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Abstract

Bag-of-words (BoW) methods are a popular class of
object recognition methods that use image features (e.g.,
SIFT) to form visual dictionaries and subsequent histogram
vectors to represent object images in the recognition pro-
cess. The accuracy of the BoW classifiers, however, is often
limited by the presence of uninformative features extracted
from the background or irrelevant image segments. Most
existing solutions to prune out uninformative features rely
on enforcing pairwise epipolar geometry via an expensive
structure-from-motion (SfM) procedure. Such solutions are
known to break down easily when the camera transforma-
tion is large or when the features are extracted from low-
resolution, low-quality images. In this paper, we propose a
novel method to select informative object features using a
more efficient algorithm called Sparse PCA. First, we show
that using a large-scale multiple-view object database, in-
formative features can be reliably identified from a high-
dimensional visual dictionary by applying Sparse PCA on
the histograms of each object category. Our experiment
shows that the new algorithm improves recognition accu-
racy compared to the traditional BoW methods and SfM
methods. Second, we present a new solution to Sparse PCA
as a semidefinite programming problem using Augmented
Lagrange Multiplier methods. The new solver outperforms
the state of the art for estimating sparse principal vectors as
a basis for a low-dimensional subspace model. The source
code of our algorithms will be made public on our website.

1. Introduction
In the past decade, the exponential growth of storage ca-

pacity has encouraged people to upload personal images to
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large online image databases such as Picassa and Flickr.
The proliferation of modern smartphones equipped with
low-quality mobile cameras has also garnered interest to
endow smartphone users with the ability to automatically
recognize common objects and landmark buildings in man-
made urban environments. The existence of common ob-
jects and landmarks in these images has motivated research
in visual object recognition [7, 9, 12, 27]. Images in these
coarsely labelled databases are used to train classifiers that
can be used to recognize different object categories. To
tackle the problem of recognizing a large number of ob-
jects in large image databases, a visual-dictionary based ap-
proach has been well studied [19, 21], which have further
led to several other methods to recognize objects in both the
single-view and multi-view settings [3, 4, 8, 17, 23, 25]. Es-
sentially, most of the methods work with certain visual de-
scriptors (e.g., SIFT and its many variants) extracted from
the images to construct visual histograms, which represent
the object appearance in the images using a precomputed
visual dictionary.

Although the visual-dictionary methods have proven to
be efficient in describing object images, the accuracy of
the classifiers is often limited by the presence of uninfor-
mative image features typically extracted from the back-
ground or irrelevant image segments, such as pedestrians
and vegetation (see Figure 1 for an example). When the ir-
relevant segments take on a significant portion of an image,
the uninformative features can dominate the representation
in the visual histogram, and hence lead to inferior recog-
nition accuracy. In [24], Turcot and Lowe suggested, if a
subset of so-called useful features or informative features
can be systematically selected during the training stage, it
not only further reduces the number of visual descriptors
needed, but also significantly improves the recognition ac-
curacy. Since in man-made environments, most objects of
interest, in particular landmark buildings, are rigid objects,
3-D perspective geometry can be leveraged to select infor-
mative features that satisfy a pairwise epipolar constraint
via RANSAC. This is known as the Structure-from-Motion
(SfM) approach.
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Motivated by the literature, in this paper, we study how
to improve informative feature selection in both speed and
accuracy from possibly low-resolution, low-quality camera
networks. One major problem in enforcing the epipolar
constraint on images collected from low-power camera net-
works instead of high-end photography is that establishing
wide-baseline feature correspondence of SIFT-type features
is known to be brittle even using state-of-the-art bundle ad-
justment techniques [22]. In addition, the quality of im-
ages sampled from low-power camera sensors also presents
a challenge to reliably extract image features to describe the
appearance of interesting objects in multiple views.

