Compilation Techniques for Embedded Data Parallel

Languages

Bryan Catanzaro

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-45
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-45.html

May 11, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research has been supported by a National Science Foundation
Graduate Research Fellowship, an NVIDIA Graduate Fellowship, a
Qualcomm Innovation Fellowship, the Gigascale Research Center, and the
Parallel Computing Laboratory, which itself is supported by Microsoft
(Award #024263), Intel (Award #024894), and by matching funding from
U.C. Discovery (Award #DIG07-10227), with additional support from
affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.

Compilation Techniques for Embedded Data Parallel Languages
by

Bryan Christopher Catanzaro

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Electrical Engineering and Computer Sciences
in the
Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kurt W. Keutzer, Chair
Professor David A. Patterson
Professor Sara McMains

Spring 2011

Compilation Techniques for Embedded Data Parallel Languages

Copyright 2011

Bryan Christopher Catanzaro

Abstract
Compilation Techniques for Embedded Data Parallel Languages
by
Bryan Christopher Catanzaro
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Kurt W. Keutzer, Chair

Contemporary parallel microprocessors exploit Chip Multiprocessing along with Single In-
struction, Multiple Data parallelism to deliver high performance on applications that expose
substantial fine-grained data parallelism. Although data parallelism is widely available in many
computations, implementing data parallel algorithms in low-level efficiency languages such as
C++ is often a difficult task, since the programmer is burdened with mapping data parallelism
from an application onto the hardware structures designed to execute it. Languages specifi-
cally designed for data parallelism, such as NESL, aim to improve programmer productivity by
allowing the programmer to express computation as a composition of data parallel primitives,
such as map, reduce and scan. However, efhiciently compiling nested data parallel computa-
tions to contemporary parallel microprocessors is challenging.

Additionally, the rise of productivity languages, such as Ruby and Python, has facilitated
the construction of domain-specific embedded languages. These embedded languages em-
ploy familiar syntactic constructs, which eases the task of learning a new programming envi-
ronment, while also retaining the full capabilities of the host language. This work capitalizes
on the productivity of domain-specific embedded languages as well as the nested data paral-
lel abstraction to create a programming environment that is both productive and efhicient on
contemporary parallel microprocessors. We describe Copperhead, a high-level data parallel
language embedded in Python. The Copperhead programmer writes parallel computations
via composition of familiar data parallel primitives supporting both flat and nested data par-
allel computation on arrays of data. Copperhead programs are expressed in a subset of the
widely used Python programming language and interoperate with standard Python modules,
including libraries for numeric computation, data visualization, and analysis.

Compiling data parallel computations requires analyses and transformations to schedule
data parallel operations onto a target platform. We discuss the language, compiler, and runtime
features that enable Copperhead to efficiently do so. We define the restricted subset of Python
that Copperhead supports and introduce the program analysis techniques and transforma-
tions necessary for compiling Copperhead code into efficient low-level implementations. We
demonstrate that indiscriminate use of the flattening or vectorization transform, common to
data parallel compilers, is inefhicient on contemporary microprocessors, and we advocate a
more direct mapping of nested data parallel operations onto the natural parallelism hierarchy

provided by today’s parallel platforms. We show how this direct mapping allows a data parallel
compiler to capitalize on hierarchical on-chip memory structures, as well as perform data par-
allel primitive fusion in order to gain efhiciency. We outline the runtime support that allows
Copperhead programs to efficiently interoperate with standard Python modules.

We demonstrate the effectiveness of our techniques with several examples targeting the
CUDA platform for parallel programming on graphics processors. Copperhead code is con-
cise, on average requiring 3.6 times fewer lines of code than CUDA, and the compiler gener-
ates efficient low-level implementations, yielding 45-100% of the performance of hand-crafted,
well optimized CUDA code. Copperhead provides an efficient and productive way to program
parallel microprocessors.

To Jena

Contents
List of Figures
List of Tables
1 Introduction
1.1 TheImplementationGap
12 Copperhead L
1.3 Contributions e e
1.4 Outline.
2 Background
2.1 DataParallelism
2.1.1 DataParallel Architectures
2.1.2 Contemporary Processors
2.1.3 ParallelismHierarchy
22 EmbeddedLanguages
2.3 DataParallel ProgrammingModels
24 Summary
3 The Copperhead Language
3.1 Restricted Subsetof Python
3.1.1 Expressions
3.1.2 Statements e e
32 TypeSystem
321 Definition
33 SideEffects
33.1 SideEffectsinHostCode
332 Loops
34 ScopingandOrdering
3.5 Closureso v
3.6 Data-Parallel Primitives
3.6.1 map .. e

362 ZAP ..

il

3.6.3 PEAUCE & . o o e e e e e e e e e e e e e e e
3.64 SCAN ..
365 gather e
3.6.6 scatter e
3.6.7 permute
3.6.8 indices e
3.7 Exampleprogramso
3.7.1 Compressed Sparse Row Sparse Matrix Vector Multiplication
372 RadixSort.
3.8 Conclusion e
Compiling Data Parallel Languages
4.1 Sourcetosource compilation L L Lo
42 Normalized Form e
4.2.1 Closure Conversion oo v v v v ittt e
422 Single Assignment Conversion
423 ProcedureFlattening
424 ExpressionFlattening
425 Inlining L
42.6 FinalResult
43 ShapeAnalysis
4.4 Data Parallel Primitive Scheduling
44.1 DataParallel Primitive Fusion
4.5 TheFlattening Transform
4.6 Quantifying the Flattening Transform
46.1 LoadBalancing
462 SIMDEflects e
463 Summaryo
47 Scheduling Methodology
4.8 Phase Analysisand Scheduling L o oL
481 PhaseAnalysis
482 PhaseScheduling. L
4.8.3 Phase Analysis and Scheduling Example
484 Limitations e
49 UsingOn-chipMemories
4.10 StructureS Of AITays. oo i
4.11 Conclusion
The Copperhead Runtime
S1 CUDAC++BackEnd
S22 Runtime e
52.1 Runtime Static Compilation

S22 Places

1ii

5.3 DataStructures e
5.3.1 Arbitrarily Nested Sequences
532 Uniformly Nested Sequences
54 Foreign FunctionInterface
S.5 RuntimeOverheads
5.6 Systemswithoutcompilers o o L

5.7 Conclusion

6 Results
6.1 Sparse Matrix Vector Multiplication,
6.2 Preconditioned Conjugate Gradient Linear Solver
6.3 LanczosEigensolver

6.4 Quadratic Programming: Nonlinear Support Vector Machine Training

6.5 Productivity
6.6 Conclusion

7 Conclusions

......................................

7.1 Contributions
7.1.1 Direct Mapping of Nested Data Parallelism
7.12 Phase Analysisand Scheduling
7.1.3 Runtime Static Compilation
72 Availability
73 FutureWork
73.1 AlternativeBackends.
732 Autotuning
7.3.3 AspectOriented Debugging
734 UsabilityStudies o

74 Conclusion

Bibliography

iv

79
79
80
81
82
83
84

85
86
89
92
97
102
104

10§
108
108
106
107
108
108
108
108
109
109
109

111

List of Figures

1.1
1.2

2.1
22
23
24

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Historical Clock Speeds of Intel Microprocessors. Data from [44]
The ImplementationGap

Two representative processors
High level parameters of two representative processors
Abstract Architecture L
ParallelHierarchy

Copperhead is an Embedded Subset of Python, designed to interoperate

with standard Python libraries for numeric computing
Grammar for Copperhead Expressions
Grammar for Copperhead Statements
Well typed and ill-typed programs oL
A grammar for the Copperhead typesystem
Describing Copperhead Types
Example code with and withoutsideeffects
Python code withsideeffects
Referencing procedure identifiers defined outside a Copperhead procedure .
Referencing data identifiers defined outside a Python procedure
DynamicscopinginPython
Hlustrating Closures
Procedure for computing Ax for a matrix A in CSR form and a dense vector

x. Underlined operations indicate potential sources of parallel execution. . . .
Radixsortin Copperhead,
HlustratingRadixSort

Copperhead CompilerFlow.
Scaled vector addition before Closure Conversion
Scaled vector addition after Closure Conversion
A procedure before Single Assignment Conversion
A procedure after Single Assignment Conversion.
Scaled vector addition before procedure flattening
Scaled vector addition after procedure flattening L
Scaled vector addition before expression flattening

4.9

4.10
4.11
4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421
422
423
4.24
425
4.26
427
4.28
429
4.30
431
4.32
433

5.1
5.2

5.3
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Vi

Scaled vector addition after expression flattening 42
Example procedure beforeinlining 000 42
Example procedure afterinlining 42
SpMV procedure from Figure 3.13 after transformation by the front end

compiler. 43
A program with indeterminateshape 0 L. 44
Fusion Example Code 46
Fusion Example Code after Normalization 47
The performance impact of data parallel primitive fusion 48
Anestedsumoperation 49
Executing a Segmented Reduction 50
Copperhead code formulti_norm 52
Copperhead-like code for the flattened version of multi_norm 52
Performance comparison of flattened versus direct mapped scheduling 55
Performance comparison of nested parallelism mapping strategies, p =1 . . 57
Performance comparison of nested parallelism mapping strategies, p =10 . . 58

Performance comparison of nested parallelism mapping strategies, p = 100 . 58
Performance comparison of nested parallelism mapping strategies, y = 1000 59
Performance comparison of nested parallelism mapping strategies, iy = 10000 59
Performance comparison of nested parallelism mapping strategies, iy = 100000 60

Simple flat data parallel exampleo oL 67
Data Dependence graph for codeinfigure4.28 68
Analyzed and Scheduled data dependence graph for code in figure 428 . . . 68
Unfused primitives 69
Closed over data may be intensivelyreused 70
Creatingan Array of Structures 71
Normalized, scheduled output of Mid-end compiler. 74
Sample CUDA C++ code generated for spmv_csr. Ellipses (...) indicate in-

cidental type and argument information elided for brevity. 75
Runtime Compilation 77
Using ExecutionPlaces 78
Implementing an Arbitrarily Nested Sequence 79
SpMV procedure for sparse matricesin ELL format. 87
Sparse Matrix and its Representation in ELL Format. 87
Average Double Precision Sparse Matrix Vector Multiply Performance 89
Left: closeup of video frame. Right: gradient vector field for optical flow . . . 90
Structure of the matrix from the optical flow problem 90
Forming and applying the block Jacobi preconditioner 92
Initializing the Conjugate Gradient Iterations 93
Preconditioned Conjugate Gradient Iteration. 94
Performance on Preconditioned Conjugate Gradient Solver 95

Lanczos eigensolver iteration 96

Vil

6.11 RBF Kernel evaluation
6.12 Reduction operator for computing the Arg Extrema of a vector
6.13 SVM Trainingiteration. 101
6.14 Standardized Lines of Code for Copperhead and C++ Programs 103

List of Tables

3.1

4.1
42
4.3

44

5.1
6.1

6.2
6.3
6.4

Basic monotypes in the Copperhead type system

Selected Partitionings and Performance
The parallel hierarchy P provided by OpenCLand CUDA
Completion and Directionality types for selected data parallel primitives at
the Distributed Level
Completion and Directionality types for selected data parallel primitives at
the Sequential Level

Runtime Overheads

Double Precision Sparse Matrix Vector Multiplication Performance in

GFELOP/s . . . o o e
Lanczos performanceresults
Support Vector Machine Training Performance
Number of Lines of Code for Example Programs

viii

ix

Acknowledgments

I'd like to thank my advisor, Kurt Keutzer, for his support, guidance and insight over the course
of my time at Berkeley. Kurt went far beyond my expectations to make sure I felt comfortable
and worked productively, and his advice has been instrumental in guiding this work, as well as
preparing me for the future.

I'd also like to thank Michael Garland from NVIDIA Research, who made significant con-
tributions to the design and implementation of Copperhead.

My work has been shaped by eight industrial internships; I'd like to thank Tom Fletcher for
giving me my first exposure to the computer industry, as well as Kumar Anshumali, Herman
Schmit, Pradeep Dubey, Jatin Chhugani, Sanjeev Kumar, Michael Garland and David Luebke
for their mentorship.

Several academic instructors and advisors have broadened my horizons. I'd particularly
like to thank Brent Nelson, Travis Oliphant, Tom Sederberg, Richard Frost, Raissa Solovyova,
Rosalind Hall, Anna Muza and Karen Brotherson. They have enriched my understanding and
challenged me to work harder, understand more deeply, and believe in myself. I'd also like
to thank David Patterson and Sara McMains for serving on my dissertation committee and
significantly improving this manuscript through their careful reading,

While at Berkeley, I've been privileged to collaborate with a stellar group of researchers,
including Narayanan Sundaram, Bor-Yiing Su, Mark Murphy, Jike Chong, Yunsup Lee, Will
Plishker, Kaushik Ravindran, NR Satish, Ekaterina Gonina, Chao-Yue Lai, Michael Anderson,
and David Shefheld, as well as Armando Fox, David Patterson, Krste Asanovi¢, James Demmel,
and Kathy Yelick. Special thanks go to Henry Cook and Tyler Mecke, who contributed to the
Copperhead project. Other graduate students in the department have made my experience
at Berkeley lively and interesting, including Bryan Brady, Matt Moskewicz, Scott Weber, An-
drew Mihal, Abhijit Davare, Elaine Cheong, Nathan Kitchen, Donald Chai, Christopher Bat-
ten, David Chinnery, and Doug Densmore, among others. Thanks to all for making my time
here stimulating and productive.

Most importantly, I acknowledge my family: my wife Jena, my children Hyrum, Evelyn and
Claire, and my parents Paul and Belinda. The sacrifices they have made in support of this work
have made it possible, and their presence in my life gives me purpose.

INTRODUCTION

Driven by the capabilities and limitations of modern semiconductor manufacturing, the
computing industry is currently undergoing a massive shift towards parallel computing. For
more than three decades, the increased integration capabilities provided by successive genera-
tions of semiconductor manufacturing yielded ever more capable sequential processors. Dur-
ing the 1990s alone, sequential processor performance improved by two orders of magnitude.
These increases in processing power served as the foundation for advances in computing ap-
plications that have profoundly changed the way we live, learn, conduct business, and entertain
ourselves.

However, during the 2000s, sequential processor performance improvements slackened
[2]. This was due primarily to power consumption constraints — as processors became more
and more complex, their power consumption increased superlinearly until it was no longer
feasible to supply power and cooling. Figure 1.1 illustrates this trend by graphing the clock
speed of Intel microprocessors as a function of time. Clock speeds increased at a rapid pace
until around 2004, when the Prescott Pentium 4 processor was introduced at 3.8 GHz. After
that point, clock speeds have remained stagnant for the past seven years. For the first time in
the forty year history of the microprocessor, we find ourselves in an era where processor fre-
quency has virtually ceased scaling. Of course, processor performance is only correlated with
frequency; other architectural properties also influence single-threaded performance, and in
fact, we have seen single-threaded performance improve, albeit at a reduced rate. However, it is
clear that we are now in a new era, one that requires parallel software in order to take advantage
of parallel hardware.

Instead of continuing to focus on sequential performance, microprocessor architects have
turned their attention on power efficiency and single chip multiprocessing. By dialing back
sequential performance by a few percent, architects have reaped large power savings per core,
and then integrated larger numbers of cores into multicore and manycore processors. The ag-
gregate performance of each of these assemblages of cores can be much higher than the power-
limited performance that could have been reached by single-threaded processors alone — but
taking advantage of parallel processors requires parallel software.

Ideally, we would be transitioning to parallel processing because breakthroughs in parallel
programming models and applications had proven that parallel processing is successful and
profitable. Instead, the shift towards parallel computing is actually a retreat from even more
daunting problems in silicon manufacturing and computer architecture [2]. As a result, com-

10 GHz
e
®Corei7
1 GHZ % BCore2
X Pentium 4
X Pentium 1T
%% Pentium II
100 MHz -
X Pentium
2 80486
7 80386
10 MHz s
* 8088
8086
8080
4004
100 kHz

1970 1980 1990 2000 2010

Figure 1.1: Historical Clock Speeds of Intel Microprocessors. Data from [44]

putationally intensive applications must now be rewritten to be scalable and efficient on par-
allel platforms. Consequently, one of the preeminent challenges of the current computing era
is to make parallel programming mainstream and successful.

Although parallel programming has a long and somewhat challenged history, the comput-
ing landscape is different this time, and so parallelism is much more likely to succeed.

First, thanks to the integration capabilities of modern semiconductor manufacturing, the
nature of parallel implementation has changed. Previous efforts at parallel programming fo-
cused on clusters of multi-socket, multi-node systems. With such systems, the overhead of
communication and synchronization often dominate the improved performance obtained
through parallelism, leading to poor application scalability: increasing the number of cores in
asystem did notimprove performance. Now that parallel processors are integrated into mono-
lithic silicon devices that share the same off-chip memory, more algorithms and programming
models can effectively exploit parallelism, since the cost of communication and synchroniza-
tion has been reduced by orders of magnitude.

Second, the economics behind parallel processing have changed. Parallel processing used
to require a large investment: if you wanted a machine with twice the parallelism, you needed
to pay at least twice as much money to pay for the extra processors. Consequently, in order for
parallelism to be considered successful, applications needed to show linear or near-linear scal-
ability in order to justify hardware investments. The advent of on-chip multiprocessor archi-
tectures have changed this calculus, since they translate the increased integration capabilities
provided by Moore’s law directly into parallelism. Pollock and Gelsinger famously observed
[35] that doubling the number of transistors in a sequential processor results in only about a

40% performance improvement. Accordingly, to stay on the same performance trend that we
enjoyed during the sequential processing era, if we double the number of cores on the chip, we
need demonstrate only 40% performance improvement to justify the investment. As a result,
sub-linear performance scaling now makes sense, and so nowadays, virtually every processor
on the market is parallel, including processors for mobile devices, such as smartphones and
tablets. Parallelism is coming along essentially for free, it is ubiquitous, and does not require
large investment or perfect scalability to be profitable.

Finally, this time around, we have no alternative. Earlier attempts to capitalize on parallel
processing were less successful because sequential processors were improving so rapidly. If
an application wasn’t performing quickly enough, one could just wait for a year until a faster
generation of sequential processors came out. Now that sequential processor performance
increases have drastically slowed, we don’t have the option of waiting for sequential processors
to catch up with our performance needs. Instead, it’s time to examine our applications for
parallelism and find efhicient parallel implementations.

The good news is that parallelism can actually be fairly easy to find and extract, if one uses
the correct tools and mental models. The push to parallel software, albeit a significant change,
is far from an impossible task. Parallelism is abundant, often derived from the properties of
the computations we're trying to perform, which model, analyze, and synthesize large data
sets consisting of many objects.

1.1 The Implementation Gap

Computer architects are now creating highly parallel architectures, the challenge is exploit-
ing them efhiciently and productively. Manual implementation of parallel programs using ef-
ficiency languages such as C and C++ can yield high performance, but at a large cost in pro-
grammer productivity. Some case studies show that productivity-oriented languages such as
Ruby and Python are two to five times more productive than efficiency languages [46, 75].
Additionally, parallel programming in efficiency languages is often viewed as an esoteric en-
deavor, to be undertaken by experts only. Without higher-level abstractions that enable easier
parallel programming, parallel processing will not be widely utilized.

Conversely, application developers do not have the means to capitalize on fine-grained,
highly parallel microprocessors, which limits their ability to implement computationally in-
tensive applications. Application developers require high productivity from programming en-
vironments, to enable algorithmic design space exploration and rapid application prototyping.
Consequently, they often use highly productive programming languages and environments,
such as Ruby, Python and MATLAB, despite the inefhcient way these environments exploit
computing resources.

Figure 1.2 illustrates this problem, which we call the implementation gap [82,73,25]. Clos-
ing the implementation gap requires creating software infrastructure that provides higher level
abstractions to application developers that enable them to productively program their appli-
cations, but in a way that can be mapped to efficient parallel implementations. We argue that
higher level data parallel abstractions can serve as a productive substrate for efhcient parallel

Application

A

Application developers make design
tradeoffs with a limited knowledge of the

Applicati
o gzpz;l hardware platform
4 1
1 1
| |
| |
| |
Expert parallel programmers have
Parallel limited knowledge of application
Programming design tradeoffs
Expert
]

Hardware Architect

Figure 1.2: The Implementation Gap

Application

Platform

SW Infrastructure

programming, enabling the creation of software infrastructure that bridges the implementa-
tion gap. We create such software infrastructure in the form of a compiler and runtime, em-
bedded in the popular Python language. The programmer expresses computations at a much
higher level of abstraction, and our compiler and runtime efficiently execute them on a par-
allel platform. Although computations expressed using our infrastructure are much more ab-
stract than a low-level efhiciency language, we can achieve performance within a factor of two
of optimized code written in an efficiency language. This represents a step towards closing the
implementation gap for parallel programming.

1.2 Copperhead

Although the need for higher-level parallel abstractions seems clear, perhaps less so are the ab-
stractions that should be provided to bridge the implementation gap, since there are many po-
tential abstractions that could be presented to productivity programmers. In our view, nested
data parallelism, as introduced by languages such as NESL [10], is particularly interesting. In
data parallel languages, programmers express computation by using explicitly parallel oper-
ators that apply a computation element-wise across large sequences. Communication is ex-
pressed through data parallel primitives, such as reductions, scans, sorts, and compactions,
which are also explicitly parallel. Although flat data parallel programming can be both high-
performance and concise, its expressibility is limited. Many computations and data structures
have a hierarchical structure, which is more naturally expressed by composing data parallel
operations in a hierarchical fashion, operating on hierarchical data structures. For example,
for sparse matrix vector multiplication, the matrix can be represented as a sequence of rows,
each of which contains a sequence of non-zero elements. The computation involves applying
a sparse vector dot product operation to each row of the matrix. The dot product operation
itself can be expressed using data parallel primitives. Nested data parallelism is a natural way
of expressing computation.

Nested data parallelism is abundant in many computationally intensive algorithms. It can
be mapped efhiciently to parallel microprocessors, which prominently feature hardware sup-
port for data parallelism. For example, mainstream x86 processors from Intel and AMD are
adopting 8-wide vector instructions, Intel’s Larrabee processor used 16-wide vector instruc-
tions, and modern Graphics Processing Units (GPUs) from NVIDIA and AMD use wider
SIMD widths of 32 and 64, respectively. Consequently, programs that don’t take advantage of
data parallelism relinquish substantial performance.

Additionally, nested data parallelism as an abstraction explicitly exposes parallelism. In
contrast to traditional auto-parallelizing compilers that must analyze and prove which opera-
tions can be parallelized and which can not, the compiler of a data-parallel language needs only
to decide which operations to perform sequentially, and which to perform in parallel. Mak-
ing these decisions involves mapping the nested data parallel operations onto the hierarchical
structure of the parallel platform being targeted. The mechanisms by which we perform this
mapping are crucial to achieving high performance, and are the central task of a data-parallel
compiler.

Importantly, nested data parallel programs have a valid sequential interpretation, and are
thus easier to understand and debug than parallel programs that expose race conditions and
other complications of parallelism.

Motivated by these observations, Copperhead provides a set of nested data parallel abstrac-
tions, expressed in a restricted subset of the widely used Python programming language. Cop-
perhead follows the ideas of Selective, Embedded, Just-in-Time Specialization (SEJITS)[13].
Instead of creating an entirely new programming language for nested data parallelism, we re-
purpose existing constructs in Python, such as map and reduce. Embedding Copperhead in
Python provides several important benefits. For those who are already familiar with Python,
learning Copperhead is more similar to learning how to use a Python package than it is to
learning a new language. There is no need to learn any new syntax, instead the programmer
must learn only what subset of Python is supported by the Copperhead language and run-
time. Copperhead programs are clearly delineated from surrounding Python code using stan-
dard Python syntax, so that the selected parts of the application that conform to Copperhead’s
restricted syntax and semantics are obvious. The Copperhead runtime, which invokes compi-
lation in limited ways, is implemented as a standard Python extension. Copperhead programs
are invoked through the Python interpreter, allowing them to interoperate with the wide vari-
ety of Python libraries already extant for numeric computation, file manipulation, data visual-
ization, and analysis. The ability to interoperate with the broad array of Python libraries makes
Copperhead a productive environment for prototyping, debugging, and implementing entire
applications, not just their computationally intense kernels.

Of course, without being able to efficiently compile nested data parallel programs, Copper-
head would not be of much use. Previous work on compilers for nested data parallel program-
ming languages has focused on flattening transforms to target flat arrays of processing units. As
we will discuss in Chapter 4, flattening transforms are a useful tool, but applying them indis-
criminately sacrifices factors of two to five in performance on contemporary parallel micro-
processors, because flattening transforms do not take advantage of the MIMD capabilities of
on-chip multiprocessors.

Contemporary parallel microprocessors support a hierarchy of parallelism, with indepen-
dent cores containing tightly coupled processing elements. Accordingly, the Copperhead
compiler maps nested data parallel programs to a nested parallelism hierarchy, forgoing the
use of flattening transforms, which we find to substantially improve performance. This is the
central task of the Copperhead compiler, to which we will devote much attention in this work.

The current Copperhead compiler targets CUDA C++, running on manycore Graphics
Processors from NVIDIA. We generate efhicient, scalable parallel programs, performing within
45-100% of well optimized, hand-tuned CUDA code. Our initial implementation focus on
CUDA does not limit us to a particular hardware platform, as the techniques we have devel-
oped for compiling data-parallel code are widely applicable to other platforms as well.

1.3 Contributions

This work includes the following main contributions:

e A direct mapping strategy for nested data parallel operations onto the parallel hierar-
chy provided by a target parallel platform. We detail how the flattening or vectorization
transform common to many other data parallel compilers in inefhcient on contempo-
rary microprocessors, with a performance loss of 3 — 5x compared to direct mappings
of nested data parallel operations onto a parallel hierarchy. The direct mapping strategy
allows us to use the control flow structures avaliable in contemporary multiprocessors,
which is crucial to attaining efficient performance comparable with hand-written eff-
ciency code.

e Supporting this strategy, we propose a simple phase analysis technique that analyzes
dataflow graphs to discover synchronization points, as well as phase scheduling, which
fuses data parallel operations into phases that proceed without synchronization. Fusing
data parallel operations is also crucial in order to achieve efliciency: for simple exam-
ples, we show that not fusing data parallel operations can result in a performance loss of
9%, due to increased memory bandwidth usage as well as extraneous synchronization,
which limits the effective parallelism the platform can sustain. The decision of which
operations to fuse can be a complicated optimization, and so we choose to use a simple
maximalist heuristic that works well in many cases.

e Finally, we show how runtime static compilation enables efficiently embedding compiled
languages into productivity environments. Naive embeddings of compiled languages
can incur large runtime compilation costs, which can be on the order of tens of seconds,
thus overwhelming efliciencies from a compiled binary that may only run for millisec-
onds. Runtime static compilation provides productivity programmers with a familiar
workflow, while mitigating runtime overheads. Consequently, more sophisticated code
generation techniques may be employed, such as autotuning and design space explo-
ration. Additionally, the results of our compiler can be reused as a library in other pro-
grams, and applications built using runtime static compilation can be deployed on tar-
gets that disallow dynamic code generation, whether due to security constraints or the
fact that many clients may not have compilers installed.

1.4 OQutline

This thesis follows the following outline:

e Chapter 2 gives the background necessary to understand this thesis, including a discus-
sion of related work.

e Chapter 3 describes the Copperhead language, along with its type system, the data par-
allel primitives it provides, and its relationship to Python.

e Chapter 4 details the compilation techniques by which Copperhead programs are ef-
ficiently compiled to efficiency language implementations. Special attention is paid to
mapping nested data parallel operations directly onto a parallelism hierarchy.

e Chapter S discusses the runtime by which Copperhead programs are embedded in
Python programs, describing the runtime static compilation approach we employ.

e Chapter 6 provides experimental results to show that Copperhead programs are both
concise and efficient.

e Chapter 7 concludes with a discussion of the contributions of this work.

The next chapter explains the importance of data parallelism, the history of data parallel
programming models and architectures, as well as trends in embedded domain specific lan-
guages, all of which influence this work.

2 BACKGROUND

In this chapter, we discuss some important background and related work.

