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Abstract 

 

Understanding Inkjet Printed Pattern Generation  

by 

Daniel Benjamin Soltman 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professors S.J.S. Morris and Vivek Subramanian, Co-chairs 

 

Inkjet printing has been actively pursued as a means of realizing integrated electronic 

devices.   To date, the vast majority of work on this topic has centered on the 

development of inks and process integration, while little research has focused on the 

details of pattern generation.  

In this work, we first examine inkjet-printed conductive lines.  We show several different 

printed-line morphologies and explain the causes of these forms of varying utility.  More 

generally, we develop and demonstrate a methodology to optimize the raster-scan 

printing of patterned, two-dimensional films.  We show that any fixed line spacing can 

not maintain the constant perimeter contact angle necessary for arbitrary patterned 

footprints.  We propose and demonstrate a printing algorithm that adjusts line spacing 

to print optimal features.    

Our work analyzing patterned drops reveals that drop contact angle is a function of 

position and shape.  Numerical solutions to the Young-Laplace equation enable us to 

predict the sharpest corners possible in a rectangular bead with a given wetting 

behavior.  We verify our computational results with printed rectangles on substrates 

with variable wetting.  Finally, we motivate future research directions including general 

solutions to a patterned drop’s surface in any corner and the behavior of line junctions 

and other concave corners of printed lines.
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1 Introduction 

1.1 Overview 

Printed electronics technology has the potential to lower sharply the manufacturing 
costs of a range of active electronic devices and enable the creation of novel ones.  
Flexible displays, low-cost circuits like radio-frequency identification tags, and 
embedded sensors, such as chemical vapor or shock wave sensors, can all be fabricated 
at a lower cost with printing, compared with traditional microfabrication techniques.  
Specifically, printing displaces the multistep process of photolithographic patterning 
which is composed of thin film deposition; resist deposition, patterning, and developing; 
thin film etching, and resist stripping.  Patterned printing replaces this entire lithography 
process with one additive step.  Furthermore, printing is compatible with low-cost, 
flexible substrates, such as polymer and metal foils, and the high throughput, roll-to-roll 
manufacturing that is used by the graphics arts printing industry.  This further facilitates 
the reduction in cost of printed electronic systems.  Finally, additive printing minimizes 
waste by printing only the necessary active material, sidestepping costly vacuum 
processes and the solvents and other chemicals required by photolithography, etch, and 
clean steps.  In sum, by exploiting printing, electronic fabrication process flows are 
simplified and materials costs are reduced, enabling significantly cheaper device 
fabrication. 

Drawing analogy to the development of photolithography, we seek design rules that will 
simplify the printing of arbitrary devices.  In conventional photolithography layout, 
design rules specify a set of necessary spacings, overlaps, and permissible shapes for 
lithographic patterning that optimize the performance-reliability tradeoff.  Figure 1.1 
shows the most common design rules in integrated circuit layout; a modern process 
flow has more than 150 such rules.1  Figure 1.1 a) shows the minimum line width 
definition to ensure continuous lines with acceptable line edge roughness.  In b) we see 
the minimum line spacing that prevents adjacent lines from merging.  In 
photolithography, line width and spacing considerations are due to the wave nature of 
the light used for patterning. It is increasingly difficult to arranging incident waves in 
patterns smaller than the wavelength of light used.  Figure 1.1 c) and d) show overlap 
and enclosure requirements needed for device layers to interact completely or reliably 
connect, respectively.  The mechanical alignment of one layer to the next primarily sets 
these required overlaps. These design rules are chosen to produce the desired device 
yield.   
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Figure 1.1. CMOS design rules categories:  a) minimum line width, b) minimum line spacing, c) minimum extension, 
and d) minimum enclosure.

1
 

 
The results in this work suggest that printed electronics design rules use different 
physical constants and laws than does photolithography to produce an intended 
manufacturing yield.  For example, in inkjet-printing drop volume often adopts the role 
of light wavelength in photolithography, setting minimum feature size, as will be seen in 
the work on printed lines. In other work on printed rectangles we show that both drops 
size and contact-angle constraints may determine pattern fidelity, suggesting that 
wetting parameters also play a role in printing design rules.  Notably, wet patterns at 
equilibrium have constant curvature, and we note that such surfaces maintain constant 
curvature with uniform scaling.  Therefore, the contact-angle and curvature 
considerations dictate a nondimensional set of optimal shapes that scales from very 
small size, where continuum approximations break down, to larger sizes, where gravity 
flattens drop shape (and a new set of design rules will emerge).  Such solution scaling is 
different from photolithography design rules in which a fixed light wavelength dictates 
the achievable resolution.  Instead, a scalable set of constant curvature surfaces 
emerges. 

Better understanding of a general set of printed shapes will also permit the introduction 
of techniques analogous to optical proximity correction in photolithography.  For 
instance, if a sharp corner will naturally round to minimize surface energy, fabricators 
could deliberately pre-print or extrude that corner so that it will have a closer to 
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intended planform.  Such optimizations and enhancements are only possible with an 
understanding of a set of printed shape primitives and their basic interactions.  Although 
there exists a robust literature on the stability of fluid stripes wetting a substrate, 
considerably less work has been done to investigate the other wetted drop shapes 
necessary for arbitrary pattern generation. 

Unlike earlier works on patterned, wetting drop shape, we utilize the fluid deposition 
step for patterning and rely on contact angle hysteresis, rather than surface energy pre-
patterning, to form stable, shaped drops.  Experimentally, drop-on-demand inkjet 
printing is well-suited to this line of inquiry, permitting many input degrees of freedom 
including timing, temperature, jetting order, etc.  The results found through inkjetting 
generalize to other common additive printing schemes like those in the next section. 

This work examines shapes necessary to create arbitrary printed patterns and is 
composed of four principal parts.  Chapter 2 delves into the inkjet printing of lines 
subject to contact-line pinning, examining different line morphologies and the effect of 
different drying conditions.  The third chapter concerns the creation of optimal two-
dimensional films, by developing a model for the shape of a bead surface with a 
rectangular footprint. Chapter 4 examines drops confined to concave and convex right-
angle corners, utilizing numerical models to corroborate empirical results.  The final 
chapter summarizes this work and suggests future research. 

   

1.2 Printing technologies 

Electrically-active inks:  ones that deposit films that are conducting, semiconducting, 
insulating, etc; may be patterned by additive printing technologies including the well-
known technologies of gravure, screen, and inkjet printing.  Researchers have 
demonstrated active devices and circuits for all three.  Each technology has its strengths 
and weaknesses.  Screen printing is best-suited for low resolutions and thick films whose 
performance is proportional to material delivered.  In electronics applications, it is 
suited to applications including large, low resistance wires and battery films.  Gravure 
printing produces high resolution patterning at high throughput and has the potential to 
produce low cost circuits like radio frequency identification chips once scaling laws and 
design rules are developed to enable sufficient yield at finer resolution.  Inkjet printing is 
a flexible technology whose throughput scaling has already been demonstrated to 
industrial-sized arrays and is appropriate for a variety of applications requiring thin to 
intermediate film thicknesses, moderate to high printing resolutions, and a wide range 
of throughputs.  In this work, all patterning is done by piezoelectric inkjet printing 
whose flexibility in pattern and ink makes it especially well-suited for research. 
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Each technology works best with inks of specific properties.  Depending on the solubility 
and desired amount of material delivered, a particular printing technique may be best.  
For example, screen printing works best with viscous pastes and thus ink with high mass 
loading (or ones that tolerate the addition of a substantial amount of inert material).  
Gravure printing requires ink tuned to a precise viscosity depending on its resolution.  
Traditional gravure inks have been viscous pastes, although the optimal viscosity 
appears to decrease as resolution increases enabling the printing of inks with lower 
mass loadings.  (An understanding of the ink-scaling relationship in gravure printing is 
the topic of ongoing research.)  Inkjet printing requires an ink of intermediate viscosity, 
tuned to a particular jetting system.  Inkjet cavities are usually designed to jet optimally 
at low and intermediate mass loading in common, volatile solvents, about 10 cP. 

Screen printing, as seen schematically in Figure 1.2, can be adapted for either roll-to-roll 
or stationary processing.  In either case, a blade forces ink through patterned holes in a 
stencil to create patterns on a substrate.  After the pattern is transferred, the stencil is 
lifted leaving ink behind in its voids.  The thickness of this stencil determines the 
thickness of the transferred ink pattern, and 20-100 μm thick patterns are commonly 
printed.  This is much thicker than the submicron layers printed in gravure or inkjet 
printing.  Furthermore, the simplicity of this process allows the greatest variety of inks 
to be printed industrially with screen printing.2  Its resolution capabilities are lower than 
the other printing techniques considered due to stencil-patterning resolution limits.  
Screen printing is used to create printed electronics, and, in addition to its widespread 
use in making printed circuit boards (PCBs), it has been used to fabricate organic 
transistors and solar cells.3, 4 

 

Figure 1.2.  Screen printing schematics for a) flatbed printing, and b) roll-to-roll printing.
2
 

 

Gravure printing is a promising technology for high resolution device printing and is 
shown in Figure 1.3.  It is used in industry for high quality, high speed, large-run printing 
such as currency printing.  In gravure printing, a cylinder patterned with cavities is 
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uniformly coated as it turns through an ink reservoir.  A blade then removes ink that is 
not within the cavities.  The filled cavities then turn with the gravure cylinder and are 
pressed onto a target substrate.  The ink wets the substrate and the pattern is 
transferred as the patterned role moves away.2  The high resolution and high 
throughput of gravure printing make it suited for low-cost device fabrication, and 
researchers have recently demonstrated partially gravure-printed transistors.5   An 
understanding of the physics of ink-well scaling and ink transfer remains substantially 
unknown and is a ripe area for research. 

 

Figure 1.3.  Gravure printing schematic with close-up of inked wells to left.
2
 

Lastly, inkjet printing is a drop-wise additive printing technology requiring no patterned 
stencil or cylinder.  Instead, actuators move the stage (or inkjet heads) as drops are 
jetted onto the substrate.  Researchers have fabricated electronic devices, transistors, 
for example, using inkjet printing exclusively.7, 8   

Three principal energy sources are used for droplet creation:  heat, piezoelectric 
deflection, and electric field.  In thermal-bubble inkjet printing, sketched in Figure 1.4a), 
a heating element is rapidly warmed and the ink nearby vaporizes, creating a pressure 
wave that forces a droplet from a small nozzle nearby.  A disadvantage to this jetting 
mechanism is that the inks used must be compatible with the temperature pulses.   

An alternative inkjet printing mechanism that does not thermally stress the ink is 
piezoelectric jetting. Here, a piezoelectric plate is deformed due to an applied electric 
field.  This deformation creates an acoustic wave in the ink reservoir which travels to the 
nozzle and forces out a droplet.  This jetting mechanism works with a broad range of 
inks of intermediate viscosity and surface tension and scales to large industrial arrays 
composed of thousands of nozzles.2  All of the printing in this work is done with a 
piezoelectric inkjet head.   
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A final jetting technology is notable for its ability to create small jetted drops, which are 
useful for printing the highest resolution circuits.  Electrohydrodynamic printing, seen in 
Figure 1.4c), uses an electric field between a pendant drop of ink at the jetting nozzle 
and the substrate to deform the meniscus of this nozzle drop and force a small drop 
from its nadir.6  Unlike the previous two jetting mechanisms, the drop size can be far 
smaller than the nozzle diameter allowing small drops to form without the nozzle 
clogging and ink-drying problems that become increasingly prevalent with at small size 
scales in thermal and piezoelectric jetting.  Disadvantages to electrohydrodynamic 
jetting include the need for an unshielded ground plane at or very near the substrate, 
which may be difficult or impossible in certain printing applications, and the fact that 
the scaling of such technologies to large arrays has not yet been achieved.   

 

Figure 1.4.  Inkjet printing technologies, a) thermal bubble, b) piezoelectric,
2
 and c) electrohydrodynamic.
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1.3 Wetting and Patterned Bead Formation 

The creation of patterned beads through printing is governed foremost by wetting, 
though other effects including colloidal dynamics, phase change, and chemical reactions 
may also play a role.  A liquid drop impinging upon a substrate, with contact angle  , 
flows and wets the substrate such that total interfacial energy is minimized.  At 
minimum energy, the drop will adopt the form of a spherical cap that meets the 
substrate at an equilibrium contact angle, θeq, as given by the Young-Dupre equation 
below. 

                      (1) 

The fluid’s surface tension is  , and     and     represent the substrate-liquid and 
substrate-air interfacial tensions, respectively, as shown in Figure 1.5.   
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Figure 1.5.  Partially wetting drop cross section with interfacial tensions labeled. 

The substrates in this work are rough and have defects, and the printed inks dry and 
deposit solute.  For both of these reasons, the contact line’s advancing (    ) and 
receding (     ) contact angle separate in value leading to contact-angle hysteresis.  The 
contact line is stable when                , else it retreats or advances as 
appropriate.  Evaporating colloidal inks often have zero retreating contact angle and are 
said to have pinned contact lines that may advance but never retreat.   

Contact-angle hysteresis means that for a wetting drop of given volume, neither drop 
shape nor contact line are uniquely specified.  For example, a spherical cap drop with a 
certain      and zero       is stable at any drop radius size with        .  There is a 
one parameter family of solutions, having circular contact lines and a contact angle lying 
between zero and     .  In Chapter 4, we propose to exploit this non-uniqueness to 
explore the equilibrium shapes of more complex drops.  We will realize one solution for 
a given contact line and use time and mass loss as a parameter to reach other stable 
solutions. 

Cylinders of liquid in air, longer than π times their diameter, are unstable and break into 
drops, minimizing surface energy.  This effect, known as the Rayleigh-Plateau instability, 
was first studied by Joseph Plateau and explained by Lord Rayleigh. 9, 10  Liquid rivulets 
on a substrate also tend to decompose into droplets, and considerable work has been 
devoted to this problem of wetted line (rivulet) stability.  Davis derived the stability 
conditions for wetted beads for several contact line boundary conditions,11 and 
Schiaffino and Sonin further developed the stability model and provided experimental 
confirmation with printed lines, shown below in Figure 1.6.12  Davis showed that if the 
contact line is free to move and the contact angle is fixed by the Young condition, then a 
rivulet is always unstable and will always decompose into droplets.  By contrast, if the 
contact line is pinned, the rivulet is stable for contact angles less than 90°.   
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Figure 1.6.  Unstable inkjet printed line of water droplets on Plexiglas (without contact angle hysteresis), having 
dewetted into spherical cap macrodrops.

12
 

In general, bead stability is required for uniform, continuous deposits of active material, 
and so the bulk of patterned-drop-on-homogenous-substrate research has focused on 
understanding wetted line stability.  Specifically, in printed electronics wires need be 
continuous to conduct so line stability is a necessary condition.  As we will discuss in 
Chapter 2, printing drop-wise with fast evaporation compared to the jetting period 
allows another path to controllable patterning, at the cost of throughput and feature 
smoothness. 

Beyond the stability of linear beads, there is also a literature concerning the printing of 
more complex shapes of liquid beads on a planar substrate.  The bulk of this work 
concerns homogenous fluid deposition onto a chemically patterned substrate.  For 
example, while the bulk of the work of Gau et al. focused on a bulging line instability 
during saturated vapor condensation, the authors also noted that chemically-patterned, 
wetting corners acted to seed a local bulge, as shown in Figure 1.7 a).13  Darhuber et al. 
similarly looked at drops made by dip-casting onto chemically-patterned, wetting stripes 
and also found a similar bulging behavior, in b).14  The authors also simulated minimal 
area surfaces on more complicated, chemically-patterned domains.  The most relevant 
of these simulations was that of a drop on a wetting stripe around the perimeter of a 
square.  The authors found a corner bulge in the wetted perimeter drop similar to the 
bulge seen by Gau et al.   

 

Figure 1.7.  Bulging seen at chemically-patterned line junctions. a) Water condensed onto hydrophobic silicone with 
wettable MgF2 stripes;

13
 and b) Glycerol dip-cast onto hydrophobic hexadecanethiol-coated gold patterned with 

stripes of wetting SiO2.
14

 

We too seek to pattern drops around corners and have found a bulging phenomenon to 
be the main obstacle.  Line junctions with such corners occur as wires are routed around 
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an integrated circuit.  To improve wire packing density and avoid shorting adjacent 
wires, we seek to understand when these bulges form and what can be done to 
minimize their size. 

