4.8: DET curves for an illustrative speaker recognition system, using the approximated
KL divergence between speaker-specific GMMs to select speaker pairs.
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pairs. Overall, there are 150 speakers, with 87 female and 63 male, for which there are 1815
same-sex impostor speaker pairs with impostor trials in the SRE08 short2-short3 task. For
the groups of speaker pairs with larger values for KL divergence, that is, those speaker pairs
that are expected to be easier for systems to distinguish, the majority are male (close to 75%
on average). The opposite tendency holds to a lesser extent for more similar pairs tending to
be female, although the groups with the lowest 1% and 3% of KL divergence values still have
more male speaker pairs. These results suggest that there is a greater range of differences
among male speakers, so that there are likely to be more dissimilar male speaker pairs.

Furthermore, examining the number of times a particular speaker appears in a group
of similar or dissimilar speaker pairs, we note that there tend to be two types of speakers:
those who appear frequently as members of difficult-to-distinguish speaker pairs, and those
who occur frequently as members of easy-to-distinguish speaker pairs. In fact, there are
15 speakers (1 male, 14 female) that never appear in the most-dissimilar groups, and 24
speakers (10 male, 14 female) that never appear in the most-similar groups. Such a result
is consistent with the existence of wolves and lambs, that is, the tendencies of a speaker to
cause false alarm errors.

4.3 Discussion

In summary, the results of this investigation demonstrate that it is possible to predict
which speaker pairs will be difficult for a typical speaker recognition system to distinguish.
Both difficult- and easy-to-distinguish speaker pairs can be selected using a measure of
similarity calculated from features like pitch, energy, or spectral slope. For the features
considered here, using the Euclidean distance between vectors of mean first, second, and third
formant frequencies produces the largest difference in performance for similar and dissimilar
speaker pairs. An even more successful measure is the KL divergence calculated between
speaker-specific GMMs. Overall, the degree of success is higher for selecting dissimilar
speaker pairs than it is for selecting similar speaker pairs, possibly because similarity in a
single characteristic is not necessarily sufficient to identify a difficult-to-distinguish speaker
pair. Although the feature-measures cannot match the effectiveness of finding difficult-to-
distinguish speaker pairs by actually selecting such pairs using results for a given system,
they still provide potentially useful information about speakers. In particular, one may
be able to determine an overall tendency of a speaker to be similar or dissimilar to other
speakers. Additionally, being able to rank a set of speaker pairs can be quite informative.

In the next chapter, I build upon this approach by using a set of feature statistics in
order to detect difficult speakers. I consider the task of finding difficult target speakers,
who are prone to causing false rejection errors, separately from the task of finding difficult
impostor speakers, who are prone to causing false alarms. Specifically, I train support vector
machine (SVM) classifiers using examples of the most and least difficult target and impostor
speakers.
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Chapter 5

Detecting Difficult Speakers

It has been observed that simple feature statistics can be used to provide measures of
similarity between speakers. Up to this point, I have used these feature statistics individually.
Now, I investigate one method for using them jointly in order to make a prediction about
whether a speaker will be difficult, either as a true speaker or an impostor speaker. In
particular, I train a support vector machine (SVM) to distinguish between examples of the
speakers who cause the most and fewest errors, corresponding to the most and least difficult
speakers, respectively. Since speaker behavior is different for target and impostor speakers,
I train separate SVMs for detecting difficult true speakers (who will cause false rejections)
and difficult impostor speakers (who will cause false alarms).

I begin by discussing the data set that will be used for these experiments in Section 5.1.
Section 5.2 describes the selection of feature statistics used as input to the SVMs. Details of
SVM training are covered in Section 5.3, including the method for determining the difficult
and easy speakers to use for training. The results of experiments are given in Section 5.4,
and Section 5.5 concludes with a discussion of lessons learned.

5.1 Data Set for SVM Experiments

For this approach, I need to find speakers who cause very many or very few errors (of
either the false rejection or false alarm type). Accordingly, these speakers need to have
enough true speaker and impostor trials available for us to make a reliable decision about
these error tendencies. This is especially an issue for the true speaker errors, given the
limited number of target trials that are available.

In order to maximize the number of true speaker trials, as well as have a reasonable
number of impostor trials, I use the same set of SRE08 data that I used for the analysis
of 3.2. In particular, I take selected conversation sides from the SRE08 short2 and short3
train and test conditions, which correspond to roughly 2.5-3 minutes of speech per sample. I
choose conversation sides from all speakers with at least 5 available speech utterances. Some



CHAPTER 5. DETECTING DIFFICULT SPEAKERS 72

conversation sides were recorded on multiple channels (telephone and microphones, or just
microphones). In these cases, I select only one instance of that conversation side, in order
to prevent the introduction of confounding factors due to having the same lexical content
across different speech samples. There are 416 speakers (256 female, 160 male), with 3049
conversation sides, and a total of 22,210 target trials. For each impostor speaker pair, five
impostor trials are chosen (along with the corresponding trials that have the train and test
data switched), for a total of 453,600 impostor trials.

