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Abstract

A Methodology and Tool Support for the Design and Evaluation of Fault Tolerant,
Distributed Embedded Systems

by

Mark Lee McKelvin, Jr.

Doctor of Philosophy in Engineering - Electrical Engineering and Computer
Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Embedded systems are becoming pervasive in diverse application domains, such as
automotive, avionic, medical, and industrial automation control systems. Advance-
ments in technology and the demand for sophisticated functionality to support a
variety of applications are driving the increase in complexity of embedded systems,
particularly in systems whose incorrect operation can result in significant conse-
quences, such as financial loss or human life. As a result, these systems require high
assurance to meet stringent constraints on reliability and fault tolerance, the ability
to operate despite potential for components to operate incorrectly.

Reliability is an important design goal in distributed embedded systems that may
be achieved by the provision of additional components in parallel or by improving
component reliability. Thus, reliability in a fault tolerant system will be dictated by
the combinations of components that operate incorrectly, or fail. Since, redundancy
comes at a cost, the problem that designers face is determining which components
to improve. Most existing approaches that seek to achieve better system reliability
by determining levels of component redundancies and a selection of component
reliabilities simultaneously do not consider the design of embedded systems. Of the
approaches that do consider applications in the design of embedded systems, many
do not consider the combinations of component failures, their location in the system
architecture, and rate of failure due to the challenges and limitations of constructing
reliability models that can express those characteristics.

In this dissertation, I present a design flow and a set of tools to support the design
and analysis of distributed embedded systems with fault tolerant and reliability
requirements using fault trees. A fault tree is a reliability model that is based on
the failure characteristics of a system and its structure. The proposed design flow
integrates the automatic generation and analysis of fault trees to enable the design
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of fault tolerant architectures. I will apply this design flow to the evaluation of a
fault tolerant control application and to the evaluation of architecture alternatives
for an automotive application.
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I’m glad I did it, partly because it was worth it, but mostly because I shall never
have to do it again. - Mark Twain
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Chapter 1

Introduction

Electronic systems are becoming pervasive in our daily lives as well as in aspects
where their proper functioning is crucial. An electronic system that is embedded
within the context of a larger system is often hidden from the immediate view of the
end-user. Examples of such systems span from mass-produced consumer electronics,
such as smart phones and automotive systems, to autonomous spacecraft systems
and pacemakers. Consumer demands on more functionality for comfort, conve-
nience, and safety, along with the pressures for suppliers to increase productivity
to meet these demands, makes the design of these systems complex due to smaller
dimensions of the electronic hardware, increasing use of software, and a greater
number of interconnected parts. This complexity introduces more opportunities for
parts or the system as a whole to function incorrectly.

As technology advances, electronic systems are increasingly being deployed in
critical applications, such as applications whose incorrect operation may result in
significant consequences. As a result, system designers are faced with the challenge
to design these systems such that they tolerate defects or abnormal conditions that
may result in the inability for the system to perform its function correctly. A fault is
an abnormal condition, or defect, in one or more components of a system. When a
fault is present and active, it can manifest into an error. An error then can result in
the failure of a component or system. Thus, a fault tolerant system is a system that
may continue to function as intended, potentially in a degraded mode of operation,
despite the occurrence of faults. The ability for a system to perform its intended
function for a specified amount of time is the reliability of a system, and it is a
measure of fault tolerant design. This chapter provides a motivation for this work
on the fault tolerant design of electronic systems for critical applications.
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1.1 Characteristics of Embedded Systems

In the context of this dissertation, an embedded system is a specialized com-
puting device that is designed to perform specific tasks as an integral component
within the context of a larger system. Such systems are characterized by a con-
tinuous interaction with its environment using sensors and actuator devices. Most
modern embedded systems contain one or more software programmable process-
ing components, such as a Field Programmable Gate Array (FPGA), Application
Specific Instruction Set Processor (ASIP), microprocessor, or micro-controller Tech-
nology advancements have made it possible to integrate more software code onto
programmable devices, such small operating systems, application tasks, and software
that manages the hardware resources. Software that executes on an embedded de-
vice is called embedded software. Such systems are characterized by a heterogeneous
architecture, i.e., they consist of a tight integration of both software programmable
and dedicated hardware components in a physical structure that is dictated by a
specified behavior. Furthermore, an embedded system must satisfy strict require-
ments on the response time to inputs from the environment while executing on a
limited set of hardware resources [42].

An embedded system that is composed of multiple processing components that
interact with one another through a network is said to be distributed. In the context
of a distributed embedded system, the processing components are referred to as
nodes, and each node is an autonomous unit that provides hardware resources to
the software tasks. A task is a unit of computation that computes the outputs of
a function, and multiple tasks communicate with one another using units of data
referred to as messages. Channels represent the communication medium by which
the tasks exchange messages, and they may connect tasks locally on the same node
or remotely on networked nodes. In the former case, message passing between tasks
occur within a shared memory space that is located on the processing node. In
the case that tasks must communicate remotely across the boundaries of a node,
tasks communicate using communication networks, such as a communication bus,
wireless channels, or Ethernet. A collection of tasks communicate to provide services
that are viewed by the end user as a single application, and it is realized by a
distributed architecture. A distributed architecture is a conceptual representation
of the software and hardware components of a distributed system, their interfaces,
methods of communication, behaviors, and properties that are of interest to the
designer or developer.
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1.2 Motivating Factors

Advancements in technology and the demand for more sophisticated functional-
ity to support a variety of applications are key drivers in the increasing complexity
of embedded systems. Given that hardware solutions can become costly to support
complex applications, embedded software has become more prominent in embedded
systems. Sophisticated applications, such as those employed within systems whose
failure can result in severe consequences, require high assurance to meet stringent
constraints on reliability. Such requirements leads to standards and certification
processes, while simultaneously striving to meet market demands on product de-
livery. Moreover, embedded systems are moving away from large, expensive, and
centralized architectures to smaller, less expensive, and highly distributed networks
of embedded devices. This section will highlight the key factors that will motivate
the work in this dissertation.

1.2.1 Complexity of Embedded Systems

The complexity of an embedded system, as indicated by the number of functions
that are provided to the end user, is the outcome of several trends. Complex systems
are systems whose functionality is a measure of the cognitive effort that is needed to
understand a physical process under design and development [58]. The complexity
in an embedded system extends from the number of features and functions provided
by the electronic hardware, implementation of functions in the embedded software,
and in the interactions between multiple processing units that are interconnected by
communication networks to realize a set of functions. It is commonly accepted that
as the complexity of components in a system increases with new functionalities, then
designing the composition of components in a system also increases in complexity.
Therefore, it is important to address the design of complex systems at the system
level where the attention is focused on the behavior and structure of the system as
opposed to limiting one to the details of its constituent parts. System complexity
presents challenges to designers and developers as the nature of applications limit
the comprehension of detailed functionality using traditional design methods.

Technology Advancements in Electronic Hardware

The impact of Moore’s Law [82] on the semiconductor industry has spawned
new fabrication processes, tools, and methods that enable the exponential increase
in the number of transistors per silicon die. As a result of technology scaling [44],
more features, or functions, can be implemented in hardware on a single die, such
as analog components, digital logic, arithmetic logic units, memory, and intercon-
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nect at lower costs. The decrease in feature size is having an adverse impact on
the long-term reliability of electronic devices. Device miniaturization due to scaling
reduces the thickness of semiconductor material in transistors. Although this causes
a decrease in gate delay and interconnect, it also increases the current density. This
phenomenon manifests itself into higher temperatures which causes an acceleration
in the wear out of an electronic circuit, thus, decreasing its lifetime reliability. The
effects include electromigration, stress migration, gate-oxide breakdown or time de-
pendent dielectric breakdown, and thermal cycling [117]. The work by Srinivasan
et. al. [116] highlights the impact of technology scaling on the reliability of mi-
croprocessors and its workload. The results of that work imply that as technology
scales and more functionality is added to electronic devices, the failure rate will also
increase. Therefore, the complexity in electronic hardware has a profound impact
on the reliability of electronic devices. White [126] provides more details on the
impact of technology scaling on electronic circuit reliability.

Embedded Software

Given the cost of having to either redesign or employ many hardware devices
to support the growing demands on greater functionalities and services, embedded
software is playing a much greater role in embedded systems. For example, in an
recent article published by the Institute for Electrical and Electronics Engineers
(IEEE) [20], it is reported that the new F-35 Joint Strike Fighter that is scheduled
to be the next advanced military aircraft will require approximately 5.7 million
lines of code to operate its electronic systems, and luxury automobiles have well in
the neighborhood of 100 million lines of code to control functions such as airbag
deployment, anti-lock brakes, and engine control that are distributed over 80-100
microprocessors. Hence, embedded software is a dominant factor that is contributing
to system complexity.

The complexity of embedded software has a significant impact on the reliability
of the system in which it is deployed. Software is a human activity that reflects the
understanding of a problem and results in a physical artifact, or a software program.
Woodfield [128] concludes that the complexity of the problem is directly related to
the understanding by the programmer. Hence, as more sophisticated functions are
implemented in software, the complexity of the software often leads to the inability
for the programmer to predict the behavior of the software during operation [37].
This leads to errors in the design of software that may result in system failure. It
is reported in a study by Lutz [76] on embedded software for distributed embed-
ded systems that design errors in critical applications most commonly arise from
a lack of understanding between the specification of system requirements and their
implementation in embedded software. Techniques in the development of embedded
software, such as testing, code reviews [53], and formal methods [91] are used to
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improve software reliability by reducing design faults. However, as the complexity
of software increase, the ability to achieve reliable software for embedded systems
becomes more difficult [38, 76].

The consequences of errors in embedded software can be costly. For example, a
design error led to the explosion of the Ariane 5 [64] spacecraft. An investigation
revealed that the failure was caused by the inability to convert a 64-bit decimal
value to a 16-bit integer. The cost of the Ariane 5 failure is reported to be over $500
million dollars. More recently, software-related errors are the cause of an increase in
recalls by car manufacturers [100, 102]. A 2002 report by the National Institute of
Standards [110] states that software failures cost the United States economy $59.5
billion dollars annually. Faults in embedded software have also resulted in loss of life
upon system failure, as evidenced by failure in the Therac-25 drug delivery system
[70] and the inability for the Patriot missile defense system to intercept an incoming
missile due to a software error [86].

Distributed Architectures in Safety-Critical Applications

Due to lower costs in electronic hardware and the increasing use of software to
meet the demand on more functionality, distributed architectures are more com-
monly used to support safety-critical applications. A safety-critical [57] applica-
tion is one whose failure may result in a loss of life, severe financial loss, or cause
serious harm to the environment in which it operates. Whereas reliability is an
attribute of the system that involves the probability of failure, safety is concerned
with the consequences of failures. Therefore, safety-critical systems are designed
to be highly reliable and to mitigate the effects of failures. Common examples of
distributed architectures to support safety-critical functions are found in avionics
fly-by-wire control systems, as described by Yeh [133] and Isermann [46] describes
several safety-critical applications in modern passenger vehicles (e.g., active steer-
ing and braking assistance). Moreover, emerging applications such as brake-by-wire
[129] and steer-by-wire [45] will replace mechanical and hydraulics parts with no
mechanical backup.

A distributed approach has several advantages, such as the ability to expand
functionality and manage complexity by decomposing functions into more man-
ageable components with well-defined interfaces [41]. However, as pointed out by
Rumpler [112] the communication and coordination that is required in a distributed
architecture causes an increase in complexity. Inherent in the trend to realize safety-
critical functions on distributed architectures, there is a shift in the design and devel-
opment of architectures from complete functions on a single node towards functions
that share more common resources between nodes. Given that the automotive in-
dustry is very cost-sensitive and produces vehicles in mass quantities, the industry
is realizing the benefits in applications that are realized by a network of shared
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resources. Thus, the design of electronic controls in automotive systems illustrates
this trend. Examples of this trend is observed in other industries as well, such as
commercial and military avionic applications [14, 123, 127].

Example: Evolution of Architectures for Automotive Electronics

Introduced by the avionics community [124], the trend towards realizing embed-
ded systems on a distributed architecture can also be observed in the shift from fed-
erated to integrated [41] architecture designs in modern automotive systems. Auto-
motive systems have traditionally been federated, meaning that each function (e.g.,
braking or steering in a car) is developed in isolation and has its own node, or Elec-
tronic Control Unit (ECU) [99], that consists of hardware and software components
that contain its own processing, input and output interface, application tasks, and
direct connections to sensor and actuator devices with only minor communication
between ECUs of other functions. The isolation between ECUs provides a strong
barrier to error propagation because the systems supporting different functions do
not share resources, the failure of one function has little effect on the continued oper-
ation of others [84]. Such containment of faults results in a fault containment region
that defines an independent relationship between ECUs. Moreover, the federated
approach to system design allows designers to manage the complexity of individual
ECUs in isolation without analyzing or understanding the rest of the system, hence
reducing the amount of complexity that are characteristic of distributed architec-
tures where resources are shared. However, the federated approach is expensive,
because each function has its own replicated resources, and the automotive industry
is characterized by high-volume and low-cost products. So, recent applications are
moving toward more integrated solutions in which some resources are shared across
different functions to reduce hardware costs and make more efficient use of resources.
The new danger is that faults may propagate from one function to another.

To address limitations imposed by the use of federated architectures, integrated
approach merges nodes that were previously designed in isolation into systems where
resources such as ECUs, communication channels, sensors, and actuators are shared
between functions. This means that multiple functions can be supported by a single
node and one function can be distributed over multiple nodes while sharing a limited
set of communication resources. However, as opposed to federated architectures, an
integrated approach lacks the isolation of nodes and their functions, and instead,
promotes tight coupling of functions which leads to an increase in interactions be-
tween nodes. This complexity results in greater risks to the correct operation the
system, particularly in the case where a resource or set of resources fail. A potential
next step in this evolution of distributed architectures is one which capitalizes on
the advantages of the federated approach while realizing functional integration and
the reduction in electronic hardware of the integrated approach, such as distributed
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control systems with autonomous decision making capabilities. Emerging standards,
such as AUTOSAR [90], are proposing guidelines in the development of integrated
architectures in automotive electronics.

As a consequence to the complexity of embedded systems that realizes safety-
critical applications, the potential for failures that could lead to catastrophic loss
increases. As pointed out by Charles Perrow [92] in an extensive analysis of on
well-known disasters, he concludes that as our technologies become more complex
from increasing interactions and tight coupling between system components (i.e.
technical, human, and organizational), the chances of catastrophes due to system
failures also increase. Hence, designers and developers must address these properties
at the system level when such properties of interest are identified, addressed, and
refined.

1.2.2 Requirements on Safety and Reliability

Safety and reliability are important quality attributes as embedded systems
are increasingly realized by distributed architectures to replace mechanical and hy-
draulic subsystems. To clarify, reliability is an attribute of the system that involves
the probability of failure, whereas safety is concerned with the consequences of fail-
ures. The automotive industry, which is characterized by low-cost and high-volume
products serves as a primary example of the trend where mechanical subsystems
that control critical functions are increasingly used in safety-critical applications. A
safety-critical [57] application is one whose failure may result in a loss of life, severe
monetary loss, or serious harm to the environment in which it operates. For example,
in a modern passenger vehicle, complex software executes on a distributed architec-
ture to realize safety functions and services that assists the end user in several active
safety applications as identified by Isermann [46], such as steering assistance and
lane departure [29]. Moreover, studies that are conducted in several countries, as
summarized by Lie et. al. [72], demonstrate the effectiveness of electronic stability
control in modern vehicles. The use of electronics in automotive control systems
will continue to enable advanced functions that must operate without failure, such
as steer-by-wire [50] and brake-by-wire [98] applications. Examples may also be
found in markets that are characterized by low-volume and high-cost products in
comparison to the automotive market such as avionics [120], autonomous spacecraft
[23], and health care monitoring [47]. Since safety is achieved through the use of
reliable components and processes, if not planned properly, an embedded system
on a distributed architecture can decrease the overall reliability if a node fails and
it causes a disruption to functions on other nodes. Design for reliability is the pri-
mary focus of this dissertation, whereas examples are extracted from safety-critical
applications.
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1.2.3 Time-to-Market and Design Productivity

Time-to-market is the window of time by which a product is conceived to the
point at which the product is available on the market to the end-user. It is common
knowledge in the market for consumer-driven electronic products that the greater
the delay for a product to appear on the market, the opportunities to maximize
profits are less and the chances to lose revenue are greater [109]. A 2008 VDC re-
port [108] indicates that system integration, testing, and verification represents the
greatest delay among engineering tasks for an embedded product. The report fur-
ther shows that the primary causes are due to architecture design and specification
(43.4%) and project management (44.7%) tasks. Furthermore, procedures that re-
quire additional design, test, and verification time are often required to ensure that
the reliability requirements of an electronic product are met. Such procedures are
specifically meant for certifying electronic systems across different industries where
safety-critical applications are deployed. Some examples include, ISO26262 [8, 11]
for automotive systems, DO-178B, and DO-254 for military systems. These proce-
dures are used to structure design processes and flows throughout the life cycle of
an electronic product, but require additional effort from system designers. Hence,
these tasks are key factors that affect time-to-market for an embedded product.

Due to increasing complexity, time-to-market constraints, and increasing de-
mand on reliability, the design of embedded systems is challenging. Across different
industries that employ embedded systems, it is noted that the complexity of elec-
tronic systems is related to the design effort that is required to realize an embedded
product. As illustrated in Figure 1.1 [44], design productivity is out paced by the
increase in system complexity. The graph shows that the demand of software is cur-
rently doubling every 10 months, and the technology capabilities is doubling every
36 months due to technology scaling. On the other hand, the increase of hardware
design productivity is well below the rate that technology is scaling, while the in-
crease in productivity of hardware-dependent software increase is even slower by
doubling every 5 years. Testing is often difficult, and testing embedded systems
for safety-critical applications is particularly difficult owing to system complexity
and requirements on reliability. The complexity of the problem grows much faster
than the capabilities of existing design tools and methodologies. This is commonly
referred to as the ”design gap.” As embedded systems become more complex, the
challenge that is faced by system designers is to improve design productivity while
satisfying reliability requirements..

8



Figure 1.1. An illustration of the design gap between the complexity of electronic
hardware and software and design productivity. The graph plots the complexity of
hardware and software components versus time.

1.3 Electronic System Level Design

The challenges of designing complex electronic systems and improving design
productivity under reliability requirements are primarily addressed by raising the
level of abstraction at which the design is carried out and reusing existing com-
ponents. By raising the abstraction of the design to a level that addresses the
behavior and composition of components, unnecessary information is hidden from
the designer who is left with a limited, and therefore manageable, set of choices to
explore. Hence, a system can be composed out of fewer, yet more complex compo-
nents where electronic components at lower levels are reused to support functions
at a higher level. As a result, such an approach has the potential to increase design
productivity since lower level components that have been verified can be reused to
support a variety of higher level functions. In this work, the electronic system level
will refer to the level of abstraction by which a distributed embedded system is
designed. Thus, system level design takes into consideration the entire electronic-
based system as opposed to only the individual components. The term ”system
level design” throughout this dissertation will refer to the design of electronic-based
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systems. In system level design for electronics, the main properties of the system
are captured in an abstract model which hides implementation details.

Figure 1.2. An illustration of the relationship between abstraction levels and the
number of components at each level.

The relationship between abstraction level and the number of components in a
System-on-Chip (SoC) design [35] is illustrated in Figure 1.2. An electronic system
that is initially composed out of tens of millions of transistors may only require tens
of thousands of RTL components. These in turn may be represented by multiple tens
of algorithms where each algorithm is a sequence of operations, conditions, and loops
that describes a function or set of functions that are provided by a microprocessor,
or SoC implementation. By reducing the number of components to deal with at the
same time, maintaining a system level view becomes easier. In contrast to the system
level of a SoC design, communities such as automotive designers view the system
level as a distributed embedded system that may be composed of multiple signal
processors, micro-controllers, SoC devices, and mechanical parts such as sensors and
actuators. The meaning of ”system level” in this dissertation takes on the view of
the latter.

A system level design approach emphasizes the use of models at throughout
the design process from concept all the way down to an implementation. A design
concept results in a specification, a formal or informal description of what the system
does. Then, a system level design methodology defines a set of procedures by which
the specification is realized, or implemented by lower level components. A system
level approach to the design of distributed embedded systems allows the designer
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to concentrate on the functionality, as defined in the specification, independently
of the system’s implementation early in the design process. A system model that
is independent of its implementation naturally leads to abstraction, since lower
level details have to be omitted. Abstract models of the system may be used to
represent application behavior, architecture characteristics, and the relation between
application and architecture. Then, these models can be evaluated to provide initial
estimations on the performance, cost, or consumption of architecture resources.
Moreover, modeling the system at a high level of abstraction minimizes the effort
in model construction and speeds up simulation time. However, higher levels of
abstraction also correspond to less accuracy between the model and the system’s
implementation of the specification.

Figure 1.3. The abstraction pyramid [55] illustrates the relationship between abstrac-
tion levels and modeling accuracy. Models at the top are more abstract and require
relatively less effort to build, as models at the bottom incorporate more details and
are more difficult to build while yielding less opportunity to explore alternative im-
plementations.

