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Abstract

Convex formulations of inverse modeling problems on systems modeled by Hamilton-Jacobi
equations. Applications to traffic flow engineering

by

Christian Claudel

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Jennifer Tomlin, Chair

This dissertation presents a new convex optimization-based estimation framework for
systems modeled by scalar Hamilton-Jacobi equations. Leveraging the control framework
of viability theory, we characterize the solutions to the Hamilton-Jacobi equation by a Lax-
Hopf formula, and show that the solution satisfies an inf-morphism property. These two
properties, enable us to construct a semi-analytic formula for the solution associated with
piecewise affine initial, boundary and internal conditions. The semi-analytic solution is
the first major contribution of the thesis. This enables the construction of a scheme which
provides numerical solutions of the partial differential equation. In addition to being gridless,
the semi-analytic numerical scheme has two main advantages over standard computational
methods: it is both exact and very fast.

Using the semi-analytic formulation of the solution, we also prove that the Hamilton-
Jacobi equation restricts the possible values that the piecewise affine initial, boundary and
internal conditions can take, and that the corresponding set of possible values can be ex-
pressed in the form of convex constraints. This enables the creation of a framework for
solving inverse modeling problems on systems modeled by Hamilton-Jacobi equations using
linear programming, which is a contribution of the thesis. The formulation of these inverse
modeling problems as convex programs was previously unknown. More generally, the thesis
outlines a series of problems, which can now be cast in convex form, thanks to the semi-
analytic solution proposed in the first part of the thesis. We apply this framework to solving
several inverse modeling and estimation problems arising in transportation engineering, us-
ing experimental data from fixed sensors and mobile GPS devices. The problems that can
be solved using linear programming include four classes of problems: data consistency veri-
fication, data assimilation, data reconciliation, and coefficient estimation. Data consistency
verification is used to check if the measurements are compatible with the model assump-
tions, and are applied to sensor fault detection for instance. Data assimilation and data
reconciliation techniques enable the estimation of the state of the system in situations for
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which the model constraints are incompatible with the measurement constraints. When the
model and data constraints are compatible, some quantities related to the state (for instance
travel time in the context of transportation engineering) can be estimated using coefficient
estimation.
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Chapter 1

Introduction

‘

1.1 Background

Traffic congestion is a major issue in urban environments. Regardless of its cause, it cre-
ates both delays and increased fuel consumption, which has a major impact on the economy.
In the United States alone, the cost traffic congestion is approximately $500 per driver per
year and the total annual cost of traffic congestion represents 0.5% of the GDP [43]. Since
congestion occurs when user demand exceeds the infrastructure capacity, congestion can be
solved by either increasing the infrastructure capacity (for instance building new roads),
or reducing user demand (for instance through better traffic information systems). With
the decreasing cost of sensors and the increasing number of computational platforms (for
instance GPS-enabled smartphones) that can act as sensors [101] themselves, there is now
an unprecedented amount of traffic data, which can be leveraged to provide better traffic
information. This information in turn could be used to help reduce congestion, by providing
traffic management authorities with the proper tools to spread used demand over the day
more efficiently.

While increasing quantities of traffic measurement data become available, the problem
of estimating traffic from significantly different data sources is very complex. The highway
network is usually modeled as a distributed parameter system, which means that it can be
viewed as an infinite dimensional system. In addition, the physics of traffic are known to
be nonlinear. Finally, measurement data comes from different types of sensors which do not
necessarily measure the same physical quantities. The main goal of this dissertation is to
address the problem of integrating the constraints of the traffic model in a tractable manner,
using a convex-optimization based framework. This framework is applied to solve various
estimation problems arising in transportation engineering, using experimental data.
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1.2 Partial differential equation models of large scale

infrastructure systems

Large scale infrastructure systems, such as transportation networks, networked water
channels, or air transportation networks are distributed parameter systems, that is, their state
is usually described by a function of space and time, in contrast to a finite dimensional vector.
Another way to think about this would be as an “infinite dimensional” vector. A common
mathematical tool for modeling such systems is partial differential equations (PDEs). They
provide an efficient way of representing physical phenomena in a mathematically compact
manner, which integrates the distributed features of the systems of interest [44].