We propose to address this problem by a principled
semidefinite programming (SDP) technique, known as
Sparse Principal Components Analysis (Sparse PCA) [30].
As an extension of the popular PCA method, Sparse PCA
addresses a drawback of classical PCA that the principal
vectors (PVs) as a basis of a low-dimensional subspace typ-
ically have dense non-zero entries. In particular, in high-
dimensionality setting, the dense linear combinations of all
the variables make it difficult to interpret the corresponding
principal components (PCs).

In case of visual-dictionary based object recognition, the
variables in a high-dimensional histogram are associated
with the codewords that represent either informative fore-
ground features or uninformative background. We contend
that in a large-scale object image database, the subset of
informative features can be reliably selected by the sparse
coefficients in the first few PVs. The new solution is more
robust to wide-baseline camera transformation and numeri-
cally more efficient than the existing solutions of establish-
ing pairwise rigid-body correspondence.

1.1. Main Contributions
In this paper, we exploit the use of Sparse PCA as a

variable selection tool for selecting informative features
in the object images captured from low-resolution cam-
era sensor networks. Firstly, we present a scheme for us-
ing Sparse PCA with high-dimensional covariance matri-
ces constructed from visual histograms to extract a sparse
support of visual codewords for each object category. We
compare its performance with the SfM technique applied
to large-baseline, low-quality multiple-view images. Sec-
ondly, we propose a state-of-the-art algorithm to speed
up Sparse PCA using the Augmented Lagrange Multiplier
(ALM) approach [2, 26]. To mitigate the high dimension-
ality of the visual dictionary, a direct variable elimination
method called SAFE is presented to further prune out unin-
formative features for object recognition prior to the Sparse
PCA process. The experiment on synthetic data shows that
the new algorithm outperforms the previous convex pro-
gramming algorithm (DSPCA) [5] in terms of speed while
maintaining the same estimation accuracy. Finally, we per-
form object recognition experiments, which demonstrate

improved recognition by successfully suppressing uninfor-
mative features. To aid peer evaluation, the source code of
our algorithms will be made public on our website.

2. Recognition via Vocabulary Trees
In object recognition, certain local invariant features

have become a popular representation of the object images,
which can be extracted and encoded into high-dimensional
descriptors using algorithms such as SIFT [15] and SURF
[1]. In the bag-of-words (BoW) approach, these invariant
features are further quantized to form a dictionary of visual
words. All the feature descriptors in the training set are hi-
erarchically clustered into visual word clusters (e.g., using
hierarchical k-means [13]). This hierarchical tree is com-
monly referred to as a vocabulary tree [19]. The size of a
vocabulary tree for a large database ranges from thousands
to hundreds of thousands. For example, in this paper, we
use hierarchical k-means to construct 1,000-D vocabularies
for our training image database, with a branch factor of k =
10 and four hierarchies.

To start the training process, feature descriptors in each
training image are propagated down the vocabulary tree to
form a BoW model for the image. Then a term-frequency
inverse-document-frequency (tf-idf ) weighted visual his-
togram y is defined for each training image [19]. For each
object category, i = 1 · · ·C, m weighted histograms are
generated from the m training images of that category re-
spectively: Ai = {y1,y2, · · · ,ym}. All the C sets form
the training set, A = {A1, A2, · · · , AC}.

During the testing phase, feature descriptors are ex-
tracted for the query image and propagated down the
vocabulary tree by the same fashion to obtain a single
weighted query histogram q. Using the simplest nearest-
neighbor classifier,1 the query image is then given a rel-
evance score s based on the `1-normalized difference be-
tween the weighted query and the ith training set Ai:

s(q, Ai) = min
yj∈Ai

‖ q

‖q‖1
−

yj
‖yj‖1

‖1. (1)

Finally, the label of the visual histogram q is assigned as the
object category that achieves the minimal relevance score:

label(q) = arg min
i∈[1···C]

s(q, Ai). (2)

2.1. Failure of SfM on low-quality images
It was suggested by Turcot and Lowe [24] that the accu-

racy of object recognition in large image databases can be
improved by suppressing uninformative visual words that
typically represent irrelevant image background. In [24],
SfM techniques were used to enforce pairwise epipolar con-
straints of rigid objects. The authors argued that, between

1In the literature, more sophisticated classifiers such as SVMs have also
been used. Nevertheless, this is not the focus of the paper.