The abstraction pyramid [55] in Figure 1.3 shows different levels of abstraction
for the design models. At a given level of abstraction, different solutions may be
explored and one solution is chosen. This selected solution is refined and acts as the
basis for potential solutions at a lower level of abstraction. Here, the refined design
model allows different solutions at each abstraction level to be explored, but it also
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excludes alternative solutions of the space of possible solutions, called the design
space. To obtain the appropriate implementation, the solution of the higher level
needs to be iteratively refined towards the lower levels by reducing the design space.
The higher the levels of abstraction used for design entry, the more alternative
realizations can be covered with the initial design model. The cost of the model
construction and evaluation is higher at the more detailed levels of abstraction.
However, the opportunities to explore alternative implementations is significantly
reduced at these levels. Hence, methodologies for modeling, simulation and design
of distributed embedded systems at the system level is of special interest.

1.4 State of the Art in Fault Tolerant Design

Designing an effective fault tolerant system requires a through and comprehen-
sive analysis to fully understand, quantify potential failures, and assess the effec-
tiveness of fault tolerant strategies. Fault tolerant strategies consist of some form
of redundancy, but the choice of strategy and the amount of redundancy to apply is
based designer experience and intuition. Reliability is a measure that is commonly
used to evaluate the fault tolerance of the system, and there are well developed
techniques to support the reliability evaluation of conventional systems. However,
when applied in practice, reliability evaluation techniques can yield ambiguous or
incomplete results as designers base the analysis on a qualitative description of the
systems functionality. This conceptual description describes how components be-
have and subsystems of components are interconnected to fulfill the for which they
are intended. The description may include how component failures can propagate
to other components through their interconnections and affect the system function-
ality. For conventional systems, it is possible to evaluate how a system can fail
to perform the function for which it was designed by using a high-level qualitative
description of the functionality. Such descriptions are captured in combinatorial
reliability models such as reliability block diagrams [104], fault trees [28, 104], and
state-based models such as Markov models [106].

However, as systems become more complex, system designers are faced with the
challenge of understanding system performance in the presence of failures early in
the design process. Addressing fault tolerance earlier in design allows the designer to
identify and explore the system’s architecture. Thereby, avoiding weaknesses in the
architecture design that are discovered late in the design cycle when the architecture
has been committed. Moreover, ad-hoc approaches may lead to overly conservative
designs that are expensive.
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1.5 Related Work

The fault tolerant design of reliable systems is achieved by provision of addi-
tional components in parallel or by improving the reliability of components in the
system. Kuo et. al. [60] provides a comprehensive survey of different approaches
that address the design of reliable systems by formulating the problem either to max-
imize the system reliability under resource constraints or to minimize the total cost
that satisfies the demand on system reliability. The approaches in the survey con-
sider the reliability optimization of hardware or software components separately, and
only a few approaches consider the design of systems with integrated hardware and
software components [61]. Wattanapongsakorn et. al. [125] demonstrates the use
of a Simulated Annealing algorithm towards maximizing the reliability under cost
constraints and minimizing the cost of the system under reliability constraints for
several models of fault tolerant architectures. The system model is a specification of
subsystems that are in series, and for each subsystem, a discrete set of hardware and
software components may be chosen. Each component choice has a known cost and
reliability. Levitin [71] provides a heuristic algorithm that evaluates the reliability
of a general fault tolerant system that contains hardware components and considers
different software versions. The algorithm evaluates both the system reliability of a
given hardware configuration and the execution times of software tasks. However, in
the literature on reliability optimization of hardware and software systems, the algo-
rithms do not consider heterogeneous set of hardware component choices or complex
interactions between software components since the components are assumed to be
in a series and parallel configurations. Therefore, less attention is given to more
complex system configurations and their performance estimates.

Due to the complexity in embedded systems, the aforementioned approaches are
limited. As a result, reliability optimization techniques for distributed embedded
systems are integrated into system level design activities. Jhumka et. al. [48]
describes an approach to determine an allocation of tasks to a distributed set of nodes
such that dependability is the key attribute for determining alternative architecture
solutions. In that work, dependability is defined by the failure probability, a measure
of how critical a task is relative to other tasks in the system, and a factor that
determines the amount of redundancy for a given task on a distributed network. The
criticality and redundancy factors are parameters that are manually specified in an
analytical reliability model. Yang et. al. [131] addresses the problem of determining
a task allocation and hardware redundancy policy for distributed embedded systems
using a Genetic Algorithm. In this work, the problem is to determine a minimal
cost design under performance and reliability constraints. The resulting design,
or deployment, is measured based on the cost of executing tasks, communication
time between tasks, number of components used in the deployment, and risk. The
risk cost is function of the number of components in the deployment and their
failure rates that measures the amount of loss that is incurred upon system failure.
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The amount of loss is a factor that is manually specified by the designer based
on experience or field data regarding the cost a system failure. The related work
discussed so far relies on the user to provide information on the criticality of a task
to determine which task gets replicated.

The following related work considers the system topology to determine which
tasks to replicate. Xie et. al. [130] describes a task allocation and scheduling al-
gorithm that supports the duplication of critical tasks in the design of distributed
embedded systems. A task is determined to be critical based on a heuristic that
considers the distance of a task from the last task in a task graph describing the
application of a system, the worst-case execution time of a task, and the start time
for a task on an allocated processing unit. Lukasiewycz et. al. [75] exploits data re-
dundancy as a way to improve the reliability in the design of distributed embedded
systems using an approach that encodes information on signal transmissions into
a reliability model based on Binary Decision Diagrams (BDDs). In that work, an
algorithm for the design exploration based on data redundancy is implemented. Con-
struction of the BDD is based on the data dependence between communicating tasks
in their distributed system model. Thus, in that approach, the reliability model,
as encoded in the BDD, is constructed based on the system configuration. The
approach described by Papadopolous et al. [88] automatically generates reliability
models from Mathworks Simulink models to evaluate fault tolerance in automotive
systems. The reliability models that are created include a Failure Modes and Effects
Analysis and a Fault Tree Analysis of the system under study. The topology of the
system model along with annotations of failure modes for each component is used
to create the reliability models.

In this work, a reliability model is generated based on the failure characteristics
of components in the system model. Reliability estimates are obtained from an anal-
ysis of a generated fault tree from the system model, and the reliability evaluation
is integrated into the design flow to measure the fault tolerance and reliability per-
formance of the system design. The analysis drives the exploration of fault tolerant
design solutions by replication of critical components, as determined by an analysis
of the components whose failure contributes most to the reliability of the system.

1.6 Problem Statement and Contributions

The problem that is addressed in this work is the architecture design of fault
tolerant systems that are deployed in distributed embedded systems. To address
the challenges in the design of fault tolerant embedded systems, there is a need for
a system level design methodology and a set of tools that support a structured and
correct-by-construction approach that will enable the exploration of architecture
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alternatives. A design methodology is proposed in this work along with a tool
flow that supports this design methodology is implemented to support the system
modeling, evaluation of fault tolerant and reliability requirements, and exploration
of alternative architectures. The key enabler is the ability to generate and evaluate
a fault tree of the system model quickly as compared to the manual construction of
fault tree as is done in practice.

In particular, this dissertation contributes the following:

• A design flow that integrates a fault tolerant and reliability evaluation based
on the analysis of fault trees.

• A fault tree construction method and a tool set that facilitates automatic fault
tree generation and evaluation from a system model. The tool also enables
the import and export of fault trees to and from existing fault tree analysis
programs, in particular the FaultTree+ [43] tool that is developed by Isograph
and and the Galileo [119] tool that is developed by the University of Virginia.

• An algorithm and a tool implementation that enables the allocation of appli-
cation tasks to hardware resources and the evaluation of fault tolerant and
reliability properties of the system model using fault tree analysis.

• A data model that used to capture and modify the architecture design along
with quantities of each component in the system model, such as failure rate
and component cost.

1.7 Organization of Dissertation

Th remainder of this dissertation is structured as follows:

• Chapter 2 provides a background on redundancy techniques that are used in
fault tolerant designs, and it provides an overview of methods for reliability
modeling and evaluation;

• Chapter 3 provides an overview of the proposed approach to the design
of distributed embedded systems with an emphasis on fault tolerance and
reliability;

• Chapter 4 presents a method to automatically generate a fault tree from
a given system model that is used in the design flow to speed up the fault
tolerance and reliability evaluation of the system;

15



• Chapter 5 describes an application of the proposed design flow to the design
of electronic system architectures and a set of supporting tools that are used
to implement the design flow; and

• Chapter 6 concludes with remarks on the advantages and limitations in this
work and a possible extension into future work.
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Chapter 2

Fundamental Concepts of Fault

Tolerance and Reliability Analysis

This chapter introduces some concepts in the design and analysis of fault toler-
ant systems. The coverage of this chapter begins with describing faults and their
characterization. Then, some techniques that are used in the design of fault toler-
ant systems are discussed, including a brief overview of the most common forms of
redundancy. The chapter concludes with a discussion on the mathematical back-
ground for the reliability modeling of a binary state system.

2.1 Faults, Errors, and Failures

The successful operation of a system is determined by the ability for the system
to provide service correctly. Correct service is delivered when the system implements
a specified function. A fault is an abnormal condition, or defect, in one or more
components of a system that may result in the inability for a system to perform
its intended function. The source of faults can vary from physical defects such as
material defects caused by manufacturing processes to environmental disturbances,
such as electromagnetic radiation to human factors, such as design defects resulting
from incorrect specifications or organizational factors. A fault may or may not cause
a system to deviate from its intended function.

An error is a discrepancy between the intended behavior of a system and its
actual behavior inside the boundary of a component within the system. When
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a fault is activated, it means that the fault has been observed or is active during
system operation. Activation of a fault places the system component in an erroneous
state. Thus, an error is an erroneous state of a system component that may lead
to the system operating incorrectly, or failure. A system is said to have failed if
it cannot deliver its intended function. Hence, the error must propagate to the
system boundary before the system is in a failed state. A system consists of a set of
interacting components, therefore the system state is the set of its component states.
A fault originally causes an error within the state of one or more components, but
system failure will not occur as long as the error does not reach the boundary of the
system.

2.1.1 Fault Propagation

Failures are observable errors that occur at the system boundaries. Fault propa-
gation is a key mechanism by which a fault propagates into a component or system
failure. The activation of a fault into an error may propagate into a system failure,
as observed by Laprie [63]. The fault propagation represents the causal relationship
between a fault, error, and failure. Since the output data from one function may
be fed into another function in a system, failure in one function may propagate to
the input of another function as a fault. Therefore, a chain reaction can occur in
multiple component systems that have many interacting parts.

Figure 2.1. An illustration of fault propagation in an example.

Figure 2.1 illustrates this concept where arrows represent a causal relationship
between a fault, error, and failure and its impact on two system components. In
component 1, a fault is introduced into its boundaries. Activation of this initial fault
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causes an error. The error then propagates into a failure of component 1. From this
illustration, a failure in component 1 causes a fault in component 2. As a result,
the fault in component 2 manifests into a system failure where the expected output
is incorrect. Unless the chain reaction is countered, the result is a system wide
failure. Hence, it is important to address this chain reaction throughout the life of
the system at different levels of abstractions for the system. Examples to illustrate
this concept follows:

Example: Failure of a Boolean Logic Gate

Suppose that two wires A and B are logical inputs (assumes A and B are logical
values in the set {0, 1} to a boolean logic gate. The expected output of the logic
gate is 0 when A and B are both 1. Now, consider that a manufacturing process
created a short (the fault) in wire A such that the value on wire A is always 1 (the
error). The only case where the fault will result in an incorrect output value of 0 is
when A = 0. Hence, an incorrect output of the logic function results in a failure of
the logic function.

Example: Failure of a Software Function

Assume that a software programmer created the following code for computing
the acceleration within the guidance system for an autonomous spacecraft according
to the specification that force = mass ∗ acceleration.

float ComputeAcceleration(float force, float mass) {

return (force/mass) + mass;

}

The force and mass are input variables used to calculate the acceleration of the
spacecraft. The programmer adds mass to the acceleration calculation, hence, a
software fault is introduced into the function with the summation of mass as an
additional term. As long as this snippet of code is never executed by the software
program within the guidance system, then the fault is not activated. However, upon
execution of this code, the code becomes active and computes an incorrect value for
the acceleration. Hence, an error in the software has occurred. If there are no error
detection mechanisms in place to catch such erroneous behavior of this function,
then the error propagates into a failure of the guidance system. The failure of the
guidance system, if not detected, can be propagated into a failure of the spacecraft
to complete its mission.
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2.1.2 Failure Modes

Failures may be characterized based on type and duration for any component in
a system. A failure mode is a type of failure that can occur for a component within
a system. It describes how a component may fail. For instance, an electrical circuit
composed of a series combination of resistors and a power source may fail if the power
source fails to provide an electrical energy to the circuit, a wire connection shorts a
circuit component, or if the resistors were defective. In the circuit, each component
failure is considered a failure mode because it describes how the component may
fail to operate as intended. Furthermore, a failure mode that induces multiple
components to fail simultaneously is a common failure mode. To understand a
common mode of failure, the notion of a fault containment region [51] is introduced
. A fault containment region is a collection of components that operates correctly
regardless of any arbitrary fault outside the region. An arbitrary fault in a fault
containment region cannot cause the hardware outside the region to misbehave or fail
in any manner. Faults cannot propagate across containment regions but their effects
can by way of error propagation. Therefore, a common mode failure is a component
failure that affects multiple fault containment regions. As in the example of the
electrical circuit, if the power source fails to produce any electrical energy, then the
entire circuit fails to operate. Thus, failure of the power source is a common mode
failure. However, if each component in the circuit has its own, power source, then
the failure of the power source in the circuit does not affect the components that
have independent power sources.

A fault or failure may be characterized by the time for which it persists in
the system. A fault is said to be permanent if it continues to exist until it is
repaired, such as a software defect, or bug. A transient fault is one that occurs
and disappears at an unknown frequency, such as electromagnetic radiation that
occurs and disappears. An intermittent fault is one that occurs and disappears
at a frequency that can be characterized, such as a loose contact. For instance, a
communication link may be in a failed state permanently, or in the case of a wireless
link where there exists a momentary disruption, the link failure may be induced by a
transient fault caused by the momentary disruption. Given that a system designer
can place emphasis on any level of granularity of system components, it is most
useful to consider failure modes that are observable and can be quantified by a
frequency, or rate of failure.

Another way to classify faults is by their underlying cause. Design faults are the
result of design failures, like the software coding example in Section 2.1.1. While it
may appear that in a carefully designed system all such faults should be eliminated
through fault prevention, this is usually not realistic in practice. For this reason,
many fault tolerant systems are built with the assumption that design faults are
inevitable, and that mechanisms need to be put in place to protect the system
against them. Operational faults, on the other hand, are faults that occur during
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the lifetime of the system and are invariably due to physical causes, such as processor
failures.

2.1.3 Fault Models

In addressing faults, a method is needed to model their effects. A fault model
is a logical abstraction that describes the effects on the function as a result of a
fault. A fault model typically contains assumptions on boundaries of the system and
components, the failure modes that are of interest, and the frequency of occurrence
of failures. Fault modeling can be made at different levels of abstraction in a system.
The lower the level of abstraction is more accurate in modeling the effects of a fault,
but the more computationally intensive the method needed. The higher the level
of abstraction, the less accurate and computationally expensive it is in representing
the fault effects. As an example, the stuck-at fault model is a commonly used
model for gate-level circuit testing. In comparison, transistor-level fault modeling
assumes the stuck-open or stuck-short fault model. It is more accurate, but also
more computationally expensive to use in circuit testing.

2.2 Fault Tolerant Design

Fault tolerance is defined as a property of a system that enable it to deliver the
expected service in the presence of faults. As noted by Avižienis et. al. [3], there
are two complementary approaches to addressing faults. The first approach, called
fault prevention, attempts to ensure that the system will not and does not contain
any faults during design, implementation, or operation. The two aspects of this
approach are:

• Fault avoidance. The techniques in this category attempt to avoid intro-
ducing faults into the system. Examples that employs techniques are system
design methodologies, quality control, and organizational management strate-
gies.

• Fault removal. Techniques in this category are used to find and remove
faults which were inadvertently introduced into the system, such as testing
and analysis tools.

The second approach assumes that faults will occur because it is impractical to
prevent the occurrence of all faults in a system, especially in a system with complex
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interactions between electronic components. Fault tolerance is a property of the sys-
tem that enables it to continue operating (potentially with degraded performance)
in the presence of one or more faults, or component failures. Thus, fault tolerance
employs techniques to tolerate faults. Hence, fault tolerance are characteristic of
the mechanisms throughout the life cycle of a system that are employed to reduce
the impact of faults that may propagate into system failure. Fault tolerant systems
are systems which exhibit the ability to tolerate faults and component failures that
may lead to system failure.

2.2.1 Approaches to Fault Tolerance

Designing an effective fault-tolerant system requires a through and comprehen-
sive analysis to fully understand and quantify potential failures and assess the ef-
fectiveness of fault tolerant mechanisms. The common mechanisms as identified by
Anderson and Lee [69] are: error detection, damage assessment, error recovery, and
fault treatment and continued service.

• Error detection. In order to tolerate a fault, it must first be detected. Since
internal states of components are not usually accessible, a fault cannot be
detected directly, and hence, its manifestations, which cause the system to go
into an erroneous state, must be detected. Thus the usual starting point for
fault-tolerance techniques is the detection of errors.

• Damage assessment. Before any attempt can be made to deal with the
detected error, it is usually necessary to assess the extent to which the system
state has been damaged or corrupted. If the delay, identified as the latency
interval of that fault, between the manifestation of a fault and the detection of
its erroneous consequences is large, it is likely that the damage to the system
state will be more extensive than if the latency interval were shorter.

• Error recovery. Following error detection and damage assessment, tech-
niques for error recovery must be utilized in an attempt to obtain a normal
error-free system state. In the absence of such an attempt (or if the attempt is
not successful) a failure is likely to ensue. There are two fundamentally differ-
ent kinds of recovery techniques. The backward recovery technique consists of
discarding the current (corrupted) state in favor of an earlier state (naturally,
mechanisms are needed to record and store system states). If the prior state
recovered to, preceded the manifestation of the fault, then an error free state
will have been obtained. In contrast a forward recovery technique involves
making use of the current (corrupted) state to construct an error free state.
An example of error recovery is error masking. This form of error recovery
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works by allowing a number of identical modules execute the same functions,
and their outputs are voted to remove errors created by a faulty component.

• Fault treatment and continued service. Once recovery has been under-
taken, it is essential to ensure that the normal operation of the system will
continue without the fault immediately manifesting itself once more. If the
fault is believed to be transient, no special actions are necessary, otherwise,
the fault must be removed from the system. The first aspect of fault treatment
is to attempt to locate the fault; following this, steps can be taken to either
repair the fault or to reconfigure the rest of the system to avoid the fault.

2.2.2 Redundancy Techniques

The concept of redundancy describes the existence of more than one means for
performing a required function in an item [10]. Redundancy techniques are applied
to increase the reliability of a system. Such techniques for achieving fault tolerance
in embedded systems occurs in the form of hardware, software, time, or information.

Hardware Redundancy

Hardware redundancy refers to the provision of extra hardware components to
either provide fault masking [93] or by automatically switching to a functioning
component once a faulty component is detected. Fault masking is a means by
which the effects of faults do not propagate to other components in the system
by the presence of multiple components. A common approach to fault masking is
to use identical components to perform the same computations at the same time.
A representative example of fault masking is N-Modular Redundancy. Figure 2.2
illustrates a triple-modular redundant configuration. In this configuration, three
computers compute the same outputs at the same time. The outputs are then
passed through a circuit called a voter. The function of the voter circuit is to
determine which output is in error when a majority vote is observed. This is a
common system configuration in flight control systems [1].

Another general approach to hardware redundancy involves the removal or re-
placement of faulty components within the system in response to the detection of
a fault or error. Such techniques are referred to as dynamic hardware redundancy
techniques. When an error is detected in a component, a redundant spare com-
ponent is selected automatically to replace the faulty component. At the time the
spare is selected, then it becomes active in the system, unlike fault masking which
requires all redundant components to be active in the system. Dynamic redundancy
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Figure 2.2. An illustration of a triple-modular redundant system configuration.

techniques in hardware can be used in combination with fault masking to provide
fault tolerance in a system, as demonstrated in the work by Avižienis [2].

Software Redundancy

The redundancy of software refers to the use of additional software routines, code,
or complete programs to check the correctness of software components. Similar to
its hardware counterpart, N-Version Programming [4] is an approach that relies on
multiple software components that are functionally equivalent. Multiple versions of
a software task are independently developed by different designers from the same
specification in a concept called design diversity [73]. The idea is that each of the
versions of a software routine are executed simultaneously, and the results of each
redundant component are voted upon to mask hardware and software faults.

The use of recovery blocks [103] is an effective software fault tolerance technique
that is applied in embedded system design. This approach uses multiple components
to perform the same task where each component is functionally equivalent. Redun-
dant software components for a task are categorized as primary and secondary. The
primary task executes first, and once its execution has completed, an acceptance or
verification test is performed on its output. If the results of the primary component
fails the test, the secondary component executes after rolling back to the state at
which the primary task was invoked. This continues for all redundant components
until an acceptable result is obtained or all redundant components have been ex-
hausted. In contrast to N-Version Programming where the redundant components
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are executed in parallel, the redundant software components in the use of recovery
blocks are executed serially.