Although the training and test sets are disjoint, they are selected from the same database
of conversation sides of SRE08. In practice, it is not unreasonable to make an assumption
that there will be a set of domain-specific data available for training that is representative
of the data used in a given type of speaker recognition application. Due to data sparsity,
I take a round robin approach (specifically, 10-fold cross-validation) in order to best utilize
the available data.

5.2 Selection of Feature Statistics

The feature statistics under consideration include statistics of energy, spectral slope,
fundamental frequency, formant frequency, and MFCC features, where the statistics can be
calculated over frames corresponding to various regions, including phones, groups of phones,
and all speech. In the previous work on finding difficult-to-distinguish impostor speaker
pairs, I had success using feature statistics calculated over the whole utterance or all speech
regions. I take the same approach here by choosing to calculate the feature statistics over
all frames of speech. One additional motivation for such a choice is that it is generally more
convenient to simply calculate statistics using speech frames rather than frames of particular
phonetic regions, given that it is less computationally expensive to implement a speech/non-
speech detector than it is to obtain phonetic transcripts from an automatic speech or phone
recognition system.

The complete set of features is as follows.

1. Energy [en], calculated in MATLAB, using 25ms frames with a 10ms stepsize

2. Spectral slope [spsl], calculated in MATLAB, using 30ms frames with a 10ms stepsize

3. Fundamental frequency [f0], calculated with the Snack sound toolkit [66], using the
ESPS method, which relies on the normalized cross correlation function and dynamic
programming, with a default window length of 7.5ms and a stepsize of 10ms, default
minimum pitch of 60Hz and default maximum pitch of 400Hz

4. First three formant frequencies, [f1,f2,f3], calculated with the Snack sound toolkit,
which estimates speech formant trajectories using dynamic programming for continuity
constraints and the roots of a 12th order linear predictor polynomial as candidates; a
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default window length of 49ms, a stepsize of 10ms, default cos4 windowing function,
default preemphasis of 0.7, and a nominal first formant frequency of 500Hz, specifying
the number of formants to be 3

5. First four formant frequencies, [g1,g2,g3,g4], calculated with the same settings as [f1-
f3], except for the specification that the number of formants is 4 (note that looking for
3 formants produces different outputs than looking for 4 formants)

6. 19th order MFCCs plus energy [C0-C19], calculated using the Hidden Markov model
Toolkit (HTK) [72], using 26 filter banks ranging from 200Hz to 3300Hz, frame length
of 25ms, stepsize of 10ms, no normalizations

7. Mean- and variance-normalized 19th order MFCCs plus energy [N0-C19], calculated
with HTK with the same settings as [C0-C19]

The set of statistics computed for each feature over speech regions are mean, median,
standard deviation, skewness, kurtosis, minimum, and maximum.

I include each type of feature and statistic in order to obtain feature statistics that may be
informative in differing ways. However, since the two sets of formant frequencies (calculated
by finding the first three [f1-f3] or the first four [g1-g4]) are related, as are the normalized
and non-normalized MFCCs ([N0-N19] and [C0-C19]), I consider three groups of features,
with differing degrees of similarity among the features:

1. energy [en], spectral slope [spsl], fundamental frequency without zeros [f0no0], funda-
mental frequency including zeros [f0with0], the set of the first three formant frequencies
[f1-f3], and non-normalized MFCCs [C0-C19], for a total of 187 statistics [speech1]

2. same as (1), with addition of normalized MFCCs [N0-N19], for a total of 327 statistics
[speech2]

3. same as (2), with addition of the first four formant frequencies [g1-g4], for a total of
355 statistics [speech3]

5.3 SVM Training

In order to train an SVM classifier to detect difficult speakers, there must be training
data that corresponds to such difficult speakers, as well as to non-difficult speakers who
will provide negative examples. To determine these speakers, I utilize the scores from an
automatic speaker recognition system. Given a particular decision threshold, I can then
evaluate how many false rejection and false acceptance errors occur among the trials of a
given speaker, and rank the speakers according to these error rates. For each speaker, false
acceptance errors as the target are counted along with false acceptance errors as the impostor
(in other words, I do not distinguish between lamb-ish and wolf-ish speaker tendencies).
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Roughly the top and bottom 20% of speakers (ranked according to their error rates) are
used for training and testing. In particular, I take 80 speakers from each end of the difficulty
spectrum. Those speakers with the lowest frequency of errors provide negative training
examples, while the speakers with most frequently occurring errors provide positive examples.
For this speaker selection, I utilize scores from a UBM-GMM system with simplified factor
analysis applied. Details of the implementation may be found in Section 3.2. In order to
count errors, I use the decision threshold corresponding to an overall false alarm rate of 1%.

