
Automating the Debugging of Datacenter Applications

with ADDA

Gautam Altekar
Cristian Zamfir
George Candea
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-22

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-22.html

April 4, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automating the Debugging of Datacenter Applications with ADDA

Gautam Altekar1, Cristian Zamfir2, George Candea2, Ion Stoica1

UC Berkeley1 and EPFL, Switzerland2

Abstract

Debugging data-intensive distributed applications

running in a datacenter (“datacenter applications”) is

complex and time-consuming. Developers wish they had

a way to deterministically replay failed executions with

little human effort, but unfortunately no such tool exists

today. We see two challenges in replay-based debugging:

First, the clusters used to run datacenter applications con-

sist of many nodes, so the nondeterminism resulting from

multithreaded execution on a single node is compounded

by the size of the cluster. Second, datacenter applications

produce terabytes of intermediate data shipped from one

node to the next—the total data volume, itself propor-

tional to cluster size, makes full input recording for po-

tential subsequent replay infeasible.

We present ADDA, a replay-debugging system for dat-

acenter applications. We observe that these applications

often consist of a separate “control plane” and “data

plane,” and that the applications’ initial inputs are typ-

ically persisted in append-only storage for reasons unre-

lated to debugging. Building upon these observations,

ADDA leverages the control / data plane separation to

make recording of debug-critical data scalable even in

large clusters, it deterministically re-synthesizes interme-

diate data based on the (already available) initial inputs,

and performs reduced-scale replay, i.e., recreates failed

executions on just a subset of the original cluster.

We show that ADDA scales well and deterministi-

cally replays real-world failures in Hypertable and Mem-

cached. We also argue that ADDA’s techniques generalize

to a broader set of datacenter applications.

1 Introduction

More and more applications that we use on a daily

basis, such as Web search, e-mail, social networks (e.g.,

Facebook, Twitter), and video sharing are hosted in the

cloud. Furthermore, many businesses either use cloud-

based services such as Salesforce and Google Docs, or

deploy their applications in private clouds. These ser-

vices often use cluster computing frameworks such as

MapReduce, BigTable, Memcached and Cassandra that

run on commodity-hardware clusters consisting of as

many as thousands of machines. As users and businesses

are growing more dependent on these hosted services,

the frameworks and the application they use need to be

highly robust and available. To maintain high availabil-

ity, it is critical to diagnose the failures, and quickly de-

bug these applications.

Unfortunately, debugging datacenter applications is

hard. When an application failure occurs, the causality

chain of the failure is often difficult to trace, as it may

span multiple nodes. Furthermore, such applications typ-

ically operate on many terabytes of data every day and

are required to maintain high throughput, which makes

it hard to record what they do. Finally, these applica-

tions are usually part of complex software stacks that are

used to provide 24×7 services, thus taking the applica-

tion down for debugging is not an option.

A system-wide replay-based solution is the natural

option for debugging, as it offers developers the global

view of the application “on a platter:” by replaying de-

terministically a failure, one can use a debugger to zoom

in on various parts of the system and understand why the

failure occurs. If a system-wide replay was not possible,

the developer would have to reason about global (i.e.,

distributed) invariants, which in turn can only be cor-

rectly evaluated at consistent snapshots in the distributed

execution. Getting such consistent snapshots requires ei-

ther a global clock (which is non-existent in clusters of

commodity hardware) or complex algorithms to capture

consistent snapshots, such as Chandy-Lamport [10].

However, developing an automated solution for

replay-based debugging is harder for datacenter applica-

tions than for a single node, due to the inherent runtime

overheads required to do record-replay. First, these ap-

plications are typically data-intensive, as the volume of

data they need to process increases proportionally with

the size of the system (i.e., its capacity), the power of

individual nodes (i.e., more cores means more data flow-

ing through), and ultimately with the success of the busi-

ness. Recording such large volumes of data is imprac-

tical. A second reason is the abundance of sources of

non-determinism. Coordinating cluster nodes to perform

a faithful replay of a failed execution requires having

captured all critical causal dependencies between control

messages exchanged during production. Knowing a pri-

ori which dependencies matter is undecidable. A third

challenge is of a non-technical nature: as economies

1

of scale are driving the adoption of commodity clus-

ters, the tolerable runtime overhead actually decreases—

making up for a 50% throughput drop requires provision-

ing twice more machines; 50% of a 10,000-node cluster

is a lot more expensive than 50% of a 100-node clus-

ter. When operating large clusters, it actually becomes

cheaper to hire more engineers to debug problems than

to buy more machines to tolerate the runtime overhead

resulting from an automated record-replay system.

Existing work in distributed system debugging does

not offer solutions to these challenges. Systems like Fri-

day [15] address distributed replay, but do not address

the data intensive aspect, therefore they are not suitable

for data centers. No existing system can replay at this

scale and magnitude. If we are to cast off our continued

reliance on humans to solve routine debugging tasks, we

must devise smarter, more scalable debugging tools that

aid developers in quickly debugging problems.

To address these challenges, we propose ADDA

(automated debugger for data center applications), a

replay-based debugging system. Three insights make

ADDA practical. First, data center applications are al-

most always split into a control plane and a data plane,

and most bugs reside in the former [6], so a determinis-

tic replay of the control plane enables the debugging of

most problems. Second, inputs that enter data center ap-

plications are typically persisted in append-only storage

(e.g., for compliance, fault tolerance) and thus retriev-

able at the time of debugging. When combined with the

ability to replay the control plane, this property allows

ADDA to do away with recording all inputs. Third, with

suitable recording, it is possible to deterministically syn-

thesize all intermediate data sets during debugging, thus

voiding the need to record intermediate data.

In this paper, we make three contributions:

• A scalable technique for recording the behavior of

datacenter applications with low overhead;

• A practical technique for synthesizing intermediate

data to enable replay-based debugging, in a way

that is not affected by nondeterminism;

• A technique we call reduced-scale replay, which

allows developers to replay a failed execution that

occurred in the production cluster on a different

smaller cluster or on a partition of the original clus-

ter.

In the rest of this paper, we provide background nec-

essary to understand the problem and our ensuing de-

sign (§2), we present ADDA’s design (§3), our ADDA

prototype (§4), we evaluate ADDA (§5), present related

work (§6), future work (§7), and conclude (§8).

2 Overview

Many replay debugging systems have been built over

the years and experience indicates that they are invalu-

able in reasoning about nondeterministic failures [16, 15,

20, 9, 4, 14, 22, 19, 24, 21]. However, we believe no ex-

isting system meets the demands of the datacenter envi-

ronment. We discuss these requirements next.

2.1 Design Requirements

Debug Determinism: To be useful, a replay-

debugging system must be able to reproduce a produc-

tion failure along with its root cause, which we refer to

as debug determinism. It should be able to do this for

most failures that occur in production, but it need not

reproduce absolutely all failures to be considered useful

(e.g., faithful reproduction of control-plane logic is often

sufficient for datacenter systems [6]).