Software checking is a general method for checking the correctness of software
routines. It is widely applied in the software design of fault tolerant and safety criti-
cal systems. This technique requires that computation results are known a priori, or
that correct computations are within a given boundary or range of values. This can
be accomplished by applying insertions at key points within software components.
As an example, a check can be applied to determine if an invalid instruction code
is executed. Another example of software checking is to compare measured perfor-
mance of a software application with its predicted performance based on an accurate
model. For embedded systems that are required to meet strict timing deadlines, a
watchdog timer is often used to detect timing or omission errors that may result from
a software or hardware component failure. A watchdog timer is a daemon process
that checks if a component is actively working. The daemon process periodically
sends a signal to the application and checks the return value. Lyu [77] provides a
comprehensive summary of techniques in software fault tolerance, including software
checking, recovery blocks, and N-Version Programming through design diversity.

Time Redundancy

Time redundancy refers to the repetition of a given computation in multiple
instances at different points in time. Data redundancy, which is characterized by
sending multiple instances of the same data at different times is a form of time redun-
dancy in the software domain. Time redundancy is useful for detecting permanent,
transient, and intermittent types of faults using hardware or software components.
In embedded system design, time redundancy impacts the scheduling of software
tasks, and as such, it is implemented in fault tolerant scheduling approaches. An
example of time redundancy can be found in applications requiring fault detection
in digital circuits. In Figure 2.3, bits of data are transmitted from a transmitter to
a receiver at time t. At time t+ δt, the complement of the original data is sent, and
since the faulty line causes the data and its complement to be 1, then the faulty line
can be detected. This method is called alternating logic [107], and it is useful in
determining stuck-at-faults in digital circuits. It can be extended to larger systems
by comparing the data that is sent at both instances of time.

Information Redundancy

This form of redundancy refers to the addition of extra information to allow fault
detection, fault masking, or fault tolerance. Some examples of added information
include error detecting codes, such as Hamming Codes and error correcting codes,
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Figure 2.3. An example illustrating time redundancy using alternating logic.

such as cyclic redundancy checks [81]. One of the simplest forms of error detecting
code is the parity bit. The parity bit is a bit of information that is added to a set
of bits to ensure that the total number of bits with the value ”1” in a set of bits is
even or odd. Additional examples and details of error correcting and error detection
codes can be found in Moon [81].

Since hardware redundancy is expensive, software redundancy techniques are
more readily adopted in system design. Software implementation tends to be a less
costly solution to redundancy because it usually consists of only adding additional
lines of code at the expense of increased complexity, and it can be used to implement
time and information redundancy techniques. Yet, in cost-sensitive safety critical
systems and systems that require high reliability, it is common to find a mix of hard-
ware and software approaches to fault tolerance. To determine the most effective
method of fault tolerance to be employed in a system, it is necessary to measure the
system reliability, which can be performed using a reliability analysis.

2.3 Reliability Analysis of Multi-Component Sys-

tems

The design of a fault tolerant system that is composed of multiple components
aims at enabling the system to be reliable in the presence of faults. Failure of system
components may manifest into system failures. A system is said to be reliable [87] if
it can continue to provide a specified function correctly. Understanding that it is im-
practical to have a perfectly reliable system, by applying fault tolerant mechanisms,
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the system can remain available to the user, possibly with reduced functionality
and performance, rather than faults manifesting into a system failure. The Insti-
tute of Electrical and Electronic Engineers Standard Dictionary of Electrical and
Electronics Terms defines reliability as the ability of an item to perform a required
function under stated conditions for a stated period of time [101]. For a conventional
system with no fault tolerance, it is natural to think that the system will deliver
its function only if all the components are operational. This is not the case in a
fault tolerant system, which may require either additional software, hardware, and
human resources for design and test to deliver a function despite the presence of
certain failures. Therefore, in a fault tolerant system, reliability will be dictated by
the combinations of components at any time. Hence, reliability is one measure of
the effectiveness of fault tolerance in systems.

2.3.1 Structure Function of a System

The structure function of a system relates the functional relationships among the
components in the system to the functioning or non-functioning state of the system.
A system is assumed to consist of n components and, without loss of generality, let
N = 1, 2, ..., n denote the set of components. It is assumed that the state of the
system is given at a fixed moment in time, and the state of the system depends
only on the state of its components. The system may also be in either a functioning
state or failed state. The functioning state represents the state of the component
by which it is working according to specification. Throughout this dissertation, it is
assumed that each component can be in one of two states at any given instance in
time, a functioning state or failed state. If a component is not functioning correctly
or not functioning at all, then it is assumed that the component is in a failed state.
To indicate the state of the ith component, a binary indicator variable xi, is assigned
to component i with the following convention,

xi =

{
1, if i is in a functioning state,

0, if i is in a failed state.

Let the state vector, x = (x1, x2, ..., xn) ∈ {0, 1}n, describe the states of compo-
nents in N . Given the system can only be in one of two states, the assumption that
the state of the system is completely determined by the states of its components
implies the existence of a Boolean function φ(x) : {0, 1}n → {0, 1}.

Definition 2.1 (Structure Function). The structure function is a function φ(x)
that relates the state of components of a system to the state of the system, and it
has the following convention,

27



φ(x) =


1, if system is in a functioning state,

0, if system is in a failed state.

The set {0, 1}n is fitted with the operations addition (+) and multiplication
(·), and it has the common properties of associativity, commutativity, and distribu-
tivity. The ”zero” element is denoted as 0 = (0, . . . , 0), the ”unity” element as
1 = (1, 1, . . . , 1), and the ”inverse” element as x̄ = 1−x = (1−x1, 1−x2, . . . , 1−xn).
The operations addition and multiplication among elements of {0, 1}n are carried
out as follows:

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn)

x · y = (x1 · y1, x2 · y2, . . . , xn · yn).

The set {0, 1}n is partially ordered with the relationship ”≤”. That is to say for
state vectors x and y, if yi ≤ xi for i = 1, 2, . . . , n with yi < xi for some i, then
y ≤ x.

In practice, it is commonly assumed that by replacing a failed component with
a functioning component does not deteriorate the system given that the state of the
other components remains the same. For example, replacing a failed component
in a working system usually does not make the system fail. Mathematically, this
assumption implies that the structure function φ(x) is an increasing function of x.
A structure function φ(x) is said to be monotone if the following conditions are met:

1. φ(0) = 0 and φ(1) = 1, and

2. for state vectors x and y, if x ≥ y, then φ(x) ≥ φ(y).

This means that if the state of all components in the system are failed, then the sys-
tem is failed, and similarly, if all components in the system are functioning correctly,
then the system is functioning correctly. Since φ(x) is a monotonically increasing
function, an improvement can be made on the state of the system if improvements
are made on the state of its components. For the reliability analysis of systems,
a component whose state that does not affect the state of the system will have no
affect on the structure function or the system reliability. Thus, a component xi is
said to be relevant to the structure of a system if there exists at least one state
vector x such that φ(x) = xi [6]. Otherwise, the component is said to be irrelevant.
This means that when components are collectively in certain states, as specified by
(x1, x2, . . . , xi−1, xi+1, . . . , xn), then φ(x1, x2, . . . , xn) = xi, and thus, the state of the
system is dictated by the state of component i. The structure function for a given
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system can be reduced to one with less components to consider by removing irrel-
evant components. Therefore, this dissertation will consider the structure function
of coherent system structures. A system with structure function φ(x) is coherent if
φ(x) is monotonic and every component is relevant [6].

The structure function is used to describe the state of a system in relation to
the state of its components for any system. To illustrate, the structure function is
used to define some fundamental structures, in particular, the series, parallel, and
k -of-n structures. The k -of-n structure is a generalization of the series and parallel
structures.

Example: Series Structure

A series system functions if and only if all of its components are functioning.
Hence, its structure function is given by,

φ(x) =
n∏

i=1

xi

= x1 · x2 . . . · xn
= min(x1, x2, · · · , xn). (2.1)

An illustration of a series structure is shown in Figure 2.4. The idea is that if a signal
is initiated at point a then for the signal to reach point b, it must pass through all
the components in the system. Hence, all components must be functioning correctly.

Figure 2.4. A series structure.
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Example: Parallel Structure

A parallel system functions if and only if at least one its components are func-
tioning. Hence, its structure function is given by,

φ(x) = 1−
n∏

i=1

(1− xi)

= x1 + x2 + · · ·+ xn

= max(x1, x2, · · · , xn). (2.2)

An illustration of a parallel structure is shown in Figure 2.5. It follows that a signal
at the input can reach the output if at least one component is functioning.

Figure 2.5. A parallel structure.

Example: The k-of-n Structure

A generalization of the series and parallel structures is the k -of-n structure. Such
a system functions if and only if at least k of the n components are functioning.
Hence, its structure function is given by,

φ(x) =

1,
n∑

i=1

xi ≥ k

0, otherwise

(2.3)
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The series and parallel systems are special cases of the k -of-n structure. A series
system can be represented by a n-of-n structure, and a parallel system can be
represented by a 1 -of-n structure. An illustration of the 2-of-3 structure is shown
in Figure 2.6.

Figure 2.6. A k-of-n structure where k = 2 and n = 3.

Example: Series-Parallel Structure

A series-parallel structure is a system that contains a combination of compo-
nents in series or parallel. Consider a system that contains four components. The
system functions if and only if components 1 and 2 both are functioning and at least
components 3 and 4 are functioning. Its structure function is given as,

φ(x) = x1 · x2 ·max(x3, x4)

= x1x2(1− (1− x3)(1− x4))
= x1x2(x3 + x4 − x3x4). (2.4)

An illustration of the series-parallel structure in Equation 2.4 is shown in Figure
2.7.

2.3.2 Minimal Path and Cut Sets

Minimal cut and path sets are introduced as a way to determine the structure
function of any system as a series arrangement of parallel structures or as a paral-
lel arrangement of series structures. They are particularly useful to determine the
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Figure 2.7. A combined series-parallel structure.

structure function of systems that may not be obtained directly from a k -of-n struc-
ture. Moreover, a coherent structure function can be expressed in a reduced form
in terms of minimal path or cut sets by removing any irrelevant components in the
structure function. As an example, Figure 2.8 illustrates a set of five components
in a configuration such that it cannot be classified as having a series or parallel
structure. Therefore, the concepts of minimal cut and path sets are introduced as
a way to determine the structure function of any system.

Figure 2.8. A bridge system structure.

A state vector x is called a path vector if φ(x) = 1, and x is called a cut vector
if φ(x) = 0. If φ(y) = 0 for all y < x, then x is a minimal path vector. The state
vector x is called a minimal cut vector if φ(y) = 1 for all y > x.

Definition 2.2 (Minimal Path Set). For a state vector x with n components, if
x is a minimal path vector, then the set K = {i : xi = 1}, where i = 1, 2, . . . , n is a
minimal path set.

Definition 2.3 (Minimal Cut Set). For a state vector x with n components, if
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x is a minimal cut vector, then the set C = {i : xi = 0}, where i = 1, 2, . . . , n is a
minimal cut set.

In other words, a path set is a set of components whose correct functioning at a
given instance in time will simultaneously ensure that the system functions correctly
independent of the states of the other components. Therefore, a minimal path set
does not contain another path set. On the contrary, a cut set is a set of components
whose failure to function correctly at a given instance will simultaneously ensure
system failure independent of the states of the other components, and a minimal
cut set does not contain any other cut set. To illustrate, the bridge configuration in
Figure 2.8 is revisited.

Example: Minimal Cut Sets of the Bridge System Structure

The structure function of the bridge system configuration is obtained by deter-
mining the set of components whose simultaneous failure will result in system failure.
Thus, the minimal cut sets are x1, x2, x1, x3, x5, x2, x3, x4, and x4, x5. Therefore,
the structure function is expressed as

φ(x) = x1x2 + x1x3x5 + x2x3x4 + x4x5. (2.5)

An illustration of the structure function in 2.5 is shown in Figure 2.9.

Figure 2.9. Minimal cut set representation of the bridge system structure.

The initial system configuration is equivalent to the system formed by its min-
imal paths in parallel, where each path is represented by a series system having
as components the components in the path. Hence, the relationship between the
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minimal paths and structure function is given as,

φ(x) = 1−
k∏

j=1

(
1−

∏
i∈Kj

xi

)
(2.6)

where k is the number of minimal paths in K = (K1, K2, . . . , Kk) of the system.
In addition, the initial system is equivalent to the system formed by its minimal
cut sets in series, where each cut set is represented by a parallel system having as
components the components of the cut set. This relationship is given as,

φ(x) =
c∏

j=1

[
1−

∏
i∈Cj

(1− xi)
]

(2.7)

where c is the number of minimal cut sets in C = (C1, C2, . . . , Cc) of the system.
Thus, the minimal path or cut sets are used to define the structure function of
any system in a reduced form, where the reduced form is equivalent to the original
structure of the system.

2.3.3 System Reliability

Reliability is the ability for a system to function as intended for a stated period
of time. Since reliability can be characterized as a random phenomenon, there is
a relationship that describes the occurrence of failures over time called the failure
distribution function. Suppose that the time to failure T has the probability density
function f(t). Then, the failure distribution function F (t) is the probability of an
item failing in the time interval 0 < τ ≤ t, and it is denoted as

F (t) = Pr(T ≤ t) =

∫ t

0

f(τ) dτ (2.8)

where t ≥ 0 and Pr(·) denotes the probability. Hence, the reliability function, R(t)
is the probability of a component which does not fail in the time interval 0 ≤ τ ≤ t,
and it is denoted as

R(t) = 1− F (t) = Pr(T > t). (2.9)

In practice, the failures of different components of a system are characterized by
different failure distribution functions. Some common common failure distributions
in reliability analysis include the Normal Distribution for modeling wear out failures
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in mechanical components, the Exponential Distribution which is used to model the
characteristics of other types of distributions and to fit a statistical distribution to
failure data from a representative sample. As a result, it is of interest to to describe
the reliability of a system in terms of the reliability of it components.

The reliability of a system with coherent structure is obtained from the reliability
of its components. Assume that a component xi in the state vector x for i =
1, 2, . . . , n is a binary random variable Xi of Bernoulli such that,

Xi(t) =

{
1, if i is in a functioning with reliability pi,

0, if i is in a failed state with reliability 1− pi

where pi = Ri(t) is the reliability of component i and qi = 1−pi is the unreliability of
the component i. Note that the reliability of component i is in terms of its reliability
function, hence, pi is a function of t. Then, φ(X(t)) = φ(X1(t), X2(t), . . . , Xn(t)) ∈
{0, 1} is also a binary random variable of Bernoulli. Since φ(x) is a function of
the state vector x, the system reliability RS(t) is defined as the probability that
φ(x) = 1, and as such,

RS(t) = Pr(φ(X(t) = 1) = E[φ(X(t)] (2.10)

where X(t) = (X1(t), X2(t), . . . , Xn(t)), E[·] denotes the expected value of a random
variable, and the unreliability of the system is denoted by QS(t) = 1 − RS(t).
As a result, the state of the system is a state of its components. The states of
the components in the system may be stochastically independent or dependent on
one another. When the components are independent, then the reliability of the
system is a function of the reliability of its components denoted by RS(p), where
p = (p1, p2, . . . , pn) is the component reliability vector. The reliability of the system
reflects the relationship between system reliability and component reliabilities of
each distinct system structure φ.

Kaufmann et. al. [52] shows that for a monotonic structure function, the reliabil-
ity function of the system RS(t) is also monotonic. This means that for component
reliability vectors p and q, if p ≥ q, then RS(p) ≥ RS(q) which allows for a quan-
titative comparison of system structures in terms of their reliabilities. Since the
calculation of the reliability of a system is known to be NP-hard [5], the method
of minimal path and cut sets is commonly used to approximate the reliability of
a system in terms of an upper and lower bound on the exact system reliability.
In Equation 2.12 Barlow et. al. [7] shows that there exists a lower bound that is
obtained through minimal cut sets and an upper bound that is obtained through
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minimal path sets,

c∏
j=1

(
1−

∏
i∈Cj

(1− pi)
)
≤ R(p) ≤ 1−

k∏
j=1

(
1−

∏
i∈Kj

pi

)
(2.11)

where C = (C1, C2, . . . , Cc) is the set of minimal cut sets for a coherent structure
function φ with n components, and K = (K1, K2, . . . , Kk) is the set of minimal path
sets for φ. In addition, the reliability of a coherent system is higher than that of a
series system and lower than that of a parallel system, as expressed by the following
trivial bounds,

n∏
i=1

pi ≤ R(p) ≤ 1−
n∏

i=1

(1− pi). (2.12)

The reliability of a system with coherent system structure is a function of the reli-
ability of the components in the system. Therefore, an improvement in the system
reliability will be directly influenced by the improvement of its components.

2.3.4 Measures of Component Importance

The concept of component importance describes ways by which the contribution
of a component on the state of the system and the system reliability are measured.
When assessing a system, its performance depends on that of its components. Com-
ponent importance takes the form of a relative ranking among components in the
system. Some components play a more important role in causing or contributing
to system failure than others. Importance measures are used to numerically rank
the contribution of each component to reflect the susceptibility of the system to the
occurrence of the component’s failure. The measurements of a component’s impor-
tance are made relative to the other components in the system. Therefore, such
measurements are useful to identify weaknesses in the system with respect to reli-
ability, quantifying the impact of component failures, and establishing a direction
and priority of actions that are used to improve the system reliability.

To evaluate the importance of different aspects for a system, a set of importance
measures are well defined and widely adopted in engineering practice. Different
importance measures are based on slightly different interpretations of component
importance [9, 32]. For example, in one aspect of system design, a measure may be
used to obtain the greatest gain in system reliability that results from improving
the reliability of components that are most critical to the system reliability. The
primary factors that influence component importance include the component’s lo-
cation in the system and the reliability of the component. When the component
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reliabilities are given, then importance measures may be used to quantitatively as-
sess the component importance. The Birnbaum Importance, Criticality Importance,
and Fussell-Vesely Importance measures are considered.

Birnbaum Importance

In 1968, Birnbaum [9] introduces the concept of component importance, and
one of the more fundamental importance measures is the Birnbaum Importance
measure. This importance measure is analytically defined as,

IBi =
∂RS(t)

∂xRi(t)
= RS(t;Ri = 1)−RS(t;Ri(t) = 0) (2.13)

where IBi is the Birnbaum Importance measure of component i, RS(t) is the sys-
tem reliability at time t, RS(t;Ri(t) = 0) is the system reliability at time t given
component i is failed, and RS(t;Ri(t) = 1) is the system reliability at time t given
component i is perfectly working. This importance measure represents the max-
imum loss in system reliability when component i switches from the condition of
perfect functioning to the condition of certain failure.

Criticality Importance

The Criticality Importance measure extends the Birnbaum Importance to ac-
count for component unreliability Fi(t), with respect to the system unreliability
FS(t). It is analytically defined as,

ICR
i = IBi

Fi(t)

FS(t)
(2.14)

where Fi(t) = 1−Ri(t) is the component unreliability and FS(t) = 1−RS(t) is the
system unreliability.

Fussell-Vesely Importance

The Fussell-Vesely Importance measure IFV for a component i is given as,

IFV
i =

RS(t)−RS(t;Ri(t) = 0)

RS(t)
. (2.15)
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The Fussell-Vesely Importance measures the maximum decrease in system reliability
that is caused by component i.

Additional reliability importance metrics may be obtained, and they are similarly
defined such that the end result is a measure on the rate of increase of system reli-
ability with respect to the reliability of each component in a system. In computing
such measures, an analytical relationship between system reliability and component
reliability is required, and that relationship is obtained from the structure function
of the system. The structure function provides the mathematical basis for reliabil-
ity models and their probabilistic evaluation to support the design of fault tolerant
systems. This dissertation will utilize the fault tree as the reliability model to de-
scribe the structure function of a distributed embedded system and to assess the
fault tolerance of the system.

2.4 Summary

The main objective of this chapter is to introduce the reader to the underlying
concepts in fault tolerance and reliability analysis. In fulfilling this objective, fault
tolerant techniques are introduced as methods for preventing the manifestation of
component faults into system failures. In addition, system reliability analysis is pre-
sented in terms of the structure function, a mathematical relationship between the
state of components in a multi-component system and the state of the system. The
structure function is used to model the system behavior under the influence of com-
ponent failures. With a probabilistic study of the structure function, quantitative
measures of the system in terms of its components may be obtained.

38



Chapter 3

Design Methodology and Flow for

the Fault Tolerant Design of

Distributed Embedded Systems

This chapter introduces platform based design as a methodology which is applied
to the proposed design flow that is described in this dissertation. The basic concepts
of platform based design are introduced, and this is followed by an overview of the
proposed design flow that supports the design of fault tolerant embedded systems.
The main components of the design flow are described.

3.1 Design Methodologies for Embedded Systems

A design methodology describes a procedure, or design flow, that takes a design
specification as input and produces an implementable system. Design methodolo-
gies for embedded systems have traditionally followed one of two approaches. In
a bottom-up approach, the design of an electronic system began with simple com-
ponents that are composed hierarchically into complex components as the design
progresses through different levels of abstraction in an effort to support multiple
applications. As the design proceeds to higher levels of abstraction, the components
are stored in a library so that they may be reused in the next level of abstraction.
The specification of a specific application is then satisfied by customizing the imple-
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mentation. This requires making design choices by intuition and design experience.
The problem that arises with this approach is that at the lower level of abstrac-
tion it is difficult to anticipate the needs of the higher level of abstraction. Hence,
this approach results in over designed systems that may not meet the specifica-
tion and issues with the integration of heterogeneous components [24]. Bottom-up
approach to embedded system design in common in component-based design flows
[13, 18, 25, 39].