As discussed above, printing in general, and inkjet printing in particular, has been 
actively pursued as a means of realizing functional devices, including active components 
such as transistors and diodes, as well as passive components such as inductors, 
capacitors, interconnects, etc.15-18  To date, most work on this topic has focused on the 
development of inks and process integration to realize functional devices; very little 
work has focused on the details of pattern generation from droplets.19-21  In recent 
years, there has been some work on controlling line formation.22, 23  Further, there has 
also been some experimental work to control the three-dimensional nature of films and 
shapes, such as to control roughness and homogeneity of such films.  Tekin et al. 
demonstrated that tuning ink and jetting order leads to smoother, more homogenous 
printed films.24  They showed that printing several offset passes yields smoother films.  
Also, adding a second, higher vapor pressure co-solvent to an ink reduced undesirable 
excess edge deposition of solute due to local evaporation suppression and a circulating 
Marangoni flow. 

 

1.4 Impact and implications 

This work examines printed-shape generation through the lens of capillarity.  It 
demonstrates the value of using contact angle and surface curvature to understand how 
certain shapes may be printed.  The work demonstrated comprises the beginning of a 
library of printing algorithms and shapes from which optimal patterns may be printed.  
Such algorithms and design rules will permit complex integrated circuits, such as the 
radio-frequency identification tags mentioned above, to be manufactured with good 
yield. 

Wetted-bead stability is always desirable when printing, but unstable drop shapes 
require an expanded set of design rules or print algorithms.  For example, it may be 
necessary to print an ink without contact-line pinning because of low solubility, or high 
throughput demands may require the creation of unstable line junctions.  In such cases, 
either an analysis of dynamic, viscous flow must be appended to the design rules 
proposed above or an alternate printing strategy may be required.  A dynamic analysis 
might consider simultaneous, viscous contact-line movement at multiple locations, in 
the spirit of Duineveld,22 to predict the final planform of an unstable, patterned bead 
from a certain set of initial conditions.  Possible alternate strategies to printing unstable 
beads are to modify a given inkjet printing system to have a dropwise drying behavior 
(as outlined in Chapter 2) to allow the printing of otherwise unstable shapes or to 
separate the printing of lines and junctions into separate, individually drying layers.  
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2 Printed-line formation 

2.1 Introduction 

Patterning transforms electronic materials into integrated circuits.   Figure 2.1 shows a 

standard process flow for fabricating an inkjetted transistor, a fundamental active 

electronic device.  First, a conductive gate line is printed and then covered with a thin 

film insulator.  Source and drain lines of conductive material are then printed on top, 

and finally a top film of semiconductor completes the device.  The circuit speed, size, 

reliability, and variation of the transistor are all determined by the quality and 

placement of the source, drain, and gate lines. 

 

Figure 2.1.  Standard process flow for inkjetted organic transistors.
1
 

Ideal inkjet-printed lines for integrated circuits would be smooth, even, narrow and 
straight.  However, recent work from our group and others demonstrate a need for 
improved control of the behavior of inkjet-printed inks.2, 3  Representative images of 
inkjet-printed features from each paper are included in Figure 2.2.  In both cases we see 
that in order to create a straight, predictable line, smoothness and evenness were 
sacrificed. 
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Figure 2.2.   a) Micrograph of inkjet-printed TFT with pedot contacts;
4
 and b) AFM of inkjet-printed gold 

nanoparticle line.
2
 

In printed integrated electronics, the various roles of electrically-active material lead to 
different engineering constraints.  For example, in a bottom-gated transistor like the 
one shown in Figure 2.1, the gate line must be as narrow and as smooth as possible.  
The source and drain need smooth edges with a small, controlled separation though 
their width is less critical.  For a high Q inductor or interconnecting wire, pitch and 
conductivity are more important than smoothness or edge uniformity.  Finally, for 
organics LEDs smoothness and film uniformity are paramount to achieve uniform 
emission.  By characterizing and understanding the conditions that lead to different 
printed line morphologies, this paper seeks to advance the control and optimization of 
inkjet-printed lines especially in electronic applications. 

This chapter builds most directly upon the work of Duineveld, who also identified 
printed-line phenomena and quantified the conditions leading to them.5  Our work 
extends the discussion of the morphologies and the conditions leading to them.  We 
classify and understand the conditions that lead to a uniform printed line like that 
shown by Perelaer et. al.6  Like de Gans and Schubert, we discuss the tendency of 
evaporating solvents to leave behind coffee rings.7  Unlike dual-solvent systems they 
and others demonstrate, we will show how one can control and reverse the coffee ring 
effect via substrate temperature in a single-solvent system.8  Researchers have also 
eliminated coffee rings in printed features using a thermally gelating ink on a heated 

50 m

b)

a)

100 m

50 m

b)

a)

100 m
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substrate.9  Finally, our work offers counter evidence to a theoretical result that coffee-
ring features are enhanced when evaporation is decreased.10  

2.2 Experiment 

We carry out this portion of our experiments on a custom-built research inkjet printer.  

We use Microfab piezoelectric drop-on-demand dispensing heads with a 60 m orifice.  

Our stages have x, y and rotational degrees of freedom with 1 m accuracy.  Operating 
in drop-on-demand mode, our printer has a base drop frequency of approximately 30 
Hz, with the option to delay dropping further.  Falling drops have a diameter similar to 
the dispensing head orifice, a volume of approximately 100 pL and eject at 1-2 m/s, 
though there is significant variation due to ink, atmospheric and substrate conditions. 

The ink used throughout this experiment is poly(3,4-ethylenedioxythiophene) 
poly(styrenesulfonate), PEDOT:PSS 1.3% by weight in water from Aldrich, referred to as 
pedot hereafter.  It is a common conductive polymer used for organic LEDs and as an 
antistatic coating.  We printed onto 5 cm by 7 cm glass slides coated with spun poly(4-
vinylphenol) dielectric, PVP, thermally cross-linked at 200°C.  Since we commonly use 
PVP both as a smoothing layer on low-cost plastic and a thin printable dielectric, the PVP 
insured that our results will be transferable to low-cost substrates.11  AFM profiling 
reveals the PVP film to be exceptionally smooth, with RMS roughness of 3.34 Å.  The 
static contact angle of pedot on the PVP-coated glass is 82.7±1.7°, as extracted from a 
sessile drop by a Kruss Contact Angle Measuring System.  We assume that this 
approximates the advancing contact angle.  Under no conditions do we observe the 
contact line to retreat and thus we assume zero retreating contact angle as others have 
seen when working with aqueous pedot ink.5 

The independent variables used in this experiment are substrate temperature, drop 
spacing, and drop frequency.  The PVP-coated glass substrate and pedot ink remain 
constant.  The substrate is cooled to 17°C via a cooling water line and heated to as warm 

as 60°C.  Drop spacing varies from 5 m to 100 m center-to-center.  At low spacing, an 
overflowing, irregular bead forms, and isolated drops land at large spacing.  (Note: we 
refer to a printed bead when wet and to a printed line once dried.)  Finally, as 
mentioned above, the minimum drop-on-demand delay is about 30 ms on our printer.  
Delays from 10 ms to 2000 ms seconds are appended, though at the one second 
timescale, clogging becomes a problem as the ink has sufficient time to form a skin at 
the nozzle.  Misdirected drops and/or clogs often result from delays of 1000-2000ms; 
this limit places an upper limit on delay for low temperature substrates.  Once printed, 
the resulting patterns are measured and quantified with a variety of tools, especially an 
optical microscope and mechanical-stylus profilometer. 
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2.3 Results 

A few principal behaviors emerge when examining printed pedot patterns across a 
variety of drop spacings, delay periods and temperatures.  We label these as individual 
drops, scalloped line, uniform line, bulging line, and stacked coins.  Figure 2.3 shows 
these five basic morphologies. 

 

Figure 2.3.  Examples of principal printed-line behaviors:  a) individual drops; b) scalloped; c) uniform; d) bulging; 
and e) stacked coins.  Drop spacing decreases from left to right. 

If one prints drops too far separated to interact, more than twice a drop’s radius, then 
isolated drops land and dry.  Individual drops occur at drop spacings above about 100 

m independent of temperature or delay in our system. 

At lower temperature, as drop spacing decreases, isolated drops overlap and merge but 
retain individual rounded contact lines, and a scalloped pattern emerges.  These 
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c)b)a) d) e)

150 m
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c)b)a) d) e)

150 m



16 
 

 
 

scalloped lines are narrower than an isolated drop as fluid expansion is partially 
arrested. 

Further decreasing the drop spacing eliminates the scalloping and leads to a smooth, 
straight line.  These lines have a uniform, smooth edge and top.  They are the narrowest 
lines printed.  

Printing drops even closer together leads to discrete bulging along the line’s length, 
separated by regions of uniform narrow line.  These bulges tend to form periodically and 
also at the beginning of the line.  Duineveld gives this striking behavior excellent 
consideration.  Essentially additional fluid from printing exceeds a bead’s equilibrium 
contact angle and discreet regions of outflow result, leading to rounded bulges in the 
dried feature.5   

If the substrate temperature increases such that the evaporation time of a single drop is 
less than the drop jetting period, then each landing drop will dry individually regardless 
of overlap, leading to what look like offset stacked coins (as also shown in Figure 2.4).  
At a given substrate temperature, increasing drop delay will effect the onset of the 
stacked coin behavior.  Drop spacing has no effect on the width of lines printed in this 
regime since each drop dries individually.  Figure 2.4 schematically shows where each of 
these behaviors tend to be found relative to one another at an intermediate 
temperature. 

  

Figure 2.4.  Typical printed line behavior at an intermediate temperature. 

By carefully optimizing drop frequency, temperature and spacing it is possible to print a 
smooth, narrow line with an even edge.  Qualitatively, the ideal line avoids bulging by 
slowing down the drop frequency until the advancing contact angle is never exceeded, 
but is not so slow that drops dry within the period of one or two drops landing avoiding 
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stacked coins.  It has a low enough drop spacing to avoid scalloping, and the delay is not 
so slow that the dropping frequency is comparable to the time it takes for the orifice to 
form a skin thereby avoiding unpredictable drop trajectories.  Figure 2.5 shows the 
experimental conditions where this good profile is found for practical temperatures 
from 17°C to 60°C.  As expected, acceptable delay and spacing decrease at higher 
temperature.  In fact, at 45°C and above uniform lines could be printed at the native 
frequency of our printer.  At temperatures above 60°C it is increasingly difficult to print 
uniform lines as the stacked coin behavior occurs at lower dropping frequency and 
solvent evaporation at the inkjet head leads to reliability issues. 

 

Figure 2.5.  Experimental space leading to a uniform line, 17°C to 60°C. 

A second effect, important to the quality and utility of the printed line, is seen by 
comparing the cross-sections of these ideal lines across the range of temperatures. 
Figure 2.6 shows traces across uniform lines taken by a mechanical stylus profiler 
(Alpha-Step IQ Surface Profiler).  Whereas the profile is smooth and convex at low 
temperature, the profile becomes increasingly concave at higher temperature.  Indeed, 
at room temperature (30°C) this transition towards a concave profile appears as a 
squared cross-section.  Interestingly, this temperature dependent coffee ring control is 
valid for any of the above five principal line behaviors.  One can tune the relative 
distribution of material across the printed line by controlling drop temperature for any 
of the five line behaviors, a useful result for printing. 
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Figure 2.6.  Cross-sectional profile of uniform lines printed at the noted temperature using mechanical stylus 
profiler.  (Delay and spacing are adjusted to be appropriate for each temperature.) 

2.4 Temperature control of coffee rings 

The coffee-ring deposits left by evaporating drops with pinned contact lines were first 
explained by Deegan et. al.12  He showed that a flux of fluid to the edge of the drop led 
to the build-up of solute there as the drop evaporated.  Both the geometric nature of 
pinning and the increased evaporation due to curvature at the drop’s edge contribute to 
the strength of the coffee ring.  By drawing an analogy to an equivalent electrostatic 
problem, he is able to adopt the result of a previously solved geometry. 

At room temperature, we are able to explain the presence of coffee rings in our lines 
(Figure 2.6) and drops (Figure 2.7), by utilizing Deegan’s explanation.  However, with a 
heated or cooled substrate, evaporating features are now subject to a heat flux from the 
surface, breaking the symmetry that permitted Deegan’s exact solution.  In our 
evaporating drops and lines, heat is readily transferred from the substrate to the thin, 
pinned edge of the drop, leading to enhanced evaporation near the drop’s edge 
compared to the center.  PEDOT moves to the drop’s edge to replace fluid lost to 
evaporation.  Increasing the substrate temperature increases the size of this solute 
transfer towards the contact line.  In the case of cooling, decreased rim evaporation 
eliminates coffee ring formation altogether as the cooled substrate retards edge 
evaporation more than that in the center. 
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Figure 2.7.  Cross section and 3D projection from optical profilometer of single drops printed at noted temperature. 

Upon comparing the line and drop cross-sections, we see that the effect of temperature 
on coffee ring formation is enhanced in drops.  Table 2.1 below shows that the peak-to-
valley coffee ring factor is larger for a drop when compared to a uniform line printed at 
the same temperature.  This corroborates the contact-line evaporation explanation.  
Compared to a uniform line, a circular drop has a greater ratio of edge length to interior 
area.  Hence, the drop shows a greater transfer of solute to its edge when subject to 
heating. 
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Table 2.1.  Coffee ring factor for uniform lines and individual drops at various printing temperatures. 

Coffee ring factor (peak/valley) 

Temperature (ºC) Drop Line 

17 ø ø 

30 1.03 ø 

45 1.30 1.05 

60 1.44 1.38 

 

Our explanation of the effect of temperature on coffee ring deposits does not require 
consideration of the temperature dependence of surface tension.  However, published 
research on the coffee ring effect warrants a discussion of surface tension driven flow, 
known as the Marangoni effect.  Previous work has shown that the coffee ring effect can 
be controlled or eliminated through engineering an appropriate Marangoni flow.7  Hu 
and Larson show that Marangoni flows in an evaporating octane drop lead to a 
deposition of solute at its center rather than a coffee ring at its perimeter.13  However, 
in the same letter they found no such effect in an evaporating water droplet, even when 
avoiding surfactant contamination.  Other work by Savino et. al. came to a similar 
conclusion, witnessing Marangoni flows in drops of evaporating organic solvent but not 
water.14  Therefore in our work, where water is used as a solvent for pedot and subject 
to a significant delivery pathway (reservoir, tubing, ink-jet head), there is no reason to 
suspect that our drops have Marangoni flow.  In fact, enhanced coffee rings at higher 
temperature, as we observed, are contrary to temperature-driven Marangoni flows 
which would increasingly redistribute PEDOT solute to a feature’s center on warmer 
substrates. 

2.5 Geometric explanation of principle printed line behaviors 

Expanding upon the qualitative explanation of printed bead topology discussed earlier, 
dimensional analysis and some geometry lead to more satisfying explanations for many 
of the line topologies noted above in Figure 2.3.  These behaviors, illustrated in greater 
detail in Figure 2.8, occur across a broad range of temperatures.  As we increase drop 
spacing above a certain length, we observe that the resultant contact line changes from 
a smooth line (Figure 2.8a) to a rounded “scalloped” one (Figure 2.8b) and then 
eventually separates into isolated drops (Figure 2.8d).  The paired drops of Figure 2.8c 
will be discussed below.  Drop spacings are given in physical radius and dimensionless 
radius, y, the ratio of drop spacing to landed drop radius.  As we will show, much of 
printed line behavior can be explained through this dimensionless quantity. 
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Figure 2.8.  Printed-line behaviors near scallop transition (all line printed at 45°C):  a) Uniform line, drop spacing is 
50 μm, y = 1.10;  b) scalloped line, drop spacing is 75 μm, y =1.65; c) pairs, drop spacing is 88 μm, y =1.84 (with low 
magnification inset); and d) isolated drops drop spacing is 100 μm, y=2.20. 

A simple two-dimensional model of an expanding drop impinging upon the already 
formed, wetted bead explains these results succinctly.  We consider only the contact 
line of the uniform bead and that of the nearby next drop.   

To develop this model, we first consider the volume of fluid deposited per unit length.  