Among PDEs, a specific class stands out, conservation laws [71, 19], which model phe-
nomena in which a balance equation governs the physics (for example mass balance, mo-
mentum balance, charge balance, etc.). Water channels for instance can be modeled using
the Saint-Venant PDE [73], obtained from the conservation of water mass and momentum.
Examples of applications of such models can be found in [34, 84, 74, 34]. Ground [72, 86]
and air transportation networks [92] can both be modeled by the Lighthill-Whitham-Richards
(LWR) PDE, which is based on the conservation of vehicles. Alternatively, traffic flow can
also be modeled using second order models [33, 11, 81, 17, 100], which are non-scalar con-
servation laws. All these PDEs and others used to describe distributed parameter systems
are not necessarily conservation laws however. In structural engineering for instance, beam
deformation can be modeled by the Euler-Bernoulli beam PDE [66], which is not a conser-
vation law. In electrical engineering, the Telegraph equation [50] can be used to model wave
propagation in telecommunication lines, and is also not a conservation law.

1.3 Control and estimation of partial differential equa-

tions

1.3.1 Filtering based methods

State estimation and control for PDE-based systems is more complex than for their
ordinary differential equation (ODE) based counterparts, because of the distributed nature
of the state.

The tools available for estimating [90] and controlling [66] the states of an ODE can be
extended to systems modeled by a PDE, for instance using variations of Kalman Filtering
(KF), originally derived for systems modeled by linear ODEs [15]. Extended Kalman Filtering
(EKF) [3] is a modification of Kalman filtering for nonlinear systems. EKF techniques have
been applied to water channels state estimation problems in [46], and in traffic flow estimation
problems in [96, 3] for instance.

The EKF can however perform poorly for specific nonlinear systems, for which Monte
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Carlo techniques are a possible alternative. For example, when the dynamics exhibits nons-
moothness or nondifferentiability, EKF is known to have problems [97]. Monte Carlo methods
involve estimating the current probable value of the state, computing the state evolution, and
comparing it against new measurement data to obtain a current estimate. By their nature,
Monte-Carlo based methods can apply to any model, albeit with some computational cost
penalty. Ensemble Kalman Filtering (EnKF) [47] is a Monte-Carlo based method that can
be used for systems modeled by nonlinear PDEs, for instance the LWR [97] PDE, without
approximating the model around the current estimate as done in EKF. Other examples of
application of EnKF include Shallow Water Equations [94], or meteorology [62]. The EnKF
samples the possible current states of the system according to a probability distribution,
computes the evolution of these samples, and combine these evolutions with new measure-
ments to obtain the best estimate of the state. The Mobile Millennium system [101] is
an example of operational implementation of the EnKF for traffic flow modeling using the
LWR PDE. More generally, the state of distributed parameter systems can be estimated
using Particle Filtering (PF), which can be used for general nonlinear systems, albeit with
a higher computational cost [26].

1.3.2 Other methods

Backstepping methods [66] are control design methods that can be applied to some classes
of nonlinear systems. They involve designing a controller for a known-stable system and
“back out” new controllers that progressively stabilize each outer supersystem.

The theory of differential flatness, which was originally developed in [49], consists in
a parametrization of the trajectories of a system by one of its outputs, called the “flat
output” [82, 1]. It can be used to control the state of water channels [85] for instance.

Lyapunov methods [65] are based the extension of the Lyapunov theory for ODE-based
systems to the PDE case. Similarly to ODE-based systems, they involve the use of a Lya-
punov function associated with the state of the system, and which is either bounded or
decreasing.

Machine learning methods [63] in contrast rely on experimental datasets to learn how
the state evolves. One of the main focuses of machine learning methods is to automatically
learn to recognize specific patterns using statistical methods [2]. Machine learning methods
can be applied to very different problems, including estimation problems [59] on systems
modeled by PDEs.

Finally, spectral methods [99, 27] use modal decomposition techniques to transform dy-
namic constraints into static constraints in the frequency domain, and subsequently obtain
a static inverse modeling problem, which is easier to solve.

One of the major difficulties arising when dealing with sensing problems on systems
modeled by PDEs is the integration of the model constraints into the estimation problem.
The PDEs investigated in this dissertation are nonlinear. Their solutions can be nonsmooth
and even discontinuous, which makes the model constraints difficult to derive. One of the
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contributions of this dissertation is to express the model constraints as convex inequalities,
which are both explicit and computationally tractable.