In contrast to a bottom-up approach, a top-down begins with a system level
view, and then proceeds to realize a detailed implementation. In this approach, the
design specification begins at the system level, and it is then refined in a step-wise
procedure to an implementation. With each refinement step, more implementation
detail is added to the description of the system. Potentially after each refinement
step, an analysis of the implementation that results from the prior design step is
used to evaluate the effects of the implementation. The evaluation enables decisions
on design parameters that may influence the next design step. By starting at the
highest level of abstraction, fewer components have to be considered. Hence, this
approach allows the use of views at higher levels of abstraction to enable early trade
off analysis, accelerate verification, and reduce iterations that may occur in late
stages of the design cycle. Moreover, the details of the system can be fined tuned at
the expense of a larger set of design solutions, thus, resulting in an increase in time-
to-market. Synthesis-based design flows, such as those found in custom integrated
circuits designs [26, 113, 118] and hardware/software co-designs [36, 40] are examples
of top-down methodologies.

Rather than a purely bottom-up or top-down approach to the design of embedded
systems, a meet-in-the-middle approach draws from both approaches. The term,
”meet-in-the-middle” is introduced in the design of electronic systems with the work
by De Man et. al. [78] on the synthesis of multiprocessor chips for digital signal
processing. In general, a design begins with a high level specification, and it is
refined until a set of predefined components from a library can be instantiated. Each
refinement step consists of selecting a valid composition of library elements that
are characterized by their cost of usage and performance measures (i.e. monetary,
communication, utilization, power consumption, etc.) that correctly implements a
specification. Requirements are driven from the high levels of abstraction through
the system hierarchy to improve productivity while an opposing force of feasible
designs flow upward to ensure that higher level design decisions are implementable
by a library of designed components whose function is verified.
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3.2 Introduction to Platform Based Design

Platform based design [30, 114] is a design methodology that has been used in
several application domains [15] to cope with the pressures of increasing demands on
design productivity, reducing manufacturing costs, and meeting time-to-market re-
quirements. Platform based design is based on the concept of platforms. A platform
is an abstraction layer that hides the details of several possible implementation re-
finements of the underlying layers. The design methodology is a meet-in-the-middle
approach that may be applied to all levels of abstraction in the design of embedded
systems. A key principle of platform based design is the orthogonalization of con-
cerns, i.e. the separating the various aspects of a design to allow more effective reuse
of components and exploration of design solutions [54]. Ideally, any design aspects
that are orthogonal to one another can be represented. Yang et. al. [132] and Lee
et. al. [67] demonstrate the use of aspects in the design of system level frameworks
for modeling heterogeneous systems. Additional examples of various design aspects
in the context of embedded systems include fault model and application behavior in
fault tolerant design of embedded control systems [96], computation and communi-
cation in communication-based design [54] and networked control systems [97], and
behavior and performance [134] in the design of automotive architectures.

The two main design concerns emphasized in the Platform Based Design
paradigm are function and architecture.

• Function. An abstract view of the behavior that the designers want the
system to provide, i.e. ”what the system is supposed to do,” is described by
the function of the system. The function layer does not express any of the
implementation decisions. It is independent of the architecture and often an
executable specification of the behavioral aspects of the system. In general,
the function represents an upper layer, or higher level of abstraction level. The
information that is needed to realize the behavior of the function is provided
by the function layer as specifications. The specifications contain information
about the function, such as the sequence of execution, deadlines to complete
execution, priority, and amount of data that may be communicated within the
function. Hence, the specifications are propagated towards a lower layer of of
abstraction as constraints.

• Architecture. A configuration of resources or components that are capable
of realizing the function, i.e. ”how the function is implemented,” is described
by the architecture. It represents the lower layer, or a lower level of abstraction
level. An architecture a set of components that may be abstract or character-
ized by physical quantities to support a function at the expense of some cost,
i.e. time, power, or area. The components in an architecture can be viewed as
being able to service different behaviors of the function. Therefore, the archi-
tecture captures the performance aspects of realizing a function. However, the
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architecture does not specify which services or when they will be utilized. The
concept of the architecture is that the services it provides will be consistent
with the rules of execution and composition of components in the function.
Hence, an estimation on the performance of the ability for the architecture
to support a function is used to constrain the set of behaviors that can be
realized by the architecture.

Mapping is the design activity that allows the function to be realized, or assigned
to, the services that are provided by the architecture. A mapping represents a
particular point in the design space of the system, and it defines the process by which
the function and architecture meet, as illustrated in Figure 3.1. After a mapping is

Figure 3.1. An illustration of platform based design.

complete, either manually or automatically with the aid of tools, the performance
and cost of the system can be evaluated by estimating the cost and performance
of library elements. Mapping is facilitated by formal descriptions in the form of
design models that represent different aspects of the design methodology. Formal
models, or models of computations, are abstract representations of a physical entity,
such as the function and behavior of the system under study. In particular, such
design models describe how a system design is specified, captured, and transformed
into other model views or a more refined platform. As an example, a designer can
model a system in Simulink [80] and use a code generation tool, such as TargetLink’s
dSPACE [121] or Real-Time Workshop [79] to map the functionality of the design
onto a specific hardware platform. If a final implementation is available, then an
exact performance and cost can be obtained. However, a system is often incomplete
in early design stages. Hence, the performance and cost of a mapping are estimated
by experience and intuition, simulation, or analytical methods. Based on the results
of the evaluation, a procedure can be carried out to explore different points in the
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design space, referred to as design space exploration. A method that is similar to
platform based design is discussed in Kienhuis et. al. [56], and it features a Y-chart
approach.

In this context, a platform is a library of components that can be assembled at
a specific level of abstraction to define a set of solutions to a design. A platform
contains all valid compositions of library elements, and each valid composition de-
fines a design solution. A platform instance is a particular design solution. Each
platform represents a layer in the design process at which the design space explo-
ration is possible or desired. The result of mapping is a refinement of the original
specification and of the platform instance, and the platform then plays the role of a
new function at the lower level of abstraction. In the design process, each successive
refinement step consists of selecting a platform instance that correctly implements
a specification. The process continues until the abstraction level is close enough to
the implementation.

The idea behind a platform based design methodology is to hide unnecessary
details of the architecture so that the designer can focus on describing important
parameters of the function at a higher level of abstraction, while limiting the design
choices to a set of platform instances. This approach can be useful in the design
of fault tolerant architectures for distributed embedded systems. The separation of
function and architecture enables tasks and processes that define the function to be
distributed across processing elements in a distributed network in a way that does
not affect the function when the architecture components in the network change.
This opens up the degrees of freedom by which the function and architecture may
be modified to meet fault tolerant and reliability requirements. Platform based
design limits the number of design choices to those that may be implemented by
the platform. Hence, it enables more efficient design exploration as compared to a
top-down approach, for instance. Moreover, this approach makes the evaluation of
fault tolerant architectures possible with respect to a number of metrics, such as
time, cost, power, and resource utilization.

3.3 Design Flow with Fault Tolerance and Relia-

bility Evaluation

The design flow that is proposed in this dissertation is based on the Platform
Based Design methodology, and it is illustrated in Figure 3.2. The main contribu-
tion of this design flow is the integration of reliability modeling and analysis for the
performance evaluation of fault tolerance in a distributed embedded system. The
proposed design flow begins with a specification of the system model using a specific

43



model of computation to define the functionality and architecture of the system’s
design. From this model, a mapping results in a platform model, or a deployment.
The deployment is then used to construct a reliability model which is used to eval-
uate the reliability and fault tolerance of the system under design. Driven by a
reliability and fault tolerance evaluation technique, this dissertation considers the
replication of components in the FTDF graph and the mapping of function specifi-
cation to a platform instance. This section provides an overview of the design flow
in this dissertation.

Figure 3.2. The design flow for fault tolerance and reliability evaluation.
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3.3.1 System Requirements

Requirements on a distributed embedded system must satisfy a set of require-
ments that are needed to operate according to specification, including temporal,
fault tolerance, reliability, and resource requirements. Requirements may be ex-
pressed by classifying them as design objectives or constraints. Design objectives
are generally used to compare design alternatives by providing quantitative char-
acteristics that expresses a level of compliance between a candidate design and the
requirements. Constraints are requirements that must be satisfied in the design. As
an example, requirements on timeliness of a design can be described as a constraint,
yet, as a design matures and more information is provided to enable a more refined
characterization of timing characteristics of the design may result in describing tim-
ing properties as design objectives.

A distributed embedded system may cover several types of requirements, includ-
ing temporal, fault tolerance, reliability, and requirements on resource consumption.
Timeliness requirements must be respected in a distributed embedded system to
deliver a predictable and deterministic behavior in addition to the compliance to
the functional specification. Temporal constraints are typically defined in classical
scheduling theory in terms of deadlines to be maintained by the termination of ex-
ecution of individual tasks and precedence relations which requires termination of
a task prior to the execution of another task that has another task that causally
depends on its results. Synchronous system implementations such as time-triggered
architectures are frequently used to ensure that temporal requirements are met. In
the case of fault tolerant design, often the number of replicas and redundancy are
related to the reliability of the system. Such requirements imply that the result of a
function in both time and value must be correct despite external perturbations that
may induce faults. Hence, techniques need to be applied to achieve a desired level of
system reliability. Another set of requirements involve the availability of resources.
Some tasks can only be allocated to a subset of available computing nodes due to the
need of certain resources, such as a sensor function that must be bound to a sensor
resource. Such constraints are treated as binding requirements. Other factors such
as utilization, are used to ensure that computing or communication resources are
available. Requirements of the system are used to drive designs towards solutions
that can be realized or refined into lower level constraints as the refinements in the
design flow are made.

3.3.2 System Specification with Fault Tolerant Data Flow

The computational model that is chosen to describe the system is Fault toler-
ant data flow (FTDF). FTDF is introduced by Pinello et. al. [95] as a modeling
formalism for the design of periodic, control applications. In the original work by
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Pinello, FTDF networks are used for specifying fault tolerance in safety critical,
real-time control systems. Its syntax and semantics enable formal analysis, synthe-
sis techniques, and a structure which is used in this dissertation for constructing
a reliability model for the system. This section will review the basic concepts of
FTDF networks.

Signals

The terminology of the Tagged Signal Model (TSM) [68] is used to define FTDF
networks more precisely in an actor-oriented framework [67]. The FTDF model of
computation is constructed using the TSM by considering a set of values, V and a
set of partially ordered tags, T . The set of values represent the type of data that
can be exchanged by objects in the model, whereas the set of tags carries an order
relationship that is used in the model to represent a notion of precedence, such as
time, causality, or execution order. A change in the set of values in the system is
denoted by a set {(t, v)|t ∈ T , v ∈ V}, where v is the new value at ”time” t. A
signal s is a subset of {(t, v)|t ∈ T , v ∈ V}. Let the symbol ⊥ denote the absence
of a value, such that V = V ∪ {⊥}. Since it is more useful to express the change
in a value v at some t, this dissertation will limit the discussion to signals that are
functional. A functional signal is a partial function s : T → V . Thus, let s(t) ∈ V
denote the value of signal s at tag t. From this point on, a ”signal” will refer to a
”functional signal”. Signals are organized into tuples, hence, a tuple of N signals is
denoted by s, and the set of all such tuples is SN . Let the set of input signals be SI

and the set of output signals be SO, where for N signals, (SI , SO) is a partition of
SN . Hence, signals are considered to be partitioned into input or output signals.

Actors

Signals interact through actors, where an actor produces and receives signals on
ports [74]. Each element in a tuple of signals corresponds to a port on an actor such
that an actor A with N ports is a subset of SN . A particular s ∈ SN is said to
satisfy the actor if s ∈ A is called a behavior of the actor. Thus, an actor asserts
constraints on the signals at its ports, and the the possible behaviors of an actor
can be observed at a set of ports. Ports are either inputs or outputs to an actor
A. Let A ⊆ SN where I ⊆ 1, 2, . . . , N denotes the indices of the input ports, and
O ⊆ 1, 2, . . . , N denotes the indices of the output ports such that I∪O = 1, 2, . . . , N
and I ∩O =. Given a tuple of signals s ∈ A, let πI(s) define the projection of s on
the input ports of A and πO(s) be the projection signals on the output ports of A.
Then, an actor is said to be functional if

∀s, s′ ∈ A, πI(s) = πI(s
′)⇒ πO(s) = πO(s′).
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An actor is a function from input signals to output signals. In particular, an actor
function FA is defined as,

FA : SN → SM , (3.1)

where N = |I| and M = |O| denote the number of input and output ports respec-
tively. It is common to express the exchange of data between actors using tokens in
an actor-oriented framework. A token is a pair (t, v) where t ∈ T and v ∈ V . Since
a signal is the set of (t, v) pairs, this implies that a signal is a stream of tokens.
Thus, a functional actor consumes and produces tokens, and tokens are passed be-
tween actors. For the remainder of this dissertation, the term ”actor” will refer to
a ”functional actor”.

Fault Tolerant Data Flow

FTDF is a variant of the data flow [65] MoC that models a system as periodic
executions of actors. A sequence of actors in a FTDF model pass data in the
form of tokens on every iteration according to the precedence order dictated by
the data dependencies. This operation implies that the each actor is modeled as
a sequence of atomic reactions, and the overall system model iterates through the
reaction with a period, Tmax. At each reaction, an actor presents a new set of tokens
on its output ports, where the tag of a token indexes the reaction of an actor. In
addition, a token within the FTDF MoC is appended with a valid field to record the
boolean outcome of some fault detection algorithm (e.g. majority voting, checksum,
CRC) since FTDF is designed to be fault model independent. Thus, a token is a
pair (t, v) such that t ∈ Z is an integer representing the reaction of an actor, and
v = (data, valid) represents data of some type and a boolean-valued valid field.

In addition to the function of an actor, the behavior of an FTDF actor is also
defined in terms of a firing function f : SN → SM and a firing rule U ⊂ SN ,
for N -tuple of input signals and M -tuple of output signals. A firing rule is a guard
condition that must be satisfied by a finite sequence of input tokens to the actor, and
a firing function determines whether or not the condition is met. When considering
a firing function f with the actor function FA, the actor function is defined by
FA(s) = f(u).FA(s′) if there exists a u ∈ U such that s = u.s′ or FA(s) is the empty
sequence [65], where s, s′ ∈ SN is a finite set of tokens for each sequence in s and
s′, and ”.” is the concatenation of sequences. This implies that for a set of input
tokens of an actor, the actor can fire, or an atomic execution of its function, only if
the firing rule for the actor is satisfied. When an actor fires, it completes a reaction
to the set of input tokens. For FTDF network, a repeated firing of all actors in the
model defines the operation of the FTDF model.

As an example, suppose an actor has three input ports. Then a firing rule
U = {(∗, ∗, ∗)} denotes the case that a token must have a value at each of the three
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input ports to the actor for an iteration, where ”*” denotes that a value for the
token exists. This is an illustration of a typical firing rule for a data flow actor [66].
In contrast, suppose that an actor can fire if only two of three inputs have a value
for their token. Then, the combinations of N input ports with tokens that satisfy
the firing condition is given by each element in U , where each element is of size
N = 3, is denoted by,

U = {(∗, ∗, ∗), (⊥, ∗, ∗), (∗,⊥, ∗), (∗, ∗,⊥)},

where ⊥ denotes the absence of a value for a token. In this case, the actor is said
to have a partial firing rule, which means that the actor can fire on a subset of
input tokens whose values are present. This is how FTDF models fault tolerance,
since there may be the case that an input token does not have a value because a
predecessor actor failed to emit an output token.

Actors in FTDF are typed, and as such, they are classified by their behavior
on ports. A sensor actor, a ∈ AS, reads data from a sensor device, as an actuator
actor, a ∈ AC , updates an actuating device with data, where AS is the set of sensor
actors and AC is the set of actuator actors. These actors interact with the plant in
a feedback control application. An input actor, a ∈ AI , performs a merge function,
such as sensor fusion or a majority voting strategy, which takes a collection of input
tokens and produce a single output token. An output actor, a ∈ AO, is designed to
balance the load on actuator actors. A task actor, a ∈ AT , is responsible for the
computation workload, as an arbiter actor, a ∈ AR, is used to select input tokens
to present to the output of the actor. Finally, a memory, a ∈ AM , is an actor that
stores tokens at tag t, for use in the following period, tag t + 1. Memory actors
serve as unit delay actors since other types of actors are stateless and their code is
executed as a result of an atomic reaction. Actors in {AS ∪ AC ∪ AO ∪ AT ∪ AM}
require all inputs to fire, and input and arbiter actors may use partial firing rules.
Therefore, the set of actors that may be used in a FTDF model is a partitioned set
of typed actors, such that

A = AS ∪ AC ∪ AI ∪ AO ∪ AT ∪ AR ∪ AM .

Actors communicate via objects called communication media. A media, m ∈ M ,
is an actor that is used to merge input tokens and distribute the input tokens to
possibly many actors, where M is the set of media in a network of FTDF actors.

3.3.3 Functional Model

The functional model is a formal description of the application tasks that are
to be executed and supported in the system. Each actor in the FTDF model of
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computation is an application task that computes, sends, and receives data to and
from other actors through communication tasks, which are described by the com-
munication medium. With these basic elements of FTDF, a definition for a network
of FTDF actors is given as a graph where each node in the graph is either an ap-
plication task or communication medium. This graph is the specification for the
functional model of the system.

Definition 3.1 (FTDF Graph [95]). Given a set of actors A and communication
media M , a FTDF graph G is a pair (V,E) where V = A ∪M is the set of vertices
and E ⊂ (A×M) ∪ (M × A) is the set of directed edges.

A FTDF graph G is bipartite, and actors A are connected via a communication
medium M . The data dependencies of G determine the order in which actors may
fire and data communication may occur. Since edges are directed, e = (m, a) ∈ E
denotes that an actor a ∈ A receives a token from a medium m ∈ M on its input
port, and e = (a,m) ∈ E denotes that an actor a ∈ A sends a token from its output
port to the input port of a medium m ∈ M . A FTDF graph G = (V,E) is said to
be legal if,

1. for a FTDF graph G ′ = (V ′, E ′), where V ′ = V −AM and E ′ = E ∩ (V ′ × V ′)
is acyclic,

2. ∀v ∈ AI , pred(v) ⊂ AS ∪ AM and ∀v ∈ AS, succ(v) ⊂ AI ,

3. ∀v ∈ AC , pred(v) ⊂ AO and ∀v ∈ AO, succ(v) ⊂ AC ∪ AM ,

4. ∀v ∈ AS, {v−|v− ∈ pred(v)} = ∅ and ∀v ∈ AC , {v+|v+ ∈ succ(v)} = ∅,

where an edge (ei, ej) ∈ E, denotes that the edge is directed from ei to ej and ej is
the successor of ei denoted by succ(ei) = ej and ei is the predecessor of ej denoted
by pred(ej) = ei. These conditions mean that a FTDF graph contains no causality
cycles, and any loops that are in the graph must pass through a memory actor; the
results of sensor actors must always be combined using input actors, and actuator
actors must always be driven by output actors; and every iteration begins with a
sensor actor and ends with a actuator actor, and if memory actors are present in
the graph, then their execution also begins at the beginning of an iteration along
with the sensor actors. In addition, an actor ca

Finally, FTDF graphs can express redundancy, i.e. one or more actors may be
replicated. This implies that any two actors in R(v) are of the same type and must
compute the same function. Replicas of an actor v ∈ A are denoted by R(v) ⊂ A,
such that R(v) 6= v. When a FTDF graph contains a set of replicated actors, the
graph is called a redundant FTDF graph. The properties listed above are recognized
in the construction of the reliability model for a redundant FTDF graph. The
properties above are not exhaustive, and the reader is referred to Pinello [94] for
more information on additional properties for FTDF graphs.
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3.3.4 Architecture Model

The architecture model is a set of computing and communication resources that
provide a set of services to the application tasks that are described in the func-
tional model. The architecture model can be represented by a library of parametric
components that may be characterized by physical quantities. The resources rep-
resent physical components, such as ECUs, buses, and wires, that are available to
the designer for use in a system. The physical components may be obtained from
a library of off-the-shelf components. The architecture model is specified by a con-
nected graph of processing nodes (i.e. the ECUs) and communication channels (i.e.
the buses and wires). The graph that describes an instance of the architecture is an
architecture graph, PG.

Definition 3.2 (Architecture Graph). An architecture graph is a bipartite graph
PG = (RPG, EPG) where the vertices RPG = {P ∪ C} in PG represents resources,
the processing nodes P , and communication channels C. The set of edges EPG ⊆
(P ∪ C) × (C ∪ P ) are undirected. Each edge e ∈ EPG connects a vertex in P to
one in C such that the edges in EPG induce a symmetric binary relation ∼ on RPG.
This means that for each edge (r1, r2) ∈ EPG the vertices r1 and r2 are said to be
adjacent to one another, which is denoted by r1 ∼ r2.

The processing nodes of an architecture graph will be referred to as ECUs and
the communication channels are referred to as channels, such as buses or copper
wire. Note that the architecture graph does not dictate data dependencies be-
tween functions. The data dependencies between function tasks are dictated by the
functional model. Each resource r ∈ RPG is characterized by a set of parameters
Q = {q1, q2, . . . , qN} where N is the number of parameters that are of interest to the
designer. These parameters are inherent characteristics of the resource, such as the
size of memory, bandwidth, transmission rate, the monetary cost, and a failure dis-
tribution. The parameters distinguish different types of resources that are available
in a library of resources. In practice, the library may represent the set of off-the-shelf
resources that are available to the designer or a set of virtual components that acts
as placeholders until resources with more accurate performance and cost measures
are available.