As mentioned previously, there is limited data available in SRE08; to deal with this data
sparsity, I utilize a round robin (or 10-fold cross-validation) approach, with 10 splits of the
data. Given 10 disjoint sets of 4 difficult and 4 easy speakers, I use 9 of the sets to train
the SVM, and the remaining 1 to test, with each set being the test set exactly once. The
results are then calculated across the ten test sets. To further ensure that these results are
representative, I run the experiment 10 times, with random selection of the 10 splits each
time.

Each speaker has 5 or more conversation sides that are used as separate examples. I
consider two separate SVMs: one to detect difficult true speakers, i.e., those that are prone
to causing false rejection errors, and one to detect difficult impostor speakers, i.e., those that
are prone to causing false alarms.

In addition to considering a linear kernel for the SVM, I also test polynomial kernels of
orders 2 and 3, in the event that a nonlinear mapping may prove useful for the detection task
at hand. Furthermore, I use the input feature statistics both as they are as well as with a
rank normalization applied. Rank normalization, wherein the features are assigned a relative
ranking from minimum to maximum, is a technique that often yields nice improvements in
the context of speaker recognition systems with SVM classifiers. The rank normalization
mapping is learned from the examples used to train the SVM, and then applied to both the
train and the test data. The SVMs are implemented using the SVM light toolkit [32].

5.4 SVM Testing

Given that I want to use the SVM to find difficult speakers, I will present results for a
detection task. As with a speaker verification task, the decisions in a detection task may be
broken up into four groups. In this case, either a difficult speaker will be detected or not.
This positive detection result may be either correct or incorrect, or in other words, may be
either a true positive or a false positive. In the event that a negative result is produced, this
may be a true negative or a false negative.

I will report the precision, recall, specificity, and F-measure. The precision is a measure
of how accurately the positive class is detected. It is given by the ratio of true positives to
the total number of positive decisions, that is,

Precision =
tp

tp + fp
,
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where tp denotes the number of true positives and fp denotes the number of false positives.
Recall is a measure of how many of the positive class instances were detected, also known
as the true positive rate, designated by

Recall =
tp

tp + fn
,

where tp again denotes the number of true positives, and fn denotes the number of false
negatives (missed detections). Similarly, the true negative rate is given by the specificity,
which is

Specificity =
tn

tn + fp
,

where tn is the count of true negatives and fp is the count of false positives. Finally, the
F-measure combines precision and recall, and is given by

F-measure =
Precision · Recall

Precision + Recall
.

First, I will show results for detecting a difficult impostor speaker in Section 5.4.1, followed
by results of detecting a difficult target speaker in Section 5.4.2.

5.4.1 Detecting Difficult Impostor Speakers

The recall, precision, specificity, and F-measure are given in Table 5.1 for three versions
of the SVM classifier using the [speech1] set of feature statistics, which may or may not be
rank normalized [rank,nonorm]. In these results, the SVM is detecting difficult impostor
speakers, who are likely to cause false acceptance errors, either as the target model or the
test speaker. The three SVMs differ in the kernel that they use, which may be a linear
kernel [linear], a second order polynomial kernel [poly2], or a third order polynomial kernel
[poly3]. These results are averages across the 10 runs of a 90% train - 10% test round-robin
approach.

These results show that it is, in fact, possible to detect difficult impostor speakers, most of
the time, with recall and precision rates of around 0.84 and 0.86, respectively. Furthermore,
note that rank normalization yields much more balanced results. Additionally, the linear
and polynomial kernels perform about the same in terms of recall, with polynomial kernels
giving a slight gain in precision, specificity, and F-measure.

Depending on the application, the recall or the precision may be more important. For
those situations where it is important to find all of the difficult speakers, at the cost of in-
cluding some easy speakers, the threshold for making the difficult distinction can be lowered,
thereby increasing the recall. On the other hand, it may be important to be very accurate
about any difficult speaker labels, at the cost of missing some difficult speakers. In this
scenario, the threshold for making the decision can be raised, and the precision increased.
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For the linear kernel SVM using rank normalized feature statistics, results are given in Table
5.2 for three different thresholds: -0.5, 0 (corresponding to the values in Table 5.1), and 0.5.

The choice of threshold for the detection of a difficult speaker allows one to adjust ac-
cording to the most important criterion. Even when improving results for one particular
measure, the results stay fairly good across all performance measures, though the specificity
(or true negative rate) does drop to 0.616 when the recall is increased. Since many appli-
cations might find it very important to be correct about the speakers that are labeled as
difficult, I will examine the low false alarm case (this corresponds to a high specificity and
precision). In particular, consider a false alarm rate of 5%, meaning that 5% of the difficult
labels will be incorrect. For the corresponding threshold (which is around 0.83), average
recall is 0.612, and average precision is 0.959, for the SVM with a linear kernel and rank
normalization of the input features. In other words, in order to be 95% correct about difficult
speaker decisions, over 60% of the difficult speakers are found. Though this is not a very
high recall rate, it may still be sufficient for some applications, and it provides a reasonable
starting point on a first try at this task.