2.1 DataParallelism

As mentioned in the introduction, the shift to parallelism has been motivated by power efh-
ciency considerations. On parallelized workloads, multiple slower cores running in parallel
can deliver the performance of a fast monolithic core, but at much lower power consumption.
However, in order to keep performance scaling at historical rates, the number of cores on a
chip must continue to scale along with Moore’s law. This, in turn, requires programmers to
write parallel software that can take advantage of all these cores. The Berkeley View [2] argued
that, once the genie of parallelism had been released from its bottle, programmers and hard-
ware architects ought to embrace highly parallel architectures, which sacrifice single threaded
performance in order to deliver higher aggregate performance on parallelizeable code, while
improving overall power efficiency. This argument was motivated by the observation that an
exponential increase in core count, enabled by Moore’s law, will drive all architectures to highly
parallel architectures in a relatively short timeframe. Accordingly, computationally intensive
applications must be able to use very large amounts of parallelism. If a single application is to
scale to utilize large amounts of parallelism, it stands to reason that it will be taking advantage
of relatively small, fine-grained parallelism, or, in other words, data parallelism.

Data parallelism has been widely utilized for many years, both in hardware architectures as
well as programming models, thanks to its excellent parallel scalability. In Our Pattern Lan-
guage (OPL), data parallelism is a key algorithmic strategy pattern, which describes how an
algorithm is expressed [52], [62]. Quoting [52], data parallelism is summarized as

An algorithm is organized as operations applied concurrently to the elements of a
set of data structures. The concurrency is in the data.

The beauty of data parallelism is that it is highly scalable, since parallelism is not determined
by potentially concurrent tasks performing different operations, but rather by the parallelism
naturally present in the data. As long as the data set is large, the available parallelism is also

large.

10

2.1.1 Data Parallel Architectures

Although the connection between computer architecture and programming models can at
times be obscured, our interest in data parallel languages is motivated by contemporary com-
puter architecture, and our desire to achieve efhcient performance necessitates a good under-
standing of the architectures we target. The potential of data parallelism to provide scalability
to parallel algorithms has been known for many years, and various architectures have been
proposed and implemented. We cite a few important exemplars that have led to the creation
of contemporary data parallel architectures.

One of the very first architectures designed for data parallelism was the Westinghouse
SOLOMON computer from the early 1960s. SOLOMON was organized as an array of Pro-
cessing Elements (PEs) that executed identical programs in lock step, controlled by a se-
quencer processor, where each PE could communicate only with its neighbors in a 2D mesh
topology [83]. The SOLOMON computer pioneered the idea of having multiple processors
execute the same program in lockstep. This concept proved to be a good fit between the needs
of computationally intensive codes, which are often expressed in a data parallel fashion, as well
as the needs of efhicient computer architecture, since Single Instruction Multiple Data execu-
tion brings compelling hardware efhciencies. Extending the ideas introduced by SOLOMON,
the ILLIAC IV computer was constructed as a set of several 64-processor arrays, each modeled
after SOLOMON [4].

Two decades later, the Connection Machines, such as the CM-2 and CM-5 [88], [39],
[41], continued the lineage of data parallel architectures, organized around large, flat SIMD
processor arrays. The Maspar MP-1 [6], [66] followed a similar philosophy, but used im-
proved semiconductor processes to increase on-chip parallelism and integration.

Vector architectures also made significant use of data parallelism for increased scalability
and efficiency. Vector architectures encourage the expression of data parallel operations at the
instruction set level, which are then time-multiplexed onto SIMD hardware. Some important
vector architectures include the Cray 1 [77], XMP , and YMP-C90 [69]. The Floating Point
Systems array processors [22] employed commodity hardware with software pipelining to effi-
ciently implement vector operations. More recently, the Vector IRAM project [57] integrated
a vector processor with on-chip eDRAM to address the memory bandwidth and latency con-
cerns that arise in modern computer architectures due to the so-called “memory wall” [2].
Stream processors, such as Imagine [53], are closely related to vector processors and are also
oriented towards data parallelism.

Additionally, even traditional CPUs, such as those from Intel, ARM, and IBM, have
adopted SIMD extensions. Intel’s recent Sandy Bridge processors introduce the AVX instruc-
tion set, which provides 8-wide SIMD instructions. Interestingly, the first implementation
of Sandy Bridge offers 8-wide SIMD instructions on a four-core architecture, meaning that
the parallelism available from SIMD operations is greater than the parallelism provided by the
multicore architecture. In other words, traditional CPUs are becoming more reliant on data
parallelism for performance and efficiency reasons. The Larrabee [80], Knight's Ferry, and
Knight’s Corner projects from Intel integrate large numbers of simple CPU cores, each with
a 32-wide SIMD vector unit. Clearly, architectural support for data parallelism is widespread

11

and abundant, even among traditional multicore architectures.

Programmable Graphics Processing Units (GPUs)from AMD and NVIDIA are also archi-
tected to exploitlarge amounts of data parallelism [61], [71]. They feature several highly multi-
threaded processing elements, each with their own private memories, which operate on wide
SIMD vectors, from 8-64 elements long, and are optimized for streaming workloads, which
compensate for long memory latencies of several hundred clock cycles by switching between
many instruction contexts.

2.1.2 Contemporary Processors

As noted earlier, we are motivated by the need for parallelism within a single socket. Since
monolithic processors have been replaced with integrated on-chip multiprocessors, the need
intensifies for parallel programming models that allow single socket processors to take advan-
tage of parallelism. There are many parallel programming models and parallel architectures
that focus on issues that arise during programming of clustered systems. However, we have
chosen to restrict our attention to single socket parallelism, since the single socket case is of
pressing importance. Although the techniques we describe could be extended to target multi-
socket parallel systems, we have focused on the single-socket case, where all processors on the
chip share a single offchip memory pool.

To further sharpen our discussion of contemporary processors, we consider two processors
shown in Figure 2.1 and detailed in Table 2.2: Intel's Westmere-EP and NVIDIA’s GF110.

Both of these processors are highly reliant on parallelism to attain maximum performance.
Both of them are composed of multiple independent processing cores, sharing a last level
cache. However, the degree of parallelism required to fully utilize these processors difters sub-
stantially. This can be seen when comparing the number of resident SIMD lanes in each pro-
cessor, or equivalently, the number of resident thread contexts that can simultaneously reside
in dedicated state on the processor, multiplied by the SIMD width per thread. The Westmere-
EP processor can hold 48 lanes in context, while the GF110 holds 24576. This means that
programming models for the GF110 processor must express and exploit considerable fine-
grained parallelism in order to utilize the processor. In order to hold the contexts for so many
SIMD lanes, the GF110 has an inverted memory hierarchy in comparison to the Westmere-
EP: whereas conventional processors have the register file as the smallest pool of memory on
the chip, and the last level cache as the largest, the GF110 register file is actually the largest
amount of state on the processor, and subsequent levels of the memory hierarchy are progres-
sively smaller.

2.1.3 Parallelism Hierarchy

Now that we have examined contemporary parallel architectures, we present the abstraction
that we will target with our compiler. Figure 2.3 shows a simple model for a single socket pro-
cessor, comprised of multiple cores, each of which have their own private on-chip memories.
Each core is multithreaded, with register file state for multiple SIMD vectors. Each core also
contains SIMD vector units. Corresponding to this abstract architecture, we have a parallelism

Westmere-EP

GF110

Figure 2.1: Two representative processors

Intel Westmere-EP NVIDIA GF110

Processing Elements 6 cores 16 cores
Physical SIMD 4 way SIMD 16 way SIMD
Logical SIMD 4 way SIMD 32 way SIMD
SIMD Issue Rate 2 SIMD/cycle 2 SIMD/cycle
Multithreading 2 threads/core 48 threads/core
Maximum Resident SIMD Lanes 48 24576
Register File 6 kB 2048 kB
Local Store/L1 Data Cache 192 kB 1024 kB

L2 Data Cache 1536 kB 768 kB

L3 Data Cache 12 MB —
Transistor Count 1.17B 3.0B
Semiconductor Process 32nm 40 nm

Die Size 248 mm? 520 mm?2
Clock Frequency 3.46 GHz 1.54 GHz
Power Dissipation (TDP) 9SW 220 W (processor only)
SP GFLOP/s 166 1577

DP GFLOP/s 83 788
DRAM Bandwidth 32 GB/s 192 GB/s

Figure 2.2: High level parameters of two representative processors

13

Last Level Cache i i i

Oftchip memory

Figure 2.3: Abstract Architecture Figure 2.4: Parallel Hierarchy

14

hierarchy. Figure 2.4 illustrates this hierarchy: the root of the hierarchy is the chip, since we are
targeting single-socket parallelism. Each chip has multiple cores, each core stores execution
contexts for multiple SIMD vectors via multithreading, and each SIMD vector has multiple
SIMD lanes. Targeting this model, our compiler gains high efficiency, because the code we
emit maps naturally to the hardware structures provided by the processor.

2.2 Embedded Languages

With the growing interest in computational science, more programming is done by experts
in each application domain instead of by expert programmers. Such domain experts, such as
science professionals like physicists, biologists, and medical researchers, as well as engineers
in various fields and computer scientists studying particular algorithmic domains, like com-
puter vision or machine learning, constitute an important category of customers for high per-
formance and parallel processing for two reasons. First, their respective domains are growing
in importance. Second, their application domains can greatly benefit from improved com-
putational capability. These domain experts increasingly turn to scripting languages such as
Python and MATLAB, which emphasize programmer productivity over hardware efficiency.
Besides offering abstractions tailored to the domains, these productivity-level languages (PLLs)
often provide excellent facilities for debugging and visualization. While we are not yet aware of
large-scale longitudinal studies on the productivity of such languages compared to traditional
imperative languages such as C, C++, and Java, individual case studies have found that such
languages allow programmers to express the same programs in 3—10 x fewer lines of code and
in 1/5to 1/3 the development time [74, 24, 46].

Although PLLs support rapid development of initial working code, they typically make
inefhicient use of underlying hardware, performing 100 to 1000 slower than sequential ef-
ficiency code on many problems. The recent move towards parallel processing amplifies this
performance gap, since the flexibility that makes PLLs efficient also impedes parallel imple-
mentation. For example, Python and Ruby do not support concurrently executing threads,
since it is not possible in these languages to prove that two operations are independent, given
the extremely dynamic dispatch and data structures that underpin their respective interpreters.

In contrast, contemporary multicore CPUs and manycore graphics processors require
careful low-level orchestration to attain reasonable efhciency. Consequently, many applica-
tions are eventually rewritten in efficiency-level languages (ELLs), such as C or C++ with par-
allel extensions like Cilk, OpenMP, and CUDA. Because ELLs expose hardware-supported
programming models directly, they can achieve orders of magnitude higher performance than
PLLs on emerging parallel hardware. However, the performance comes at high cost: the ab-
stractions provided by ELLs are a poor match to those used by domain experts. Additionally,
programs written in ELLs are not very portable between parallel platforms, making ELLs a
poor medium for exploratory work, debugging, and prototyping.

Ideally, domain experts could use high-productivity domain-appropriate abstractions and
achieve high performance in a single language, without rewriting their code. However, the
implementation gap discussed earlier makes it difhcult to program both productively and ef-

15

ficiently, since the abstractions needed to program productively do not map well to parallel
hardware. This implementation gap is already a problem, but is further widening. Domains
are specializing into sub-disciplines, and available target hardware is becoming more hetero-
geneous, with multithreaded multicore, manycore GPUs, and message-passing systems all ex-
posing radically different programming models.

The need for higher productivity is not new, which is why domain experts have long turned
to higher level PLLs. However, the increasing difficulty of creating eflicient code for contem-
porary parallel architectures means that it is increasingly important for higher level programs
to successfully be compiled efficiently on parallel hardware. We achieve both higher produc-
tivity and higher performance by embedding a data parallel language in a PLL, utilizing the
metaprogramming and introspection facilities in modern scripting languages such as Python
and Ruby to compile high level data parallel computations to data parallel hardware.

Much related work exists, describing how to embed domain specific languages into higher-
level scripting environments [45]. Such approaches avoid the need for users to learn a newlan-
guage — instead they simplylearn the interface of alibrary embedded in a higher-level language,
which can then be interpreted according to the semantics the library provides. We adopt this
approach by embedding a data parallel language in Python.

We chose Python as the substrate language for our data parallel language because it is al-
ready in widespread use amongst the scientific community. Popular Python packages such as
Numpy [70], Scipy [49], and Matplotlib [47], provide widely used libraries for numeric com-
putation and visualization. We wish to interoperate with these libraries, in order to create a
productive environment for developing full applications, not just for computationally inten-
sive kernels.

There have been other attempts to compile various subsets of Python. The Cython com-
piler [29] compiles a largely Python-like language into sequential C code. Clyther [26] takes
a similar approach to generating OpenCL kernels. In both cases, the programmer writes a se-
quential Python program that is transliterated into sequential C. Rather than transliterating
Python programs, PyCUDA [56] provides a metaprogramming facility for textually generat-
ing CUDA kernel programs, as well as bindings for low-level operations needed to manage
GPU memory. This allows the program to parametrically unroll loops and vary grid dimen-
sions, among other things. We use the facilities PyCUDA provides as part of the Copperhead
runtime.

Theano [87] provides an expression tree facility for numerical expressions on numerical ar-
rays. Garg and Amaral [33] recently described a technique for compiling Python loop struc-
tures and array operations into GPU-targeted code. These projects all provide useful ways
of interacting with parallel hardware and generating efhiciency language code, but the pro-
grammer still expresses parallel computations isomorphically to the equivalent efhiciency lan-
guage code. For example, the programmer must still encode decisions about which operations
should be performed in parallel and which should be performed sequentially by using substan-
tially different language constructs, the programmer must use on-chip memory manually, and
the resulting program is still explicitly tied to a particular parallel platform, because the map-
ping decisions the programmer makes are deeply and pervasively expressed throughout the
code. Copperhead aims to solve a fairly different problem, namely compiling a program from

16

a higher level of abstraction into efhiciently executable code.

2.3 Data Parallel Programming Models

There is an extensive literature investigating many alternative methods for parallel program-
ming. Perhaps the first data parallel programming model came with APL [48], which al-
lowed programmers to apply operations across datasets, rather than the more imperative, loop-
oriented approach common in languages like Fortran. Paralation languages, such as Paralation
Lisp, introduced the concept of the flattening or vectorization transform, which enabled the
whole-program transformation of nested data parallel programs into flat data parallel programs
[78]. Other data parallel approaches [40, 7, 9] have been proposed, historically often in close
association with SIMD and vector machines, such as the the CM-2 and Cray C90, respectively.

The NESL language extended the application of the flattening transform to show that
nested data parallel languages can achieve both efficiency and portability [10]. The flatten-
ing transform was further extended to fully higher-order functional languages in Data Parallel
Haskell [38],[21]. In contrast to these methods, we attempt to schedule nested data parallel
operations directly onto the hierarchical structure of the machines we target. Our schedul-
ing technique allows programs generated by our compiler to execute efhiciently, on par with
hand-written efficiency level code.

SISAL [34] showed how data parallel languages can be compiled efficiently to clustered
machines, notably making use of in-place transforms to reduce extraneous copies during pro-
gram execution.

The CUDA platform [68, 79, 65] defines a blocked Single Program, Multiple Data
(SPMD) programming model for executing parallel computations on GPUs. OpenCL [84]
defines a similar programming model that can be applied across a variety of hardware plat-
forms. Although CUDA and OpenCL are not strictly nested data parallel languages, their pro-
gramming model depends on data parallelism, and they serve as low-level efficiency languages
for data parallel substrates.

The Thrust [43] and CUDPP [27] libraries provide a collection of flat data parallel primi-
tives for use in CUDA programs. Programming with these flat data parallel libraries provides
significantly higher productivity than manual programming using CUDA or OpenCL. How-
ever, these flat data parallel approaches cannot deal with nested data parallelism, and require
the programmer to manually flatten their programs to allow them to be expressed using these
libraries. Copperhead uses selected Thrust primitives in the code it generates, when flat data
parallel operators are required.

Systems for compiling flat data parallel programs for GPU targets have been built in a num-
ber of languages, including C# [86], C++ [64, 63], and Haskell [S9]. Such systems typically
define special data parallel array types and use operator overloading and metaprogramming
techniques to build expression trees describing the computation to be performed on these ar-
rays. The Ct [36] library adopts a similar model for programming more traditional multicore
processors. However, these systems have not provided a means to automatically map nested
data parallel programs to a hierarchically nested parallel platform.

17

Rather than providing data parallel libraries, others have explored techniques that mark
up sequential loops to be parallelized into CUDA kernels [60, 90, 37]. In these models, the
programmer writes an explicitly sequential program consisting of loops that are parallelizable.
The loop markups, written in the form of C pragma preprocessor directives, indicate to the
compiler that loops can be parallelized into CUDA kernels.

Although there have been many data parallel programming models over the years, none
of them can be efficiently compiled to contemporary parallel processors. The parallelism hi-
erarchy provided by today’s parallel microarchitectures encourages the expression of nested
data parallelism, which can be mapped neatly onto hardware structures. Expressing computa-
tions with flat data parallel programming models is inefficient. Manually flattening computa-
tion yields implementations that do not use memory bandwidth efhciently, since intermediate
data structures must be fully realized, and also introduces extraneous synchronization, which
limits the amount of parallelism that can be realistically sustained. Programming models that
require the use of pragmas are difhcult to use, since semantics of the program are entangled in
auxiliary syntax that does not match the remainder of the program. Low-level models such as
CUDA and OpenCL allow high performance, but at a significant productivity cost. Data paral-
lel compilers of the past targeted significantly different hardware, before the advent of on-chip
multiprocessing, which encouraged them to use compilation techniques that are deleterious
to efficiency on contemporary parallel hardware, as we will detail in Chapter 4.

Copperhead aims to solve these problems by making use of nested data parallel abstractions
and compiling efficiently to contemporary hardware, endeavoring to bridge the gap between
high-level descriptions of a computation and efficient low-level implementation. We detail
how this is done in the following chapters.

2.4 Summary

In summary, data parallelism is a fundamental pattern in parallel computing. There have been
many architectures conceived to support data parallelism over the years, as well as many data
parallel programming models. Our work aims to translate higher-level representations, com-
prised of nested data parallel computations, onto contemporary parallel architectures. To do
this, we embed a data parallel language in Python, which is defined in the next chapter.

18

3 THE COPPERHEAD LANGUAGE

As mentioned in the previous chapter, preexisting high-level data parallel languages either
cannot be compiled to contemporary parallel hardware, or their compilation approach cannot
yield efficient performance. To overcome these issues, we introduce Copperhead, a data paral-
lel language embedded in Python. A Copperhead program is a Python program that imports
the Copperhead language environment:

from copperhead import *

A Copperhead program is executed, like any other Python program, by executing the sequence
ofits top-level statements.

Selected procedure definitions within the body of the program may be marked with the
Copperhead decorator, as in the following:

@cu
def add_vectors(x, y):
return map(lambda xi,yi: xi+yi, x, y)

This @cu decorator declares the associated procedure to be a Copperhead procedure. These
procedures must conform to the requirements of the Copperhead language, and they may be
compiled for and executed on any of the parallel platforms supported by the Copperhead com-
piler. Once defined, Copperhead procedures may be called just like any other Python proce-
dure, both within the program body or, as shown below, from an interactive command line.

>>> add_vectors(range(10), [2]*10)
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

The @cu decorator interposes a wrapper object around the native Python function object that
is responsible for compiling and executing procedures on a target parallel platform.

Copperhead is fundamentally a data-parallel language. It provides language constructs,
specifically map, and a library of primitives such as reduce, gather, and scatter that all have
intrinsically parallel semantics. They operate on one dimensional arrays of data that we refer
to as sequences.

19

Python

Copperhead

Figure 3.1: Copperheadis an Embedded Subset of Python, designed to interoperate with stan-
dard Python libraries for numeric computing

3.1 Restricted Subset of Python

The Copperhead language is a restricted subset of the Python 2.6 language [76]. Every valid
Copperhead procedure must also be a valid Python procedure. Portions of the program out-
side procedures marked with the @cu decorator are unaftected by these restrictions, as they
are normal Python programs that will be executed by the standard Python interpreter. The
Copperhead language supports a very restricted subset of Python in order to enable efficient
compilation. Figure 3.1 represents the relationship between Copperhead and Python.

Copperhead is designed as an embedded language for three reasons. First, for program-
mers learning Copperhead, the experience is more similar to learning the Application Pro-
gramming Interface of a Python package, rather than learning a new language. There is no
need to learn a new set of syntactic constructs or deal with an unfamiliar compilation flow.
Modern productivity languages like Python are very flexible, allowing for the widespread pro-
liferation of embedded domain specific languages. We expect this to be a common mechanism
for exploiting parallelism in domain specific ways [20, 11].

Second, embedding Copperhead in Python allows Copperhead to interact with the wide
array of Python software for numeric and scientific computing. For example, Copperhead pro-
grams can interoperate with the popular numpy, scipy, and matplotlib packages, which pro-
vide useful data visualization and serialization capabilities. The goal of Copperhead is to be a
productive environment for writing entire programs, not just their computationally intensive
data parallel kernels. Embedding Copperhead in Python allows programmers to use familiar,

20

(Ell ceey Ei’l) | A[E]

E : x|
| True | False | integer | floatnumber

Eit+Ey | E1<E; | not E | ...
| E; and E; | Ey or E; | Eq if E, else Ep

| F(E{, ..., E;) | lambda xi, ..., x;,: E

| map(FI Al/"-/ Ai’l)
| [E for x in A]
| [E for xq1, ..., Xy in zip(A4, ..., Ay)]

Figure 3.2: Grammar for Copperhead Expressions

highly productive software to create their programs.

Third, embedding Copperhead in Python has several practical advantages. For example,
since Copperhead procedures are all syntactically valid Python procedures, we do not need to
write a parser for Copperhead programs, but can instead use the standard Python ast mod-
ule. Additionally, the task of writing a compiler is simplified by Python’s concise and object-
oriented style.

Copperhead adopts the lexical and grammatical rules of Python. In summarizing its re-
stricted language, we denote expressions by E and statements by S. We use lower-case letters
to indicate identifiers and F and A to indicate function-valued and array-valued expressions,
respectively.

3.1.1 Expressions

Figure 3.2 shows the grammar for Copperhead expressions. We explain this grammar, group
by group.

The most basic expressions are literal values, identifier references, tuple constructions, and
accesses to array elements.

The basic logical and arithmetic operators are allowed, as are Python’s and, or, and condi-
tional expressions.

Expressions that call and define functions must use only positional arguments. Optional
and keyword arguments are not allowed. This restriction is not fundamental to the design of
the language, but is rather an implementation detail that may change in the future.

Copperhead relies heavily on map, which applies a function element-wise to a sequence or
set of sequences. In Copperhead, map is the fundamental source of parallelism and is elevated
from a built-in function (as in Python) to a special form in the grammar in order to conform
to our type system. Copperhead also supports a limited form of Python’s list comprehension
syntax, which is transliterated into equivalent map constructions during parsing.

21

S : return E
| xl,...,xn=E
| if E: suite else: suite
| def f(x1, ..., x4): suite

Figure 3.3: Grammar for Copperhead Statements

3.1.2 Statements

Figure 3.3 shows the grammar for Copperhead statements. The body of a Copperhead proce-
dure consists of a suite of statements: one or more statements S, which are nested by inden-
tation level according to Python’s normal syntax. Each statement S of a suite must be of the
following form: Copperhead further requires that every execution path within a suite must
return a value, and all returned values must be of the same type. This restriction is necessary
since every Copperhead procedure must have a well-defined static type.

3.2 Type System

In addition to these grammatical restrictions, Copperhead expressions must be statically well-
typed. We employ a minimalistic Hindley-Milner style polymorphic type system [42][30],
which we overlay on top of Python’s standard type system. Python programs have a very weak
typing, which is often referred to as duck typing, meaning that if it quacks like a duck, it is a
duck (and can therefore be used as a duck). In practice, this means that even the simplest of
operations requires dynamic function dispatch, performed after inspecting the arguments for
compatible functions.

For example, to implement the addition operator, Python objects can define the
__add__(self, other) method. When the interpreter sees the operation ¢ = a + b, it first
examines a for the presence ofan__add__ method. The correspondence between the + opera-
torandthe__add__methodisbuiltinto the Pythonlanguage and interpreter, and documented
such that programmers wishing to write new data types that can be operated on by the + op-
erator need simply to implement a __add__ method in their data type. Ifan __add__ method
is found, it is called as follows: ¢ = a.__add__(b). If this call raises a TypeError exception,
which can occur if the __add__(self, other) method does not know how to add objects of
b’s type to a, then the interpreter examines b for the presence of a __radd__(self, other)
method, and if found, callsit: ¢ = b.__radd__(a). The presence of the __radd__ method al-
lows for the case where a does not know how to add itself to b, but b does know how to add
itself to a. Falling back tob.__add__(a) in case of a TypeError exception when trying to exe-
cute a+b would not be permissible in general, since the + operator need not be commutative.
The sequence in which the interpreter inspects a for __add__, and then if necessary inspects b
for __radd__is defined by the language, although most Python programmers do not concern
themselves with such details, even though they endow the language with tremendous flexibil-
ity. If neither a nor b contains a compatible method, an exception is raised.

22

@cu . .
def well typed(a): def ?11_typed(a).
. if a:
if a:
return 0
return ©
else:
else:
return True
return 1
Figure 3.4: Well typed and ill-typed programs
T : S| P
S : M|V
M : type_constructor(Sy, ... Sy)
P:V [V, ... V]S

V: identifier

Figure 3.5: A grammar for the Copperhead type system

This very dynamic dispatch brings Python tremendous flexibility and abstraction. How-
ever, as should be obvious from the description, it also incurs heavy runtime overhead penal-
ties due to the series of costly introspections, which are performed on every object before exe-
cuting every operation. Dynamic dispatch is one of the major reasons that Python code tends
to perform on the order of 100 x slower than compiled efficiency level code.

Static typing both provides richer information to the compiler that it can leverage during
code generation as well as avoids the run-time overhead of dynamic type dispatch. Since we
are designing Copperhead to achieve performance competitive with hand-written efficiency
code, this is a key restriction. Future versions of the Copperhead language may expand the
type system to allow for the use of type classes, similar to Haskell.

Programs that do not comply with our type system are rejected. Figure 3.4 shows two pro-
grams, one of which is well typed in the Copperhead type system, while the other is not. In this
case, the ill-typed program is rejected, since both branches of the conditional do not return a
value of the same type.

3.2.1 Definition

Figure 3.5 shows the Copperhead type system.

In Figure 3.5, T is all types representable by the type system, S is the set of monomorphic
types representable by the type system, M is the set of monotypes, P is the set of polymorphic
types, and V are type variables used in polymorphic type construction. The set of Monotypes
M has several elements, with associated type constructors as shown in Table 3.1.

The type system is used with a Hindley-Milner style type inference engine [42][30] that

23

Monotype type_constructor Description

Fn Fn(S1,S) Function, with input S; and output S,
Seq Seq(S7) Sequence, with element type S;

Tuple Tuple(Sy,...,Su) n-ary tuple, with element types Sy, ..., S,
Int Int() 32-bit signed integer

Long Long() 64-bit signed integer

Float Float() 32-bit floating-point number

Double Double() 64-bit floating-point number

Bool Bool() Boolean

Void Void() Void type is the type of a statement

Table 3.1: Basic monotypes in the Copperhead type system

infers types for all data and functions referred to in a Copperhead program. Informally, the
type inference system derives symbolic types for all identifiers in the program, based on how
they interact with each other through known type signatures. For example, the type signature
of the + operatoris V' A Fn(Tuple(A, A), A), meaning that the + operator is a function that
takes two arguments, both of some arbitary type A and returns another argument, also of the
same type A. Accordingly, when we observe a+b, although we may not know what concrete
types a and b are instantiated with, we know that they both must be of the same type. The type
inference system first assigns all identifiers a unique type variable, and then proceeds to unify
type variables together, given observations on how the variables interact with one another, as
well as type signatures for some built-in procedures such as the + operator. After type infer-
ence, each identifier in the program, including procedure identifiers, are annotated with type
information, which is often polymorphic. The Copperhead compiler treats all polymorphic
types as C++ template variables, and then instantiates them in C++ code with concrete C++
types, such as float or double in a wrapper function. This instantiation creates a complete
program specialized for the particular types that the Copperhead function was called with, but
still keeps the majority of Copperhead generated code templatized to operate on many types,
which facilitates reuse.