3.3.5 Fault Model

In the design of fault tolerant systems, the designer must be able to design
against faults that may occur in the system. A fault model is an abstraction of the
type of faults that may occur in a particular system. This requires assumptions
on the type, frequency, and effects of faults on system components. For system
level models of distributed embedded systems, the types of failures can be of type
omission, value, or timing failures. The faults that may occur for a component
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in a distributed system are described by a set of failure modes, where each failure
mode for a component represents a faulty state of the component. For example, in
a distributed system, an ECU may crash due to any number of reasons, including
being subjected to excessive radiation. A crash failure is a permanent omission
failure that results in the ECU to no longer perform as specific. Suppose that the
event that the ECU crashes is given by the random event A and the event that the
excessive radiation was the cause of the crash is given by random event B. Then,
the event that the ECU crashes due to excessive radiation is given by the random
event E = A/B. This random occurrence is called a fault event. In this case, the
fault event E is a failure mode of the system.

Components in the platform model, including actors, signals, ECUs, and chan-
nels, can have multiple failure modes. A failure mode for a component forces the
analyst or designer to concentrate on the expected or potential failures that can
occur with each component in the system; hence, targeting the fault model towards
specific component failures. If a system exhibits one or more failure modes, then
ideally the fault tolerant design of the system would prevent the effects of the oc-
currence of those failure modes from propagating into failure of the system. For this
reason and for reasons of expressing failure modes in the reliability model, a fault
model is described by a set failure modes, where a failure mode for a component
in the function and architecture models is a relation between the component and a
fault event.

3.3.6 Replication and Mapping of the System Specification

In the design of fault tolerant embedded systems, employing redundancy strate-
gies through replication leads to additional costs on the system. So, it is important
to consider which components in the system should be subjected to additional re-
dundancy. Once the components are selected for replication, it is then the goal of
the mapping process to determine how to assign the redundant components to the
architecture resources. The mapping process in embedded system design consists
of a selection of architecture resources (allocation) and the assignment of compo-
nents from the functional model to the resources in the architecture model in space
(binding) and time (scheduling).

Replication

To fulfill the reliability and fault tolerant requirements, active redundancy of
software components is applied. The application tasks are assumed to be time-
triggered, periodic tasks. Using software redundancy implies that some tasks in the
functional model may be replicated, and when tasks are replicated, the semantics
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of the function that is computed by the tasks must be preserved. This means that
the data dependency between tasks should be consistent when tasks are replicated.
In this dissertation, the application tasks are replicated according to the relative
contribution of component failure to system failure as measured by the reliability
importance factor of the component. To do this, the application is modeled with
a redundant FTDF graph, and then it is mapped onto the architecture platform
under constraints that are imposed by the architecture components. This procedure
results in a procedure to replicate tasks, bind them onto a selection of resources,
and ensure that the tasks are scheduled under any specified resource constraints.
Determining the relative importance of components in the platform model is done
by the construction and analysis of a reliability model.

Mapping

Distributed embedded systems for safety critical systems are heterogeneous in
nature, and they must often compute application tasks correctly with limited physi-
cal resources. Their design at the system level early in the design process entails the
consideration of a set of constraints on the application requirements and resource
consumption. More specifically, the constraints are defined as the conditions that
limit the possible designs from an assignment of application tasks to resource com-
ponents for which the system has to satisfy to ensure the correct behavior once it
executes on a set of resources. Constraints that flow from a previous refinement
step are also refined into a set of constraints for subsequent refinement steps. By
following this strategy throughout the design, beyond the system level, ideally the
requirements on the system flow down to implementation as they appear as refined
constraints of the system requirements at lower levels of abstraction.

In this design flow, the mapping is defined as a relation between the system
functional model, described by a FTDF graph G that may contain a set of redundant
actors, and the architecture model, as represented by an architecture graph PG. The
platform model is a model that represents the result of the mapping process, and
it defines a platform instance. It can be used for different purposes and analysis by
hiding unnecessary details and exporting only the necessary amount of information.
Given a set of control algorithms specified as a possibly redundant FTDF graph G
and an architecture graph PG, a fault tolerant deployment is a platform model that
can be defined as another graph to model the redundant allocation of actors and
communication media onto the platform model.

Definition 3.3 (Platform Graph). A mapping of G onto PG is a directed graph
L = (LV , LE) where LV = (RPG × AG) is the set of vertices and LE is the set of
edges. In LV , the resources RPG = {P ∪C} denotes a set of ECUs P and the set of
channels C in the platform graph PG, and AG = (A∪M), denotes the set of actors
A and the set of media M in the FTDF graph G. Actors and media in A can be
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replicated. A vertex v ∈ LV with v = (r, a) for r ∈ RPG, a ∈ AG means that an
actor or medium a is allocated to resource r. An edge e ∈ LE with e = (v1, v2),
v1 = (r1, a1), and v2 = (r2, a2) connects v1 to v2 for v1, v2 ∈ LV . When replicas
are introduced into the platform graph, the data dependencies must be preserved
between communicating actors as specified in the FTDF graph, G.

Example: Mapping of FTDF Actors onto Architecture Resources

To illustrate the mapping of actors in a FTDF graph onto a set of architecture
resources in an architecture graph, consider the following:

1. Two actors a1, a2 ∈ AG are mapped to the same ECU p1 ∈ P from the
architecture graph PG, and the actor a1 sends a token to a2 such that no
channel from PG is involved, then v1 = (p1, a1) and v2 = (p1, a2) where v1, v2 ∈
LV are nodes in the system architecture graph L.

2. One actor a ∈ AG is mapped to an ECU p ∈ P , and it transmits data on a
channel c ∈ C of the architecture graph PG, then v1 = (p1, a1), v2 = (c1,m1),
and (v1, v2) ∈ LE of the platform graph L.

In Case 1, since two actors are mapped to the same ECU, no explicit channel
is necessary because the implicit assumption is that actors that are located on the
same ECU will exchange tokens using shared memory on the ECU. In Case 2, only
one actor is mapped to an ECU and it transmits tokens across the boundaries of the
ECU for which it is mapped. The media actor that receives tokens from the sending
actor must also be mapped to a resource from the library of resources. This implies
distributed communication, where the token must be transmitted across a channel
to its destination. These two cases in the example reflect the previous two cases of
actor-to-actor communication on a same ECU through memory and the dependency
between an actor and a communication medium.

3.4 Reliability Modeling and Analysis with Fault

Trees

Reliability modeling and analysis using fault trees presents a view of the system
as a combination of component failures that lead to system failure. The purpose is
to obtain insight as to how a multi-component system may fail and to quantify the
possible failure or fault events that lead to the system failure. Reliability analysis
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with fault trees consist of constructing the fault tree model, obtaining its minimal
cut sets, and analyzing the fault tree model by quantifying the occurrence of fault
events. In this section, a more precise definition of a fault tree is presented along
with methods for its analysis.

3.4.1 Fault Tree Graph

A fault tree is a graphical representation of the systems structure function in the
form of a fault-oriented logical diagram [28, 104]. The fault tree is more generally
described as a graphical representation of the logical combination of component
failures, or fault events, that result in system failure. In this dissertation the terms
”fault tree graph” and ”fault tree” will be used interchangeably. The fault tree
graph is defined below as an interconnection of fault events.

Let φ(x) be the structure function of a coherent system with N components
and state vector x = (x1, x2, . . . , xN) ∈ {0, 1}N , and let B = {+, ·} be the set of
boolean operators that denote the addition and multiplication operators of {0, 1}N
respectively. eT = φ(x) such that φ(x) = 1, and the set of basic events is defined as,
EB = {ei : xi ∈ 0, 1, ∀i = 1, 2, . . . , N}. In words, the top event is the failure of the
system and a basic event is the failure of a system component. If the state of the
system component can be represented by multiple failure modes, then each basic
event is a failure mode for that component. Similarly, the state xi for component
i can be represented by multiple state variables. The set of intermediate events is
defined as EG = {g(f(Es)) : Es ⊆ EB and g(f(Es)) 6= eT}. Intermediate events
are functions of basic events where (g, f) : EB → EG, and the outcome of an
intermediate event is determined by its operator from the set B. Although a top
event is the function of basic events, it is uniquely defined, and so it is not considered
to be in the set of intermediate events.

Definition 3.4 (Fault Tree Graph). A fault tree graph is a directed acyclic graph
FG = (E,A), where

• E = {{eT} ∪ EG ∪ EB} is the set of vertices;

• A = {(ei, ej)|ei, ej ∈ E} is the set of edges such that an edge is considered to be
directed from ei to ej where ej is the successor of ei denoted by succ(ei) = ej
and ei is the predecessor of ej denoted by pred(ej) = ei;

• ∀(vi, vj) ∈ A, ∃vr that can reach vi and vj by a path;

• the fault event eT is a distinguished node called the root node of FG which can
reach all other nodes in E by a unique path, where a path in FG is defined as
a sequence of q nodes (v0, v1, . . . , vq) such that (vi, vi−1) ∈ A, v0 6= vq, and no
vertex is repeated (i.e. no cycles);
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• the |pre(eT )| = 0 for the root node eT , where the notation | · | denotes the
number of elements;

• {v|v ∈ EB}, the |succ(v)| = 0; and

• {v|v ∈ {{eT}∪EG}, the succ(v) ∈ EG or succ(v) ∈ EB, i.e. every intermediate
event and top event must have another intermediate event or basic event as a
successor.

A fault tree graph is a connected graph of fault events. A fault tree graph
shares the same properties as a coherent structure function with the addition that
fault events are monoform, i.e. basic events do not exist in complemented form.
So, a fault tree graph can be evaluated just as is done with the evaluation of the
structure function for a coherent system in terms of the reliability estimation of
system components and a topology for the system.

3.4.2 Methods for the Obtaining Minimal Cut Sets

Analysis of a fault tree is the process of computing minimal cut sets and making
a probabilistic assessment of the fault tree with the intent to obtain qualitative and
quantitative measures of the system that the fault tree models. The approaches
to computing the minimal cut sets from a given fault tree are based on boolean
reduction techniques. This section will discuss algorithms and methods for finding
the minimal cut sets of a fault tree. The techniques for evaluation using probabilistic
methods, as discussed in Chapter 2, are also discussed.

Direct Method of Boolean Reduction

Reducing a fault tree to its minimal cut set can be performed directly by applying
boolean reduction rules. It is assumed that the fault tree represents a coherent
structure function of the system, as is discussed in Chapter 2, where the basic
events of the fault tree can be either in a functioning or failed state. The relationship
between the state vector of a structure function and basic events of a fault tree is
that a basic event denotes the state of a component. If the component has multiple
failure modes, then each failure mode constitutes a basic event in the fault tree.

Let FG be a fault tree that is composed of a top event eT , a set of gates EG that
represent intermediate fault events, and a set of basic events EB where yT = eT is
a variable that represents the gate of the top event, yj ∈ EG for j = 1, 2, . . . , N are
variables for N intermediate gates, and xi ∈ EB for i = 1, 2, . . . ,M are variables for
M basic events of fault tree FG. The minimal cut set is obtained by applying the
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following reductions,

xni = x, (3.2)

nxi = xi, (3.3)

xi + xi · yj = xi, (3.4)

where n ∈ N and ”+” and ”·” are boolean operators for OR and AND gates respec-
tively. The AND operator symbol ”·” will be omitted and implicit for convenience.
An example of applying boolean reduction to compute the minimal cut sets of a
fault tree FG is given in the example below on ”Obtaining Minimal Cut Sets using
Boolean Reduction”, given the notation above.

Example: Obtaining Minimal Cut Sets using Boolean Reduction

Suppose that a fault tree, FG, is given as a function of gates, and its decompo-
sition into basic events yields,

FG = y1

= y2y3

= (x1 + y4)(x2 + y5)

= (x1 + x3 + x4)(x2 + x3 + x4). (3.5)

The fault tree is decomposed into its basic events. The fault tree FG can now be
expanded into a sum of products expression,

FG = x1x2 + x1x3 + x1x4 + x3x2 + x3x3 + x3x4 + x4x2 + x4x3 + x4x4.

By applying the boolean reduction in Equation 3.2 yields,

FG = x1x2 + x3 + x4. (3.6)

Observe that Equation 3.6 can no longer be reduced by boolean reduction. There-
fore, each term in the equation is a cut set K:

K1 = x3,

K2 = x4,

K3 = x1, x2.
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It is worth noting that the minimal path sets are obtained the same way as
minimal cut sets, but by proceeding with the dual of the fault tree. The dual
of a fault tree is obtained from the fault tree by replacing the AND gates with
the OR gates, the OR gates with the AND gates, and the basic events with their
complements. As an example, the dual of the fault tree FG from Equation 3.6 is

FG = x1x3x4 + x2x3x4. (3.7)

MOCUS: Method for Obtaining Cut Sets

One of the more commonly used methods for obtaining minimal cut sets is the
MOCUS algorithm by Fussell and Vesely [33]. MOCUS is representative of a class of
top down approaches to obtaining minimal cut sets for a fault tree. The algorithm
that starts with the gate for the top level event and proceeds to decompose each
higher level gate until only basic events are obtained. The algorithm assumes that
the fault tree is given with only AND and OR operators.

Although MOCUS is widely used as the core of many computer codes for fault
tree analysis, very little is given about its implementation. The algorithm begins
by defining two sets, each to hold a term in a sum of products form. The terms
could be in terms of a gate or basic event. One set, P , holds the sum of product
terms that are terminal (composed of only basic events) and the other set, R, holds
terms that contains gates that are to be further decomposed. The algorithm works
as follows:

1. Initialize R with the top event eT : R = eT

2. Initialize P to be empty: P =

3. For each product π ∈ R,

4. If π is terminal, then move π to P

5. Else, a gate variable is selected in π,
decomposed into additional product terms,
insert product terms into R

6. Repeat until all variables are terminal (basic events).

The MOCUS algorithm requires two heuristics to do the following:

1. to select the next product term in R to process and
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2. to select the gate to decompose and expand to product terms during the
process.

Therefore, several methods and algorithms attempts to improve on the basic algo-
rithm by employing heuristics and introducing different data structures.

MICSUP: Minimal Cut Sets Upward

The MICSUP algorithm, proposed by Chatterjee [21], is a representative of the
class of algorithms that starts with the primary gates (gates with basic events only)
and replace higher level gates with their inputs, which ultimately become a function
of only basic events. This procedure continues ”up” the fault tree until the top
event is composed of a primary gate containing only basic events. The algorithm of
MICSUP works as follows:

1. Initialize a set of primary gates: S = allprimarygates

2. While S contains primary gates,

3. Select a primary gate and replace with its input events

4. Apply boolean reductions

5. Replace the product terms in S

6. Apply boolean reduction to primary gate of top event

7. S results in only basic events

One of the challenges to this method is that the development of large fault trees
result in having AND operators near the top, which yields quite a considerable
number of Boolean terms. To address this challenge, Nakashima and Hattori [83]
proposed the algorithm Ancheck.

3.4.3 Quantitative Evaluation of a Fault Tree

A quantitative analysis of a fault tree consists of a calculating the probability of
the top event by starting with the probability of the basic events, as discussed in
Chapter 2. In addition, importance measures can be carried out quantitatively once
a fault tree constructed. This can be done directly by traversing the fault tree from
its basic events back up to the top event and making the appropriate probabilistic
calculations depending on whether or not an AND or OR gate is visited during the
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traversal. On the other hand, if basic events are repeated (share common gates),
then the minimal cut set are used to perform a quantitative analysis. This requires
the reduction of the fault tree into its minimal cut sets, and then using minimal cut
sets to analyze the fault tree quantitatively. The most common approaches uses the
minimal cut set method to quantify a given fault tree. This method is based on the
inclusion-exclusion theorem, and thus, it is not exact. Its wide use is contributed
to the fact that it is a faster calculation than exact approaches and it yields results
that are adequate for its use.

Recent research into the probabilistic assessment of fault trees focuses on the
efficient use of a Binary Decision Diagram (BDD) [105] as data structures to perform
exact probabilistic calculations for a fault tree. The BDD method does not analyze
the fault tree directly, but converts the tree to a binary decision diagram, which
represents the logical relationships for the top event. The difficulty, however, is in
the conversion of the fault tree into a BDD. An ordering of the basic events in a
fault tree must be chosen and this ordering can have a crucial effect on the size of
the resulting BDD. The ordering can mean the difference between two extremes: a
BDD with few nodes that provides an efficient analysis and the inability to produce
a BDD at all. There is no universal ordering scheme that can be successfully used to
produce a BDD for all fault trees, and no scheme has been found that will produce
a BDD for some large fault trees. The effects of a large BDD can increase the
computational time that is required to obtain probabilistic measures, and the size
can have an adverse impact on the amount of computational memory utilized in the
tool. Recent research on the use of BDDs in fault tree analysis is focused on applying
alternative techniques that will increase the likelihood of obtaining a BDD for any
given fault tree and ensuring that the probabilistic calculations are as efficient as
possible.

3.5 Summary

This chapter provides an overview of the design methodology and its flow in the
context of this dissertation. Platform based design is introduced as the underlying
design methodology that supports this design flow. The design flow is composed
of a system model, which specifies models of its functionality, architecture, and a
system platform model that is the result of mapping. Fault tolerant data flow is
described as a computational model that is used to model the functionality of an
application within this framework, whereas the architecture model consists of a set
of parameterized components that are selected from a library. Finally, the fault
tree is introduced as the reliability model that enables this design flow such that
reliability and fault tolerance of a system model can be analyzed and evaluated.
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Chapter 4

Automating the Art of Fault Tree

Construction

One of the first steps to performing a reliability analysis using fault trees is to
construct a fault tree from a model of the system under design. This chapter focuses
on the systematic construction of a fault tree from a system model and techniques for
its analysis. A systematic approach to fault tree construction enables the automatic
construction and analysis.

4.1 Background

The construction of a fault tree requires an in depth knowledge about the sys-
tem that is under study. The system could represent a physical artifact, a human
and organizational procedure, or process. In the context of this dissertation, the
system will be a physical artifact, in particular, a system with electronic compo-
nents. System analysts and designers must understand the structure, behavior, and
the expected failure modes of the system. This understanding is acquired through
experience and knowledge of a specific system, its components, or a similar sys-
tem. There is no precise method for constructing a fault tree. However, a highly
referenced publication by Vesely et. al. for the United States Nuclear Regulatory
Committee [122] provides a general procedure to guide the construction of fault
trees.
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4.1.1 General Procedure for Constructing Fault Trees

Before construction begins, a preliminary analysis is performed to define and
identify components in the system and their failure modes. The preliminary analysis
occurs prior to fault tree construction. Identifying the system means that the system
boundary must be specified. The system boundary dictates the input and output
signals of the system, and it defines how the system interacts with its environment.
Once the system is defined, it is decomposed into its components. The components
are entities in the system that are not decomposed any further. For each component
that is not decomposed any further, a set of failure modes are associated with those
components. The failure modes represent the ways by which a component is said to
have failed. After the preliminary analysis, the construction of a fault tree begins
by defining a top event for the system; resolving this event into intermediate fault
events until resolving them is judged to be impossible or useless according to the
level of fidelity that is desired; and designating the failure modes of a component as
a basic event. A failure modes and effects analysis (FMEA), is one such procedure
for for identifying and analyzing the consequences of potential failure modes within
a system. Subsequently, the general approach to systematically construct a fault
tree is given in the following steps:

1. Define the top event. This means determining the undesirable event. The
undesirable event is the top event of the system that may be resolved.

2. Resolve the fault events. This step requires that the top event is resolved in
terms of intermediate events that immediately contribute to a top event and
the resolving of the latter into the next level of intermediate events.

3. End construction. The construction is completed once the resolved events
there are no more events to resolve, leaving only basic events.

The construction of a fault tree is an important step in the analysis of systems
using fault trees. The resulting fault tree of the system is used to perform qualitative
and quantitative analysis and an evaluation of those results so that corrective mea-
sures can be taken to address unsatisfactory measures. In practice, fault trees are
constructed manually from design specification documents and intuition by highly
skilled and experienced subject-matter experts since it requires expert knowledge
about the system. Due to increased system complexity, constructing fault trees
manually is difficult, time-consuming, and inconsistencies may arise the fault tree
and the intended behavior of the system it models. For these reasons, analysts have
been led to conceive systematic techniques to construct fault trees with a view to
automate its steps.
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4.1.2 Approaches to Automatic Fault Tree Construction

Approaches to automatic fault tree construction varies in terms of the type of
input data structure used to systematically generate the fault tree and the way
failure modes are attributed to the system components. In many cases, the input
data structures used for generating the tree are typically not the system design
models. Many design models do not contain enough information, such as failure
modes and error propagation, to support the fault tree construction. Instead, such
information appears in reports that are used to build data structures from which
fault trees are generated.

In traditional approaches, labeled directed graphs in Lapp and Powers [62],
Bosche [12], Ju et. al. [49] are constructed to explicitly describe the cause-and-
effect relationships between process variables and its environment. The graphs are
constructed manually from design documents and knowledge of the system behav-
ior, and as such, they were represented by separate models. These graphs are then
transformed into a fault tree. In a method developed by Fussell [34], each compo-
nent in the schematic of an electrical system has a small fault tree that is used to
embed failure modes of the component. The system fault tree is composed from the
individual fault trees of the components. Failure modes are described by a small set
of discrete values, and the intermediate data structures that describe the fault trees
and their failure modes can become complex. The result is that the data structures
for manipulating the fault trees and failure modes are not easy to build, reuse, and
keep consistent with the system design models since changes in system behavior and
requirements means that the fault tree must change accordingly. Such changes are
made by hand.