Now, let us compare performance for the linear kernel SVM, when using more feature
statistics, in particular, the [speech2] and [speech3] sets, which add normalized MFCCs and
a different set of four formant frequencies. Results for the three feature sets are given in
Table 5.3.

In this case, the additional speech-based feature statistics do not add much information
for distinguishing between easy and difficult impostor speakers.

5.4.2 Detecting Difficult Target Speakers

Now, I present results for an SVM classifier trained to detect difficult target speakers,
who tend to cause false rejection errors. Table 5.4 shows the recall, precision, specificity, and
F-measure for SVMs trained using the set of [speech1] input feature statistics, both with and
without rank normalization, for three SVM kernels, namely linear, order two polynomial,
and order three polynomial. In each case, the results presented correspond to an average
over ten runs of a round robin approach using a 90% - 10% split of the data.

In this case, there are fairly reasonable results, though detection of difficult target speak-
ers is not as successful the detection of difficult impostors. The intuition behind why difficult
target speakers are not detected as successfully as difficult impostor speakers is as follows.
To cause false alarm errors, impostor speakers must be confusable with other speakers; so,
there may be overall characteristics that make a speaker more average or more similar to
other speakers within the population. On the other hand, the characteristics that make a
target speaker hard to recognize as himself may vary from speaker to speaker, so that it is
harder to capture all the ways in which a single conversation side may indicate a tendency
to cause false rejections.

Returning to the results of Table 5.4, observe that rank normalization once again really
helps to improve performance overall. In the case of difficult target speakers, there are small
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SVM kernel Normalization Recall Precision Specificity F-measure

linear nonorm 0.997 0.585 0.010 0.738
linear rank 0.838 0.851 0.794 0.844
poly2 rank 0.840 0.861 0.811 0.850
poly3 rank 0.839 0.866 0.818 0.852

Table 5.1: Recall, precision, specificity, and F-measure values for detecting difficult impostor
speakers using SVMs with different kernels (linear, second order polynomial [poly2], and third
order polynomial [poly3]), with the [speech1] set of feature statistics as input, with or without
rank normalization applied [rank,nonorm].

Threshold Recall Precision Specificity F-measure

-0.5 0.915 0.770 0.616 0.836
0 0.838 0.851 0.794 0.844

0.5 0.726 0.914 0.904 0.809

Table 5.2: Recall, precision, specificity, and F-measure values for detecting difficult impostor
speakers using a linear kernel SVM trained with rank normalized feature statistics, comparing
three different decision thresholds for difficult impostor speaker detection.

Feature set Recall Precision Specificity F-measure

speech1 0.838 0.851 0.794 0.844
speech2 0.831 0.852 0.798 0.841
speech3 0.830 0.859 0.809 0.844

Table 5.3: Recall, precision, specificity, and F-measure values for detecting difficult impostor
speakers using a linear kernel SVM trained with rank normalized feature statistics, comparing
three sets of speech feature statistics, [speech1], [speech2], and [speech3].

SVM kernel Normalization Recall Precision Specificity F-measure

linear nonorm 1 0.551 0 0.710
linear rank 0.729 0.715 0.643 0.722
poly2 rank 0.733 0.726 0.661 0.729
poly3 rank 0.736 0.737 0.677 0.737

Table 5.4: Recall, precision, specificity, and F-measure values for detecting difficult target
speakers using SVMs with different kernels (linear, second order polynomial, and third or-
der polynomial), with the [speech1] set of feature statistics as input, with or without rank
normalization applied.
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gains from using polynomial kernels instead of linear, with a third order polynomial kernel
improving results more than a second order polynomial.

Table 5.5 shows the tradeoff in recall, precision, specificity, and F-measure values ob-
served when varying the threshold for making a difficult speaker decision, again considering
threshold values of -0.5, 0 (corresponding to the results of Table 5.4), and 0.5. These results
are given for the SVM using a third order polynomial kernel, with rank normalized feature
statistics.

Threshold Recall Precision Specificity F-measure

-0.5 0.895 0.653 0.415 0.755
0 0.736 0.737 0.677 0.737

0.5 0.561 0.848 0.877 0.675

Table 5.5: Recall, precision, specificity, and F-measure values for detecting difficult target
speakers using a third order polynomial kernel SVM trained with rank normalized feature
statistics, comparing three different decision thresholds for difficult target speaker detection.