(a) Original SURF feature detection results.

(b) Informative features detected by SfM.

(c) Informative features selected by thresholded PCA based on the first two leading PVs.

(d) Informative features selected by Sparse PCA based on the first two leading PVs.
Figure 1. Comparison of informative feature selection on low-quality multiple-view images. A subset of 16 training images of a building
(Campanile at UC Berkeley) in the BMW database [17] are used for training. For each image pair in SfM, SURF features are deemed
informative if the consensus of the corresponding epipolar constraint exceeds 25% of the total feature pairs. For thresholded PCA, we
manually assign small-valued entries to zero in PVs in attempt to achieve the same sparsity as Sparse PCA. The best results to identify
informative features on the Campanile are given by Sparse PCA.

a pair of images that render the same object in space, un-
informative features can be easily pruned out as outliers
w.r.t. a dominant epipolar constraint by RANSAC. Along
similar lines, Philbin et al. [20] introduced a Geometric La-
tent Dirichlet Allocation model for constructing image adja-
cency graphs. Subsequently, rich latent topic models were
built from the adjacency graphs with the identity and lo-
cations of visual words specific to the objects, thereby re-
jecting uninformative visual words. Knopp et al. [11] aug-
mented query images with rough geolocation information
combined with wide-baseline feature matching to detect
and suppress uninformative features before invoking vocab-
ulary tree based object recognition.

All these methods rely on the accuracy of wide-baseline

feature matching to establish pairwise epipolar geometry.
However, they tend to fail when the quality of the images
in the database is very poor, as is the case with images
captured from mobile cellphones or distributed camera net-
works. Furthermore, man-made landmarks such as build-
ings often have repetitive texture and patterns that tend to
confuse feature correspondence algorithms (e.g., Bundler
[22]). Figure 1 (b) shows an example where SfM fails at de-
termining the wide-baseline transformation across images
of an object captured from multiple vantage points. More
examples can be found in Figure 4 later.



3. Identifying Informative Features
Classical PCA is a well established tool for the analysis

of high-dimensional data. For a data matrix A, PCA com-
putes the PCs via an eigenvalue decomposition of its empir-
ical covariance matrix Σ. It has also been observed that in
general the entries of the corresponding PVs are dense and
nonzero. In certain applications, it is desirable to obtain
PVs that can explain maximum variability in the data A us-
ing linear combinations of just a few nonzero variables, and
hence improves interpretability of such data. It is with this
motivation that Sparse PCA was developed [5, 30] and has
proven to be a very useful tool for identifying focalized hid-
den information in data where the coordinate axes involved
have physical interpretations.

In the BoW approach to object recognition, each coor-
dinate axis in the visual histogram corresponds to a partic-
ular visual word in the vocabulary tree. We contend that
the visual words that explain maximum variability in data
corresponding to each object category can be regarded as
informative features for object recognition. In order to use
Sparse PCA to identify these visual words, an empirical co-
variance matrix must first be computed for each object cat-
egory in the database.

Let us consider m available training images of an ob-
ject category. Using the constructed vocabulary tree learned
from all the categories, the SURF descriptors in each im-
age are converted into a visual histogram y ∈ Rn. The
m vectors {yj} are then normalized to have unit length
and centered, and grouped into a data matrix: A =
[ỹ1, ỹ2, · · · , ỹm] ∈ Rn×m. The empirical covariance
matrix is then computed from this data matrix as ΣA =
1
mAA

T .
Sparse PCA that computes the first sparse eigenvector of

ΣA optimizes the following objective [30]:
xs = arg maxxTΣAx subj. to ‖x‖2 = 1, ‖x‖1 ≤ k.