This is found from the drop volume (Vdrop) and drop spacing onto the substrate (x): 

 
x

V

lengthunit

Volume drop


      (1) 

Assuming that these drops will reflow into a cylindrical bead with the equilibrium 
contact angle, we can find the radius, R1, of an equivalent-volume cylinder.  Since the 
Bond number of the system is on the order of 10-3, we use a cylindrical cap for the 
cylindrical bead (and spherical cap for an isolated drop).  Figure 2.9a shows the relevant 
geometry.  The empirically determined contact angle of this system is 82.7° which we 
assume sets the width of the cylindrical line.   

a) b) c) d)

100 m

a) b) c) d)
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Figure 2.9.  Geometry for a) uniform bead and landed drop; and b) impinging drop contact lines. 

Equating the fluid volume per unit length of landing drops to that of a half-cylinder, we 

introduce a contact angle factor f() to correct the cross sectional area of the half-
cylindrical bead appropriately from its ideal circular cross section (with a 90° contact 
angle).  We use this correction factor to keep the equations from appearing overly 
complex since the contact angle remains fixed for the system.  Rewriting this expression 
in terms of R1 proves useful later in the analysis. 
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The correction factor f() can be determined from the height equation for a wetting 
drop of radius R1 with a finite contact angle.  Its height, h, is a function of the radial 
coordinate, r. 
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In equation 4 below we calculate the actual cross-sectional area of the bead by 
integrating the height profile and then equate the resulting expression with a circular 

cross-sectional area times a correction factor.  We can then solve for f(), which in our 
particular system (with a single contact angle) is a scalar number, approximately 0.852. 
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Based upon the observed radius of a falling drop, 28 m, we find that each drop has a 
volume of about 90 pL.  Upon examining the printed substrate, we find that the isolated 

drop radius, R0, is 42.3 m, larger than the 38.7 m radius of a landed 90 pL drop with 
an 82.7° contact angle. Thus, a printed drop overexpands and remains pinned.  (Its 
contact angle is a reduced 76.1°.)  In order to account for this overexpansion, we define 
another accommodation factor in equation 5, g(R0), to link drop volume and substrate 
R0.  (We note that g depends on several factors including drop fluid, momentum, and 
size, and although it remains constant for our experiment, we expect that it would vary 
in other situations).  The g parameter scales distances in our calculations in terms of R0, 

which is easily observed and relevant to ultimate bead profile.  For a 90pL drop with a 

42.3 m landed radius, we find that g is about 0.568.   
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    (5) 

To find a convenient dimensionless expression for cylindrical-bead radius, we scale R1 

from equation 2 by R0 and introduce the dimensionless spacing y ≡ x/ R0 in equation 6.  
Substituting for drop volume from equation 5, we arrive at a convenient dimensionless 
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expression for R1/R0.  For the system under consideration, we substitute our correction 
factors into this expression to yield the bead radius as a function of y only. 
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    (6) 

Note that bead width as an inverse square of spacing is seen in recent efforts working 
from similar assumptions.15, 16  We present our derivation that emphasizes 
dimensionless spacing for clarity and completeness.  The following work exploring the 
geometry of drop impingement and the implications to bead morphology is unique. 

Having determined the cylindrical bead radius as a function of drop spacing, we now 
consider the interaction between a landing drop and the already-formed uniform bead 
on the substrate.  We compare the energetics of drop spreading on a dry substrate to 
that of a drop spreading on an existing liquid film, the bead in our case.  An outward 
moving contact line of a drop on a dry substrate is facilitated by a thin precursor film 
with a thickness on the order of angstroms.  De Gennes showed that viscous energy 
dissipation during spreading is proportional to the fluid viscosity, η, times the logarithm 
of the spreading drop radius, R0, divided by the precursor film thickness, b.17   
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R
E 0ln      (7) 

Should a liquid film be present, its thickness replaces the precursor film thickness.  We 
expect that the wetted bead will have a thickness on the order of microns, rather than 
the angstrom thickness of the precursor film. Thus, drop expansion into the bead is 
energetically favored by several hundred percent.  An expanding drop in contact with a 
wetted bead and dry substrate flows preferentially into that bead. 

Assuming that drops generally flow into the wetted bead when possible, we now 
consider the event of a drop landing as we increase drop spacing.  Figure 2.9b shows the 
contact line of a landing drop as it impinges upon a uniform bead.  It is reasonable to 
assume a semicircular contact line at the end of a uniform bead to minimize curvature 
and thereby surface-tension pressure.  A new drop lands directly on the wetted bead 

first when x is less than R1 (equivalently y < 0.89), and the drop flows into the existing 
bead rather than expands its contact line beyond that set by the advancing contact 
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angle.  The relevant spacing is shown in Figure 2.10 as the y where the cylindrical drop 
radius crosses 1.0, the isolated drop’s radius.  (All distances are dimensionless, scaled by 
R0.)   

 

Figure 2.10.  Non-dimensional radius versus spacing. 

When x is greater than R1, equivalently y > 0.89, a drop first impacts the substrate 
before its expanding contact line reaches the edge of the uniform bead.  The radius of 
the new drop at impingement, Rimpinging, increases from zero at spacing y = 0.89 to R0, 
the maximum size of an isolated drop near spacings of y = 2.  The geometry of the 
situation leads to the following expressions for the radius of an impinging drop.  As in 
equation 6 above, we scale by R0 to derive a dimensionless expression for Rimpinging which 
again becomes a function of only y in our system. 
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Figure 2.10 also plots impinging drop radius from equation 8. 
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Comparing R1 and Rimpinging, we see that the cylindrical bead has a larger radius from y = 
0.89 to a spacing of about 1.52.  If we assume that the impinging drop immediately 
ceases contact-line expansion and preferentially flows into the cylindrical bead, then we 
would not expect to see scallops at spacings below y =1.52 since each landing drop is 
not wider than the bead width when it encounters the bead. 

Experimentally, we observe that at a given temperature and drop frequency, the scallop 
behavior begins at a certain drop spacing and becomes more pronounced as that 
spacing is increased until the drops completely separate at y = 2.  At low temperature, 
17°C, scalloping begins around y = 1.42, similar to the 1.52 predicted above.  At 
intermediate temperature, the onset of scalloping reduces to about y = 1.35, and at high 
temperature we observe scalloping at y less than one.  Table 2.2 shows the observed 
onset of scalloping at different temperatures.   

Table 2.2.  Onset of scalloping in dimensionless spacing at each print temperature. 

Temperature (ºC) y 

17 1.42 

30 1.37 

45 1.32 

60 0.85 

One can make a qualitative argument regarding why scalloping occurs at decreasing y as 
temperature increases.  At 17°C the time between landing drops is only about 1% of the 
drying time of a single drop, but at 60°C the time period between drops is 30% of an 
isolated drop’s drying time.  Thus at higher temperature, there is appreciable 
evaporation in the bead as printing proceeds.  Not only is the bead less thick at high 
temperature, but it is becoming rapidly more viscous due to gelation.  (See Supporting 
Information:  we measured a 2.4x increase in viscosity as the pedot concentration 
increases from 1.3% by weight to 2.0%.)  Recalling equation 7, viscous energy dissipation 
during drop spreading is larger for the thinner, more viscous bead.  Consequently, at 
higher temperature the bead is less able to channel drop expansion and arrest 
scalloping. 

Returning to the examination of lines as we increase drop spacing, we consider the bead 
at the largest spacings, near y = 2.0.  At y greater than 1.72, Rimpinging actually exceeds R0 
as shown in Figure 2.10. However, an impinging drop can not exceed its isolated drop 
radius.  In other words, a falling drop will not interact with a cylindrically formed 
uniform bead above y = 1.72.  Nevertheless, drops landing at y between 1.72 and 2.0 
impinge one another if left unperturbed at their isolated radius, thus not forming a 
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bead.  (Circular drops overlap to y = 2.0.)  This leads to the interesting contact-line 
separation behavior in Figure 2.8c.   

At y between 1.72 and 2.0, a second drop will impinge upon a landed circular drop with 
radius R0 and flow into it as discussed above.  Thus, it will not expand to its full isolated 
radius, and an elliptical contact line will form on the substrate.  The next landing drop 
will not impinge upon this bead since it does not encounter the previous reflowed drop 
that did not fully expand to R0.  It will instead land and remain at the isolated drop 
radius until the next drop lands and wets into it.  This behavior will repeat in pairs 
indefinitely.  As predicted, we see the onset of this contact line separation at y = 1.72 in 
our experimental data, and at 45°C we find optimal pairing around y = 1.84 (and similar 
behaviors at nearby spacings such as triples, alternating patterns, etc; see Supporting 
Information for micrographs of many printed lines with spacings around y = 1.72). 

To summarize, we used a simple model utilizing contact lines to explain the transition 
between a uniform bead, a scalloped contact line and eventually bead separation.  At 
low spacing, where the next drop lands directly on the bead, no scalloping takes place.  
At sufficient spacing the drop lands on the bare substrate first and its contact line 
expands from a point as a circle of growing radius.  When the expanding drop diameter 
at bead impingement exceeds the bead width, scalloping occurs.  Since the impinging 
drop radius exceeds the equilibrium bead radius at large spacings (nearly the drop 
diameter) drops may impinge upon a previous drop but not a formed bead.  Paired 
groups and similar breakup phenomena result. 

While the above discussion, based upon the meeting of contact lines, proves effective 
for predicting the line morphology as we vary drop spacing, it is not always useful in 
predicting outcomes including line width where several forces are in competition.  For 
example at larger spacings before the onset of scalloping, circa y = 1.4, the spreading 
momentum of the falling drop on dry substrate competes with the flow into the bead 
once contact is made.  Both effects compete, and an intermediate line width results 
(though the contact line does remain uniform).  The interplay of these forces indicates 
that more sophisticated modeling would be useful for more precise predictions. 

In order to corroborate the simple impingement flow model developed above and as an 
aid in visualization, we simulated the drop-landing-impinging event using commercial 
computational fluid dynamics software, Flow3D.  It solves the three dimensional Navier-
Stokes and mass continuity equations for a predetermined mesh using finite difference 
approximation with the volume-of-fluid method.  The fluid is treated as a non-
Newtonian, incompressible fluid with a sharply defined free surface.  (In the volume-of-
fluid method, the free interface is inferred from the fluid fraction of each grid cell.  Since 

each cell can contain at most one free-surface interface, the grid resolution, a 3 m 
cube in our case, determines when two free surfaces approaching one another are 
merged.)  Heat transfer and phase change are not included for the relatively brief event 
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of drop impingement.  The landing drop has the 82.7° contact angle with the 
impermeable planar substrate, and the preexisting bead has a pinned contact line which 
sets its initial contact angle to 82.7°.  A no-slip condition is imposed on fluid in contact 
with the substrate. 

We simulated a 90 pL drop landing at 1 m/s upon a substrate with an appropriately 
sized uniform bead.  Figure 2.11 shows the contacts lines before and after the landing 
event at four different spacings.  The inner line shows the initialized, pinned bead before 
the drop lands, and the outer line represents maximum extent of contact line expansion 
following drop impact.  Also, guide lines are extended from the uniform bead to help 
show where scalloping is occurring.  As we see in Figure 2.11a, no expansion past the 
uniform width is seen when the drop lands directly on the bead at y = 1.  At y = 1.5 we 
see that the drop expands to equal the bead width, and at greater y the landing drop 
expands past the edge of the bead.  The bead separates by y = 1.8.  This matches our 
empirical results and also the simple geometrical model proposed above. 

 

Figure 2.11.  Simulated contact lines before and after landing event, showing initial pinned bead and furthest 
extent of contact line for noted dimensionless spacing y.  A guide line is extended into the landing drop for clarity. 

2.6 Process Integration 

We now examine printed-line integration in specific applications in printed low-cost 
electronics.  We focus on situations in which a printed line is created on a homogenous 
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substrate.  (There are times in printing in which substrate variations due to patterning or 
surface energy will dictate flow; these are outside the scope of printed-line behavior 
considered here.)  We consider top and bottom-gated transistors, and printed resistors 
and interconnect wires. 

Inkjet-printed transistors are often fabricated as bottom-gated devices.  In 
manufacturing these devices, the gate is first printed followed by a printed planar 
dielectric and then source/drain contacts.  Figure 2.12 below shows two variations on 
such a device printed by Dr. Steven Molesa, an alumnus of our research group.  In this 
bottom-gate geometry, the solution-processable semiconductor is printed last and is, 
therefore, subject to the least processing which leads to better device performance with 
sensitive materials. 

 

Figure 2.12. Bottom-gated inkjet-printed transistors using a) puddle gate and b) evaporated shadow-masked gate.
18

 

In Figure 2.12 we see that neither printed device is optimal.  Fabricators are forced to 
compensate for deficiencies in the printed conductive line with either a “puddle gate” or 
evaporated shadowed mask gate.  Recalling Figure 2.2b, only the stacked coin 
morphology could be printed controllably with printed gold nanoparticle ink.  Such lines 
are too rough for a bottom gate since their peak-to-peak roughness is commensurate 
with the desired 100 nm dielectric thickness. (The source/drain lines in Figure 2.12 are 
not printed in a stable behavior, showing extreme coffee rings in Figure 2.12a and 
instabilities in Figure 2.12b).   

The reproducible printed feature, the puddle gate in Figure 2.12a, is not an acceptable 
solution for switching transistors.  The source/drain overlap capacitances are extreme, 
become the dominant bottleneck factor in circuit switching, and manufacturability is 
clearly a problem due to puddle size and subsequent connection problems.  A different 
choice was made in printing the device of Figure 2.12b.  The printed-gate step was 
skipped to estimate the performance of a printed-gate device.  The shadow-masked 
gold line is a place holder for what will be a controllable printed line.  In the search for a 
working viable bottom gate, we have looked at gravure roll-to-roll printing and 

a) b)a) b)



30 
 

 
 

electroless plating.  The uniform line from inkjet printing, shown in Figure 2.3c, is a 
candidate for a bottom-gated-printed transistor. 

Another printed transistor design we examined is a top-gated device in which parallel 
source/drain lines are printed first.  Ideally, these lines create a capillary trench into 
which a printed-gate line will flow.  The uniform printed line is required to make this 
structure.  Further, we need to control the coffee-ring effect in order to maximize the 
aspect ratio (height/width).  We will need to calibrate the printing temperature in order 
to tune the uniform line’s cross-sectional profile to have steep sidewalls like those 
shown in Figure 2.6 at 30°C. 

A different set of engineering optimizations apply to interconnect wires.  Print speed is 
relevant to these longer wires.  Delays of tenths of a second to one second per drop, 
needed for uniform pedot lines at low temperature, are unacceptably slow.  At higher 
temperature, the strong coffee ring leads to an inefficient shaping of wires.  The 
stacked-coin morphology at elevated temperature is acceptable, although care needs to 
be taken to ensure that that the process flow works for all materials, especially the 
semiconductor.  If heat treatment is a concern, satisfactory interconnect wires may also 
be printed as scalloped lines (avoiding bulging), although care needs be taken to avoid 
bead separation that occurs relatively close to low-temperature scalloping.  A printed 
resistor may also be printed as stacked coins or a scalloped line.  However, one may 
prefer to use higher resistivity material to minimize a given resistor’s footprint.  In that 
case, the uniform bead leads to more precise control over the resistance of a device. 

2.7 Conclusion 

 We studied inkjet-printed features of PEDOT:PSS.  We considered different 
printed-line topologies as they occur throughout the experimental space.  At high 
temperatures and/or large delays between individual drops, a stacked-coin behavior is 
seen as each drop individually dries.  At small spacings and lower temperatures, periodic 
overflow of a uniform bead is seen as fluid in the bead exceeds the equilibrium contact 
angle of the system.  At intermediate spacings and temperature, a uniform bead can be 
printed.  If the drop spacing is increased too far, the uniform bead forms scallops before 
the bead begins to separate, and then isolated drops land and dry. 

For printed wires, two of these morphologies are appropriate.  As we saw in Figure 2.2, 
wires in printed circuits have typically been printed as stacked coins.  This results in 
reproducible features that are appropriate for interconnecting wires or a printed 
inductor.  At high temperature, these predictable features can be printed quickly.  
However, for other electronic devices including transistors and capacitors the uneven 
line surface and edge lead to a loss of control over properties like dielectric thickness 
and channel length.  Therefore, printing a uniform bead with a controlled coffee ring is 
appropriate even if there is a trade-off in fabrication speed. 