In the difficult target speaker case, the drop in specificity (for a high recall threshold)
and the drop in recall (for a high precision threshold) are larger than in the difficult impostor
speaker case. In order to obtain close to 90% recall, the false alarm rate becomes almost
60%. Again considering the operating point for low false alarms, with 5% of the difficult
speaker labels being incorrect (a threshold around 0.95), the average recall is 0.374, and
the average precision is 0.922. Thus, in order to avoid incorrectly labeling difficult target
speakers, almost two-thirds of the difficult target speakers will not be found. Such a low
recall rate may not be sufficient in many applications. Given the difficult nature of the task,
it nevertheless provides an initial starting point that may be improved upon in the future.

Next, Table 5.6 shows results for an SVM using a third order polynomial kernel and rank
normalized input features, for the three sets of speech feature statistics.

Feature set Recall Precision Specificity F-measure

speech1 0.736 0.737 0.677 0.737
speech2 0.747 0.749 0.694 0.748
speech3 0.753 0.746 0.686 0.749

Table 5.6: Recall, precision, specificity, and F-measure values for detecting difficult target
speakers using a third order polynomial kernel SVM trained with rank normalized feature
statistics, comparing three sets of speech feature statistics, [speech1], [speech2], and [speech3].

As with the difficult impostor speaker detection task, adding feature statistics (mean and
variance normalized MFCCs or formant frequencies g1-g4) does not change results by much,
though there are some small improvements.
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To this point, my approach has treated male and female speakers together. However,
male and female speakers may behave differently. In order to see if difficult target speaker
detection improves when females and males are two different cases, female- and male-specific
SVMs are trained. One disadvantage to this approach is that there are fewer easy and difficult
speakers to use for training. I consider two sets of MLPs, one trained using the 20% most
and least difficult speakers (female or male), and one trained using 25% most and least
difficult speakers. Table 5.7 shows recall, precision, specificity, and F-measure values for
male and female difficult target speaker detection. In each case, the number of easy and
difficult speaker examples is given (note that there are 256 female speakers and 160 male
speakers total). These results are all for SVMs using third order polynomial kernels, and
rank normalized input feature statistics.

Sex Number of example speakers Recall Precision Specificity F-measure

female 50 ( 20%) 0.752 0.725 0.613 0.739
female 60 ( 25%) 0.739 0.710 0.608 0.724
male 30 ( 20%) 0.807 0.658 0.467 0.725
male 40 ( 25%) 0.748 0.651 0.516 0.696

Table 5.7: Recall, precision, specificity, and F-measure values for detecting difficult target
speakers using a third order polynomial kernel SVM trained with rank normalized feature
statistics, using SVMs trained separately for female and male speakers, with either 20% or
around 25% of speakers taken as difficult or easy examples.

In both female and male cases, the results do not improve over treating both sexes
together. Recall increases slightly, at the cost of lower precision and specificity. Furthermore,
note that increasing the number of speakers used as difficult and easy examples does not
improve results. Including more speakers also means that the speakers used for training are
not necessarily the best examples of difficult (or easy) ones, which potentially counteracts
any gain from having more training examples. Training separate female and male SVMs for
finding difficult impostor speakers gave results similar to those observed here: there were no
gains over using a sex-independent SVM, and increasing the number of training examples to
25% also failed to improve results compared to using the top and bottom 20%. Given more
female and male speakers for training, an approach using separate female and male SVMs
may yield improvements. However, for the data available here, it is better to maximize the
training examples and use the same SVM to detect difficult female and male speakers.

5.5 Discussion

In order to combine a set of feature statistics for detecting difficult speakers, who tend
to cause a large number of errors, I trained SVMs to distinguish between examples of easy
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and difficult speakers, for both target (true) speakers and impostor speakers. As input, I
used a set of feature statistics calculated over speech regions, where the features include
fundamental frequency, formant frequencies, energy, spectral slope, and MFCCs (both with
and without mean and variance normalization).

Based on the results for the data set used here, this approach is more successful at finding
difficult impostor speakers than difficult target speakers. One reason why finding difficult
target speakers is more challenging than finding difficult impostors is that while there may
be similar characteristics across difficult impostor speakers (which make them confusable
with other speakers), the characteristics that make target speakers difficult may vary more
from speaker to speaker. In both cases, however, recall and precision rates over 0.7 (or 0.8
in the case of difficult impostors) can be obtained. Furthermore, the threshold for picking
a difficult speaker can be varied according to what errors are most important to minimize.
For a false alarm rate of 5%, over 60% of difficult impostor speakers will still be found, and
37% of difficult target speakers. Given the challenging nature of the task, these recall rates
are not particularly high (especially in the case of target speakers). However, for certain
applications, the loss in recall may still be worth the gain in precision and specificity. Given
enough training examples of difficult and easy speakers, there may be gains from treating
female and male speakers separately. With limited data, though, better results are obtained
by using the combined set of training examples in one sex-independent SVM.