1.4 Hamilton-Jacobi equations

In one dimensional systems (for example to model the highway network), hyperbolic
scalar conservation laws have a direct counterpart in Hamilton-Jacobi (HJ) theory [44],
which is the subject of this dissertation. HJ PDEs [12] have a particular importance in
optimal control, and more generally in variational problems, for which they were originally
derived.

Because of their structure, the solutions to a given HJ PDE satisfy the HJ PDE in a
generalized sense, and are thus called weak solutions. Several classes of weak solutions to
HJ PDEs exist. Historically, viscosity solutions [36, 35] were the first class of weak solutions
identified for HJ PDEs. They were initially discovered by taking the limit of the solutions
to a modified HJ PDE in which a viscosity term is added, when the value of this term
converges to zero, leading to the term of “vanishing viscosity”, initially used to describe them.
Viscosity solutions are continuous, but not necessarily differentiable everywhere. Barron-
Jensen/Frankowska (BJ-F) solutions [14, 52] generalize the concept of viscosity solutions by
allowing the solution to be discontinuous. A third concept of solutions is sometimes used,
so called “nonsmooth solutions”, based on nonsmooth analysis [28].

HJ PDEs also integrated the framework of differential games [45, 22, 23], which model
problems containing two actors, a pursuer and an evader, with conflicting goals. They can
for instance be used to solve aircraft safety problems [78] by computing the set in which an
evader aircraft is always safe from a pursuer aircraft that attempts to collide with it.

The solutions used in the present work are obtained using a Lax-Hopf [68] formula, which
expresses the solution at any given point as a minimization (or maximization) problem.

1.5 Numerical analysis for Hamilton-Jacobi equations

The solutions to HJ PDEs (and their conservation laws counterparts) can be computed
numerically using various methods, relying either on the structure of the PDE (finite dif-
ference schemes), the structure of their solutions (wave-front tracking methods), a different
expression of the problem (level set methods), or the Lax-Hopf formula (dynamic program-
ming, Lax-Hopf algorithm). The most basic numerical schemes that can be thought of are
finite difference schemes, such as the Godunov scheme [54], or the Lax-Friedrichs method [64].
Finite difference methods require the approximation of the PDE as a finite difference equa-
tion on a computational grid. The finite difference equation is then solved numerically.
Finite difference schemes compute approximate solutions, and are often subject to stabil-
ity conditions, such as the Courant-Friedrichs-Levy (CFL) condition, which constrains the
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computational grid [71].
Level set methods [77, 76] rely on finite difference schemes to numerically approximate

the solution with subgrid accuracy and avoid their high cost of grid refinement. They can be
extended in some cases by fast marching methods [89], which are computationally efficient
(but have specific restrictions in their possible applications).

Wave-front tracking methods [19, 38] in contrast rely on the structure of the mathematical
solutions to hyperbolic conservation laws, which feature shockwaves and expansion waves.
Wave-front tracking methods are event-based numerical methods that compute the location
of these waves, and thus derive the expression of the solution everywhere because of its
structure.

Finally, the Lax-Hopf formula used in the present work can be solved numerically to
compute the solution as a minimization problem. Possible solution methods include dynamic
programming [44, 41] or the Lax-Hopf algorithm derived in this dissertation, adapted from [8].

1.6 Contributions

The first contribution of this dissertation is the construction of a new grid-free solution
procedure known as the Lax-Hopf algorithm for solving Hamilton-Jacobi equations and their
associated scalar conservation laws. This numerical scheme exhibits two main benefits with
respect to standard first-order schemes. Firstly, the solutions computed using the Lax-Hopf
algorithm are exact, i.e. do not exhibit error aside from the error due to numerical accuracy
of the numerical software used to compute them. Secondly, the solution can be computed at
any time without requiring intermediate computations, unlike (first-order) finite difference
schemes which have to do so because of the Courant-Friedrich-Lewy (CFL) conditions.

