
The Elements of Automatic Summarization

Daniel Jacob Gillick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-47

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-47.html

May 12, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



The Elements of Automatic Summarization

by

Daniel Jacob Gillick

A dissertation submitted in partial satisfaction
of the requirements for the degree of

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Nelson Morgan, Chair
Professor Daniel Klein

Professor Thomas Griffiths

Spring 2011



The Elements of Automatic Summarization

Copyright © 2011

by

Daniel Jacob Gillick



Abstract

The Elements of Automatic Summarization
by

Daniel Jacob Gillick
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Nelson Morgan, Chair

This thesis is about automatic summarization, with experimental results on multi-
document news topics: how to choose a series of sentences that best represents a col-
lection of articles about one topic. I describe prior work and my own improvements
on each component of a summarization system, including preprocessing, sentence
valuation, sentence selection and compression, sentence ordering, and evaluation of
summaries. The centerpiece of this work is an objective function for summariza-
tion that I call "maximum coverage". The intuition is that a good summary covers
as many possible important facts or concepts in the original documents. It turns
out that this objective, while computationally intractable in general, can be solved
efficiently for medium-sized problems and has reasonably good fast approximate so-
lutions. Most importantly, the use of an objective function marks a departure from
previous algorithmic approaches to summarization.
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Chapter 1

Introduction

1.1 Who needs summaries?

In the year 77 of the Common Era, Pliny the Elder published his magnum opus, Nat-
uralis Historia, an encyclopedic account in 36 chapters of everything he knew. Pliny,
a Roman lawyer, army officer, local governor, author, naturalist, and philosopher,
had a voracious appetite for knowledge, which he hoped to impart to his friend, the
emperor Titus as he set about the task of ruling the unwieldy Roman Empire. The
work was groundbreaking, a model for the modern encyclopedia in terms of breadth,
citation, and indexing. It covered mathematics, the sciences, agriculture, medicine,
and the arts. And, just in case Titus found himself short on reading time, Pliny wrote
summaries of each section: the first known abstracts.

Since Pliny’s time, the amount of published material has grown rather dramat-
ically. The wisdom implied by his obsessive scholarship ("there is no book so bad
that some good could not be got out of it") just sounds foolish in the era of Amazon
and Wikipedia. As a result, the value of summaries has likewise increased, even for
ordinary citizens.

Nowadays, we are so surrounded by summaries of information that we often take
them for granted. Imagine a newspaper without headlines! Books and movies are
described in blurbs and reviews, scholarly articles begin with abstracts, and search
results are summarized with a few snippets from each page. Summaries are of great
potential value to journalists, lawyers, students, CEOs, and casual browsers of the
Internet1.

These days, nearly all summaries we are likely to encounter are written by people.
They are typically abstracts, distillations of the original written in new language, as
opposed to extracts, patchworks of text selected from the source (though empirical

1Take the recent Internet meme: TL;DR, which stands for Too Long; Didn’t Read.
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Chapter 1. Introduction

Figure 1.1: A 12th century version of Pliny the Elder’s Naturalis Historia.

studies have shown there is more copying than you might expect when the New
York Times archivists summarize articles, for example.). Still, writing summaries is
something of an art: Experts have trouble explaining exactly what steps they follow
in absorbing and reformulating information. Thus, while the prospect of automatic
summarization is appealing, it is not surprising that there remains a considerable gap
between human and machine-written summaries.

1.2 On the prospect of automation

Research in automatic summarization began in the 1950s. Hans Peter Luhn, a com-
puter scientist at IBM, perhaps best known for developing the algorithm used for
validating credit card numbers, published a paper in the 1958 edition of the IBM
Journal called The Automatic Creation of Literature Abstracts [Luhn, 1958]. Re-
markably, Luhn took a mathematical approach to the problem which was largely
abandoned and then rediscovered in the last 15 years as statistical techniques have
rejuvenated Artificial Intelligence research:

Statistical information derived from word frequency and distribution is
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Chapter 1. Introduction

Figure 1.2: Luhn began thinking about statistical properties of documents (Left); Ed-
mundson’s system diagram contains many components of a modern summarizer (Right).

used by the machine to compute a relative measure of significance, first
for individual words and then for sentences. Sentences scoring highest in
significance are extracted and printed out to become the "auto-abstract."

Luhn had to transcribe each document he wished to summarize onto a punch
card, which made things painfully slow, but his approach to summarization is truly
foundational. Surprisingly little has changed in today’s state-of-the-art systems. And,
while some have taken a few small steps towards language generation, extractive
summarization is still the focus of most research. H. P. Edmundson’s description in
1964 [Edmundson, 1964] is still apt today:

Present systems of automatic abstracting are capable of producing noth-
ing more than extracts of documents, i.e. a selection of certain sentences
of a document. This is not to say, however, that future automatic ab-
stracting systems cannot be conceived in which the computer generates
its own sentences by means of a suitable generative grammar program.
Theoretically there is no linguistic or mechanical reason why such a sys-
tem could not be designed and operated [...] Such a system, however, is
apt to be costly both in time and money.

What has changed is the context in which we understand the problem. Most
publications are available in what Luhn would have called machine-readable form,
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Chapter 1. Introduction

and are readily accessible online. Computing power and accessibility are no longer
primary limitations. Practical issues associated with summarization include:

Preprocessing: Many segments of raw text are not suitable for extraction. Tables,
quotes, bylines, and all kinds of formatting markup are unwelcome in a sum-
mary, and should be removed before analysis begins. This problem is difficult,
and often overlooked, but poor preprocessing can eclipse improvements in other
aspects of summarization.

Sentence Segmentation: Sentences are a natural unit for extraction, but identi-
fying sentence boundaries is not trivial because periods are also used to denote
abbreviations. Segmentation mistakes are costly because a fragmented sentence
can ruin a summary.

Valuation: To choose which sentences to include in a summary, we need some way
of measuring the value of each sentence, or more generally, selection unit. Luhn
proposed inferring the value of a sentence from the number of times the words
it contains appear in the original input. Other features of sentences, like their
position or the presence of various key phrases like in conclusion, have also been
studied.

Selection: Luhn’s system simply selected the sentences with the largest inferred
values. But this neglects redundancy in the relevant sentences. Thus, selection
is a constrained optimization problem: maximize relevant content subject to a
summary length constraint.

Ordering: The ordering of a set of sentences can dramatically affect the meaning
and readability of the summary. While a proper treatment of sentence ordering
ought to be more holistic, that is, considered jointly with selection, little work
in this area has had much impact.

Evaluation: Measuring and understanding the differences between different sum-
marization systems is crucial to advancing the field. Since manual evaluation
by experts is slow and costly, a variety of automatic and semi-automatic al-
ternatives are used. The somewhat standard, though problematic ROUGE
metric measures word overlap between machine-generated summaries and a set
of human-written abstracts.

Significant research has been devoted to most of these areas, and the next chap-
ters will survey some key results. But often, results are hard to compare. Because
most researchers build their own systems from the ground up, without standardized
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Chapter 1. Introduction

components, it is hard to tell if an improvement is due to a better method for select-
ing sentences or simply better preprocessing, for example. One motivation for this
work is to provide some simple but state-of-the-art components to facilitate further
development and comparison.

There are many varieties of summarization. Ongoing research investigates sum-
marization of email, legal proceedings, customer reviews, search results, meetings, and
videos. Many of the standard techniques, however, have their origins in document
summarization, where the goal is to convey the most important information from a
set of documents within a length constraint using natural language. The focus of this
thesis is narrow: summarization of multiple news documents, but the ideas are more
broadly applicable.

1.3 A note on computers and language

Initially, the prospect of summarizing automatically sounds either impossible or like
magic. Considering more carefully how extraction actually works, usually by counting
simple features of the words in the documents, can be something of a disappointment.
Far from magic, this application of Artificial Intelligence seems unrelated to our intu-
itive sense of what intelligence is. The computer does not comprehend any meaning;
it doesn’t even have a framework for representing semantics. All told, we are a long
way from creating intelligence of the sort that goes on in the human brain.

So rather than approach problems like summarization by trying to emulate people,
we take a far less ambitious tack. Instead, we make simplifying assumptions about
what a summary ought to be, and then use the computer for what it does best:
calculating quickly. That is, rather than employ a series of human-like steps (pick a
"topic sentence", find a series of "supporting sentences", etc.), we use the computer
to search for the summary that maximizes the value of a made-up formula (find the
set of sentences that together contain the most frequent words in the documents).

This transition, from procedural to statistical thinking, has been amazingly suc-
cessful in other related fields. Machine translation and speech recognition improved
tremendously when researchers stopped trying to write software to imitate people
and started fitting statistical models from reams of data. Summarization research
has lagged a bit behind in this respect, perhaps because it is hard to think of simple
but reasonable models for how a few thousand sentences should be reduced to three
or four. Still, the primary philosophical contribution of this work is to help promote
the transition to statistical approaches for summarization.
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Chapter 1. Introduction

1.4 What to expect

As I write, I am keeping in mind a particular reader. My reader is like me, but
just beginning to choose a research topic. Like most areas, there are a great many
summarization papers and ideas floating around, but little top-down organization. I
am trying to write the thesis that would have been most useful for me to read three
years ago, focusing in particular on the work I’ve done since then. I will try to keep
things simple and clear, and avoid making assumptions about what my reader knows
and does not know.

The next chapter describes the data used in my experiments and the variety
of evaluation methods, both manual and automatic; it also provides some general
statistics that highlight differences between summaries and full documents. Chapter
3 discusses preprocessing issues, including the sentence boundary detection problem.
Chapter 4 steps through a series of advances in sentence selection methods, high-
lighting the advantages of an objective function for summarization over procedural
approaches. Chapter 5 gives a deeper analysis of the maximum coverage objective
proposed in chapter 4, and suggests an expansion for solving selection and sentence
compression jointly. Chapter 6 discusses the often ignored problem of sentence order-
ing, suggesting a simple alternative to the difficult task of finding the the best way
to order a small set of sentences. Chapter 7 addresses evaluation. It describes a sim-
pler alternative to ROUGE with more desirable properties, and discusses the results
of an evaluation by non-expert annotators. Chapter 8 suggests future directions for
summarization.
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Chapter 2

News Data

For the sake of consistency and simplicity, all experiments and discussion that follow
involve a subset of a dataset called the English Gigaword Corpus (3rd edition) [Graff
et al., 2007]. The corpus consists of millions of newswire articles published by six
different sources between 1994 and 2006.

2.1 Anatomy of a summarization problem

The summarization problems presented here are the official sets distributed as part of
a competition organized annually since 2001 by the National Institute of Standards
and Technology (NIST). Each problem was created by an expert who assembled a
group of related documents and wrote a "topic" and "narrative description" to help
focus the summary. The 2006 and 2007 sets asked for 250 word summaries1 from
groups of 25 documents. In the hopes of nudging research away from pure sentence
extraction, the 2008 and 2009 sets asked for 100 word summaries of 10 documents2.
Each year’s problem set includes around 50 such problems.

To facilitate evaluation, a total of four summaries are written by experts for each
problem. Notably, these are abstracts rather than extracts. The same experts run
a comprehensive evaluation of all the summaries submitted by participating teams.
Figure 2.1 shows two sample summaries generated automatically and one written by
an expert, along with evaluation results from NIST’s 2008 Text Analysis Conference.

1This is a hard cap on the number of space-separated words. Other summarization problems
employ different sorts of limits, but here we assume that the summary will be truncated after the
word limit is reached.

2It didn’t work. Most submitted systems remain extractive.
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Chapter 2. News Data

Topic: Airbus A380
Narrative: Describe developments in the production and launch of the Airbus A380.

Reference Summary A Summary B
The European Airbus A380
flew its maiden test flight
from France 10 years after
design development started.
The A380 super-jumbo
passenger jet surpasses the
Boeing 747 and breaks their
monopoly. Airlines world-
wide have placed orders but
airports may need modifi-
cation to accommodate the
weight and width of the
A380. U.S. airlines have not
placed an order. Airbus has
fallen behind in production
and a backlog of orders has
developed. Airbus must sell
at least 250 planes to break
even financially. The A380
is overweight and modifi-
cations to meet the weight
requirements impacted the
budget. Additional test
flights are planned.

European airplane maker
Airbus "is likely to discuss
before the end of the year"
a possible increase in pro-
duction capacity of its new
super-jumbo A380 aircraft,
Airbus’ production chief
Gustav Humbert said in a
magazine interview released
Tuesday. The superjumbo
Airbus A380, the world’s
largest commercial airliner,
took off Wednesday into
cloudy skies over southwest-
ern France for its second
test flight. This second test
flight is part of a program
of tests that will intensify
from here on out, and
we’re not going to make
statements on each phase of
the program," Airbus said.

Airbus unveiled the world’s
biggest passenger jet at a
spectacular sound-and-light
ceremony in Toulouse. And
even though no US airline
has ordered the European
jet, aviation authorities
are getting Los Angeles
San Francisco and Miami
airports ready for the A-380
passenger flights in 2006.
Airbus has 139 firm A380
orders from 13 airlines and
freight companies, worth
$39 billion before any
discounts on the plane’s
$280 million list price.
Airbus sees global demand
for 1,250 A380-size behe-
moths to shuttle passengers
between the world’s largest
airports, which serve as
connecting hubs for flights
to less busy destinations.

System OQ LQ Pyramid ROUGE-2
Reference 5 4.5 0.550 0.065
System A 1 3.0 0.000 0.026
System B 4 4.0 0.276 0.048

Figure 2.1: A problem from the 2008 evaluation. One reference summary and two system
summaries are shown along with evaluation results. CR is the Content Responsiveness
as judged by an expert; LQ is the average of five expert-judged linguistic quality scores.
Both are on a 1 (very poor) to 5 (very good) scale. Pyramid measures overlap between
the important facts in the summary and the set of references. ROUGE measures overlap
in n-grams; ROUGE-2 uses n = 2.

2.2 Evaluation

Compared with other natural language processing research areas, summarization is
a particularly vague and subjective task. What makes a good summary may vary
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Chapter 2. News Data

greatly depending on the circumstances and the intended audience. So while evalua-
tion is essential to the progression of the field, it remains a thorny issue.

As it turns out, evaluating individual summaries is considerably more difficult
than evaluating summarization systems. This is because averaging together scores
for summaries produced by a single system can eventually reduce variability enough
to allow for meaningful comparison of systems. Luckily, we are usually interested
in comparing systems rather than summaries, to see whether a system-level change
improves average results.