One advantage of using feature statistics as the input to the SVM is that the statistics can
be calculated over an individual conversation side or a set of conversation sides for the given
speaker. This allows difficult speaker detection to work for varying amounts of available
data. In my approach here, each conversation side of the easy and difficult speakers is
used separately, with no exploitation of having more than one conversation side per speaker.
One avenue for future exploration is to see how results change depending on the number of
utterances used for each speaker. It may also be possible to find better feature statistics for
detecting difficult speakers; the optimal feature statistics may be different for difficult target
and impostor speakers, as well as for female and male speakers.

Another possible direction for future investigation is to see how well difficult conversation
sides can be detected. The results of my error analysis, as well as the related work of Kahn
et al. [34, 33], have shown that there can be particular conversation sides of a speaker that
cause more errors than others. Being able to detect these “bad” utterances may provide
very useful information for improving system performance.
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Chapter 6

Conclusions and Future Work

This focus of this dissertation was on the intrinsic, speaker-based factors that contribute
to errors in automatic speaker recognition systems. Inspired by the well-known work of Dod-
dington et al. [22], which both categorized speakers according to their tendencies to cause
errors and demonstrated the existence of such speaker types, I aimed to further explore the
phenomenon of speaker-dependent system performance. In particular, there are two main
components of this exploration, which are reviewed in the following sections. Section 6.1 de-
scribes the analysis of speaker behavior for two data sets and two types of automatic speaker
recognition systems, with which I both confirm and build upon previous results demonstrat-
ing that system performance depends on speaker characteristics. Having established that
certain speakers are more likely to cause errors than others, I then discuss a simple approach
for finding these difficult speakers in Section 6.2. Section 6.3 concludes with a discussion of
contributions and possible future work.

6.1 Analysis of Speaker Behavior

The aforementioned work of Doddington et al. analyzed errors only for female speakers,
using data from the NIST 1998 Speaker Recognition Evaluation. In order to expand such
analysis, I examined two data sets and two types of automatic speaker recognition systems,
looking for speaker-dependent behaviors for both male and female speakers. The first data set
was Switchboard-1, a corpus of conversational speech collected from the telephone. I further
restricted this data to one type of telephone handset in order to limit the effects of extrinsic
channel variability. Using scores from a GMM-UBM system, I began by considering a score
confusion matrix for a set of 34 speakers with 10 conversation sides each. It was observed
that the speakers varied both in how high their average true speaker scores were, as well
as in how consistent the true speaker scores were across target-test pairs. There was also
variability in how different target models of the same speaker behaved; for some speakers,
scores were consistent across all models, while for others there was greater score variation.
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Some impostor speaker pairs were more confusable than others, and some speakers had
overall tendencies to have higher impostor scores.

Extending this analysis to include a large number of trials and speakers in Switchboard-1,
I continued to show examples of varying speaker behavior, in terms of tendencies to have high
or low target or impostor scores. For both female and male speakers, there was a correlation
(around 0.6) between a tendency to cause high impostor scores as the target speaker and a
tendency to cause high impostor scores as the test speaker.

For the Switchboard-1 data, I also investigated the possible effects of speaker sex, age,
education level, and dialect area on system scores. Using analysis of variance (ANOVA)
tests, I found significant differences between male and female score distributions. Significant
differences were also found for score distributions with impostor speakers who have less than
a five year age difference compared to impostor speakers with more than a five year age
difference. The results for education level and dialect area were inconclusive. Based on such
findings, I concluded that the most salient of these speaker demographics was sex, a result
in line with other observations regarding differences in speaker recognition behavior between
males and females.

For the second data set, I used a more recent collection of conversational and interview
speech used in the 2008 NIST Speaker Recognition Evaluation (SRE08); this data contains
much more channel variability, including not only landline and cellular telephone data, but
also data from a variety of microphones. For this corpus, I used a GMM-UBM system with
simplified factor analysis, in order to better handle the differences in channel. Once again,
a variety of speaker-dependent system performance was observed, including tendencies to
cause false alarm or false rejection errors. For both female and male speakers, 50% of the
false rejection and false alarm errors were caused by only 15-25% of the speakers.

6.2 Difficult Speaker Detection

My approach for finding difficult speakers began with a method for calculating measures
of similarity between impostor speaker pairs. Using statistics of features such as energy,
formant frequencies, fundamental frequency, and spectral slope, calculated over all speech, I
successfully obtained a variety of simple distance measures that could successfully select both
easy- and difficult-to-distinguish speaker pairs, as evaluated by differences in detection cost
and false alarm probability across a large number of systems. Of the performance measures
tested, the best feature-measure at finding the most and least difficult-to-distinguish speaker
pairs was the Euclidean distance between vectors of the mean first, second, and third formant
frequencies. Even greater success was attained by the Kullback-Liebler (KL) divergence
between pairs of speaker-specific GMMs. Furthermore, an examination of the smallest and
biggest distances (as computed by the KL divergence) revealed individual speaker tendencies
to consistently fall among the most (or least) difficult-to-distinguish speaker pairs.