(3)
We denote the indices of the non-zero coefficients in xs by
I (i.e., the nonzero support of xs). These indices corre-
spond to the visual words that explain maximum variability
in A, and are subsequently used in the object recognition
process (explained in Section 6).

In practice, it is common that the leading first sparse PV
may not be sufficient for obtaining a variable support, and it
is desirable to further estimate a few subsequent sparse PVs
as well. In optimization, it is a common practice to esti-
mate succeeding eigenvectors by sequentially deflating the
covariance matrix with the preceding ones. Several tech-
niques have been explored for reliably deflating a covari-
ance matrix for Sparse PCA [16]. We adopt a simple tech-
nique called Hotelling’s deflation that eliminates the influ-
ence of the first sparse PV to obtain a deflated covariance
matrix Σ′A as follows:

Σ′A = ΣA − (xs
TΣAxs)xsxs

T . (4)

Then, the second sparse eigenvector x′s of ΣA becomes
the leading sparse eigenvector of Σ′A, and can be estimated
again by Sparse PCA (3). In our experiment, we observe
that the first two sparse PVs are sufficient for selecting in-
formative features that lie on the foreground objects in the
BMW database (as shown in Figure 1 and 4). Finally, If we
denote the indices of the non-zeros in the second PV x′s as
I ′, then the union I∪I ′ provides the support corresponding
to the informative features of a particular category.

For pedagogical purposes, we also compare the variable
selection performance of thresholded PCA in Figures 1 and
4. To obtain a sparsified PCA support set, we perform PCA
on the same covariance matrix ΣA and pick the top k indices
of the corresponding first and second PVs with highest ab-
solute value as the informative features. Here, k is chosen
as the same cardinality of the corresponding Sparse PVs for
the same category. The examples clearly show that major-
ity of the selected features do not represent the foreground
objects.

4. Speeding up Sparse PCA using ALM
Sparse PCA has been an active research topic for over

a decade. Notable approaches include SCoTLASS [10],
SLRA [29], and SPCA [30], all of which aim at finding
modified PVs with sparse entries. However, one draw-
back of all the above algorithms is that the formulation
requires solving nonconvex objective functions. Recently,
d’Aspermont et al. [5] derived an `1-norm based semidefi-
nite relaxation for Sparse PCA called DSPCA, and it is cur-
rently the most widely known convex formulation of the
problem. This algorithm, however, has a slow convergence
rate that is a major bottleneck when analyzing high dimen-
sional data. Augmented Lagrange multiplier (ALM) based
algorithms have recently gained a lot of popularity due to
their rapid convergence and speed in `1-minimization [26]
and Robust PCA [14] problems. These have motivated us
to develop a new algorithm for solving the semidefinite re-
laxation form of Sparse PCA using ALM.

We begin by showing Sparse PCA can be converted to
a SDP [5]. Given an empirical covariance matrix Σ ∈ Sn,
with n representing the dimensionality of the data, Sparse
PCA solves the following objective:

max
‖x‖2≤1

xTΣx− ρ‖x‖0, (5)

where ρ > 0 is a scalar parameter controlling the sparsity in
x. By following the `1-norm relaxation and lifting proce-
dure for semidefinite relaxation, and dropping a nonconvex
rank constraint, we can rewrite (5) as [5]:

max
X

Tr(ΣX)− ρ‖X‖1 : Tr(X) = 1, X � 0, 2 (6)

where X = xxT is a matrix variable. Duality allows us to
rewrite this problem as a SDP:

2In this paper, ‖X‖1 represents the entrywise norm: 1T |X|1.



min
U

λmax(Σ + U) : − ρ ≤ Uij ≤ ρ. (7)

As presented in [5], assuming Σ is fixed and given, the max-
imum eigenvalue function λmax(·) can be approximated by
a smooth, uniform objective (i.e., with Lipschitz continuous
gradient):

fµ(U) = µ log(Tr exp((Σ + U)/µ))− µ log(n), (8)
∇fµ(U) = exp((Σ + U)/µ)/Tr(exp((Σ + U)/µ)), (9)

where µ = ε/2 log(n) produces an ε-approximate solution.
With this approximation, (7) can be rewritten as:

min
U

fµ(U) : − ρ ≤ Uij ≤ ρ. (10)