2.2.1 Manual Evaluation

Traditional evaluation of summaries involves human judgments in categories like con-
tent and grammaticality. The annotator is instructed to read the original documents
and then score summaries without respect to any particular task or goal. This sort of
evaluation is intrinsic: it attempts to measure quality directly. Extrinsic methods, by
contrast, measure performance on a particular task, like timed question answering.

The annual competitions adjusted their criteria somewhat from year to year, but
the general setup remained fairly consistent. Scores range from 1 (very poor) to 5
(very good), but changed to a 10-point scale in 2009. Here are the instructions given
to the annotators in 2006 and 2007:

Content Responsiveness: Responsiveness should be measured primarily in terms of the
amount of information in the summary that actually helps to satisfy the information
need expressed in the topic statement. The linguistic quality of the summary should
play only an indirect role in your judgment, insofar as poor linguistic quality interferes
with the expression of information and reduces the amount of information that is
conveyed.

Grammaticality: The summary should have no datelines, system-internal formatting,
capitalization errors or obviously ungrammatical sentences (e.g., fragments, missing
components) that make the text difficult to read.

Non-redundancy: There should be no unnecessary repetition in the summary. Unneces-
sary repetition might take the form of whole sentences that are repeated, or repeated
facts, or the repeated use of a noun or noun phrase (e.g., "Bill Clinton") when a
pronoun ("he") would suffice.

Referential Clarity: It should be easy to identify who or what the pronouns and noun
phrases in the summary are referring to. If a person or other entity is mentioned, it
should be clear what their role in the story is. So, a reference would be unclear if an
entity is referenced but its identity or relation to the story remains unclear.

9



Chapter 2. News Data

Focus: The summary should have a focus; sentences should only contain information that
is related to the rest of the summary.

Structure and Coherence: The summary should be well-structured and well-organized.
The summary should not just be a heap of related information, but should build from
sentence to sentence to a coherent body of information about a topic.

I will often show Linguistic Quality scores, averages across the five grammatical
categories, and Overall Quality scores, a new category used in the 2008 and 2009
evaluations in place of content responsiveness. One set of instructions suggested that
overall quality should be related to the relative dollar value of a summary.

2.2.2 Automatic Evaluation

Manual evaluation is slow and costly3. To facilitate comparison between systems,
more immediate feedback is important. ROUGE, or Recall-Oriented Understudy
for Gisting Evaluation [Lin, 2004], is the awkwardly named adaptation of Machine
Translation’s BLEU scoring [Papineni et al., 2002] to summarization. ROUGE-n is
roughly a measure of the n-gram overlap between a summary and the set of reference
summaries, where the value of each n-gram is the number of references in which
it appears. It is recall-oriented because the summary length constraint implicitly
penalizes the inclusion of irrelevant words. The ROUGE toolkit includes a variety of
options (ignore stopwords4? perform word stemming before comparing?) and can use
word combinations more complex then n-grams: ROUGE-SU4, for example, counts
unigrams and pairs of words separated by up to four intervening words.

ROUGE is not good at predicting the manually evaluated quality of a particular
summary, but when ROUGE scores are averaged over many problems, the correlation
is usually good. Figure 2.2 shows the relationship between ROUGE and manually
evaluated quality in the 2008 evaluation. To achieve 90% correlation for this data,
ROUGE-2 requires around 30 problems, and with nearly 100 problems, the correlation
improves to almost 95%. The figure also suggests that with fewer than 15 topics,
ROUGE-1 is actually more reliable than higher order n-grams. In general, while
higher order n-grams are more meaningful, more predictive, they are rarer, so their
absence in a particular summary might not be significant.

ROUGE certainly permits rapid system development, but it is an easy target for
criticism. Given the references, it is a simple matter to create completely nonsensical

3It is also highly subjective; one additional advantage of ROUGE is that scores are readily
comparable across evaluations, whereas different annotators are likely to have different personal
score ranges.

4Stopword lists include common function (as opposed to content) words like articles, prepositions,
and pronouns)
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but high-ROUGE-scoring summaries. And, as with any simple automatic metric,
the more it is used to optimize machine learning methods, the less useful it becomes
in evaluation. While it is still used during development, good research papers cite
results of manual comparisons to support their findings.
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Figure 2.2: Correlation between ROUGE-n and human-evaluated summary quality when
scores are averaged over different numbers of topics. (2008 data).

2.2.3 Semi-automatic evaluation

The primary shortcoming of ROUGE is that it treats word n-grams as if they were
facts. Nenkova’s Pyramid method for evaluation [Nenkova and Passonneau, 2004] is
an attempt to bridge the gap between fully manual evaluation and ROUGE. Rather
than rely on n-grams as a unit of information, Semantic Content Units are manually
identified in the reference summaries (phrases, sentence fragments, etc.) so that a
system summary can be scored based on the relevant facts it contains. Pyramid
shows considerably stronger correlation than ROUGE with manual responsiveness,
and remarkably, a simple linear regression over average Pyramid scores and average
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linguistic quality scores can almost exactly predict overall responsiveness (correlation
is 99%). Note that this regression is at the system level: very little work has been
done on evaluating individual summaries.

The Pyramid method is not particularly automatic: human annotators are needed
to identify facts in the references and match these facts in new summaries. Still, it
is an attempt to begin mechanizing the identification of important content, separate
from linguistic quality, in summaries. And, Pyramid scores reasonably represent
the gap between human summaries and automatically generated summaries: While
human ROUGE scores just about match the best systems’, human Pyramid scores
are about twice as large as the best systems’.

2.3 Summaries versus documents

Before diving into a discussion of the different components involved in a summariza-
tion system, it is helpful to outline some of the differences between the human-written
summaries and the original documents in our data.

To give some intuition about which words translate from documents into sum-
maries, Table 2.1 shows the estimated probability that a word appears in a summary
given that it appeared somewhere in the source documents, for some sample words.
Note that for this dataset, the word token-level compression rate, from documents
to summaries is 2.8%; the word type-level compression rate is 19.4%: the words in
10 related documents, of course, are much more redundant than the text in a single
summary.

Topical words like Russia or FBI carry enough meaning to merit use in a sum-
mary, but relative dates, question words, and conversational pronouns (I, you), usually
don’t. That articles, conjunctions, and common prepositions appear in both docu-
ments and summaries is of little consequence as they are required for proper grammar
in any text.

Table 2.2 highlights words that would likely be useful to a classifier in distinguish-
ing summaries from documents using the piecewise (per word) symmetric Kullback-
Leibler Distance (KLD) between the distribution over words in the documents PD(·)
and words in the summaries PS(·):

KLDw = PD(w) log
PD(w)

PS(w)
+ PS(w) log

PS(w)

PD(w)
(2.1)

Over 6% of document words are the, but only 1.4% of summary words, an indication
that human abstractors use different syntactic forms. This claim is reinforced by the
distributional differences in the words of, to, a, and that. First- and second-person
personal pronouns we, our, and I almost never appear in summaries where facts

12
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Word P̂ (w ∈ S|w ∈ D) Word P̂ (w ∈ S|w ∈ D) Word P̂ (w ∈ S|w ∈ D)
the 0.9766 russia 0.5167 think 0.0144
and 0.9375 china 0.4118 ago 0.0132
to 0.9271 prison 0.3889 i 0.0130
of 0.8464 fbi 0.3750 thursday 0.0074
in 0.8411 arrest 0.3667 wednesday 0.0071
a 0.8151 indian 0.3542 you 0.0047
for 0.7057 france 0.3500 u.s. 0.0042
on 0.5443 drug 0.3421 come 0.0038
was 0.4427 nuclear 0.3409 monday 0.0035
with 0.4141 judge 0.3365 what 0.0033

Table 2.1: The estimated probability that a word appears in a 100 word summary given
that it appeared in at least one of the 10 source documents: words with the highest
probability (left column); content words with the highest probability (middle column);
words with the lowest probability (right column). Only words appearing in at least 10
different problems are shown (2008 data).

dominate opinions. Months and years (absolute dates) are common in summaries
which often give chronologies, while relative dates (Tuesday) lose meaning without
context. Also, note that said appears nearly eight times more frequently in docu-
ments because summaries typically disregard attribution phrases so common in news
documents ("..., sources said").

Table 2.3 gives distributional statistics for part-of-speech tags. Overall, nouns are
used more in documents (with the exception of plural proper nouns) while verbs are
used more in summaries. These differences are quite striking: NNs appear with a
third their ordinary rate in summaries; even proper nouns, which we might expect to
be particularly relevant are less than half as frequent in summaries. The various verb
varieties are roughly twice as prevalent in summaries, which, these results suggest,
are about actions. Summaries also contain more comparative adjectives and adverbs,
and fewer prepositions and determiners.

What are we to make of these differences? How are words and phrases kept
or removed in summary creation? One way to understand summarization from a
structural perspective is through the Machine Translation concept of alignment5. The
idea, as it applies to translation, is that a pair of parallel sentences in two different
languages share a hidden alignment, a mapping of words or phrases or syntactic sub-
trees that shows how meaning is transferred. Armed with an alignment model trained
from a corpus of parallel sentences, we can translate a new sentence by decoding
it: find the sequence of words in the other language that maximizes the alignment

5See Kevin Knight’s excellent tutorial [Knight, 1999].
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Chapter 2. News Data

Word KLD P̂D(w) P̂S(w) Word KLD P̂D(w) P̂S(w)
the 0.0719 0.0623 0.014069 2005 0.0112 0.000082 0.0031
we 0.0227 0.0022 < 10−7 u.s. 0.0053 0.000799 0.0040
said 0.0192 0.0109 0.001426 2004 0.0018 0.000332 0.0015
of 0.0131 0.0279 0.012193 january 0.0017 0.000171 0.0018
to 0.0107 0.0278 0.013356 continue 0.0016 0.000459 0.0017
a 0.0097 0.0247 0.011743 include 0.0015 0.000991 0.0026
our 0.0071 0.0007 < 10−7 investigation 0.0015 0.001023 0.0026
tuesday 0.0066 0.0007 < 10−7 japan 0.0013 0.000087 0.0007
that 0.0061 0.0131 0.005778 2006 0.0013 0.000129 0.0008
i 0.0060 0.0023 0.000150 april 0.0012 0.000197 0.0009

Table 2.2: The piecewise Kullback-Leibler Distance (KLD) is shown between the empir-
ical distributions over words in the documents PD(·) and words in the summaries PS(·):
highest KLD words appearing more frequently in the documents (left); highest KLD words
appearing more frequently in the summaries (right). (2008 data).

probability given by the model.
Daume and Marcu try applying the alignment idea to abstracts and source docu-

ments [Daumé III and Marcu, 2005]. Human annotators create a set of roughly 2000
phrase-aligned pairs with reasonably good inter-annotator agreement, that they use
to fit a model (that ends up being fairly complex) giving better precision and recall
than more heuristic baselines6. While this is an intriguing avenue of research, leading
away from extraction, I will not pursue it here. However, it would be nice to build
a purely abstractive summarization system that combined the alignment or transla-
tion model hypotheses with a language model (as in Machine Translation) to produce
summaries. They would be somewhat nonsensical because both the alignment model
and standard n-gram language models are too weak for actual language generation.
But at least the summaries would be amusing.

6See also Jing and McKeown’s work on mapping summary text to source text [Jing and McKeown,
1999]: In particular, a study of single news document summaries shows that nearly 80% of abstract
sentences are derived from cutting and pasting phrases from the source.
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Tag Examples P̂D(t) P̂S(t)
NN government year state time court 0.1323 0.0486
IN of in for on that 0.1102 0.0486

NNP bush abramoff house senate 0.1020 0.0481
DT the a an this that 0.0900 0.0485
" " 0.0220 0.0154
JJ other last new first many 0.0593 0.0486

NNS people years officials days members 0.0573 0.0483
, , 0.0532 0.0453

PRP he it they we i 0.0261 0.0258
$ $ 0.0011 0.0063

JJR more less better larger smaller 0.0027 0.0111
() () 0.0026 0.0096

NNPS states democrats republicans americans 0.0027 0.0091
RBR more earlier less longer better 0.0012 0.0038
JJS most least largest best latest 0.0019 0.0059
POS ’s 0.0092 0.0267
EX there 0.0012 0.0033

PRP$ his their its her our 0.0113 0.0282
RP up out down off on 0.0031 0.0077
MD will would could can should 0.0096 0.0238
: : ; ... - – 0.0019 0.0048

RBS most best 0.0005 0.0011
WDT that which whatever what 0.0048 0.0113
VBG being according including saying going 0.0181 0.0409
VBP are have do say ’re 0.0132 0.0275
CD one two million 000 three 0.0212 0.0424
WRB when where how why wherever 0.0032 0.0065
TO to 0.0242 0.0450
CC and but or nor 0.0254 0.0468
VBN been made known used expected 0.0252 0.0454
VBZ is has ’s says does 0.0187 0.0295
VB be have make take get 0.0286 0.0444
WP who what whom whoever whole 0.0043 0.0065
RB not also n’t now only 0.0295 0.0411
. . ? ! 0.0373 0.0486

PDT all such half 0.0004 0.0005
VBD said was had were did 0.0442 0.0445

Table 2.3: Comparison of the empirical distribution of part-of-speech tags in documents
P̂D(t) and summaries P̂S(t). The most common example words are shown for each tag
type. 2008 data (results are nearly identical with 2009 data).
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Chapter 3

Preprocessing: Preparing Text

Text is widely available, but there are few consistent standards, so different sources
look quite different. Still, the preparation of raw text for summarization, or other
natural language processing tasks, is often neglected by researchers as mundane. This
chapter discusses formatting, removal of unwanted phrases (a kind of compression),
and sentence segmentation, in each case showing why the problem deserves more
serious consideration.

3.1 Cleaning up formatted text

Each publication has its own standards, which evolve constantly. The New York
Times, Xinhua, and Associated Press documents in our dataset, for example, have
tables, bulleted lists, bylines, location headers, image captions, and various kinds of
contact information all lurking in the text, often indicated by different markers. Table
3.1 gives examples of headers. Removing such content-less segments is important for
two reasons: It improves the readability of extracted sentences and it clears space for
more real content.