Whole-System Replay: The system should be able to

replay the behavior of all nodes in the distributed system,

if desired, after a failure is observed. While this is doable

on a small set of nodes, when scaling to large datacen-

ters it becomes challenging, because datacenter nodes

are often inaccessible at the time a user wants to initi-

ate a replay session. Node failures, network partitions,

and unforeseen maintenance are usually to blame , but

without the recorded information on those nodes, replay-

debugging cannot be provided. Furthermore, every layer

of the stack has to be replayed—for instance, merely us-

ing network sniffing tools like tcpdump and tcpreplay is

insufficient to construct the global view that is required

to understand what happened at the system level. Even

if logging all network messages was feasible (which is

not the case), we must account for the fact that nodes

themselves may be nondeterministic, so merely replay-

ing network messages is insufficient.

Low Record Overhead: Distributed applications of-

ten run on clusters consisting of hundreds or thousands

of machines. In such large systems, even a moderate

recording overhead can translate into significant oper-

ation and capital costs. Thus, achieving a low record

overhead should be a major goal of any replay-debugging

system for datacenter applications, even more so than for

single machine applications.

Decoupled Debugging / Availability Concerns: Im-

proving the debuggability of applications should not hurt

service availability, especially for 24×7 services. This

means that, upon failure, the operator’s main concern

should be to bring the system back up, not to keep the

system in a state that will enable developers to debug the

problem. Furthermore, runtime overhead must be rea-

sonable, and ADDA should not increase the likelihood of

2

failure or lockups. Finally, it is not reasonable to expect

the developers to either be permitted to replay a failure

on the production cluster, or have access to an identical

cluster as the production cluster. This leaves the devel-

opers with the option of reduced-scale replaying, i.e., re-

playing an entire cluster on a small set of development

nodes.

Minimal Environment Assumptions: A replay-

debugging system should be capable to record and

replay arbitrary user-level applications on modern com-

modity hardware with no administrator or developer

effort. This means that it should not require special

hardware, languages, or source-code analysis, and no

modifications to the applications themselves. The reality

of cluster-based services is that many components must

be treated as black boxes (either because there is no

source code available or they are too complicated),

but still need to be replayable. Special languages

and source-code modifications (e.g., custom APIs and

annotations, as used in R2 [17]) are undesirable because

they are cumbersome to learn, maintain, and retrofit onto

existing datacenter applications. Source-code analysis

is often prohibitive because some of the components

may be closed-source. Finally, datacenter applications

operate in a “mixed world”: while the nodes running

the application can be assumed to be traced using our

instrumentation, other nodes (e.g., those running DNS

or LDAP servers) may not be.

2.2 Insights Enabling Our Solution

In this section, we describe the main insights behind

our replay-debugging system, ADDA.

2.2.1 Control-Plane Determinism Suffices

The central observation behind ADDA is that, for debug-

ging datacenter applications, we do not need a precise

replica of the original run. Rather, it typically suffices to

reproduce some run that exhibits the original behavior of

the control plane behavior.

The control plane of a datacenter application is the

code that manages or controls data-flow and imple-

ments operations like locating a particular block in a dis-

tributed filesystem, maintaining replica consistency in

a meta-data server, or updating routing table entries in

a software router. Control-plane operations tend to be

complicated—they account for over 99% of the newly-

written code in datacenter software [12] and serve, not

surprisingly, as breeding grounds for distributed data

race bugs. On the other hand, the control plane accounts

for only 1% of all datacenter traffic [6].

In contrast, datacenter application debugging rarely

requires reproducing the same data-plane behavior. The

data plane is the code that processes the data. Examples

include code that computes the checksum of an HDFS

filesystem block or code that searches for a string as part

of a MapReduce job. In contrast with the control plane,

data-plane operations tend to be simple—they account

for under 1% of the code in a datacenter application [12]

and are often part of well-tested libraries. Yet, the data

plane is responsible for generating and processing over

99% of datacenter traffic [6].

Hence, by recording and replaying the control plane,

ADDA can reproduce most bugs and provide low over-

head recording.

2.2.2 Data-Plane Inputs Are Persistently Stored

The data that enters the system from outside is typically

stored persistently in append only file systems such as

GFS and HDFS. Thus, we can assume that these external

inputs are readily available to developers when debug-

ging the system. As a result, ADDA does not need to

record these external inputs. This is a crucial property

of datacenter applications, as it saves us from recording

prohibitive amounts of data.

3 Design

In this section we present our approach. Then we dis-

cuss the key design challenges of efficiently recording

and replaying datacenter applications, and we describe

how ADDA addresses them.

3.1 Approach

The complex yet low data-rate nature of the control-

plane motivates ADDA’s approach of relaxing its de-

terminism guarantees. Specifically, ADDA aims for

control-plane determinism—a guarantee that replay

runs will exhibit identical control-plane behavior to that

of the original run. Control-plane determinism en-

ables datacenter replay because it circumvents the need

to record data-plane communications (which have high

data-rates), thereby allowing ADDA to efficiently record

all nodes in the system.

Our system architecture is given in Figure 1. Like

other replay systems, it operates in two phases: record-

mode and replay-mode.

3.1.1 Record Mode

What ADDA records. All ADDA-enabled nodes record

control plane nondeterminism, by which we mean the or-

dering and content of control plane inputs and outputs

(I/O). We consider thread scheduling order and asyn-

chronous control-flow changes (e.g., signals and pre-

emptions) to be part of the application control plane,

3

Figure 1: ADDA’s distributed architecture and operation.

It uses the recorded control-plane I/O and persistently

stored data-plane inputs to generate, in a best effort fash-

ion, a control-plane deterministic run.

and hence they are also recorded. Control plane non-

determinism is recorded by all nodes regardless of

whether the control plane I/O originated externally (i.e.,

from an untraced node) or internally (i.e., from an ADDA-

traced node).

What ADDA does not record. ADDA-enabled nodes do

not record data-plane I/O, regardless of whether the data

plane I/O is external or internal. ADDA assumes that ex-

ternal data-plane inputs are stored persistently and avail-

able for use during replay. ADDA does not assume that

internal data-plane I/O is stored persistently. Instead, it

attempts to regenerate it in replay mode.

3.1.2 Replay Mode

ADDA’s Distributed Replay Engine (DRE) uses the

recorded control-plane I/O and the persistently-stored

data-plane input to generate a control-plane determin-

istic run. The replay is best effort: while the DRE

guarantees replay of control-plane nodes (the most

complex and bug-prone components), it may not be able

to replay multi-processor intensive data-plane nodes

(the least complex and relatively bug-free component).

Toward ADDA’s goal of best-effort replay, the DRE was

designed with the following key principles in mind:

Synthesize missing non-determinism when pos-

sible. While recording control plane non-determinism

is sufficient for replaying control plane nodes in a

distributed application, mixed control/data plane nodes

(e.g., Hypertable’s range server or a Hadoop tasktracker)

require data-plane nondeterminism to deterministically

replay even their control-plane components. The DRE

attempts to recompute this unrecorded non-determinism

in a best-effort fashion using Data Plane Synthesis

(Section 3.3).

Provide a platform for automated debugging.

Going beyond replay, the DRE also serves as a platform

for writing powerful replay-mode analysis plugins.

Namely, it exports an easy-to-program, Python-based

plugin architecture for developing sophisticated dis-

tributed analyses. In fact, we’ve used it to write several

distributed analyses such as distributed data flow and

global invariant checking (Section 3.4).