Subsequent approaches began to focus on integrating enough detail in the mod-
els that are used for designing and simulating the system, for example into block
diagram schematics and behavioral models. These models describe the structural
dependencies and the behavior of components in the system, and each of the two
models were built independent of one another. Moreover, none of these methods
considered applications for embedded systems. De Vries [27] develops an approach
for quantifying failure modes in analog electrical circuits. In contrast, methods such
as the ones reported in Vemuri et. al. [59] and Papadopoulos et. al. [89] address
digital systems where each component in the system model is annotated with a small
set of discrete failure modes. In these approaches, a parameter of a component is
qualitatively labeled as or , as it represents a discrete failure mode. A chronology of
traditional approaches to automatic fault tree construction is provided in Carpig-
nano et. al. [16]. The main differences in systematic and automated approaches
include the type of model that is used to describe the function of the system and
the faulty behavior of the system, the degree at which the analyst can reason about
the system, and expressiveness of the resulting fault tree is when compared to the
system from which it is derived.
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More recent approaches [59, 89] have focused on the automatic construction of
fault trees for safety critical systems. The work most closely related to this paper
is Papadopolous et. al. [89], where a methodology is presented that enables fault
tree construction based on a composition of both a hazard analysis on the architec-
tural and functional components of the system. Having the composition of the two
enables where each component is annotated with failure modes, the system level
fault tree is constructed automatically. In Vemuri et. al. [59], focus is given on how
to create a descriptive modeling language called RIDL, which stands for the Reli-
ability Embedded Design Language. The purpose of RIDL is to use a framework
with related syntax and semantics to describe fault trees and their construction.
This gives a natural modeling environment for reliability engineers to work, and it
also removes the ambiguity in interpretation of component reliability requirements.
Primitives such as single point failure components, support component, repeated
components are available in the environment to encode a variety of systems from a
reliability perspective. Since these primitives in the modeling language have precise
semantics, a fault tree can be constructed systematically. By applying a systematic
technique to fault tree construction, the fault tree may be generated automatically
to support the design flow that is presented in Chapter 3 and enable faster evalua-
tions of architecture designs for the system model as compared to manual, ad-hoc
methods.

4.2 Automatic Fault Tree Construction of Fault

Tolerant Data Flow Models

In this section, an algorithm for automatic fault tree construction from a redun-
dant, mapped FTDF graph is formulated and described. The resulting fault tree is
static, i.e. contains only AND, OR, and K-of-N logic operations. It is represented
by a series of Boolean relationships. The fault tree describes how faults in the exe-
cution platform may lead to faults in the functionality and ultimately to violations
of the specifications, i.e. to system failures. A recursive algorithm operates on the
deployed FTDF graph model to produce a system fault tree. The problem is defined
more precisely below.

4.2.1 Assumptions

The system specification is modeled by a platform graph, given as L = (LV , LE),
where LV = (P ∪ C) × V is the set of vertices and LE is the set of edges. The
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graph L contains a set of redundant actors that describes a periodic, time-triggered
application. In LV , P is a set of ECUs, C is a set of communication channels, and
V is the set of actors and media that describes the application, as defined in Section
3.3.6. The unmapped application is represented by the FTDF graph G, and the set
V ⊆ G. The set P ∪ C ⊆ PG, where PG is the platform graph that models the set
of architecture resources. A vertex l ∈ LV with l = (r, v) means that an actor or
medium v is mapped to resource r. An edge e ∈ LE with e = (l1, l2), l1 = (r1, v1),
and l2 = (r2, v2) connects l1 to l2. Graph L preserves the data dependencies between
its components as specified in the functional model of the unmapped FTDF graph
of G. The replication strategy ensures that the data dependencies are preserved and
that the application tasks execute correctly, i.e. without fault.

The fault model assumes fail silence on nodes in L. Fail silence is a fault that
results in permanent omission failure of the ECUs and communication channels in
the platform graph. Thus, the failure mode is omission failure. It is assumed that
software components have the ability to detect value and timing faults. This can be
accomplished by an internal detection mechanism that checks or asserts conditions
on the value of input data. Since the application is assumed to be time-triggered,
then timeouts are used to detect timing failures. Hence, the application tasks fail
when the ECU fails to execute or when communication channels fail to transmit
messages.

The fault tree is described by a fault tree graph F = (E,A), as defined in
Definition 3.4, where E is the set of fault events and A is the set of directed edges
that connect vertices. In the fault tree generation method, it is useful to partition
the set E into the set of basic events EB and the remaining intermediate events EG

such that EG∪EB ⊆ E. The top event represents the failure of the actuators in the
system to execute. Since the assumption is on fail silence, it implies that no input
tokens are received at the input of the actuator type actors. Thus, the top event eT
is specified as a function of the set of actuator actors in PG.

4.2.2 Problem Statement

Given a platform graph L, a top event eT (and the logic operation which outputs
it), generate a fault tree graph F and a correspondence map fF : LV → F , such
that:

• the set of basic events, EB is in bijection with P ∪C ∪AS ∪AC and indicates
the failure of resources in the architecture,

• fF(l), where l = (p, a), returns the gate g1 ∈ F that indicates the
faulty/missed execution of actor, a on ECU, p, and
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• fF(l), where l = (c,m) returns the gate g1 ∈ F that indicates the faulty
transmission of the data dependency m on channel c.

The problem as stated transforms a mapped FTDF graph as a platform model
into a fault tree graph. The platform model L is specified by the designer, as well
as the top event, which is specified in terms of a logical expression that describes
the failure of the actuator actors. Under the fail silence assumption, this means
that the actuator actors are unable to execute due to not receiving any input to-
kens. The correspondence map fF is constructed by traversing the platform graph
and transforming the failure modes of components in the platform graph into fault
events in EB and EG. The set of basic events EB represent the failure mode of
ECUs, communication channels, actuator, and sensor type actors. The failures of
those components are the inability to execute for ECUs and the inability to transmit
data for communication channels, as specified by omission failure. Thus, those com-
ponents failure appear as basic events in the resulting fault tree. The intermediate
events EG of the fault tree will denote the combination of basic events that result
in the top event occurring.

It is noted that the top event eT can be deduced by the semantics of the FTDF
model of computation. For example, each output actor AO is annotated by the
designer with the minimum number of actuator types that it must be able to up-
date in order to achieve a correct actuation of the control algorithm. For example,
consider two actuator types, a1, a2 ∈ AC . The top event eT could be described by
the output of an logical AND operation where the inputs to the logical operation
are the failure to update the actuators a1 and a2, i.e. receive no input tokens. In
general, designers may want to specify different top events to assess other aspects of
the system response to faults in terms of other signals or actors within the platform
graph. For this reason, the top event is taken as input into the fault tree generation
problem, and for reasons of simplifying the discussion, the top event is specified in
terms of the actuator actors.

4.3 Fault Tree Construction Algorithm

The fault tree construction algorithm defines the correspondence map fF where
each node in the platform graph maps to a fault event in the resulting fault tree.
The platform graph, L, exhibits strong structural dependencies amongst its actors.
This dependency, along with semantics of the computational model, provides the
necessary information to build the fault tree of a system modeled using FTDF. Thus,
a recursive procedure is implemented in an algorithm to traverse the fault tolerant
platform graph and generate a fault tree of the system.

The pseudocode for creating the fault tree for a given platform graph L and a
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specification for the top event eT = f(AC) as a function of actuators in the platform
graph is presented in an algorithm that traverses the platform graph and perform a
transformation of nodes in the platform graph to a set of fault events in the resulting
fault tree. The algorithm starts with the execution of the GenerateFaultTree routine
shown in Algorithm 4.1 by identifying the set of actors that are actuator types in
the platform graph. For each actuator in the set, the subroutine DevelopSubTree in
Algorithm on line 5 generates a fault graph for nodes that are in the path between
the selected actuator and each actor of a sensor type that is also along that path
in the platform graph by performing a graph traversal. The result is a fault graph
where the actuator is the source node of the fault graph, denoted by the fault event
ei in the algorithm where i = 1, 2, . . . , |AC |. In the construction of ei by Algorithm
4.2, the sensor typed actors are mapped to basic events, and the sensor actors mark
the end of graph traversal. Once the set of fault graphs for the collection of actuator
actors are constructed, then the graphs are combined into the resulting fault tree F
by using a logic gate that relates the combination of actuator fault events as defined
by the top event specification eT . The subroutine AddGate on line 8 constructs the
top level gate eTG for eT . The top level gate along with eT are composed, and the
fault tree F is returned from the routine.

The subroutine DevelopSubTree is the core of the fault tree generation as it
performs the traversal of the platform graph. During the traversal, the algorithm
creates and stores fault graphs after transforming components in the platform model
into fault events, and it composes the fault graphs together as each actor is visited
in the traversal of the system platform model. It is illustrated in Algorithm 4.2.
When a vertex l ∈ LV of graph L is visited, the algorithm creates and stores a FSubl

at l. This fault graph is then appended to F , and the operation is called recursively
on each input of vertex l until a sensor, as ∈ AS, is reached at which point the
recursion ends.

The routine DevelopSubTree first generates initial parameters. The operation
pre(a) returns the set of sources of actor a, and minFire(a) returns the number of
inputs that are needed to fire actor a, and it depends on the firing rule of a. The
number of inputs to fire an actor is given by the designer as a parameter when the
FTDF graph is initially specified. Next, fault event of fault graph FSubl is created
and a number of fault events that are based on the type of actor encountered during
traversal are also created. Mathematically, when the fault events of the actor is
created, the result is a tree since the leaf nodes are not shared, and the root of the
tree is the fault event for the actor. For example, event e3 is created as a basic
event for a sensor if a ∈ AS or a basic event for an actuator a ∈ AC . A sensor
or actuator basic event corresponds to an abstraction of a fault in the electro-
mechanical hardware of the sensor or actuator devices. The algorithm adds an OR
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Algorithm 4.1: GenerateFaultTree

Input : A platform graph L = (LV , LE) and a top event specification
eT = f(AC)

Output: A fault tree F
1 begin
2 Ei ← {∅};
3 for ai ∈ AC do
4 lai ← (pi, ai) ∈ L for pi ∈ P where P ⊂ LV ;
5 ei ← DevelopSubTree(lai);
6 Ei ← ei

⋃
Ei;

7 end
8 eTG ← AddGate(eT , Ei);
9 return F(eTG, eT )

10 end

gate with events e1, e2, and e3 (if applicable). Here, e1 corresponds to a fault of
the ECU, e2 is a fault that describes when the actor cannot fire because of missing
tokens. If a ∈ AS, the subroutine terminates the recursion immediately.

For each medium that connects actors a and aj, an input fault event is created for
that medium. The input fault event specifies that a medium was unable to deliver a
token at the input of actor a. The routine then checks for the location of the medium,
whether it is a connection between actors on the same ECU via shared memory or if
it is a channel that connects two actors across different ECUs. If the medium is on
the same ECU, no immediate event is created and the algorithm is called recursively
to further develop that event. The routine then creates an event for each edge lk,
and it adds each event to an OR gate. An event created at this point models the fact
that remote data from actor instance lk is not delivered to actor instance l = (p, a)
when either the channel used is faulty or the remote actor fails to execute. The
input edges to lk are further developed by a recursive call to DevelopSubTree. The
InputFaultEvent event (ej) is then composed of the logical AND of the fault events
of the various replicas generating the input. The choice of the AND composition
derives from the fail silent assumption; changing the fault model will impact how
these events must be composed. At the end of the algorithm, notice that the second
level of the tree (second from the root event) is created with a K-of-N operation.
The K-of-N operation is useful to create a logical relationship between a subset of
inputs. This is a one-to-one correspondence to the input and arbiter actors, which
have partial firing rules. More specifically, the K-of-N operation requires that input
events must occur before an output event to occur at that intermediate event. When
x = y, this simplifies to an AND operation and when x = 1, this simplifies to an OR
operation. As an example, let y = |pre(a ∈ AI)| and m = |minFire(a)|. Then for
the K-of-N operation of actor a, x = (ym+ 1). This means that if x tokens are not
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present at the input of actor a, then the K-of-N operation for actor a produces a
fault event e = 1 at its output. Essentially, the routine composes subtrees to create
the system fault tree. When the subtrees of each node in the platform graph are
composed, some leaf nodes of the tree are shared between different trees, and it is
at this point that the fault tree is more generally a fault graph.

4.4 Complexity of the Fault Tree Construction

Algorithm

The implementation of the fault tree construction is described. A platform graph
is given as input to DevelopSubTree. Actors in the mapped graph are traversed in
a depth first traversal scheme from actuator to sensor actors. As each actor in
the mapped graph is visited once through recursion of DevelopSubTree, a subtree
of fault events is created and stored in memory. Each subtree contains levels of
fault events that contribute to the failure of that actor instance. The first level
corresponds to the failure of the actor instance in the platform graph. Each actor
instance will have a first level fault event, therefore, its memory complexity is O(1).
The second level is a combination of three fault events that must occur for the actor
instance to fail. Fault events at the second level are an actor not receiving enough
input tokens to fire, the ECU for which the actor instance is mapped fails, or the
actuator hardware fails to update the actor. The second level results in a memory
complexity of O(1). The third level contains events for determining when an input
to the actor instance is faulty, as in the case where an actor instance cannot fire due
to the lack of input tokens. Fault events on the third level depend on the number
of inputs to an actor instance, and they are created and stored in the first recursive
call to DevelopSubTree on each input with a memory complexity of O(D), where
D is the average number of inputs per actor instance in the mapped FTDF graph.
The fourth level constructs subtrees that determine how fault events occur for the
source actor that feeds into the actor instance. The second call to DevelopSubTree
occurs at this point, and since a subtree of fault events are developed for the inputs
to the source actor, it has a complexity of O(D). At the point where the algorithm
reaches a sensor actor, the recursion ends since sensor actors have no input events to
further develop. Furthermore, in the case that an actor is replicated (i.e. it contains
the same actor dependencies, but located on a different ECU), the subtree of the
replicas will be the same, and each subtree is stored individually. The resulting
memory complexity for developing a subtree for each actor instance in the mapped
graph is O(D2). Given a total number of M actor instances in the mapped graph,
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Algorithm 4.2: DevelopSubTree

Input : l = (p, a) ∈ (P × A) ⊂ LV

Output: FSubl

1 Begin;
2 N ← |pre(a)|;
3 M ← minFire(a);
4 FSubl ← CreateActorEvent(l);
5 e1 ← CreateEcuBasicEvent(p);
6 e2 ← CreateInputFaultEvent(a,N);
7 if a ∈ AS then
8 e3 ← CreateSensorBasicEvent(a)
9 end

10 if a ∈ AC then
11 e3 ← CreateActuatorBasicEvent(a)
12 end
13 FSubl ← AddGate(FSubl , OR(e1, e2, e3));
14 if a ∈ AS then
15 return FSubl /* terminal case, end recursion */

16 end
17 for mj ∈ pre(a) do
18 aj ← pre(mj);
19 ej ← CreateInputFaultEvent(mj, l);
20 if llocal ← (p, aj) ∈ pre(l) then
21 elocal ← DevelopSubTree(llocal)
22 end
23 for lk ← (c,mj) ∈ pre(l) ∩ (C ×mj) do
24 ek ← CreateRemoteInputEvent(lk);
25 ec ← CreateChannelBasicEvent(c);
26 era ← CreateRemoteActorsEvent(lk);
27 ek ← AddGate(ek, OR(ec, era));
28 for lr ∈ pre(lk) do
29 er ← DevelopSubTree(lr);
30 end
31 era ← AddGate(era, AND∀er(er, elocal));

32 end
33 ej ← AddGate(ej, AND∀ek(ek, elocal));

34 end
35 e2 ← AddGate(e2, V OTE∀ej(N,M, (ej)));
36 return FSubl ;
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the resulting memory complexity is O(MD2). The execution time complexity for the
algorithm is O(D2M) since each call to DevelopSubTree is O(DM). The performance
of the algorithm is computationally expensive and highly dependent on the number
of actors and communication channels in the mapped FTDF description.

4.5 Experimental Case Study

In this section, to test the fault tree construction algorithm, an example of an
”on-off”, or ”bang-bang”, controller for an inverted pendulum is discussed. The
purpose of this case study is to demonstrate the fault tree generation technique on
a tractable example, and to illustrate its use within the design flow that is described
in Chapter 3. Since manual construction of fault trees are highly dependent on
subjective factors such as specified failure modes, system topology, and the analysts
understanding of the system, a complex example for this work would be difficult
to evaluate the generated fault tree. The example is simple enough to validate the
quality of the fault tree that is produced by the fault tree generation algorithm by
inspection and using simulation to validate that the design is according to specifi-
cation. The task dependencies of the digital controller are described by a FTDF
graph in Figure 4.1. In Figure 4.2, a platform graph that contains three ECUs and
two communication channels is also shown.

Figure 4.1. Function model for a distributed control example, the inverted pendulum
case study.

The controller consists of three position sensor devices, one input actor that per-
forms sensor integration and assesses the current pendulum position, two different
task actors that represent two controllers (coarse and fine) that require different
computing power, one arbiter that selects the output of one of the controllers (the
fine one, whenever available), and an output actor that directs the control action to
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Figure 4.2. Distributed architecture model for the inverted pendulum control case
study.

two different actuators. The architecture platform model of Figure 4.2 and consists
of three ECUs and two communication channels. Each ECU samples one of the
three sensors, while and drive actuator and respectively. The plant describes the
mechanical dynamics of an inverted pendulum on a moving cart. This is a classical
example that is commonly used in benchmarks for the design of feedback control
systems.

The fault tolerance requirements used to drive the synthesis of the redundant
deployment consist of:

• execute the entire algorithm in absence of faults (default behavior)

• in the presence of a single ECU fault, guarantee the execution of the critical
subset of the FTDF graph, so that at least one of the Actuators is updated.

The critical set is a set of actors that mandates the execution of at least one replica
of:

• the input actor ,

• the coarse controller ,

• the arbiter actor , and

• the output actor .

The criticality of a task in this context is determined from user input, and it is an-
notated into the model and represented one of the actors in the critical set described
above. In particular, in order to fire, actor requires that at least two of the sensors
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Actor ECU0 ECU1 ECU2
SEN0 X
SEN1 X
SEN2 X

IN X X
FUNc X X
FUNf X
ARB X X
OUT X X
ACT0 X
ACT1 X

Table 4.1. A mapping of the inverter pendulum case study with redundancy.

deliver their data to it. The arbiter actor can fire with one of its two inputs present.
As a result, a synthesis tool [95] performs the redundant mapping described in Table
4.1.

It is worth noting that the fine controller is not replicated, because it was not
specified as part of the critical set. This mapping is guaranteed by construction to
tolerate single ECU failures. However, there is no finer quantification of the degree
of fault tolerance achieved by this particular implementation.

4.5.1 Analysis of Fault Behavior using Fault Trees

To measure and quantify the degree of fault tolerance of this case study, fault tree
analysis is used to determine how and why the system may fail under a given set of
failure patterns. A failure pattern in this context describes the set of failures that are
assumed to occur in the system. In this case study, the failure patterns are assumed
to be resource crash failures, i.e. permanent ECU omission failures and permanent
communication channel failures. The fault tree that represents the controller is
extracted using automatic fault tree generation. The fault tree is then analyzed
by the Item Toolkit [115], a commercial tool distributed by Item Software. In this
case study, a cut set analysis, reliability analysis, and quantification of importance
measures are used.
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Cut Sets
1 SEN0, SEN1
2 SEN0, SEN2
3 SEN1, SEN2
4 ECU0, ECU1
5 ECU0, ECU2
6 ECU1, ECU2
7 CH1, CH0
8 ACT0, ACT1
9 CH0, ECU1
10 CH0, ECU2
11 CH1, ECU0
12 CH1, ECU2
13 SEN0, CH1
14 SEN1, CH0
15 SEN2, CH0
16 SEN0, ECU1
17 SEN0, ECU2
18 SEN1, ECU2
19 SEN1, ECU0
20 SEN2, ECU0
21 SEN2, ECU1
22 ACT0, ECU2
23 ACT1, ECU0

Table 4.2. Minimal cut sets for the pendulum example.

Cut Set Analysis

The cut set analysis permits to identify the combinations of events that generate
a system failure. The list of minimal cut sets for the mapped pendulum example is
presented in Table 4.2 where each row of the table represents a cut set, and each
element in that set corresponds to an event. Since the failure of an architecture re-
source is a basic fault event, resources (i.e. ECUs, channels, sensors, and actuators)
appear in the cut sets.

The name of the basic fault events correspond to architecture faults in Sensors,
Actuators, ECUs, or communication channels. Based on the minimal cut sets for this
example, it is clear that no single ECU failure leads to the system failure (assuming
the top event is the failure of all actuators in the given system mapping). Moreover,
no single channel failure leads to a system failure. Note that channel failures were
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not part of the fault behavior specified to drive the deployment of the synthesis
algorithm.

Reliability Analysis

The reliability analysis combines the reliability information about components
into the reliability of the system. Starting from the mean-time-to-failure (MTTF)
and the mean-time-to-repair (MTTR) of the basic events. Among other metrics,
the system MTTF is computed. In this simple example, we assume a system life-
time of 5000 hours, all basic events have the same reliability, and an exponential
distribution is assumed to describe the failure of the component over time, where
the MTTF of a basic event is 2000 hours and the MTTR of a basic event is 8 hours.
The Item Toolkit returns a MTTF of 11015.81 hours for the system. Based on the
simple specification, one could expect a reliability higher than that of a single com-
ponent failing (MTTF (system) ¿ 2000 hours). It is also observed that the solution
provides a dual redundant system at its weakest points. Hence, assuming no repair,
a MTTF (system) ≥ 1.5 · MTTF (baseevent) = 3000hours. Having a fault tree
now allows experimenting with different mixes of more or less reliable components
to explore design trade-offs.