As a result, each summarization system includes code for handling formatted text,
usually a set of carefully designed, highly specialized regular expressions. Anecdotal
reports suggest that some teams devote hundreds of hours to this process. While
automated text cleaning would be valuable, there is no research, to my knowledge, in
this area, at least in the context of summarization. One way to address cleaning a bit
more systematically is to segment text into sentences and then prune those rejected
by a parser or without a sufficient number of dictionary words. But such methods
are too coarse: If there are oddly formatted bylines attached to the first sentence of
each document, these sentences, though otherwise useful, would be discarded.

While I have not implemented any systematic solution (I use a limited set of
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Original Cleaned
Vatican-pope-US-women,newseries WASHING-
TON Pope John Paul II is credited for some
advances by women in the Catholic Church.

Pope John Paul II is credited for some
advances by women in the Catholic
Church.

New Orleans – A thoroughfare in New Orleans
that ends where the water begins has become a
launching point for rescue workers.

A thoroughfare in New Orleans that
ends where the water begins has become
a launching point for rescue workers.

Table 3.1: Examples of undesirable, source-specific formatting that is removed from the
first sentences of news documents using regular expressions (2008 data).

regular expressions), one way to approach the problem is to assume two underlying
states: good and bad. Usable text is generated by the good state and unusable
text is generated by the bad state. Under the Hidden Markov Model framework, we
would learn emission probability distributions P (text|good) and P (text|bad) based
on features of the text like letter n-grams, and transition distributions over sequences
of underlying states. Labeled data for supervised learning can come from the output
of a rule based system. The derived labels for new data can be inferred from a Viterbi
decoding, and sections marked as bad can be excised. Most likely, some additional
constraints on keeping sentences intact would be necessary, and parameters might
need adjusting for new domains. Still, this would be a step towards better automation
of a painful part of summarization.

3.2 Sentence compression as preprocessing

Beyond formatting issues, there are segments of clean text that have no bearing on
the summary. Removing unnecessary parts of sentences while maintaining meaning
and grammar is called sentence compression. The idea was pioneered by Knight and
Marcu [2000], who trained a noisy-channel style system1 to remove subtrees from
the parse tree of an original sentence. Subsequent work improved the readability of
the compressed sentences [McDonald, 2006], but no results have shown significant
improvements in overall summary quality, despite a number of attempts [Lin, 2003;
Nenkova, 2008; Martins and Smith, 2009; Gillick and Favre, 2009].

Why should this be? One problem is that compression invariably introduces some
semantically or grammatically bad sentences, which work against gains in informa-
tion content. Perhaps the real problem is a bit more subtle. Most systems create

1As in speech recognition and machine translation, a combination of an acoustic or translation
model and a language model is used.
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compressed sentence alternatives and allow the inference algorithm to choose among
them. But since the words and phrases we want to remove (days of the week, attri-
bution clauses, etc.) are common, they are likely to receive unsuitably high weight
during valuation. Either we should learn to compress and extract sentences jointly,
or compression should precede extraction.

To demonstrate the potential of preprocessing compression, I wrote a few regular
expressions to remove some days of the week and attribution clauses. The regular
expression for days of the week is shown here (note: this is not simple!), which is
designed to have high recall2—virtually no syntactic or semantic issues arise as a
result of the deletions:

s = re.sub(r'(^| |, )(on|last|this|next|late)
(monday|tuesday|wednesday|thursday|friday|saturday|sunday)
( morning| afternoon| evening| night)?
($| |,|\.)', r'\5', s)

Table 3.2 gives some sense for how this sort of compression can improve perfor-
mance. The differences in ROUGE score are significant and more improvement seems
possible if more rules are added, or if the rules are replaced by a statistical system.

Compression ROUGE-2 LQ Words per Sent.

2008 None 0.108 4.95 24.8
Rules 0.114 N.A. 24.0

2009 None 0.110 N.A. 26.3
Rules 0.114 5.40 25.4

Table 3.2: A summary of the performance gap created by more extensive text cleaning.
The Linguistic Quality (LQ) scores are not directly comparable since not all of these
systems were submitted for evaluation. The 2008 LQ score is multiplied by two here since
the scale was changed from 1-5 to 1-10 in 2009. The differences in ROUGE-2 and the
average number of words per summary sentence are significant at 95% confidence.

3.3 Sentence segmentation

The sentence segmentation problem—the disambiguation of periods that arises be-
cause periods signal abbreviations as well as sentence boundaries—is mostly dis-
regarded because a few rules treat most examples effectively. However, even the

2In the 2008 data, 8.7% of input sentences contain at least one of these days of the week; after
application of this rule, 5.7% have at least one.
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strongest rule-based system [Aberdeen et al., 1995], highly specialized and labor in-
tensive to create, has an error rate of 1% on a standard corpus of Wall Street Journal
text [Marcus et al., 1993]. The unsupervised Punkt system [Kiss and Strunk, 2006] is
widely used (1.65% error rate on the Wall Street Journal corpus; 3% error rate with
the included model3). Similar error rates (close to 1%) were reported with supervised
systems [Palmer and Hearst, 1997; Reynar and Ratnaparkhi, 1997].

  

Sentence Boundaries (S)

Abbreviations (A)

(A+S)

(A)

(A+S)

All Data

Errors

Figure 3.1: The overlapping label space of the Wall Street Journal test data: sentence
boundaries (76%), abbreviations (26%), intersection (2%). The distribution of errors
given by the classifier is shown as well (not to scale with all data).

All these systems either employ a hard-coded list of abbreviations or seek to
compile one automatically. This appears to be a mistake. As Figure 3.1 shows, most
of the difficult cases involve abbreviations that can also end sentences (he was born
in the U.S.). Based on this observation, I built a new system for classifying sentence
boundaries that achieves an error rate of 0.25% on the Wall Street Journal Corpus
[Gillick, 2009].

The success of this system is partly due to a rich feature set. Each example takes
the general form "L. R", where L is the context on the left side of the period in
question, and R is the context on the right (only one word token of context on each
side is used). We are interested in the probability of the binary sentence boundary
class s, conditional on its context: P (s|"L. R"). Features used in supervised learning

3Punkt ships with the Natural Language Processing Toolkit [Loper and Bird, 2002].
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are extracted from "L. R", described in Table 3.3. Each individual feature is binary,
so the actual feature vector for an example is very large but very sparse.

# Feature Description Error
1 Left context 1.88%
2 Right context 9.36%
3 Length of left context 9.12%
4 Capitalization of right context 12.56%
5 Log count of left context without following period in the training set 12.14%
6 Log count of right context appearing lowercased in the training set 18.79%
7 Left context and right context 10.01%
8 Left context and capitalization of right context 7.54%
{1,2} 0.77%
{1,2,3,4} 0.36%
{1,2,3,4,5,6} 0.32%
{1,2,3,4,5,6,7,8} 0.25%

Table 3.3: The eight feature classes. All individual features are binary. SVM classification
results shown (linear kernel).

Feature classes 1 and 2 together give surprisingly good performance. Adding
feature classes 3 and 4 better than cuts the remaining errors in half. The length of
the left token serves as a proxy for the abbreviation class (mean abbreviation length
is 2.6, compared to 6.1 for non-abbreviation sentence enders). The capitalization of
the right token is a proxy for a sentence starter. Every new sentence that starts with
a word (as opposed to a number or punctuation) is capitalized, but 70% of words
following abbreviations are also, so this feature is mostly valuable in combination.

While the training set includes nearly a million words, most of these are ignored
because features are extracted only near possible sentence boundaries. Consider the
fragment "... the U.S. Apparently some ...", which the system with only the first four
features fails to split after "U.S." The word "Apparently" starts only 8 sentences in
the training data, but since it usually appears lowercased (89 times in training), its
capitalization here is meaningful. Feature class 6 encodes this idea, indicating the
log count4 of lowercased appearances of the right context: the higher the count, the
better the chances that this uppercase appearance starts a new sentence. Similarly,
the more times the left context appears without a period in training, the better the
chances that this is not an abbreviation.

Another way to incorporate all of the training data is to build a model of P (s|"L R"),
as is often used in sentence segmentation for speech recognition. Without a period in

4The log count is rounded to the nearest integer value.
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the conditional, many more negative examples are included in the training set. The
resulting SVM model is very good at placing periods given input text without them
(0.31% error rate), but when limiting the input to examples with ambiguous periods,
the error rate is not competitive with our original model (1.45%).

Corpus Examples in S SVM Err NB Err
WSJ 26977 74% 0.25% 0.35%
Brown 53688 91% 0.36% 0.45%
Poe 11249 95% 0.52% 0.44%

Table 3.4: SVM and Naive Bayes classification error rates on different corpora using a
model trained from a disjoint Wall Street Journal dataset. The fraction of examples that
are sentence boundaries is denoted by in S.

Classification results using a Support Vector Machine5 and Naive Bayes6 are sum-
marized in Table 3.4 for three different datasets.

While the Wall Street Journal corpus (WSJ) is limited to news, the Brown corpus
includes 500 documents, distributed across 15 genres, intended as roughly represen-
tative of all published English; The Complete Works of Edgar Allen Poe includes an
introduction, prose, and poetry. Table 3.5 shows how performance on these corpora
scale with the number of training examples. Reasonable performance is possible with
limited labeled data, and it appears that additional data would continue to yield
improvements.

Corpus 5 50 500 5000 40000
WSJ 7.26% 3.57% 1.36% 0.52% 0.25%
Brown 5.65% 4.46% 1.65% 0.74% 0.36%
Poe 4.01% 2.68% 2.22% 0.98% 0.52%

Table 3.5: SVM error rates on the test corpora, using models built from different numbers
of Wall Street Journal training sentences.

While I have no experiments quantifying the improvements in summary quality
that result from this improved sentence segmentation, I observed that only one sum-
mary out of the 88 submitted for evaluation in 2009 contained a sentence boundary
error. The 2008 submission included 96 summaries, 20 of which had at least one
sentence boundary error (I used the Punkt system).

5A simple linear kernel is used.
6With add-k smoothing, k = 0.25.
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Chapter 4

Selecting Sentences

Okay, so we have a set of input documents. They’ve been selected by a person to
match the query we want to address (in principle this may be the job of Information
Retrieval), they’ve been cleaned up and split into sentences. This chapter is concerned
with selecting sentences appropriate for a summary.

4.1 Baselines

We’ll begin by establishing a few baselines. The standard baseline for our data (B1)
is to select the first L words from the most recent input document, where L is the
length limit. A much stronger baseline (B2) recognizes that in news documents, first
sentences tend to summarize well, and simply selects first sentences starting with the
most recent document, up to the length limit. Table 4.1 shows some ROUGE scores
for B1 and B2. The automatic metrics of choice will be ROUGE-2 and ROUGE-SU4,
since their correlation tends to be lower than any other pair of ROUGE metrics.

ROUGE-2 ROUGE-SU4
Data Set B1 B2 B1 B2

2006 0.060 0.070 0.108 0.122
2007 0.059 0.094 0.106 0.143
2008 0.060 0.084 0.091 0.119
2009 0.063 0.092 0.099 0.127

Table 4.1: Baseline ROUGE results for four datasets. B1 selects sentences in order from
the most recent document up the length limit; B2 selects first sentences only up to the
length limit. Note that the 2006 and 2007 are 250-word summaries of 25 documents while
2008 and 2009 are 100-word summaries of 10 documents.
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These scores are not particularly meaningful by themselves, but serve as a refer-
ence point for further comparison. For now, note how large the gap is between B1

and B2: over 20% improvement in most cases1.

4.2 Maximum marginal relevance

Imagine you are asked to generate a summary by selecting sentences. You read the
topic and the narrative description and scan through the documents. Perhaps you
choose a sentence that responds well to the query and put it in your summary. How
to select a second sentence? You’d like it to respond to the query as well, but don’t
want it to contain the same information as the first sentence you chose. After all, you
are working under a tight length constraint.

Maximum Marginal Relevance [Carbonell and Goldstein, 1998; Goldstein et al.,
2000] is an algorithm that formalizes this intuition: maximize relevant information
and minimize redundancy. Here’s their equation for choosing the next sentence:

MMR = argmax
Si∈D\S

(
λ(Sim1(Si, Q))− (1− λ) max

Sj∈S
(Sim2(Si, Sj))

)
(4.1)

Initially developed for Information Retrieval, the formulation applies to summa-
rization with R, the set of all input sentences, S, the set of sentences already selected
for the summary, Q, a query, and Sim1 and Sim2, functions that return the similar-
ity between two sentences. At each step, the MMR sentence is the highest scoring
remaining sentence: maximally similar to the query and penalized by its similarity to
its nearest neighbor in the selected set. With λ = 1, the algorithm chooses all relevant
sentences, without regard to redundancy; with λ = 0, relevance is of no importance
and selected sentences are as dissimilar as possible—maximizing coverage. To cre-
ate a summary with MMR, sentences are selected greedily until the length limit is
reached. Ideal values of λ appear to vary widely depending on the source documents.

To fully specify MMR, we need to choose similarity functions. The standard
similarity function, also borrowed from Information Retrieval, is the cosine distance
between the word vectors for each sentence where the value for each word is the
Term Frequency Inverse Document Frequency (TFIDF). In my experiments, how-
ever, equivalent performance was obtained using a simple word overlap measure: The
number of shared non-stopwords normalized by the length of the longer sentence.

Table 4.2 shows scores for summaries generated with MMR with the optimal λ∗

1Statistical significance at 95% confidence for these data requires a gap of roughly 0.005 in
ROUGE (the standard toolkit uses bootstrapping, sampling sets of 3 out of 4 references, to estimate
score variances).
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value (shown for MMR1). The cosine distance function (with TFIDF) is used for
both similarity functions. MMR1 considers all the input sentences, while MMR2 is
limited to the set of first sentences.

ROUGE-2 ROUGE-SU4
Data Set λ∗ MMR1 MMR2 MMR1 MMR2

2006 0.8 0.085 0.079 0.138 0.130
2007 0.8 0.100 0.106 0.150 0.155
2008 1.0 0.076 0.100 0.113 0.128
2009 0.9 0.084 0.097 0.119 0.132

Table 4.2: Maximum Marginal Relevance scores: MMR1 selects from all input sentences;
MMR2 selects from the set of first sentences.

While MMR gives reasonable improvements over the baselines, the first-sentence
version remains stronger overall. This suggests that MMR, or perhaps our choice of
similarity function, is not powerful enough to make productive use of the full set of
input sentences.