31 
 

 
 

By controlling the substrate temperature beneath the drying feature, we demonstrated 
control of its topology, reversing or enhancing the coffee ring.  A heated substrate leads 
to greater evaporation at the bead’s edge which then yields an enhanced coffee ring, 
compared to room temperature drying.  Analogously, a cooled substrate suppresses 
edge evaporation and eliminates the coffee ring at the feature’s edge.  These effects 
occur more strongly in a circular drop than straight line due to its greater ratio of edge 
length to center area in the drop.  Tuning the radial distribution of solute in a drying 
drop suggests applications beyond printed electronics, for instance calibrated micro-
lenses. 

Having studied the properties of this particular ink-substrate system in detail, we can 
enumerate the features that lead to a narrow, uniform bead.  Contact-line pinning is 
essential; it permits adjustment of the evaporation profile to create a desired feature 
shape.  It further provides stability to the wetted bead to prevent it from moving and 
separating as would occur with detached drops.  Also, a large, wetting contact angle 
(approaching, but not larger than 90°) leads to better results.  Small contact-angle 
systems are more susceptible to forming coffee rings due to their greater volume of 
fluid in proximity to the contact line, and for a given volume drop they have a thicker 
line.  Finally, if the above conditions have been met, an absence of Marangoni flows 
allows control of a single solvent system.  The development of a higher conductivity ink 
that meets these conditions would be useful to furthering the development of printed 
electronics since pedot falls many orders of magnitude shy of the conductivity of a good 
metal.  

 

2.8 Supporting Information 

We provide detailed viscosity and surface tension measurements of the pedot ink 
(poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PEDOT:PSS 1.3% by weight in 
water from Aldrich) used in our paper.  As Figure 2.13a shows, pedot ink is shear 
thinning, with a viscosity of 121 cP at low shear rate, 1.9 1/s, and 79 cP at 22.5 1/s.  
Increasing the pedot concentration 50% using a rotary evaporator leads to a significantly 
greater viscosity, about three times greater at low shear and 2.4 times greater at higher 

shear.  (All viscosity measurements were taken after filtering the ink using a 5.0 m 
nylon filter as we do when inkjet printing.) 

We measured PEDOT’s surface tension using a KSV Sigma Tensiometer at 71.25±0.06 
mN/m at room temperature.  (On the same apparatus, we measure the surface of 
deionized water at 72.61±0.08 mN/m.) 
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Figure 2.13.  Pedot viscosity versus shear rate for a) 1.3% by weight pedot; b) concentrated 1.95% by weight pedot. 

Also, we show lines printed at spacings near the bead separation spacing in Figure 2.14.  
As predicted, the scalloped line gives way to a separated line at a dimensionless spacing 
of 1.72.  The separated bead sections become shorter as spacing increases until they 
form uniform pairs at 1.84.  At larger spacings, individual drops mingle with groupings 
two and three drops long.  Finally, near 2.0 the printed line consists only of individual 
drops. 
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Figure 2.14. Printed lines at 45°C near the bead separation spacing of y = 1.72.  (The isolated drop radius is 47.7±0.4 
μm.) 
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3 Printed-film formation 

3.1 Introduction 

 As discussed previously, solution processing presents a low-cost, 
environmentally-friendly alternative to traditional microfabrication techniques.  Its 
additive processing presents an alternative to the slow, costly steps of vacuum 
deposition, photolithography, and etching.  Solution-processing techniques include roll-
to-roll patterning and inkjet printing, with the latter being the focus of this work.  
Researchers have fabricated various microelectronic devices with inkjet printing 
including transistors, displays, and sensors.1-3  All of these devices make use of 
combinations of printed rectilinear shapes.  Thus, an understanding of the formation of 
a rectangle is a logical starting point to optimize the fabrication of arbitrary patterns.  A 
specific application of printed rectangles, like those studied in this chapter, is the square 
pixel electrode in a display backplane.  Arias et al. demonstrated a solution-processed, 
thin film transistor backplane with inkjet-printed square pixel electrodes about half a 
millimeter across, the same size scale as features in this work.4 

Advancing inkjetted-device fabrication requires a better understanding of the behavior 
of printed fluids on an impermeable substrate.  Considerable work has been devoted to 
the problem of wetted-line (rivulet) stability. Davis derived the stability conditions for 
wetted beads for several contact-line boundary conditions,5 and Schiaffino and Sonin 
further developed the stability model and provided experimental confirmation.6  Several 
later works continued development of the understanding of printed-line morphologies 
and stability.7-10  As will be seen later in Figure 3.11, individual lines printed in this work, 
with a narrow contact-angle hysteresis (θadv - θrec), are unstable and break into separate 
beads, consistent with Davis’ theory.  However, as a printed rectangle’s aspect ratio 
approaches unity (as it becomes a square), its sub-beads merge into a single bead.  
Consequently, this chapter does not focus on the stability of long, wetted beads, but 
rather the equilibrium shape of rectangular beads. 

Tekin et al. optimized the inkjet printing of two-dimensional polystyrene films.11  They 
found that printing several spatially offset layers at sufficiently low print-head velocity 
leads to more uniform dried films.  By choosing a two solvent mixture with 
differentiated vapor pressures, they avoided mass transfer to the film edge, known as 
the coffee-ring effect.  This work does not dwell upon such drying effects, but rather is 
concerned with the shape of beads during and shortly after a print.  Kang et al.12 used a 
one-dimensional geometric approach to model basic printed-film properties including 
thickness and fluid bulging beyond an intended footprint. 

In this chapter, we build upon the approach of Kang et al. to understand and optimize 
the shape of patterned beads during inkjet printing.  We examine wetted-bead 
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properties under more general, two-dimensional conditions, rather than in the one-
dimensional limit of high aspect ratio.  We experimentally and analytically observe the 
limitations of fixed-spacing raster-scan printing.  Instead, we propose a variable–line-
spacing printing scheme to maintain a bead’s contact angle between its advancing and 
retreating values as it is printed.  Implementation of this algorithm requires an 
understanding of the two-dimensional shape of a rectangular bead and of evaporation 
during the print.  We experimentally demonstrate the effectiveness and limitations of 
this new approach.  Finally, we discuss the use of deliberate contact-line pinning in 
patterning films by preprinting a feature’s border. 

Contact-angle hysteresis plays an important role in the inkjet printing of patterned 
figures.  Though a droplet on a substrate tends to adopt a circular footprint, the 
existence of contact-angle hysteresis means that other planforms can be printed.  In the 
next chapter, we show this experimentally and theoretically.  Deegan showed that 
particle deposition at the contact line due to evaporation leads to self-pinning of that 
contact line.13  For the realization of well-defined shapes, printers commonly choose 
systems that are fully pinned, that is, having zero retreating contact-angle, to avoid bead 
separation and reflow after printing.  In practice, contact line pinning during printing is 
achieved through a combination of high mass loading of inks, surface heterogeneity, 
and ink-substrate interactions.7, 13   

Though complete pinning is desirable, a partial pinning resulting in a nonzero retreating 
contact angle is unavoidable in some applications.  These include inks with low mass 
loading (for thinner film deposition or due to low solubility of active material in volatile 
solvent), nonvolatile solvents, and smooth substrates.  Because inks in printed 
electronics may be characterized by one or more of these properties, a study of an ink-
substrate system with a positive retreating contact angle is necessary and generally 
applicable.  In systems with zero retreating contact angle, our approach is still valid, 
though printed-film-breakup phenomena due to contact line retreat will not occur.    

 

3.2 Experimental section 

We print our films with a custom-built, drop-on-demand inkjet printer.  The printer uses 
piezoelectric MicroFab inkjet print heads (Piano, TX) with a 60 µm orifice and has stages 
with 1 µm accuracy in the x and y directions.  Lines in this work are printed with a 50 µm 
drop spacing, unless otherwise noted.  We measure a jetting frequency of 22.3 Hz at this 
spacing.  

In this work, we use an ink consisting of a polymer dissolved in a 1-hexanol (≥99.0%, 
from Sigma Aldrich; St. Louis, MO).  We chose a polymer commonly used as a dielectric 
in organic, solution-processed devices, specifically poly-4-vinylphenol (PVP), MW ≈ 8000 
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from Sigma Aldrich.1, 14, 15  Because we are only interested in the shapes attained by the 
drying ink, we do not include any cross-linker in this work.  (A cross-linking is typically 
added to convert the polymer from a soluble chain to a cross-linked network that has 
good dielectric properties and solvent resistance.)  To prepare our ink, we mix 72 mg of 
PVP per milliliter of 1-hexanol.  We agitate the solution for 10 minutes in a vortex mixer 
and then sonicate it for 10 minutes, at which point the PVP powder is fully dissolved into 
a yellow solution with a viscosity of about 10 mPa·s, measured at 100 s-1 with a 
Brookfield LVDV III rheometer (Middleboro, MA).  We estimate that its surface tension is 
near that of pure 1-hexanol, about 26 mN/m.16  (Since surface tension is only used in 
this work to assess the impact of gravity, which turns out to be minor, this 
approximation is appropriate.)  Jetting about 105 drops of the ink into a covered 
chamber with a small hole and measuring the weight gain allowed us to find the volume 
of each jetted drop, about 94.8 pL.  Table 3.1 lists the tabulated physical quantities used 
throughout this work. 

We print onto 5 cm by 7.5 cm rectangles of display-grade Corning 1737 glass.  We clean 
our substrates by rinsing sequentially with deionized water, acetone, and isopropanol, 
and then dry with a nitrogen gun.  Using a Kruss Drop Shape Analysis System G10 
(Hamburg, Germany) we measure a quasi-static advancing contact angle (θadv) of 26.0 ± 
1.5° and a receding contact angle (θrec) of 15.7 ± 1.0°.  We found the receding contact 
angle to be sensitive to experimental conditions.  Possibly due to substrate or solvent 
contamination, the receding contact angle decreased to the point of pinning the contact 
line during some print runs.  Proper storage of the glass substrates and the brief 
cleaning procedure outline above generally stabilized θrec. 

 

Table 3.1.  Empirical Physical Quantities for This Work. 

Symbol Value Term 

θadv 26.0° ± 1.5°  advancing contact angle, with standard deviation (n=5) 

θrec 15.7° ± 1.0° receding contact angle, with standard deviation (n=6) 

Δt 45 ms jetting period, measured 

Vdrop 94.8 pL jetted drop volume, measured 

σ 26 mN/m ink surface tension, assumed to be that of 1-hexanol 

Ρ 0.814 g/cm3 ink density, measured 
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We print our films in a raster-scan method, printing in both fast-scan directions as 
shown schematically in Figure 3.1.  In this work, we printed lines with a 50 µm drop 
spacing, allowing adjacent drops to merge.  (An isolated, printed drop in our system has 
a radius of about 64 µm.)  When building a rectangle, line-by-line, we either kept line 
spacing constant or used a geometric approach to determine the next line’s optimal 
location as will be discussed in this work.  To measure solvent evaporation from a bead 
during a print, we ran an experiment in which a known number of drops were jetted 
onto a stationary substrate.  The radial symmetry of these circular beads made it 
possible to measure solvent loss simply by measuring the final wetting radius.  We 
imaged our dried films with a microscope connected to a CCD imager.  In this work, we 
printed squares with side lengths ranging from 0.25  to 2.0 mm, about two isolated drop 
diameters to our microscope’s largest field of view. 

 

 

Figure 3.1. Schematic of raster-scan pattern used to print films as viewed from above. 

 

3.3 Evaporation extraction 

Evaporative losses during printing, about 10-20% of jetted volume, must be 
compensated for during printing in order to optimize a desired feature’s footprint.  
Although this evaporation is difficult to measure in situ, we are able to infer it by 
printing a simplified, symmetric geometry.  Specifically, we print circular beads 
consisting of between one and about 104 drops (the number of drops in our largest 
printed features) while holding the substrate stationary. By setting the jetting frequency 
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to be the same 22.3 Hz as during the printing of our 50 µm spaced lines, we 
approximate evaporative mass loss during the printing of square beads.  We assume 
that the dried radius of any printed bead is that of a spherical cap with the bead’s 
maximum volume, just after its final drop is jetted, and a contact angle of θadv.  By 
subtracting the volume of this spherical cap from the total jetted volume, we can infer 
the evaporative loss as a bead is printed.   

Figure 3.2 shows a plot of this lost volume due to evaporation versus the volume printed 
into a given bead.  The next section develops a physical model for these results based on 
diffusive evaporation.  For jetted volumes exceeding 4000 pL, the volume lost varies 
linearly with volume jetted, and all data can be fitted as follows, where x is volume 
jetted and y is evaporative volume lost, both in pL: 

   
                            

                              
      (1)  

From this evaporative loss fit, we find characteristic evaporation time scales (where 
bead volume is reduced 1/e times) of about 2, 10, 70, and 500 s for 0.25, 0.5, 1, and 2 
mm squares, respectively. 

 A square bead has a larger surface area than an equivalent-volume spherical cap, 
and one might expect that the square bead would experience greater evaporative loss 
as it is printed.  To this end, we printed squares with evaporation compensation set to 
one tenth to two times that in eq. 1.  The best resultant squares, with footprints that 
neither retreat nor bulge, were printed with exactly the evaporation compensation in 
eq. 1.  We conjecture that any enhanced evaporation in the bead corners is quickly 
dampened due to a local surface excess of PVP solute due to slow diffusion of 
concentrated PVP from the drop surface, a similar effect to that discussed in the 
physical model for evaporation in the section that follows. 
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Figure 3.2.  Measured evaporation volume for circular beads versus ink volume jetted, shown with the piecewise 
power law fit in eq. 1 used for line width generation.   

 

3.4 Physical model for evaporation 

Here we develop a simple, physically-based model for evaporation from a bead as it is 
printed.  We limit the discussion to a sufficiently small bead that its surface is well-
approximated by a spherical cap.  Hu and Larson developed a quasi-steady state model 
for evaporation from a sessile drop into still air.17  They assumed that the vapor 
concentration c is the saturated vapor pressure at the drop’s surface and zero far above 
the drop.  Because the vapor concentration above the drop adjusts quickly to 
movement of the drop’s surface due to mass loss (as is verified below), the steady-state 
diffusion of vapor is governed by the Laplace equation for diffusion      .  They also 
ignore the effect of evaporative cooling, assuming that it does not significantly alter the 
evaporation rate.  In order to calculate the increased diffusion due to contact angles less 
than π/2, Hu and Larson ran FEM simulations for a range of contact angles and fit the 
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results to a polynomial function of contact angle.  Reproduced below in Eq. 2, their 
approximate equation is accurate to about one percent over contact angles from zero to 
π/2. 

                 
            (2) 

In Eq. 2     is the mass evaporation rate, R the drop radius, D the diffusivity of 1-hexanol 
in air, cV 1-hexanol’s saturated vapor concentration in air, and θ the drop’s contact 
angle.  Table 3.2 tabulates the physical quantities used in our model. 

Term Explanation Value 

D diffusivity 1-hexanol in air
18

 0.075 cm
2
/s 

cv saturated vapor conc. of 1-hexanol in air
19

 5.31·10
-5

 g/cm
3
 

ρ density of 1-hexanol
19

 0.8136 g/cm
3
 

θ advancing contact angle, measured 26.0° 

Δt jetting period 45 ms 

Vdrop drop volume 95 pL 

   Table 3.2.  Physical constants used in evaporation model for a printed bead.  We assume a temperature of 27°C. 

 

We use an iterative equation to find bead volume and evaporative loss as the bead is 
printed, drop by drop.  Specifically, the bead’s volume after the printing of the ith drop is 
the sum of its previous volume and a jetted drop less the evaporative flux from Eq. 2 
from the bead during the jetting period as shown in Eq. 3.  The total evaporative loss up 
to the ith drop is simply the volume of i jetted drops minus the volume of the i-drop 
bead as shown in Eq. 4. 

                      
  

 
       (3) 

                                 (4) 

We note that a steady-state evaporation model is valid for our slowly-changing 
boundary conditions.  Specifically, the diffusion profile adjusts much more quickly to the 
bead’s moving surface than the evaporation timescale, i.e.                .  Figure 
3.3 plots the evaporation found using this model as well the total jetted volume and the 
experimentally measured evaporation (which was described in the main body of this 
work).  We note that no fitting factors are used in this model, only physical properties. 
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Figure 3.3.  Results of physical model for evaporation as a bead is printed. 