Importance Analysis

The Item Toolkit also provides various Importance metrics for systems under
analysis. The Importance metrics considered in this analysis include the Barlow-
Proschan Importance, Birnbaum Importance, and the Fussell-Vesely Importance.
expectations since ECU2 contains more actors than ECU0 or ECU1, thus making
ECU2 a highly important component in the given system mapping shown in Figure
4.1. Table 4.3 provides the importance values for the basic events in each of four
different system mappings. In the figure, the first column is the basic events. The
last three columns are the importance metrics for each of three mappings.

4.5.2 Validating the Automatic Fault Tree Construction

The case study is to used to validate that the automatic fault tree construc-
tion does provide an accurate view of the failure behavior of the system under the
stated conditions. The conditions are the expected failures that may occur in the
system, as described by the fault behavior. In this case study, the fault behavior
considers the ability to tolerate a set of failure patterns that originate from the ar-
chitecture platform. Assuming the failures within the set of failure patterns occur
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Table 4.3. Importance of basic events on different system mappings.

simultaneously, it is deduced by inspection and simulation using fault injection, as
implemented and described by Pinello [94], that the fault tree does capture the pos-
sible failure patterns accurately when given a mapping. The failure patterns, and
thus, the fault tolerant requirements of three additional mappings are considered
below:

1. Map 2. The requirement is that all critical actors be executed in the presence
of any two simultaneous ECU faults, i.e. corresponding to failure patterns
{ECU0, ECU1}, {ECU1, ECU2}, {ECU0, ECU2}.

2. Map 3. In addition to requirements in Map 2, all critical actors must be
executed also in the presence of any single channel fault, i.e. corresponding to
failure patterns {Channel0}, {Channel1}.

3. Map 4. The requirements in Map 3 are considered with changes. The task
dependencies in the sensor fusion algorithm is modified to correctly estimate
the pendulum position, in addition to using a single measurement from the
sensors. It contains a partial firing rule.

The fault tolerant requirements specified by the different mappings are compared
with the fault tree that is generated from the system model. Each mapping repre-
sents a deployment, which is then used to evaluate the impact of different mappings
on system reliability.
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4.5.3 Impact of Different Mappings on Reliability

The results of the analysis show that the highest contributors to system failure
for the first mapping shown in Figure 4.1, Map 1, are the ECU faults, then the
sensors faults, the channels faults, and the least impact is due to actuator device
faults. The first attempt at improving system MTTF is to improve reliability of the
ECUs, and in general of each of the components. This would result in longer MTTF
for the system.

The synthesis tool in [94] cannot meet the requirements for Map 2 and Map 4,
for example because the failure of two ECUs makes it impossible to read two of the
sensors, so the sensor fusion actor cannot fire and none of the successor actors can
fire. Nonetheless, the synthesis tool introduces in the deployment more redundancy
in the execution of actors, such that there are now three replicas of each of the
critical actors. Also, in Map 3 and Map 4, communication is more redundant. After
generating the fault trees for the three deployments, analyzing them in the Item
Toolkit, and performing a timing analysis, the results in Figure 4.3 are obtained.
The results in the figure show that the additional redundancy improves the MTTF
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Figure 4.3. A plot of mean-time-to-failure, the number of cut sets, and end-to-end
latency of multiple mappings.
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only marginally, whereas the use of a more robust sensor fusion algorithm yields
much better results in this example. The end-to-end latency is the result of a
timing analysis for the four deployments and indicates the latency from reading
the sensors to updating the actuators. From the results, it is clear that having
more replicas to be executed on the same execution architecture leads to longer
latencies. This information allows the system designer to trade-off between the
desired replication and required latency through the controller. Thus, this method
can be used to explore other design trade-offs that involve redundancy for achieving
fault tolerance.

4.6 Summary

This chapter presents the problem of automatically constructing a fault tree from
a given system model. Unlike previous work, the method employed in this work cap-
tures not only the syntax, but it also captures the semantics of the underlying model
of computation. This can reduce the need for an additional model that describes
the failure behavior of a system, as is done in many of the previous techniques.
Moreover, the generated fault tree graph captures the functional dependencies of
the application, thus, the fault tree captures the impact of platform failures on the
correct function of the application without arbitrarily specifying a criticality to the
application tasks, as is done is related work.

As shown in this section, the construction begins with a platform model for
which describes the behavior of the system as a set of communicating tasks that are
assigned to a set of ECUs and communication channels. The syntax and semantics of
the computational model that describes the application is captured in the generated
fault tree. In particular, since the computational model is a directed graph and the
essence of fault trees stems from the capability of determining how a system can
fail due to component fault events that may propagate throughout the system, it
is observed that a graph traversal could be used to capture fault events in the
fault tree. The fault tree captures failure modes that are described in terms of
the behaviors and signals that characterize the system model. Thus, the fault tree
captures omission, value, and timing failures of the signals and actors in the model
that may occur. A case study is also presented that shows the feasibility of this
method, and it is used to validate that the fault tree that is derived from the system
model is correct.
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Chapter 5

Architecture Exploration and Tool

Support for Fault Tolerant Designs

This chapter describes the problem of determining a set of system architectures
for a distributed application that satisfies the requirements of a given application
subject to fault tolerant and reliability constraints. In system level design for fault
tolerant architectures, the goal of an exploration of the system architecture is to
find a set of solutions for a given specification of a distributed application. An
algorithm that performs the exploration of fault tolerant architectures is proposed.
The algorithm is driven by a fault tree generation and evaluation of the generated
fault tree as described in Chapter 4. Then, the set of tools that supports the design
flow and an example of architecture exploration on an automotive case study will
be described.

5.1 Background

Section 1.5 discussed some works that are related to addressing the problem of
improving the reliability of a system. The goal is to select the number and type of
components that are utilized in a system such the cost of the system is minimal with
respect to system level reliability constraints. A general formulation that models
this problem with a series-parallel configuration as in Figure 5.1 when given as a
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priori the cost and reliability of each component in the system is given as follows:

minimize
∑
i

∑
j

cijzij

subject to:
∏
i

fi ≥ RS

where fi = 1−
∏
j

(1− rij)zij ,

zij ∈ Z∗.

The decision variable zij is an integer value that denotes the number and type of
component j that is used in subsystem i of a series-parallel configuration. In this
formulation, the system reliability RS is expressed as a function of the components’
reliability rij by way of fi. The specific form of fi depends on how the system
components are configured and the reliability function that is adopted for a par-
ticular component. The objective function is then defined as a function that seeks
to minimize the cost of a design solution represented by the combination of the
values for zij. The problem is known to be NP-hard [22] due to the form of the
reliability function of the system, fi which is non-linear, thus a number of heuristic
techniques have been employed to solve it. The problem of selecting from a set of
components with known reliability where components may be redundant is so-called
the reliability-redundancy allocation problem. The problem may be formulated with
either reliability or cost as the objective function, whereas in the case that reliability
is the objective, the problem would be considered one in which the reliability is max-
imal subject to a cost constraint. Its solution includes two parts: the component
choices and their corresponding optimal redundancy levels.

In the context of distributed embedded systems, the configuration is not readily a
series-parallel configuration. To utilize the formulation of the reliability-redundancy
problem, the system must transformed into a series-parallel configuration. Few
existing works consider the design of distributed embedded systems. In the works
that do consider replication and selection of components in system level design,
the limitations are that those works do not consider the effects of failures, hence,
how error propagates through the system is not captured. Furthermore, failure
patterns are considered only in the case where an importance value is given for a
specific task based on user input. In the design flow of this dissertation, failure
patterns are considered as fault tolerant requirements on the system operation, and
the use of fault trees for reliability modeling and analysis allows the evaluation of the
fault tolerant requirements of the system under an assumed fault model. The fault
tree allows a complex system structure to be decomposed into minimal cut sets,
which provides a way to evaluate the fault tolerance and reliability requirements
of the system in terms of possibly multiple failure modes for a component. The
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Figure 5.1. Example of a series-parallel configuration of components.

form of the minimal cut sets is the same as a series-parallel configuration where
each component in the configuration is a failure mode that describes the failure of a
component, hence, the failure of component may contain multiple failure modes. By
using the quantitative analysis results of the fault tree, the importance of tasks are
determined in terms of component failure distribution, which may differ depending
on failure modes considered, and the structure of the system.

5.2 Problem Formulation

The goal is determine a system architecture that meets reliability and fault
tolerant constraints. To achieve this goal, active replication of architecture resources
is applied. It is assumed that a system platform graph L = (LV , LE), a reliability
requirement Qreq ∈ R, and a fault tolerant requirement Φ are given. The fault
tolerant requirement is described by a set of failure patterns, or a combination
of resources, that must be tolerated. The system platform graph, as defined in
Definition 3.3, represents an initial system configuration. It is also assumed that
the reliability pj and the unit cost cj of each component in the resource architecture
model RPG ⊆ LV of L is given a priori. The expected output is a platform graph
L′

that meets the requirements Qreq and Φ.

Let n denote the number of task instances in the functional model AG ⊂ LV of
L and m be the number of resources in the resource architecture model of L. A
variable, dij ∈ {0, 1} denotes a mapping decision to allocate task i onto resource
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of type j where dij = 1 means that task i is allocated to resource j and dij = 0
otherwise.

Let α and β denote variables that determine the allocation and binding respec-
tively. The variable α is a constraint on the resulting platform graph L′

that means
an allocation can only contain the available resources, since resources could be cho-
sen from a library. They are the resources that are used in the selection of resources
for the implementation of the design. The choice of resources depend on a selection
of more reliable components or active redundancy, as formulated by the reliability-
redundancy allocation problem. The variable β is a subset of the edges in LE of
graph L, where each software task in the application is bound to a hardware resource
that executes this task at runtime. Since, all data dependencies must be satisfied
for the system to function correctly according to specification, then a pair (α, β) is
feasible if all data dependencies are correct. This means that when replicating a
function task,

• for every edge, e = (vi, vj) ∈ E of the FTDF graph in the functional model,
where vi points to vj in the functional model, there is an edge (vi, vj) that
points to every replicated actor in the redundant FTDF graph,

• for every edge, e = (vi, vj) ∈ E, starting with the actor vj, there is an edge
e = (vi, vj) at every replicated actor of vi, and

• each replica of actor vi has to be bound to a resource r ∈ R in such that no
other replica of vi is bound to the same resource.

The constraints are representative of an active redundancy policy. The constraints
enforces that each replica must be deterministic, that is, that for the same set of
input tokens, each replica computes the same set of output tokens, and the output
of each replica goes to the input of each successor actor as specified in the non-
redundant FTDF graph. Furthermore, since a resource can fail, it is useless to
assign a task and its replica to the same resource.

The constraints also considers the fault tolerant and reliability requirements, Φ
and Qreq respectively, where the fault tolerant requirement is defined by the failure
patterns to tolerate, as in the example of Section 4.5, and Qreq is the minimum
system reliability that must be obtained. The reliability of each component can be
obtained by estimation based on experience, prediction of the failure distribution, or
by testing the load on the actual resource component and inject faults to determine
its reliability. Additional constraints that affects the consumption of resources that
are used to achieve fault tolerance and reliability requirements may also be added
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as constraints. The problem is described as follows:

minimize: CS =
m∑
j=1

f(cj, zj, dij) for i = 1, 2, . . . , n

subject to: QS(zj, pj, dij) ≥ Qreq

FTS(xj, dij) ⊆ Φ such that Φ is satisfied

∃(α, β) for α ⊆ RPG, β ⊆ LE.

In this formulation, the objective is to minimize the unit cost of the system CS,
as a function of a selection of components with known reliability and unit cost. The
decision variables are in the number and type of resource j, as given by zj, and the
allocation and binding of tasks from the functional model onto the selected resources
of the architecture model, as represented by dij. The selection and allocation are
subject to constraints on a minimum reliability of the system QS that must be met
and if the fault tolerant requirement Φ is satisfied. The fault tolerant of the system
FTS is determined by an evaluation of the system configuration as a function of zj
and dij. The evaluation of the fault tolerant requirement is obtained by evaluating
the structure function, as defined in Definition 2.1, of the system configuration.

5.3 An Algorithm for Exploring Architecture Al-

ternatives

An algorithm is proposed that describes how the use of fault tree analysis can
be used in evaluating alternative architectures. The algorithm begins by reading
an initial system platform graph, Sk along with a top event eT . The objective is to
reduce the number of components instantiated in the design that satisfies the set of
requirements that are given as design constraints. The goal of the design exploration
is to find a solution to the problem that is formulated in Section 5.2. The general
flow for the algorithm is illustrated in Figure 5.2. The variable k is an iteration
number that is initialized to 0. The initial platform graph is stored in a data model,
from which a fault tree generation step translates Sk and eT into a fault tree Fk

according Algorithm 4.1 that is shown in Section 4.3. An evaluation of the fault
tree at iteration k yields the tuple < mcsk, Qk(t), IMPk >, where mcsk is the set of
minimal cut sets, Qk(t) is the reliability of eT , and IMPk is the set of importance
metrics. The algorithm then checks to determine if the fault tolerant requirement
Φ is satisfied and if the system reliability QSk

meets the required reliability of the
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system. If Φ is not satisfied or QSk
< Qreq, then an improvement strategy is applied

to generate a new configuration S ′k such that the constraints of Section 5.2 are
met. To achieve this goal, the improvement strategy may apply a solution to the
reliability-redundancy allocation problem where the minimal cut sets are represented
by the series-parallel configuration. The strategy that is applied in the case studies
from Sections 4.5 and 5.5 ranks the most critical basic events, which corresponds
to resources in Sk, according to descending order of importance determined by an
ordering of IMPk. The higher the importance value, the higher the priority in
selecting a new architecture (either by replication or replacement of a resource with
higher reliability). Furthermore, once a selection or replication of resources has
been performed, the problem of mapping must be considered. This problem is
also addressed in the improvement strategy. A feasible mapping results in a new
configuration S ′k that is stored in a data model. The value of k increments, and the
algorithm iterates since a mapping produces a new configuration that depends on the
data dependencies of the functional graph of S ′k, the algorithm iterates to evaluate
the new mapping. The algorithm continues to iterate until the fault tolerant and
reliability requirements are met, thus producing a new configuration S ′k that gets
stored into a data model.

5.4 Supporting Tool Chain

This section describes the set of tools that supports the design flow and the
exploration algorithm. The tools include a data model that is used as a repository
to store the system model as well as the fault tree models that are generated. The
data model allows for the transformation of fault events back into the corresponding
components in the system model by allowing the user to perform queries. A set
of fault tree generation and analysis tools are also used in the design flow. The
advantage is that they may be applied more generally to cases where a user simply
wants to generate a fault tree and analyze it.

5.4.1 A Data Model for Design Capture

The design needs to be specified and captured in a data structure that allows
ease of generating the fault tree from the model and storing the resulting fault tree
and designs. It is of advantage that the function and architecture models are speci-
fied separately per the design methodology to allow flexibility in the different set of
design implementations that may be realized. The root node of the XML structure is
the design specification that contains the different system models. The system spec-
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Figure 5.2. An algorithm to support the design exploration of alternative architec-
tures.

ification has three major parts, including the function model, architecture model,
and system platform model.

A library node within the XML structure is included, and it represents the set
of hardware resources that are available to the designer. It is presumed that for
any resource component that may be used in a design, then it is specified in the
library by way of adding it as an entry into the library node of the data model. Each
resource has a type and associated quantities that characterizes the resources. In
the case of this example, the quantity is the failure rate. Additional characteristics
of the resource may be added in the library for a specific type of hardware resource,
and such quantities may be acquired from data sheets, manufacturer records, or
experience.

Figure 5.3 illustrates how the application in the functional model is captured in
the data model as a set function tasks. The function blocks are typed, and they
are given a name. The nets represent the dependency relation between the function
blocks. Together, typed function blocks and the dependency relationship between
function blocks help facilitate the automatic fault tree generation, and the designer
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Figure 5.3. Specification of the function model in the data model.

can reason about how the model objects are related. As an example, in the case
where only a subset of input signals are required for a block to execute, a special
rule that governs that behavior can be set. As such, we use the execution rule in this
work to determine branches in the generated fault tree that addresses the behavior
where all input signals are not necessary for the function block to execute.

Figure 5.4. Specification of the architecture model in the data model.

In Figure 5.4, the hardware model of the example is captured. Each resource
type, ECU and BUS, are characterized by failure rate and an exponential probability
distribution. The fault tree analysis uses the quantities to evaluate and assess a
design since this type of input data is needed by the fault tree analysis tool.

The results of the mapping of the functional and architecture models into a sys-
tem platform model is captured in Figure 5.5. The system platform model integrates
the hardware resource and application models into a single design implementation.
This model specifies for the functional model, which tasks and nets are mapped
to which ECUs and communication channels from the architecture model. This is
denoted by the resource node in the figure. The advantage is that the application
is modeled independently of the hardware that is used to execute the application,
hence, enabling exploration of design alternatives using degrees of freedom in the
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Figure 5.5. Specification of the system platform model in the data model.

application model, the hardware resource model, and the architecture model by
changing the allocation policy.

The final part of the data model captures the fault tree that is generated from
the system platform model. The structure in the data model for the fault tree is
illustrated in Figure 5.6. The fault tree is captured as a list of fault events that are
identified by several parameters, including the logic operation, a unique fault event
name, the type (basic fault event, intermediate, or top event) and the set of fault
events that are used as input to the event’s logic operation.

Figure 5.6. Specification of the fault tree graph in the data model.

5.4.2 Fault Tree Construction Tools and Analysis

The fault tree construction is implemented such that it automatically translates
a system platform model into a fault tree. The analysis of the generated fault tree is
done by porting the generated fault tree over to an external fault tree analysis tool.
The tools that have been used in this work include the ITEM Software fault tree
module, the Isograph FaultTree+, and Galileo from the University of Virginia. The
external tools requires an interface to allow the fault tree to be read and accessed
for analysis.
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FTGen: Automatic Fault Tree Generation Tool

The Fault Tree Generation tool (FTGen) is the artifact of the automatic fault
tree construction algorithm within this design flow. It reads a model specification
from the data model, and it produces a fault tree that contains a set basic events
and gates. The basic events represent the failure modes of the system, and the gates
represent intermediate fault events. The fault tree generation tool translates a fully
connected system model that is represented in the data model to a fault tree that
is also stored in the data model.

The tool executes in two phases. In the first phase, a fault tree is created for each
actor and signal, which will be referred to as a functional block and net respectively.
Note that the blocks are typed (i.e. function, sensor, actuator, state memory, etc.)
and mapped to a resource (i.e. processor). Nets, like blocks, are also mapped to
a type of resource (i.e. processor, bus). The resource for nets can be processor,
or ECU, and communication channel. When mapped to a ECU, the tasks that
communicate exchange data through local memory on that ECU. During this first
phase of the implementation of the fault tree construction, a hash table is created
to store the subtrees that are created by visiting a net or node in the data model.
The second phase will assemble each tree into a system fault tree characterized by
a top event, basic events, and intermediate fault events, called gates. The fault
events are uniquely named, and they may be duplicated at the end of this phase.
Events with the same name are considered to be duplicates. This occurs when a
fault event is referenced more than once by a visit to a predecessor node in the
fault tree graph. As a result, a final phase removes duplicate events based on the
event’s name. The fault events are hashed based on their names, since the names
are unique once mapped to a resource. The final phase creates an output file, which
is the resulting fault tree that is stored into the data model. The implementation of
the fault tree construction follows that of Section 4.3. This implementation differs
from an original implementation that stored the entire subtree for a given task and
net and recursively developed fault events. In that recursive implementation, the
subtrees had to assembled, and this required a search. The hash implementation on
the current and recent implementation is more efficient.

Fault Tree Analysis Tools

A set of external tools are used for the analysis of the generated fault tree. These
tools are well-known to industry as tools that support the design and analysis of
reliable systems and other systems by which could benefit from reliability models.
In particular, the FaultTree+, Item Toolkit with Fault Tree Module, and the Galileo
tools were used. The Galileo tools is an academic tool that allows the input of a fault
tree, and it analyzes the fault tree to capture minimal cut sets, system reliability,
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and other measures. This tool was used primarily for ease of access. For larger
designs, this tool was too slow in its analysis to be integrated into the design flow
automatically. The industrial tools were much faster and offered more capabilities,
however, they were not as accessible and proved to be a challenge to import external
fault trees. For those reasons, a module that extends FTGen is created that performs
the fault tree analysis. It is faster than the Galileo tool, yet it offers less capabilities
as the industrial tools. However, it allowed ease of accessing the generated fault tree,
and it provides the ability to reduce the cut sets to a minimal set of cuts, computes
the system and cut set reliability, and it computes several importance factors.

5.5 Architecture Exploration of an Automotive

Steer-by-Wire Application

The design flow and tool support discussed in this dissertation is applied to an
automotive control application. The system hardware architecture is part of an ex-
perimental vehicle [19] with multiple by-wire features, including steer-by-wire, brake-
by-wire, propulsion-by-wire, and shift-by-wire. The application tasks are distributed
across a total of ten ECUs that communicate using a combination of FlexRay and
Controller Area Network (CAN) buses. The FlexRay bus is used primarily for com-
munication between ECUs to support the data traffic of the by-wire applications.
The CAN buses are used for non-safety critical functions, and twisted copper wire
is used for hard-wired data transport to and from actuators and sensors. The fault
tolerant objectives of the experimental vehicle influenced the system architecture.
The primary objective of interest in this case study is to tolerate single point failures
in the architecture.