4.3 Using document statistics

It turns out that MMR is broken in a number of ways. First of all, the query in
these problems is too limited to allow for meaningful measurement of similarity. In
particular, many valuable sentences do not overlap substantially with the the query
(in word usage). One option is to follow the course set by Information Retrieval and
try expanding the query [Goldstein et al., 1999]. Still, relying on the query as the
seed for importance is usually too risky. Better results can be obtained by ignoring
the query altogether.

This may be a product of these datasets: because the input documents are hand-
picked to match the query, a more reliable signal can be extracted from the document
set than from the query alone. Still, it seems likely that the underlying structure in
any query-derived document set would convey a stronger signal than the query alone;
a systematic study of this claim would be useful.

In general, the shift away from Information Retrieval approaches has been pro-
ductive for summarization. This trend was demonstrated nicely by Nenkova and Van-
derwende when they introduced SumBasic in 2005, a simple system based on word
frequency in the document set that outperformed most everything more complex at
the time [Nenkova and Vanderwende, 2005; Nenkova et al., 2006].

Figure 4.1 shows how frequency in the input documents effects the probability
that a word makes it into at least one of the references. The SumBasic algorithm
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tries to build a summary that includes lots of high-frequency words. It runs as follows:

1. Estimate the unigram distribution from the input documents: p(wi) = count(wi)
N

,
where N is the total number of words in the documents.

2. For each sentence Sj assign a weight equal to the average probability of the
words it contains: weight(Sj) =

∑
wi∈Sj

p(wi)
|wi∈Sj |

3. Pick the highest scoring sentence that also contains the best scoring word and
add it to the summary (so long as it fits within the length limit).

4. For each word in the sentence selected in step 3, update its probability:
pnew(wi) = pold(wi) ∗ pold(wi)

5. If the desired summary length has not been reached, go to step 2.

Bigrams work better than unigrams (if both words are stopwords, the bigram is
ignored), document frequency works better than raw frequency, and making sure the
most valuable bigram is in the selected sentence actually degrades performance. Table
4.3 shows modified SumBasic (SumBasic+) results on our data. As above, we show
two versions: SumBasic+1 uses the full set of input sentences while SumBasic+2 uses
only first sentences. These results are significantly better than the MMR results, and
at last, we are able to match or exceed the first-sentences-only version using the full
set of sentences.

ROUGE-2 ROUGE-SU4
Data Set SumBasic+1 SumBasic+2 SumBasic+1 SumBasic+2

2006 0.092 0.083 0.140 0.132
2007 0.119 0.113 0.165 0.158
2008 0.097 0.104 0.130 0.133
2009 0.103 0.101 0.134 0.133

Table 4.3: The modified version of SumBasic

SumBasic improves on MMR by estimating relevance directly from the input
documents, rather than mediated through the query. But it also improves on MMR
in its treatment of redundancy. Rather than model redundancy explicitly, by trying to
select sentences that overlap minimally with those already selected, there is an implicit
redundancy constraint: words lose value once they’ve been added to the summary.
Without the probability updates (skipping step 4), average ROUGE scores decrease
by 6-18%.

25



Chapter 4. Selecting Sentences

1 0.0487 0.5699

2 0.1138 0.1687

3 0.1840 0.0834

4 0.2378 0.0496

5 0.3015 0.0320

6 0.3384 0.0228

7 0.3931 0.0165

8 0.4357 0.0123

9 0.4973 0.0094

10 0.5061 0.0070

11 0.5953 0.0054

12 0.6165 0.0046

13 0.6568 0.0037

14 0.6724 0.0029

15 0.7074 0.0022

16 0.7367 0.0019

17 0.8054 0.0015

18 0.8664 0.0012

19 0.8960 0.0010

20 0.9064 0.0009

21 0.9206 0.0006

22 0.9561 0.0006

23 0.9750 0.0004

24 0.9608 0.0005

25 0.9787 0.0009
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Figure 4.1: The number of documents in which a word appears (stopwords excluded)
has a strong (nearly linear) relationship with the estimated probability that word appears
in at least one of the reference summaries. The blue area shows the fraction of words
with each count: only around 10 words per document set appear in 20 or more of the 25
documents. 2006 and 2007 data.

Remarkably, SumBasic+ produces summaries that are nearly state-of-the-art (see
figure 4.2). Adding a heuristic to upweight (by a factor of 2) n-grams appearing in the
first sentence of a document yields a simple system (SumBasic++) that outperforms
all other (typically far more complex) systems submitted to the annual evaluations,
at least as measured by ROUGE.

4.4 From procedure to objective

At each iteration, SumBasic chooses the most valuable remaining sentence—a greedy
search of some kind. But what are we searching for? The goal is never defined, so
SumBasic is just a procedure. It works well but it doesn’t allow us to identify a model
of what makes a good summary.
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Instead, let’s frame the process as an objective function on summaries. First, we
observe that SumBasic’s down-weighting may as well be zeroing (this switch indeed
has a minimal effect on the resulting scores). Then, the value S of an entire summary
is simply the sum of the n-gram values it contains, except that credit is only given
to each n-gram once, an implicit constraint on redundancy replacing MMR’s clunky
pairwise similarity estimate. This idea specifies a model for summarization. Here is
some notation:

S =
∑

i

wici

To remain as general as possible, let’s replace "n-grams" with "concepts": Con-
cepts are indexed by i, with ci an indicator for the presence of concept i in the
summary; wi is the weight, or value, of concept i.

Now, assuming we are given a set of weights, we can search for the summary that
maximizes the objective function, subject of course to a constraint on word length L.
Since we are limiting the summary to extracted sentences, let’s describe the length
constraint in terms of selected sentences. As with the concepts, sentences are indexed
by j, with sj an indicator for the presence of sentence j in the summary; lj is the
length (in words) of sentence j.

Maximize:
∑

i

wici

Subject to:
∑

j

ljsj ≤ L

One way to understand this objective is as a weighted maximum coverage problem.
The input space contains weighted concepts, blocked into overlapping units of selec-
tion (sentences). We want to find the set of sentences that covers as much of the
space as possible subject to a constraint on the sum of the sentence lengths. This
maximum coverage formulation was introduced for summarization some time ago [Fi-
latova and Hatzivassiloglou, 2004], but the focus was on entity extraction rather than
useful objective functions, and they used a greedy approximation.

Searching for the best solution to this problem will most likely require an algorithm
exponential in the number of input sentences: A reduction from the well-known set-
cover problem [Hochbaum, 1996] is straightforward. Or, consider the NP-complete
knapsack problem: maximize the value of items in a knapsack, where each item has
a value and a weight, and the knapsack has a weight limit. In the case where our
sentences have no overlapping concepts, it is precisely the knapsack problem (each
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Baseline MMR SumBasic+ SumBasic++ ILP NIST Best References
2006
2007
2008
2009

0.060 0.085 0.092 0.094 0.102 0.095 0.113
0.059 0.100 0.119 0.124 0.132 0.124 0.141
0.060 0.076 0.097 0.109 0.118 0.103
0.063 0.084 0.103 0.113 0.123 0.108
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Figure 4.2: ROUGE-2 scores for the systems discussed in this section. The best
NIST scores are shown for comparison (excluding systems submitted by me). Recall
that SumBasic+ refers to my enhanced version of the original SumBasic algorithm, and
SumBasic++ adds a heuristic to increase the weight of n-grams appearing in first sen-
tences.

sentence is an item and the summary is the knapsack). Thus the more general case,
where concepts are shared among sentences, reduces to the knapsack problem in this
limited case. As a result, a polynomial time solver for our problem could surely solve
the knapsack problem in polynomial time, so our problem is also NP-complete.

The next chapter will address approximate and exact inference in this framework.
The results shown in Figure 4.2 include an exact solution to the maximum coverage
objective, obtained using an Integer Linear Program (ILP) solver. The maximum
coverage system is otherwise identical in its setup to SumBasic++ (the value wi

of bigram i is it’s document count, with upweights for bigrams appearing in first
sentences), except that concepts appearing in fewer than three documents are ignored
for efficiency.

Since I submitted the maximum coverage system, with only a few small enhance-
ments [Gillick et al., 2010], to the 2009 evaluation, these summaries were evaluated
by experts. Figure 4.3 compares its performance to all the other submitted systems.
Such strong results are good evidence that our model is reasonable: Even though the
objective is extremely simple, the scores are substantially better than other, far more
complex systems.
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Figure 4.3: 2009 results for a variety of metrics: The maximum coverage system (with
a few small enhancements) is the yellow bar; the blue bars show scores for all the other
systems submitted to the evaluation. Note that the standard baseline (first 100 words of
the most recent document) is included, and has the highest Linguistic Quality score.

4.5 More ideas in extraction

So far, I’ve created a very linear narrative for progress in summarization research. A
number of other ideas in sentence selection co-evolved and merit some discussion.

4.5.1 Learning sentence values

What makes for a good summary sentence? Lots of frequently occurring words, posi-
tion in the document, similarity to a query? If we had training data—input sentences
labeled as summary or non-summary—we could run standard machine learning algo-
rithms to learn weights for these features.

Since the data includes reference abstracts rather than extracts, we need to choose
sentence labels before learning. While some studies employ a classification framework
with binary sentence labels, regression seems a more natural choice, so we’ll set the
label of each sentence to be the average number of reference bigrams it contains.
We treat the four references given for each problem as samples from the space of all
possible references, so if a bigram appears in three of them, the maximum likelihood
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Length Per-word 
overlap with 
references

Fraction of 
data

0-4 0.0102 0.0181

5-9 0.0460 0.0836

10-14 0.0708 0.1477

15-19 0.0756 0.1794

20-24 0.0819 0.1818

25-29 0.0861 0.1473

30-34 0.0875 0.1057

35-39 0.0885 0.0641

40-44 0.0862 0.0347

45-49 0.0764 0.0202

50+ 0.0742 0.0174
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Figure 4.4: The value of a sentence increases sharply as its length (in words) increases,
but then begins to fall off if the sentence gets too long (over 40 words). The blue area
shows the fraction of sentences in each length bin. 2006 and 2007 data.

estimate of the probability it appears in a random reference is 3
4
.

I experimented with a variety of regression models, including SVM regression as
used by Schilder and Kondadadi [2008], linear regression, and Poisson regression.
Poisson regression assumes the response variable has a Poisson distribution and thus
is especially well-suited to model counts. While Poisson regression appears to fit the
training data best, linear regression gave comparable or slightly better ROUGE scores
when a summary is built using the top-scoring sentences2.

The following set of simple features were used as predictors in the regression, and
an analysis of predictive power is shown in Table 4.4. Figures 4.4, 4.5, 4.6 give a more
fine-grained analysis for some features.

Frequency average per-word document frequency

Topic average per-word topic description overlap
2Linear regression has the undesirable property of producing a few negative expected counts,

which we force to zeros.
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0 0.1792 0.0425

1 0.1159 0.0425
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Figure 4.5: Sentence value and position in the document are strongly related. Value
declines roughly monotonically (some noise here), but the first sentence is in a class of
its own. The blue area shows the fraction of sentences of each length, which declines
because not all documents are of equal length. 2006 and 2007 data.

First Sentence indicator for the first sentence in a document

Sentence Position log of the sentence position in the document

Sentence Length log of the sentence length in words

Document Length log of the document length in sentences

In the table, the constant term estimates the mean, 0.75 reference words per sentence,
and average document frequency is the strongest individual feature. Document length,
which I’ve never seen used as a feature before, is interesting: longer documents have
fewer reference words per sentence. Using all features together gives a Root Mean
Squared Error (RMSE) of 0.85, a 36% improvement over the constant term baseline.
Modeling pairwise products between features improves the RMSE to 0.79, a total
improvement of 47%.

While the predicted sentence values given by regression are reasonable, using the
predictions to create a summary is not straightforward. Most documented work along
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Figure 4.6: The more a sentence overlaps (fraction of content words) with the query,
the more valuable it tends to be. The blue area shows the fraction of sentences in each
bin: most sentences have no overlap but the few sentences with very high overlap have
considerably higher value than even first sentences. 2006 and 2007 data.

these lines involves using MMR-like criteria to maximize relevance and minimize re-
dundancy. Treating the learned sentence values as priors to help weight bigram
counts, the inputs to the maximum coverage system, can give some small improve-
ments.

But this sort of training is fundamentally flawed because the learning happens at
an intermediate stage of summarization: It is not obvious how to create high ROUGE
summaries from high ROUGE sentences. Still, nearly all supervised learning for sum-
marization has been along these lines, with various takes on regression, classification,
and algorithms for minimizing redundancy during sentence selection [Kupiec et al.,
1995; Conroy and O’Leary, 2001; Shen et al., 2007; Li et al., 2007].

Note that Yih et al. [2007] learn word probabilities with logistic regression (as
opposed to sentence values). While this leads to a more natural criteria for cre-
ating summaries with maximum total word value (similar to my ILP formulation),
the learning still suffers from the same mismatch problem, ignoring the underlying
relationships between sentences and words.
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Feature Estimate CV RMSE % gain
Constant 0.75 1.16
Frequency 0.49 0.96 20.6%
Topic 0.18 1.07 8.5%
First Sentence 0.15 1.10 5.2%
Sentence Position -0.09 1.09 6.3%
Sentence Length 0.28 1.09 6.3%
Document Length -0.04 1.13 2.7%
All 0.85 36.4%

Table 4.4: Analysis of a linear regression predicting the expected number of reference
bigrams in a sentence. Each feature is normalized to have mean 0 and variance 1. CV
RMSE is the cross-validation root mean squared error of the predictions, with 90% train
10% test splits. 2008 data.

Learning feature weights that directly maximize ROUGE or some other automatic
metric given, for example, the maximum coverage objective, is a task for structured
prediction: The learning algorithm tries to select a set of weights that actually recover
the ideal training summaries. Some of my more recent work [Berg-Kirkpatrick et al.,
2011] addresses this problem.

4.5.2 Graph algorithms

So far, we’ve treated the set of input documents as a bag of words (bigrams, really).
But perhaps we’d benefit from respecting some of the structure that connects words
and sentences, for example. We can construct a graph with a vertex for each word and
each sentence with edges connecting a sentence to the words it contains. A variety
of similar graph structures are employed in the literature [Erkan and Radev, 2004;
Mihalcea and Tarau, 2004]. Then we can use an iterative Pagerank-style algorithm
[Page et al., 1998] to estimate the value or relevance of each word and each sentence
as follows (see Figure 4.7):

Initialization: Maintain a distribution over word values and a distribution over
sentence values, initialized uniformly.