3.2 Recording Control Plane Non-determinism

To record control-plane non-determinism,ADDAmust

first identify it. In the general case, manually identify-

ing is hard – it usually requires a deep understanding of

program semantics, and in particular, whether or not the

nondeterminism emanates from control-plane code.

The key observation behind ADDA is that, in its target

domain of datacenter applications, the control plane can

often be manually identified with ease, and if not, auto-

matic methods can be successfully applied. This obser-

vation motivates ADDA’s approach of semi-automatically

classifying control-plane nondeterminism. In particu-

lar, ADDA interposes on communication channels (Sec-

tion 3.2.1) and then records the ordering and values from

only those channels that are semi-automatically classi-

fied as control-plane channels (Section 3.2.2).

3.2.1 Interposing on Channels

ADDA interposes on commonly-used inter-CPU commu-

nication channels, regardless of whether these channels

connect CPUs on the same node or on different nodes.

Socket, pipe, tty, and file channels are the easiest to

interpose efficiently as they operate through well-defined

interfaces (system calls). Interpositioning is then a mat-

ter of intercepting these system calls, keying the channel

on the file-descriptor used in the system call (e.g., as

specified in sys_read() and sys_write()), and

observing channel behavior via system call return values.

Shared memory channels are the hardest to inter-

pose efficiently. The key challenge is in detecting

sharing; that is, when a value written by one CPU is

later read by another CPU. A naive approach would

be to maintain per memory-location meta-data about

CPU-access behavior. But this is expensive, as it

would require intercepting every load and store. One

could improve performance by considering accesses to

only shared pages. But this too incurs high overhead

in multi-threaded applications (i.e., most datacenter

applications) where the address-space is shared.

4

To efficiently detect inter-CPU sharing, ADDA em-

ploys the page-based Concurrent-Read Exclusive-Write

(CREW) memory sharing protocol, first suggested in the

context of deterministic replay by Instant Replay [18]

and later implemented and refined by SMP-ReVirt [14].

Page-based CREW leverages page-protection hardware

found in modern MMUs to detect concurrent and con-

flicting accesses to shared pages. When a shared page

comes into conflict, CREW then forces the conflicting

CPUs to access the page one at a time, effectively sim-

ulating a synchronized communication channel through

the shared page. Details of our CREW implementation

are given in Section 4.2.1.

3.2.2 Classifying Channels

Two observations underly ADDA’s semi-automated clas-

sification method. The first is that, for datacenter applica-

tions, control plane channels are easily identified. For ex-

ample, Hypertable’s master and lock server are entirely

control plane nodes by design, and thus all their chan-

nels are control plane channels. The second observation

is that control-plane channels, though bursty, operate at

low data-rates [6]. For example, Hadoop job nodes see

little communication since they are mostly responsible

for job assignment – a relatively infrequent operation.

ADDA leverages the first observation by allowing the

user to specify or annotate control plane channels. The

annotations may be at channel granularity (e.g., all com-

munication to configuration file x), or at process granu-

larity (e.g., the master is a control plane process).

Of course, it may not be practical for the devel-

oper to annotate all control plane channel. Thus, to

aid completeness, ADDA attempts to automatically

classify channels. More specifically, ADDA leverages

the second observation by using a channel’s data-rate

profile, including bursts, to automatically determine if

it is a control plane channel. ADDA employs a simple

token-bucket classifier to detect control plane channels:

if a channel does not overflow the token bucket, then

ADDA deems it to be a control channel; otherwise ADDA

assumes it is a data channel.

Socket, pipe, tty, and file channels. The token-

bucket classifier on these channels are parameterized

with a token fill rate of 100KBps and a max size of

1000KBps.

Shared-memory channels. The data-rates here

are measured in terms of CREW-fault rate. The higher

the fault rate, the greater the amount of sharing through

that page. We experimentally derived token-bucket

parameters for CREW control-plane communications: a

bucket rate of 150 faults per second, and a burst of 1000

faults per second was sufficient to characterize control

plane sharing (see evaluation).

A key limitation of our automated classifier is that

it provides only best-effort classification: the heuristic

of using CREW page-fault rate to detect control-plane

shared-memory communication can lead to false nega-

tives (and unproblematically, false positives), in which

case, control plane determinism cannot be guaranteed.

In particular, the behavior of legitimate but high data-

rate control-plane activity (e.g., spin-locks) will not be

captured, hence precluding control-plane determinism of

the communicating code. In our experiments, however,

such false negatives were rare due to the fact that user-

level applications (especially those that use pthreads)

rarely employ busy-waiting. In particular, on a lock miss,

pthread_mutex_lock() will await notification of

lock availability in the kernel rather than spin incessantly.

3.2.3 Taming False Sharing with Best-Effort CREW

The CREW protocol, under certain workloads, can incur

high page-fault rates than in turn will seriously degrade

performance (see SMP-ReVirt [13]). Often this is due to

legitimate sharing between CPUs, such as when CPUs

contend for a spin-lock. More often, however, the shar-

ing is false–a consequence of unrelated data-structures

being housed on the same page. In such circumstances,

CPUs aren’t actually communicating on a channel.

Regardless of the cause, ADDA employs a simple strat-

egy to avoid high page-fault rates. When ADDA observes

that the fault-rate results in token-bucket overflow (sug-

gesting that the page is a data-plane channel), it removes

all page protections from that page and subsequently en-

ables unbridled access to it, thereby effectively turning

CREW off for that page. CREW is then re-enabled for

the page n seconds in the future to determine if data-rates

have changed. If not, CREW is disabled once again, and

the cycle repeats. When CREW is selectively disabled,

we can still provide replay, but only if the data-race free

assumption is met for those pages (ADDA records the

lock order to handle this case).

3.3 Providing Control Plane Determinism

The central challenge faced by ADDA’s Distributed

Replay Engine (DRE) is that of providing a control-plane

deterministic view of program state. This is challeng-

ing because, although ADDA knows the original control-

plane inputs, it does not know the original data-plane

inputs. Without the data-plane inputs, ADDA can’t em-

ploy the traditional replay technique of re-running the

program with the original inputs. Even re-running the

program with just the original control-plane inputs is un-

likely to yield a control-plane deterministic run, because

5

the behavior of the control-plane depends on the behav-

ior of the data-plane.

To address this challenge, the DRE employs a novel

technique we call Data-Plane Synthesis (DPS). The key

observation behind DPS is that external data plane in-

puts are persistently stored by the application and are

avaialbe for use during record time. Click-logs, for ex-

ample, are stored in HDFS by default in case they are

processed incorrectly and the processing needs to be re-

done. This observation then motivates our approach of

using the stored data plane inputs to regenerate the com-

munication on data plane channels. DPS is essential as

it enables ADDA to synthesize data plane inputs without

resorting to expensive inference techniques.

3.3.1 Regenerating Intermediate Inputs

The external data-plane inputs can be used to replay

those processes that read it directly (i.e., front-end sys-

tems). However, a transformed version of those inputs

is typically passed to internal/intermediate nodes in the

traced datacenter application by the front end system.

Consequently,ADDA cannot simply use the external data-

plane inputs to replay these intermediate nodes.