Since we use a Hindley-Milner type inference system, programmers are not required to an-
notate their code with type information. We chose to use type inference as opposed to required
type annotations for two reasons: first, Python programs themselves are written without type
information, and we want Copperhead code to look and feel like Python code; and second,
avoiding type annotations is more productive, since the programmer does not have to specify
information the compiler can derive itself.

There are situations where the type system cannot derive type information, for exam-
ple, when interfacing external libraries written in efhiciency languages to Copperhead, or
when specifying the built-in Copperhead prelude functions, described in Section 3.6. Al-
though most Copperhead programmers will never run into these situations, we have im-
plemented a simple embedded domain specific language to specify types to the Cop-
perhead compiler. For example, Figure 3.6 shows how the type of reduce, namely
Va : Fn(Tuple(Fn(Tuple(a, a), a), Seq(a), a), a) canbe written in this language.

24

@cutype(”((a, a)-»a, [a], a) -> a”)
def reduce(f, x, 1i):

pass
Figure 3.6: Describing Copperhead Types
@cu
def xpy_bad(x, y): def xpy_good(x, y):
for i in indices(y) def duad(xi, yi):
y[i] = x[i] + y[i] return xi + yi

return map(duad, x, y)

Figure 3.7: Example code with and without side effects

The type derived from this description interacts with the Copperhead system as any auto-
matically derived type would. This ability facilitates extending Copperhead to interface with
external libraries, which is very important. We do not envision a world where all computation-
ally intensive software is written in Copperhead — part of Python’s strength as a programming
environment is its ability to interact efficiently with software written in other ways, and we aim
to provide similar capabilities for Copperhead.

3.3 Side Effects

All data in a Copperhead procedure are considered immutable values. Thus, statements of the
form x = Ebind the value of the expression E to the identifier x; they do not assign a new value
to an existing variable. All identifiers are strictly lexically scoped.

In general, Python programs make some use of side effects for computation. Some data
types, such as primitives like integers, as well as compound tuple data types, are immutable,
meaning that they can not be operated on using side effects. However, others, such as lists and
dictionaries, as well as most custom classes, can be mutated, and so side effects are commonly
used in Python.

Copperhead does not allow side eftects because they signficantly complicate compilation.
To make this discussion concrete, see Figure 3.7, which shows two procedures that implement
vector addition. The xpy_bad procedure 3.7 implements vector addition by destructively mod-
ifying one of its inputs. This program is illegal in Copperhead. In contrast, the xpy_good pro-
cedure is side effect free, and is legal in Copperhead.

In this simple example, parallelizing the for loop would require knowledge about indices:
specifically, that indices returns a sequence of values with no repeated elements. The compiler
would also need to prove that there are no loop-carried dependences in order to parallelize

25

iterations of the loop. Considerable research has been devoted to parallelizing compilers that
perform such analyses. However, such analyses are not required for languages that do not allow
side effects.

Instead of using side effects, the computation can be written in Copperhead as shown in
the xpy_good procedure shown in Figure 3.7. The for loop from xpy_bad has been replaced
with an explicitly unordered map, which can be interpreted as a parallel function invocation
and executed in whatever ordering is most convenient for a particular parallel platform.

Programming via side effects is widely used in general, including in parallel computing. For
example, the widely used Basic Linear Algebra Subroutine (BLAS) package works entirely
through destructive updates. Destructive updates can improve performance and minimize
memory usage in some circumstances. For example, if the programmer wishes to update two
elements in a large vector containing, for the sake of example, one billion elements, this op-
eration can be performed using side-eftects by destructively updating the two elements in the
vector. Programming approaches that forgo side effects must transform the old vector into the
new updated vector, which in practice results in copying the old vector into a new result. In
our example, this would result in an extra memory allocation of one billion elements, as well
as the memory traffic necessary to copy the one billion elements from the old vector to the
new vector. If memory space is constrained, this might not even be feasible. Programming
with explicit side effects allows the programmer to express these operations directly.

However, as we mentioned earlier, it also significantly impedes parallelization, since the
presence of side effects forces parallelizing compilers to prove that any side effects in the pro-
gram are localized with respect to the parallelization being performed. Constructing this proof
is not always possible, since it can involve making use of information that may be obvious to the
programmer, but not to the compiler. Additionally, the use of side effects allows programmers
to create programs that are so encumbered by data dependences that they are not parallelize-
able at all.

Although Copperhead requires programmers to describe computations without the use of
side effects, the compiler has the freedom to implement Copperhead programs using side ef-
fects. For example, if the Copperhead compiler can prove that a particular identifier is never
reused, it is free to do in-place destructive updates internally, using the same storage to repre-
sent multiple textual identifiers in the program. This ability has been used with notable success
in previous data parallel languages that also forbade side effects, such as SISAL [34].

Furthermore, the decision to embed Copperhead in an existing productivity language pro-
vides additional motivation for forbidding side effects. In many productivity languages that
allow side effects, such as Python and Ruby, collective operations such as map have sequential
semantics. The presence of side effects requires that these collective operations be executed in
the same sequential order as defined in the productivity language. Figure 3.8 shows a simple
Python program that operates using side effects, along with its output.

The result of the program shown in Figure 3.8 is only defined because Python’s map con-
struct has sequential semantics — any attempt to parallelize the map operation in this example
would lead to the same problems that arise when parallelizing traditional loops. Therefore,
any relaxed semantics that could enable parallelism would also conflict with the established se-
quential semantics of collective operations in the host productivity language, were we to allow

26

def example(c):
a =[]
def side_effect(b):
a.append(b)
return a
map(side_effect, c)
return a

» print example([1,2,3,4])
» [1,2,3,4]

Figure 3.8: Python code with side effects

side effects. Since we disallow side effects in Copperhead, we prevent semantic mismatches
between Python and Copperhead due to our relaxed ordering rules, which we discuss in the
next section.

Finally, since Copperhead programs are embedded in Python, and Python allows for side
effects, parts of the program that naturally need to use side effects can be written as traditional
Python programs. Using Copperhead does not preclude the programmer from ever using side
effects, instead we simply require that the side effects be expressed in the enclosing Python
program. Of course, the Copperhead compiler does not attempt to parallelize the enclosing
Python program, which runs in the standard Python interpreter as any other program might.

Although our decision to forbid side effects in Copperhead programs does impose certain
restrictions on the programmer, we feel these restrictions are well justified due to the flexibility
they afford the compiler, which enables efficient compilation of high level data parallel com-
putations to parallel hardware.

3.3.1 Side Effects in Host Code

We acknowledge the importance of programming with side eftects, and Copperhead is de-
signed to facilitate programming with side effects for certain cases where it is more convenient
or more eflicient. More specifically, Copperhead comes with a set of routines that allow the
programmer to mutate Copperhead data structures directly from the enclosing host code writ-
ten in Python. It is also straightforward to execute sequential iterations, such as those that
guide iterative solvers, by writing loops in the host Python program. During each iteration of
the loop, side effect free Copperhead procedures can be called to perform the bulk of the com-
putation, while Python code manages sequential iteration and mutation of Copperhead data
structures.

27

@cu
def foo():
return True

@cu
def bar(x):
return map(foo, x)

Figure 3.9: Referencing procedure identifiers defined outside a Copperhead procedure

a = [1,2,3,4]

def baz(x):
return map(op_add, x, a)

Figure 3.10: Referencing data identifiers defined outside a Python procedure

3.3.2 Loops

Data parallel languages traditionally do not provide explicit loop constructs. The reason for
this is straightforward: standard loops encode a particular execution ordering and operate
via mutation of an index variable. Typically, data parallel languages guide the programmer
to express computations in terms of unordered operations on data structures in an applicative,
functional style without side effects. Unordered operations can be parallelized arbitrarily, and
as we have pointed out, the lack of side effects enables a wide range of compiler transforma-
tions that are essential to high performance. Accordingly, we disallow loops in Copperhead.
If sequential, ordered iteration is required, the programmer can use tail recursion for a similar
effect: the Copperhead compiler will convert tail recursion into stateful loops. Alternatively,
the programmer can express the sequential loop in Python, as we previously discussed.

3.4 Scoping and Ordering

Copperhead applies strict lexical scoping to all variables encountered in a Copperhead pro-
gram. Importantly, Copperhead procedures may reference identifiers defined outside of pro-
cedure scope only if those identifiers refer to functions. For example, Figure 3.9 is valid Cop-
perhead code. In procedure bar, the only identifier referenced that is defined outside the scope
of bar is the function foo:

In contrast, Figure 3.10 shows Python code that would not be valid Copperhead code, since
procedure baz references a non-function identifier defined outside the scope of baz.

Additionally, Python employs dynamic scoping, while Copperhead uses strict lexical scop-
ing. For example, Figure 3.11 shows a Python program that relies on dynamic scoping; such

28

def dynamic_scoping(x):

if x:
y =1
else:
y = 2
return y

Figure 3.11: Dynamic scoping in Python

@cu
def axpy(a, x, y):
def triad(xi, yi):
return a * xi + yi
return map(triad, x, y)

Figure 3.12: Illustrating Closures

programs are rejected by the Copperhead type system. In practice, Copperhead’s scoping rules
are enforced by the restriction that Copperhead programs are written without loops, with the
constraint that all branches of a conditional must return a value.

Copperhead does not guarantee any particular order of evaluation, other than the partial
ordering imposed by data dependencies in the program. Python, in contrast, always evaluates
statements from top to bottom and expressions from left to right. By definition, a Copperhead
program must be valid regardless of the order of evaluations, and thus Python’s mandated or-
dering is one valid ordering of the program.

We use this flexibility, enabled by our choice to forbid mutable assignment, to reorder and
transform procedures in a number of ways, which greatly improves the efficiency of generated
code from the Copperhead compiler.

3.5 Closures

Closures, or functions with free variables bound in the lexical environment [89], are com-
monly used in Python and other efliciency languages. Copperhead supports closures in a
limited fashion. For example, in Figure 3.12, the identifier a is closed over by the procedure
triad. The use of a in triad performs a broadcast of that identifier to each of the invocations
of triad that are created by the map. Since map performs element-wise operations on a set of in-
put sequences, closures provide the mechanism for auxiliary data to be used in a non-element-
wise access pattern during map operations. Closures are also used for determining the data that
should be kept on chip; this process is explained in Section 4.9.

Copperhead does not support unlimited higher order operations. For example, closures
must remain limited to the scope in which they are defined; they cannot be returned from a

29

function as an ordinary variable. Many productivity languages allow flexible use of closures,
they can be a mechanism to encapsulate data with procedures, to create coroutines and con-
tinuations, for example. Our usage of closures is more restrictive, which enables us to remove
indirection and create efficient binaries.

3.6 Data-Parallel Primitives

Copperhead is a data-parallel language. Programs manipulate data sequences by applying ag-
gregate operations, such as map or reduce. The semantics of these primitives are implicitly par-
allel: they may always be performed by some parallel computation, but may also be performed
sequentially. Copperhead provides a prelude of built-in standard data-parallel aggregate oper-
ations, which are composed by the programmer to form a computation and imported into the
Python scoping environment when the programmer writes a Copperhead program. We now
define selected Copperhead primitives.

3.6.1 map

In Copperhead, map is the workhorse of data parallelism. Itis used to describe parallel function
invocation. Python itself provides a builtin map construct, defined as map(function, iterable, ...),
which applies function to every item of iterable. If additional iterable arguments are provided,
the function is given an element from each iterable. Equivalently,

map(f, x1, ..., xn) = [f(x1[e], ..., xn[@]), f(x1[1], ..., xn[1]), ...]

Copperhead’s map mirrors this syntax. In fact, in order to comply with Copperhead’s type sys-
tem, map is elevated to a special syntax tree node, since it processes a variable number of inputs,
which is not allowed for arbitrary Copperhead functions.

Asin Python, when called on nested data structures, map treats each subsequence as an item
of the overall sequence.

There are three differences between Copperhead map and Python map. First, Python map
allows the iterable arguments it consumes to be of different lengths. Arguments that are shorter
than the others are extended with None items. In contrast, Copperhead requires that arguments
to map be of identical lengths, and calling map on arguments with different lengths generates a
runtime error. Second, Copperhead map returns a Copperhead sequence, whereas Python map
returns a Python list in Python version 2, or a Python iterator in version 3. Although Copper-
head sequences are designed to be compatible with Python lists and can return iterators, they
are not identical, for various technical reasons. In future versions of Copperhead that operate
in Python 3, it would be possible to make Copperhead data structures iterators and comply
tully with the semantics of Python’s map. Finally, Python map can operate with a nullary func-
tion: if the special Python identifier None is passed in as the function, map will return a copy of
the input arguments, as if the appropriate arity identity function has been provided. Copper-
head does not allow this, since we do not have the special Python identifier None. Equivalent
functionality, if desired, can be obtained by providing an identity function, or simply using an
assignment or zip statement.

30

3.6.2 zip

Python provides a builtin zip construct, defined as zip([iterable, ...]) that returns a list of tu-
ples, gathered from each of the iterable arguments. Copperhead also provides zip, although
with the caveat that the user must provide exactly two sequences, and the result is a sequence
of pairs.

Zip is useful for constructing sequences of tuples from flat sequences. For example, to per-
form an arg max operation, one might zip an index sequence together with a data sequence,
to create a sequence of labeled data, which then could be operated on with a reduce primi-
tive to find the maximum element along with its position in the sequence. This corresponds
to notionally converting a Structure of Arrays into an Array of Structures. However, the Cop-
perhead compiler is free to implement data structures in arbitrary ways, and temporary data
structures created by the Copperhead compiler are kept in Structure of Arrays format for maxi-
mum performance, even though the program treats them as Arrays of Structures. More details
about this are in Section 4.10.

More explicitly,

zip(a, b) = [(a[e], b[e]), (a[1], b[1]), ...]

Copperhead only supports zip with two sequences because it makes zip have a well defined
type in the type system. For zipping together more sequences, the Copperhead prelude con-
tains several variants: zip3(a, b, c),zip4(a, b, c, d),etc.

Python allows the arguments to zip to be of different lengths. However, similarly to map,
Copperhead requires them to be of the same length.

Copperhead also provides an unzip, which takes a list of tuples, and returns a tuple of lists.
Python applies an overloaded * operator for this purpose, which we do not support, since we
do not support overloaded operators in general.

3.6.3 reduce

Python provides a built-in reduce function, defined as reduce(function, iterable|, initializer]).
reduce applies a binary function sequentially to reduce a sequence into a single value, starting
with the value initializer, if present. Copperhead provides a similar facility:

reduce(®d, x, z) = (@xiEXxi)@z

However, Copperhead places a few additional restrictions on this operation. Firstly, the bi-
nary operator & must be both associative and commutative, which allows for the reduction to
be parallelized. Secondly, the initializer is not optional. This is required in order to keep the
operation well defined for the case when the sequence x is empty. Python raises a TypeError
for the case when the iterable is empty and the initializer is not provided. We choose simply to
require the initial value.

Parallel reductions can be complicated when invoked with pseudo-associative operators,
since the order in which the reduction is performed can result in different answers. Unfortu-
nately, floating-point addition, which may be the most common reduction operator, suffers
from this problem. This problem is common to all parallel reductions. Copperhead has the

31

ability to generate fully repeatable reductions, which provide a unique total ordering for every
reduction of a given length, thus ensuring repeatability of results, even for this case.

The most common reduction is a simple sum operation, where the operator is numerical
addition, and the prefix is 0. We provide sum(x) as a Copperhead primitive.

3.6.4 scan

Closely related to reduce is the scan collective operation, or equivalently, prefix sum. Scan
also requires a binary function @, and applies it across a sequence x, but instead of returning a
scalar value, it returns a sequence of partial sums. Equivalently,

X[@] ¥ X[l]: ey @x,Exxi]

Forexample, scan(op_add, [1, 2, 3, 4]) = [1, 3, 6, 1@]. Thisprimitiveisveryimpor-
tant in data parallel programming because the computation of partial sums can be parallelized,
given restrictions on the binary operator @, even though the result appears to have been pro-
duced by a sequential loop. For more explanation about the utility of scan and variants, see
[81]. In this case, similarly to reduce, we require the binary operator ¢ to be both associa-
tive and commutative. No initializer is required for inclusive scan: if an empty sequence is
provided to scan the result is defined to be an empty sequence.

The standard prefix sum operation in Copperhead is the inclusive scan operation, however
we also provide exclusive scan operations (exscan) as well as reverse inclusive (rscan) and ex-
clusive (exrscan) scan operations. Exclusive scan operations require an additional argument
for the initializer, which must be of the same type as the elements of x.

3.6.5 gather

Copperhead provides a gather primitive to enable indirection, such as found in sparse data
structures. Given two sequences, a data sequence X, and an index sequence i,

gather(x, i) = [x[i[e]], x[i[1]], ...]

3.6.6 scatter

The mirror image of gather is scatter. Given three sequences: a data sequence x, an index
sequence indices,and a destination sequencey, then z=scatter(x, indices, y)isdefined:

4] = x[t] i€ indices,t = arg, indices
27 yli] i ¢ indices

This operation can be conceptualized as making a copy of y, and then scattering elements of x
into it according to the array of indices. Copperhead requires the y array so that scatter is
well defined even if indices does not cover every element of the output.

The result of scatter has undefined semantics for the case where indices has repeated
elements.

32

@cu
def spmv_csr(A_values, A_columns, X):
def spvv(Ai, j):

z = gather(x, j)
return sum(map(lambda Aij, xj: Aij*xj, Ai, z))

return map(spvv, A values, A columns)

Figure 3.13: Procedure for computing Ax for a matrix A in CSR form and a dense vector x.
Underlined operations indicate potential sources of parallel execution.

3.6.7 permute

permute is a close relative of scatter, the only difference being that the programmer, by using
permute, asserts that the indices sequence is a permutation of the indices of x. In this case,
there is no need for the source array y, since we know that every element of the result will come
from x.

If z=permute(x, indices),then
z[i] = x[t], t=arg; indices

If the programmer supplies an indices sequence that is not a permutation of the indices of x,
the results are undefined.

3.6.8 indices

indices(x) creates a sequence with the same shape as x, but with each element counting the
indices of x. For a sequence x with length n:

indices(x) = [0, 1, ..., n-1, n]

3.7 Example programs

Copperhead programs are constructed via composition of data parallel primitives from the
prelude. To illustrate how this is accomplished, we present two simple Copperhead programs.

3.7.1 Compressed Sparse Row Sparse Matrix Vector Multiplication

Figure 3.13 shows a simple Copperhead procedure for computing the sparse matrix-vector
product (SpMV) y = Ax. Here we assume that A is stored in Compressed Sparse Row (CSR)
format—one of the most frequently used representation for sparse matrices—and that x is a
dense vector. The matrix representation simply records each row of the matrix as a sequence

33

containing its non-zero values along with a corresponding sequence recording the column in-
dex of each value. A simple example of this representation is:

1700

A = 0280 vals = [[1,7],[2,8],[5,3,9],[6,4]]
50 3 9| cols = [[0,1],[1,2],[0,2,3],[1,3]]
06 0 4

The body of spmv_csr applies a sparse dot product procedure, spvv, to each row of the
matrix using map. The sparse dot product itself produces the result y; for row i by forming
the products A;;x; for each column j containing a non-zero entry, and then summing these
products together. It uses gather to fetch the necessary values x; from the dense vector x and
uses sum, a convenient special case of reduce where the operator is addition, to produce the
result.

This simple example illustrates two important issues that are a central concern for our Cop-
perhead compiler. First, it consists of a number of potentially parallel aggregate operations,
which are underlined. Second, these aggregate operators are nested: those within spvv are
executed within an enclosing map operation invoked by spmv_csr. One of the central tasks of
our compiler is to decide how to schedule these operations for execution. Each of them may
be performed in parallel or by sequential loops, and the nesting of operations must be mapped
onto the hardware execution units in a suitable fashion.

3.7.2 Radix Sort

To further illustrate the use of data parallel primitives, we present a radix sort implementation
using a scan based algorithm, as presented by [7]. Figure 3.14 shows the Copperhead code for
this procedure, which sorts Ausing bits [1sb, msb) as the key. To illustrate how this sorting al-
gorithm works, we show the execution of a very simple example in Figure 3.15. This procedure
iterates over the bits of an integral-valued data type, from least significant bit to most signifi-
cant bit, at each step separating the data by whether the bit is set. Data elements where the bit
is not set are moved to the beginning of the array, thus sorting the data by that bit. Perform-
ing this separation entails computing the new index for every element, which depends on how
many elements before and after it have their bit set. Prefix sum operations, scan and rscan, are
used to derive the distance each data element must move, and then the data is permuted. Tail
recursion performs iteration over the bits of the datatype being sorted.

3.8 Conclusion

This chapter has described the design of Copperhead, a data parallel programming language
embedded in Python. Copperheadis designed to be as simple of alanguage as possible, both to
ease the task of creating a compiler for Copperhead, as well as to make learning Copperhead as
easy as possible. We presented the subset of Python that is supported by Copperhead, detailed
its type system and limitations, and presented the Copperhead prelude, a set of data parallel

34

This procedure takes three inputs:

A: The sequence of data to be sorted

msb: Sort up to this bit

Lsb: Sort starting from this bit

For 32-bit data, you would call this procedure with:
Lsb = &, msb = 32

@cu
def radix_sort(A, msb, lsb):
if lsb>=msb:
Done sorting
return A
else:
Sort the Lsb’th bit
First, figure out which elements have the Lsb’th bit set
bits = map(lambda x: (x>>1sb)&1, A)
Then count all the ones, starting from the front
ones = scan(op_add, bits)
Then count all the zeros, starting from the back
zeros = rscan(op_add, [b"1 for b in bits])

Then compute offsets, which describe how far each element
should move
offsets = map(delta, bits, ones, zeros)

Permute the 1input data to sort with respect to the Lsb’th bit
A = permute(A, map(op_add, indices(A), offsets))

Iterate

return radix_sort(A, msb, lsb+1l)

This procedure operates on three scalars, and
simply selects between them

@cu

def delta(bit, ones_before, zeros_after):
if bit==0: return -ones_before
else: return +zeros_after

Figure 3.14: Radix sort in Copperhead

A =10, 3, 2, 1]

msb = 2

lsb = 0

bits = [0, 1, 0, 1]

ones = [0, 1, 1, 2]

zeros =[2, 1, 1, 0]

offsets = [0, 1, -1, 9]
A = [0, 2, 3, 1]

msb = 2

Isb = 1

bits = [0, 1, 1, 0]

ones = [0, 1, 2, 2]

zeros =[2, 1, 1, 1]

offsets = [0, 1, 1, -2]
A = [0, 1, 2, 3]

Figure 3.15: Illustrating Radix Sort

36

primitives provided by Copperhead that form the foundation for expressing computation in
Copperhead. We also showed how these elements contribute to the expression of a few simple
example programs in Copperhead.

Now that we have defined a simple embedded data parallel language, the important task is
to compile it efficiently to modern parallel hardware. The next chapter details how we accom-

plish this.

37

CoOMPILING DATA PARALLEL
[LANGUAGES

In this chapter, we discuss techniques for compiling data parallel languages onto modern
parallel microprocessors, motivated by the Copperhead language.

4.1 Source to source compilation

The biggest problems in implementing data parallel computations are not in low-level sequen-
tial code generation, as typified by traditional code generation problems such as register al-
location, constant propagation, and dead code elimination. Classical compiler optimizations
for sequential code remain crucial to performance, but may be conducted as normal once the
computation has been mapped onto a parallel platform. Instead, problems implementing data
parallel computations come from higher-level considerations, such as how computations are
scheduled onto the target platform, and how on-chip memory is utilized.

Accordingly, we do not consider the implementation of traditional low-level code genera-
tion problems. Instead, we utilize existing compilers to do these optimizations for us, by com-
piling data parallel computation into scheduled, imperative source code. In other words, we
perform source-to-source compilation, which significantly reduces the scope of the compila-
tion problem we must solve.

We have designed our compiler to support three basic usage patterns. First is what we refer
to as Runtime Static Compilation, which we describe in more detail in Section 5.2.1. When
the programmer invokes a @cu-decorated function either from the command line or from a
Python code module, the Copperhead runtime may need to generate code for this procedure
if none is already available. Second: batch compilation where the Copperhead compiler is
asked to generate a set of C++ code modules for the specified procedures. This code may be
subsequently used either within the Copperhead Python environment or linked directly with
external C++ applications. The third common scenario is one where the compiler is asked to
generate a collection of variant instantiations of a Copperhead procedure in tandem with an
autotuning framework for exploring the performance landscape of a particular architecture.

In the following discussion, we assume that the compiler is given a single top level Copper-
head function—referred to as the “entry point™—to compile. It may, for instance, be a func-
tion like spmv_csr that has been invoked at the Python interpreter prompt. For the CUDA
platform, the compiler will take this procedure, along with any procedures it invokes, and pro-
duce a single sequential host procedure and one or more parallel kernels that will be invoked by

38

G . .

«Normalizes «Schedules «Lowers to

Program Program C++
«Remains valid «Adds state «Platform

Copperhead «Remains valid dependent
«Platform Python

independent «Platform

independent

Figure 4.1: Copperhead Compiler Flow

the host procedure.

Figure 4.1 shows the high-level flow of the Copperhead Compiler. As input, the compiler
accepts a standard Python Abstract Syntax Tree (AST); the compiler ultimately produces a
parallelized C++ AST that implements the original computation. The compilation process is
divided into three phases. The front end of the compiler is responsible for normalizing the pro-
gram, producing a transformed Copperhead program that is easier to analyze and transform.
The mid end of the compiler is responsible for program analysis, scheduling the program onto
the target platform, and preparing the program for lowering into parallel C++. The result of
the mid end is a valid Python program that implements the original computation, along with
a set of annotations about type and shape information. The mid end of the compiler performs
these transformations in a platform independent way. The back end of the compiler lowers the
scheduled code into a parallel efficiency language in a platform specific way. More information
about how this compilation flow is embedded in Python is found in Chapter S.

4.2 Normalized Form

Before proceeding with the analysis and rewriting passes that transform a data parallel compu-
tation into scheduled imperative code, we consider a normalized form into which data parallel
computations must be transformed in order for our analysis and rewriting passes to function
correctly.

To begin, we assume that the compiler is invoked on a particular function. This assump-
tion derives from the nature of the programs we consider compiling: since the data parallel
computation is embedded in a source language, there is a clear boundary between the com-
putation being compiled and the surrounding computation. The standard interpreter for the
productivity language serving as substrate for the embedded language executes all surrounding
computation normally. Therefore, the execution model is that the substrate language makes a
call to the embedded language, and the compiler has visibility of the entire computation that
must be performed before returning control to the host program running in the substrate lan-
guage. Accordingly, itis possible to gather the entire computation into one abstract syntax tree,
so that analyses and rewriting passes can operate across procedural boundaries in the original

39

@cu
def axpy(a, x, y):
def duad(xi, yi):
return a * xi + yi
return map(duad, x, y)

Figure 4.2: Scaled vector addition before Closure Conversion

@cu
def axpy(a, x, y):
def duad(xi, yi, _k®@): #Note the explicit closure argument
return _kO * xi + yi
return map(closure([a], duad), x, y)

Figure 4.3: Scaled vector addition after Closure Conversion

source code.

Therefore, the normalized form of the program includes the source code to allmodules that
are called from the program being compiled. If the source code is not available, as is the case
with external or binary-distributed libraries, the normalized form includes simple stubs for
function calls to these libraries, which indicate that no source code is available, and therefore
no optimizations can be performed across function boundaries. Section 5.2.1 describes the
interaction between the Copperhead compiler and external code in more detail.

Furthermore, the operations outlined in the following subsections must be performed.

4.2.1 Closure Conversion

Closure conversion is a classical compiler transformation that makes all variables explicit, even
if they are being captured from an enclosing scope. This transformation eases compiler analy-
sis, since after closure conversion, all data referred to by a procedure is defined in its parameter
list, making the data dependences explicit. It also facilitates procedure flattening, since after
closure conversion, all nested procedures are guaranteed to operate exclusively on locally de-
fined variables.