 

The iterative model is a good fit for evaporation in the early bead from about 1 to 200 
drops.  Thereafter, the model increasingly overestimates evaporation, deviating by 
about three times by 104 drops.  We explain this deviation by noting that our model 
applies to pure, volatile solvent.  The ink we print begins at about six percent by volume 
nonvolatile PVP polymer so it is reasonable to assume that the ink’s properties shortly 
after jetting are close to those of pure 1-hexanol.  However, as jetting continues, 
evaporation concentrates the PVP until it reaches an average concentration of about 
twenty percent by volume at 104 drops.  Scaling the vapor pressure, cv, with 1-hexanol’s 
average concentration in the bead would reduce modeled evaporation by about ten 
percent which alone is insufficient to explain the evaporation model’s error.   

An accurate evaporation model would need to account for the local concentration of 
PVP and its effects.  Solvent-PVP interactions would need to be quantified for a range of 
concentrations to understand the dependence of vapor pressure and diffusivity on local 
PVP concentration.  One would then need to examine the possibility of a surface excess 
of PVP due to slow diffusion in the drop fluid as evaporation leads to an excess of PVP at 
the drop’s surface.  A surface excess would locally suppress vapor pressure and thus 
slow evaporation.  The jetting of fresh ink at the bead’s center further complicates the 
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analysis.  Noting that our model is valid for early evaporation, we leave such detailed, 
ink-specific treatments to future work. 

 

3.5 Raster scan printing 

A simple approach to printing a two-dimensional film, such as a square, is to print the 
feature by a raster-scan method, as shown in Figure 3.1, with a constant, identical 
spacing in both x and y directions.  Figure 3.4 shows 2.0 to 0.25 mm dried squares at 
their respective best-case constant drop spacing, showing minimal bulging and/or 
separation.  The border of dried beads in this and later figures is the most important 
feature in understanding the patterning of two-dimensional shapes.  Each bead also 
shows a uniform interior and a “coffee-ring” transfer of solute to its border.  The precise 
nature of the coffee ring is a function of local bead shape and evaporation but is 
irrelevant to this work concerned with the patterning of two-dimensional beads during a 
print.  Recall that cosolvents can prevent this coffee-ring deposit, but in this work we did 
not wish to further complicate our system by using an ink whose contact angle varies 
with local evaporation. 

Beginning with the 2.0 mm squares, we see that there is substantial bulging on the left 
side of the 20 µm spaced square where printing began.  Increasing the drop spacing to 
30 µm reduces this bulge, but the right side is now separated into small, isolated beads.  
The 1.0 and 0.5 mm squares show a similar transition in planform, from left side bulging 
to right side separation, although at larger spacings as the length scale shrinks.  Finally, 
the smallest 0.25 mm squares show a large amount of rounding on all sides, deviating 
the most from a square footprint.  Thus, we see that a fixed-spacing printing method is 
not viable for systems with a narrow contact angle hysteresis.   
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Figure 3.4.  Squares printed at constant horizontal and vertical drop spacing as noted.  Side lengths:  (a) 2mm; (b) 
1mm; (c) 0.5mm; and (d) 0.25mm. 

 

3.6 Model for the droplet shape 

A concise explanation for the deviations from squareness seen in Figure 3.4 can be 
made by examining a bead’s maximum contact angle as it is printed, line by line.  In 
order to estimate a printed bead’s contact angle, we require a mathematical model for 
its surface shape.  The contact lines of the bead are assumed to be pinned to the edges 
of a 2a by 2b rectangle as shown in Figure 3.5.  We use a small slope approximation to 
find an analytic approximation for the surface of our printed bead because of the small 
advancing contact angle and assume that the bead’s moving contact line is sufficiently 
slow that it advances at the quasi-static θadv.   
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Figure 3.5.  Top view and cross section of bead surface. 

 

The Hoffman-Tanner relation,20 reprinted in Eq. 5 below, confirms that under our 
printing conditions the dynamic contact angle (θdyn) of the advancing triple line is well-
approximated by its quasi-static advancing value (θadv).  

    
      

       
     

     
      (5) 

In eq. 5 Ca is the Capillary number (µU/σ, where µ is the fluid’s viscosity and U is its 
contact-line velocity), R is the bead radius, and L is the microscopic length scale for 
contact line movement (about 50 nm here, from eq. 69 in Bonn et al.20).  The contact 
line at the side of a rectangle being printed advances with a Capillary number of the 
order of 10-4 or less for which we find a viscous dynamic contact angle correction of 
0.1% or less.  Within the experimental error of our system, we safely assume that 
contact lines advance at their quasi-static θadv in Table 3.1. 

The Young-Laplace equation and hydrostatic pressure determine the surface of our 
quasi-static rectangular bead, and here we develop an analytic solution.  Because our 
ink-substrate system has a low contact angle, with errors vanishing as the square of the 
slope, we may approximate the curvature of the surface              by     .  The 
pressure at any point at the bottom of the bead, pb in Figure 3.5, is the sum of the 
ambient, Young Laplace, and hydrostatic pressures.  

                     
              (6) 

The bead at equilibrium has constant pressure at its base, and specifying that 
        , eq. 6 becomes: 
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                                     (7) 

We nondimensionalize eq. 7 by scaling as follows, where Bo is the Bond number: 

                                (8a) 

             
 

 
                (8b) 

           
    

 
            (8c) 

                       
    

 
                 (8d) 

                          (8e) 

 

The resulting boundary value problem for       and       is as follows: 

                     (9a)  

                                       (9b)  

                         (9c)  

             
 

  
   
 

  
                (9d)  

 The bead’s surface,          , is pinning within a 2a by 2b rectangle, and its 
volume is       .  Expanding both sides of eq. 9a in a double Fourier series, we obtain 
the following solution:  

        
  

  
  

         

            

          
 

 
            

 

 

 

 
 

          
    

 
 
 
 
 

  
   

 
   

 
    (10) 

Using eq. 10 we demonstrate that gravity has only a minor effect on the shape of the 
beads studied in our experiments.  For our largest square bead    = 2mm, 
corresponding to Bo = 0.3.  In the double sum on the RHS of eq. 10 the effect of the 
Bond number is most significant in terms with the lowest values of m and n.  For the 
term m = n = 0, the coefficient is π2/(2π2+4 Bo).  For Bo = 0.3 that coefficient differs by 
less than six percent from its value for Bo = 0.  We conclude that gravity has little effect 
on the shape of our drops. 
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Nonlinear numerical simulations provide further corroboration to gravity’s minor role in 
our square beads’ surfaces.  We perform  numerical solutions of our square beads with 
Surface Evolver3, a free software package by Ken Brakke that minimizes the total energy 
of free surfaces subject to constraints and boundary conditions.  The bead’s surface is 
tiled with triangular facets, and the gradient descent method reflows the surface 
towards a minimum energy state subject to specified volume and contact-angle 
constraints.   

Surface Evolver simulations confirm the validity of our choices to ignore gravity and 
approximate the bead surface as one with constant Laplacian.  We performed a surface-
energy minimization on a body with a free surface, fixed volume, and pinned vertices 
around its four edges.  Using eq. 10 we find a fixed volume of 0.41 mm3 for a 2mm 
square with a θmax of 26.0°, which we use as the volume constraint for our simulations.  
Figure 3.6a shows a rendering of the minimum-energy surface that results.  In Figure 
3.6b we plot cross-sections through the simulated bead’s center, from edge center to 
opposite edge center for Surface Evolver-modeled beads with and without gravity as 
well as the equivalent-volume constant Laplacian surface.  Extracting slope at the 
contact line from these traces, we find that the constant curvature with gravity contact 
angle is 27.22°, about a degree greater than the 25.98° in our simplified model (and 
three tenths greater than the constant curvature surface neglecting gravity).   

Figure 3.6c renders the absolute and relative difference in bead height due to gravity.  
As expected, we see a modest shift towards the corners when gravity is considered, less 
than a percent difference in height at the bead’s center.  Figure 3.6d plots the difference 
between the constant Laplacian bead and the constant-curvature bead with gravity.  We 
find that our simple-model height is about two percent too tall at its center, with the 
largest relative error of about four percent near the edges centers where the Laplacian 
is a less valid curvature approximation.  However, the single degree error between the 
θmax of our model and that found with numerical methods is acceptable for the 
purposes of this work. 
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Figure 3.6.  a) Rendering of meshing used for Surface Evolver surface energy minimization, b) Height and slope of 
cross sections of all beads from edge center to opposite edge center (at bead center, lines from top to bottom are 
constant Laplacian, Surface Evolver without gravity, and surface evolver with gravity), c) Difference between 
surface evolver surface without and with gravity, d) Difference between constant Laplacian surface and Surface 
Evolver surface with gravity. 

 

Differentiating eq. 10 reveals that a rectangular bead’s contact angle is the largest at the 
center of its longest edge and falls to zero at its corners.  The zero contact angle in the 
sharp corners explains the corner rounding seen in printed beads as the contact line 
retreats until it has increased its minimum value to θrec (in the absence of contact line 
pinning due to substrate asperities or evaporation).  Such corner rounding to satisfy a 
specific contact-angle hysteresis is covered in the next chapter. 

Figure 3.7 shows the maximum bead contact angle, θmax, calculated from eq. 10 as a 2 
mm square is printed, line by line, which we find useful in explaining the printing 
behaviors in Figure 3.4.  To simplify our plot for clarity, we ignore evaporation and 
assume that each additional line increases the bead width by one drop spacing.  Each 
new line introduces an additional ink volume equal to the product of drop volume and 
the number of drops per line.  In Figure 3.7, we see that the early bead’s maximum 
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without and with gravity
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contact angle begins at a large value, well above the advancing contact angle, and 
decreases monotonically as each new line is added.  At lower drop spacings, this 
maximum contact angle begins large and decreases more slowly than that for rectangles 
printed at larger drop spacings.  The bulging on the left side of squares in Figure 3.4 is 
due to the initial region of lines printed with the bead’s θmax above θadv.  As more lines 
are printed, the bead then goes through a régime where additional lines maintain θmax 
between the advancing and receding contact angles.  For example, the 0.5 mm square 
printed at a 50 µm spacing in Figure 3.4, has straight top and bottom contact lines in its 
middle section and thus was printed with contact angles in this stable range as its center 
was spanned. 

With the printing of sufficient lines, θmax falls below θrec at which point the bead’s edge 
retreats until its maximum contact angle rises to θrec.  Because the right side is printed 
most recently, its contact line has experienced the least evaporation and retreats most 
readily.  (This evaporation effect on retreating contact angle is discussed later.)  When 
the edge retreats, new lines may no longer reach the principal bead and separation may 
occur, as seen in the right side of many Figure 3.4 squares.  The retreat toward the 
center of the bead-in-progress occurs along the entire right side, including the top and 
bottom.  Separation may thus occur in either the fast or slow-print directions, 
depending upon the local particulars.  Unfortunate beads, like the 0.5 mm square 
printed at a 60 µm spacing, may experience both left side bulging and right side 
separation.  
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Figure 3.7.  Maximum bead contact angle calculated from eq. 10 versus bead width for specified constant drop 
spacings (same in both fast and slow print directions) for a 2 mm square.  Each point represents an additional 
printed line.   

 

3.7 Variable line spacing 

A rectangular bead’s maximum contact angle, θmax, will vary with each additional line 
leading to nonoptimal feature shapes when a constant line spacing is used, as was 
discussed in section 3.6.  The model developed provides a strategy for overcoming this 
problem.  Using the bead surface equation, eq. 10, and tracking bead volume, we seek 
to hold constant a bead’s maximum contact angle as it is printed by adjusting the line 
spacing. 

Earlier work12 showed how choosing a constant line spacing sufficiently large that initial 
lines never exceeded θadv for the bead allows one to avoid bulging.  However, recasting 
these results to solve for the line spacings necessary to maintain a particular θadv would 
only be valid for the beginning lines of any rectangle when a one-dimensional 
approximation of its surface is valid.  While this is reasonable assumption for tackling 
the early bulging that occurs, we seek a solution that is valid for all aspect ratios.   

Equation 10 already provides us with a sufficiently accurate two-dimensional surface for 
a printed bead with a rectangular footprint.  By examining θmax while scanning possible 
widths for a given bead volume and length, we are able to determine the optimal 
location to maintain a constant θmax for each additional line as a print proceeds.  Figure 
3.8a outlines the algorithm we implemented for generating the optimal spacings for a 
printed rectangle and shows simulated resultant beads for 1, 10, and 106 lines into a 
2mm square. 



51 
 

 
 

 

Figure 3.8.  (a) Spacing-generating algorithm for printing a rectangle, (b) surface and contour plots of a 2 mm 
square in progress.  (Each contour line represents one-sixth of height.) 

 

To print a rectangle of specified width and height while maintaining a specified θmax, we 
begin by finding the width of a single line’s number of drops that will have the 
requested θmax.  The volume used in this calculation is the drop volume times the 
number of drops required to complete the fast-print line less evaporative loss that 
occurred while that line was printed.  For expediency, we use the power-law fit in eq. 1 
to find the volume of evaporative loss at a specified number of drops.  After finding the 
width of this first line, we store this number and increment the bead volume by the 
volume of another line worth of drop, less evaporative loss.  We continue repeating this 
width calculation with increasing volume until the entire rectangle has been spanned.  
We are able to convert this list of rectangle widths to desired lines spacings by assuming 
symmetric spreading of each line perpendicular to the print direction.  We average two 
adjacent stored rectangle widths to find each line location.  A final script converts this 
list of line locations to jetting coordinates for our drop-on-demand printer. 
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For squarest squares, we set the printing θmax at θadv.  As the contact angle is largest at a 
side’s center and decreases toward the corners, this maximizes the length of contact 
line between θmax and θrec without risking bulging.  With θmax set at θadv and other input 
parameters set to the values in Table 3.1, we ran our algorithm for a variety of rectangle 
sizes and aspect ratios.  In Figure 3.9a, we show the resultant drop location for a 
constant-spacing 1 mm square and 1 mm squares resulting from the algorithm outlined 
above, with and without evaporation compensation.  The effect of evaporation 
compensation is clearer in Figure 3.9b, which plots the line location of each line 
spanning the square. Twenty five percent more lines are required when evaporative loss 
is matched in a 1 mm square bead. 

 

Figure 3.9.   Spanning a 1 mm square with constant line spacings and algorithm-generated spacings:  (a) drop 
locations and (b) bead width versus line number. 

 

After implementing our algorithm to find optimal line spacings and generate printer 
files, we printed an array of squares sized 0.5, 1, and 2 mm.  We show the resultant 
dried patterns in Figure 3.10.  Without evaporation compensation, printed beads at all 
three size scales separate and retreat from their designed footprint as seen in the 
leftmost column.  When additional volume is added to match evaporation, all three 
beads print intact.  The largest square remains closest to its desired footprint while the 
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smaller ones have progressively worse corner curvature where the bead has apparently 
withdrawn from the corner toward its center. 

 

Figure 3.10.  Squares printed using algorithm-generated spacings with evaporation compensation and preprinted 
border as noted. 

 

By comparing the four corners of each smaller square, we see that the top-left corner is 
the farthest from the drop center.  Apparently, this corner is the most pinned.  Our 
prints begin at the corner and proceed down, indicating that here the time scale for 
contact-line pinning due to drying is on the same order as that of the print time.  By 
deliberately preprinting and drying a feature’s border, we were able to improve its 
footprint.  (We also point out that the initial bulging seen in the first line or lines of a 
rectangle creates a larger contact line radius of curvature that increases the corner 
contact angle and suppresses contact line retreat.)  We preprinted isolated drop borders 
and allowed them to dry before returning to print the square beads themselves, as seen 
on the right side of Figure 3.10.  The third column of this figure shows that preprinted 
edges lead to enhanced square fidelity.  The predried edges have a greater contact-
angle hysteresis than the clean substrate, and thus permit a planform that is less circular 
and has sharper corners. 
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The effect of the preprinted border can be understood further by stopping a print after 
a certain number of lines and imaging the resultant dried bead.  See Figure 3.11 for an 
example of this procedure with a 2 mm square.  Without a preprinted border the first 
line printed is unstable and dewets into three separate beads.  These individual beads 
grow with each additional line, merging first into two beads and eventually into a single 
bead.   The waviness beyond the desired square footprint on the left side of the final 
feature reflects the growing footprint of these separate beads before they merge.  In 
contrast, the prebordered square is stabilized by the presence of the pre-dried ink, 
remaining as a single bead with a straighter contact line.  The border also appears to 
help pin the top and bottom right side of the growing bead, preventing it from 
retreating toward the bead’s center, as seen when comparing the right side of the 50 
line prints with and without a border.   