Based on the above SDP formulation, next we consider
speeding up Sparse PCA via an ALM approach [2]. The
basic idea is to eliminate the constraints and add to the cost
function a penalty term that prescribes a high cost to in-
feasible points. This augmented cost function is called the
augmented Lagrangian function. In our case, the box con-
strained convex problem of (10) can be written in an uncon-
strained form as:

F (U, Y )
.
= min

U
{fµ(U) +

∑
1≤i,j≤n

P (Uij , Yij , c)}, (11)

where Yij , 1 ≤ i, j ≤ n represents the Lagrange variable, c
determines the severity of the penalty, and

P (u, y, c) =


y(u− ρ) +

c

2
(u− ρ)2 if ρ− y

c ≤ u,

y(u+ ρ) +
c

2
(u+ ρ)2 if −ρ− y

c ≥ u,

y2

2c
otherwise.

(12)
The algorithm for Sparse PCA using ALM (SPCA-

ALM) is presented in Algorithm 1. Note that in each it-
eration of the outer loop of the algorithm, we need to solve
the unconstrained minimization problem in (11), which has
no closed-form solution. Thus, we employ Nesterov’s first
order gradient technique [18]. Once this augmented La-
grangian function is minimized, the Lagrange multipliers
Y will be updated using the rule:

Y k+1
ij =


Y kij + ck(Ukij − ρ) if Y kij + ck(Ukij − ρ) > 0,

Y kij + ck(Ukij + ρ) if Y kij + ck(Ukij + ρ) < 0,

0 otherwise.
(13)

After the algorithm converges, the primal variable is given
by the gradient in (9), i.e.,Xk = ∇fµ(Uk). Then the sparse
principal component is recovered as the leading eigenvector
of Xk.

4.1. Performance
We have evaluated our SPCA-ALM algorithm by com-

paring its performance against the DSPCA solver [5]. Both

Algorithm 1: SPCA-ALM
Input: Covariance Σ and ρ > 0.

1: U1 ← 0, Y 1 ← 0, X1 ← 0, c1 ← 1.
2: while not converged (k=1,2,3,...) do
3: t1 ← 1, V 1 ← Uk, W 0 ← Uk, Z ← rand(n, n).
4: α0 ← ‖V 1−Z‖F

‖∇F (V 1,Y k)−∇F (Z,Y k)‖F .
5: while not converged (l=1,2,3,...) do
6: Find smallest i ≥ 0 for which
7: F (V l, Y k)− F (V l − αl−1

2i ∇F (V l, Y k), Y k) ≥
αl−1

2i+1 ‖∇F (V l, Y k)‖F .
8: αl ← 2−iαl−1, W l ← V l − αl∇F (V l, Y k).
9: tl+1 ← (1 +

√
4tl

2
+ 1)/2.

10: V l+1 ←W l + tl−1
tl+1 (W l −W l−1).

11: end while
12: Uk+1 ←W l

13: Update Y k+1 using the update rule (13).
14: Xk+1 ← ∇fµ(Uk+1).
15: ck+1 ← 2k.
16: end while
Output: Sparse principal vector, xs ← leading
eigenvector of Xk.

algorithms have been implemented in MATLAB and bench-
marked on a 2.6 GHz Intel processor with 4 GB memory.
We generate synthetic data of varying dimensionality as fol-
lows. First, in the n-dimensional vector space, 10% of its
indices are selected as nonzero support. Next, the values of
the nonzero coefficients are drawn from an independent and
identically distributed Gaussian x0(i) ∼ N(0, 200). Fi-
nally, random noise ε ∼ N(0, 1) is added to x0 to form
a noisy version of the empirical covariance matrix, Σ =
(x0+ε1)(x0+ε1)T . This covariance matrix, along with an
optimal choice of the parameter ρ to encourage sparsity, is
provided to both the SPCA-ALM and DSPCA algorithms.
The process repeats 10 times for each problem dimension
n, while n varies from 100 to 500 and the average speed
and precision are computed for each n. Figure 2(a) com-
pares the speed of the two algorithms, while Figure 2(b)
compares the estimation error of the first estimated sparse
principal vector. The simulation shows SPCA-ALM con-
verges much faster than DSPCA (for example, at n = 500,
SPCA-ALM is about 10 times faster), while maintaining
approximately the same reconstruction accuracy.