Iteration Step: The new value of a word is the sum of the sentence values it’s
connected to; the new value of a sentence is likewise the sum of word values it’s
connected to. The distributions are normalized.

This algorithm is typically allowed to run until convergence, though sometimes
with a damping factor that prefers uniformity. Intuitively, sentences with the highest
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w1=1/4 w2=1/4 w3=1/4 w4=1/4

s1=1/3 s2=1/3 s3=1/3

Iteration 0

w1=2/6 w2=1/6 w3=1/6 w4=2/6

s1=3/10 s2=5/10 s3=2/10

Iteration 1

w1=8/23 w2=3/23 w3=5/23 w4=7/23

s1=11/38 s2=20/38 s3=7/38

Iteration 2

Figure 4.7: A graphical depiction of a simple graph algorithm over three sentences and
four words. At iteration 0, the values are initialized to be uniform, and by iteration 2, the
values have nearly converged.

values are most central to the collection. In fact, there is a theoretical interpretation
for the resulting values: If we take a sufficiently lengthy walk through the graph,
moving at random along edges, the normalized values represent the probability of
stopping at some word or sentence vertex.

Of course, while the random walk model may be a reasonable proxy for Internet
browsing, it seems less relevant for reading a bunch of documents: Reading (or writ-
ing) is mostly linear and doesn’t involve jumping between similar sentences. As a
result, the decision to use the word values after one iteration (these are just simple
counts as in the maximum coverage formulation), is no harder to justify than allowing
the algorithm to run to convergence.
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Thus, the advantages conferred by a graph representation of a document set may
not be realized through the Pagerank algorithm. And in fact, I have not been able to
produce any performance gains using any sort of simple iterative procedure like the
algorithm described here.

4.5.3 Topic models

All this talk of word values is a little fishy. The value of a word comes more from the
context in which it’s used than from its inherent meaning or the number of times it
appears. And while sentence value makes more sense, sentences come in all different
shapes and sizes, with varying amounts of embellishment. Ideally, summarization
should concern itself with some more appropriate semantic units: facts and topics
seem preferable to words and sentences.

One step in this direction is topic modeling, where a latent set of topics are inferred
from word occurrences in a set of documents. The simplest form is Latent Semantic
Indexing (LSI): A term-sentence matrix is constructed with a row for each sentence
and a column for each content word in the document set; the values in the cells could
be binary, counts, or TFIDF values, for example. Running Principal Components
Analysis (PCA) on this matrix yields a series of eigenvectors, linear combinations
of the words, that capture the most remaining variance. Each resulting component
can be considered a kind of topic, and each sentence, projected onto the first few
components, has an interpretation as a weighted mixture of the important topics.
Gong and Liu [2001] describe summary generation by selecting the sentences that
best represent the first few topics.

A simple generative model for topics yields a probabilistic interpretation of LSI
[Hofmann, 1999] called probabilistic Latent Semantic Analysis (pLSA). The pLSA
generative story explains how a set of documents is made:

1. Pick a document d from D with probability P (d)

2. Pick a latent topic z from Z with probability P (z|d)

3. Generate a word w of W with probability P (w|z)

The parameters of the model can be estimated via the Expectation Maximization
(EM) algorithm, which reaches a local maximum of the likelihood function:

L =
∑

d∈D

∑

w∈W

n(d, w) log
∑

z∈Z

P (w|z)p(z|d)P (d)

where n(d, w) is the number of times word w appears in document d.
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By replacing documents with sentences, the topic interpretation matches LSI at
the sentence level. Each sentence is represented by a vector in the "topic-space" of
the document set. The probability distribution P (z|s) tells us to what extent each
topic is covered by a sentence:

P (z|s) = (P (z1|s), P (z2|s), . . . , P (zk|s))

A comparative study suggests pLSA may be preferable to LSI for the purposes of sum-
marization [Hennig and Labor, 2009]; at least it has a more intuitive interpretation
as a model.

Augmenting the standard pLSA model with a Dirichlet prior on topics gives an
improved topic model called Latent Dirichlet Allocation (LDA) [Blei et al., 2003;
Steyvers and Griffiths, 2007]. The main change to the generative story is that the
first word is picked from the first topic and subsequent words are picked from the
set of existing topics with probabilities proportional to the sizes of the topics. Since
this model generates an entire dataset at once, whereas pLSA generates each word
independently, alternate inference procedures are needed. Variational methods or
Gibbs sampling are standard3.

Recent implementations of topic models for summarization have shown good re-
sults, [Haghighi and Vanderwende, 2009; Celikyilmaz and Hakkani-Tur, 2010] though
I have no head-to-head comparison with the maximum coverage model (ROUGE re-
sults suggest comparable performance). Note that Haghighi and Vanderwende use
topic models for estimating word values and then proceed to select sentences greed-
ily with a KL-divergence criteria4; Celikyilmaz and Hakkani-Tur use topic models to
estimate sentence values and are then stuck with the familiar problem of choosing
maximally relevant sentences with minimal redundancy.

3See Kevin Knight’s tutorial on Bayesian inference for a readable introduction:
http://www.isi.edu/natural-language/people/bayes-with-tears.pdf

4Choose the summary that minimizes the KL-divergence in word distribution between summary
and source documents.

36



Chapter 5

The Maximum Coverage Objective

The last chapter outlined a variety of approaches to valuing sentences and choosing
summaries, all reasonably well motivated. Still, as best I can tell, applying the
maximum coverage objective over word bigrams gives results at least as good. It is
simple and appealing: a summary attempts to cover as many important concepts as
possible. Rather than attempt to approximate the redundancy between two sentences
with a function, redundancy is treated implicitly: the summary only receives credit
once for each concept.

This chapter describes methods for solving the maximum coverage objective, ap-
proximately and exactly.

5.1 Approximate and exact solving

Recall that maximum coverage seeks to maximize
∑

iwici, where ci is an indicator
for the presence of concept (bigram) c in the summary. The value wi for bigram i
is estimated simply as the document count of ci, with an extra count for each first
sentences it appears in. Of course, these values could be estimated in some more
principled manner, but for present purposes, I’ll focus just on solving the objective
regardless of the source of the values.

The simplest way to generate a summary from the objective is to choose one
sentence at a time that maximizes the objective value so far. There are really two
ways to do this in our case. The value added by a sentence could be (1) the actual sum
of bigram values in the sentence that do not appear in the partial summary, or (2)
the value of (1) normalized by the by the length of the sentence. In practice, method
(2) usually gives higher total objective values since method (1) tends to over-prefer
long sentences. Our greedy algorithm generates a summary with both (1) and (2)
and chooses the one with the larger objective value.
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Exact solutions can be obtained, as suggested earlier, with a formulation of the
objective as an Integer Linear Program [Nemhauser and Wolsey, 1988]. While ILP
solutions are exponential in the size of the input, solvers have been highly optimized
to give fast solutions for many problems. Here is the full ILP specification of our
objective:

Maximize:
∑

i

wici (5.1)

Subject to:
∑

j

sjlj ≤ L (5.2)

sjOccij ≤ ci, ∀i, j (5.3)
∑

j

sjOccij ≥ ci, ∀i (5.4)

ci, cj ∈ {0, 1}, ∀i, j (5.5)

(5.1) and (5.2) we have seen before; (5.3) and (5.4) are structural constraints ensuring
that sentences and their concepts are consistent. Occ is a matrix with Occij an indi-
cator for the presence of concept i in sentence j. Thus, (5.3) requires that selecting a
sentence entails selecting all the concepts it contains, and (5.4) requires that selecting
a concept is only possible if it is present in at least one selected sentence.

Data Set Greedy Exact (ILP) Gain
2008 0.111 0.117 5.4%
2009 0.115 0.121 6.0%

Table 5.1: Comparing average ROUGE-2 scores of greedy and exact solutions to the
maximum coverage objective.

Table 5.1 compares ROUGE scores of greedy and exact solutions. While standard
ILP solvers give solutions quickly for any of the 10- or 25-document summarization
problems addressed here, exact solutions may not always be feasible. When the input
space is prohibitively large, approximate solvers can help bridge the gap between
greedy and exact solutions. Experiments with a local search algorithm that maintains
a beam of hypotheses, swapping random sentences and updating the beam on each
iteration, were able to give ROUGE scores on par with the ILP. This is somewhat
similar in spirit to the stack-based search employed by Yih et al. [Yih et al., 2007].
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5.2 Integer linear programs

I have shown that the mysterious ILP solves this the maximum coverage objective
quite handily (the section on ILP run-time, below, quantifies its miraculous perfor-
mance). To get a sense for how hard the problem is that I’m asking the ILP to solve,
consider a typical problem from the 2007 dataset: Choose the set of about 10 sen-
tences (250 words) from the roughly 500 sentences in the document set that gives the
best objective score. This gives a lower bound of about

(
500
10

)
= 2.5 × 1020 possible

summaries. This is a lower bound because the length limit is over words, so there are
many combinations of 8, 9, 10, 11, 12 (etc.) sentences that have under 250 words.
Still, this is a lot of summaries to consider. A brute-force enumeration would take
hundreds if not thousands of years on a single fast computer.

Certainly, the problem has some internal structure that can make it more tractable.
Some sentences may have no relevant concepts; some may be full subsets of others
in the space of concepts. Such observations could allow us to create a more efficient
algorithm for the specific problem of optimizing this particular objective function
on sentences containing concepts. But remarkably, the ILP has no such knowledge.
It can be applied to a wide variety of optimization problems, often with impressive
results.

A linear program is simply one that can be expressed in this canonical form, with
c the weight vector applied to the non-negative vector to be determined x, subject to
linear equality or inequality constraints expressed in matrix form (the elements of b
are also non-negative):

Maximize: cTx
Subject to: Ax <= b

Linear programs were developed in the late 1930s and early 1940s and initially
used during World War II to optimize army expenditures. As a result, it was kept
secret until 1947, and was immediately adopted by industry to aid financial decisions.

George Danzig’s original approach to solving linear programs is still common
today. The simplex algorithm finds a feasible point at a vertex of the convex shape
defined by the constraints and walks along edges to other vertices with non-decreasing
objective function values until a maximum value is reached. While this method
worked well in practice (and on random problems), it was not until the late 1970s
that a different class of algorithms showed that solving linear programs is polynomial
even in the worst case. The complexity is roughly O(n3.5).
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Figure 5.1: A graphical representation of the general ILP problem.

If, however, the unknown variables x are required to be integers, things get a bit
trickier: complexity is NP hard in the worst case. But since the 1950s, techniques for
solving these integer-only versions of linear programs, ILPs, have led to increasingly
fast solutions for real problems. The oldest such algorithm is Ralph Gomroy’s cutting
plane method, which works by first solving the non-integer relaxation of a problem,
and then iteratively adding constraints induced by the separation or cut between this
optimum and the feasible set. At each iteration, the non-integer solution has more
and more integral values. Modern systems often use a hybrid of cutting plane and the
branch and bound method, a way of developing alternative sets of cutting planes to
avoid potential numerical instability. This is essentially the default method employed
by the ILP solver (GLPK) I used for optimizing the maximum coverage objective.

Many natural language processing tasks lend themselves naturally to ILP formu-
lations. Casting a problem as an ILP allows us to largely ignore the specific hard
optimization required for exact solutions. As a result, ILPs have been used to find
globally optimal solutions for producing phrase tables for machine translation, finding
sentence compressions, inferring document structure, and many others.

5.3 Theoretical guarantees

While the ILP solutions are appealing, our greedy approximation to the maximum
coverage objective has an interesting theoretical guarantee: the greedy solution must
be within a constant factor (1 − 1/e) of the optimal solution (e is the natural log-
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arithm). While we have shown that the gap between greedy and exact solutions is
in fact substantial in our case (see Table 5.1), the nature of this particular theoreti-
cally property, submodularity, has received considerable attention, and deserves some
elaboration.

Let f be a function on sets that maps subsets S ⊆ V to real numbers. f(·) is
called monotone if f(S) ≤ f(T ) whenever S ⊆ T , and submodular if for any S, T ⊆ V :

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

An equivalent definition of submodularity is the property of diminishing returns. That
is, f(·) is submodular if for any R ⊆ S ⊆ V and s ∈ V \ S,

f(S ∪ {s})− f(S) ≤ f(R ∪ {s})− f(R)

This says that the value added by s in the larger set S is no larger than the value
added by s in the smaller subset R.

Submodularity is a discrete analog of convexity [Lovász, 1983]; both properties
tend to facilitate optimization. While maximization of submodular functions is NP-
complete, Nemhauser et al. showed famously that monotone submodular functions
with a cardinality constraint can be solved with a greedy algorithm within a constant
factor (1−1/e), around 63%, of the optimal solution [Nemhauser et al., 1978]. Krause
and Guestrin [2005] give an improved bound 1

2
(1−1/e) for budgeted maximum cover-

age problems, like ours. Note that including the two variants in our greedy algorithm
is necessary for receiving the benefits of submodularity.

The takeaway message from this discussion is that should we endeavor to summa-
rize giant documents or sets of documents where an exact solution is infeasible, our
greedy approximation for optimizing the maximum coverage objective is guaranteed
to give a solution within about 30% of the optimal solution. Lin and Bilmes [2010]
have a more extensive analysis of submodular functions for summarization.

5.4 ILP run-time

While ILPs have been used extensively for natural language processing problems,
designing an objective to allow fast solutions can be tricky. To assess performance
of our ILP, let’s compare the solving time to an adaptation of maximum marginal
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relevance to an ILP. In particular, McDonald [2007] formulates MMR as follows:

Maximize:
∑

j

sjRel(j)−
∑

j′≤j

αjj′Red(j, j′) (5.6)

Subject to:
∑

j

sjlj ≤ L (5.7)

αjj′ − sj ≤ 0, ∀j, j′ (5.8)
αjj′ − sj′ ≤ 0, ∀j, j′ (5.9)
sj + sj′ − αjj′ ≤ 0, ∀j, j′ (5.10)
sj, αjj′ ∈ {0, 1}, ∀j, j′ (5.11)

Given some definitions of relevance (Rel) and pairwise redundancy (Rel), this ver-
sion of MMR gives a globally optimal selection of sentences subject to a length con-
straint. Because redundancy is defined over sentence pairs, McDonald coerces a kind
of quadratic knapsack problem [Gallo et al., 1980] into an a linear program by intro-
ducing indicators αjj′ for selecting a pair of sentences j and j′. As in the original
paper, relevance and redundancy are computed as follows:

Relj = cosine(j,D) + 1/pos(j,D)

Redjj′ = cosine(j, j′)

Here, cosine(j,D) is the cosine distance between the TFIDF vectors for sentence j
and document D, and pos(j,D) is the integer-valued order of sentence j in document
D.