For example, Figure 4.2 shows a simple program that implements scaled vector addition.
Note that the nested procedure duad refers to a variable a, which was not defined within duad,
but instead in the enclosing scope: the procedure axpy. Figure 4.3 shows the result of closure
conversion on this example: the nested procedure duad has had its parameter list augmented
with a parameter representing the closed over variable, and the call to duad is done through an
explicit closure object that captures the variable a from the body of axpy, and passes it to each
invocation of duad from within the closure.

40

@cu

def foo(x):
X =X + 1
y =x +1
y=y+1
return y

Figure 4.4: A procedure before Single Assignment Conversion

@cu
def foo(x):
_X0 = x + 1 #Note that every identifier 1is assigned to exactly once
_y0 = x0 + 1
_yl = _yo + 1
return _yl

Figure 4.5 A procedure after Single Assignment Conversion

4.2.2 Single Assignment Conversion

Single assignment conversion is another standard compiler transformation, which eases the
task of program analysis and restructuring by ensuring that every identifier is assigned to ex-
actly once, thereby making use-def chains [1] explicit and unambiguous. Single assignment
form is important for some of the transformations the Copperhead compiler performs, such
as data parallel primitive fusion.

Traditional static single assignment form introduces @ functions, which mark the way the
control flow graph has reconverged, since conditionals may result in the same identifier being
assigned in different ways. The Copperhead language is sufhciently restrictive that ® functions
are not required, specifically because of the following two properties of Copperhead code:

e All control paths within a Copperhead program must return a value

e Loops are not allowed

Due to these properties, the dominance frontier set of all nodes in a Copperhead control flow
graph is empty by construction, so no ® functions are necessary when converting Copperhead
code to single assignment form.

Figure 4.4 shows a procedure before single assignment conversion. After single assignment
conversion, the procedure is transformed into the code shown in Figure 4.5.

4.2.3 Procedure Flattening

After closure conversion, nested procedures are independent and can be flattened. This pro-
cess is shown in Figure 4.6 and Figure 4.7. This transformation helps with program analysis,

41

@cu
def axpy(a, x, y):
def duad(xi, yi, _k@):
return _kO * xi + yi
return map(closure([a], duad), x, y)

Figure 4.6: Scaled vector addition before procedure flattening

@cu
def duad(xi, yi, _ko):
return kO * xi + yi

@cu
def axpy(a, x, y):
return map(closure([a], duad), x, y)

Figure 4.7: Scaled vector addition after procedure flattening

kernel fusion and fission, as well as satisfies the requirements of efhciencylevel languages, most
of which do not allow nested procedures. Since we are discussing a source-to-source compila-
tion flow, ultimately the result of our compiler must comply with the restrictions of the target
ethciency language, which further motivates this transformation.

4.2.4 Expression Flattening

Figure 4.8 shows our axpy example code before expression flattening. Note the compound
expression in duad. After single assignment conversion, compound expressions are broken
into simple expressions, as shown in Figure 4.9. Expression flattening is important because it
ensures that every statement of the program consists of a single operation, thus allowing the
program to be restructured at statement boundaries, without the need to disentangle nested
operations.

4.2.5 Inlining

The Copperhead compiler also performs aggressive inlining. For example, Figure 4.10 shows
a simple procedure before inlining, and Figure 4.11 shows the same procedure after inlining.
Inlining is an important part of normalization because it instantiates all the data parallel prim-
itives in a unique context, which then allows them to be treated uniquely during compilation.
For example, the same procedure may be mapped to different levels of the parallelism hierar-
chy, depending on how it appears in the program. Inlining allows each instance of a procedure
to be transformed separately.

42

@cu
def duad(xi, yi, _ke):
return _ko * xi + yi

@cu

def axpy(a, x, y):
return map(closure([a], duad), x, y)

Figure 4.8: Scaled vector addition before expression flattening

@cu

def duad(xi, yi, _ko):
_tmpo = kO * xi #Note that compound expressions have been flattened
return _tmpo + yi

@cu

def axpy(a, x, y):
return map(closure([a], duad), x, y)

Figure 4.9: Scaled vector addition after expression flattening

@cu
def vadd(x, y):
return map(op_add, x, y)

@cu

def foo(a, b, c):
d = vadd(a, b)
return vadd(d, c)

Figure 4.10: Example procedure before inlining

@cu

def foo(a, b, c):
d = map(op_add, a, b) #Note that calls to functions have been inlined
return map(op_add, d, c)

Figure 4.11: Example procedure after inlining

43

Lambdao :: (a, a) — a
def lambda@(Aij, xj):
return op_mul(Aij, xj)

spvv :: ([a], [Int], [a]) — [a]
def spvv(Ai, j, _ko):
zg = gather(_ko, j)
tmpg = map(lambdae@, Ai, zg)
return sum(tmpg)

spmv_csr :: ([[a]], [[Int]], [a]) — [a]
def spmv_csr(A_values, A_columns, x):
return map(closure([x], spvv), A_values, A_columns)

Figure 4.12: SpMV procedure from Figure 3.13 after transformation by the front end compiler.

4.2.6 Final Result

For illustration, Figure 4.12 shows a program fragment representing the AST for the Copper-
head procedure shown in Figure 3.13. Each procedure is annotated with its (potentially poly-
morphic) most general type, which we determine using a standard Hindley-Milner style type
inference process as described in Chapter 3.

Once a program has been transformed into this normalized form, all nested parallelism has
been flattened such that all data parallel operations in a given procedure can be executed at the
same level of the parallel hierarchy.

4.3 Shape Analysis

Shape analysis determines, where possible, the sizes of all intermediate values. This analysis
allows the back end of the compiler to statically allocate and reuse space for temporary values,
which is critical to obtaining efficient performance. For the CUDA backend, forgoing shape
analysis would require that every parallel primitive be executed individually, since allocating
memory from within a CUDA kernel is not feasible. Executing every parallel primitive indi-
vidually would lead to significant performance losses of up to an order of magnitude, as shown
in Section 4.4.1. Because we wish to aggressively fuse operations together, we perform shape
analysis to discover shapes of intermediate arrays statically, so that results can be preallocated.

Our shape analysis is conceptually similar to the size inference described in [23]. We use
an internal representation that gives a unique name to every temporary value. We want to as-
sign to each ashape of the form ([dq, ..., du], s)whered,isthearray’s extentin dimension
iand s is the shape of each of its elements. The shape of a 4-element, 1-dimensional sequence
[5,4,8,1] would, for example, be ([4], Unit)whereUnit=([], -) isthe shape reserved for
indivisible types such as scalars and functions. Nested sequences are not required to have fully

44

@cu
def indeterminate_shape(b, x, y):
if b:
return x
else:
return y

Figure 4.13: A program with indeterminate shape

determined shapes: in the case where subsequences have differing lengths, the extent for the
subsequences will be undefined, for example: ([2], ([*], Unit)). Note that the dimension-
ality of all values are known as a result of type inference. It remains only to determine extents,
where possible.

Although Copperhead currently operates only on one-dimensional sequences, our shape
representation is designed to operate on multi-dimensional arrays as well. An m x n two di-
mensional array of scalar data has shape ([m, n], Unit). Supporting multi-dimensional arrays
is future work for the Copperhead runtime and compiler.

We approach shape analysis of user-provided code as an abstract interpretation problem.
We define a shape language consisting of Unit, the shape constructor (D, s) described above,
identifiers, and shape functions extentof(s), elementof(s) that extract the two respective
portions of a shape s. We implement a simple environment-based evaluator where every iden-
tifier is mapped to either (1) a shape term or (2) itselfif its shape is unknown. Every primitive f
is required to provide a function that we denote f. shape. This function returns the shape ofits
result given the shapes of its inputs. It may also return a set of static constraints on the shapes
ofits inputs to aid the compiler in its analysis. Some example shape-computing functions:

(extentof (i), elementof(x))
(extentof(x1),
(elementof(x1),elementof(x2)))
with extentof(x1l)==extentof(x2)

gather.shape(x, i)
zip.shape(x1, x2)

The gather rule states that its result has the same size as the index array i while having elements
whose shape is given by the elements of x. The zip augments the shape of its result with a
constraint that the extents of its inputs are assumed to be the same. Terms such as extentof (x)
are left unevaluated if the identifier x is not bound to any shape.

To give a sense of the shape analysis process, consider the spvv procedure shown in Fig-
ure 4.12. Shape analysis will annotate every binding with a shape like so:

def spvv(Ai, j, _ke):
zp :: (extentof(j), elementof(_ke))
tmpo :: (extentof(Ai), elementof(Ai))
return sum(tmpg) :: Unit

In this case, the shapes for zj, tmpy, and the return value are derived directly from the shape
rules for gather, map, and sum, respectively.

45

Shape analysis is not guaranteed to find all shapes in a program. Some identifiers may have
data dependent shapes, making the analysis inconclusive. Figure 4.13 shows an example of
such a procedure: the compiler cannot determine what shape this procedure returns, because
it depends on the value of b. For cases where the shape is indeterminate, the compiler must
insert barriers in order to first compute the shape of intermediate variables, allocate space for
the intermediate variables, and then progress with the computation. This prohibits some im-
portant optimizations, such as data primitive fusion, but is required for correctness.

Future work involves allowing shape analysis to influence code scheduling, in an attempt to
better match the extents in a particular nested data parallel problem to the dimensions of par-
allelism supported by the platform being targeted. For example, instead of implementing the
outermost level of a Copperhead program in a parallel fashion, if the outer extent is small and
the inner extent is large, the compiler may decide to create a code variant that sequentializes
the outermost level, and parallelizes an inner level.

4.4 Data Parallel Primitive Scheduling

The front end of the compiler carries out platform independent transformations in order to
prepare the code for scheduling. The middle section of the compiler is tasked with performing
analyses and scheduling the program onto a target platform.

At this point in the compiler, a Copperhead program consists of possibly nested compo-
sitions of data parallel primitives. A Copperhead procedure may perform purely sequential
computations, in which case our compiler will convert it into sequential C++ code. Copper-
head makes no attempt to auto-parallelize sequential codes. Instead, it requires the program-
mer to use explicitly parallel primitives that the compiler will auto-sequentialize as necessary.
Our compilation of sequential code is quite straightforward, since we rely on the host C++
compiler to handle all scalar code optimizations, and our restricted language avoids all the
complexities of compiling a broad subset of Python that must be addressed by compilers like
Cython [29].

Copperhead supports both flat and nested data parallelism. A flat Copperhead program
consists of a sequence of parallel primitives that perform purely sequential operations to each
element of a sequence in parallel. A nested program, in contrast, may apply parallel operations
to each sequence element. Our spmv_csr code, shown in Figure 3.13, provides a simple con-
crete example. The outer spmv_csr procedure applies spvv to every row of its input via map.
The spvv procedure itself calls gather, map, and sum, all of which are potentially parallel. The
Copperhead compiler must decide how to map these potentially parallel operations onto the
target hardware. This mapping depends on the composition of the program — the exact same
code fragment may end up being implemented in very difterent ways, depending on the con-
text in which it is instantiated. For example, amap operation may be launched in parallel across
the machine, may be launched in parallel across a subset of the machine, or may be launched as
a sequential loop. Copperhead employs a direct scheduling approach that implements nested
parallelism directly on the target platform, without interposing a vectorization transform, as
is commonly done in other data parallel compilers. These approaches provide maximum per-

46

@cu
def vadd(x, y):
return map(op_add, x, y)

@cu
def vmul(x, y):
return map(op_mul, x, y)

@cu

def of_spmv(du, dv, width, mi, m2, m3, m4, m5, m6, m7):
vadd(vmul(ml, du), vmul(m2, dv))

= vadd(vmul(m2, du), vmul(m3, dv))

= vadd(e, vmul(m4, shift(du, -width, ©0.0)))
= vadd(f, vmul(m4, shift(dv, -width, ©0.0)))
= vadd(e, vmul(m5, shift(du, -1, 0.0)))
vadd(f, vmul(m5, shift(dv, -1, 0.90)))

= vadd(e, vmul(mé6, shift(du, 1, 0.0)))

= vadd(f, vmul(mé6, shift(dv, 1, 0.0)))

= vadd(e, vmul(m7, shift(du, width, ©.0)))
= vadd(f, vmul(m7, shift(dv, width, 0.0)))
return (e, f)

-+~ ® -h ® -h ® -Hh ® - D
1]

Figure 4.14: Fusion Example Code

formance on contemporary parallel processors, as we detail in the following subsections.

4.4.1 Data Parallel Primitive Fusion

Data parallel primitive fusion is similar to loop fusion [51] in a traditional compiler: the goal is
to reduce synchronization overhead and improve datalocality. Properly performing fusion can
have a large performance impact, since synchronization and data movement are preeminent
constraints in the exploitation of contemporary parallel processors.

For example, consider the code in Figure 4.14. This code performs a customized sparse
matrix vector multiplication for a particular sparse matrix. This sparse matrix is derived from
coupled five-point stencil patterns on separate two-dimensional structured grids, derived from
a linear solver arising in variational optical flow methods [85]. The structure of this matrix is
shown in Figure 6.5.

Bringing this into normalized form, we see the code shown in Figure 4.15.

The body of this function contains 32 flat data parallel operations. Data parallel compilers
that do not perform fusion, such as NESL [8], would simply emit 32 data parallel operations
for this code, even though each data parallel operation requires a synchronization and con-

@cu
def of_spmv(du, dv, width, mi, m2, m3, m4, m5, m6, m7):
_e0 = map(op_mul, ml, du)
el = map(op_mul, m2, dv)
e 1 = map(op_add, _e@, _el)
_e2 map(op_mul, m2, du)
_e3 map(op_mul, m3, dv)
_f 2 = map(op_add, _e2, _e3)

_e4 = op_neg(width)
_e5 = shift(du, _e4, 0.0)
_e6 = map(op_mul, m4, _e5)

e 3 = map(op_add, _e_ 1, _eb6)

_e7 = op_neg(width)
_e8 = shift(dv, _e7, 90.90)
~e9 = map(op_mul, m4, _e8)

_f 4 = map(op_add, _f_2, _e9)
_ele = shift(du, -1, 0.0)

_ell = map(op_mul, m5, _el0)
e 5 = map(op_add, _e 3, ell)
_el2 = shift(dv, -1, 0.0)

_el13 = map(op_mul, m5, _el2)
_f 6 = map(op_add, _f 4, _el3)
_el4 = shift(du, 1, 0.90)

_el5 = map(op_mul, m6, _eld)
e 7 = map(op_add, _e 5, _el5)
_el6 = shift(dv, 1, 0.90)

_el7 = map(op_mul, m6, _el6)
_f 8 = map(op_add, _f 6, _el7)
_el8 = shift(du, width, ©.0)
_e19 = map(op_mul, m7, _el8)
e 9 = map(op_add, e 7, _el9)
_e20 = shift(dv, width, 0.0)
_e21 = map(op_mul, m7, _e20)
_f 10 = map(op_add, _f 8, _e21)
return (_e_ 9, _f_10)

Figure 4.15: Fusion Example Code after Normalization

47

48

600

500

400

vmul

psec
(ON
S
S

200

vadd

100

shift

_—

Unfused Fused

Figure 4.16: The performance impact of data parallel primitive fusion

siderable data movement to load operands and store results. Many of the operands would be
loaded multiple times, even though for moderately sized problems, any on-chip cache would
be overwhelmed and fail due to capacity misses. Examining the code, we can see that none
of the synchronizations between data parallel primitives need to be performed, and no data
movement needs to occur, other than loading the operands once and storing the results, be-
cause all the intermediate results are created and used only locally. If these operations could
be fused together, we could save considerable synchronization and data movement costs.

To quantify these costs, we evaluate this computation on a problem y = Ax for an x of ap-
proximately 300k entries, running on an NVIDIA GeForce GTX480 GPU. The naive sched-
ule executes 32 separate data parallel operations, while the fused schedule executes only one.
Figure 4.16 illustrates these two implementations; we see a 7.9 x performance differential be-
tween them. As we have explained, this performance differential arises because the fused im-
plementation is able to avoid repeatedly loading and storing intermediate results from offchip
DRAM.

In order to perform fusion, the compiler must prove that data is accessed in a way that is
local to the implementation of the parallel primitive. Since our parallel primitives are mapped
onto a virtual hierarchical processor, the compiler must prove that data is local to the level of
the virtual processor to which the enclosing procedure is being mapped. We call a set of fused
data parallel primitives a phase. We define a phase analysis procedure, which locates all syn-

49

@cu
def subsum(A):
return map(sum, A)

» print subsum([[1, 2, 3], [4, 5], [6, 7, 8]])
» [6, 9, 21]

Figure 4.17: A nested sum operation

chronization points due to non-local data access. We then perform phase scheduling to reduce
the number of synchronization points by fusing primitives together. Fusion takes on different
forms in the resulting code, depending on whether the enclosing procedure is being targeted
at the sequential level, the SIMD vector level, the SIMD thread level, or distributed across the
cores of the machine. However, phase analysis and phase scheduling operate identically, re-
gardless of which level of the machine the procedure is being targeted at. Our phase analysis
and phase scheduling procedures are much simpler than traditional analyses for loop fusion,
due to the constrained language we support.

Our methodology for scheduling nested data parallel primitives also influences the design
of phase analysis and scheduling. We discuss this in the next section.

4.5 'The Flattening Transform

One approach to scheduling nested parallel programs, adopted by NESL [10] and Data Par-
allel Haskell [21] among others, is to apply a flattening (or vectorization) transform to the
program. This transform converts a nested structure of vector operations into a sequence of
flat operations. In most cases, the process of flattening replaces the nested operations with
segmented equivalents.

Figure 4.17 shows code for a nested sum operation, where sumis mapped across sequences
in a nested sequence. When using the flattening transform, this program would be flattened
into a program using a segmented reduction.

Figure 4.18 illustrates how a parallel segmented reduction operation works. A parallel
segmented reduction can be performed by a segmented scan operation, followed by a com-
paction. The segmented scan proceeds similarly to a parallel non-segmented scan, with the dif-
ference that the binary operator provided to the reduction respects subsequence boundaries,
and will pass the original input through unchanged if it is requested to operate on data from
a different subsequence. Figure 4.18 illustrates a parallel segmented reduction. The original
nested sequence is flattened into a single data sequence, where all subsequences are concate-
nated. Subsequence boundaries are recorded in an auxiliary data structure. The figure shows
how the segmented scan proceeds. Dashed blue arrows indicate data that an ordinary scan tree
would access that are not accessed in a segmented scan due to subsequence boundaries. Af-
ter the segmented scan is performed, the first element of each subsequence is compacted into

S0

6 921

Figure 4.18: Executing a Segmented Reduction

the result of the segmented reduction. Although high performance segmented reductions are
not implemented directly with this algorithm, the concept remains the same: a segmented
reduction is a data parallel primitive operating on a flattened sequence, where the operation
must take into consideration subsequence boundaries. The extra conditionals and data access
needed to perform segmented operations impose significant overhead.

In contrast, consider performing the same operation using a direct mapping of the compu-
tation onto the parallel hierarchy. The outermost map would be distributed across processors
of the machine. The inner sum would be performed by each processor independently, with
each processor being assigned a single subsequence. In such a computation, the subsequence
partitioning is accessed only once per core, and then the summation can proceed without fur-
ther access to the subsequence partitioning. Additionally, no compaction step is necessary,
because each processor generates a unique result for each subsequence. Accordingly, the di-
rect approach may be more efficient in many circumstances.

The flattening transform is a powerful technique with two advantages:

1. The performance of flattened operations is not sensitive to the distribution of the overall
work amongst the subproblems. In other words, the flattening transform creates perfect
load balancing.

2. The flattening transform maps well to SIMD processors. Indeed, it was developed for
completely flat SIMD arrays such as the CM-2. Performance is consistent, even when
subproblem sizes don’t match well with hardware vector sizes.

However, in many common cases, the performance afforded by the flattening transform is

S1

significantly slower than the same computation implemented with a direct approach. Flatten-
ing transformations are best suited to machines that are truly flat. Most modern machines, in
contrast, are organized hierarchically, as we have discussed previously. The central goal of the
Copperhead compiler is thus to map the nested structure of the program onto the hierarchical
structure of the machine, shown in Chapter 2.

Experience with hand-written CUDA programs suggests that direct mapping of nested
constructions onto this physical machine hierarchy often yields better performance. For in-
stance, Bell and Garland [5] explored several strategies for implementing SpMV in CUDA.
Their Coordinate (COO) kernel is implemented by manually applying the flattening trans-
formation to the spmv_csr algorithm. Their other kernels represent static mappings of nested
algorithms onto the hardware. The flattened COO kernel only delivers the highest perfor-
mance in the exceptional case where the distribution of row lengths is extraordinarily variable,
in which case the load balancing provided by the flattening transform is advantageous. How-
ever, for 13 out of the 14 unstructured matrices they examine, applying the flattening transform
results in performance two to four times slower than the equivalent nested implementation.

Experiences such as this lead us to the conclusion that although the flattening transform can
provide high performance in exceptional cases where the workload is extremely imbalanced,
the decision to apply the transform should be under programmer control, given the substantial
overhead the flattening transform imposes for most workloads. We explore this further in the
next section.

4.6 Quantifying the Flattening Transform

Since the flattening transform is traditionally used in data parallel compilers, it is important for
us to justify our choice to forgo default application of the flattening transform.

In this subsection, we explore the performance consequences of employing the flattening
transform, in order to quantify its impact. We expect the flattening transform will be essen-
tial for problems with a large load imbalance, but we wish to discover at what load imbalance
level the flattening transform is required, compared with a direct nested parallelism mapping
strategy.

To investigate this question, we compute f(x;, y;i) = ||xi — yi||? for many pairs of vectors
taken from X = {xo,x1,...,Xn} and Y = {yo,y1,...,yn} simultaneously. The Copperhead
code for this operation is in Figure 4.19:

Since the computational load for computing the vector norm varies directly with the length
of the vector, this simple problem allows us to investigate the effects of load imbalance on dif-
ferent scheduling models.

This computation can be scheduled in several ways. Traditional data parallel compilers ap-
ply the vectorization transform. Given a notional seg_sum(X) segmented sum primitive that
computes the segmented sum for each sub-sequence in X, as well as a seg_map(f, X) primi-
tive that applies f to all elements of all sub-sequences of X, returning a nested sequence with
the same structure as X, the result of the flattening transform for this computation is given in
Figure 4.20:

@cu
def

@cu
def

@cu
def

@cu
def

@cu
def

el(xij, yij):
diff = xij - yij
return diff * diff

norm_diff2(xi, yi):
el wise = map(el, xi, yi)
return sum(el wise)

multi_norm(X, Y):
return map(norm_diff2, X, Y)

Figure 4.19: Copperhead code for multi_norm

el(xij, yij):
diff = xij - yij
return diff * diff

multi norm_flattened(X, Y):
el wise = seg_map(el, X, Y)
return seg _sum(el _wise)

Figure 4.20: Copperhead-like code for the flattened version of multi_norm

S2

53

As you can see in Figure 4.20, the nested operations have been liffed into segmented oper-
ations, which is how the transform works.

In contrast, the Copperhead compiler maps the code given by Figure 4.19 directly onto
the hardware. Nested operations are mapped independently onto processing elements. In the
most general case, the vectors x; and y; are all of different lengths. For this case, we use flattened
data structures that can represent arbitrarily nested sequences, and are described in Section
5.3.1. Although we use flattened data structures, the computations are mapped directly onto
the machine. There are several ways in which the computations can be mapped directly onto
the machine, which we will discuss in the following sections.

One important way computations can be mapped directly onto the machine is to schedule
subcomputations as sequential loops running on SIMD lanes. When each of the vectors x; and
yi have identical lengths, this approach can achieve maximum performance by representing X
and Y as uniformly nested sequences, which are discussed in detail in Chapter S. Importantly,
uniformly nested sequences are well defined under transposition, which allows us to store X
and Y in the order that best suits execution on the hardware. For singly nested sequences, this
corresponds to representing a matrix X in row-major or column major ordering. We can then
map each subcomputation directly into a sequential loop running on a SIMD lane, while still
getting fully vectorized memory accesses, which leads to maximum performance. The ability
to map computation directly onto the hardware, using data structures that match the mapping
of the computation, has important performance implications, as we will see in the following
subsections. We will also delineate the regime in which the flattening transform is useful.

4.6.1 Load Balancing

In this experiment, the length of the vectors was allowed to vary: all vectors were at least some
minimum length m, which was then extended randomly by sampling from a Zipf power law
distribution with parameter s. For reference, Equation 4.1 gives the probability mass function
for this distribution, where (s) is the Riemann Zeta function.
ks
P(k;s) g(S),k>0,s > 1 (4.1)

Distributing vector lengths according to a Zipf distribution creates very difficult load bal-
ance problems that are often found in real datasets. For example, many important graphs, such
as social networks and the internet, have edge distributions that follow power laws. In our case,
using the power law distribution means that most of the vectors will be the same length, but
there will be a few very large outlier vectors. We have illustrated a few selected datasets used in
our experiment in Table 4.1.

The parameter s describes the Zipf distribution used to generate the partitionings. When
s, is high, all partitionings are of uniform size. As the parameter s used to generate the par-
titionings decreases, the size of the partitionings become more irregular. The mean length of
the partitionings increases, even though the median length of the partitionings remains almost
constant. The minimum length m of each partition was 512 in these experiments, in order to
isolate the effects of load imbalance from those of SIMD vector mismatch.

54

s min max mean median 22 Flattened Fused Direct Uniform (size)
Flattened
(¥) SPGFLOP/s SPGFLOP/s SPGFLOP/s SPGFLOP/s
4 512 547 s121 S12 107 103 212 46.5 523 (512)
186 512 612*105 5418 S12 1195 103 213 29.9 52.5(541)
1.62 512 299*107 1451 513 58449 104 223 3.79 53.5(1451)

Table 4.1: Selected Partitionings and Performance

We define the load imbalance factor as follows:

ll) — II//\\]]leX
min

(4.2)

Winax and Wi, are the maximum and minimum amount of work performed in a single sub-
problem. We expect that as ¢ increases, the direct approaches will become progressively less
efhicient, since they are exposed to load imbalance. In contrast, the performance of the flat-
tened approach should be invariant to the load imbalance factor.

Figure 4.21 details the observed performance as a function of this load imbalance factor,
running on an NVIDIA GTX 480 GPU. The “Flattened” data points represent performance for
the flattened implementation, in Single Precision GFLOP/s. As we expected, performance is
completely invariant to load imbalance, since the partitioning is not expressed in control flow,
but instead in data structure.

The “Direct” data points represent performance for the direct mapped version, where each
summation is mapped onto a CUDA thread block. The summations were mapped to CUDA
thread blocks instead of CUDA threads because of the memory access patterns involved. As
we discuss later, this is a problem for autotuning.

Looking at performance of the “Direct” data points, we see that for problems with small
to moderate load imbalance, the direct approach is approximately 2.2 x faster than the fused
flattened approach, or 4.5 x faster than the simple flattened approach. This holds until a load
imbalance factor of approximately 1000, or in other words, until the ratio between the longest
vector and the shortest vector is approximately 1000. With load imbalance factors between
1000 and 10000, the direct approach is still faster than the flattened version. Only after the
load imbalance factor exceeds 10000 is the flattened version profitable.

The “Uniform” data points represent performance for a direct mapped version where all
the sub-sequences are the same length, or equivalently, y = 1. In this case, the summa-
tions are mapped to sequential threadsPerformance of the uniform approach is approximately
2.5 x faster than the fused flattened approach, and approximately 5 x faster than the simple ap-
proach. Copperhead enables the use of aligned, transposed data structures, which in conjunc-
tion with the direct mapping strategy enables high performance in comparison to the use of
the flattening transform by default. Without this mapping strategy, the performance we would
attain would not be competitive with hand-written efhiciency code.

Performance vs. Load Imbalance

60
* Flattened
50 * Fused Flattened
h—-“ﬁ' q'.‘; P * Direct
"y Uniform
@ 40 " . .,
o “e
= 30 -
g]
2] mmxmmwwWme %X
20 =
w
[|
L “ .
0 T T T T 1
1 10 100 1000 10000 100000

Load Imbalance Factor

Figure 4.21: Performance comparison of flattened versus direct mapped scheduling

SS

56

In summary, we find direct approaches to be faster than the flattening transform for prob-
lems with small to moderate load imbalance. For problems with extreme load imbalance,
the flattening transform is compelling. However, it imposes high overhead for problems with
moderate load imbalance.