I then used a set of feature statistics calculated over speech regions to train a support
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vector machine (SVM) classifier to distinguish between difficult and easy speakers. Using
scores from an automatic speaker recognition system, I ranked speakers according to the
rate at which they caused false rejection and false alarm errors, taking the 20% of speakers
with the most and least errors as difficult and easy training examples. Two separate SVMs
were trained: one to detect difficult target speakers (who will cause false rejections) and one
to detect difficult impostor speakers (who will cause false alarms). The resulting precision
and recall measures were over 0.8 for difficult impostor speaker detection, and over 0.7 for
difficult target speaker detection. Depending on the application, the detection threshold
can be tuned to improve precision, recall, or specificity in order to best suit the needs of a
particular task. At a 5% false alarm threshold, over 60% of difficult impostor speakers are
found, and over 37% of difficult target speakers. These low recall rates (especially in the
case of difficult target speakers) are indicative of the level of difficulty present in the task of
finding error-prone speakers using a single conversation side. Nevertheless, the results are
promising for a first attempt at such a task. The same approach can be taken with single
conversation sides, as with a set of conversation sides corresponding to the same speaker,
since the input feature statistics can be calculated over any number of speech samples.

6.3 Contributions and Future Work

The analysis showing the ways in which system scores depend on the speakers built upon
and added to prior error analysis work. Considering two data sets, with differing degrees of
channel and other extrinsic variability, along with two types of speaker recognition systems,
I found that in both cases, speaker-dependent behavior is observed. I also noted differences
between female and male speakers: there tend to be more confusable female impostor speaker
pairs, perhaps due to the more limited range of certain acoustic characteristics, such as
fundamental frequency, for female speech. Additionally, not only are there differences in
tendencies for certain speakers to cause errors, there is also variability at lower levels, across
different conversation sides of the same speaker. Furthermore, the tendency to produce false
alarms as the target speaker is correlated with the tendency to produces false alarms as the
impostor speaker.

Given such observations, I was then able to successfully predict difficult-to-distinguish
impostor speaker pairs through the use of distance measures calculated with statistics of
features such as fundamental frequency, formant frequencies, energy, and spectral slope. In
addition to considering feature-measures that can give relative rankings of similarity between
a pair of speakers, I also generalized the approach to simply detect a difficult individual
speaker. Distinguishing between difficult target speakers and difficult impostor speakers, I
trained SVMs using examples of the easiest and most difficult speakers in terms of causing
errors. Both of these are novel approaches that can be used to address the effects of inherent
speaker characteristics on automatic speaker recognition systems. Further exploration of
this problem may yield better feature statistics or other improved approaches for finding
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difficult speakers. Additionally, it may be possible to adapt this technique in order to detect
particular conversation sides of a given speaker that will produce errors.
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[25] Mireia Farrús, Javier Hernando, and Pascual Ejarque. Jitter and shimmer measurements
for speaker recognition. In Proceedings of Interspeech, 2007.

[26] Jacob Goldberger and Hagai Aronowitz. A distance measure between gmms based on
the unscented transform and its application to speaker recognition. In Proceedings of
Eurospeech, 2005.

[27] Craig Greenberg, Alvin Martin, Linda Brandschain, Joseph Campbell, Christopher
Cieri, George Doddington, and John Godfrey. Human assisted speaker recognition
in NIST SRE10. In Proceedings of Odyssey, 2010.

[28] Andrew Hatch and Andreas Stolcke. Generalized linear kernels for one-versus-all clas-
sification: Application to speaker recognition. In Proceedings of ICASSP, 2006.

[29] Andrew O. Hatch, Barbara Peskin, and Andreas Stolcke. Improved phonetic speaker
recognition using lattice decoding. In Proceedings of ICASSP, 2005.

[30] Qin Jin, Jiri Navratil, Douglas A. Reynolds, Joseph P. Campbell, Walter D. Andrews,
and Joy S. Abramson. Combining cross-stream and time dimensions in phonetic speaker
recognition. In Proceedings of ICASSP, 2003.

[31] Qin Jin and Alex Waibel. A naive de-lambing method for speaker identification. In
Proceedings of ICSLP, 2000.

[32] Thorsten Joachims. Making large-scale support vector machine learning practical. In
Bernhard Schlkopf, Chris Burges, and Alex J. Smola, editors, Advances in Kernel Meth-
ods - Support Vector Learning. MIT Press, 1999.