To address this challenge, we employ the classic tech-

nique of order-based replay [18] to regenerate the content

of intermediate data-plane inputs. The observation un-

derling order-based replay is that, given the original in-

puts to a computation, and the ordering of channel com-

munications on a node, one can deterministically repro-

duce the original outputs of that node.

The key challenge that ADDA must address is that

of applying order-based replay to all internal/recorded

nodes. We describe how ADDA provides order-based

replay with a short inductive proof. We being with the

base case and then employ the inductive step with two

nodes.

Base Case. The base case is that of replaying the

data-plane outputs of a single node, given access to all

inputs (either because it was logged or was persistent

external data-plane input). If shared memory interleav-

ings on the node are replayed, then it will generate the

same data-plane outputs.

Inductive Step. It suffices to show that given two

order-replayed nodes A and B, B will receive the same

inputs (and hence generate the same outputs) if B

reads messages from A using the original ordering and

message size, blocking if necessary.

3.3.2 Dealing with a Mixed World

In an ideal world, all nodes on the network would be

using ADDA. In reality, only some of the nodes (the

datacenter application nodes) are traced. External

nodes such as the distributed filesystem housing the

persistent store and the network (i.e., routers) used by

the application are not recorded and hence may behave

differently at replay time.

Persistent-Store Nondeterminism. ADDA does

not assume that the persistent store housing data-plane

inputs will be recorded and replayed: though this is

not prohibited, the persistence hypothesis (that external

data-plane input is in persistent storage) does not hold

for the persistent-store itself. Indeed, inputs to the

persistent-store are rarely accessible (e.g., clicks made

by end-users). This poses two challenges for DPS.

First, replaying applications will need to obtain data

plane inputs from the store during replay, but these origi-

nal inputs may no longer be present on the same nodes at

replay time. HDFS, for instance, may redistribute blocks

or even alter block IDs. Hence simply reissuing HDFS

requests with original block IDs is inadequate. The sec-

ond challenge is that our target application may use the

persistent store to hold temporary files: Hadoop, for in-

stance, stores the results of map jobs to temporary files

within an HDFS cluster. Since data read from these files

are part of the data-plane, ADDA will not have recorded

them. Moreover, DPS cannot synthesize them because

HDFS is not recorded/replayed.

ADDA addresses both challenges using a layer of

indirection. In particular, ADDA requires that the

target distributed application communicates with the

distributed file-system via a VFS-style (i.e., filesystem

mounted) interface (e.g., HDFS’s Fuse support or the

NFS VFS interface) rather than directly via sockets. The

VFS layer addresses the first challenge by providing

a well-defined and predictable read/write interface to

ADDA, keyed only on the target filename, hence shield-

ing it from any internal protocol state that may change

over time (e.g., block assignments and IDs). The VFS

layer addresses the second challenge by enabling ADDA

to understand that files are being created and deleted

on the DFS. This in turns allows ADDA to recreate

temporary/intermediate files on the (distributed) file

system during replay, in effect re-enacting the original

execution.

Network Nondeterminism. ADDA does not record

and reproduce network (i.e., router) behavior. This

introduces two key challenges for DPS.

First, nodes may be replayed on hosts different than

those used in the original, making it hard for DPS to

6

determine where to send messages to. For example,

ADDA’s partial replay feature enables a 1000 node clus-

ter to replay on just 100 node if the user so desires, and

some of these replay nodes will not receive their original

IP addresses. The second challenge is that the network

may non-deterministically drop messages (e.g., for UDP

datagrams). This means that simply resending a message

during replay is not enough to synthesize packet contents

at the receiving node : ADDA must ensure that the target

node actually receives the message.

As with persistent-store non-determinism, ADDA

shields DPS from network non-determinism using a

layer of indirection. That is, rather than send messages

through the bare network at replay time, ADDA sends

messages through REPLAYNET – a virtual replay-mode

network that abstracts away the details of IP addressing

and unreliable delivery. At the high level, REPLAYNET

can be thought of as a database that maps from unique

message IDs to message contents. To send a message

over REPLAYNET, then, a sending node simply inserts

the message contents into the database keyed on the

message’s unique ID. To receive the message contents,

a node queries REPLAYNET with the ID of the message

it wishes to retrieve. REPLAYNET guarantees reliable

delivery and doesn’t require senders and receivers to be

aware of replay-host IP addresses.

REPLAYNET poses two key challenges:

Obtaining Unique Message IDs. To send and re-

ceive messages on REPLAYNET, senders and receivers

must be able to identify messages with unique IDs.

These message IDs are simple UUIDs that are assigned

at record time. Conceptually, the message ID for each

message is logged by both the sender and receiver.

The receiver is able to record the message ID since the

sender piggy-backs it (using an in-band technique we

developed in the liblog system [16]) on the outgoing

message at record time. Further details of piggy-backing

are given in Section 4.2.3.

Scaling to Gigabytes of In-transit Data. In a re-

alistic datacenter setting, the network may contain

gigabytes of in-transit data. Hence, a centralized archi-

tecture in which one node maintains the REPLAYNET

database clearly will not scale. To address this chal-

lenge, REPLAYNET employs a distributed master/slave

architecture in which a single master node maintains a

message index and the slaves maintain the messages. To

retrieve message contents, a node first consult the master

for the location (i.e., IP address) of the slave holding

the message contents for a given message ID. Once the

master replies, the node can obtain the message contents

directly from the slave.

3.3.3 Coping with Unrecorded Shared-Memory Or-

dering

A key requirement of order-based replay is that com-

plete ordering information must be available to guaran-

tee replay. Unfortunately, ADDA’s recording of shared

memory interleavings may be incomplete since it dis-

ables CREW for high data-rate pages (Section 3.2.3). In

particular, the interleaving of data races on such pages

will not be recorded, hence precluding the reproducion

of computation on intermediate data-plane inputs and the

subsequently generated outputs. Hence ADDA does not

guarantee replay of mixed control/data-plane nodes in

multiprocessors.

Despite this limitation, ADDA ensures that control

plane exclusive components (e.g., Hypertable’s master

or lock server) can always be replayed independently of

whether data-plane nodes can be replayed or not. This

holds for two reasons. First all inputs on control plane

nodes are recorded, because all such inputs are control

plane in nature. Second, shared-memory data rates on

control plane nodes are, in our experience, extremely

low, and therefore ADDA is able to capture all CREW

ordering information. We argue that the ability to re-

play control plane nodes is still valuable because the con-

trol plane accounts for most bugs in the distributed sys-

tem [6].

3.4 Enabling Automated Debugging

A replay system in of itself isn’t particularly use-

ful for debugging. That’s why ADDA goes beyond re-

play to provide a powerful platform for building pow-

erful replay-mode, automated debugging tools. In par-

ticular, ADDA was designed to be extended via plugins,

hence enabling developers to write novel, sophisticated,

and heavy-weight distributed analyses that would be too

expensive to run in production. We’ve created several

plugins using this architecture, including distributed data

flow, global invariant checking, communication graph

analysis, and distributed-system visualization. Figure 2

shows the visualization plugin in action on a replay of

the Mesos cluster operating system.

In the remainder of this section we describe ADDA’s

plugin programming model, and then demonstrate its

power with a simple automated-debugging plugin: dis-

tributed data flow analysis.