5. Variable Elimination via SAFE
In this section, we further examine a dimensionality

reduction technique as a preprocessing step to speed up
Sparse PCA. Particularly in object recognition, the covari-
ance matrix Σ often can be of high dimension (e.g., 1000
and higher). Directly calling SPCA-ALM may still be



(a) Speed vs Data Dimension (b) Estimation Error vs Data Dimension

Figure 2. A comparison of SPCA-ALM and DSPCA using simulated data.

Figure 3. SAFE feature elimination process. Top: The red rows
and columns of a sample covariance matrix Σ are eliminated to
form new covariance matrix Σ̃, as the corresponding variances are
less than chosen ρ = 0.1. Bottom: The entries of the correspond-
ing indices are subsequently zeroed out in xs.

very time consuming. To mitigate this problem, we invoke
a feature elimination method presented in [6, 28], called
SAFE. The method allows to quickly eliminate variables
in problems involving a convex loss function and a `1-norm
penalty, thereby leading to substantial reduction in the num-
ber of variables prior to running optimization. The fol-
lowing theorem [6, 28] states the SAFE method applied to
Sparse PCA. An illustration of this process is shown in Fig-
ure 3.

Theorem 1 (SAFE Variable Elimination for Sparse PCA).
Given a covariance matrix Σ, denote σk as its kth diagonal
entry. For the Sparse PCA problem (5), if ρ > σk, then the
kth element of the solution xs will not be in the sparse sup-
port. Hence, the kth row and column of Σ can be removed
from the optimization.

Therefore, for a predefined choice of ρ, we first obtain a
reduced covariance matrix by eliminating all the rows and
columns corresponding to those variables with sample vari-
ance less than ρ. The number of variables thus eliminated
is a conservative lower bound on the total number of zero-
weight variables in the final solution of Sparse PCA. In our
experiments, we typically can eliminate about 90% of the

variables using SAFE without sacrificing the accuracy of
preserving important informative features.

6. Experiment
In order to test the effectiveness of suppressing uninfor-

mative features for the task of object recognition, we have
evaluated the performance of our method on the Berkeley
Multiview Wireless (BMW) database [17]. The database
consists of multiple-view images of 20 landmark buildings
on the Berkeley campus. For each building, wide-baseline
images were captured from 16 different vantage points. Fur-
ther, at each vantage point, 5 short-baseline images were
taken (by five camera sensors #0 – #4 simultaneously),
thereby summing to 80 images per category. All images
are 640 × 480 RGB color images. It is important to note
that the image quality in this database is considerably lower
than many existing high-resolution databases, which is in-
tended to reproduce realistic imaging conditions for mobile
camera and surveillance applications. Further, it is notice-
able that some images are slightly out of focus and in some
cases, even corrupted by dust residual on the camera lenses.

We divide the database into a training set and a testing
set. The vantage points of each object are named numeri-
cally from 0 to 15. All these 16 images of each category
captured from camera #2 are designated as the training set,
and the remaining images are assigned to the testing set.
Thus, there are 16 training images and 64 testing images
for each category. We extract SURF features in each of the
training images and construct a vocabulary tree with 1000
leaf nodes.

6.1. Results
We first evaluate the recognition accuracy of the classi-

fier (2) without suppressing any features from the training
and testing sets to obtain a baseline performance. The re-
sults of this experiment are presented in Table 1. For the
20 object categories tested, the average baseline recognition
rate is around 80%.