The second contribution of the thesis is the construction of a convex-optimization based
framework for computing solutions to various estimation problems on systems modeled by
HJ PDEs. For this, we first establish the relationship between the physics of the problem and
the value of the initial, boundary or internal conditions which are required to solve the PDE.
However, it is in general impossible given our measurement data to establish the value of
the initial, boundary and internal conditions univocally, because of sensor errors, coefficients
that cannot be measured and constants of integration that are unknown. The measurement
data constraints the possible values that the initial, boundary and internal conditions can
take. Similarly the HJ PDE model also constraints the possible values that the initial,
boundary and internal conditions can take. While the derivation of the data constraints is
usually easy if we know how the sensors perform, deriving these model constraints is very
difficult in general because of the nonlinearity of the model and the nonsmoothness of its
solutions. In this dissertation, we show that the model constraints can be reduced to a set
of convex inequalities, which is a desirable property. Estimation problems associated with
convex objectives and constraints are usually tractable, even if the dimensionality of the
problem (the number of unknown coefficients to estimate) is very high.
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Figure 1.1: Illustration of the state estimation procedure.

The third contribution is the numerical implementation of this estimation framework
illustrated in Figure 1.1 for solving various transportation engineering problems using exper-
imental traffic data. The same framework can be used for very different problems, such as
estimation problems (for instance travel time estimation), sensor fault detection problems, or
user privacy analysis. All these problems are posed as Linear Programs (LPs), a particular
class of convex-optimization problems for which numerous solvers exist [18].

1.7 Structure of the dissertation

The rest of this dissertation is organized as follows. We construct the Lax-Hopf algorithm
introduced as the backbone of our method, and present some of its benefits and applications
in chapter 2. For this, section 2.1 introduces the HJ PDE model investigated in this disser-
tation. Section 2.2 presents the notion of value condition, which encompasses the traditional
concepts of initial and boundary as well as a new concept of internal conditions. We then
derive a possible method for solving the HJ PDE using the control framework of Viability
Theory in section 2.3. This method enables us to define a Lax-Hopf formula, which charac-
terizes the solution. In section 2.4, we describe the mathematical properties of the solution,
derived from the structure of the Lax-Hopf formula. In particular, the inf-morphism prop-
erty enables us to decompose a complex problem involving multiple initial, boundary and
internal conditions into more tractable subproblems. We then show in section 2.5 that the
subproblems, namely the problems of computing the solutions associated with affine initial,
boundary and internal conditions can be solved exactly and explicitly. Using these solutions
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and the inf-morphism property derived earlier, we build in section 2.6 a semi-analytic nu-
merical scheme for solving the HJ PDE exactly and without requiring a computational grid.
We also show in section 2.7 that a similar numerical scheme can be used to solve the corre-
sponding scalar conservation laws. Numerical illustrations and a comparison with standard
first-order numerical schemes are performed in section 2.8.

The derivation of the model constraints as convex inequalities on systems modeled by
HJ PDEs is presented in Chapter 3. We derive the model constraints in section 3.1 and
present some important properties of the model constraints in section 3.2. Using the Lax-
Hopf formula, we show that the model constraints are convex, and can be written explicitly.
The nature of the model constraints also imply an important monotonicity property with
respect to new data, which states that adding new data into the estimation problem can
only increase the accuracy of the solution.

The applications of this framework to practical problems are presented in Chapter 4. We
first establish the relationship between measurement data and initial, boundary and internal
conditions in section 4.1. We then instantiate the model compatibility constraints explicitly
for triangular Hamiltonians in section 4.2. We also derive the corresponding measurement
data constraints explicitly (in section 4.3). In section 4.4, we introduce two fundamental
convex feasibility problems that can be used to determine if the model and data constraints
are compatible and if the measurement data is consistent with the physics of the problem.
This is used in section 4.5 to present different estimation problems that can be solved using
LPs obtained by direct instantiation of the convex problems derived earlier. We show in
particular that some nonconvex estimation problems such as the travel time estimation
problem can still be decomposed as a series of LPs and thus are computationally tractable.
In section 4.6, we define two important inverse modeling problems for situations in which the
data and model constraints are incompatible. These problems are respectively known as data
assimilation and data reconciliation, and are obtained by relaxing model and data constraints
respectively. We then proceed to solve different problems of interest for transportation
engineering. The examples presented in this dissertation involve experimental highway traffic
data sets, obtained from the Performance Measurement System (PeMS) and the Mobile
Century experiment in California. Some of the resulting algorithms have been implemented
in the Mobile Millennium system [101], in particular a sensor fault detection algorithm
detailed in section 4.7 that runs in real time, every 30s for all highways in northern California.
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Chapter 2