3.4.1 Plugin Programming Model

ADDA plugins are written in the Python programming

language, which we selected for its ease of use and

suitability for rapid prototyping. A key goal of ADDA’s

plugin architecture is to ease the development of sophis-

ticated plugins. Toward this goal, ADDA plugin model

provides the following properties, many of which are

7

Figure 2: An ADDA visualization plugin running on

a replay of the Mesos cluster operating system. This

ncurses-based plugin provides a dynamic, birds-eye

view of the distributed system in replay, including ac-

tive threads/nodes, open communication channels (sock-

ets, pipes, files), and in-transit/received messages.

borrowed from the Friday distributed replay system [15]:

An illusion of global state. ADDA enables plugins

to refer to remote application state as though it was

all housed on the same machine. For example, the

following code snippet grabs and prints a chunk of

memory bytes from node id 2:

my_bytes = node[2].mem[0x1000:4096]

print my_bytes

The key point is that ADDA abstracts away the details of

messaging.

An illusion of serial replay. ADDA guarantees that

plugin execution is serializable and deterministic, hence

freeing the plugin-developer from having to reason about

concurrency and potentially non-deterministic plugin

results. For example, the following plugin (initialization

code omitted) is guaranteed to deterministically assign

a total ordering to all received messages in a replay

execution:

i = 0

def on_recv(msg):

print i, msg

i += 1

Access to fine-grained analysis primitives. Plugin

developers shouldn’t have to reinvent the wheel.

Thus, ADDA comes preloaded with commonly-

used, powerful, fine-grained analysis primitives.

An example of such a primitive is ADDA’s data-

flow analysis primitive. The primitive exports two

key functions (is_tainted(node, addr) and

set_taint(node, addr)) that plugins can in-

voke to determine if some origin data has influenced

and to taint the byte at addr, respectively. Other

primitives include lock-tracing, race-detection, and

formula generation (whereby one may obtain the precise

logical relationships between between program state).

These primitives require introspecting replay execution

at instruction level, which ADDA does using binary

translation (discussed in more detail in Section 4.3.2).

3.4.2 Example Plugin : Distributed Data Flow

Here we focus on the design of DDFLOW—a distributed

data-flow analysis plugin we’ve built using the ADDA

toolkit. DDFLOW’s goal is to provide a trace of all in-

structions or functions that operate, transitively, on the

contents of a (user-specified) origin data file or message.

DDFLOW is particularly useful in the context of data-loss

bugs: it lets you track the flow of your data and helps you

quickly identify where your data finally ends up – a pro-

cess that could take hours of manual searching if done

manually. DDFLOW highlights the power of ADDA plu-

gins because it is an example of a heavyweight analysis

that can most easily be done during replay (in-production

datacenter apps will timeout due to the overhead of such

heavyweight analysis).

The DDFLOW Python plugin can be given in just a few

lines (initialization code is committed):

msg_taint_map = {}

def on_send(msg):

if msg.is_tainted():

msg_taint_map[msg.id] = 1

def on_recv(msg):

if msg_taint_map[msg.id]:

local.set_taint(msg.rcvbuf)

else:

local.untaint(msg.rcvbuf)

del msg_taint_map[msg.id]

DDFLOW works by propagating taint within and

across nodes. To track taint within, DDFLOW relies on

ADDA’s data-flow primitive. To track taint across nodes,

DDFLOW maintains a Python map of tainted messages

(updated via the on_send and on_recv callbacks),

keyed on unique message IDs (provided by ADDA).

When a tainted message is received, DDFLOW updates

taint state for the receiving buffer.

8

4 Implementation

We implemented ADDA for clusters of Linux x86 ma-

chines (e.g., such as those available on EC2). ADDA con-

sists of approximately 150 KLOC of source code (40%

LibVEX and 60% ADDA + plugins). Here we demon-

strate how to use ADDA and then discuss major chal-

lenges we faced when implementing it.

4.1 Usage

One can start using ADDA in seconds. To record, sim-

ply invoke ADDA on the application binary, specifying

the location to dump log files (e.g., distributed storage)

and the location of persistent data files (e.g., an HDFS

mount):

$ adda-record --save-as=hdfs://i1/demo

--persistent-store=/mnt/hdfs/data

./mesos-master

ADDA will then record the application, taking care not to

record data-plane inputs originating from the specified

persistent storage.

To replay using the DDFLOW analysis plugin (see Sec-

tion 3.4.2), one need only specify the plugin name and

the location of previously collected recordings:

$ adda-replay --plugin=dtaint

hdfs://i1/demo/*

4.2 Lightweight Recording of User-Level Code

A key observation behind ADDA’s implementation is

that bugs in datacenter applications often originate from

within application code rather than from kernel code.

After all, datacenter applications rarely involve kernel

changes. This observation motivatesADDA’s approach of

tracing only the non-determinism needed to replay user-

level code of developer-selected application processes.

4.2.1 Interpositioning

ADDA interposes only on user-level communication

channels (sockets/pipes/files and shared-memory) of

traced processes.

Sockets/pipes/files are interposed with the help of

a ADDA’s kernel module. The module delivers a signal

for every system call invoked by a traced process, which

ADDA then handles. To address the high syscall rates of

some datacenter applications, we also intercept syscalls

made through Linux’s vsyscall page (a user-level

trampoline/layer of indirection into kernel-land), hence

avoiding the expense of signals for a majority of syscalls

(most libc calls go through the vsyscall).

Shared memory accesses are interposed with the

help of ADDA’s CREW kernel module. The module uses

virtual memory page protections to serialize conflicting

user-level page accesses.

CREW in detail. Conceptually, ADDA’s CREW im-

plementation closely follows that of SMP-ReVirt’s [14]:

it maintains shadow page tables whose permission are

upgraded and downgraded at CREW events. But unlike

SMP-ReVirt, ADDA maintains shadow page tables only

for those processes that are traced. Moreover, ADDA

does not shadow kernel pages (they are identical to

those in guest page tables) hence avoiding false sharing

in the kernel (a significant bottleneck in SMP-ReVirt).

ADDA interposes on page table operations using Linux’s

paravirt_ops interface in the same manner as Xen.

4.2.2 Asynchronous Events

A key benefit of replaying at the user-level is that ADDA

needn’t record all interrupts (e.g., device and timers) –

something that VM-level replay tools must do in order to

ensure kernel code is replayed. The only asynchronous

events ADDA must record are signals and preemptions.

The key challenge with replaying these events is in

ensuring precise delivery of events (i.e., at the same in-

struction count) during replay. A simple way to do this

is to count the number of instructions at record time and

deliver the same event at the recorded instruction count

in replay. Unfortunately, this method requires the use of

a software instruction counter (e.g., implemented via bi-

nary translation) and known to incur high runtime over-

heads.

To address this problem, ADDA leverages standard

asynchronous even replay technique. These technique

rely on the following two observations. First, one can

precisely identify a point in program execution via the

x86 triple <eip, ecx, branch count>. The second is that

one can efficiently obtain the branch count from the hard-

ware performance counters found in modern commodity

machines.

4.2.3 Piggy-backing

ADDA needs to communicate trace data (logical clocks,

unique message ids) to remote nodes during recording,

and uses piggy-backing techniques to do so. How-

ever, the naive approach of piggy-backing trace data on

each network packet results in impractical communica-

tion costs.