 

Figure 3.11.  Line-by-line printing of 2 mm evaporation compensated square, with and without border as noted.  
Drops to the right of the beads in the second row (cropped in all but the last column) are the preprinted border 
seen in the fourth column of Figure 3.10. 

   

For the smallest squares, whose side length approaches the radius of a single, isolated 
drop, printing lines of 50 µm spaced drops is not an optimal approach.  The bulging 
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instability seen at the start of isolated lines spans the entire side and leads to a nearly 
circular footprint.  Instead, we found that the smallest corner radius could be achieved 
by allowing isolated drops to dry at the square’s corners and then filling the bead with 
simple jetting at its center.  Figure 3.12 shows both a schematic and the results of this 
approach.  With eq. 10 and the evaporative loss fit, we calculate that about 9.5 drops 
are required to fill a 0.25 mm square to a θmax of 26.0°.  The best footprint seen with 
nine drops in the figure confirms our model at this small scale. 

 

Figure 3.12.  Squares of 0.25 mm printed with corner definition and then center drops as noted. 

 

Although this work demonstrates a dynamic spacing model for raster-scan printing with 
a single nozzle, we outline how it could be adapted to higher-throughput inkjet 
configurations.  A common inkjet configuration consists of a nozzle array, containing 
several to hundreds of nozzles, where the entire array is raster-scanned across the 
substrate.21  A fixed-spacing raster-scan with this nozzle arrangement need be modified 
in order to control perimeter contact angle.  For example, the drop volume for the 
purposes of the spacing-generating algorithm could be considered to be the sum of the 
drop volumes of each head used in a pass across the substrate, and the line spacing of 
each multinozzle fast-print pass adjusted accordingly.  Alternatively, line spacing could 
be held constant and the drop spacing of each pass varied to deliver the optimal volume 
as a desired planform is spanned.  (This is also a viable alternative for single nozzle 
printing.)  Although drop volume could also be varied during a print to control ink-
deposition rate, many printing systems print reliably only at a certain inkjetted drop 
volume, set by the properties of the ink and jetting cavity, and so we suggest adjusting 
drop spacing or line spacing rather than drop volume. 
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Faster yet printing schemes require similar modifications to the printing algorithm 
developed here.  In the highest throughput inkjet printing, an array of nozzles spans the 
entire substrate that advances continuously underneath.21  Here, the line-to-line spacing 
is determined in a manner nearly identical to the single nozzle algorithm, and each “fast-
print” vertical line in Figure 3.9a is printed all-at-once.  Finally, for printing techniques 
that introduce an entire, partially wetting feature at once, such as gravure printing, the 
results here suggest that there is an optimal volume for each feature, where a bead’s 
maximum contact angle is the ink-substrate system’s quasi-static advancing contact 
angle.  In the case of gravure printing, for optimal feature planform, a feature’s volume 
could be controlled by adjusting well volume and spacing. 

 

3.8 Conclusion 

We have demonstrated and then overcome difficulties in inkjet printing a patterned, 
two-dimensional film with a narrow contact-angle hysteresis.  A fixed-line-spacing 
approach leads to a varying bead contact angle as new lines are printed, creating first 
bulging and later bead separation.  We developed and implemented an algorithm to 
find the spacing that maintains a bead’s contact angle as it is printed by appropriately 
adjusting line spacing.  We found that it is necessary to compensate for evaporation as 
the print progresses to maintain the optimal contact angle, and we were able to infer 
evaporative losses in our system by printing with radial symmetry.  Using our spacing 
generator with evaporative compensation, we demonstrated printed squares with 
footprints superior to those printed at fixed spacing over a range of length scales.  By 
seeding a feature’s edge with isolated dried drops, we further improved a feature’s 
footprint.  This drying-induced pinning allowed us to print pattern squares with sides 
only twice as long as an isolated drop.  However, preprinting a feature’s border 
introduces a manufacturing cost akin to the printing of an additional layer.  We must 
print the border, wait for the isolated border drops to dry (on the time scale of 
milliseconds), and then proceed with the printing of the feature. 

Our results suggest future research directions.  The spacing algorithm developed here 
could be adopted for more general conditions.  Interfacing it with a numerical surface-
energy minimizer would extend it to all partially wetting contact angles, particularly 
larger angles where the Laplacian is an inaccurate curvature approximation.  Further, a 
numerical technique would be able to generate lines spacings for arbitrary input 
footprints.  We would also like a better understanding of the evaporation-induced 
pinning that we were able to exploit, its time scale and sensitivities.   Additionally, a 
more thorough treatment of evaporation during printing geometries would improve the 
control of inkjet-film patterning, specifically an examination of two and three-
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dimensional bead effects on evaporation as well as experiments examining solvent-
solute interactions and diffusivity across a wide range of concentrations. 

For printed-circuit applications (and many others), our technique is most useful when 
combined with an approach to leave behind uniform deposits by mitigating the coffee-
ring effect.  For example, Marangoni circulation in a drying drop, due to temperature 
gradients from evaporative cooling or locally varying surface tension in cosolvent inks, 
has been shown to reverse coffee-ring deposits.22, 23  However, a cosolvent system in 
which wetting is a property of local solvent composition requires further study for 
wetting-dependent spacing generation.  Bhardwaj et al. presented simulations that 
show that reduced contact-line solute deposition due to a Marangoni flow may reduce 
contact-line pinning.24  Such narrowed contact-angle hysteresis would necessitate more 
precise perimeter contact angle control for patterned feature generation, along the 
lines presented in this work. 
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4 Wetted corners 

4.1 Introduction 

Integrated circuits require the patterning of corners, as can be seen in the example 
CMOS adder circuit in Figure 4.1.  Convex corners occur at the end of patterned lines, 
while two or more concave corners occur at the junctions of lines.  An abrupt direction 
change in a line creates both a convex and a concave corner.   

 

Figure 4.1.  Layout of a CMOS adder circuit.
1
  

In this chapter, we seek to understand the resolution limits of patterned, wetted beads 
confined to planar corners.  First, we examine right angle, convex corners and find that 
there is a wetting-limited maximum corner rounding.  Experimental results with a 
nonvolatile ink on roughened substrates corroborate our findings.  Then, we examine 
the concave corners of right angle line junctions and find that line loading with respect 
to the equilibrium contact angle is the most important quantity that controls feature 
fidelity.  By defining the optimal patterning possible for a desired bead footprint, 
fabricators can base their design rules on that limit and will know when their printing 
strategy has reached its finest resolution limit. 
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4.2 Convex corners:  squarish squares 

4.2.1 Convex corners introduction 

Motivated by the process of inkjet printing of electronics, we study experimentally and 
theoretically the processes limiting the printing of sharply defined corners. Using a non-
volatile ionic liquid, we inkjet print rectangles with rounded corners on a substrate of 
roughened, display-grade glass. We show experimentally that with increasing roughness 
height, corner radius decreases, allowing more precisely defined features to be printed. 
To interpret these results in terms of contact-angle hysteresis (difference between the 
advancing and retreating contact angles θA and θR), we implement the following model 
with the Surface Evolver program. With drop volume fixed, we minimize drop surface 
energy subject to a prescribed contact line.  We identify θA and θR as the minimum and 
maximum contact angles around the drop perimeter.  We find that with decreasing 
corner fidelity, contact-angle hysteresis also decreases.  We extend our calculations to 
rectangular drops and find the contact-angle hysteresis required to sustain long drops 
with large aspect ratio.  We conclude that increasing contact-angle hysteresis allows the 
printing of more precisely defined and higher aspect ratio features. 

Printed electronics technology has the potential to lower sharply the manufacturing 
costs of a range of active electronic devices and enable the creation of novel ones.  
Since it is an additive process (as opposed to subtractive processes used in conventional 
deposit-pattern-etch techniques), it is not only simpler but results in less waste, 
translating to lower cost.  Researchers have used additive printing to fabricated circuit 
components, such as inductors, capacitors and transistors; and even low-cost integrated 
circuits such as active organic light emitting diode displays.2-5  To enable reliable printed 
devices, we seek design results that define the necessary spacings and permissible 
shapes in additive printing.  This work represents an early step in the process of 
developing these design principles. 

Though a droplet on a substrate tends to adopt a circular footprint, the existence of 
contact-angle hysteresis between advancing and retreating contact angles, θA and θR 
respectively, means that other planforms can be printed.  Previously we showed that by 
reducing θR by utilizing solute deposition at the contact line, better corner definition in 
square-shaped drops could be achieved due to greater contact-line pinning.6  Here we 
extend this work and show how enhanced hysteresis determines the sharpest 
equilibrium corner definition possible in square and rectangular features.  Although 
contact-angle hysteresis is the result of various causes including particles at the contact 
line, we use variable, controlled roughness in our experiment and note that the receding 
contact angle decreases as substrate roughness increases.  Dettre and Johnson 
demonstrate this trend when they show, in Figure 8.5 of their work, a decreasing θR for 
several pure liquids as roughness increases.7  
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Using Surface Evolver8, we verify the relationship between sharpest possible corner 
rounding and θR for ink-substrate systems with θA less than or equal to 90°.  We are thus 
able to predict the necessary corner curvature required for an equilibrium rectangular 
bead to have a contact line with its contact angle bounded by any pair of advancing and 
retreating contact angles.  In particular, a lower θR allows for sharper corners in stable 
square and rectangular drops.  Finally, as the aspect ratio of rectangles increases above 
unity, a minimum amount of contact-angle hysteresis is required for stable drops to be 
formed.  We show that for a given θA, as aspect ratio increases, a larger amount of 
hysteresis is required. 

As in our earlier work, the Bond number for our beads is 0.3 or less so we safely neglect 
the effects of gravity on their shape.9  Without gravity-induced flattening, our beads’ 
surfaces, solutions to the Young-Laplace equation subject to θA and θR constraints, have 
a constant curvature at every point on their free surface.  Scaling a surface        with 
constant curvature C uniformly in space by a factor  , results in a new surface 
             with a new constant curvature C/ .  Further, contact angle is not 
affected by uniform scaling.  Therefore, uniform spatial scaling of a solution to our 
problem that satisfies the governing equation and constraints produces another valid 
solution at a different length scale. 

The scalability of bead solutions for small Bond number drops has implications for our 
experimental and numerical results.  When printing, we expect that the sharpest 
possible square-bead shape remains constant when scaled in space; we examine this 
hypothesis in the experimental section.  Numerically, we need only solve for square 
beads at a single side length, chosen as one for convenience, and then this solution can 
be applied to any length scale.  (The same scaling applies to rectangles at each aspect 
ratio.)   

As demonstrated in the experimental section, the wetting radius of a single, jetted drop 
sets the minimum achievable planform corner radius.  This wetting radius scales with 
the cube root of jetted drop volume, and higher-fidelity, stable features may be printed 
by reducing drop volume.  We chose to use our custom-built research inkjet printer with 
a relatively large inkjet nozzle due to the system’s flexibility, reliability, and solvent-
resistant Teflon/glass ink delivery pathway.  A modern consumer inkjet printer produces 
drops with volumes on the order of 1 pL, two orders of magnitude smaller than the 
approximately 100 pL drops produced by our system.  Thus, the approximately 100 μm 
minimum corner radius in this work scales to an approximately 5 μm radius when 
printing with an up-to-date inkjet nozzle. 

Due to the small contact angles exhibited by the system, we could not accurately 
measure advancing and receding contact angles using a conventional method such as 
the sessile-drop technique.  Measurements yielded poor accuracy because of the 
narrow angle and the interference of the needle required to inject and suck fluid to 
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measure hysteresis, both known problems.10-13  Instead, we utilize the resultant drop 
shapes printed with the jetting algorithm set to a range of θA to determine θA  as 
approximately 14° at all surface roughnesses.  Although we can not directly measure our 
system’s low contact angles, the monotonic link between roughness and contact-angle 
hysteresis for equilibrium contact angles less than 90° permits us to confirm the link 
between increasing contact-angle hysteresis and sharper corner fidelity. 

4.2.2 Concave corners experimental 

We print squares and rectangles with the ionic fluid 1-butyl-3-methylimidazolium 
tetrafluoroborate14 (BMT) onto smooth and roughened 5 cm by 7.5 cm display-grade 
Corning 1737 glass slides.  We chose the experimental liquid for its non-volatility, 
printability in our system, and nonzero receding contact angle.  The varying roughness 
slides provide a system with variable contact-angle hysteresis.  We print our films with a 
custom-built, drop-on-demand inkjet printer.  The printer uses piezoelectric MicroFab 
inkjet print heads (Piano, TX) with a 60 µm orifice and has stages with 1 µm accuracy in 
the x and y directions.   

The glass slides were roughened with diamond lapping pastes of increasing grit from 
Buehler (Lake Bluff, Illinois).  Table 4.3 shows the increasing surface roughness 
beginning with smooth glass and then increasing diamond grit size, measured by a Wyko 
NT3330 interferometer (Veeco; Plainview, NY).  After roughening, the slides are cleaned 
with the “piranha clean” commonly used in microfabrication:  a 10 minute rinse in 
concentrated, 120°C heated, sulfuric acid with 100 mL of freshly added hydrogen 
peroxide followed by a deionized-water rinse and nitrogen dry. 

 

Substrate prep. 

(grit size) 

Rz (nm) 

 

smooth 6.45 

1 μm 6.69 

6 μm 10.79 

15 μm 16.08 
Table 4.3. Measured roughness heights for the glass substrates used in our experiments. 

We measure an individual jetted drop volume of 137 pL by jetting and then weighing 
100,000 jetted drops.  Table 4.4 tabulates this and other relevant physical quantities. 
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Symbol Value Term 

    14° quasi-static advancing contact angle, observed 

Vdrop 137 pL jetted drop volume, measured 

ds 70 μm in-line drop spacing, chosen 

   42.5 mN/m BMT surface tension
15

 

   1.21 g/cm
3
 BMT density, measured 

Table 4.4. Empirical physical quantities for this work. 

 

We use a modified version of the algorithm developed in our previous work for 
spanning rectangular planforms to generate printer input scripts for this experiment, 
using the physical quantities given in Table 4.4.9  This algorithm allows squares and 
rectangles to be printed by using a geometric approach to determine the next line’s 
location such that the specified maximum contact angle remains constant as each 
additional line is added.  We modified the algorithm to remove asymmetries and 
undesired bulging at the start of the initial lines.  Instead of raster scanning from the left 
to right, we print a feature starting in the middle and then add additional lines on 
alternating sides. 

After fixing the ratio of printed drop volume to the cube of side length, we printed 
squares with side lengths of 2, 1, and 0.5 mm as seen in Figure 4.2.  We note that the 
non-unity aspect ratio of the half millimeter squares is simply a reflection of the low line 
count at this dimension rather than any wetting effect.  At each size, we observe 
increasingly tight corners as substrate roughness increases.  The smooth glass presents 
near-zero hysteresis and can only support circular planform drops.  Noting that rougher 
substrates have a lower receding angle, we find that a lower receding angle allows for 
sharper corners.  Such a trend corroborates the numerical simulations shown in Section 
4. 
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Figure 4.2.  Inkjet-printed BMT squares of noted size and substrate roughness. 

 

Figure 4.3 shows the ratio R of corner radius to side length as a function of roughness 
for the squares illustrated in Figure 4.2. The curves show that with increasing roughness, 
R decreases; we can print more sharply defined patterns on rougher surfaces than on 
smooth surfaces.  There is, of course, a lower bound to R. We can not achieve a corner 
radius smaller than an isolated jetted droplet would have at equilibrium on the 
roughened surface. For the values of jetted volume and advancing contact angle given in 
the table, that planform radius of a single jetted drop is about 90 μm; in the figure, we 
have used that number to provide the rough estimate of Rmin, shown as a horizontal bar 
to the right. 
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Figure 4.3.  Ratio R of corner radius to side length for the squares illustrated in Figure 4.2.  The Rmin bars to the right 
represent an estimate of the minimum rounding limit. 