4.6.2 SIMD Effects

As mentioned in Section 4.5, the flattening transform has two major advantages. The previous
discussion centered on the the effects of the flattening transform in the presence of varying
degrees of load imbalance, with minimum vector lengths long enough to avoid inefficiencies
mapping to SIMD vectors. This section examines the effects of the flattening transform in the
context of SIMD processing. The experiments were again run on an NVIDIA GTX 480 GPU,
which has a native logical SIMD vector length of 32 elements. We ran similar experiments to
those in the previous section, only focusing on the impact varying the minimum subvector
length m has on performance. Instead of drawing vector lengths from a Zipf distribution, we
let all subvectors be some length 1, except for a single subvector, randomly positioned in the
set of subvectors, with length ¢ym. This configuration generates the worst case load imbalance
for a given value of 9, since all subvectors are the same length except for one. We examined six
different mapping strategies.

1. Flattened. The simple flattened approach applies the flattening transform without paral-
lel primitive fusion.

2. Fused Flattened. The fused flattened approach applies the flattening transform with par-
allel primitive fusion

3. Direct Block. This direct approach maps nested parallel primitives to a small group of
SIMD vectors. This approach corresponds to the direct approach used in the previous
section.

4. Direct Warp. This direct approach maps nested parallel primitives to SIMD vectors. The
current Copperhead compiler does not consider this level of the parallelism hierarchy
when mapping, but we include results for this approach for completeness.

5. Direct Thread. This direct approach maps nested parallel primitives to sequential loops,
running in parallel.

6. Uniform. This direct approach, valid onlywhen ¢ = 1, maps nested parallel primitives to
sequential loops, running on a transposed uniform data structure. In other words, com-
putations are mapped to the same parallelism hierarchy as the Direct Thread approach,
but they operate on a transposed data structure, which greatly improves performance.

When considering how these various strategies will perform, we note the following. The flat-
tened mapping approaches should perform equivalently regardless of SIMD width or subvec-
tor length, and we expect the fused flattened approach to perform better than the flattened

S7

Performance vs. Subvector Length

70
60 o X X X X
R s TN e,
@ 50 \‘\"«*" ’ R R ».“ A X
~ b4 ; e ¥ Flattened
g 40] 2 Fused flattened
% Direct Block
= c X Dj
= 30 Direct Warp
&) r ® Direct Thread
% 20 ®w ¢ Uniform
>
10 459
(U

0 100 200 300 400 500
Minimum Subvector Length

Figure 4.22: Performance comparison of nested parallelism mapping strategies, p = 1

approach, since it saves synchronization and bandwidth compared to the simple flattened ap-
proach. The Uniform direct approach should perform the best, and is in fact what most pro-
grammers would implement for a uniform computation, when it is known a priori that there
is no load imbalance. The Direct Thread approach should perform the best for very short
subvectors: for longer subvectors its performance will suffer due to ineflicient use of mem-
ory bandwidth, since each sequential loop will be accessing progressively less contiguous re-
gions of memory as subvector lengths increase, when implemented on a SIMD machine. This
degrades performance, since the memory controller will be pulling in complete cache lines,
but the program will only be using a fraction of the data in each cache line, effectively wast-
ing memory bandwidth. Since many programs are memory bandwidth limited, this will be a
major performance limitation. For short subvectors, this effect will not be important, and per-
formance will approach the uniform direct approach, but for longer subvectors, performance
will be poor. The direct warp and direct block approaches will perform well for longer subvec-
tors, but performance will suffer as subvector length shrinks. The direct warp approach should
perform better than the direct block approach for shorter subvectors, since the warp is a single
SIMD vector, as opposed to a collection of multiple SIMD vectors, and therefore its natural
vector length is smaller.

Figure 4.22 shows the performance as a function of subvector length for these various map-
ping strategies, for iy = 1. As expected, the direct uniform approach is fastest, regardless of
SIMD width. The various direct mapping approaches make sense for m > 50 or so, which
makes sense given that the natural SIMD vector length of this machine is 32. The direct thread

S8

Performance vs. Subvector Length

70
60 X X x x X x X x X %
X XielX ‘ A TTIR 5 9 40 0. 40 N
" 50 - . A e e o
E .‘ o el ¥ Flattened
o) 40 S g Fused flattened
= 30 } ’ st X Direct Block
E; ° ? * Direct Warp
% 20 %S ot ® Direct Thread
‘.
10 E ‘y"
O ‘ T T T T T

0 100 200 300 400 500
Minimum Subvector Length

Figure 4.23: Performance comparison of nested parallelism mapping strategies, i = 10

Performance vs. Subvector Length

70

§ ¢ " Flattened

o) Fused flattened
el * Direct Block
% * Direct Warp

% ® Direct Thread

0 i * * * * *
0 100 200 300 400 500
Minimum Subvector Length

Figure 4.24: Performance comparison of nested parallelism mapping strategies, ¢ = 100

59

Performance vs. Subvector Length

@

E ¥ Flattened

) Fused flattened
— * Direct Block
E; _ X Direct Warp

= . ® Direct Thread
7]

O T T T T T
0 100 200 300 400 500

Minimum Subvector Length

Figure 4.25: Performance comparison of nested parallelism mapping strategies, iy = 1000

Performance vs. Subvector Length

&% ® Direct Thread

30
25 E
®» 20 N o X
E & XL =3 ¥ Flattened
o) X Fused flattened
| * Direct Block
EB * Direct Warp
=N
7,

0 100 200 300 400 500
Minimum Subvector Length

Figure 4.26: Performance comparison of nested parallelism mapping strategies, 1y = 10000

60

Performance vs. Subvector Length

25

20
2 ® Flattened

1 attene
g S Fused flattened
.| P * Direct Block
% 10 & * Direct Warp
¥ X ® Direct Thread
75}

0 100 200 300 400 500
Minimum Subvector Length

Figure 4.27: Performance comparison of nested parallelism mapping strategies, iy = 100000

approach performs well only when m < 10. In this figure, ¢ = 1, which enables the uniform
direct approach. This important special case is only available because we use a direct mapping
strategy as opposed to the flattening transform. In order to achieve performance comparable
to handwritten efficiency code, the direct mapping strategy is essential.

Figure 4.23 shows the same curves for iy = 10. The uniform direct approach is not longer
applicable, but the direct mapping approaches are best for all subvector lengths except a narrow
range, where 10 < m < 50. The same observation holds true for Figure 4.24, where the load
imbalance factor ¥ = 100.

Figure 4.25 examines these strategies for y = 1000. At this more significant load imbal-
ance factor, the observations made earlier do not hold. In particular, the direct warp strat-
egy becomes less attractive compared to the direct block strategy. The direct warp strategy
is less efficient because the hardware scheduler on the GTX 480 schedules groups of SIMD
vectors, not SIMD vectors themselves. In the presence of significant load imbalance, mapping
strategies that target the SIMD vector directly incur extra load imbalance overhead that can-
not be compensated for by the hardware work distributor. Accordingly, the outlier subvector
tends to dominate, leading to poor performance. At load imbalance factors of p = 10000 and
¥ = 100000, this phenomenon intensifies, as shown in Figure 4.26 and Figure 4.27. Once
the load imbalance factor becomes extreme, with ¢ > 1000, none of the direct mapping ap-
proaches perform well, regardless of mapping strategy.

Summarizing, we find that even when considering SIMD eftects, for problems with moder-
ate load imbalance, direct approaches are usually better than flattened approaches. Flattening

61

transforms are most useful for problems where subproblem size does not map well onto the
SIMD vectors of the target platform, or for where load imbalance is extremely high.

4.6.3 Summary

These results quantify our intuition expressed earlier. The combination of a hardware work
distributor for dynamicload balancing, as well as a programming model that encourages over-
subscription of the machine with very small tasks, which are then scheduled dynamically to
work around load balancing problems, does much to mitigate load imbalance problems.

These results may be unexpected for programmers used to targeting CPUs without hard-
ware work distributors. If the programming and execution model can't efficiently support the
creation and execution of thousands of small tasks, load imbalances are more prominent [58].
On the other hand, we show that architectures that exploit fine grained parallelism and efh-
cient work distribution can handle significant load imbalances without severe performance
degradation.

Summarizing, we choose not to employ the flattening transform for two reasons: first, it
is not necessary for many computations, given hardware load balancing, and second, it costs
significant performance compared with the direct mapping strategy. The flattening transform
is still useful: there are real-world problems with extreme load imbalance, or subproblems that
don’t map well to SIMD execution units. These problems require the flattening transform in
order to perform efficiently. However, its usefulness on hardware platforms like GPUs is more
limited than in past data parallel compiler efforts, and we believe it should be employed un-
der programmer direction, rather than being used indiscriminately to implement all forms of
nested parallelism. Direct mapping approaches are required in order to achieve performance
competitive with hand-written efhciency code.

4.7 Scheduling Methodology

Our compiler thus performs a static mapping of nested programs onto a parallelism hierarchy
supported by the target parallel platform.

Returning to our spmv_csr example being compiled to the CUDA platform, the map within
itsbody will become a CUDA kernel call. The compiler can then choose to map the operations
within spvv to either individual threads or individual blocks. Which mapping is preferred is in
general program and data dependent; matrices with very short rows are generally best mapped
to threads while those with longer rows are better mapped to blocks. Because this information
is not in general known until run time, we currently present this decision as an option that can
be controlled when invoking the compiler. The programmer can arrange the code to specify
explicitly which mapping strategy is preferred, an autotuning framework can explore which is
better on a particular machine, or a reasonable default can be chosen based on static knowledge
(if any) about the problem being solved. In the absence of any stated preference, the default is
to map nested operations to sequential implementations.

62

4.8 Phase Analysis and Scheduling

In this section, we define the phase analysis and scheduling procedures used to discover op-
portunities for fusion and mapping of a computation to the parallel hierarchy provided by a
target platform.

4.8.1 Phase Analysis

Phase analysis discovers where synchronization points are required in the program due to data
access pattern. Portions of the computation that can be performed without synchronization
are then candidates for fusion. To perform phase analysis, we view procedures in the program
as data dependence graphs, and derive the set of edges in the graph that require synchroniza-
tion.

Let O be the set of data parallel operations supported by the language, such as map, reduce,
scatter, and so forth, such as those defined in Chapter 3.

Let P be the set of levels in the parallel hierarchy described by the machine. In this work,
we consider the virtualized parallel hierarchy presented by the efhciency programming en-
vironments OpenCL [84] and CUDA [67], which is shown in Table 4.2. This hierarchy is
closely related to the hardware parallelism hierarchy shown in Figure 2.4, with two important
differences. Firstly, it is virtualized, meaning that the number of computations expressed at
each level of the virtualized parallel hierarchy need not correspond to the physical parallelism
available on the parallel platform. When more parallelism is expressed than the hardware can
accomodate, the hardware and efficiency runtime are responsible for looping over the paral-
lelism expressed in the program, using the resources of the processor. Secondly, although the
hardware has four levels (Chip, Core, SIMD Vector, SIMD Lane), the virtualized hierarchy has
only three levels (Distributed, Block, and Sequential). The Distributedlevel corresponds to dis-
tributing computation across the cores of the chip. The Block level corresponds to execution
via teams of threads that can synchronize and communicate arbitrarily, which corresponds to
a single core of the chip. The Sequential level corresponds to execution by a single SIMD lane
on the chip. The SIMD Vector level, which is part of the physical parallelism hierarchy, is not
directly exposed by these efficiency programming environments. Although programmers can
target it, as we have in Section 4.6.2, targeting SIMD vectors directly using these programming
models leads to brittle and poorly supported code, and is conceptually an optimization due
to hardware limitations that prevent efficient execution with minimal sized computations at
the Block level. Accordingly, our compiler does not target a notional level of the parallelism
hierarchy that would correspond to SIMD Vectors. Still, we find that targeting the parallelism
hierarchy provided by CUDA and OpenCL allows us to achieve high efficiency.

Other parallel hierarchies are possible, for example, a clustered architecture with multiple
sockets might introduce higher levels in the hierarchy, which would describe how computa-
tions are mapped onto the cluster. We could also target SIMD vectors directly; although they
are not part of the parallel hierarchy explicitly exposed in OpenCL or CUDA, they are exposed
by the hardware, and can be exploited for better performance in some situations, as we illus-
trated in Section 4.6.2.

63

Element of P Description

Distributed Computation is distributed across a chip

Block Computation is performed in parallel by
small teams of work-items or threads
Sequential Computation is performed in a sequential loop

inside a work-item or thread

Table 4.2: The parallel hierarchy P provided by OpenCL and CUDA

The Copperhead compiler allows the programmer to specify a parallel hierarchy to be tar-
geted, by selecting levels of the hierarchy that the computation should be mapped to. Cur-
rently, the compiler can target two parallel hierarchies. First, the default hierarchy is the
{Distributed, Sequential} hierarchy, where the outermost level of data parallel operations is
distributed across cores of the chip, and the inner levels are sequentialized and executed on
the SIMD lanes of the processor. Second, the programmer can choose to compile to the
{Distributed, Block} hierarchy, where the outermost level is again distributed across cores of
the chip, and inner levels are executed cooperatively by teams of SIMD vectors.

Once the procedures have been transformed into normalized form, each procedure can
then be represented as a directed acyclic graph that will be executed on a unique level of the
parallelism hierarchy. We define the graph as a set of nodes and edges:

G=(N,¢E)

e N is the set of data parallel operations in the data dependence graph. Each operation
n € N is described by a tuple (n,,1,) € O x P. n, represents the kind of operation
performed in 7, and 1), represents the level of the parallel hierarchy to which the proce-
dure has been mapped. 1, will be identical for all nodes in a given procedure, since the
program is in canonical form.

e & represents the data dependences in the program. An edge from operation 7; to oper-
ation 1; represents a data dependence between operation ; and 1;. Because our proce-
dures are in normalized form, each edge corresponds to a unique identifier in the proce-
dure. Each dependencee € £ islabeled withatuple (e;, ec, e5) € {False, True} x C x D.
ep represents the presence or absence of synchronization between the producer and con-
sumer operations. Computing e, is the goal of phase analysis, or in other words, to dis-
cover the synchronization points in the data dependence graph. e, represents the com-
pletion of the identifier, as produced by operation ;. e, represents the directionality of the
identifier, as produced by operation ;. We will define the completion and directionality
spaces next.

The completion space is a totally ordered set C, where each ¢ € C represents a completion
state. We use a very simple completion space: C = {None, Local, Global}, ordered as written,
with the following meanings:

64

e None: The variable is not completed. For inputs to data parallel operations, this means
that no completion is required in order for the operation to proceed. This is true, for
example, for functional arguments, which are statically defined at code generation and
compilation time, and therefore do not need to be computed. For outputs from data
parallel operations, this means the result of the operation is not completed without a
synchronization. For example, the result of a reduce requires a synchronization in order
to be completed. Similarly, the result of a scatter requires a synchonization in order to
be completed.

e Local: The variable is completed locally with respect to the iteration structure it is com-
posed in. For inputs to data parallel operations, declaring the completion as local is a
strong assertion: it means that the data parallel operation will not access any element of
that input except the current element defined by the iteration structure of the level of
the parallel hierarchy is composed in. For example, all explicit inputs to a map operation
require [ocal completion, which follows from the definition of map. For outputs from
data parallel primitives, local completion means that the result is produced element by
element with respect to the iteration structure it is composed in. For example, the result
of amap operation is produced with local completion.

e Global: The variable is globally completed. For inputs to data parallel operations, global
completion means that the operation needs random access to the input’s data - or in
other words, the data must be globally completed before the operation can be per-
formed. For outputs from data parallel operations, global completion means the result
can be utilized without any additional synchronization, regardless of the computation
that may be utilizing the result.

In addition to defining a completion space, we also define a directionality space, which is
the set D = {None, Backward, Forward}, with the following meanings:

e None: No directionality. Variables that are produced and consumed in parallel contexts
are labeled with this directionality, as are variables produced and consumed in sequential
contexts that do not depend on the directionality of the underlying sequential context.
For example, the inputs and outputs of map have None directionality.

e Backward: Backward directionality. This is used for variables that are produced or con-
sumed from element n — 1 to element 0 in a sequential context. For example, the input
and output of a sequential rscan operation, which executes a reverse prefix-sum opera-
tion, both have Backward directionality.

e Forward: Forward directionality. This is used for variables that are produced or con-
sumed from element 0 to element 7 — 1 in a sequential context. For example, the input
and output of a sequential scan operation both have Forward directionality.

To perform phase analysis, all inputs to the procedure are initialized as having Global com-
pletion and None directionality. We then traverse the graph in a breadth first manner. At each
node 7, we examine the completion and directionality requirements of each input to 1, given

65

Primitive Input Completion Output Completion Input Directionality Output Directionality
map (N,L,...,L) L (N,...,N) N
reduce (N,L,G) N (N,N,N) N
scan (N,L) N (N,N,N) N
rscan (N,L) N (N,N,N) N
gather (G,L), L (N,N) N
scatter (L,L,G) N (N N,N) N

Table 4.3: Completion and Directionality types for selected data parallel primitives at the Dis-

tributed Level
Primitive Input Completion Output Completion Input Directionality Output Directionality
map (N,L,...,L) L (N,...,N) N
reduce (N,L,G) N (N,N,N) N
scan (N,L) N (N,F,N) F
rscan (N,L) N (N,B,N) B
gather (G,L), L (N,N) N
scatter (L,L,G) N (N,N,N) N

Table 4.4: Completion and Directionality types for selected data parallel primitives at the Se-
quential Level

66

the level of the parallelism hierarchy that 7 has been assigned to. These requirements are given
by a lookup table described as a function of n, and 1, which describes completion and di-
rectionality requirements for every input to node 1, as well as the completion and direction-
ality of the output of node n. For each input edge e to 1, we lookup n,, and n,, the comple-
tion and directionality requirements for the corresponding input to node n. Ife. < n,, or
(ne, # None) A (eg # ne,), then we mark e, = True, recording that a synchronization is re-
quired. These two considerations guarantee that we are accessing all inputs to an operation in
a way that is consistent with the iteration structure provided by the corresponding level of the
parallelism hierarchy, which then potentially removes the need for synchronization.

Phase analysis is related to the construction of a fusion graph in classical loop fusion
approaches[51]. A fusion graph is a graph where nodes represent loop nests, and edges rep-
resent dependences between loops. When constructing a fusion graph, loops are examined
for compatible headers, which must have exactly the same number of iterations. Loops with
incompatible headers are marked with fusion-preventing edges, which are similar to synchro-
nization points in our formulation. Loops with no loop-carried dependences are marked as
parallel, and loops with data dependences are marked as sequential. The goal of phase analysis
similar, since it constructs graphs where nodes represent data parallel operations, and edges
represent dependences, a subset of which are marked as requiring synchronization, which is
similar to a fusion-preventing edge.

Phase analysis differs in several ways from constructing fusion graphs for loop nests in sev-
eral ways. First, phase analysis operates on data parallel operators, instead of loop nests. We
discover synchronization points, which are similar to fusion-preventing edges in a loop fusion
graph, by checking whether the completion and directionality types of data parallel operators
are compatible. Loop fusion performs a similar operation by enforcing that loop headers are
compatible. Checking the compatibility of completion and directionality types is alooser con-
straint that takes advantage of the more constrained kinds of loops used to implement data
parallel computations. This allows more operations to be fused than would be allowed in a
classical loop fusion operation. For example, we are able to fuse map operations of different
lengths together, and we are able to fuse a sequential map operation with a sequential rscan
operation, both of which would have fusion preventing edges in a classical loop fusion graph.
This improves performance. Additionally, classical loop fusion distinguishes only between se-
quential and parallel loops, and is not designed for fusing nested loops together. We allow
data parallel operations to be mapped to many iteration structures, corresponding to the var-
ious levels provided by the parallelism hierarchy of a particular machine, and we fuse them at
all levels of the hierarchy. This is important for performance.

4.8.2 Phase Scheduling

After data dependences are recorded, we traverse the graph by breadth first search, labeling
each node n with the number of synchronizations required to reach n. Nodes with identical
labels are collected and placed in a phase, ordered according to the ordering present in the data
dependence graph, which represents a computation that can be performed without any syn-
chronization at the given level of the parallelism hierarchy. This performs data parallel primi-

67

@cu
def foo(x, y):

a = map(bar, x)

b = map(baz, y)

c = permute(a, b)
d = permute(x, y)
e = map(c, d)
return e

Figure 4.28: Simple flat data parallel example

tive fusion.

Itisimportant to note that phase scheduling can be considered as an optimization problem,
since fusion doesn’t affect program semantics, once we have performed phase analysis. From
the set of all nodes with identical labels, we can choose which to fuse, and which not to fuse.
If there are k nodes with the same level, an exhaustive exploration of potential legal fusions
would require considering all 2% choices. Examining the ramifications of performing fusion
can be complex, since fusion affects the working set of a computation in non-trivial ways. De-
pending on how much commonality can be extracted from the fused set of computations by
the efficiency compiler, it is difficult to know a priori what the performance implications of a
fusing a particular choice of nodes would be. Since the cost of not fusing operations is so high,
as we established in Section 4.4.1, we employ a maximalist heuristic that fuses as many nodes
together as possible. For many programs, this appears to be the correct choice, as shown in
Chapter 6 although future work should investigate this further.

4.8.3 Phase Analysis and Scheduling Example

As an example, consider the following simple example problem, shown in Figure 4.28, with its
accompanying data dependence graph, shown in Figure 4.29.

After phase analysis, two synchronization points are found, and are marked in Figure 4.30,
with bars across the edges where synchronization is required. Phase scheduling then discov-
ers the four operations that can be performed without any synchronization, which are fused
together in phase 0. For example, we discover that the computation of a, b, ¢, and d can all be
performed in one fused primitive, without synchronization. One synchronization is required
before we use c and d in the computation of e. The final map operation is placed in phase 1.

This procedure has drastically reduced the number of synchronization points: instead of
having a synchronization after every data parallel operation, which would create five synchro-
nization points, phase analysis and scheduling has reduced the number of synchronization
points to two.

permute

return

Figure 4.30: Analyzed and Scheduled data dependence graph for code in figure 4.28

68

69

@cu
def vadd(x, y):
return map(op_add, x, y)

@cu

def foo(A, B):
X map (vadd, A)
Y map(vadd, B)

Figure 4.31: Unfused primitives

4.8.4 Limitations

This scheme finds opportunities for fusion within a single procedure. Because we have per-
formed inlining during normalization, opportunities for fusion across procedures are often
exposed in the data dependence graph and can be exploited by this procedure. However, our
inlining is incomplete, and will not necessarily find all opportunities for fusion.

For example, Figure 4.31 shows a simple procedure where our phase analysis and schedul-
ing would not find an opportunity for fusion. The two calls to map in foo would be fused to-
gether. Assume they have been mapped onto the distributed level of the parallelism hierarchy.
Then their calls to vadd will be mapped to a lower level of the parallelism hierarchy, assume
the sequential level. It turns out that both calls to vadd could be fused at the sequential level,
thus creating only a single data parallel primitive at both the sequential level as well as the dis-
tributed level. However, our inlining procedure during normalization is not sufficient to ex-
pose both calls to vadd as operations that could be fused, and so the compiler will generate
two sequential loops, even though the computation could be implemented with only one.

In general, to do this would require performing phase analysis and schedulinglevel by level,
proceeding from the highest level of the parallel hierarchy to the lowest level. At each level,
after performing phase analysis and scheduling, we would discover the primitives that will be
fused together at that level. These primitives may themselves contain nested data parallel oper-
ations. All nested data parallel operations from primitives that have been fused together would
then be aggregated into a new procedure, which would then be analyzed as we have outlined.
This would expose opportunities for fusion across procedural boundaries throughout the par-
allelism hierarchy, unlike our current solution, which only finds opportunities for fusion across
procedural boundaries at the outermost level of nested parallelism, due to the way our inlining
works during normalization of the program. Currently, we do not perform this optimization,
which is left to future work.

4.9 Using On-chip Memories

Highly parallel microprocessors stress the memory subsystem and are often bottlenecked by
data transfer times. To mitigate data transfer times, they typically have hierarchical on-chip

70

@cu
def dot(x, y):
return sum(map(op_mul, x, y))

@cu
def onchip(nested, reused):
def foo(item):
return dot(item, reused)
return map(foo, nested)

Figure 4.32: Closed over data may be intensively reused

memory subsystems, composed of progressively smaller amounts of memory that can be ac-
cessed quickly at high bandwidth. Using on-chip memory effectively is often key to perfor-
mance. In this section, we discuss how the Copperhead compiler identifies opportunities for
using on-chip memory and then takes advantage of it.

On-chip memory is useful to communcate and synchronize independent threads. For ex-
ample, consider a reduction tree, where independent threads are reducing an array of data
down to a single element, by applying an associative reduction operator. By using on-chip
memory to communicate partial reduction results between threads as they cooperate to exe-
cute the reduction tree, the computation avoids moving data on and off chip. This usage of
on-chip memory is captured in Copperhead through the use of data parallel primitives that
encapsulate these patterns. Concretely, primitives like reduce, sum, scan, and so on will use
on-chip memory to coordinate their execution.

Another use case for on-chip memory is as a bandwidth multiplier for data that is inten-
sively reused by many threads. The Copperhead compiler supports this case through closure
analysis.

Consider the code in Figure 4.32. onchip computes many dot products, one for each sub-
sequence in nested, and all against the variable reused. If reused is small enough to fit in an
on-chip memory structure, it may be beneficial to do so, since all instantiations of foo are go-
ing to read the data in reused. In other words, reused is being broadcast to all instantiations
of nested.

In Copperhead code, this broadcast/reuse pattern is easy to identify through a simple clo-
sure analysis. During normalization of the call to onchip, the compiler identifies that reused
has been closed over and used in foo. The fact that foo is used in a closure that is used in a
map operation means that the data closed over is being broadcast to all instantiations of foo. In
fact, closing over data in this manner is the only mechanism by which Copperhead programs
can broadcast data, since the semantics of map mean that every data argument to map is deref-
erenced and operated on independently. If the operation being performed in a map requires
some data that is the same for all instantiations of map, the only way to effect this is to close
over that data. Closing over data makes the broadcast obvious to the compiler, and therefore
the compiler can examine data being closed over for placement in on-chip memory.

71

» x = [0, 1, 2, 3]
»y = [2.3, 4.7, 1.2, 3.4]
» soa = zip(x, y)

» print soa

» [(0, 2.3), (1, 4.7), (2, 1.2), (3, 3.4)]
» print soa.type

» Seq(Tuple(Int, Double))

Figure 4.33: Creating an Array of Structures

We use the result of shape analysis, outlined in Section 4.3, to discover the shape of all data
that has been closed over. We unify general types derived from type inference with the con-
crete datatypes presented to the current instantiation of the procedure, in order to discover
the size in bytes of elements in data that has been closed over. We then proceed to greedily
pack closed over data into on-chip memory based on its size. Choosing which data should
be placed in on-chip memory is done in a platform independent way in the mid end of the
compiler, which has a simple model of how large the L1 cache or scratchpad of each core is on
the target platform, and can then mark which variables should be transferred to L1 cache or
scratchpad memory. The back end, where platform specific code generation takes place, takes
care of actually transferring marked data into the on-chip memory structures.

Using on-chip memory can significantly improve performance. For example, a Copper-
head program performing Support Vector Machine Training, detailed in Chapter 6, saw aver-
age performance improve from 37 GFLOP/s to 75 GFLOP/s, thereby doubling performance.

There are potentially other ways the Copperhead compiler could use on-chip memory,
which remain future work. Still, the combination of on-chip memory usage during data paral-
lel primitive evaluation, coupled with closure analysis to identify intensively reused data, pro-
vides the Copperhead compiler with some ability to use on-chip memory, which has impor-
tant performance benefits.

4.10 Structures of Arrays

The Copperhead language allows the programmer to create arrays of structures using zip,
which combines several arrays into a single array of structures. Figure 4.33 shows how to create
an array of structures using zip. It is well known that for SIMD architectures, the structure of
arrays data layoutis usually more efhicient, because adjacent SIMD lanes can load adjacent data
elements in a structure of arrays layout, while in an array of structures layout, adjacent SIMD
lanes load strided data elements.