ADDA employs two techniques, both of which lever-

age the semantics of system calls, to reduce piggy-

backing overheads: message-level piggy-backing and

TCP-aware unique ids. The key observation behind

message-level piggy-backing is that data plane applica-

9

tions send data in large message chunks: Memcached,

for instance, performs sys_sends on 2 MB buffers.

ADDA leverages this observation by piggy-backing at the

message level rather than the packet level.

The key observation behind TCP-aware unique ids is

that datacenter applications almost always use TCP to

transfer data, and that each message in a TCP stream has

an implicit unique id within the stream (i.e., it’s sequence

number). Thus one can obtain a globally unique id for

any given TCP message using a <stream id, local id>

tuple. The stream id need only be communicated once

when the TCP connection is established, while the local

id can be computed during replay based on the ordering

of messages received on the stream.

4.3 Distributed Replay and Analysis

4.3.1 Serial Replay

The current implementation of ADDA provides the illu-

sion of serial replay by actually replaying nodes serially:

only one thread at any given node is allowed to execute at

a time. Though simple to implement and verify, the un-

desirable consequence of this implementation decision is

that replay slowdown will increase linearly with the num-

ber of thread/nodes being replayed. That is, 1000 nodes

will take approximately 1000x as long to replay, even if

replay is distributed over 1000 nodes!

We are currently exploring parallelization techniques

that offer high concurrency levels while preserving the

illusion of serial plugin execution (serializability). In

particular, the main challenge is to provide plugin call-

backs with a serializable view of distributed state. The

current goal is obtain serializability with a simple two-

phase locking procedure, using per-page locks. If lock-

ing turns out to be a bottleneck, the database literature

on concurrency control is rife with other serializability

techniques.

4.3.2 Fine-Grained Analyses

ADDA plugins have access to a variety of fine-grained

analysis primitives such as data-flow tracking and in-

struction tracing. Under the hood, ADDA implements

these primitives by binary translating the replay execu-

tion. The binary translation is done by LibVEX, an

open-source binary translator that offers an easy-to-use

RISC-style intermediate representation for performing

instruction-level analyses. Each analysis primitive, then,

is implemented as a LibVEX analysis module,

A key challenge in binary translated replay is that

LibVEX is neither complete nor precise. It is incom-

plete in that, it does not simulate operations on hardware

performance counters. This is a problem because we

rely on performance counters to tell us when to deliver

asynchronous events during replay. ADDA addresses this

problem by adding branch counting emulation support to

LibVEX (in the form of a module that counts branches

in software).

LibVEX is imprecise in that, even though it supports

FPU emulation, it can only do so with 56-bit preci-

sion. Thus the results of FPU computation done in bi-

nary translation may not be the same as those 64-bit

FPU computations done in record-mode (i.e., under di-

rect execution), often causing replay-mode divergence.

We workaround this problem, with some penalty, by bi-

nary translating FPU operations (and only FPU opera-

tions) even during record mode. Luckily, datacenter ap-

plications are usually not FPU intensive. To detect FPU

operations, we set the appropriate bits in the x86 con-

trol register, hence causing subsequent FPU operations

to trap.

5 Evaluation

In this section we aim to answer the following ques-

tions: a) Is ADDA effective in debugging real-world

problems occurring in real-world data center applica-

tions? (§5.1) b) Is ADDA’s recording overhead tolerable,

and how does it scale with cluster size, input data vol-

ume? (§5.2) c) Is ADDA efficient in replaying failed exe-

cutions for debugging? (§5.3).

5.1 Experience

In this section we describe how we used ADDA to

succesfully reproduce and debug bugs in Hypertable [1].

Hypertable [1] is an open source high performance data

storage designed for large-scale data-intensive tasks and

is modeled after Google’s Bigtable [11]. Hypertable is

deployed at Baidu, the leading search services in China

and the Rediff online news provider.

5.1.1 Data Loss in Hypertable

We used ADDA to debug a previously-solved Hypertable

defect [2] that causes updates to a database table to be

lost when multiple Hypertable clients concurrently load

rows into the same table. This bug is hard to repro-

duce and its root cause spans across multiple nodes. The

load operation appears to be a success—neither clients

nor slaves receiving the updates produce error messages.

However, subsequent dumps of the table do not return

all rows—several thousand are missing. The data loss

results from rows being committed to slave nodes (i.e.,

Hypertable range servers) that are not responsible for

hosting them. The slaves honor subsequent requests for

table dumps, but do not include the mistakenly com-

mitted rows in the dumped data. The committed rows

are merely ignored. The erroneous commits stem from

a race condition in which row ranges migrate to other

slave nodes at the same time that a recently received row

10

within the migrated range is being committed to the cur-

rent slave node.

Reproducing this failure required 8 concurrent clients

that insert 500MB data into the same table, after which

they check the consistency of the table. We recorded

several executions with ADDA until the failure was

reproduced—the recording overhead was similar to the

one in Figure 6. Afterwards, we replayed the failure with

ADDA in our development single-machine setup. We in-

serted breakpoints during row range migration, where we

suspected the root-cause is located and we observed the

data race occurring deterministically. ADDA’s ability to

reliably replay the failure combined with the bird’s eye

view of the entire system made debugging substantially

easier and faster.

5.1.2 Hypertable Hang Under Memory Pressure

We accidentally discovered a new bug in Hypertable

while recording various workloads with ADDA. We no-

ticed that occasionally Hypertable clients timed-out and

the system became unresponsive. This failure was hard

to reproduce without ADDA, so we recorded subsequent

executions with ADDA until the error manifested again.

It turned out that the error would manifest when the ma-

chine where the Hypertable master server was running

experienced memory pressure and a memory allocation

failed, which in turn hanged the master. Once it recorded

the failed execution, ADDA’s deterministic replay and the

visualization plugin helped to quickly identify that nodes

were trying to connect to the master, which was not mak-

ing any progress. We identified the failed memory al-

location, which explained the random Hypertable hangs

that we were experiencing. On subsequent analysis, we

discovered that particular cluster machine was acciden-

tally configured without a swap partition, making mem-

ory allocations more likely to fail.

5.2 Recording Efficiency

We ran all experiments in a cluster with 14 machines

with 2 Intel Xeon 3.06GHz processors, 2GB of RAM,

two 7200RPM drives in RAID 0, running 32-bit Linux

2.6.29. The machines are in a single rack, have 1Gbps

NICs, and are interconnected by a single 1Gbps switch.

The size of the cluster may not be representative of

the size of current data centers, however, we used the

largest cluster that was available to us and in which we

had access to the bare-metal hardware. We could not

use a virtualized environment such as EC2 because we

needed access to the hardware branch counter in order to

replay asynchronous events (§4.2.2).

We measured ADDA’s recording performance versus

the slowdown of the naive approach that records all in-

puts, in order to show the benefits of REPLAYNET. To

simulate the naive approach, we configured ADDA to

log all inputs. We first evaluate the single processor

case (§5.2.1), then the logging overhead (§5.2.2) and

then the multiple CPU case (§5.2.3).