 

In Figure 4.3, curves for the two larger squares show that for all roughnesses, the ratio 
of corner radius to side length is independent of side length. (To avoid 
misunderstanding, we note that the abscissa is dimensional, and that we are not 
claiming that there is any self–similarity with respect to roughness.) For the smallest 
square, however, the side length of 500 μm is only about 5–10 equilibrium drop radii, 
and it is not surprising that the ratio of corner radius to side length exceeds that for the 
two larger squares. This effect could be reduced by jetting smaller drops. 

To examine wetting at growing aspect ratio, rectangles of various aspect ratio were 
printed, as shown in Figure 4.4.  We restrict maximum side length to our largest imaging 
field of view, about 2 mm.  Because the initial line forms a substantial bulge, taking on 
the appearance of a lollipop, as mentioned above, we examine drops consisting of two 
or more printed lines with a rounded rectangle planform.  These two conditions 
correspond to a maximum aspect ratio of four in this experiment, but higher-aspect-
ratio rectangles could be printed with minor accommodation.   
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Figure 4.4. Inkjet-printed BMT rectangles of noted aspect ratio and substrate roughness. 

For rectangles, we quantify the radius of rounding in Table 4.5 by averaging over the 
four corners and nondimensionalizing by the length of the shorter edge.  When 
nondimensionalizing it is logical to choose the shorter edge length as the characteristic 
length scale to get a range of rounding radii between 0 and 0.5 as for the squares.  Once 
again, the corner rounding is smaller as the roughness is increased (and receding 
contact angle is lowered).  Furthermore, for a given substrate roughness (or receding 
contact angle) higher aspect ratio rectangles have larger nondimensional corner 
rounding.  Note that the kinks in the shorter edge of the rectangles are due to a 
specified offset in the initial lines of the print algorithm.  This does not affect the corner 
rounding and is explained in the following section. 
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R, rect. bead corner rounding radius normalized by short side 

 Substrate treatment:  diamond grit size (um) 
Aspect ratio 15 6 1 

4 0.17 ±0.02 0.25 ±0.03 0.42 ±0.02 

2.6 0.13 ±0.02 0.20 ±0.09 0.31 ±0.04 

1.7 0.09 ±0.05 0.14 ±0.03 0.20 ±0.03 

1 0.08 ±0.01 0.13 ±0.03 0.25 ±0.01 
Table 4.5. Corner rounding radius (±1 standard deviation) nondimensionalized by side length for rectangles of 
specified aspect ratio. 

 

4.2.3 Convex corners numerical 

We calculate equilibrium drop shape numerically to verify the relationship between 
corner rounding and receding contact angle observed in experiments.  We use the 
public-domain Surface Evolver program to minimize surface energy with respect to drop 
shape.16  Surface Evolver has been used to analyze systems with varying contact angle, 
for example, by Brandon et al.17  In this work, the authors defined a spatially-varying, 
local contact angle and demonstrated that doing so leads to contact-angle hysteresis 
and multiple drop equilibria in a given system.  

By applying appropriate boundary conditions and constraints, we use Surface Evolver to 
find constant-curvature surfaces with prescribed corner rounding and maximum contact 
angle.    From an initial surface configuration, Surface Evolver uses a gradient-descent 
technique to minimize total surface energy.  For the simulation results presented here, 
we lower surface energy until a single gradient descent iteration changes surface energy 
by less than one part in 107.  We simulate a drop with specified volume and unit surface 
energy whose contact line is confined to the perimeter of a 1-by-β, rounded rectangle.  
Selecting a contact line and specifying an appropriate volume, we find a drop whose 
maximum perimeter contact angle is the specified θA.  We note that as we increase 
corner rounding at a certain θA we need to reduce drop volume to prevent θA from 
rising.  We find the appropriate volume at any θA and contact line shape by 
implementing an unconstrained nonlinear minimization of the function θA-target – θA-

actual
                      .  Our approach is an inverse of the method of Brandon et al.17  

Whereas they specified local contact angle via a local wetting energy and examined the 
equilibrium contact line, we specify the contact line and examine local, equilibrium 
contact angle.  

Contact-angle hysteresis implies that a bead’s contact line is no longer uniquely 
specified for a given volume, set of θR and θA, and planform shape.  For example, a fixed-
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volume drop with a circular footprint and specified θR and θA is stable over a range of 
spherical cap surfaces specified by a single parameter. These drops range from a 
smallest circular planform with a θA perimeter contact angle to a largest planform with a 
θR contact angle.  Analogously, many possible contact lines meet the boundary 
conditions for rounded squares with contact-angle hysteresis presented above.  Because 
we experimentally observe corner retreat towards drop center, fitting increasing-size 
quadrants into the corners of the planform rectangle is a logical approach to search for 
best-corner-fidelity contact lines that satisfy a particular contact-angle hysteresis. 

 

 

Figure 4.5.  Minimum area surfaces found with Surface Evolver for drops with θA = 60° and specified corner 
rounding, R, leading to different, noted θR. 

 

Adjusting the contact line rounding and volume constraints in Surface Evolver allows us 
to examine the perimeter contact angle with increasingly rounded corners.  Figure 4.6 
shows the resultant, equilibrium square and rectangular beads as R increases from 0 to 
0.5 for θA= 30°.  Figure 4.6 a,c) shows the contact lines specified for the drops whose 
perimeter contact angles are plotted versus radial coordinate in the wetting plane in 
b,d), respectively.  Approaching sharp corners, the local contact angle falls to zero and 
increasing corner rounding increases the minimum value of θR, which occurs along the 
rectangle diagonals where there were once sharp corners (except for the fully-rounded, 
aspect-ratio-two drop whose minimum θR occurs along its long axis).  As expected, the 
circular contact line has uniform perimeter contact angle.  These numerical results are 
consistent with the small-slope (low contact angle) analytic model that we derived in 
our earlier work that also showed zero contact angle in sharp corners.6   

Unlike unity aspect ratio footprints, in the case of rectangles, the contact angle varies 
with position even when the shorter edge of the rectangle is completely rounded.  The 
local contact angle is lowest at the center of the planform, semicircle cap and is largest 
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at the center of the long edge.  This suggests there is a minimum requirement on the 
amount contact-angle hysteresis required for bead formation with aspect ratios above 
one, and we explore this result later in this section.  The local contact angle along the 
short edge of rounded rectangles also explains why, in Figure 4.4, the shorter edge of 
the printed rectangles does not fill in until a square has been printed:  when the aspect 
ratio is above unity, the contact angle at the short edge kink is below the advancing 
contact angle.  (The top row of Figure 4.3 contains the final 2 mm, unity aspect ratio 
drops without a kink.) 

 

Figure 4.6.  a,c) Specified contact lines for square (β = 1) and rectangular beads  (β = 2) with noted corner rounding 
ratio, R; and b,d) perimeter contact angle extracted from Surface Evolver results for drops with noted contact line 
and θA = 30°. 

 

Figure 4.7a) shows the computed value of the minimum perimeter contact angle, θR, as 
a function of R for square drops (β = 1).  According to the figure, for fixed θA, θR 
increases monotonically from zero (at R = 0) to θA at (at R = 0.5); the latter corresponds 
to the circular bead that is only possible equilibrium in the absence of hysteresis. In 
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other words, the smaller the value of θR, the more sharply defined the corner we can 
print. Further, for fixed θA, as R is increased from zero to intermediate values, θR 
becomes less sensitive to R, suggesting that little difference in hysteresis separates best-
fidelity squares at intermediate rounding.  We are unable to verify this prediction 
because the small contact angles of our system prevented independent measurements 
of θR and θA (as mentioned in the introduction). 

 

 

Figure 4.7.  Minimum perimeter contact angle, θR, as a function of ratio R of corner radius to side length with θA as 
a parameter varying from 10° to 90° as noted for a) squares, and b) rectangles of aspect ratio 2. 

 

Figure 4.7b) shows the corresponding results for a rectangle of aspect ratio two; here R 
is formed using the shorter side as reference length. Comparing Figure 4.7b) with Figure 
4.7a), we see for the rectangle that, for fixed θA, θR is about half as large.  At larger 
aspect ratio, a larger contact-angle hysteresis, θA−θR, is required to sustain a given 
corner radius.  As a consequence, because θR ≥ 0 it follows that for the rectangle 
described by Figure 4.7b), there is a range of R over which is θR less sensitive to 
variations in corner rounding than is the square.  Within that range, small changes in θR 
produce large changes in R.   A corollary result is that for a given set of θA and θR, as the 
aspect ratio is increased, one would expect the corner rounding R to increase.  From 
Figure 4.4, we see that experimental result support this prediction.  The large aspect-
ratio rectangles created by depositing only a few lines have greater normalized corner 
rounding than do the smaller aspect-ratio shapes created by depositing many more 
lines. 

Extending this analysis, we simulate rectangles of increasing aspect ratio with fully 
rounded short sides, such as those seen in Figure 4.8 a).  As aspect ratio is increased, the 
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θR found in rectangles with fully rounded short sides (fully rounded sides require less 
hysteresis than partially rounded sides) monotonically decreases with decreasing 
magnitude slope.  We note that long drops (aspect ratio above 50) with large θA (80-90°) 
tended to be unstable during surface energy minimization, forming a large, spherical 
bulge connected to a thin line wetting the prescribed contact line.  This is because such 
drops approach the stability condition for linear beads with pinned contact lines, 
derived by Davis.  He showed that long, wetted drops with pinned contact lines are 
unstable if their contact angle exceeds 90°.18  We omit any beads that formed such a 
bulge from the figure. 

From Figure 4.8 we can determine whether a rectangle can be printed based on the 
advancing and receding contact angles.  For a given system, it should be possible to print 
rectangles of a particular aspect ratio so long as the required θR to maintain this aspect 
ratio is not lower than the actual wetting θR.  For example, consider an ink-substrate 
system with θA= 80° and θR= 30°.  As shown in the figure, it is only possible to print 
rounded rectangles of aspect ratio less than 5; larger aspect-ratio shapes would dewet 
and shorten.  For this system, we expect rectangles of aspect ratio 5 to be stable only 
with fully rounded ends, while rectangles of aspect ratio less than 5 can sustain sharper 
corners.    

 

 

Figure 4.8.  a) Contact line of fully-rounded rectangles (R = 0.5) with labeled aspect ratio and indicated location of 
θR; and b) receding contact angle as a function of aspect ratio for fully-rounded rectangles.  
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4.2.4 Convex Corners Conclusion 

The work presented here demonstrates the value of approaching printed patterning 
from a surface-energy perspective.  Experimentally, we show that for a given advancing 
contact angle, decreasing θR via substrate roughening allows the creation of sharper 
bead corners.  Numerically, we show the link between decreasing θR and increasingly 
sharp stable drop corners to be valid for all systems with θA less than or equal to 90°.  
Given a set of advancing and receding angles, the minimum amount of corner rounding 
for stable square and rectangular drops can be determined.   

For rectangles having an aspect ratio above unity, we determine the maximum receding 
angle required for stability given the advancing angle.  Without sufficient hysteresis, the 
shorter edge retreats inward and the aspect ratio cannot be held.  As the aspect ratio is 
increased, this required receding angle decreases.  We show printed rectangles with 
constant wetting properties where corner fidelity decreases with increasing aspect ratio 
implying that hysteresis requirements for corner fidelity increase with aspect ratio.  
Although here we only illustrate drops with aspect ratio less than four because lengthy 
drops are harder to image, we have no difficulty printing longer drops.  These drops are 
numerous and important in printed electronic applications. 

The results in this paper suggest future research directions.  The role of viscous flow in 
controlling equilibrium drop shape is unknown.  How does equilibrium corner fidelity 
vary with viscosity for an initially square drop with a retreating contact line?  Also, we 
have not exhausted the potential of approaching drop-pattern fidelity subject to surface 
energy minimization and wetting constraints.  Such work may prove valuable in 
understanding the link between wetting and contact-line curvature.  Specific areas 
worth examination include being able to understand and control initial bulge formation 
in a single printed line, and investigating drops confined to planar corners of any angle.  
A better understanding of drop patterning will allow for the formulation of algorithms 
and design rules for printing optimal, arbitrarily shaped features. 

 

4.3 Concave corners 

4.3.1 Concave corners introduction 

Because connected wires in circuits have bends, both convex and convex contact line 
corners occur.  Following the approach described above for convex corners, we now 
study concave corners.  In the previous section, we established the fundamental convex 
corner fidelity limits for a given set of wetting properties, θadv and θrec, and the work 
that follows proposes that a different set of parameters controls concave corner 
wetting.  Rather than use any arbitrary polygon as a test shape for this study, we chose 
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the shapes shown in Figure 4.9, containing the concave corners found in constant line-
width, Manhattan layout of wires. 

 

Figure 4.9.  Concave corner test geometries. 

 

Our experimental work examining concave corners is still in its early stages and will be 
the subject of follow-up work after the completion of this thesis.  Fortunately, a 
colleague, Lakshmi Jagannathan, has provided her printing results that are useful in 
motivating the following analysis.  She printed a gold nanoparticle ink from Harima 
Chemicals Inc. onto cleaned, borofloat glass substrates, as seen in Figure 4.10.  Single 
pixel-wide raster scanned lines show pronounced bulging at their corners, several times 
wider than the line width.  However, five pixel wide lines printed with the same system 
show no bulging at all with crisp corner definition.  Unlike the modulated corner 
rounding seen above with printed convex corners, the concave corners formed by the 
meeting of high aspect ratio features are less stable, sometimes nearly draining their 
constituent lines and forming a large bulge at the intersection.  We will attempt to 
explain the reasons for modulation of concave corner bulges in the following section. 
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Figure 4.10.  Gold nanoparticle ink, inkjet-printed lines on glass, two images of single pixel-wide lines on left and 
two of five pixel wide slides on right.

19
 

 

4.3.2 Concave corners analytic model 

Here we build a simple, analytic framework to gain insight into the tendency of wetted 
line, concave corners to bulge.  We will generally use the cross bead shape, but the 
analysis can be modified in a straightforward manner for the tee or elbow shapes.  Long, 
straight, partially wetting lines adopt a circular segment cap at minimum surface energy 
(forming a sliced, extruded cylinder), while radially symmetric bulges can be 
approximated as a spherical cap.  We approximate the line-bulge system as extruded 
circular segment lines meeting at a spherical cap bulge as shown in Figure 4.11. 
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Figure 4.11.  Analytic model geometry from the top.  At right, the central bulge grows at the expense of line 
volume. 

 

Volume, Vtot, is conserved between in the line-bulge system (of volumes Vl and Vs).  We 
assume that the contact line of the bulge and line are pinned, as commonly in 
evaporating colloidal inks.  We assume that the n lines have a normalized width (wl) of 
1, a specified initial volume per length, and that the system volume begins entirely in 
the lines.  Then, volume is permitted to exchange between the bulge and lines so the 
system may lower its total interfacial energy.  In this arrangement, the line contact 
angle, θl, decreases as the spherical cap grows with contact angle, θeq, and increasing 
wetting radius, as. 

The surface energy is the principal energy term that changes as the bulge and line 
exchange fluid.  The total surface energy of the system is found by summing the surface 
tensions times area of the feature and is given in eq. 1, below. 

                       (1) 

In Eq. 1,   is the fluid’s surface tension, A refers to the top and bottom areas of the 
bead, as noted, and           is the change in interfacial energy as the ink wets a unit 
of substrate area.   
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As the spherical cap bulge grows it consumes the lines nearby such that the missing line 
area no longer contributes surface energy to the system.  A simplified model of this is to 
assume that the effective line length of the cylindrical-cap lines, Le, is L-as.  This 
approximation improves when as >> wl, and is sufficient to capture the broad behavior 
of our system, specifically the existence of large bulge equilibria.  We assume that the 
bulge grows at the expense of the lines so Vl is Vtot – Vs.  Substituting in the separate line 
and bulge area and using the Young Equation to rewrite interfacial energies in terms of 
θeq, we find equation 2. 

    

 
                                                      (2) 

Geometric identities allow calculation of spherical cap and extruded circular segment 
areas from specified volume, lengths, and contact angles reproduced in Equations 3 
below. 
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Because there is no closed form solution for the cylindrical cap contact angle,   , as a 
function of line volume per length, equations 3c and 3d are solved numerically.   