Accordingly, the Copperhead compiler has the freedom to use the array of structures lay-
out internally, even if the programmer has used zip to create a structure of arrays in their code.
Choosing data layouts can be a complicated problem. In this case, we employ a simple heuris-

72

tic: internal, temporary variables created by the Copperhead compiler are always created in an
structure of arrays format. If they are used as a structure of arrays, the Copperhead compiler
translates loads from the data structure into multiple loads from the several component arrays
in a structure of arrays format. For results that are returned to the user, the compiler must in-
sert transposition code necessary to transform a structure of arrays into an array of structures.
However, in many cases this is not necessary, since the array of structures is only used tem-
porarily, in which case it need never to be constructed, and the call to zip performs no work.
This is also important to efficiency.

4.11 Conclusion

In this chapter, we have discussed techniques for embedded data parallel compilation. We
outlined how to normalize Copperhead programs into a form where analysis and compiler
transformations are easily done. We discussed the need for data parallel primitive fusion, as
well as the motivations for direct mapping strategies for data parallel primitives, in lieu of the
flattening transform. We explained our shape analysis system, which derives shapes of various
data elements in a program, which is necessary in order to preallocate space for results, which
is essential for primitive fusion. We detailed our phase analysis and scheduling procedure,
which restructures a computation into fused phases that proceed without synchronization,
thus greatly increasing efficiency. The remaining task, then, to create a working programming
environment, is to create a runtime that efficiently embeds this language and compiler into a
productivity language. We discuss this task in the following chapter.

73

S THE COPPERHEAD RUNTIME

In this chapter, we discuss how C++ code generated by the compiler is compiled and exe-
cuted, as well as the data structures employed by the Copperhead runtime. These details are
important for two reasons. First, the techniques we presented in the previous chapter are not
sufficient to guarantee efficient code execution; details of data structures and code generation
are also critical to efficiency. Second, a naive embedding of a dynamically generated efficiency
layer code in a productivity language has the potential to overwhelm extra performance from
parallel execution with extraneous compilation, data marshalling, and binding overheads. We
show that with careful attention to implementation, binding dynamically generated efficiency
layer code with a productivity language can be done efficiently. We do this through runtime
static compilation, which allows us to amortize compilation overhead across many calls to the
same procedure, despite the fact that we are compiling at runtime. Additionally, we explain
how the Copperhead runtime is envisioned to operate on systems without access to compil-
ers, which has special importance in mobile computing.

5.1 CUDA C++ BackEnd

Figure 4.1 describes the flow of the Copperhead compiler. Chapter 4 detailed the front end
and mid end of the compiler, and in this section we discuss the back end of the Copperhead
compiler, which lowers the mapped and scheduled AST generated by the mid end into plat-
form specific code. The mapped and scheduled AST for our spmv_csr example is shown in
Figure S.1. The compiler has scheduled spmv_csr to the Distributed level of the parallelism hi-
erarchy, and spvv to the Sequential level of the parallelism hierarchy. As previously mentioned,
we currently have a single back end that generates code for the CUDA platform. Figure 5.2
shows an example of such code for our example spmv_csr procedure. It consists of a sequence
of function objects for the nested lambdas, closures, and procedures used within that proce-
dure. The templated function spmv_csr_phase® corresponds to the one and only Distributed
phase of the computation, which is invoked by the C++ implementation of the Copperhead
entry point procedure spmv_csr. The C++ interface will be called from Python, and ultimately
will be responsible for converting Python data structures into C++ data structures and vice
versa.

Not shown here is the host code that invokes the parallel kernel. It is the responsibility of
the host code to marshal data where necessary, allocate any required temporary storage on the

74

def _lambda@(Aij, xj):
return op_mul(Aij, x3j)
def spvv(Ai, j, _Ko):
z0 = gather(_Ko, j)
tmp® = map(_lambda®, Ai, z9)
return sum(_e@)
def spmv_csr_phase@(x, A _columns, A values):
return map(closure([x], spvv), A_values, A_columns)
def spmv_csr(A_values, A_columns, Xx):
return spmv_csr_phase@(x, A_values, A_columns)

Figure S.1: Normalized, scheduled output of Mid-end compiler

GPU, and make the necessary CUDA API calls to launch the kernel. We discuss the host code
in more detail in Section S.2.

We generate templated CUDA C++ code that makes use of a set of templatized sequence
types, such as stored_sequence and nested_sequence types, which hold sequences in mem-
ory. Fusion of sequential loops and block-wise primitives is performed through the construc-
tion of compound types. For example, in the spvv functor shown in Figure 5.2, the calls to
gather and transform perform no work. Instead they construct gathered_sequence and
transformed_sequence structures that lazily perform the appropriate computations upon
dereferencing. Work is only performed by the last primitive in a set of fused sequential or
block-wise primitives. In this example, the call to seq: : sum introduces a sequential loop that
then dereferences a compound sequence, at each element performing the appropriate com-
putation. When compiling this code, the C++ compiler is able to statically eliminate all the
indirection present in this code, yielding machine code that is as efficient as if we had gener-
ated the fused loops directly.

We generate fairly high level C++ code, rather than assembly level code, for two reasons.
First, existing C++ compilers provide excellent support for translating well structured C++ to
efhicient machine code. Emitting C++ from our compiler enables our compiler to utilize the
vast array of transformations that existing compilers already perform . More importantly, it
means that the code generated by our Copperhead compiler can be reused in external C++
programs. Systems like Copperhead enable developers to prototype algorithms in a high-level
language and then compile them into template libraries that can be used by a larger C++ ap-
plication, which is an important usage scenario.

5.2 Runtime

Copperhead code is embedded in standard Python programs. Python function decorators
indicate which procedures should be executed by the Copperhead runtime. When a Python
program calls a Copperhead procedure, the Copperhead runtime intercepts the call, compiles

75

struct lambda@ {
template<typename _a > __device__
_a operator()(_a Aij, _a xj) { return Aij * xj; }

s

struct spvv {

template<typename _a > __device__

_a operator()(stored_sequence<_a> Ai,
stored_sequence<int> j,
stored_sequence<_a> _ko) {

gathered<...> z0 = gather(_ko, j);
transformed<...> tmpo =

transform<_a>(lambda@ (), Ai, z0);
return seq::sum(tmpo@);

s

template<typename T2>
struct spvv_closurel {
T2 ko;
__device__ _spvv_closurel(T2 _ko) : ke(_keo) { }

template<typename TO, typename T1> __device__
_a operator()(TO argod, T1 argl) {
return spvv()(argo, argl, keo);

s

template<typename _a > __device__
void spmv_csr_phase@(stored_sequence<_a> X,
nested_sequence<int,1> A _columns,
nested_sequence<_a, 1> A_values,
stored_sequence<_a> _return) {
int i = threadIdx.x + blockIdx.x*blockDim.x;

if(i < A_values.size())
_return[i] = spvv_closurel<_a>(x)(A_values[i],
A_columns[i]);

extern ”C” __global__ void spmv_csr_kernel@_int(...) {
// (1) Wrap raw pointers from external code
// into sequence structures.

// (2) Invoke the templated entry point
spmv_csr_phase@(x, A_columns, A_values, _return);

Figure 5.2: Sample CUDA C++ code generated for spmv_csr. Ellipses (...) indicate incidental
type and argument information elided for brevity.

76

the procedure, and then executes it on a specified execution place. The Copperhead runtime
uses Python’s introspection capabilities to gather all the source code pertaining to the proce-
dure being compiled. This model is inspired by the ideas from Selective, Embedded, Just-In-
Time Specialization [13].

The Copperhead compiler is fundamentally a static compiler that may be optionally in-
voked at runtime. Allowing the compiler to be invoked at runtime matches the no-compile
mindset of typical productivity-level programmers. However, the compiler does not perform
dynamic compilation optimizations specific to the runtime instantiation of the program, such
as treating inputs as constants, tracing execution through conditionals, and so on. Forgoing
these optimizations enables the results of the Copperhead compiler to be encapsulated as a
standard, statically compiled binary, and cached for future reuse or incorporated as libraries
into standalone programs that are not invoked through the Python interpreter.

Consequently, the runtime compilation overhead we incur is analogous to the build time
of traditional static compilers, and does not present a performance limitation. The Copper-
head compiler itself typically takes on the order of 300 milliseconds to compile our example
programs, and the host C++ and CUDA compilers typically take on the order of 20 seconds
to compile a program. Both of these overheads are not encountered in performance critical
situations, since Copperhead’s caches obviate the need for recompilation. The actual runtime
overhead, compared with calling an equivalent C++ function from within C++ code, is on the
order of 100 microseconds per Copperhead procedure invocation. We detail these overheads
in Section S.5.

Copperhead’s CUDA runtime generates code to implement a computation in three sepa-
rate parts:

1. Asetof CUDA C++ kernels that represent the different parallel phases of the procedure,
as well as a C++ function that invokes those kernels and allocates data for temporary
variables.

2. A C++ wrapper that provides an interface to the computation suitable for calling from
Python.

3. A Python driver procedure that is responsible for allocating data for results that will be
visible to the host Python program, as well as calling the C++ implementation.

5.2.1 Runtime Static Compilation

The resulting C++ and CUDA code is compiled using standard C++ and CUDA compilers,
linked together, and loaded into the Python interpreter. A naive implementation of such a
system would create significant runtime overheads due to repeated compilation steps, as well
as the bindings between C++ and Python. This would significantly diminish the utility of a
programming environment such as Copperhead. However, these overheads can be mitigated
through careful engineering, as we show.

Figure 5.3 shows a flowchart of the runtime compilation system we employ. A Copper-
head function object is a Python callable object, created by decorating a Python function

77

Copperhead Function
Object Call

> Localize Data

!

Allocate Return
Results

)

Yes

Load Binary

Figure 5.3: Runtime Compilation

with the @cu function decorator. When a Copperhead function object is called, the function
object first checks a runtime cache to see if a binary appropriate for that function call is avail-
able and loaded into the Python interpreter. If so, the binary will be called directly. The first
step is to localize all input data to the function, making sure that it exists on the place where
the binary will execute. We discuss execution places in Section 5.2.2. Localizing input data
may involve data transfers and copies. Additionally, if data is provided to the Copperhead
runtime using Python data structures, such as lists or numpy arrays, the runtime converts them
to Copperhead data structures at this point, assigning all input data a Copperhead type and
allowing data to be managed between places by the Copperhead runtime. Once the data is
localized and converted to Copperhead data structures, the Copperhead function object calls
the Python procedure generated by the Copperhead compiler. The Python driver procedure
allocates return results using a memory pool to lower allocation overheads for repeated allo-
cations of similar sized objects. Allocating data in the Python driver procedure ensures that
the Python interpreter handles Copperhead data through the standard garbage collection fa-
cilities that Python programmers expect. The Python driver function then calls the compiled
C++ implementation of the Copperhead function, which allocates temporary variables and
steps through a sequence of CUDA kernel invocations. Results are returned directly.

78

Execution on GPU ©
with places.gpu@:
z = add_vectors(x, y)

Native Python execution
with places.here:
z = add_vectors(x, vy)

Figure S.4: Using Execution Places

If the runtime cache does not contain a compiled version of the Copperhead function, it
obtains the source code from the underlying Python description of the Copperhead function
using standard Python API calls for introspection, in this case inspect.getsource(). The
Copperhead compiler transforms this input code into the resulting Python, C++,and CUDA
code. Invoking the C++ and CUDA compilers is very expensive, so to avoid runtime com-
pilation costs, the compiled binaries are cached persistently on disk. After the Copperhead
compiler has generated C++ and CUDA code, it checks this persistent cache to see if com-
piled binaries are available. If so, it loads them into the Copperhead function object, and the
function call proceeds as if the procedure had been present in the runtime cache.

If neither the runtime cache nor the persistent cache contains a compiled binary for the
function, the Copperhead runtime invokes C++ and CUDA compilers to build a library object
that can be loaded into Python. Copperhead uses PyCUDA [54] and CodePy [5S5] to provide
mechanisms for compiling, persistent caching, linking and executing CUDA and C++ code.
The Copperhead runtime uses Thrust [43] to implement fully parallel versions of certain data
parallel primitives, such as reduce and variations of scan.

5.2.2 Places

In order to manage the location of data and kernel execution across multiple devices, the Cop-
perhead runtime defines a set of places that represent these heterogeneous devices. Data ob-
jects are created at a specific place. Calling a Copperhead procedure will execute a compu-
tation on the current target place. Figure 5.4 shows how the current target place is is con-
trolled via the Python with statement. Currently we support two kinds of places: CUDA ca-
pable GPUs and the native Python interpreter. Copperhead is designed to allow other types
of places, with corresponding compiler back ends to be added. For instance, multi-core x86
back end would be associated with a new place type.

To faciliate interoperability between Python and Copperhead, all data is duplicated, with
a local copy in the Python interpreter, and a remote copy that resides at the place of execution.
Data is lazily transferred between the local and remote place as needed by the program. This
eliminates extraneous copy overheads.

79

A= » [3.e]], [[], [4.0, 5.0]]]

A _desc_2 = [0, 2, 4]
A_desc_1 = [0, 2, 3>5]
A _data = [1.0, Zm

Figure S.5: Implementing an Arbitrarily Nested Sequence

5.3 Data Structures

As discussed in Chapter 3, Copperhead supports one-dimensional sequences in both flat and
nested forms, as well as tuples. The Copperhead runtime and compiler are free to implement
these data structures in ways that maximize performance. In this section, we discuss the vari-
ous data structures used to implement Copperhead sequences.

5.3.1 Arbitrarily Nested Sequences

Copperhead supports arbitrarily nested sequences with one restriction: all elements of a se-
quence must have the same type. For example, [1,2, 3] can be represented as a Copperhead
sequence with type Seq(Int). On the other hand, the list [1, 2, 3.0}, although a perfectly valid
Python list, cannot be represented as a Copperhead sequence, because not all subelements of
this list have the same type.

As a corollary to this restriction, the nesting depth of all subsequences must be the same,
since the nesting depth of a sequence is exposed in the type system. In other words, [[1, 2], [3]]
is representable in Copperhead, with type Seq(Seq(Int)). On the other hand, [[1, 2], 3] is not,
since the first element has type Seq(Int), while the second element has type Int.

Arbitrarily nested sequences make no restriction on the length of their subsequences.
For example, it is perfectly legal to have a sequence with type Seq(Seq(Int)) and shape
([21, ([*1, Unit)). The outer-most extent describes a one-dimensional sequence with two
elements. The inner-most extent is undefined, meaning that each of the two elements have dif-
ferent extents. For example, the first element could be a flat sequence of one million elements
and the second element could be an empty sequence.

Copperhead represents arbitrarily nested sequences using a generalization of the common
Compressed Sparse Row data structure for sparse matrices. The nested sequence is stored as
a single, contiguous flat sequence of data elements, along with a descriptor sequence for each
level of nesting. The descriptor sequences provide the necessary information to build a view
of each subsequence, including empty subsequences.

For example, consider a nested sequence with typeSeq(Seq(Seq(Int))) and shape
(21, ([21, ([*1,Unit))). Figure 5.5 shows such a sequence, along with the descriptor se-
quences and data sequence that Copperhead uses to represent this sequence.

Each element of a descriptor sequence points to the beginning of a subsequence, in either
the next descriptor sequence or the data sequence. The length of each subsequence can be de-

80

termined by subtracting adjacent elements in the descriptor sequence. An extraindexis added
to each descriptor sequence to make length calculations for the last subsequence the same as
all other subsequences. This data structure allows for arbitrary slicing and dereferencing in
constant time, which is important for performance.

This data structure is opaque to the programmer, who does not have access to the descriptor
sequence or the underlying flat data sequence.

In other words, arbitrarily nested sequences are represented using a flattened representa-
tion. Data parallel compilers that use the flattening transform also use similar flattened repre-
sentations. However, the fact that the data structure is flattened does not mean the computa-
tion operating on the data structure must also be flattened, as we discussed in Chapter 4.

The data structure we employ is flexible and can be implemented efficiently in C++, al-
lowing for arbitrary dereferencing and slicing in constant time. However, it is more flexible
than necessary for some applications, and this flexibility comes at an efliciency cost. Arbitrar-
ily nested sequences can not be physically transposed, because transposition would require
padding subsequences so that they are all the same length. This padding is not possible in gen-
eral, due to memory size restrictions. Consider an n-element nested sequence like those we
used in Section 4.6.2, where all subsequences are m elements long, except for one subsequence
with length ¢m. The storage required for the data sequence would then be (¢ +n — 1)m el-
ements. The transposed nested sequence would require mn elements of storage. The differ-
ence between the amounts of storage needed for these representations can be arbitrarily large,
depending on ¢, which is generally a data dependent factor. Consequently, transposing arbi-
trarily nested sequences is not practical.

Attaining efhcient performance sometimes requires using the transposed data structure,
depending on how the computation has been mapped to the parallelism hierarchy. Transpos-
ing the data structure enables adjacent SIMD lanes to load unit-strided data for certain map-
pings onto the parallelism hierarchy. This is essential for maximum performance on contem-
porary microprocessors. When adjacent SIMD lanes load unaligned, non-unit-strided data,
the memory subsystem operates inefhiciently, wasting memory bandwidth, which is often a
key performance bottleneck. Accordingly, the use of arbitrarily nested sequences should be
reserved for problems where the shape of the sequence is not uniformly nested, and the flex-
ibility is required. For the important special case where the programmer knows that the se-
quence is uniformly nested, Copperhead allows the use of a different data structure, which we
explain in the next section.

5.3.2 Uniformly Nested Sequences

Uniformly nested sequences are sequences where the shape is completely defined, or in other
words, all subsequences have the same shape. For uniformly nested sequences, a set of strides
and lengths are sufficient to describe the nesting structure; descriptor sequences are not re-
quired. Uniformly nested sequences also allow the data to be arbitrarily ordered, because
they are well defined under arbitrary transposition. When the Copperhead programmer cre-
ates a uniformly nested sequence, they either specify the data ordering or provide a tuple of
strides directly. This interface allows the programmer to express data layouts analogous to row-

81

and column-major ordering for doubly nested sequences, extending naturally to more deeply
nested sequences. The programmer may provide the strides directly, which allows the subse-
quences to be aligned arbitrarily, or the programmer may simply describe the ordering and the
shape of the nested sequence..

For example, consider the following uniformly nested sequence, with shape (3, (3, Unit)):

[11,2,3],4,5,6],[7,8,9]]

With the lengths defined as (3, 3), and the strides defined as (3, 1), the data will be laid out in
memory as:
1,2,3,4,5,6,7,8,9]

This layout is analogous to a row-major layout with no padding. With the strides defined as
(1,3), the data is laid out as:
[1,4,7,2,5,8,3,6,9]

With strides of (1,4), the data is laid out in memory as:
[1/ 4:/ 7/ *, 2/ 5/ 8/ *, 3/ 6/ 9/ *]

The * elements denote padding elements used for alignment. This layout corresponds to a
column-major ordering with each column padded to be a multiple of four elements in length.

Allowing the programmer to construct uniformly nested sequences takes advantage of
knowledge the programmer may have about the data being used in a Copperhead program,
and can provide important performance benefits when data access patterns with standard
nested sequences are not matched well to the processor’s memory hierarchy.

The performance differential between using a uniform nested sequence versus a general
nested sequence can be large, we have seen performance improvements of two to three times
by using the correct data structure. At present, the Copperhead programmer is responsible
for choosing the format of uniformly nested sequences, although future work may investigate
autotuning over alignments and data layouts.

In order to use uniform nested sequences, the programmer simply constructs a uniform
nested sequence in Python, using a constructor provided by the Copperhead runtime. The
Copperhead compiler will generate code using the appropriate data container, based on the
inputs it receives at compilation time.

5.4 Foreign Function Interface

All programming environments exist in a broader ecosystem of pre- and co-existing code. Ac-
cordingly, Copperhead does not assume that all useful programs will be implemented natively.
Instead, we have made it simple to create libraries for Copperhead that make it possible to use
preexisting code within Copperhead programs.

To wrap existing code into a library function callable from within Copperhead code, a pro-
grammer creates a wrapper that satisfies the following requirements:

82

1. A C++ wrapper must be written that operates on Copperhead C++ data structures and
is callable from C++.

2. The wrapper must obey the side-effect free semantics of a Copperhead function. If a
function being wrapped necessarily operates through side-eftects, the wrapper must in-
clude the necessary copies to contain the side-effects to within the wrapper.

Once a wrapper has been created, the programmer creates a Python stub function that de-
scribes the inputs to the function, decorated with a valid Copperhead type and shape for the
function. The wrapper also describes additional compilation flags that should be passed to the
C++ compiler, in order to link against the appropriate precompiled libraries.

The Copperhead runtime treats functions using the foreign function interface as black
boxes that cannot be optimized. Consequently, no opportunities for data parallel primitive
fusion between Copperhead operations and foreign functions will be exploited. Currently,
foreign functions can only target the distributed level of the parallelism hierarchy. Future work
may relax this restriction to allow the Copperhead compiler to compose foreign functions that
target different levels of the parallelism hierarchy, and to permit limited fusion across foreign
functions.

The Copperhead runtime uses this foreign function interface for selected parallel primi-
tives, such as reduce and scan, which are provided by the Thrust library.

5.5 Runtime Overheads

In this section, we quantify the various overheads involved in embedding the Copperhead run-
time and compiler in Python. Some effort has been made to reduce runtime overheads, but
there are still some obvious opportunities to reduce overheads further. In general, the current
runtime overheads are low enough that they do not limit performance.

As follows from our discussion in section 5.2.1, there are three types of runtime overhead

produced by the Copperhead runtime:

1. Full compilation. This occurs when a particular Copperhead function has not been pre-
viously compiled. The runtime cache does not contain an implementation of the func-
tion, and neither does the persistent cache. In this case, the Copperhead compiler gen-
erates efliciency code, the host compiler compiles efficiency code into a binary that is
then serialized in the persistent binary cache, the binary is loaded, inputs to the function
are localized to the execution place, and the function is executed.

2. Copperhead compilation. This occurs when a Copperhead function has been compiled
previously, but not during this run of the Python interpreter. In this case, the Copper-
head compiler generates efhiciency code, the runtime locates a previously compiled im-
plementation and loads it into the Python interpreter, inputs to the function are local-
ized, and the function is executed.

3. No compilation. This occurs when a Copperhead function has been compiled previ-
ously, during the current run of the Python interpreter. All that must be done is localize

83

Benchmark Full Compilation Copperhead Compilation No Compilation
SGEMV 6.39s 0.52s 195us
SGBMV 6.04s 0.49s 202us
SGEMM 5.82s 0.49s 171us
Lanczos iteration 7.46s 0.63s 360pus

Table 5.1: Runtime Overheads

inputs to the function and execute it. This is the most common case in code that executes
computations repeatedly, such as in an optimization loop.

Table 5.1 shows these three runtime overheads for various functions. The BLAS functions
(SGEMV, SGBMV, SGEMM) are simple Copperhead programs that call external BLAS rou-
tines. The Lanczos iteration composes multiple calls to external routines as well as Copper-
head generated code. Runtime overheads for the most common case, where the function has
previously been called, are small: on the order of hundreds of microseconds. The two-level bi-
nary caching system we employ effectively mitigates runtime overheads, since the full impact
of compilation is on the order of 10 seconds, while the impact of loading from the persistent
cache is on the order of 500 milliseconds. Without the binary caching system we use, runtime
overheads would indeed be prohibitive. However, with overheads on the order of hundreds
of microseconds for the most common case, most programs will not be bottlenecked by Cop-
perhead runtime issues.

Although our decision to employ runtime compilation could potentially introduce disas-
trous runtime overheads, these low overheads demonstrate our decision to employ runtime
compilation has not compromised our runtime performance.

5.6 Systems without compilers

Since the Copperhead runtime depends on efficiency-level compilers to implement compiled
code, some might wonder how the Copperhead runtime would operate on systems without
access to efficiency-level compilers. There are several reasons why a system would not have
access to an efficiency-level compiler. For example, Microsoft Windows systems ship without
any compiler, and the most commonly used compilers for Windows come from Microsoft as
part of a commercial product. Additionally, some platforms, like Apple’s mobile iOS platform,
disallow compilation on the platform due to security reasons, since doing so would open up
the capability for malicious code to be imported and executed on the device.

The Copperhead runtime is designed to operate on such systems, since they form an im-
portant part of today’s computing environment. Developers simply to run their Copperhead
code on an environment that does have compilers in order to build up a binary cache of all the
binaries that a particular program needs. The developer then may ship their code as an archive
containing Python code as well as the persistent Copperhead cache, which may then execute
as any other Python program does that uses natively compiled libraries.

84

In other words, the Copperhead runtime strategy is not fundamentally different than the
standard compilation flow used by efficiency-layer code. We do not overspecialize at runtime,
which would necessitate the constant construction of new binaries, which would then require
access to a compiler or the ability to construct and execute arbitary machine code. We com-
pile at runtime as a convenience, in order to fit the mindset of typical productivity program-
mers, who do not use the standard static compilation flow. We may make use of information
gathered at runtime to build up a cache of binary implementations for a particular function,
similarly to how autotuners operate. However, our approach is carefully constructed to avoid
requiring runtime compilation. This also enables the output of our code generator to be used
in traditional compilation flows, to integrate with code written in other ways, outside the pro-
ductivity interpreter, if such a usage mode is desired.

5.7 Conclusion

In this section, we have outlined the Copperhead runtime, which is responsible for handling
data structures, performing runtime compilation and caching, as well as executing Copper-
head programs on heterogeneous targets. We discussed the runtime static compilation model
we employ, as well as how it can be applied to platforms without access to compilers. Im-
portantly, we have demonstrated that embedded languages with runtime compilation can be
efficient, performing with minimal overhead on the order of a few hundred microseconds per
call, which is negligable for many applications. In the following chapter, we examine applica-
tion performance for Copperhead programs.

85

6 RESULTS

In this chapter, we investigate the performance of Copperhead code in several example pro-
grams. We select our example programs from computationally intensive workloads used in
Computer Vision and Machine Learning applications, inspired by the Recognition, Mining
and Synthesis taxonomy of future computationally intensive workloads [31], [2].

As we compare performance, we compare to published, well-optimized, hand-crafted
CUDA implementations of the same computation. Since Copperhead programs look like
Python programs and can be executed in the Python interpreter, we could potentially con-
sider comparing to the performance of the same programs running in the Python interpreter.
However, the performance of the Python interpreter is very low compared to efhicient low-
level implementations. Typically we see a factor of 100 to 1000 x slowdown when executing
sequential code in the Python interpreter compared to C++ performance. Consequently, al-
though such comparisons would lead to large performance improvements from using Cop-
perhead as opposed to using Python, the performance improvements we would cite would be
oflimited use. Most Python programmers know that if they have major computation to do in
Python, they should use a library that implements most of the computation in an efficiency
language like C. In fact, most of the Python standard library, as well as numerical comput-
ing packages such as numpy and scipy, are implemented in C, with Python bindings to allow
them to be called from within Python. Comparing Copperhead code running in the Python
interpreter to compiled Copperhead code running on a parallel platform would therefore be a
somewhat pointless comparison. Instead, we compare to hand-written CUDA code to show
that the Copperhead compiler produces code that executes with performance comparable to
hand-written efficiency code. This is a higher standard, but a more useful one.

Our compiler can’t apply all the transformations that a human can, so we don’t expect to
always achieve the same performance as well-optimized code. Still, we aim to show that high-
level data parallel computations can perform within striking distance of human optimized ef-
ficiency code.

The tradeoff between performance and programmer productivity is fairly fundamental to
any programming environment. We do not claim that our approach eliminates this tradeoft,
always providing maximum performance and maximum productivity. Instead, we argue that
giving up relatively small factors of performance can yield large productivity benefits. For ex-
ample, If a programming environment could get within a factor of two of hand-optimized ef-
ficiency code, while dramatically simplifying the programming burden required to attain this

86

performance, we believe this tradeoff would be attractive to many programmers.

Additionally, we illustrate how Copperhead programs can interoperate with widely-used
Python modules for numeric computation and data visualization. Since Copperhead is an
embedded language, it is straightforward to use the broader capabilities of Python to create
tully featured applications, not just code their computationally intensive kernels.

Finally, we discuss programmer productivity in Copperhead. Copperhead programs are
significantly terser than handwritten CUDA programs, yet in many cases perform comparably.
Although it is difhcult to measure programmer productivity without conducting user studies,
Copperhead programs are written at a significantly higher level of abstraction than programs
written in efficiency languages, which we argue supports our claim that Copperhead is a pro-
ductive environment for parallel programming.