5.2.1 Runtime Overhead

We first evaluate the single processor case, therefore the

CREW protocol was not used. To use a single CPU, we

set the CPU affinity to a single CPU for both the native

and the recorded systems.

Memcached Memcached [3] is a high-performance,

distributed memory object caching system, typically

used for speeding dynamic web applications by alleviat-

ing database load. Memcached is used by online services

providers such as Youtube, Wikipedia, Flickr, etc.

To evaluate the efficiency of recording a memcached

deployment, we simulated a photography blog Web ap-

plication in which memcached is used by the user-facing

Web application server to cache the files containing the

photos. This setup resembles the Facebook photo stor-

age [7], in which memcached is used to reduce latency.

We assume that the photos are stored in persistent stor-

age (i.e., HDFS) and the clients copy them from persis-

tent storage to the memcached servers. We used vari-

ous setups with a varying number of memcached servers,

number of clients, and total input sizes. Each server and

client run on separate machines. Each client randomly

selects one of the memcached servers to either write or

read a photo—reads are selected with 90% probability

since reads are predominant in Facebook’s daily photo

traffic [7].

ADDA’s recording overhead with varying size of the

input from persistent storage (Figure 3) is between 18%

and 23%. On the other hand, the naive approach imposes

a high overhead: between 100% and 125%. This shows

the benefits of REPLAYNET: logging all inputs causes

the naive approach to have up to 5 times higher runtime

overhead than ADDA.

For this experiment we used a setup consisting of 4

memcached servers and 7 clients, each client having 4

threads. Slowdown is measured in terms of reduction

in client throughput. In the baseline execution, clients

achieve a maximum throughput of 68MB/s, correspond-

ing to 68 memcached operations per second. The photos

were configured to have a fixed size of 1MB, they were

randomly generated and previously stored in the clients’

local disks before starting the experiment.

Figure 4 shows ADDA’s scalability with the number of

nodes in the system. We varied the number of recorded

nodes by increasing the number of memcached clients.

Each client connects to a shared pool of 4 memcached

servers. The slowdown is measured in terms of reduction

in client throughput.

11

 25
 50
 75

 100
 125
 150

 500 1000 1500 2000 2500 3000 3500

S
lo

w
do

w
n

[%
]

Total input size [MB]

Recording slowdown vs. input size for Memcached

ADDA
Naive approach

Figure 3: Recording slowdown in Memcached while

varying the total size of the input from persistent storage.

This experiment shows that ADDA’s overhead is be-

tween 20% and 65% and scales well with the number

of nodes in the system. Moreover, ADDA scales well

when the servers operate under heavy load. The naive

approach has high overhead (up to 250%). However,

as the memcached servers become saturated, clients be-

come less loaded. Since in the naive approach clients

are responsible for most of the logging (the workload is

dominated by reads, which are fully recorded by clients),

the impact of heavy logging for the naive approach de-

creases.

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10

S
lo

w
do

w
n

co
m

pa
re

d
to

 n
at

iv
e

[%
]

Clients

Recording slowdown vs. # clients for Memcached

ADDA
Naive approach

Figure 4: Recording slowdown for Memcached with

varying number of clients.

Hypertable The Hypertable workload consists of sev-

eral clients inserting a log of Web search queries and

click streams into a Hypertable table. A query is sev-

eral hundred bytes long and contains the timestamp, user

id, the query keywords and the links clicked by the user.

The clients perform a workload that would be performed

by a user-facing component of the data center, such as a

Web application server.

The range servers store the content of the database ta-

bles in memory and also dump them to a distributed file

system such as HDFS. Because ADDA currently requires

that the target application uses a VFS-like interface to

communicate with the file system (§3.3.2) we used a ded-

icated machine in our cluster as a dedicated shared file

system for the range servers. In future work we intend to

use the HDFS Fuse support and fix a bug in Hypertable

that prevented us from experimenting with this setup.

Figure 5 shows that for Hypertable, the recording

overhead scales well with the size of the input from per-

sistent storage. The overhead, measured as transaction

throughput, is in between 10% and 50%. On the other

hand, the naive approach has higher overhead, which in-

creases up to 90% for the largest total input size. In this

experiment, Hypertable was configured with one master,

one lock server, 3 range servers, and 7 clients that placed

a heavy load on the system. Each client used an input file

ranging from 30MB to 150MB. Clients read the input file

from persistent storage.

 0

 20

 40

 60

 80

 100

 120

 300 600 900 1200 1500

S
lo

w
do

w
n

[%
]

Total input size [MB]

Recording slowdown vs. input size for Hypertable

ADDA
Naive approach

Figure 5: Recording slowdown for Hypertable with vary-

ing size of the input from persistent storage.

Figure 6 shows that ADDA scales well with the num-

ber of recorded nodes and the overhead is in between

40% and 50%. Due to higher logging rates, the naive ap-

proach has higher overhead. In this experiment, Hyper-

table was configured with one master, one lock server, 2

range servers, and a number of clients ranging from 3 to

9. Each component was run on a separate machine. The

overhead is measured in terms of throughput loss.

 20

 40

 60

 80

 100

 120

 3 6 9

S
lo

w
do

w
n

co
m

pa
re

d
to

 n
at

iv
e

[%
]

Clients

Recording slowdown vs. # clients for Hypertable

ADDA
Naive approach

Figure 6: Recording slowdown in Hypertable with vary-

ing number of clients.

5.2.2 Log Size

ADDA has low logging rates. Figure 3 shows ADDA’s

log size for a memcached workload, while varying the

total input size read from persistent storage. The naive

approach also records internal inputs, therefore it pro-

duces an order of magnitude larger logs. For both sys-

tems the log size increases linearly with the input size,

yet the slope is larger for the naive approach. Moreover,

12

memcached is designed so that server instances do not

communicate with each other. If this would have been

the case, we would expect that the log size for the naive

approach to increase even more, due to the communica-

tion between memcached servers, while ADDA does not

record this communication.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 500 1000 1500 2000 2500 3000 3500

Lo
g

si
ze

 [G
B

]

Total input size [MB]

Log size vs. input size for Memcached

ADDA
Naive approach

Figure 7: Log size for recording a memcached workload

with varying input size from persistent storage. ADDA

has 10 times smaller logs compared to the naive ap-

proach.

Hypertable exhibits a similar behavior (Figure 8). We

expect these results to improve even more with a sim-

ple optimization: our current REPLAYNET prototype al-

locates a static 15KB entry for recording the meta-data

associated with an I/O system call. However, this is typi-

cally too large: for Hypertable, log entries are dominated

by zeros, which we could compress to 100X smaller size.

By adding support for variable entry sizes, we expect

ADDA’s logging rates to improve substantially.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 200 400 600 800 1000 1200 1400 1600

Lo
g

si
ze

 [G
B

]

Total input size [MB]

Log size vs. input size for Hypertable

ADDA
Naive approach

Figure 8: Log size for recording a Hypertable workload

while varying the input size from persistent storage.

5.2.3 Performance for Multi-Processors

To validate our assumption about applying CREW selec-

tively to control plane components such as the Hyper-

table master and lock server, we enabled CREW in the

experiment in Figure 6. Thus, the control plane com-

ponents were allowed to take advantage of both CPUs

of their machines. In both cases, ADDA had the same

slowdown compared to the baseline, showing that using

CREW for the control plane components in Hypertable

does not slow down the execution even when the system

is under heavy load. This is confirmed by the small rate

of CREW faults (at most 150 faults / sec) for each of

these components.