The design model that is used to apply the methods and tools in this work is
extracted from a Matlab/Simulink model that was used in an actual prototype of the
system. The model contains application tasks as a data flow diagram by which the
prototype can be simulated. In the functional model, the set of functions that are
connected via directed edges represent the flow of signals between blocks. Blocks are
artifacts of the Matlab/Simulink design environment. Consequently, this model is
used in this work as a basis for automatically generating fault trees. Without loss of
generality, a subset of the experimental vehicle model was extracted to capture the
spatial redundancy in the architecture (a subset of signals and blocks) at a level of
abstraction that would enable manual assessments of the front steering subsystem
and to manually specify the functionality separately from the architecture. The
front steering subsystem is a part of the steer-by-wire application that is presented
in Cesiel et. al.[19]. In particular, the steer-by-wire application is designed to be
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fault tolerant. Therefore the fault tolerant objectives of the system can be evaluated.
In this work, the ability of the system to tolerate single point failures and at least
three simultaneous failures of hardware resources are assessed.

For the purpose of this work, the original model is abstracted according to the
model specification described above. The baseline model is in a centralized architec-
ture where the four main tasks of the steer-by-wire subsystem are contained within
one ECU, and they are executed under a periodic, time-triggered schedule with
a predefined (static) scheduling order that does not change during a sequence of
invocations. A brief description of this set of tasks is as follows:

• T1: Captures and conditions raw sensor signals and distributes the condi-
tioned signals to all other controllers.

• T2: Provides fault detection and management, performs sensor fusion, and
sets reference signals for computing the control law.

• T3: Computes the control law and sends copies of its results to each controller
and to task T4.

• T4: Receives control commands and processes the signals for driving the
actuators.

Each task in the model contains multiple sub-tasks that carry out the task execu-
tion. An additional architecture is assessed, and the baseline tasks are replicated,
increasing the number of subtasks in the abstracted model.

5.5.1 Problem Statement

Given a model of a distributed control system S = L, find a design S = L′, that
contains an assignment of tasks to resources at minimal cost such that a fault toler-
ant requirement and reliability requirements of the system are satisfied. To achieve
this goal, a key enabler of this method is to be able to evaluate S qualitatively and
quantitatively with respect to fault tolerance. The method proposed automatically
generates a fault tree to achieve the evaluation, thus, enabling the exploration of
alternative architectures which are evaluated more quickly than current practical
methods.

The problem that is addressed can be stated as follows. Let F = f1, f2, ..., fm be
a set of m application tasks, N = n1, n2, ..., nq be a set of q signals between tasks,
and R = r1, r2, ..., rk be a set of k resources. Also, let xj be the number of resource
type aj for j = 1, 2, ..., k, dij for i = 1, 2, ...,m+ q, and j = 1, 2, ..., k. Given an
initial allocation of tasks to resources S, find a new allocation S, that minimizes
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Resource Type Failure Rate, λ
(failures/hour)

Copper Wire 1.0× 10−6

Sensor Type 1 6.06× 10−4

Sensor Type 2 6.06× 10−5

Processor (ECU) 6.28× 10−6

Motor (Actuator) 7.90× 10−7

CAN Bus 2.6× 10−7

FlexRay Bus 8.75× 10−4

Table 5.1. Estimated failure rates for resources in the automotive case study.

CS(dij, xj) such that φ(S) < φ, is satisfied for the fault tolerant requirement, φ, the
reliability that is required Qreq.

5.5.2 Data Sources

Data used to perform a quantitative analysis on the generated fault trees for the
experimental vehicle described in the case study is presented. In particular, failure
rate and failure probability estimates are summarized for the architecture resources
in the case study. Table 5.1 illustrates the estimated failure rate in failures per hour
under the assumption of an exponential distribution for the failure rate of com-
ponents during components useful life. The estimate for the processor is obtained
by assuming a basic failure rate from [85] and applying an environment factor for
commercial vehicles. Sensor and motor estimates are from [17], the estimates are
taken for mobile ground vehicles. Two types of rotary position sensors are used in
the case study, so for the purpose of making quantitative comparisons as opposed
to making an objective quantitative measure, it is assumed that one sensor is an
order less reliable. The failure rates in Table 1 are to only give a coarse estimate
of the system reliability, and more accurate measurements can be made with more
accurate input data.

The bus failure rates are obtained from public literature based on the CAN
bus protocol. Error detection and signaling mechanisms in the CAN bus protocol
may fail when an inconsistent frame omission occurs [111]. An inconsistent frame
omission is an error where the (N − 1) bit of an N bit end of frame delimiter is
not detected, resulting in inconsistent frame omissions and inconsistent message
duplicates. An inconsistent frame omission is the condition where messages can be
delivered to receiving nodes in duplicates, and an inconsistent message duplicate is
the condition where a message is delivered to only a subset of receiving bus nodes.
Since architecture resources can fail silent in our fault tree generation framework,
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we consider the probability of failure resulting from message omission errors in a
CAN bus.

To the best of knowledge at the time of writing this thesis, failure data is not
available in published literature for a FlexRay bus protocol. Hence, an estimate of
the probability of an inconsistent message omission failure in FlexRay is obtained
from measurements in for the Time Triggered CAN (TTCAN) bus protocol [31].
It is shown in [111] that when the sending node of a TTCAN message fails, its
failure results in an inconsistent message omission. Since automatic retransmission
of messages due to error does not occur in TTCAN or FlexRay protocols, the effect
of not transmitting a frame is identical to the failure of a sending node.

5.5.3 Experimental Results

An abstraction of the Simulink model is given and used as the baseline archi-
tecture. It is expected that this system does tolerate single point failures in the
resource architecture, and the top event is the failure for the actuators (motors) to
receive any data. Two additional architectures are explored and used to compare.
Since, the baseline architecture is highly redundant, the objective is to reduce the
parts count while still maintaining the ability to tolerate single point failures in the
hardware architecture.

• Architecture 1: This architecture contains one ECU, and on this ECU, each
of the four application tasks is allocated.

• Architecture 2: This architecture contains a dual redundant configuration
where an additional ECU is added to Architecture 1, and the additional ECU
also has all four application tasks mapped to it.

• Architecture 3: This architecture is the baseline configuration. It contains
four ECUs, and the four tasks described in the case study are allocated to
each ECU.

A simplified illustration of sensor and actuator placement in the case study
architectures is given in Figure 5.7. The figure illustrates how the sensors and
actuators in this cases study model are distributed across the available architecture
resources. Using the baseline configuration, Architecture 3, the minimal cut sets are
used to validate that the configuration does satisfy the fault tolerant requirement.
This is verified by inspection of the signals and blocks in the Simulink model of the
system, and the resulting minimal cut sets are shown in Table 5.2. Each minimal
cut set is numbered to distinguish between other minimal cut sets, and each minimal
cut set contains a set of basic events which correspond to resource failures.
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Minimal Cut Sets
# Set of Basic Events # Set of Basic Events
1 { ecu3-fail, can2-fail} 33 {pos-sens2-fail, pos1-1-fail }
2 { ecu4-fail, can2-fail} 34 {swa2-2-fail, pos1-1-fail }
3 { ecu1-fail, can2-fail} 35 {motor2-fail, pos1-1-fail }
4 { can2-fail, can1-fail} 36 {wire2-fail, pos1-1-fail }
5 { can1-fail, pos-sens2-fail} 37 {can2-fail, swa1-1-fail }
6 { ecu2-fail, can1-fail} 38 {ecu2-fail, swa1-1-fail }
7 { pos1-sens-fail, can1-fail} 39 {pos1-sens-fail, swa1-1-fail }
8 { ecu3-fail, can2-fail} 40 {pos-sens2-fail, swa1-1-fail }
9 { wire2-fail, can1-fail} 41 {swa2-2-fail, swa1-1-fail }
10 { ecu3-fail, ecu2-fail} 42 {motor2-fail, swa1-1-fail }
11 { ecu4-fail, ecu2-fail} 43 {wire2-fail, swa1-1-fail }
12 { ecu1-fail, ecu2-fail} 44 {can2-fail, motor1-fail }
13 { swa2-2-fail, ecu1-fail} 45 {can2-fail, wire1-fail }
14 { wire2-fail, ecu1-fail} 46 {can1-fail, motor2-fail }
15 { ecu3-fail, pos1-sens-fail} 47 {ecu3-fail, motor2-fail }
16 { ecu4-fail, pos1-sens-fail} 48 {pos1-sens-fail, pos1-1-fail }
17 { ecu1-fail, pos1-sens-fail} 49 {ecu4-fail, motor2-fail }
18 { ecu3-fail, pos-sens2-fail} 50 {ecu4-fail, wire2-fail }
19 { ecu4-fail, pos-sens2-fail} 51 {ecu2-fail, motor1-fail }
20 { ecu1-fail, pos-sens2-fail} 52 {ecu2-fail, wire1-fail }
21 { ecu3-fail, swa2-2-fail} 53 {ecu1-fail, motor2-fail }
22 { ecu4-fail, swa2-2-fail} 54 {pos1-sens-fail, motor1-fail }
23 { can2-fail, pos1-sens-fail} 55 {pos1-sens-fail, wire1-fail }
24 { ecu2-fail, pos1-sens-fail} 56 {pos-sens2-fail, motor1-fail }
25 { pos1-sens-fail, pos1-sens-fail} 57 {pos-sens2-fail, wire1-fail }
26 { pos-sens2-fail, pos1-sens-fail} 58 {swa2-2-fail, motor1-fail }
27 { swa2-2-fail, pos1-sens-fail} 59 {wire1-fail, motor2-fail }
28 { motor2-fail, pos1-sens-fail} 60 {swa2-2-fail, wire1-fail }
29 { wire2-fail, pos1-sens-fail} 61 {wire2-fail, motor1-fail }
30 { can2-fail, pos1-1-fail} 62 {motor1-fail, motor2-fail }
31 { ecu2-fail, pos1-1-fail} 63 {wire2-fail, wire1-fail }
32 {pos1-sens-fail, pos1-1-fail}

Table 5.2. Minimal cut sets for the baseline architecture in automotive case study.
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Figure 5.7. Topology of the architectures of the automotive case study.

In Table 5.2, there is no minimal cut set with a single basic event, thus, the design
satisfies the fault tolerant requirement that there are no single point of failures in the
architecture. Furthermore, it is shown from these results that failure to the FlexRay
bus does not appear in the list of minimal cut sets. This results from masking of
omission errors detected by the application using voting strategies and application
redundancy.

Then, an investigation occurred on how the architectures would compare to
one another based on their reliability by comparing architectures when given the
initial failure data estimates in Table 5.1. The purpose is to observe the impact of
the most critical resources, as determined by a relative ranking of the importance
measures for each architecture in Figure 5.3. The ranking is relative to the other
resources in the design model. The Birnbaum importance measure is represented
in the table for each architecture. Architecture 2 is the result of the replication
of those resources that have the higher importance values in Architecture 1, and
Architecture 3 is a measure of the baseline architecture. Across each of the measured
architectures, one can observe that failure of the sensor resources are most critical
based on the architecture configuration and estimated failure rate of the sensors.
The events that correspond to failure of sensor resources include ”pos1-sens-fail”,
”pos-sens2-fail”, and ”pos1-1-fail”. Thus, one method of improvement is to replace
the sensor with more reliable components that can achieve the same function or by
adding redundant sensors. The importance measures drive the exploration process
from the single architecture to the dual ECU architecture by replicating the most
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Birnbaum Arch1 Arch2 Arch3
Rankings

1 pos1-sens-fail pos1-sens-fail pos1-sens-fail
2 pos-sens2-fail pos-sens2-fail pos-sens2-fail
3 ecu2-fail pos1-1-fail pos1-1-fail
4 can1-fail swa1-1-fail swa1-1-fail
5 can2-fail swa2-2-fail swa2-2-fail

Table 5.3. A ranking of resource failures as basic events according to the Birnbaum
importance measure.

critical resources relative to other resources in the model. One can observe that the
importance measures are dependent on the failure distribution of the resource and
its position in the topology of the architectures, according to Equation 2.13.

Figure 5.8. Reliability of automotive case study architectures for initial failure data
estimates.

The results in Figure 5.8 and Figure 5.9 show that a substantial increase in
reliability for the different architectures can be obtained when the failure rate of the
sensor values are decreased by a factor of 10-1 failures per hour since the sensors
were most critical consistently across Architectures 1, 2, and 3 according to the
Birnbaum importance. This implies that improvements in the systems reliability
can be achieved by replacing architecture resources with resources that perform the
same functionality at a lower failure rate. This of course is assumed to come at a
higher cost, but it adds another degree of freedom that may be exploited by the
designer. Furthermore, it aids in the choice of off-the-shelf components that may be
used in the system.
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Figure 5.9. Reliability of automotive case study architectures after improving failure
data estimates.

Figure 5.10. Sensor and actuator topology with a single ECU architecture.

Figure 5.10 shows a single ECU architecture that takes input signals from two
independent sensor devices s1 and s2, and after processing the input signals, an
output signal is emitted to the actuator a1. The sensors are needed for the a1 to emit
a signal. Assume that the ECU contains a set of tasks that communicates with one
another via shared memory, since the tasks are all on the same ECU. Furthermore,
assume the ECU, sensor resources, and actuator resource can fail silently. The fault
tree that is generated is given in the figure. Let the probability of failure be 0.10 for
each resource. Then, from the generated fault tree and the equations for computing
the probability of the top event, the probability of failure for the top event in this
architecture can be approximated as 0.40. This results in a reliability of 60%.

Consider the architecture shown in Figure 5.11 where ECU2 is introduced as a
replica of ECU1. This means that ECU2 contains the same set of tasks as ECU1 and
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Figure 5.11. Sensor and actuator topology with a dual ECU architecture.

FTGen Arch1 Arch2 Arch3
# Model Objects (Blocks/Signals) 62 176 239
# Fault Events 114 299 399
Time to Construct Fault Tree (milliseconds) 1272 1431 1563

Table 5.4. Fault tree construction time for the FTGen tool.

the communication between tasks on each ECU are transmitted via BUS1. Sensor
s2 is directly connected to ECU2 as compared to Figure 5.10. Therefore, to emit
a signal at the actuator a1, signals from sensor s2 are required to be received by
ECU1 over the bus. Based on the same assumptions that are previously made, the
fault tree that is generated is shown in Figure 5.11. An analysis reveals that the
reliability is approximately 50% given that each resource has a failure probability of
0.10. Therefore, the reliability is lower for the dual ECU configuration. By observing
the simplified architectures of the case study in Figures 5.7, one can see a similar
architecture as in the example. One can deduce that the architectures in the case
study exhibit a similar characteristic when compared to one another.

In this design flow, it is important to be able to create, evaluate, and modify the
design quickly. So, it is of interest to know how the tools in our tool chain measured
up with the case study architecture models. Table 5.5.3 shows the size of events
that are created from the architecture models of the case study. It is observed that
the time to automatically generate a fault tree is approximately linear in the size
of the model. The results also suggests that if the same model abstraction is used
by an analyst as is read by the automatic fault tree generation tool, then the fault
tree generation tool creates a fault tree significantly faster than by hand, which for
Architecture 3 as an example, could take on the order of days to generate manually.
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Analysis Tools Arch1 Arch2 Arch3
# Cut Sets 15 56 63
Galileo Analysis Time (seconds) 4 61 n/a
FaultTree+ Analysis Time (seconds) 0.3 1.1 1.7
FTGen Analysis Module (seconds) 0.2 1.2 2.1

Table 5.5. A comparison on the time (in seconds) to analyze the fault trees for the
given architectures in the automotive case study.

Table 5.5 shows how the fault tree analysis tools that are used in this case
study, perform on these architecture models. The tools that were used include
Galileo, FaultTree+, and the FTGen analysis module, which is a self-developed
tool. The number of cut sets for each tool is the same when no compaction is
used (this is specific to the FaultTree+ tool since it uses a method to analyze fault
trees more compactly when selected). The steps involved in the fault tree analysis
includes parsing the input fault tree after importing into the tool, generating the cut
sets, and performing an importance analysis and reliability analysis of the imported
fault tree. In the table, it can be observed that the FaultTree+ tool, as expected,
performs faster than the Galileo tool as the number of cut sets that are generated by
each tool increases. Although the quantitative results of each tool were similar, the
discrepancy in the time it takes to acquire the cut sets and quantitative results is due
to the accuracy of the quantitative analysis algorithm and possible data structures
used by each tool. Observe that for Architecture 3, the Galileo tool was unable to
complete the cut set analysis, so the Galileo tool was aborted after 20 minutes and
not results were obtained. Both tools provide interfaces to import and export a fault
tree, but in each tool the analyst is still required to do some manual tasks such as
open up an application interface and import the generated fault tree. The analysis
module in FTGen performed relatively well to FaultTree+ in each architecture.

5.5.4 Discussion

The results demonstrate two basic advantages of the method: first, the fault tree
is generated automatically and thus quickly and consistently with the system model
as compared to manually. Secondly, we are able to show that the system in the
case study exhibits no single point of failure for the top failure event to take place.
Again, while this is done by visual inspection, this step can be easily automated.
Therefore, both the automatic generation and the assessment of cut sets could be
included in automated design exploration.

Limitations to using a fault tree analysis are exhibited by this approach. Quan-
titative results are not objective. They are interpreted to be relative to the accuracy
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of the input data to the fault tree analysis. Therefore, this method is most useful
to assist in making architectural decisions early in the design phases, support safety
cases in conjunction with other reliability and safety analysis, and to validate fault
tolerant requirements in the architecture.

5.6 Summary

This chapter presented the set of design tools that are implemented to carry
out the design flow based on the construction and analysis of a fault tree. The
design flow provides a way to explore different design solutions while integrating
fault tree construction and analysis into the design flow. The design flow and the
tools described are used to explore alternative architectures for a distributed steer-
by-wire model. The design flow captures the different steps and tools for each step
within the design methodology that is introduced.
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Chapter 6

Conclusions

The design for fault tolerant, distributed embedded systems is an increasingly
complex task and it is difficult to manage with current practices. In this disserta-
tion, a methodology and a set of tools to support the design distributed embedded
systems with fault tolerant and reliability requirements is presented. The method-
ology is based on the platform based design method. This methodology allows for a
separation in the modeling of the function and architecture, as a mapping step in the
design method allows for function tasks to be allocated onto architecture resources.

6.1 Benefits of Proposed Methodology

The example case studies that are presented highlights the benefits of a method-
ology that integrates reliability modeling with fault trees into a system level design
framework. Unlike previous work that relies on simple structure models to select
components within a complex system that should be replicated, this work considers
the design of embedded systems. This means that there are hardware and software
components that must interact together. Moreover, this design flow considers how
failures to components within a distributed embedded system will effect the state
of the failure state of the system. This includes the ability to measure the effects
of fault propagation using minimal cut sets concept and the ability to quantify the
failure distribution of system components. The method aides the designer in mak-
ing choices on the number and type of components that should benefit from added
redundancy or improved reliability. This is useful in a system level design as the
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performance of the system as a whole can be impacted and suffer from the faults
that propagate into system failures.

In practice, the automatic fault tree generation can be used as a tool to aide
the designer to make high level trade-off decisions in the architecture design of a
distributed embedded system. Fault trees are very popular in industry as they are
used to make safety cases and provide evidence to support reliable and fault tolerant
designs. Currently, fault tree are still performed much by hand in practice, and the
tool FTGen would be a good aid to system designers as it would allow for quicker,
more efficient construction of fault trees.

6.2 Drawbacks

This approach to the design of fault tolerant systems in distributed architectures
has some drawbacks. The fault tree model is good for viewing the failure scenarios
of a system based on a presumed fault model that can be defined in terms of several
failure modes for a single component. But, the fault tree model inherently has some
shortcomings. In this work, the fault tree is said to be static, i.e. it does not consider
priority of events or where order of events are important. The use of a static fault
tree models only simultaneous failures for system structures where the dependencies
between components are static, i.e. the topology does not change. Static fault trees
are not suited to modeling repair processes, and although the fault tree in this
work is generated automatically, the drawback is that the size of the generated tree
can be very large depending on the number of components, dependencies between
components, and level of detail from which the tree is generated. Finally, this work is
limited to omission failures, whereas, value and timing failures would be interesting
to investigate.

6.3 Future Directions

Directions that are of interest in moving this work along can be targeted towards
the following areas:

• Support for state based reliability modeling. This work considers the use of
fault trees as the reliability model of choice, however, other notable models
are state-based. In particular, Markov models and Bayesian inference models
are making ground in their use as reliability models. These models are use-
ful to model state transitions that may not be correct according to a design
specification. These models allow the designer to capture different modes and
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states within a complex system that data flow oriented models may not be
able to capture.

• Software reliability, quantification, and estimation. Given that more software
is used in systems and many reliability models originated to address hardware
failures, there is a need for more research in the area of software reliability
prediction, reliability modeling for software using traditional fault trees has
been a topic of interest. Even more so has been the prediction of software
reliability. This area is gaining attention as system designers need more ac-
curate ways of predicting software failures. It is challenging to predict and
estimate software failures, and as such, the current body of work in this area
predominantly relies on the use of previous software projects that are similar
in size and structure. As software becomes more important in safety critical
systems, the ability to predict and estimate failures more accurately would
add value to the area.
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