6.1 Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication is an essential kernel used in many different applications,
from image and video analysis to finite element methods for structural analysis, among oth-
ers. We start by examining Copperhead performance on Sparse Matrix Vector Multiplication
kernels because they are simple to understand, and the performance results we achieve are il-
lustrative.

We examine the performance of Copperhead generated code for three different SpMV ker-
nels: compressed sparse row, vector compressed sparse row, and ELL. The CSR kernel is gen-
erated by compiling the Copperhead procedure for CSR SpMV onto the standard { Distributed,
Sequential} parallelism hierarchy, which distributes computations along the outermost par-
allelism dimension to independent threads. Data parallel operations are sequentialized into
loops inside each thread. For the CSR kernel, each row of the matrixis then processed by a dif-
ferent thread, and consequently, adjacent threads process widely separated data. This yields
suboptimal performance on any microprocessor, since the memory subsystem will load full
cache lines of data that are then only partially used, reducing effective memory bandwidth.
Figure 3.13 shows Copperhead code for the CSR kernel.

The vector CSR kernel generally improves on the performance of the CSR kernel by map-
ping the same code to a different parallelism hierarchy: the {Distributed, Block} hierarchy,
where the outermost data parallel operation is executed via independent thread blocks, and
inner data parallel operations are executed via block-wise operations. The Copperhead code
for the vector CSR kernel is identical to the code for the scalar CSR kernel, it is just compiled
differently. In this case, mapping to the block-wise hierarchy improves memory performance
for many sparse matrices, since memory accesses are vectorizeable and therefore more efh-
cient. As we saw in Chapter 4, the choice of parallelism hierarchy is data dependent, and so
for some matrices, the scalar CSR kernel is more appropriate. When writing these two vari-
ants in efhiciency-level code, the resulting implimentations look quite different and cannot be
systematically transformed into one another. However, since we compile with direct mapping
onto parallelism hierarchies, these two kernels are exposed as compilation variants that can be
autotuned over. This is more productive than manually performing two completely different

87

@cu
def spmv_ell(data, idx, x):
def kernel(i):
return sum([Aj[i] * x[J[i]] for Aj,J in zip(data, idx)])

return map(kernel, indices(x))

Figure 6.1: SpMV procedure for sparse matrices in ELL format.

vals = [[1:2.»5:6])[7.»8:3:4])[*:*:9)*]]
COIS = [[0,11611]J[11212,3],[*1*,3)*]]

S U1 O -
AN O NN
S W o O
=~ O © O

Figure 6.2: Sparse Matrix and its Representation in ELL Format

mappings, as a programmer would have to do without the techniques we describe in this work.

The ELL representation stores the nonzeros of the matrix in a dense M-by-K array, where
K bounds the number of nonzeros per row, and rows with fewer than K nonzeros are padded
[S]. The array is stored in column-major order, so that after the computation has been mapped
to the platform, adjacent threads will be accessing adjacent elements of the array. Figure 6.2
shows a small sparse matrix, with M = 4 and K = 3, along with its ELL representation. The
vals array consists of K subsequences, each of M elements. The first subsequence in vals
consists of the first non-zero element in each row, the second consists of the second non-zero
element in each row, etc. The cols array matches the vals array, notating from which column
each non-zero originally came from.

The ELL representation is generally more efficient than the CSR reprentation for matri-
ces where the variance in the number of non-zero entries per row is low. Its efficiency comes
from the dense structures used to store the matrix, which can ensure unit-strided memory ac-
cesses and dense SIMD operations, even on unstructured matrices. This format is not useful
for matrices where there is a large load imbalance in the number of non-zero elements per row,
since the ELL format essentially transposes the matrix, and as we discussed in Section 5.3.1,
performing this transposition can be infeasible for matrices with large load imbalance factors.
However, on matrices that are generally well load balanced, ELL is generally more efficient.
Figure 6.1 shows Copperhead code for the ELL kernel.

We compare against CUSP [5], a C++ library for Sparse Matrix Vector multiplication, run-
ning on an NVIDIA GTX 480 GPU. We use a suite of eight unstructured matrices that were
used by Bell and Garland [5], and that are amenable to ELL storage: in other words, the con-
version to ELL format does not introduce prohibitively large numbers of padding elements.
Copperhead generated code achieves identical performance for the scalar CSR kernel, and on
average provides 45% and 79% of Cusp performance for the vector CSR and ELL kernels, re-
spectively. Table 6.1 gives detailed performance results for the different implementations, ker-
nels, and matrices.

88

$/JOTID ur 90uewLIO) 9] UoneddnnyAr 10309/ X1y 9s1edg WoIsmaI] a[qno(J 1°9 d[qe.

901 I'ST 88 (4] S'S ST el 6'L A4 T1d peayraddo)
el 6¥1 8¢l €6l S6 SSI1 €LI 0¢l 1904 TTH [enUEN
'S €0 6 0¢ 0t 8 6 6L €T WSO 10303 peayraddor
| 4! 98 001 SL 801 L01 (A ¥'ST ¥'Te USD 10399/ [enuey
81 19 TI T Tl 'l Tl 'l €T SO Tepeds peayraddon
81 6'S (4! Cl Cl (4! Cl 't | USD TE[e0S [enueN
diyg Joqre] JoAd[mue) saroydg
aderoay A3ojorwepidy WA DO WAA INAA WA U301 dsud(uonejuawaduy

XLIJRIA

89

l CUSP Copperhead

—_ = =
o 0 B O

DP GFLOP/s

o v+ O

-

CSR Scalar CSR Vector ELL

Figure 6.3: Average Double Precision Sparse Matrix Vector Multiply Performance

Our relatively low performance on the vector CSR kernel occurs because of a specialized
optimization that the CUSP vector CSR implementation takes advantage of, but the Copper-
head compiler does not: namely the ability to compile directly to the SIMD vector level of the
parallelism hierarchy. As mentioned previously, we chose not to compile to this level of the
parallelism hierarchy because it is not directly exposed in CUDA, and implementations that
target it tend to be fairly brittle. This optimization is an important workaround for the limita-
tions of today’s CUDA processors, but we considered it too special purpose to implement in
the Copperhead compiler. Still, our performance is generally within a factor of two of native
CUDA code, which we find encouraging.

6.2 Preconditioned Conjugate Gradient Linear Solver

The Conjugate Gradient method is widely used to solve sparse systems of the form Ax = b,
where A is a positive semi-definite matrix. We examine performance on a preconditioned con-
jugate gradient solver written in Copperhead, which forms a part of an fixed-point non-linear
solver used in Variational Optical Flow methods [85] used for video analysis. For reference,
we give the preconditioned conjugate gradient algorithm we use in Algorithm 1.

Figure 6.4 shows the computed optical flow field during the solution of a particular optical
flow problem. This figure was generated directly from a Python program using Copperhead
to perform computation, using the matplotlib Python library. This highlights the ability of

90

0 T T T T 100 EEEEEERERES
20k 1 80
40F - 603

60} i 40},!Vg

80F

1 20f

0 20 40 60 80 %0 20 20 60 80 100

Figure 6.4: Left: closeup of video frame. Right: gradient vector field for optical flow

Copperhead programs to interoperate with other Python modules, in order to write complete
programs, and not just their computationally intensive kernels.

Figure 6.5: Structure of the matrix from the optical flow problem

Conjugate gradient performance depends strongly on matrix-vector multiplication perfor-
mance. Although we could have used a preexisting sparse-matrix library and representation, in
this case we know some things about the structure of the matrix, which arises from a coupled
five-point stencil pattern on a vector field, illustrated in Figure 6.5. Taking advantage of this
structure, we can achieve significantly better performance than any library routine by creating
a custom matrix format and sparse matrix-vector multiplication routine. Copperhead is built
for scenarios such as these, where off-the-shelf libraries perform poorly, and the productivity
gains we provide make it feasible for programmers to write custom computations that perform
more efficiently.

91

Algorithm 1 Preconditioned Conjugate Gradient Method

Input: PSD matrix A, Preconditioner matrix M, initial vector xo, right hand side vector
b, number of iterations n
Initialize: rg = b — Axg
Initialize: zg = M~ 11y
Initialize: pg = zg,k =0
repeat
1]z
Xk+1 = Xk + &Pk
eyl = Iy — A Apy
Zjy1 = M ey

ZT T
Br = k;}%rl;jl
Pk+1 = Zikt+1 + BrPk
k=k+1
until k > n

K —

In addition to writing a custom sparse-matrix vector multiplication routine, practically solv-
ing this problem requires the use of a preconditioner, since without preconditioning, conver-
gence is orders of magnitude slower. We utilize a block Jacobi preconditioner for M~ in Al-
gorithm 1. Figure 6.6 shows the Copperhead code for computing the preconditioner, which
involves inverting a set of symmetric 2x2 matrices, with one matrix for each point in the vector
field, as well as applying the preconditioner, which involes a large number of symmetric 2x2
matrix multiplications. The matrices are represented as three sequences a4, b, c:

e — |4 bi
N
Since we are using a block Jacobi preconditioner, forming the preconditioner involves di-
rectly computing the set of inverted matrices

-1
-t _ e b 1 T —b
pi=m; = = {bi Ci:| "~ ajc; — bb; {—bi aj]

Applying the preconditioner is performed by computing many 2x2 matrix multiplications
against the vector at each point in the vector field.

Figures 6.7 and 6.8 show the remainder of the Copperhead code for an iteration of this
preconditioned conjugate gradient solver.

We implemented the entire solver in Copperhead. The custom SpMV routine for this ma-
trix runs within 10% of the hand-coded CUDA version published in [85], achieving 49 SP
GFLOP/s on a GTX 480, whereas a hand-tuned CUDA version achieves 55 SP GFLOP/s on
the same hardware. Notably, using an off-the-shelf SpMV format such as ELL for this prob-

92

@cu
def vadd(x, y):

return map(lambda a, b: return a + b, x, y)
@cu
def vmul(x, y):

return map(lambda a, b: return a * b, x, y)
@cu
def form_preconditioner(a, b, c):

def det_inverse(ai, bi, ci):

return 1.0/(ai * ci - bi * bi)

indets = map(det_inverse, a, b, c)

p_a vmul (indets, c)

p_b map(lambda a, b: -a * b, indets, b)

p_c = vmul(indets, a)

return p_a, p_b, p_c

@cu

def precondition(u, v, p_a, p_b, p_c):
e = vadd(vmul(p_a, u), vmul(p_b, v))
f = vadd(vmul(p_b, u), vmul(p_c, Vv))
return e, f

Figure 6.6: Forming and applying the block Jacobi preconditioner

lem would sacrifice large amounts of performance; in this case a hand-coded, optimized ELL
SpMV would perform about a factor of 2.5 x slower than the custom SpMV routine we wrote
in Copperhead. Overall, for the complete preconditioned conjugate gradient solver, the Cop-
perhead generated code yields 71% of the performance of the custom CUDA implementation,
which is well within a factor of two of hand-optimized efficiency code and therefore represents
good performance.

6.3 Lanczos Eigensolver

To demonstrate Copperhead’s interoperabililty with foreign functions, such as BLAS, we im-
plement a simple eigensolver using the Lanczos Method [28]. This eigensolver is useful for
finding the extreme eigenvalues and eigenvectors of a symmetric matrix. Such problems are
important in many contexts, for example, the normalized cuts method for image contour de-
tection and segmentation [17]. Algorithm 2 shows the algorithm we employ. Note that in
this description, we create a new Lanczos vector v; at every iteration of the computation. The
Lanczos vectors are accumulated as columns of a matrix V, where vector v; is column V; of the
matrix. For a problem where the initial Lanczos vector v1 has n elements, after i iterations, the
matrix V of Lanczos vectors then has dimensions n x i. Similarly, a; and B; are accumulated
as entries of vectors ff and fi.

Like the preconditioned conjugate gradient solver in section 6.2, this algorithm is iterative

@cu
def of spmv(du, dv, width, mi, m2, m3, m4, m5, m6, m7):
e = vadd(vmul(ml, du), vmul(m2, dv))
f = vadd(vmul(m2, du), vmul(m3, dv))
= vadd(e, vmul(m4, shift(du, -width, ©0.0)))
= vadd(f, vmul(m4, shift(dv, -width, 0.0)))
= vadd(e, vmul(m5, shift(du, -1, 0.0)))
= vadd(f, vmul(m5, shift(dv, -1, 0.90)))
= vadd(e, vmul(mé6, shift(du, 1, ©0.0)))
= vadd(f, vmul(mé6, shift(dv, 1, 0.0)))
= vadd(e, vmul(m7, shift(du, width, ©.0)))
= vadd(f, vmul(m7, shift(dv, width, ©.0)))
return (e, f)

-~ ® -h ® -Hh ® -h @
|

@cu
def dot(x, y):
return sum([xi * yi for xi, yi in zip(x, y)])

@cu
def vsub(x, y):
return map(op_sub, X, y)

@cu

def init_cg(ux, vx, du, dv, width, ml, m2, m3, m4, m5, m6, m7):
u, v = of_spmv(ux, vx, width, ml1, m2, m3, m4, m5, m6, m7)
ur vsub(du, u)
vr vsub(dv, v)
return ur, vr

Figure 6.7: Initializing the Conjugate Gradient Iterations

@cu

def pre_cg iteration(ux, vx, ur, vr, ud, vd, uz, vz, width, \

ml, m2, m3, m4d, m5, m6, m7, pl, p2, p3):

uAdi, vAdi = of_spmv(ud, vd, width, ml, m2, m3, m4, m5, m6, m7)

urnorm = dot(ur, uz)

vrnorm = dot(vr, vz)

rnorm = urnorm + vrnorm
udtAdi = dot(ud, uAdi)

vdtAdi = dot(vd, vAdi)

dtAdi = udtAdi + vdtAdi

alpha = rnorm / dtAdi

ux = axpy(alpha, ud, ux)

vx = axpy(alpha, vd, vx)

urpl = axpy(-alpha, uAdi, ur)
vrpl = axpy(-alpha, vAdi, vr)
uzpl, vzpl = precondition(urpl, vrpl, pl, p2, p3)
urplnorm = dot(urpl, uzpl)
vrplnorm = dot(vrpl, vzpl)

beta = (urplnorm + vrplnorm)/rnorm
udpl = axpy(beta, uzpl, urpl)
vdpl = axpy(beta, vzpl, vrpl)

return ux, vx, urpl, vrpl, uzpl, vzpl, udpl, vdpl, rnorm

Figure 6.8: Preconditioned Conjugate Gradient Iteration

94

95

@ Manual Copperhead

(o}
(=)

oA
(=)

N
o

SP GFLOP/s

[
o

SpMV Overall solver

Figure 6.9: Performance on Preconditioned Conjugate Gradient Solver

Algorithm 2 Lanczos Eigensolver using Full Reorthogonalization

Input: Symmetric Matrix A, Initial normalized vector v as the first column of a matrix V.
Initialize: i = 1

repeat
Z;, — AVZ'
K — ZZTVI
Z, —Z; — VVTZi
Bi = ||zl
Vier = zi/Bi
i=i+1

until Converged

96

from cublas import sgemv # Foreign function Library
from spmv import spmv_ell # Native Copperhead Library

@cu
def dot(x, y):
return sum(map(op_mul, x, y))

@cu
def norm(x):
return sqrt(dot(x, x))

@cu
def lanczos_step(A_data, A_index, V, v_i, alpha):
Compute one lanczos iteration.
z = spmv_ell(A _data, A_index, v_i)
alpha i = dot(z, v_i)
tmp = sgemv(1, 1., V, z, 0., alpha)
z = sgemv(@, -1., V, tmp, 1., z)
beta_i = norm(z)
return (alpha_i, beta_i, [zi/beta_i for zi in z])

Figure 6.10: Lanczos eigensolver iteration

and depends on a sparse matrix vector multiplication. However, performance also depends
on dense matrix operations for reorthogonalization. Convergence testing involves forming
T;, the symmetric j x j tridiagonal matrix with diagonal equal to a3, 2y, . . ., aj, and upper di-
agonal equal to B, B2, . . ., Bj—1, and then finding the eigendecomposition S@S = T;. Finding
this eigendecomposition is much simpler than the original eigenproblem because the extreme
eigenvalues and associated eigenvectors of a symmetric tridiagonal matrix can be found efh-
ciently using bisection and inverse iteration methods [3]. Although nontrivial, convergence
testing is not computationally intensive compared to the main Lanczos iteration computation,
so we do not consider it in the Copperhead code we describe here.

Figure 6.10 shows the Copperhead code for one iteration of the Lanczos eigensolver. No-
tice the use of standard Python import statements to use external libraries, one of which (spmv)
is written purely in Copperhead, and one of which (cublas) uses the foreign function interface
to access vendor supplied BLAS libraries. To the programmer, the distinction between these
two cases is irrelevant, even if they differ greatly to the compiler.

Table 6.2 shows some performance results, obtained on a symmetrix sparse matrix with ap-
proximately 150k rows and 6.26M non-zero elements, obtained from a normalized cuts prob-
lem from image contour detection [17]. For comparison, we also present results from a sim-
ple sequential solver written using scipy and numpy, the popular Python libraries for numeric
computation. Although scipy and numpy are implemented in C and do very little work in the

97

Implementation 1000 Lanczos Iterations

Sequential scipy 349.5 seconds
CUDA 214 seconds
Copperhead 23.1 seconds

Table 6.2: Lanczos performance results

Python interpreter, the sequential solver is 15X slower than the Copperhead code running
on an NVIDIA GTX 480 GPU. The Copperhead code is only 8% slower than hand-written
C++ and CUDA code using CUSP [5] and CUBLAS [67]. This includes all Copperhead and
Python runtime overheads. This performance is very good, especially compared to the se-
quential implementation that standard Python programmers can access.

6.4 Quadratic Programming: Nonlinear Support Vector
Machine Training

Support Vector Machines are a widely used classification technique from machine learning, in
applications ranging from image recognition and bioinformatics, to text classification. Support
Vector Machines classify multidimensional data by checking where the data lies with respect
to a decision surface. Nonlinear decision surfaces are learned via a Quadratic Programming
optimization problem, which we implement in Copperhead.

We consider the standard two-class soft-margin SVM classification problem, which classi-
fies a given data point x € R" by assigning a label y € {—1,1}. In order to do so, a decision
surface must be learned from a set of labeled training points. We learn this decision surface
through the following Quadratic Programming optimization problem: given alabeled training
set consisting of data points x;, i € {1, ..., 1} with their corresponding labels y;, i € {1, ..., 1},
solve Equation 6.1.

I
1
max F(a) =Y a;— ~a"Qu
: i=1 2

subjectto 0 <a; <C,Viel...l
yla =0

(6.1)

In Equation 6.1, x; € R" is training data point i, y; € {—1,1} is the label attached to point
xj,and a; is a set of weights, one for each training point, which are being optimized to determine
the SVM classifier. C is a parameter that trades classifier generality for accuracy on the training
set, and Q;; = y;y;P(x;, x;), where ®(x;, x;) is a kernel function that determines the type of
decision surface we will be learning. We employ the widely-used Radial Basis Function kernel:
D (x;, xj;y) = exp {—7||xi — xj||*}, where 7 is a hyperparameter chosen through crossvali-
dation tuning, using a separate test set.

98

SMO Algorithm

The SVM Training problem can be solved by many methods, each with different parallelism
implications. We have implemented the Sequential Minimal Optimization algorithm [72],
with a hybrid working set selection heuristic making use of the first order heuristic proposed
by [50] as well as the second order heuristic proposed by [32].

The SMO algorithm is a specialized optimization approach for the SVM quadratic pro-
gram. It takes advantage of the sparse nature of the support vector problem and the simple
nature of the constraints in the SVM QP to reduce each optimization step to its minimum
form: updating two «; weights. The bulk of the computation is then to update the Karush-
Kuhn-Tucker optimality conditions for the remaining set of weights and then find the next
two weights to update in the next iteration. This is repeated until convergence. We state this
algorithm briefly in Algorithm 3, for reference purposes.

Algorithm 3 Sequential Minimal Optimization

Input: training data x;, labels y;, Vi € {1..I}, convergence tolerance T
Initialize: &; = 0,fi=-y,Vie {1..1},
Initialize: bhigh) biows ihigh; Low
iig(iitte Déihigh and ocilow
Update f;, Vi € {1..1}
Compute: bhz’gh) ihz’gh) blow tow
Update Ripen and w;
until blow < bhigh + 27

For the first iteration, we initialize byje;, = —1, ipign = min{i : y; = 1}, by, = 1, and

ilow = mm{z Y= —1}.
During each iteration, once we have chosen iy, and 7j,,,, we take the optimization step:

/

How
/

ipi gh

= Wi, + Yiry, (Brigh — biow) /1]

/
Rinigh * Yipge, ¥ Lhigh (“lz(;w o ‘Xizow)

where 7 = ®(x;,,,, Xiy) + Py, Xy,) — 2P(xi,,, X,). To ensure that this update is
feasible, zxfl and chh, , must be clipped to the valid range 0 < &; < C.
ow ig

The optimality conditions can be tracked through the vector f; = 2;.:1 oy D(xi, xj) — iy
which is constructed iteratively as the algorithm progresses. After each « update, f is updated
for all points. This is one of the major computational steps of the algorithm, and is done as

follows:

fi=fi+ (“ghigh - “ihigh)yihighq)(xihigh’ xi)
+ (06/ - “ilow)yilowq)(xilow’ xi)

How

99

@cu
def norm2_diff(x, y):
def el(xi, yi):
diff = xi - yi
return diff * diff
return sum(map(el, x, y))

@cu
def rbf(ngamma, x, y):
return exp(ngamma * norm2_diff(x,y))

Figure 6.11: RBF Kernel evaluation

In order to evaluate the optimality conditions, we define index sets:

Inigh = {i:0 <a; <CyU{i:y; >0,a; =0}
U{i:y;<0,a; =C}
Low={i:0<wa; <C}U{i:y; >0,a; = C}
U{i:y; <0,a; =0}

Because of the approximate nature of the solution process, these index sets are computed to
within a tolerance €, e.g. {i: € < a; < (C—€)}.

We can then measure the optimality of our current solution by checking the optimality gap,
which is the difference between byjo), = min{f; : i € Iygn}, and by, = max{f; : i € Ijpp}-
When by, < bpigp, + 27, we terminate the algorithm.

Working set selection

During each iteration, we need to choose i;¢;, and i}y, which index the a weights that will be

changed in the following optimization step. The first order heuristic from [S0] chooses them
as follows:

ihigh = argmin{f; : i € Iy;gn}
ijow = argmax{f; : i € [;p,}

We compare performance against GPUSVM, a publically available CUDA library for SVM
training [18]. Table 6.3 shows the throughput of the Copperhead implementation of SVM
training over four datasets, which are detailed in [18]. On average, the Copperhead implemen-
tation attains 105% of GPUSVM performance, which is quite good. The reason Copperhead
slightly outperforms GPUSVM is that GPUSVM was optimized for an older architecture (the
NVIDIA 8800GTX, which was released in 2006), and some of the optimization choices that
made sense for older architectures are no longer beneficial. The fact that we can match and in
some cases slightly exceed hand-optimized code reinforces our claim that Copperhead code

100

@cu
def argextrema((a_l_idx, a_l val, a_h_idx, a_h_val),
(b_1 idx, b_1 val, b_h_idx, b_h_val)):
if a_1l val < b_1 val:
if a_h_val > b_h_val:
return (a_l idx, a_1 val, a_h_idx, a_h_val)
else:
return (a_l idx, a_1l val, b_h_idx, b_h_val)
else:
if a_h_val > b_h_val:
return (b_1_idx, b_1_val, a_h_idx, a_h_val)
else:
return (b_1 idx, b_1 val, b_h_idx, b_h_val)

Figure 6.12: Reduction operator for computing the Arg Extrema of a vector

Dataset Copperhead Performance GPUSVM Performance

SP GFLOP/s SP GFLOP/s
Web 89.0 83.5
USPS 42.5 42.8
MNIST 106.0 84.3
Adult 63.2 75.4
Average 75.2 71.5

Table 6.3: Support Vector Machine Training Performance

@cu
def

train(data, labels, ngamma, high, low, \
alpha, f, d_a_high, d_a_low, \
eps, ceps, inf, extid):
def high_evaluation(x):
return rbf(ngamma, x, high)
def low_evaluation(x):
return rbf(ngamma, x, low)
high_kernels = map(high_evaluation, data)
low_kernels = map(low_evaluation, data)
f p=[fi + d_a_high * hi + \
d_a_low * 1li for fi, hi, 1i \
in zip(f, high_kernels, low_kernels)]
def high_member(ai, yi, fi):
if (ai >= eps and ai <= ceps) or \
(yi > 0.0 and ai < eps) or \
(yi < 0.0 and ai > ceps):
return fi
else:
return inf
def low_member(ai, yi, fi):
if (ai >= eps and ai <= ceps) or \
(yi > 0.0 and ai > ceps) or \
(yi < 0.0 and ai < eps):
return fi
else:
return -inf

high_values = map(high_member, alpha, labels, f_p)

low_values = map(low_member, alpha, labels, f_p)

idxes = indices(f_p)

zipped = zip4(idxes, high_values, idxes, low_values)

i_high_p, b_high_p, i_low_p, b_low_p = \
reduce(argextrema, zipped, extid)

return f_p, b_high _p, i_high_p, b_low_p, i_low p

Figure 6.13: SVM Training iteration

101

102

can be efficiently compiled to contemporary parallel architectures.

6.5 Productivity

Productivity is difficult to measure, but as a rough approximation, Table 6.4 provides the num-
ber of lines of code needed to implement the core functionality of the examples we have put
forth, in C++/CUDA as well as in Python/Copperhead. The same data is provided graphi-
callyin Figure 6.14, for reference. On average, the Copperhead programs take about four times
fewer lines of code than their C++ equivalents, which suggests that Copperhead programming
is indeed more productive than the manual alternatives.

Example CUDA & Copperhead & Ratio
C++ Python
Scalar CSR 16 6 2.6
Vector CSR 39 6 6.5
ELL 22 4 5.5
PCG Solver 172 79 2.2
SVM Training 429 111 3.9
Average - - 3.6

Table 6.4: Number of Lines of Code for Example Programs

Without user studies, we cannot prove that Copperhead is more productive than efhciency
language environments, since the number of lines of code may be only weakly correlated with
productivity. However, we point out that Copperhead programs are written at a significantly
higherlevel of abstraction than efhciencylanguage programs. There is no need to explicitly par-
allelize loops or map loops onto the parallel hierarchy of the machine, potentially in multiple
ways. The compiler allows programmers to write code as if they were using arrays of struc-
tures, which is often the most natural way to express a computation, while still implementing
the computation using structures of arrays, which is more eflicient. Fusion also introduces is-
sues for efficiency languages, since different code must be written for every combination of
tused operations, while Copperhead code is automatically fused. The Copperhead compiler
can use on-chip memory resources without being directed to do so. The amount of restructur-
ing the Copperhead compiler does is signficant, and achieving high performance while writing
efficiency layer code can only be accomplished if the programmer is educated enough and has
the time to perform these restructurings manually. Accordingly, we argue that Copperhead is
actually more productive, as the lines of code comparison indicates.

The Copperhead compiler and runtime are freely available on the internet. The most im-
portant confirmation of the productivity gains we provide will be Copperhead’s adoption by
programmers who are looking for more productive ways of parallel programming.

103

500
400 “CUDA & C++
Copperhead
300
200
100
O — : - : J—
chb & \@ &0%
> S %o &
> & & S
S Qe Q

S

Figure 6.14: Standardized Lines of Code for Copperhead and C++ Programs

104

6.6 Conclusion

In this section, we have shown that our compilation techniques result in efhicient code, yielding
from 4S5 to 100% of the performance of hand crafted, well-optimized CUDA code, on exam-
ple computations from Recognition, Mining and Synthesis workloads. We achieve this high
performance with much higher programmer productivity. On average, Copperhead programs
require about four times fewer lines of code than CUDA programs, comparing only the core
computational portions.

Large communities of programmers choose to use productivity languages such as Python
because programmer productivity is often more important than attaining absolute maximum
performance. We believe Copperhead occupies a worthwhile position in the tradeoff between
productivity and performance, providing performance comparable to that of hand-optimized
code, but with a fraction of the programmer effort.