To validate the assumption that CREW imposes a high

overhead for the data plane components of the system,

we recorded also the Hypertable data plane components

(the range servers) using CREW and observed overheads

larger than 400%.

These experiments confirm our assumptions that turn-

ing on CREW for the control plane components is likely

to impose low overhead, while having CREW turned on

all the time for data plane components is not practical for

production use. However, this assumption may not hold

for all data center applications and we are in the process

of evaluating this further.

5.3 Replay

Replay is serial, therefore replay slowdown is ex-

pected to be proportional with the number of recorded

nodes. For replaying a memcached workload similar to

the one in the previous experiments with 3 nodes (one

server and 2 clients) replay was 2.46 × slower than the

original run. We also replayed a Hypertable workload

similar to the previous experiments. The Hypertable

setup consisted of a lock server, a master server, two

range servers, and 3 clients. The replay was 2.7× slower

than the original run. Both experiments were done for

the case when all inputs were recorded due to a small

bug that made prevented us from using REPLAYNET.

However, we observed that typically for these applica-

tions, replay slowdown using REPLAYNET is similar to

the replay slowdown of the naive approach. In both these

experiments the replay was not n times slower, where n

is the total number of nodes. This is because replay can

fast forward some operations by eliminating “dead cy-

cles”. For instance, operations such as sleep or block-

ing I/O can complete faster during replay. In real setups,

such dead cycles may also arise from multiple applica-

tions sharing the same node.

To verify that replay is correct, we also recorded

each workload using a debug build of ADDA, which also

records the inputs and outputs of each recorded node.

During replay, it checks that the replayed nodes produce

the same outputs as the ones that were recorded and that

the branch counter of each system call is the same as dur-

ing recording.

6 Related Work

Classical single node replay systems such as Instant

Replay [18], VMWare [4], and SMP-ReVirt [14] may be

adapted for, large-scale distributed operation. Neverthe-

less, they are unsuitable for the datacenter because they

13

record all inbound disk and network traffic. The ensu-

ing logging rates, amounting to petabytes/week across

all datacenter nodes, not only incur throughput losses,

but also call for additional storage infrastructure (e.g.,

another petabyte-scale distributed file system). More-

over, systems like WiDS [20] and Friday [15] provide

distributed replay but do not address the data-intensive

aspect.

Several relaxed-deterministic replay systems (e.g.,

PRES [22] and ReSpec [19]) and hardware and/or com-

piler assisted systems (e.g., Capo [21], CoreDet [8]) sup-

port efficient recording of multi-core, shared-memory

intensive programs. But like classical systems, these

schemes still incur high record-rates on network and disk

intensive distributed systems such as datacenter systems.

R2 [17] provides an API and annotation mechanism

by which developers may select the application code that

is recorded and replayed. Conceivably, the mechanism

may be used to record just control-plane inputs, thus in-

curring low recording overheads. However, such anno-

tations require considerable developer effort to manually

identify the components that need to be recorded. On the

other hand, ADDA makes this selection automatically.

Recent replay-debugging systems such as Sher-

Log [23], ODR [5], and ESD [24] can efficiently replay

some single-node applications while recording very little

information, or no information at all. These systems use

inference to recompute the missing runtime information.

However, these systems were not designed for distributed

operation, much less datacenter applications. Even for

single node replay, these systems have to reason about

an exponential number of program paths, which limits

their ability to replay at the scale of the data center.

7 Future Work

Our on-going short term implementation goals are to

test ADDA with other popular data center applications,

such as Hadoop and Cassandra. Moreover, we are work-

ing on parallel replay. This can be done by allowing

nodes to proceed in parallel during replay and enforce

the relative order given by the Lamport clocks that ADDA

already records.

ADDA supports multi-processor recording, but does

not yet support multi-processor replay. We plan to add

this in future work. Replaying CREW events is not

challenging in itself if all CREW events are recorded.

However, if ADDA would use control plane code selec-

tivity for CREW recording, it may miss some impor-

tant CREW events, therefore replay may not be possible.

In this case, a solution can be to use the inference ap-

proaches used in PRES [22] or ODR [5], at the expense

of larger replay times.

8 Conclusion

In this paper we presented ADDA, a replay-debugging

system for datacenter applications. To achieve low over-

head recording, ADDA leverages the “control plane” and

“data plane,” separation typical in these applications, as

well as the availability of the data plane inputs in per-

sistent storage . We show that ADDA scales well, has low

overhead and logging rates, and deterministically replays

real-world failures in popular data center applications.

References

[1] Hypertable. http://www.hypertable.org/.

[2] Hypertable issue 63. http://code.google.com/p/hypertable/issues/.

[3] memcached. http://www.memcached.org/.

[4] Vmware vsphere 4 fault tolerance: Architecture and perfor-

mance, 2009.

[5] G. Altekar and I. Stoica. ODR: Output-deterministic replay for

multicore programs. In SOSP, 2009.

[6] G. Altekar and I. Stoica. Focus replay debugging effort on the

control plane. In HotDep, 2010.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a

needle in haystack: facebook’s photo storage. In OSDI, 2010.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.

Coredet: A compiler and runtime system for deterministic multi-

threaded execution. In ASPLOS, 2010.

[9] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,

M. Drinić, D. Mihočka, and J. Chau. Framework for instruction-

level tracing and analysis of program executions. In VEE, 2006.

[10] K. M. Chandy and L. Lamport. Distributed snapshots: determin-

ing global states of distributed systems. ACM TOCS, 3(1), 1985.

[11] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A dis-

tributed storage system for structured data. Proc. 7th USENIX

Symposium on Operating Systems Design and Implementation,

2006.

[12] P. Crowley. Network Processor Design: Issues and Practices.

2002.

[13] G. Dunlap. Execution replay for intrusion analysis. PhD thesis,

Ann Arbor, MI, USA, 2006.

[14] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.

Execution replay of multiprocessor virtual machines. In VEE,

2008.

[15] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Fri-

day: Global comprehension for distributed replay. 2007.

[16] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging

for distributed applications. In USENIX, 2006.

[17] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,

and Z. Zhang. R2: An application-level kernel for record and

replay. In OSDI, 2008.

[18] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging par-

allel programs with instant replay. IEEE Trans. Computers,

36(4):471–482, 1987.

[19] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.

Chen, and J. Flinn. Online multiprocessor replay via speculation

and external determinism. In ASPLOS, 2010.

14

[20] X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids checker: Combating

bugs in distributed systems. In NSDI, 2007.

[21] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: a

software-hardware interface for practical deterministic multipro-

cessor replay. In ASPLOS, 2009.

[22] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, S. Lu, and

Y. Zhou. Do you have to reproduce the bug at the first replay

attempt? – PRES: Probabilistic replay with execution sketching

on multiprocessors. In SOSP, 2009.

[23] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy.

SherLog: error diagnosis by connecting clues from run-time logs.

In ASPLOS, 2010.

[24] C. Zamfir and G. Candea. Execution synthesis: A technique for

automated debugging. In EuroSys, 2010.

15