[33] Juliette Kahn, Nicolas Audibert, Solange Rossato, and Jean-François Bonastre. Intra-
speaker variability effects on speaker verification performance. In Proceedings of
Odyssey, 2010.



BIBLIOGRAPHY 88

[34] Juliette Kahn, Solange Rossato, and Jean-François Bonastre. Beyond doddington
menagerie, a first step towards. In Proceedings of ICASSP, 2010.

[35] Sachin Kajarekar, Luciana Ferrer, Kemal Sonmez, Jing Zheng, Elizabeth Shriberg, and
Andreas Stolcke. Modeling NERFs for speaker recognition. In Proceedings of Odyssey,
2004.

[36] Sachin S. Kajarekar, Harry Bratt, Elizabeth Shriberg, and Rafael de Leon. A study of
intentional voice modifications for evading automatic speaker recognition. In Proceedings
of Odyssey, 2006.

[37] Sachin S. Kajarekar, Luciana Ferrer, Elizabeth Shriberg, Kemal Sonmez, Andreas Stol-
cke, Anand Venkataraman, and Jing Zheng. SRI’s 2004 NIST speaker recognition eval-
uation system. In Proceedings of ICASSP, volume 1, pages 173–176, 2005.

[38] Patrick Kenny, Pierre Ouellet, Najim Dehak, Vishwa Gupta, and Pierre Dumouchel. A
study of interspeaker variability in speaker verification. Audio, Speech, and Language
Processing, IEEE Transactions on, 16(5):980 –988, july 2008.

[39] David Klusacek, Jiri Navratil, D.A. Reynolds, and J.P. Campbell. Conditional pronun-
ciation modeling in speaker detection. In Proceedings of ICASSP, 2003.

[40] Jody Kreiman and George Papcun. Comparing discrimination and recognition of unfa-
miliar voices. Speech Communication, 10:265–275, 1991.

[41] Hisao Kuwabara and Yoshinori Sagisaka. Acoustic characteristics of speaker individu-
ality: Control and conversion. Speech Communication, 16:165–173, 1995.

[42] Peter Ladefoged. A Course in Phonetics. Thomson Wadsworth, University of California,
Los Angeles, fifth edition, 2006.

[43] Howard Lei and Nikki Mirghafori. Word-conditioned phone n-grams for speaker recog-
nition. In Proceedings of ICASSP, 2007.

[44] Kung-Pu Li and Jack E. Porter. Normalizations and selection of speech segments for
speaker recognition scoring. In Proceedings of ICASSP, pages 595–598, 1988.

[45] Linguistic Data Consortium. Switchboard-1 corpus. http://www.ldc.upenn.edu.

[46] Linguistic Data Consortium. Switchboard-2 corpus. http://www.ldc.upenn.edu.

[47] Alvin Martin, George Doddington, Terri Kamm, Mark Ordowski, and Mark Przybocki.
The DET curve in assessment of detection task performance. In Proceedings of Eu-
rospeech, volume 4, pages 1895–1898, 1997.



BIBLIOGRAPHY 89

[48] Driss Matrouf, Nicolas Scheffer, Benoit Fauve, and Jean-François Bonastre. A straight-
forward and efficient implementation of the factor analysis model for speaker verification.
In Proceedings of Interspeech, 2007.

[49] Kirsty McDougall and Francis Nolan. Discrimination of speakers using the formant
dynamics of /u:/ in british english. In J. Trouvain and W. Barry, editors, Proceedings
of ICPhS, pages 1825–1828, 2007.

[50] National Institute of Standards and Technology. The NIST year 2004 speaker recog-
nition evaluation plan. http://www.nist.gov/speech/tests/spk/2004/SRE-04 evalplan-
v1a.pdf, 2004.

[51] National Institute of Standards and Technology. The NIST year 2005 speaker recogni-
tion evaluation plan. http://www.itl.nist.gov/iad/mig/tests/spk/2005/sre-05 evalplan-
v6.pdf, 2004.

[52] National Institute of Standards and Technology. The NIST year 2006 speaker recogni-
tion evaluation plan. http://www.itl.nist.gov/iad/mig/tests/spk/2006/sre-06 evalplan-
v9.pdf, 2004.

[53] National Institute of Standards and Technology. The
NIST year 2008 speaker recognition evaluation plan.
http://www.nist.gov/speech/tests/sre/2008/sre08 evalplan release4.pdf, 2008.

[54] National Institute of Standards and Technology. The
NIST year 2010 speaker recognition evaluation plan.
http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST SRE10 evalplan.r6.pdf, 2010.

[55] Jiri Navratil, Qin Jin, Walter Andrews, and Joseph Campbell. Phonetic speaker recogni-
tion using maximum likelihood binary decision tree models. In Proceedings of ICASSP,
2003.
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