Examining the change in total surface energy as a bulge grows proves useful in 
understanding the tendency of a given system to form a large bulge.  Figure 4.12 below 
shows several typical plots of surface energy as bulge volume grows from 0 to Vtot.  In 
Figure 4.12 a) we see that there is a large bulge equilibrium that grows as line count 
increase from one (a single line termination) to four (the cross junction) as increased 
line overlap stabilizes increasingly large bulges.  Interestingly, the bulge does not 
consume the entire system fluid volume, instead presenting minimum energy with the 
lines containing a minority of total volume.  Numerical simulations, to be presented, will 
confirm this result of small equilibrium line volumes co-existing with large bulges. 
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Varying the input parameters of L, θeq, and Vtot and plotting the Etot/   versus Vs reveals 
two important solution types, examples of which are shown below in Figure 4.12 b).  
When Vtot is sufficiently large such that the line contact angle with no bulge volume, θl0, 
is near θeq, we find a stable, large bulge equilibrium like that shown in Figure 4.12 b).  
When θl0 is sufficiently smaller than θeq, the equilibrium shifts to a small volume bulge 
like that in the right of Figure 4.12 b).  Recalling that the line-bulge overlap accounting 
breaks down at small bulge size, the results of Figure 4.12 c) demonstrate that large 
bulges are not always energetically favorable, but should not be considered an accurate 
prediction of small bulge volume.  In order to accurately simulate the entire range of 
bulge-line equilibria we now turn to numerical simulations. 

 

Figure 4.12.  Surface energy for line-bulge systems with unit surface tension; a) large bulge equilibrium growing 
with line count, θl0 = θeq = 60° and nL = 40 (Vtot = 8); and b) cross-footprint bulges demonstrating large and small 
bulge equilibrium θl0 = 30°, nL = 100 (Vtot = 8), and noted θeq .  

 

 

4.3.3 Concave corners numerical simulations 

We perform  numerical solutions of our line-bulge bead with Surface Evolver to 
generate more accurate predictions and corroborate the analytic results.8  We 
implement the zero-retreating contact angle and positive advancing contact angle found 
in our, and many other, ink-substrate systems by instantiating the contact lines at the 
edges of an unbulged intersection, as drawn in Figure 4.9.  Then, we impose one-sided 
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constraints on the contact line such that it is able to advance at θeq, an input parameter 
for a given simulation, but may not retreat inside the initial footprint.  Noting that the 
Bond number of our beads is always much less than one, we ignore the effect of gravity. 

Figure 4.13 shows typical evolved surfaces found with Surface Evolver simulations.  The 
constant-volume constraint for the simulations can be thought of as an initial, uniform 
volume per line length, or, attributing all of the bead volume to the lines and solving for 
the resultant cylindrical cap contact angle, as an initial line contact angle θl0.  As with the 
analytic energy minima discussed above, we find that there is a large increase in 
equilibrium bulge size as θl0 approaches θeq while holding all other variables constant.   

 

Figure 4.13.  Minimum energy surfaces with cross planform, found with Surface Evolver.  These crosses have w l = 1, 
L = 10, θeq = 90° and the specified θl0 . 

 

Comparing the stable bulge sizes predicted by the analytic model in section 4.3.2 and 
the stable bulges solved for in Surface Evolver corroborates the validity of both.  Figure 
4.14 plots the stable bulge size (abulge, defined as the distance from bulge center to 
contact line along the x=y line on the substrate) versus input parameters of line length, 
θeq, and θl0.   

Here and in later simulations, we limit our analysis to θl0 less than or equal to θeq.  While 
both the analytic and numerical models permit investigations of larger total volumes per 
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length, physically such a system may progress to many equilibria other than the corner 
bulge.  With a uniform line contact angle in excess of θeq, the entire line is driven to 
spread simultaneously, and a race condition develops between uniform spreading and 
lower-energy, periodic bulging.  The enhanced spreading near the junction due to the 
pre-existing wetting film of the other arms makes for an interesting system to analyze.  
Such a problem is beyond the scope of this work, and Duineveld’s work analyzing 
periodic bulging as a line is printed with a contact angle above equilibrium presents a 
good starting point for analyzing such a system.20 

Returning to the comparison of our analytic and numerical results, we see good 
agreement between the two models, though there is an increasing deviation between 
the models when small bulges are predicted (at θl0 much less than θeq).  First, Surface 
Evolver allows contact lines to advance but not retreat from their initial positions.  

(Vertices are allowed to have Therefore, the minimum abulge is            , a limit 
seen in the smaller simulated bulges but not present in the numerical model.  Regarding 
the analytic model, the assumption of a spherical cap abutting an abruptly-terminated 
cylinder is an increasingly poor approximation as bulge size decreases.  The discrepancy 
in predicted small bulge sizes between the two models is largely due to this analytic 
approximation.  That said, the agreement in stable larger bulge sizes indicates that we 
have captured the essential physical elements that govern bulging behavior. 
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Figure 4.14.  Equilibrium bulge size of cross feature as predicted by analytic model (blue diamond) and surface 
evolver simulations (red square).  Length is sampled at 2.5, 10, 25 along the x axis; θeq is sampled at 30°, 60°, 90° 
along rows; and θl0 is sampled at about 30°, 60°, 90° along columns. 

 

A more detailed understanding of the conditions that lead to bulge formation can be 
found by simulating many crosses while varying equilibrium contact angle, system 
volume (equivalently θl0), and cross arm length.  Figure 4.15 presents the results of such 
simulations.  It shows the contact line of the equilibrium, minimum energy surface in the 
first quadrant, including one quarter of the bulge, if present.  Each plot is for the 
specified arm length (the top row has L = 10 and the bottom has L = 20), and θeq 
(columns of 20°, 45°, and 90°).  Each plotted point represents a vertex from the contact 
line in the first quadrant region near the bulge, and each color represents θl0 descending 
from θeq in increments of 5°. 
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Figure 4.15.  First quadrant contact line near the corner of simulated crosses with varied θeq, θl0 and length as 
noted.  Each plot represents a single θeq and length with individual lines representing θl0 descending in increments 
of 5° from θeq. 

 

Several cross-bulging trends worth comment are seen in Figure 4.15.  Most importantly, 
bulge size always decreases sensitively as θl0 decreases below θeq.  As expected, bulge 
size increases with line length, but somewhat surprisingly bulge size at θl0 = θeq is only 
weakly coupled to θeq, increasing about 10% as bead volume per unit length is increased 
twenty five times from 0.015 to 0.39.  Finally, there is an interesting transition from 
slightly convex (nearly linear) contact lines at θl0 near θeq to purely concave bulge 
contact lines at lower volume loadings.  This transition bears further analysis with more 
detailed simulations. 
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Figure 4.16.  Bulge size, abulge, as a function of θeq and θl0 for crosses with L = 10 on left and L = 20 on right. 

 

Examining bulge size as a function of θeq and θl0 makes obvious the sensitivity of bulge 
size to line loading with respect to equilibrium contact angle.  As Figure 4.16 shows, 
bulge size is nearly constant for θl0 sufficiently less than θeq but increases sharply as line 
loading rises.  This transition is increasingly abrupt as arm length increases as can be 
seen by comparing the L = 10 and L = 20 plots in Figure 4.16, though the region without 
bulges covers a similar space in θeq and θl0.  More detailed simulations will clarify this 
transition and perhaps lead to insight into its causes. More importantly, empirical 
experiments are needed to confirm the validity of these simulations as proposed in the 
next section. 

 

4.3.4 Concave corners conclusion and future directions 

Having analyzed the conditions that control concave corner bulge formation analytically 
and numerically, we are now able to qualitatively explain the printing outcomes shown 
in Figure 4.10, that single drop wide lines grow bulges in their corners while five drop 
wide lines do not.  Both line widths were printed with a fixed x and y spacing.  Recalling 
the results of Chapter 3, the contact angle of printed two-dimensional features 
decreases monotonically with increasing line count at a fixed line spacing.  However, a 
single drop line has a width determined by its uniform spreading to θeq.  The single pixel 
lines have a contact angle of θeq, and grow significant bulges as predicted analytically 
and numerically in this work.  However, the five pixel lines have contact angle 
sufficiently lower that θl0 falls in the no-bulge region seen in the left hand side regions of 
the Figure 4.16 plots. 

These theoretical and qualitative results require empirical confirmation, and we now 
outline an experimental research plan to do so.  We will explore two means of 
manipulating bead contact angle for lines (θl0) before connecting proximate lines to 
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create concave corners.  In both cases, lines of known, varied contact angle will be 
printed in close proximity in the layout of the elbow, tee, and cross such that a single 
drop can span the gap at the intersection and instantaneously create the concave corner 
geometry.   

The first method of θl0 control uses jetted volume and a large difference in solvent vapor 
pressure to precisely control bead loading just before connection.  A printed line has its 
width set by pre-evaporation, jetted volume.  Because the evaporation timescale for 
one solvent is much faster than evaporation for the remainder of the ink, the bead 
contact angle will quickly decrease from θeq to a lower value depending on the volume 
loading of the more volatile solvent.  At this point, additional ink volume can be added 
by jetting onto the pre-existing line.  By careful fluid volume accounting, the lines’ 
contact angle can be adjusted from its minimum value up to θeq before the arms are 
connected with a center drop permitting reflow to the equilibrium bulge size.   

Alternatively, printing wider, raster-scan lines, as observed in the right side of Figure 
4.10, permits another means of access to lower line contact angles. As outlined above 
and in Chapter 3, line contact angle decreases as a line is widened in a fixed-spacing 
raster scan pattern.  Lines of various θl0 can then be interconnected and reflow into 
equilibrium bulges.  Further, this varying of width will test equilibrium bulge size at 
various line size scales and confirm the predicted uniform scaling of the solutions 
presented here. 

 

4.4 Summary and fabrication implications 

We have presented the wetting behavior of beads confined to the convex and concave 
right angle corners found in Manhattan-style circuit layout.  The final chapter of this 
work proposes a more general treatment of beads confined to any corner angle. 

For the convex corners of a rectangular drop, the receding contact angle of the ink-
substrate system determines the upper limit on stable corner sharpness.  Too sharp of 
corners at a given contact angle hysteresis will withdraw inwards and round.  In printed 
device layout, fabricators would need to determine a target corner fidelity and then 
check system wetting properties.  If the hysteresis of the current system were too low, 
then the experimenters could then take appropriate action to increase hysteresis.  They 
could increase substrate roughness, or enhance pinning by decreasing the contact line 
evaporation timescale with the addition of a volatile cosolvent to the ink. 

Contrastingly, concave corners at the junction of wetted lines often grow a bulge 
outwards.  The size of this bulge can become very large depending on the length of the 
feeding lines.  Our results indicate that the bulging behavior can be mitigated by 
ensuring that the line effective contact angle (θl0) is sufficiently lower than θeq at the 
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moment of junction creation.  The simplest way to ensure that line junctions have θl0 

lower than θeq is to print with an ink that has appreciable evaporation on the printing 
timescale, perhaps on the order of one percent evaporative mass loss on the substrate 
per jetting period.  As such, line width will still be largely determined by initial ink 
wetting but junctions will always experience θl0 less than θeq.  Another option is to first 
print isolated lines and then to print the line junctions after waiting an appropriate 
evaporation timescale (as a second “layer” in microfabrication terms) to ensure a low θl0 
at the time of line junction formation. 
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5 Conclusion 

5.1 Summary and key contributions 

We define the patterning limits in the inkjet printing of wetting, patterned films and 
develop methodologies to enable optimal printing.  Figure 5.1 presents key results of 
this work.  In Chapter 2, we presented morphologies possible when inkjet printing a line 
and offered physical reasoning to explain the differences.  We also demonstrated and 
explained temperature modulation of the coffee-ring effect.  Chapter 3 demonstrated 
the limitations of a fixed spacing raster-scan when printing two-dimensional shapes.  We 
offered an algorithm that enabled optimal planform fidelity by accounting for contact 
angle.  Finally, in Chapter 4, we examined the wetting limits of right-angle concave and 
convex corners.  We demonstrated the link between a growing retreating contact angle 
and increasingly rounded convex corners.  For the concave corners that form at the 
junctions of lines, we showed how reducing line ink volume per length prevents the 
spontaneous formation of junction bulges.  Not unlike the optical proximity correction 
used in computer chip photolithography, we are able to define fundamental patterning 
limits and the means to achieve them. 

 

Figure 5.1.  Key results from this work. 

 

5.2 Future directions 

The work presented here demonstrates the value of approaching print patterning from 
a capillary, surface energy perspective.  Lines, patterned films, and corners can all be 
modeled and understood by minimizing surface energy subject to constant volume and 
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simple contact line constraints.  We have not exhausted the value of such a 
methodology.  We propose two projects as ripe for continuation, ones where we 
already have preliminary results.  The first is abstract, seeking general insight into the 
shape of drops in sharp corners.  The second exploits the line-bulge interaction 
discussed in Chapter 4 to demonstrate and explain higher resolution printing on low 
contact angle and totally wetting substrates.  In sum, we seek a better understanding of 
a general set of printed shapes in order to introduce techniques analogous to optical 
proximity correction in photolithography.   

 

5.2.1  Solution to Young-Laplace equation for drop corners 

We suggest generalizing the treatment of wetted drops in the corner of a rectangle to 
solve the Young-Laplace equation for a drop with pinned contact lines confined to any 
corner angle between 0 and 2π.  Our preliminary analytic results demonstrate that the 
contact angle of the triple line approaching the convex corner approaches zero.  We will 
develop and present this solution as well as consider the case of concave contact line 
corners, using Surface Evolver to present numerical corroboration.   

Figure 5.2 shows preliminary simulation results to this boundary value problem 
demonstrating a dramatic change in drop surface as the corner transitions from convex 
to concave.  Our preliminary results indicate that the drop abruptly transitions from zero 
contact angle in the vertex to π contact angle as the planform corner angle passes 
through π itself.  Printing such shapes is problematic due to the large variation in 
contact angle near the vertex, which would lead to contact-line movement into 
planforms other than those we seek to study.  Our solution is to create wire frame soap 
bubbles with a positive pressure in the interior, analogous to the surface tension-
induced Young-Laplace pressure.  These soap film bubbles will demonstrate our analytic 
and numerical solutions. 
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Figure 5.2.  Simulated drops, solutions to the Young-Laplace equation, with pinned contact lines confined to a 
convex (top) or concave (bottom) corner.  a) drop surface; b) height of marked slice through vertex and symmetry 
plane for various volume; and c) contact angle in degrees along planform radii for various volumes. 

 

5.2.2 Patterned printing on wetting substrates 

Printing on low-contact-angle or totally-wetting substrates is sometimes inevitable in 
order to deliver solute soluble only in low surface tension solvent or due to high surface 
energy substrate constraints.  When inkjet-patterned features have been required in 
these cases, the substrate has been heated until the drying time of the jetted drops is 
shorter than the jetting period.  Rapid solvent evaporation arrests the spreading of 
drops that otherwise would spread to a large, erratic footprint.   (We labeled this 
printing r gime “stacked coin” printing in  hapter 2.)  We have preliminary results 
indicating an alternate strategy that avoids such heating and yields smoother films, as 
shown in Figure 5.3 below. 

Figure 5.3.  Inkjetted silver nanoparticle lines, printed at a 5 µm drop-to-drop spacing on oxidized silicon wafers 

 

a)

b)

250 m

print direction
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printed a) as a simple line; and b) with deliberate pre-seeding of a bulge to withdraw fluid.  The ink-substrate 
system is totally wetting with zero equilibrium contact angle.

1
  

Deliberate capillary flow due to Young-Laplace pressure can be used to pattern inkjet-
printed features that otherwise would wet to a large size.  Specifically, the low pressure 
created inside a deliberately-printed bulge can be used to siphon fluid from a growing, 
printed line that otherwise would wet to a large size.  (These bulges can be considered a 
deliberate, single-event version of the periodic bulging instability seen in long printed 
lines by Duineveld2).  We suggest quantifying the possible advantages of this strategy by 
developing an analytic framework to understand the timing and length scales of this 
effect.  Experimental confirmation will be provided by inkjet printing with a wetting ink-
substrate system while varying print velocity and feature size. 
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