Next, for each object category i, we obtain its informa-
tive feature set Ii by determining the indices of the non-zero
variables in the first and second sparse PVs. These are es-
timated by running Sparse PCA on the covariance matrix
corresponding to the training histogram vectors in ith cat-
egory. We then form the total support set ISPCA for the
entire database by taking the union of the individual visual
support sets for all the 20 object categories, i.e.,

ISPCA = I1 ∪ I2 ∪ · · · ∪ I20.

In our experiments, we have set the sparsity controlling pa-
rameter ρ to 0.002 for all the categories. With this choice
of ρ, at roughly 33 variables per category, our total sup-
port set ISPCA identifies 405 informative features (some
informative features overlap between classes), thereby re-
jecting a fraction of 3

5 of the visual words from the 1000-D
vocabulary. With this subset of visual words, we evaluate
the recognition accuracy of (2) again. The results are also
presented in Table 1. As one can see, for most of the cate-
gories, there is a significant improvement in the recognition
accuracy, leading to the average recognition rate at 85%,
5% higher than the baseline.

For completeness, Table 1 also shows the number of se-
lected features and the recognition rates for the SfM ap-
proach. For a large number of the object categories, the SfM
method does not seem to work well, as few of the SURF fea-
tures are correctly selected as foreground features. We have
tested the recognition accuracy of these visual words on the
database as well, and the average rate is 78%, even lower
than that of the baseline performance. Finally, some visual
comparisons between the results from Sparse PCA and SfM
are presented in Figure 4.

7. Conclusion and Discussion
We have presented a novel and effective solution to select

informative features for object recognition by Sparse PCA.
For applications that involve low-quality mobile cameras or
surveillance camera networks, existing SfM solutions to de-
tect and suppress uninformative features tend to fail. We
have shown that Sparse PCA can successfully identify im-
portant visual features that explain maximum variability in
the visual histogram vectors. For our database, these fea-
tures correspond to those visual words that most often repre-
sent the appearance of foreground objects. To further speed
up the execution of Sparse PCA, we have developed an
improved numerical algorithm, namely, SPCA-ALM. The
new algorithm has proved significantly faster than the other
convex semidefinite programming solutions. Using a pub-
lic multiple-view image database, our experiment shows the
estimated informative features improve the overall recogni-
tion rate by 5% compared to the baseline solution, and by
7% compared to the SfM solution.

For future work, we believe the two existing approaches,
namely, Sparse PCA and SfM, are complementary under

more general object recognition settings. We would like to
focus on further combining our batch numerical technique
within a geometric RANSAC scheme to robustly detect in-
formative features in both low-quality and high-quality im-
age databases, which may lead to further improvement of
the performance.
Table 1. Recognition rates and number of selected informative fea-
tures for the 20 object classes in alphabetical order [17]. The best
rates are in bold face. The categories in which SfM failed have
zero feature selected.

Cat.
Baseline SPCA SPCA SfM SfM
Rate(%) Rate(%) # Feat Rate(%) # Feat

1 98.61 94.44 35 83.33 0
2 90.27 91.66 23 90.27 35
3 56.94 66.66 15 58.33 0
4 70.83 81.94 12 65.27 30
5 77.77 91.66 56 81.94 0
6 95.83 88.88 23 87.50 0
7 79.16 93.05 34 86.11 0
8 77.77 91.66 30 72.22 0
9 56.94 73.61 45 63.88 11

10 51.38 65.27 9 61.11 0
11 83.33 76.38 76 69.44 13
12 81.94 83.33 28 70.83 0
13 62.50 72.22 43 52.77 0
14 98.61 93.05 20 90.27 37
15 69.44 80.55 36 75.00 0
16 58.33 79.16 53 80.55 66
17 100.00 90.27 17 84.72 0
18 98.61 93.05 45 100.00 56
19 97.22 83.33 24 86.11 0
20 98.61 100 46 95.83 0

Avg. 80.02 84.51 33 77.77 12
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