With n input sentences and m concepts (bigrams), both formulations generate
a quadratic number of constraints. However, the MMR formulation has O(n2) vari-
ables while the maximum coverage formulation has O(n + m). In practice, scala-
bility is largely determined by the sparsity of the redundancy matrix Red and the
sentence-concept matrix Occ. Efficient solutions thus depend heavily on the redun-
dancy measure and the concept unit. Pruning to reduce complexity involves removing
low-relevance sentences or ignoring low-redundancy values in the MMR formulation,
and corresponds to removing low-weight concepts in the maximum coverage formu-
lation. Note that pruning concepts may be more desirable: Pruned sentences are
irretrievable, but pruned concepts may well appear in the selected sentences through
co-occurrence with unpruned concepts.

Figure 5.2 compares ILP run-times for the two formulations, using a set of 25
problems from the 2007 dataset, each of which have at least 500 input sentences.
While the ILP solver1 finds optimal solutions efficiently for the maximum coverage

1I use GLPK with all the default settings (gnu.org/software/glpk)
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formulations, using a set of 25 topics from DUC
2007, each of which have at least 500 input sen-
tences. These are very similar to the TAC 2008
topics, but more input documents are provided for
each topic, which allowed us to extend the analysis
to larger problems. While the ILP solver finds opti-
mal solutions efficiently for our concept-based for-
mulation, run-time for McDonald’s approach grows
very rapidly. The plot includes timing results for
250-word summaries as well, showing that our ap-
proach is fast even for much more complex prob-
lems: A rough estimate for the number of possible
summaries has

�
500
4

�
= 2.6×109 for 100-word sum-

maries and
�
500
10

�
= 2.5 × 1020 for 250 words sum-

maries.
While exact solutions are theoretically appealing,

they are only useful in practice if fast approxima-
tions are inferior. A greedy approximation of our
objective function gives 10% lower ROUGE scores
than the exact solution, a gap that separates the high-
est scoring systems from the middle of the pack in
the TAC evaluation. The greedy solution (linear in
the number of sentences, assuming a constant sum-
mary length) marks an upper bound on speed and
a lower bound on performance; The ILP solution
marks an upper bound on performance but is subject
to the perils of exponential scaling. While we have
not experimented with much larger documents, ap-
proximate methods will likely be valuable in bridg-
ing the performance gap for complex problems. Pre-
liminary experiments with local search methods are
promising in this regard.

6 Extensions

Here we describe how our ILP formulation can
be extended with additional constraints to incor-
porate sentence compression. In particular, we
are interested in creating compressed alternatives
for the original sentence by manipulating its parse
tree (Knight and Marcu, 2000). This idea has been
applied with some success to summarization (Turner
and Charniak, 2005; Hovy et al., 2005; Nenkova,
2008) with the goal of removing irrelevant or redun-
dant details, thus freeing space for more relevant in-
formation. One way to achieve this end is to gen-
erate compressed candidates for each sentence, cre-
ating an expanded pool of input sentences, and em-
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Figure 2: A comparison of ILP run-times (on an AMD
1.8Ghz desktop machine) of McDonald’s sentence-based
formulation and our concept-based formulation with an
increasing number of input sentences.

ploy some redundancy removal on the final selec-
tion (Madnani et al., 2007).
We adapt this approach to fit the ILP formulations

so that the optimization procedure decides which
compressed alternatives to pick. Formally, each
compression candidate belongs to a group gk corre-
sponding to its original sentence. We can then craft
a constraint to ensure that at most one sentence can
be selected from group gk, which also includes the
original:

�

i∈gk

si ≤ 1,∀gk

Assuming that all the compressed candidates are
themselves well-formed, meaningful sentences, we
would expect this approach to generate higher qual-
ity summaries. In general, however, compression
algorithms can generate an exponential number of
candidates. Within McDonald’s framework, this
can increase the number of variables and constraints
tremendously. Thus, we seek a compact representa-
tion for compression in our concept framework.
Specifically, we assume that compression in-

volves some combination of three basic operations
on sentences: extraction, removal, and substitution.
In extraction, a sub-sentence (perhaps the content of
a quotation) may be used independently, and the rest
of the sentence is dropped. In removal, a substring

Figure 5.2: A comparison of ILP run-times (on an AMD 1.8Ghz machine) of McDonald’s
MMR formulation and the maximum coverage formulation on an increasing number of
input sentences.

formulation, the MMR solution times grow rapidly with the size of the input. The
plot includes timing results for both 100 and 250 word summaries, showing that
fast solutions are given even for much harder problems: A rough estimate for the
number of possible summaries has

(
500
4

)
= 2.6 × 109 for 100-word summaries and(

500
10

)
= 2.5× 1020 for 250 word summaries.

The maximum coverage objective also gives far better ROUGE scores than Mc-
Donald’s MMR formulation, at least with these choices of similarity and redundancy
functions.
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5.5 Adding compression to the ILP

Moving from extractive to abstractive summarization, while desirable in the long
run, is a daunting challenge. Incorporating sentence compression into extractive
summarization is something of a middle ground; while the modifications we can make
to the source sentences are limited, we have an exponentially expanded set of textual
units to choose from. This gives us improved flexibility for removing redundancy, for
example. Here I’ll describe how the ILP formulation for maximum coverage selection
can be extended with additional constraints to include sentence compression.

One way to combine selection and compression is to generate compressed candi-
dates for each sentence, creating an expanded pool of input sentences, and employ
some redundancy removal on the final selection [Madnani et al., 2007]. This approach
can be adapted so that the ILP decides which alternatives to pick. If each compression
candidate belongs to a group gk corresponding to its source sentence, then we can
include a constraint in the ILP to ensure that at most one sentence can be selected
from each group (which also includes the source):

∑

i∈gk

si ≤ 1, ∀gk

Assuming that all the compressed candidates are themselves well-formed, meaning-
ful sentences, this approach should generate higher quality summaries. In general,
however, compression algorithms can generate an exponential number of candidates.

Most compression strategies are based on the parse-tree structure of a sentence,
where some subset of nodes are removed that preserve the grammaticality of the sen-
tence [Knight and Marcu, 2000; McDonald, 2006; Turner and Charniak, 2005]. While
we’ll focus on node removals, we’ll also allow extraction (a sub-sentence, perhaps the
content of a quotation, may be used independently and the rest of the sentence is
dropped) and substitution (one substring is replaced by another: US replaces United
States, for example).

Arbitrary combinations of these operations are too general to be represented effi-
ciently in an ILP. In particular, we need to compute the length of a sentence and the
concepts it covers for all compression candidates. Thus, we insist that the operations
only affect non-overlapping spans of text.

In our tree representation of a sentence, nodes correspond to compression oper-
ations and leaves map to words. Each node includes the word length it contributes
to the sentence recursively, as the sum of the lengths of its children. Similarly, the
concepts covered by a node are the union of the concepts covered by its children.
When a node is active in the ILP, the words below it in the tree are included in
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the summary; active words contribute to the length constraint and objective score.
Figure 5.3 gives an example of a tree representation, showing derivations of some
compression candidates.

Node Len. Concepts
(1):E 6 {the magazine, magazine quoted, chief Wilm, Wilm Disenberg}
(2):E 7 {countries are, planning to, to hold, hold the, the euro}
(3):S 0 {}
(3a) 1 {ECB}
(3b) 3 {European Central, Central Bank}
(4):R 2 {as saying}
(5):R 3 {a number, number of}
(6):R 1 {}
(7):R 5 {as part, part of, reserves}
(8):R 2 {foreign currency}

• Original: A number of Countries
are already planning to hold the
euro as part of their foreign cur-
rency reserves, the magazine quoted
European Central Bank chief Wim
Duisenberg as saying.

• [1,2,5,3a]: A number of countries are
planning to hold the euro, the maga-
zine quoted ECB chief Wim Duisen-
berg.

• [2,5,6,7,8]: A number of countries
are already planning to hold the euro
as part of their foreign currency re-
serves.

• [2,7,8]: Countries are planning to
hold the euro as part of their foreign
currency reserves.

• [2]: Countries are planning to hold
the euro.

Figure 3: A compression tree for an example sentence. E-nodes (diamonds) can be extracted and used as an indepen-
dent sentences, R-nodes (circles) can be removed, and S-nodes (squares) contain substitution alternatives. The table
shows the word bigram concepts covered by each node and the length it contributes to the summary. Examples of
resulting compression candidates are given on the right side, with the list of nodes activated in their derivations.

in ROUGE-2 score (see Table 3), but a reduction in
Pyramid score. An analysis of the resulting sum-
maries showed that the rules used for implementing
sentence compression fail to ensure that all com-
pression candidates are valid sentences, and about
60% of the summaries contain ungrammatical sen-
tences. This is confirmed by the linguistic qual-
ity4 score drop for this system. The poor quality
of the compressed sentences explains the reduction
in Pyramid scores: Human judges tend to not give
credit to ungrammatical sentences because they ob-
scure the SCUs.
We have shown in this section how sentence com-

pression can be implemented in a more scalable way
under the concept-based model, but it remains to be
shown that such a technique can improve summary
quality.

7 Related work

In addition to proposing an ILP for the sentence-
level model, McDonald (2007) discusses a kind of
summary-level model: The score of a summary is

4As measured according to the TAC’08 guidelines.

determined by its cosine similarity to the collection
of input documents. Though this idea is only imple-
mented with approximate methods, it is similar in
spirit to our concept-based model since it relies on
weights for individual summary words rather than
sentences.
Using a maximum coverage model for summa-

rization is not new. Filatova (2004) formalizes the
idea, discussing its similarity to the classical NP-
hard problem, but in the end uses a greedy approxi-
mation to generate summaries. More recently, Yih et
al. (2007) employ a similar model and uses a stack
decoder to improve on a greedy search. Globally
optimal summaries are also discussed by Liu (2006)
and Jaoua Kallel (2004) who apply genetic algo-
rithms for finding selections of sentences that maxi-
mize summary-level metrics. Hassel (2006) uses hill
climbing to build summaries that maximize a global
information criterion based on random indexing.
The general idea of concept-level scoring for

summarization is employed in the SumBasic sys-
tem (Nenkova and Vanderwende, 2005), which
chooses sentences greedily according to the sum
of their word values (values are derived from fre-

Figure 5.3: A compression tree for an example sentence. E-nodes (diamonds) can be
extracted and used as independent sentences; R-nodes (circles) can be removed; S-nodes
(squares) contain substitution alternatives. The table shows the word bigram concepts
covered by each node and the length it contributes to the summary. Examples of resulting
compression candidates are given on the right side, with the list of nodes activated in their
derivations.

This framework can be used to implement a wide range of compression techniques.
As a baseline proof-of-concept, we derive the compression tree from the sentence’s
parse tree given by the Berkeley parser [Petrov and Klein, 2007], and use a set of
rules to label parse tree nodes with compression operations. For example, declarative
clauses containing a subject and a verb are labeled with the extract (E) operation;
adverbial clauses and non-mandatory prepositional clauses are labeled with the re-
move (R) operation; acronyms can be replaced by their full form by using substitution
(S) operations, and a primitive form of co-reference resolution is used to allow the
substitution of noun phrases with their referents.

While this compression framework gave a small improvement in ROUGE over the
extractive system, Pyramid and Linguistic Quality scores declined significantly. An
analysis of the resulting summaries showed that the rules used for identifying candi-
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dates for the compression operations fail to ensure that all compression candidates
are valid sentences; about 60% of the summaries contained ungrammatical sentences.

Still, the ILP gave exact solutions quickly (1-3) seconds per problem; the model
represents an efficient way to perform joint extraction and compression. My more
recent work on joint modeling [Berg-Kirkpatrick et al., 2011] adapts this framework
for learning concept weights and weights for deleting parse tree nodes at the same
time.
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Ordering Sentences

All the methods I’ve discussed so far involve choosing a set of sentences, neglecting
the order in which they are presented. Since a great deal of meaning would be lost, or
at least convoluted, if a document’s sentences were presented in random order, we can
expect the order of sentences in a summary to have some bearing on that summary’s
quality. For example, when Barzilay et al. asked people to order 8 sentences into a
summary, 50 people created only 21 unique orderings, with significant overlap. While
there are a variety of coherent orderings, this result suggests that the set of coherent
orderings is a small subset of all possible orderings [Barzilay et al., 2002].

6.1 Ordering is hard

A variety of work on sentence ordering has produced only relatively small improve-
ment over a chronological baseline (sentences are ordered by source document publi-
cation date first, and second by their order of appearance in the source). The primary
competing feature is some form of lexical cohesion, as studies have shown that poor
readability tends to arise from jumps between topics.

Conroy et al., for example, compute the sentence similarity (some variant of the
usual cosine distance) between all pairs of selected sentences, and then choose the
ordering that minimizes the sum of all pairwise distances [Conroy et al., 2006]. The
resulting Traveling Salesman problem [Lin, 1965] is NP-hard and thus exponential in
the number of sentences, but many good approximations exist, and for short sum-
maries, exact solutions are feasible. While such a straightforward optimization is
appealing, the connection between sentence similarity and actual semantic cohesion
is tenuous.

Bollegala et al., attempt to combine such lexical cohesion metrics with chrono-
logical features in a classifier with some success [Bollegala et al., 2010]. Still, the
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chronological information proved by far the strongest individual feature, and the
classifier gave significant but small improvement.

Certainly, current methods could stand to improve on the summary re-ordering
problem. But perhaps a more serious issue, especially when the desired summary
length is only a few sentences (as in the 2008 and 2009 datasets), is choosing a set of
sentences that have the potential to be ordered in a reasonable fashion. One possibility
is to try solving the ordering problem jointly with the selection problem. A simpler,
practical solution is instead to try selecting independent sentences, sentences that can
stand alone without relying on other context. If we can select independent sentences,
perhaps we can bypass the pesky ordering problem.

6.2 Independent sentences

The focus on chronology and lexical cohesion obscures the biggest obstacle to co-
herence in an extractive summary: coreference. A person or organization might be
introduced with identifying detail in one sentence, but subsequent references are of-
ten pronominal. "He refused to comment for the story" has little meaning without
sentences that give context for "he" and "the story".