105

7 CONCLUSIONS

Parallelism is now mainstream. Developers of computationally intensive applications must
employ parallelism in order to capitalize on contemporary microprocessors. Since contempo-
rary microprocessors exploit parallelism in multiple ways, using on-chip multiprocessing to ex-
ecute independent tasks, while harnessing SIMD for fine-grained data parallelism, efficiently
capitalizing on today’s parallel processors requires carefully mapping computations onto the
parallel hierarchy they provide. Low-level, efhiciency programming models allow program-
mers to do this, but programmers must explicitly perform this mapping, which limits both re-
targetability as well as productivity. Dependence on low-level programming models will limit
the adoption of parallel processing, since most programmers are not interested in carefully fit-
ting a given computation to a target platform. Higher-level productivity programming models
have enabled programmers to improve their programming productivity, albeit at a significant
performance cost. Additionally, many of them are unable to take advantage of parallelism at
all due to semantic restrictions in the language, caused by the very features that make them
productive.

To overcome these problems, we advocate the use of embedded data parallel languages
such as Copperhead. In this work, we have shown how nested data parallel abstractions, em-
bedded in a productivity language such as Python, can be efficiently compiled and executed
on contemporary parallel processors.

7.1 Contributions

This work has three main contributions, which we reiterate and contextualize in the following
subsections.

7.1.1 Direct Mapping of Nested Data Parallelism

There are many ways a computation could be mapped onto a target platform. Traditionally,
data parallel compilers have used the flattening transform, which was originally conceived for
large, monolithic SIMD array processors like the CM-2. The flattening transform has several
good properties: it provides consistent performance despite arbitrary load imbalance, and
it maps naturally onto SIMD processors, regardless of their hardware SIMD vector length.

106

However, our experiments show that on contemporary processors like NVIDIA GPUs, the
overheads created by the flattening transform are significant. For simple problems, the inefh-
ciencies are on the order of 3-5x performance loss, and the gap between direct mapping ap-
proaches and the flattening transform increases as the problems become more complex, since
the flattening transform expands nested data structures into flat data structures, without the
possibility for locally reducing them as the computation proceeds.

Accordingly, we advocate a direct mapping strategy, where nested parallelism is mapped
directly to the parallelism hierarchy provided by the target platform. For problems with small
to moderate load imbalance factor 1 < 3 < 1000, direct mapping approaches are up to 5x
more efficient than flattened approaches. This is due to hardware on-chip multiprocessing,
allowing different cores of the chip to perform different problems, as well as efficient work
distributors that provide effective runtime load balancing. The flattening transform should still
be used for problems with very high load imbalance > 1000, or for problems where direct
mappings are not a good fit for the SIMD nature of the machine, for example, if subvector
lengths are in the range of 5 — 50 for a processor with 32-wide logical SIMD units.

Since the majority of problems, including the ones we investigated in Chapter 6, can be
mapped directly onto the parallel hierarchy of the target platform, we advocate a direct map-
ping approach. Stated differently, without a direct mapped approach, we would not be able
to report performance within 45% — 100% of hand-written efhciency code, instead we would
be reporting performance in the 10% — 33% of hand-written efficiency code range. While
lower performance may still be an acceptable tradeoft in exchange for improved productivity,
we see no need to give up significant performance when a direct mapping strategy allows the
programmer to use the same abstractions and achieve higher performance.

7.1.2 Phase Analysis and Scheduling

After deciding to use a direct mapping strategy for nested parallelism, we turned our attention
to how this should be performed. A simple approach would be to instantiate parallelized and
sequential loops for every data parallel operation. However, this approach suffers from inef-
ficient usage of memory bandwidth, since between every data parallel operation, the results
must be written back to memory, and then reloaded back onto the chip for subsequent oper-
ations. Additionally, it introduces extraneous synchronizations, which limits the amount of
parallelism the processor can sustain. We investigated the performance loss from the naive
approach and found it to be a factor of 9 x compared to hand-written efhiciency layer code, in
which the programmer has fused adjacent data parallel operations together.

Of course, it is not legal to fuse all data parallel operations together, since some of them
require synchronization in various ways. We need a program analysis to discover which oper-
ations can be fused together while still respecting the semantics of the program. We introduced
phase analysis, which discovers synchronization points at various levels of the parallel hierar-
chy using completion and directionality types for parallel primitives provided by the language.
Once synchronization points have been discovered, we use a simple heuristic of maximalist fu-
sion to perform phase scheduling, which performs fusion while respecting data dependences in
the program, at all levels of the parallel hierarchy.

107

Our strategies for mapping data parallelism to parallel platforms are efficient, enabling us
to gain performance between 45 — 100% of handwritten, optimized code.

7.1.3 Runtime Static Compilation

Embedded domain specific languages face important choices as to how to perform the em-
bedding in the host language, as well as deal with compilation and execution, each with their
own tradeoffs. We follow the SEJITS model [13], which means Copperhead programs exist
inside Python programs, and are clearly delineated via standard Python syntactic mechanisms
from the surrounding Python code. We perform a limited form of Just-In-Time Specialization,
which we refer to as Runtime Static Compilation.

Some languages, like Accelerator [86] and Ct [36], defer execution until a complete ab-
stract syntax tree has been constructed, combining multiple calls into a single abstract syntax
tree and performing aggressive runtime specialization once results are required. These ap-
proaches suffer from two main problems. Firstly, runtime compilation overhead is exposed
at execution time, and without special care, can dominate performance advantages from spe-
cialization. Invoking a C++ compiler to compile and link a simple program for a parallel com-
puter requires on the order of ten seconds, while the procedure itself might run only for mil-
liseconds. Without attention to runtime compilation overheads, the practical benefit from an
embedded domain specific language can be nullified. Secondly, when traces of function calls
are specialized at runtime, taking advantage of large amounts of data only available at runtime,
it is difficult to define a particular function as a self-sufhcient entity. Runtime overspecializa-
tion therefore complicates the use of design-space exploration and makes it difficult to reuse
compiled binaries.

In contrast to these approaches, we advocate runtime static compilation, where compila-
tion is initiated at runtime for a given procedure when called from the host language, making
only very limited use of information available at runtime. This ensures that the binaries pro-
duced by the compiler correspond to a procedure in the original program, and accordingly al-
lows allows the binaries to be reused in other contexts. Runtime static compilation facilitates
the use of more expensive design space exploration and autotuning approaches, since the bi-
nary can be reused many times and will not be respecialized each time the procedure is called.
Finally, runtime static compilation allows the use of compiled embedded domain specific lan-
guages even when a compiler is not present on devices to which the program is deployed. As
a developer runs their application during development, the runtime builds a cache of com-
piled binaries that can then be shipped as a compiled program, fully functional even without a
compiler on the target device. We showed how a simple two-level binary caching scheme can
mitigate compilation overheads, and that runtime overheads can be very low, on the order of
hundreds of microseconds per procedure invocation. Since most functions we create run for
1-100 milliseconds or longer, this overhead is generally negligable.

108

7.2 Availability

So that others may use and extend our work, we have released the Copperhead runtime and
compiler under the Apache 2.0 license. It is freely available at http://code.google.com/p/
copperhead.

7.3 Future Work

Many avenues for future work exist in topics related to those examined in this thesis. We list
the most important directions, focusing on broadening the reach of the Copperhead compiler
by targeting other parallel platforms and incorporating autotuning, improving debugging pro-
ductivity, and quantifying productivity improvements through user studies.

7.3.1 Alternative Backends

We have created a backend for NVIDIA CUDA platforms. However, the approaches we out-
line are general, and can be extended to efhciently target other parallel platforms as well, such
as Intel x86 CPUs, the Intel Manycore Integrated Architecture platform (formerly known as
Larrabee), and AMD Fusion APUs, which integrate OpenCL programmable GPUs with mul-
ticore x86 CPUs, among others. Providing multiple backends would speed the adoption of
Copperhead, since it would not be tied to a particular vendor’s product line. It would also pro-
vide an existence proof of the generality of the techniques we describe.

7.3.2 Autotuning

We envision developers creating custom autotuners for particular problem domains. These
autotuners would engage the data parallel compiler with different parameters affecting paral-
lel granularities for different blocking sizes, targeting different parallel hierarchies, and utilizing
different data structures, to name a few. It is possible that the autotuning process could ben-
efit from information discovered by the compiler. For example, if the compiler is mapping
onto a { Distributed, Sequential } hierarchy, using uniform nested sequences, it is a good bet
that the input nested sequences should be laid out in memory using a column-major format.
The compiler could also export different potential fusion choices as selections for autotuning.
Since most autotuners are naturally written in productivity languages like Python, we expect
that allowing programmers to exploit their domain specific knowledge about a particular prob-
lem through creating a custom autotuner would be straightforward and productive.

If Copperhead were extended to target other platforms, the need for a robust autotuning
infrastructure would increase, since architectural diversity would require different tuning ap-
proaches. Additionally, heuristics, such as those used in phase scheduling and on-chip mem-
ory placement, among others, could be replaced with autotuning, which would improve the

flexibility of the Copperhead compiler.

http://code.google.com/p/copperhead
http://code.google.com/p/copperhead

109

7.3.3 Aspect Oriented Debugging

High productivity programming requires high productivity debugging. Writing computer pro-
grams necessarily involves fixing mistakes. Debugging higher level programs can be difhcult,
since there is often not a clear transliteration of the program the programmer wrote into some-
thing the machine can execute. For example, temporary variables visible in the original source
code may be elided completely by the Copperhead compiler, so that they are never actually
fully formed in memory in a state where they can be examined through traditional breakpoint-
ing techniques.

To improve debugging productivity, the user could provide debugging requests in an as-
pect oriented manner, separated from the actual code being debugged. These debugging re-
quests might ask for a particular variable to be fully instantiated so that intermediate state can
be visualized, or might provide instructions on how state should be analyzed or visualized, in
order to overcome the “needle-in-a-haystack” problem that often arises when debugging a par-
allel program where most of the computation was correct, but there was a subtle bug affecting
a small portion of the data.

7.3.4 Usability Studies

Quantifying productivity is difficult. In our work we presented standardized lines of code on
several examples, to show that data parallel programs expressed in Copperhead are more con-
cise than their equivalents in C++. However, conciseness is perhaps only correlated with pro-
ductivity. Convincingly demonstrating a true productivity advantage of our approach can only
be done by inviting programmers to use it, and studying their productivity. We have started
this work by opening Copperhead as a freely distributed project, we anticipate that user feed-
back will help us improve Copperhead as well as show compelling usability benefits. However,
more usability studies would be useful to quantify the productivity benefits of a programming

system like Copperhead.

7.4 Conclusion

The adoption of new programming environments is often slow and difhcult. It is hard for pro-
grammers to learn a new way of thinking about their problem, grapple with a new set of ab-
stractions and new runtime model. However, closing the implementation gap requires soft-
ware infrastructure that can take higher level abstractions of parallel programs and transform
them into efficient low level implementations.

If new software infrastructure is required, it is important that it be minimally disruptive.
For this reason, we have created Copperhead as an embedded language. Programmers already
familiar with Python and its widely used libraries for numeric and scientific computing, as well
as data visualization, file input/output, etc., can view Copperhead as another Python library
they can use, which interoperates with the ones they already know. For example, the output
of Copperhead code can be visualized directly using matplotlib, and existing Python code

110

can perform file input/output, or connect to the internet to download or distribute datasets.
We believe that creating Copperhead as an embedded language makes Copperhead a produc-
tive environment for programming entire applications, not just their computationally inten-
sive kernels.

The abstractions that Copperhead employs are also designed to be minimally disruptive.
Python already provides map, which is the foundation of data parallelism in Copperhead, as
wellas reduce, which s also a fundamental data parallel primitive. Many of the other primitives
provided by Copperhead are familiar to those who have used other data parallel languages,
such as NESL.

Finally, runtime static compilation allows Copperhead programs to be written similarly to
other Python programs, despite the fact that running Copperhead programs invokes the Cop-
perhead compiler as well as efficiency compilers for the parallel device being targeted. This
makes Copperhead simple to use, there is no new compilation machinery that the program-
mer must master in order to use Copperhead. At the same time, it allows more sophisticated
programmers to reuse the results of the Copperhead compiler in other programs, since calling
a Copperhead procedure from Python creates an efficient low-level implementation of that
procedure that has not been overspecialized.

Although learning to use a new programming environment is difficult, we believe Cop-
perhead has several compelling benefits that will make it attractive to application developers.
Firstly, the abstractions that we employ can be compiled efficiently to contemporary parallel
processors, within 45 — 100% of hand-optimized efficiency code. Secondly, since Copper-
head is an embedded language, there is no new syntax to learn, only a library of data parallel
primitives and associated data structures. Thirdly, the need for more productive parallel pro-
gramming is acute, and the increased productivity Copperhead provides will motivate pro-
grammers to take advantage of its capabilities.

We believe that this work demonstrates a productive and efficient way of programming con-
temporary parallel processors, thus helping to close the implementation gap that jeopardizes
the prospects of parallel processing.

111

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and
Tools. Addison Wesley, 1986.

[2] Kirste Asanovi¢, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Comput-
ing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[3] Z.Bai,]. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the solution
of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, 2000.

[4] G.H.Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes. The IL-
LIACIV Computer. Computers, IEEE Transactions on, C-17(8):746 — 757, August 1968.

[S] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC'09: Proc. Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1-11. ACM, 2009.

[6] T.Blank. The MasPar MP-1 architecture. In Compcon Spring '90. Intellectual Leverage. Di-
gest of Papers. Thirty-Fifth IEEE Computer Society International Conference., pages 20 —24,
1990.

[7] Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, Cambridge, MA,
USA, 1990.

[8] Guy E. Blelloch. NESL: A Nested Data-Parallel Language. (Version 3.1). Technical
Report CMU-CS-95-170, Carnegie Mellon University, 199S.

[9] GuyE.Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85-97, 1996.

[10] GuyE.Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel language. In Proceedings of

the fourth ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPOPP '93, pages 102—111, New York, NY, USA, 1993. ACM.

112

[11] Bryan Catanzaro, Armando Fox, David Patterson, Bor-Yiing Su, Marc Snir, Kunle
Olukotun, Pat Hanrahan, and Hassan Chafi. Ubiquitous Parallel Computing from
Berkeley, lllinois and Stanford. IEEE Micro, 30(2):41-55, 2010.

[12] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an
embedded data parallel language. In Principles and Practices of Parallel Programming
(PPoPP), pages 47-56,2011.

[13] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanovi¢, James Demmel, Kurt
Keutzer, John Shalf, Kathy Yelick, and Armando Fox. SEJITS: Getting Productiv-
ity and Performance With Selective Embedded JIT Specialization. Technical Report
UCB/EECS-2010-23, EECS Department, University of California, Berkeley, 2010.

[14] Bryan Catanzaro and Kurt Keutzer. Parallel computing with patterns and frameworks.
XRDS: Crossroads, the ACM Magazine for Students, 17:22-27,2010.

[15] Bryan Catanzaro, Kurt Keutzer, and Bor-Yiing Su. Parallelizing CAD: A timely research
agenda for EDA. In Design Automation Conference, 2008.

[16] Bryan Catanzaro and Brent Nelson. Higher radix floating-point representations for fpga-
based arithmetic. Field-Programmable Custom Computing Machines, Annual IEEE Sympo-
sium on, pages 161-170, 200S.

[17] Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Murphy, and
Kurt Keutzer. Efficient, High-Quality Image Contour Detection. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2381-2388, 2009.

[18] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast Support Vector Ma-
chine Training and Classification on Graphics Processors. In Proceedings of the 25th In-
ternational Conference on Machine Learning, pages 104-111, 2008.

[19] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A map reduce framework for
programming graphics processors. In Workshop on Software Tools for Multi-Core systems,
2008.

[20] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R. Atreya,
and Kunle Olukotun. A domain-specific approach to heterogeneous parallelism. In
PPOPP, pages 35-46,2011.

[21] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller,
and Simon Marlow. Data parallel Haskell: a status report. In Proc. 2007 Workshop on
Declarative Aspects of Multicore Programming, pages 10—18. ACM, 2007.

[22] A.E.Charlesworth. An Approach to Scientific Array Processing: The Architectural De-
sign of the AP-120B/FPS-164 Family. Computer, 14(9):18 -27, sept. 1981.

113

[23] Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fisher. Size and access inference
for data-parallel programs. In Proceedings of the ACM SIGPLAN 1991 conference on Pro-

gramming language design and implementation, PLDI 91, pages 130—144, New York, NY,
USA, 1991. ACM.

[24] J.C. Chaves, J. Nehrbass, B. Guilfoos, J. Gardiner, S. Ahalt, A. Krishnamurthy, J. Un-
pingco, A. Chalker, A. Warnock, and S. Samsi. Octave and Python: High-level scripting
languages productivity and performance evaluation. In HPCMP Users Group Conference,
2006, pages 429—-434, June 2006.

[25] Jike Chong. Pattern-Oriented Application Frameworks for Domain Experts to Effectively Uti-
lize Highly Parallel Manycore Microprocessors. PhD thesis, University of California, Berke-
ley, 2010.

[26] Clyther: Python Language Extension for OpenCL. http://clyther.sourceforge.
net/,2010.

[27] CUDPP: CUDA Data-Parallel Primitives Library. http://www.gpgpu.org/developer/
cudpp/, 2009.

[28] Jane K. Cullum and Ralph A. Willoughby. Lanczos Algorithms for Large Symmetric Eigen-
value Computations. Vol. I: Theory. SIAM, 2002.

[29] Cython: C-extensions for python. http://cython.org/,2010.

[30] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’82, pages 207-212, New York, NY, USA, 1982. ACM.

[31] Pradeep Dubey. Recognition, mining and synthesis moves computers to the era of tera.
Technology Intel Magazine, 2005.

[32] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using sec-
ond order information for training support vector machines.] Mach. Learn. Res.,
6:1889-1918, 200S.

[33] Rahul Gargand José Nelson Amaral. Compiling python to a hybrid execution environ-
ment. In GPGPU '10: Proc. 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, pages 19-30. ACM, 2010.

[34] J.-L. Gaudiot, W. Bohm, W. Najjar, T. DeBoni, J. Feo, and P. Miller. The Sisal model
of functional programming and its implementation . In Parallel Algorithms/Architecture
Synthesis, 1997. Proceedings. Second Aizu International Symposium, pages 112 —123, March

1997.

[35] PP.Gelsinger. Microprocessors for the new millennium: Challenges, opportunities, and
new frontiers. In Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC.
2001 IEEE International, pages 22 -25,2001.

http://clyther.sourceforge.net/
http://clyther.sourceforge.net/
http://www.gpgpu.org/developer/cudpp/
http://www.gpgpu.org/developer/cudpp/
http://cython.org/

114

[36] Anwar Ghuloum, Eric Sprangle, J. Fang, G. Wu, and X. Zhou. Ct: A Flexible Parallel
Programming Model for Tera-scale Architectures. Technical Report White Paper, Intel

Corporation, 2007.

[37] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: a high-level directive-based
language for GPU programming. In GPGPU-2: Proc. 2nd Workshop on General Purpose
Processing on Graphics Processing Units, pages 52—61. ACM, 2009.

[38] Jonathan M. D. Hill. Data parallel haskell: Mixing old and new glue. Technical Report
611, Queen Mary and Westfield College, University of London, 1993.

[39] W. Daniel Hillis. The Connection Machine. MIT Press, 1989.

[40] W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms. Commun. ACM,
29(12):1170-1183, 1986.

[41] W. Daniel Hillis and Lewis W. Tucker. The CM-S Connection Machine: a scalable su-
percomputer. Commun. ACM, 36:31-40, November 1993.

[42] R.Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, pages 29—60, 1969.

[43] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2009. Version 1.2.

[44] Mark Horowitz and Wikipedia, 2011. Data gathered from http://en.wikipedia.org/
wiki/Intel_Core and personal communications with Mark Horowitz.

[45] Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28,
December 1996.

[46] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs. Awk vs...an experiment in soft-
ware prototyping productivity. Technical Report YALEU/DCS/RR-1049, Yale Univer-
sity Department of Computer Science, New Haven, CT, 1994.

[47] John D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-
neering, 9(3):90-95, May-Jun 2007.

[48] Kenneth E. Iverson. A programming language. In Proceedings of the May 1-3, 1962, spring
joint computer conference, AIEE-IRE "62 (Spring), pages 345-351, New York, NY, USA,
1962. ACM.

[49] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001-.

[50] S.S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
Platt’s SMO Algorithm for SVM Classifier Design. Neural Comput., 13(3):637-649,
2001.

http://en.wikipedia.org/wiki/Intel_Core
http://en.wikipedia.org/wiki/Intel_Core

[51]

[53]

[54]
[55]
[56]

[61]

[62]

115

Ken Kennedy and Kathryn McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Utpal Banerjee, David Gelernter, Alex Nico-
lau, and David Padua, editors, Languages and Compilers for Parallel Computing, volume
768 of Lecture Notes in Computer Science, pages 301-320. Springer Berlin / Heidelberg,
1994.

Kurt Keutzer and Tim Mattson. A Design Pattern Language for Engineering (Paral-
lel) Software. Intel Technology Journal, Addressing the Challenges of Tera-scale Computing,
13(4),2010.

B. Khailany, WJ. Dally, UJ. Kapasi, P. Mattson,]J. Namkoong, J.D. Owens, B. Towles,
A.Chang, and S. Rixner. Imagine: media processing with streams. Micro, IEEE, 21(2):35
—46, March 2001.

Andreas Klockner. PyCUDA, 2009. http://mathema.tician.de/software/pycuda.
Andreas Klockner. Codepy. http://mathema.tician.de/software/codepy,2010.

Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro, Paul Ivanov, and
Ahmed Fasih. Pycuda: Gpurun-time code generation for high-performance computing.
CoRR, abs/0911.3456, 2009.

C.E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovi¢, N. Cardwell,
R.Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhatft, and K. Yelick. Scal-
able processors in the billion-transistor era: IRAM. Computer, 30(9):75 ~78, September
1997.

Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: architectural
support for fine-grained parallelism on chip multiprocessors. In Proceedings of the 34th
annual international symposium on Computer architecture, ISCA’07, pages 162—173, New
York, NYY, USA, 2007. ACM.

Sean Lee, Manuel M. T. Chakravarty, Vinod Grover, and Gabriele Keller. GPU kernels as
data-parallel array computations in Haskell. In Workshop on Exploiting Parallelism using
GPUs and other Hardware-Assisted Methods (EPAHM 2009), 2009.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In Proc. 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 101-110. ACM,
2009.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
unified graphics and computing architecture. IEEE Micro, 28(2):39-55, March 2008.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel program-
ming. Addison-Wesley Professional, first edition, 2004.

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/codepy

116

[63] Michael McCool. Data-parallel programming on the Cell BE and the GPU using the
RapidMind development platform. In Proc. GSPx Multicore Applications Conference,
November 2006.

[64] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In
Proc. Graphics Hardware 2002, pages 57-68. Eurographics Association, 2002.

[65] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with CUDA. Queue, 6(2):40-53, March 2008.

[66] J.R. Nickolls. The design of the MasPar MP-1: a cost effective massively parallel com-
puter. In Compcon Spring "90. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE Com-
puter Society International Conference., pages 25 —28, 1990.

[67] Nvidia. Nvidia CUDA, 2007. http://nvidia.com/cuda.
[68] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, May 2010. Version 3.1.

[69] Wilfried Oed. Cray Y-MP C90: System features and early benchmark results. Parallel
Computing, 18(8):947 — 954, 1992.

[70] Travis E. Oliphant. Python for scientific computing. Computing in Science and Engineer-
ing, 9(3):10-20, 2007.

[71] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips. GPU Com-
puting. Proceedings of the IEEE, 96(5):879 ~899, May 2008.

[72] John C. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Advances in kernel methods: support vector learning, pages 185-208. MIT
Press, Cambridge, MA, USA, 1999.

[73] William L. Plishker. Automated Mapping of Domain Specific Languages for Application
Specific Multiprocessors. PhD thesis, University of California, Berkeley, 2006.

[74] Lutz Prechelt. An empirical comparison of seven programming languages. IEEE Com-
puter, 33(10):23-29, Oct 2000.

[75] Lutz Prechelt. Are Scripting Languages Any Good? A Validation of Per], Python, Rexx,
and Tcl against C, C++, and Java. In Advances in Computers, volume 57, pages 205 — 270.
Elsevier, 2003.

[76] The Python language reference. http://docs.python.org/2.6/reference, October
2008. Version 2.6.

[77] Richard M. Russell. The CRAY-1 computer system. Commun. ACM, 21:63-72, January
1978.

[78] Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming.
MIT Press, Cambridge, MA, USA, 1989.

http://nvidia.com/cuda
http://docs.python.org/2.6/reference

117

[79] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley, July 2010.

[80] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa,
Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 architecture
for visual computing. ACM Trans. Graph., 27:18:1-18:15, August 2008.

[81] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives
for GPU computing. In GH 07, pages 97-106, 2007.

[82] Niraj R. Shah. Programming Models for Application-Specific Instruction Processors. PhD
thesis, University of California, Berkeley, 2004.

[83] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The solomon computer.
In Proceedings of the December 4-6, 1962, fall joint computer conference, AFIPS *62 (Fall),
pages 97-107, New York, NY, USA, 1962. ACM.

[84] J.E. Stone, D. Gohara, and Guochun Shi. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science Engineering, 12(3):66-73,
May 2010.

[85] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense Point Trajectories by
GPU-accelerated Large Displacement Optical Flow. In European Conference on Computer
Vision, pages 438—44S5, September 2010.

[86] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Parallelism to Pro-
glesby. g
gram GPUs for General-Purpose Uses. In ASPLOS 2006, pages 325-335, 2006.

[87] Theano: A python array expression library. http://deeplearning.net/software/
theano/, 2010.

[88] LW. Tucker and G.G. Robertson. Architecture and applications of the connection ma-
chine. Computer,21(8):26 —38, August 1988.

[89] Ake Wikstrom. Functional Programming using Standard ML. Prentice-Hall, 1988.

[90] Michael Wolfe. Implementing the PGI Accelerator model. In Proc. 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, pages 43-50. ACM, 2010.

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

	List of Figures
	List of Tables
	Introduction
	The Implementation Gap
	Copperhead
	Contributions
	Outline

	Background
	Data Parallelism
	Data Parallel Architectures
	Contemporary Processors
	Parallelism Hierarchy

	Embedded Languages
	Data Parallel Programming Models
	Summary

	The Copperhead Language
	Restricted Subset of Python
	Expressions
	Statements

	Type System
	Definition

	Side Effects
	Side Effects in Host Code
	Loops

	Scoping and Ordering
	Closures
	Data-Parallel Primitives
	map
	zip
	reduce
	scan
	gather
	scatter
	permute
	indices

	Example programs
	Compressed Sparse Row Sparse Matrix Vector Multiplication
	Radix Sort

	Conclusion

	Compiling Data Parallel Languages
	Source to source compilation
	Normalized Form
	Closure Conversion
	Single Assignment Conversion
	Procedure Flattening
	Expression Flattening
	Inlining
	Final Result

	Shape Analysis
	Data Parallel Primitive Scheduling
	Data Parallel Primitive Fusion

	The Flattening Transform
	Quantifying the Flattening Transform
	Load Balancing
	SIMD Effects
	Summary

	Scheduling Methodology
	Phase Analysis and Scheduling
	Phase Analysis
	Phase Scheduling
	Phase Analysis and Scheduling Example
	Limitations

	Using On-chip Memories
	Structures of Arrays
	Conclusion

	The Copperhead Runtime
	CUDA C++ Back End
	Runtime
	Runtime Static Compilation
	Places

	Data Structures
	Arbitrarily Nested Sequences
	Uniformly Nested Sequences

	Foreign Function Interface
	Runtime Overheads
	Systems without compilers
	Conclusion

	Results
	Sparse Matrix Vector Multiplication
	Preconditioned Conjugate Gradient Linear Solver
	Lanczos Eigensolver
	Quadratic Programming: Nonlinear Support Vector Machine Training
	Productivity
	Conclusion

	Conclusions
	Contributions
	Direct Mapping of Nested Data Parallelism
	Phase Analysis and Scheduling
	Runtime Static Compilation

	Availability
	Future Work
	Alternative Backends
	Autotuning
	Aspect Oriented Debugging
	Usability Studies

	Conclusion

	Bibliography