One way to fix incoherent summaries is to model the coreference structure in the
source documents, requiring, for example, that a sentence can only be included in a
summary if its dependencies are also included. Certainly, cross-document coreference
resolution is an active area of research [Haghighi and Klein, 2010; Rahman and Ng,
2011], but even the best systems give 65%-75% accuracy on sets of news documents
like ours.

Before going down this road, though, it would be prudent to see if the set of sen-
tences that has dependencies are really important. Here, I’ll describe a classification
approach that takes a pronoun and features of its containing sentence, and outputs
a decision: resolved or unresolved. As it turns out, the classifier performs at over
90% accuracy, so we can tell fairly reliably if a sentence contains pronouns that re-
quire other sentences for context. Removing these non-independent sentences ought
to improve overall coherence, and thus overall quality so long as content is not lost.

The classifier is trained from the coreference resolution annotations in OntoNotes
2.9 [Hovy et al., 2006]. A pronoun is considered to be resolved if a non-pronominal
reference to the same entity is present in the sentence. The processing pipeline for
removing sentences with unresolved pronouns is as follows:

1. Parse an input sentence using the Berkeley constituency parser [Petrov and
Klein, 2007].

2. Locate potential pronouns with the "PRP" and "PRP$" part-of-speech tags.
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3. Extract features from the parse tree: pronoun position, relative position of NPs,
other pronouns in the sentence, etc.

4. Prune the sentence if at least one unresolved pronoun is identified.

We train a linear classifier, in this case AdaBoost [Schapire, 1999] to help make
the learned weights interpretable1. 6,400 pronoun instances, of which 50% are pos-
itive examples (unresolved), are used as training data. Table 6.1 shows the first
few (most important) features selected by the classifier along with performance on a
1000-example test set.

The most useful piece of information is whether there is an noun phrase appearing
before the pronoun. If there is, as in "President Obama said he condemned the
attacks", usually this NP directly resolves the pronoun. In fact, all of the cases (in
the test set) of unresolved pronouns have no preceding NP; of course, some of these
find resolution later in the sentence, so more features are needed. Top performance
on a held-out set of 9% error is reached with around 50 features.

Feature (relative to pronoun) Error Recall Precision
No NP before 34% 100% 50%
Closest preceding NP starts with NNP 22% 90% 68%
Closest preceding NP starts with PRP 19% 75% 88%
Previous word is <COMMA> 17% 79% 87%
Previous word is <QUOTES> 15% 82% 87%

Table 6.1: Top five features selected by AdaBoost for classification of pronouns as resolved
or unresolved.

Table 6.2 shows the effect of pruning sentences with a variety of decision thresh-
olds. The results suggest that 30% of sentences can be pruned safely, perhaps even
improving ROUGE scores. Also note that this pruning is fairly independent of prun-
ing derived from a content classifier, as described in 4.5.1. Together, the two classifiers
can safely prune over 50% of the input sentences, giving a marginal improvement in
ROUGE. While I have not conducted an evaluation of the linguistic quality of the
resulting summaries, they certainly contain fewer unresolved pronouns. And linguis-
tic quality scores in the 2009 evaluation were comparable to the best (non-baseline)
system (see Figure 4.3).

This classification approach adequately handles pronoun coreference cases, but
still many context-dependent sentences remain. The problem is that coreference is
more complex than names and pronouns: "The explosion", "Obama’s decision", and

1We use an open-source implementation of AdaBoost [Favre et al., ].
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2008 2009
Threshold Pruned ROUGE-2 Pruned ROUGE-2
1 0% 11.54 0% 11.92
0.1 29% 11.66 30% 12.04
0.01 37% 11.59 37% 11.80
0.001 44% 11.64 45% 11.53
0 54% 11.39 53% 11.31

Table 6.2: ROUGE results for different sentence-pruning thresholds with the unresolved
pronoun classifier.

"consequences", for example, all require elaboration. Further improvements in linguis-
tic quality will likely involve more sophisticated identification of context-dependent
phrases. Whether it will be important to map the dependency structure remains to
be seen.
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Evaluating Summaries

7.1 N-gram recall

ROUGE, as reported throughout this thesis, has been the object of considerable
criticism. As I understand the calculation reported in Lin’s original paper, ROUGE-
1 is computed by:

∑

S∈Ref

∑

w∈S

max(Ccandidate(w), Cref (w))

∑

S∈Ref

∑

w∈S

Cref (w)
(7.1)

Where Ref is the set of reference summaries (there are four of these for each problem
in our datasets), and w is a word in the set of words in S. Ccandidate(w) is the number
of times that word w appears in the candidate summary and Cref (w) is the number of
times that word w appears in the references. ROUGE-n replaces w with an n-gram.

This is an odd calculation for a number of reasons, but one obvious complaint,
especially if you subscribe the maximum coverage model for summarization, is that
repeated n-grams in the candidate summary are rewarded. To fix this issue, and to
simplify the algorithm for automatic evaluation, I propose n-gram recall as a new
metric. With G(y) the set of n-grams in the candidate summary and G(y∗) the set
of n-grams in the reference summaries, n-gram recall is defined as:

|G(Y ) ∩G(Y ∗)|
|G(Y ∗)| (7.2)

Table 7.1 compares correlations to show that nothing is lost by simplifying ROUGE.
Alternate correlation metrics show similar results.
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2008 Correlation 2009 Correlation
Metric OQ Pyr OQ Pyr
ROUGE-1 0.85 0.91 0.81 0.89
Recall-1 0.87 0.92 0.84 0.91
ROUGE-2 0.89 0.94 0.88 0.97
Recall-2 0.90 0.94 0.89 0.97
ROUGE-3 0.91 0.94 0.88 0.97
Recall-3 0.92 0.94 0.89 0.97
ROUGE-4 0.91 0.92 0.86 0.94
Recall-4 0.92 0.92 0.87 0.94

Table 7.1: Pearson correlations between systems’ average manual scores (Overall Quality
and Pyramid) and average automatic scores (classic ROUGE and the new simple recall
metric).

Note that unlike ROUGE, n-gram recall throws all the reference n-grams together
in a single set, ignoring the fact that some of those n-grams appear in all the references
and others appear in only one, for example. Intuitively, as we saw with weighting n-
grams in the source documents, the more references a word appears in, the important
it is likely to be. Pyramid takes this point of view, giving weight to a fact equal to
the number of references that include it. But experiments show that applying this
intuition to n-grams is not so straightforward.

Rather than count the total number of overlapping n-grams, let’s subdivide these
so we count the number of overlapping n-grams that appear in 1 reference, 2 refer-
ences, 3, and 4. Table 7.2 shows Pearson correlations for the counts in these subdivi-
sions. Unigrams show the expected behavior: the number of overlaps you have with
words appearing in all the references is more indicative of quality than the number
of overlaps you have with words appearing in a single reference. But higher order
n-grams have the opposite behavior. Since 4-grams are the most extreme in this re-
gard, it seems reasonable to assume that part of the problem is sparsity. Almost no
4-grams appear in all 4 reference summaries, so using this statistic is unreliable.

There is still another hidden source of variability here. Included in the set of
reference words are content words like "president" and "earthquake", but also function
words like "the" and "of", which are presumably much less important. N -gram recall
makes no distinction between different kinds of words; in fact, removing stopwords
(with a list) hurts correlation both with ROUGE and n-gram recall. So another
reason that n-grams appearing many times are potentially less useful is because these
are more likely to have more function words and fewer content words.

Thus one way to pursue improved automatic evaluation metrics is to find a way
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Number of references
N 1 2 3 4
1 0.77 0.81 0.84 0.87
2 0.89 0.86 0.87 0.86
3 0.89 0.83 0.83 0.80
4 0.87 0.78 0.79 0.46

Table 7.2: Pearson correlations between systems’ average Overall Quality scores and
average automatic scores broken down by order n and number of references; 2009 data.

to weight n-grams in the references according to their predictive potential.

7.2 Maximum recall

Another reason to prefer n-gram recall to ROUGE is that it lends itself more naturally
to optimization. In particular, finding the maximum-ROUGE summary given a set
of references is difficult because of the non-linearity in the max; but finding the
maximum recall summary is a straightforward application of the maximum coverage
problem described earlier. In place of the values estimated from the input documents,
we can substitute an indicator for whether the n-gram appears in the references. The
ILP gives efficient solutions.

Figure 7.1 is the result of a manual evaluation of a variety of summaries: two
baseline systems (B1 and B2), our state-of-the-art (SOA) system, the maximum recall
oracle (MRO) summaries, and the human-written abstracts (H). It appears that even
though the oracle’s ROUGE scores are high, they are still roughly correlated with
quality; human summaries, on the other hand, which tend to use different language,
occupy a separate space in the plot. It seems reasonable to conclude that (1) human
summaries and extractive summaries exhibit different relationships between ROUGE
and quality, and (2) even at high values, ROUGE continues to correlate with quality,
though the relationship is non-linear: improvements in ROUGE score mean less at
larger values.

The evaluation showed that the maximum recall extracts were of significantly
better quality than the best automatic extractive system. Further reinforcing the
point that systems have not achieved the best possible results in extraction, Genest
et al. [Genest et al., 2010] conducted an evaluation of manual extractive summaries
using the 2009 dataset. They found that the manual extracts were comparable in
Pyramid score to the best automatic system, but significantly worse in linguistic
quality and overall quality.

53



Chapter 7. Evaluating Summaries

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Content Responsiveness

R
O

U
G

E
−

2

 

 

B1, B2, SOA

MRO

H

Figure 7.1: ROUGE-2 vs. manually evaluated quality is plotted for each summary. The
automatic systems B1, B2, and State of the art (SOA) are grouped together and the trend
line is a linear fit for this data. The Maximum Recall Oracle (MRO) results all appear
above the trend line, while the Human (H) results seem uncorrelated.

7.3 Crowdsourcing

Manual evaluation is time-consuming. Ideally, a judge would read the original set
of documents before deciding how well the important aspects are conveyed by a
summary. A typical 10-document problem could reasonably involve 25 minutes of
reading or skimming and 5 more minutes for assessing a 100-word summary. Since
summary output can be quite variable, at least 30 topics should be evaluated to get
a robust estimate of performance. Assuming a single judge evaluates all summaries
for a topic (more redundancy would be better), we get a rough time estimate: 17.5
hours to evaluate two systems.

Thus it is of great interest to find ways of speeding up evaluation while minimizing
subjectivity. Amazon’s Mechanical Turk (MTurk) system has been used for a variety
of labeling and annotation tasks [Snow et al., 2008], but such crowd-sourcing has not
been tested for summarization.

Here I describe an experiment to test whether MTurk is able to reproduce system-
level rankings that match expert opinion [Gillick and Liu, 2010]. Unlike the results of

54



Chapter 7. Evaluating Summaries

other crowd-sourcing annotations for natural language tasks, here it seems that non-
expert judges are unable to provide expert-like scores and tend to disagree significantly
with each other.

7.3.1 Agreement and consistency

In the official 2009 evaluation, each summary was judged by one of eight experts for
“Overall Quality” and “Linguistic Quality” on a 1 (“very poor”) to 10 (“very good”)
scale. Unfortunately, the lack of redundant judgments means we cannot estimate
inter-annotator agreement. However, we note that out of all 4576 submitted sum-
maries, there are 226 pairs that are identical, which allows us to estimate annotator
consistency. Table 7.3 shows that an expert annotator will give the same summary
the same score just over half the time.

Score Difference
0 1 2 3 mean

OQ 119 92 15 0 0.54
LQ 117 82 20 7 0.63

Table 7.3: Identical summaries often were given different scores by the same expert
human judge (2009 data). Counts of absolute score differences are shown for Overall
Quality (OQ) and Linguistic Quality (LQ).

7.3.2 Designing a task for non-experts

One way to dramatically speed up evaluation is to use the experts’ reference sum-
maries as a gold standard, leaving the source documents out entirely. This is the idea
behind automatic evaluation with ROUGE, which measures n-gram overlap with the
references, and assisted evaluation with Pyramid, which measures overlap of facts
or "Semantic Content Units" with the references. The same idea has also been em-
ployed in various manual evaluations, for example by Haghighi and Vanderwende
[2009], to directly compare the summaries of two different systems. The potential
bias introduced by such abbreviated evaluation has not been explored.

The overall structure of the Human Intelligence Task (HIT) we designed for sum-
mary evaluation is as follows: The worker is asked to read the topic and description,
and then two reference summaries (there is no mention of the source documents). The
candidate summary appears next, followed by instructions to provide scores between
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1 (very poor) and 10 (very good) in each category1. Mouse-over on the category
names provides extra details, copied with slight modifications from Dang [2007].

The initial HIT design asked workers to perform a head-to-head comparison of
two candidate summaries, but we found this unsatisfactory for a number of reasons.
First, many of the resulting scores did not obey the transitive property: given sum-
maries x, y, and z, a single worker showed a preference for y > x and z > y, but
also x > z. Second, while this kind of head-to-head evaluation may be useful for sys-
tem development, we are specifically interested here in comparing non-expert MTurk
evaluation with expert TAC evaluation.

We went through a few rounds of revisions to the language in the HIT after
observing worker feedback. Specifically, we found it was important to emphasize that
a good summary not only responds to the topic and description, but also conveys the
information in the references.

Only workers with at least a 96% HIT approval rating2 were allowed access to
this task. We monitored results manually and blocked workers (rejecting their work)
if they completed a HIT in under 25 seconds. Such suspect work typically showed
uniform scores (usually all 10s). Nearly 30% of HITs were rejected for this reason.

To encourage careful work, we included this note in our HITs: "High annotator
consistency is important. If the scores you provide deviate from the average scores of
other annotators on the same HIT, your work will be rejected. We will award bonuses
for particularly good work." We gave a few small bonuses ($0.50) to workers who left
thoughtful comments.

We experimented with a few different compensation levels and observed a some-
what counter-intuitive result. Higher compensation ($.10 per HIT) yielded lower
quality work than lower compensation ($.07 per HIT), judging by the number of
HITs we rejected. It seems that lower compensation attracts workers who are less
interested in making money, and thus willing to spend more time and effort. There is
a trade-off, though, as there are fewer workers willing to do the task for less money.

7.3.3 Experiments and analysis

To assess how well MTurk workers are able to emulate the work of expert judges
employed in the official evaluation, we chose a subset of systems and analyze the
results of the two evaluations. The systems were chosen to represent the entire range of
average Overall Quality scores. System F is a simple lead baseline, which generates a
summary by selecting the first sentences up to 100 words of the most recent document.
The rest of the systems were submitted by various track participants. The MTurk

1Besides Overall Quality and Linguistic Quality, we include Information Content, to encourage
judges to distinguish between content and readability.

2MTurk approval ratings calculated as the fraction of HITs approved by requesters.
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evaluation included two-times redundancy. That is, each summary was evaluated by
two different people. The cost for the full evaluation, including 44 topics, 8 systems,
and 2x redundancy, at $.07 per HIT, plus 10% commission for Amazon, was $55.

Table 7.4 shows average scores for the two evaluations. The data suggest that the
MTurk judges are better at evaluating Linguistic Quality than Content or Overall
Quality. In particular, the MTurk judges appear to have difficulty distinguishing
Linguistic Quality from Content. We will defend these claims with more analysis,
below.

System Official MTurk
OQ LQ OQ LQ C

A 5.16 5.64 7.03 7.27 7.27
B 4.84 5.27 6.78 6.97 6.78
C 4.50 4.93 6.51 6.85 6.49
D 4.20 4.09 6.15 6.59 6.50
E 3.91 4.70 6.19 6.54 6.58
F 3.64 6.70 7.06 7.78 6.56
G 3.57 3.43 5.82 6.33 6.28
H 3.20 5.23 5.75 6.06 5.62

Table 7.4: Comparison of Overall Quality (OQ) and Linguistic Quality (LQ) scores
between the official and MTurk evaluations. Content (C) is evaluated by MTurk workers
as well. Note that system F is the lead baseline.

7.3.4 Worker variability

The first important question to address involves the consistency of the workers. We
cannot compare agreement between the evaluations, but the MTurk agreement statis-
tics suggest considerable variability. In Overall Quality, the mean score difference
between two workers for the same HIT is 2.4 (the standard deviation is 2.0). The
mean is 2.2 for Linguistic Quality (the standard deviation is 1.5).

In addition, the expert judges show more similarity with each other—as if they are
roughly in agreement about what makes a good summary. We compute each judge’s
average score and look at the standard deviation of these averages for the two groups.
The expert standard deviation is 1.0 (ranging from 3.0 to 6.1), whereas the MTurk
standard deviation is 2.3 (ranging from 1.0 to 9.5). Note that the average number of
HITs performed by each MTurk worker was just over 5.

Finally, we can use regression analysis to show what fraction of the total score
variance is captured by judges, topics, and systems. We fit linear models in R using
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binary indicators for each judge, topic, and system. Redundant evaluations in the
MTurk set are removed for unbiased comparison with the official set. Table 7.5 shows
that the differences between the evaluations are quite striking: Taking the official
data alone, the topics are the major source of variance, whereas the judges are the
major source of variance in the MTurk data. The systems account for only a small
fraction of the variance in the MTurk evaluation, which makes system ranking more
difficult.

Eval Judges Topics Systems
Official 0.28 0.40 0.13
MTurk 0.44 0.13 0.05

Table 7.5: Linear regression is used to model Overall Quality scores as a function of
judges, topics, and systems, respectively, for each data set. The R2 values, which give
the fraction of variance explained by each of the six models, are shown.

7.3.5 Ranking comparisons

The official evaluation, while lacking redundant judgments, was a balanced experi-
ment. That is, each judge scored every system for a single topic. The same is not true
for the MTurk evaluation, and as a result, the average per-system scores shown in Ta-
ble 7.4 may be biased. As a result, and because we need to test multiple system-level
differences simultaneously, a simple t-test is not quite sufficient. We use Tukey’s Hon-
estly Significant Differences (HSD), explained in detail by Yandell [1997], to assess
statistical significance.

Tukey’s HSD test computes significance intervals based on the range of the sam-
ple means rather than individual differences, and includes an adjustment to correct
for imbalanced experimental designs. The R implementation takes as input a lin-
ear model, so we model scores using binary indicators for (J)udges, (T)opics, and
(S)ystems (see equation 7.3), and measure significance in the differences between
system coefficients (δk).

score = α +
∑

i

βiJi +
∑

j

γjTj +
∑

k

δkSk (7.3)

Table 7.6 shows system rankings for the two evaluations. The most obvious dis-
crepancy between the official and MTurk rankings is system F, the baseline. Both
expert and MTurk judges gave F the highest scores for Linguistic Quality, a reason-
able result given its construction, whereas the other summaries tend to pull sentences
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Eval Ranking

Official (OQ) A B C DA EB FC GC HD

MTurk (OQ) F A B C EF GF DB HB

TAC (LQ) F AF BF HF CF EA DB GE

MTurk (LQ) F A BF CF DF EF HC GC

MTurk (C) A B E F D C GA HD

Table 7.6: Systems are shown in rank order from highest (left) to lowest (right) for
each scoring metric: Overall Quality (OQ), Linguistic Quality (LQ), and Content (C).
The superscripts indicate the rightmost system that is significantly different (at 95%
confidence) according to Tukey’s HSD test.

out of context. But the MTurk judges also gave F the highest scores in Overall Qual-
ity, suggesting that readability is more important to amateur judges than experts, or
at least easier to identify. Content appears the most difficult category for the MTurk
judges, as few significant score differences emerge. Even with more redundancy, it
seems unlikely that MTurk judges could produce a ranking resembling the official
Overall Quality ranking using this evaluation framework.

What does this mean for future evaluations? If we want to assess overall summary
quality—that is, balancing content and linguistic quality like expert judges do—we
will need to redesign the task for non-experts. Perhaps MTurk workers will be better
able to understand Pyramid evaluation, which is designed to isolate content. Extrinsic
evaluation, where judges use the summary to answer questions derived from the source
documents or the references, as done by Callison-Burch for evaluation of Machine
Translation systems [2009], is another possibility.

Finally, these results suggest that anyone conducting an evaluation of summariza-
tion systems using non-experts should calibrate their results by asking their judges
to score summaries that have already been evaluated by experts.

7.4 Towards extrinsic evaluation

So far, all the evaluation methods discussed in this chapter have been intrinsic. That
is, they are based on the idea of quality without regard to any particular task. While
some might consider an elegant summary an end in of itself, most potential summary
users are more pragmatic, so the value of a summary should be a measure of how
useful it is for performing some task.

Towards this end, a few research efforts have attempted to perform this kind

59



Chapter 7. Evaluating Summaries

of task-based extrinsic evaluation. Early results have been somewhat encouraging.
Mckeown et al. [McKeown et al., 2005] compared the performance of people trying
to gather facts about a set of documents. Different subsets of people were given
the original documents, headlines only, automatic summaries, and human-generated
abstracts. The study showed good evidence that people equipped with summaries
gave better answers than people without summaries. Further, the higher the quality
of the summary, the more satisfying the user experience. Dorr et al. [Dorr et al.,
2005] conducted a related study, finding for example, that a summary allowed users
to complete a task 65% faster than a (single) original document.

While these studies help validate summarization as a useful area of research and
suggest that non-trivial progress has been made, I am not convinced that a shift
towards more extrinsic evaluation is necessary. By nature, extrinsic evaluation is
certainly more practical, but by necessity, less general. Since extrinsic metrics have
tended to correlate well with intrinsic metrics, validating academic work on summa-
rization with intrinsic evaluation seems reasonable. Occasional extrinsic evaluations
of the best performing systems are a good way to validate progress, and useful for
companies trying to benchmark performance on more specific tasks.
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In Summary

8.1 Review

The previous chapters have addressed the range of problems facing the designer of an
automatic summarization system.

Input documents need to be cleaned and segmented into useful units. Toward
this end, I described a set of features that are able to distinguish sentence-ending
periods from non-sentence-ending periods that follow abbreviations. Feature weights
are learned from data and can be used for discrimination at very low error rates
(<0.5%) on a variety of corpora.

There are many methods for assigning value to sentences and then assembling
a summary. I described Maximum Marginal Relevance and SumBasic because they
begin to chart a research trajectory that moved away from Information Retrieval
and towards functional criteria for scoring a summary based on statistics from the
set of input documents. The particular objective function I used, called maximum
coverage, implements the idea that a summary is worth the sum the of the values of
the concepts it covers. Even a very rough approximation of the notion of a concept
with a word bigram gives state-of-the-art results.

Maximum coverage also has some nice theoretical properties. It lends itself readily
to an Integer Linear Program formulation that allows for fast exact solutions; it is also
submodular, implying that greedy approximations are guaranteed to come reasonably
close to optimal solutions. Extending the framework to include syntactic sentence
compression is fairly straightforward.

One way to approach the tricky issue of sentence ordering is to prune sentences
that make ordering difficult. The primary culprit here is pronoun reference. While
coreference resolution is difficult, I show that identifying pronouns that are not re-
solved locally (in the current sentence) is much easier. Using such a classifier to prune
20-40% of sentences before selection can even improve ROUGE.
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Lastly, I addressed a few issues in system evaluation. I showed that a simpler
version of ROUGE, called n-gram recall, works at least as well (in correlation with
manual metrics). I also showed directly how subjective evaluation can be: non-
expert readers tended not to be able to reproduce expert judgments of content as
they appeared distracted by linguistic quality.

8.2 Data

The data used in my thesis work comes from the TAC and DUC workshops. But
there are a variety of other data sets available that may be worth pursuing, especially
because the TAC/DUC sets are quite small. I have found that machine learning,
especially structured prediction, tends to be unstable with such small training and
test sets. For example, feature engineering is difficult when changing the feature set
has a less significant effect than simply adding minimal random noise during training.

Fortunately, the LDC recently released a large corpus of New York Times articles,
spanning nearly 20 years (1988-2007). About 650,000 of these have accompanying
summaries (mostly abstractive). Even after fairly aggressive pruning to remove short
documents, or documents with short abstracts, as well as corrections and editorials,
nearly 20% of these, over 100,000 pairs remain. A few example abstracts are shown
in Table 8.1. Each document also comes labeled with a variety of topic tags and
identifying keywords. Though the corpus consists of only single-document summaries,
its strength is its size, which begs the question: What can be learned from a large
collection of documents and summaries?

The feature values we learned with regression (see Table 4.4) can be estimated
from just a few documents; with such a simple model, thousands of training examples
are not really necessary. Perhaps we can learn feature weights conditional on the
document type (sports, business, etc.). Perhaps we can estimate the probability of
each input word appearing in the summary (see Table 2.1), the first step towards
a kind of summary model, akin to the acoustic model in speech recognition or the
translation model in machine translation.

In addition to news articles and their various summaries, there are collections of
research papers and abstracts, including the PubMed database and the ACL anthol-
ogy. Legal documents often include hand-written summaries. And, all sorts of movie,
music, book, and product reviews are often summarized by a star rating, perhaps a
more appealing unit of prediction than an actual summary.
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Rising Costs Put M.T.A.
Projects At Risk of Delay

Stigma Aside, Wall St. Finds A
Lot to Like About Tobacco

Metropolitan Transportation Authority faces
rising costs that could imperil or delay sub-
way renovations, maintenance of signal systems
and purchase of New York City buses and sub-
way cars; is halfway through five-year, $21 bil-
lion program to expand and improve transit
system one estimate has program $1.4 billion
over budget; major problem has been rapid in-
crease in New York City construction costs, as
result of increasing materials costs and large
number of new projects, which gives contrac-
tors leverage to charge more; some transit ex-
perts are concerned that smaller repair and
maintenance projects may be sacrificed in or-
der to go ahead with high-profile projects; au-
thority now faces two-pronged problem of its
long-term spending plan and its day-to-day op-
erating budget, which is expected to have large
operating deficits beginning in 2008.

Investors react exuberantly to news that Altria
Group, company once known as Philip Morris,
will spin off its Kraft Foods division and be-
come primarily tobacco company; Kraft Foods
has stagnated in rapidly changing marketplace;
cigarettes have advantages over other consumer
products: are addictive, inexpensive to make
and there is global market for them; future
prospects for cigarette makers are very attrac-
tive in developing countries, where smoking has
not declined; recent court decisions favorable
to Altria have caused its stock to soar; some
health advocates say that dwindling social ac-
ceptability of cigarettes will hurt long-term
prospects of companies like Altria; analysts
question future of independent Kraft Foods,
which faces formidable challenges; lawyer has
threatened to file injunction to stop divestiture
but several analysts dismiss chances of injunc-
tion’s success; charts of Altria Group’s stock
prices over decade.

Figure 8.1: Sample abstracts (with titles) from the NYT corpus. These have been
cleaned up somewhat, and selected from a subset of the data with very short abstracts
and documents removed.

8.3 Methods

Maximum coverage appears to be a good general objective for summarization. That
is, if we only had a reasonable representation of facts and good estimates of their
relative values, this objective would yield meaningful summaries.

I have found that limiting the representation of facts to word n-grams makes
the estimation of their values quite difficult. It is hard to beat a frequency-based
approach, even with fairly advanced techniques. This is because n-grams provide only
noisy fragments of facts: "he wrote" or "decided not", for example, are faint echoes of
actual facts in the documents and their repetition across documents vaguely suggest
the importance of those underlying facts. Frequency-based valuation also struggles
in cases like "George W. Bush”: bigrams "George W.” and "W. Bush" both get the
same counts, effectively multiplying the value of the full name by two. Under these
circumstances, it is hard to expect any learning system to tease apart relative weights
of counts, order, and so on.

So while it is conceivable that better estimation of n-gram values could improve
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summaries, improving the representation of facts is likely to be more productive. For
example, we know that human-written abstract sentences tend to have more verbs
than the original documents. Perhaps verb-based templates, like subject-verb-object,
would be more meaningful. Of course, one benefit of n-grams is that counting them
is easy; I used word-stemming to limit diversity. Counting the number of occurrences
of a particular subject-verb-object would be more difficult, probably requiring cross-
document coreference resolution of nouns and pronouns.

Thus my suggestion for future research is to focus on the extraction of facts from
documents, ideally across very large document collections like the New York Times
corpus. To start, applying a few rules to parser output can give subject-verb-object
triples, and approximate string matching can help with robustness. Note that we
cannot expect a summary built from non-n-gram facts to outperform one built from
n-gram facts as measured by ROUGE or n-gram recall. In fact, when working on the
problems of identifying and matching facts, full summarization is a bit of a distraction.
These problems are useful in of themselves and deserve their own treatment. Better
summarization systems will follow eventually.
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