Fast and exact semi-analytic schemes
for scalar Hamilton-Jacobi partial
differential equations

2.1 Macroscopic highway traffic modeling

2.1.1 State of the art

Traffic flow models can be separated into at least two distinct classes, depending on the
scale at which they describe traffic. Microscopic models such as the car following model [51],
describe traffic at the individual vehicle level as a flow of particles. Their objective is to
provide a relationship between the velocity of a given vehicle and its environment. In con-
trast, macroscopic models [56, 72, 86] describe traffic flow as a continuous medium and are
related to fluid mechanics models. In this dissertation, we focus on the Lighthill-Whitham-
Richards [72, 86] (LWR) model, which is a first order macroscopic flow model. Owing to its
simplicity and its robustness, the LWR model and its related cell transmission model [39, 40]
are commonly used in transportation engineering [95, 41, 3, 97]. Note that macroscopic
models are not necessarily first order models, see for instance [17]. Traffic flow can also be
described at an intermediate scale using mesoscopic models [21]. Mesoscopic models fol-
low methods of statistical mechanics, and express the solution using an integro-differential
equation such as the Boltzmann equation [25].

Similarly to other large scale infrastructure systems such as the water channel network,
the highway transportation network is a very complex graph containing highway sections
connected by junctions or splits. In this dissertation, we do not consider the effects of the
network and solely focus on the description of traffic flow on a highway section. Extending
this framework to the whole transportation network [20, 53] requires the computation of
boundary conditions of each highway section, and is out of the scope of this thesis. It
is still a somewhat open problem which will require the generalization of weak boundary
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conditions [13, 70], commonly used in traffic engineering [91, 97, 58].

2.1.2 First order scalar conservation laws

We define the physical (and computational) domain as the one-dimensional set X :=
[ξ, χ] ⊂ R, where ξ represents the upstream boundary and χ represents the downstream
boundary of the domain. The upstream and downstream boundaries represent the locations
at which traffic enters and exits the road section respectively.

Two macroscopic functions are used to describe the state of traffic flow on the highway
section: the density function and flow function, defined as follows. The density ρ(t, x)
corresponds to the number of vehicles per unit distance at location x and time t. The flow
q(t, x) is defined as the number of vehicles that cross the point x per unit time, at time t.
Both functions are related by a conservation equation expressing the fact that vehicles do
not appear or disappear inside the highway section:

∂ρ(t, x)

∂t
+
∂q(t, x)

∂x
= 0 (2.1)

Equation (2.1) alone cannot be solved since it involves two different functions. In order
to compute the evolution of ρ(·, ·) and q(·, ·), one needs an additional equation relating these
two functions. Greenshields [56] was one of the first to identify a direct relationship between
density and flow of the form q(·, ·) = ψ(ρ(·, ·)), where ψ(·) is a function identified since
as Fundamental Diagram [83]. The fundamental diagram translates the fact that drivers
adapt their speed to the density of vehicles that surround them. Adding this relationship
into equation (2.1) yields a first order scalar conservation law involving the density function,
known as Lighthill-Whitham-Richards [72, 86] PDE:

∂ρ(t, x)

∂t
+
∂ψ(ρ(t, x))

∂x
= 0 (2.2)

2.1.3 Hamilton Jacobi equations with concave Hamiltonians

Instead of describing traffic flow in terms of a density function [71, 91], a possible alternate
formulation known as the Moskowitz function uses a Hamilton-Jacobi equation for describing
the evolution of an integral of the function ρ(·, ·) [29, 8, 31, 32]. The Moskowitz function is
physically defined as follows.

Definition 1. [Moskowitz function] Let consecutive integer labels be assigned to vehicles
entering the highway at location x = ξ. The Moskowitz function M(·, ·) is a continuous
function satisfying bM(t, x)c = n where n is the label of the vehicle located in x at time t [41,
42, 79]. Hence, M(t, x) represents the label of the vehicle located at x at time t, counted
from the reference point (0, ξ) corresponding to the vehicle numbered 0.
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The properties of the Moskowitz function have been extensively studied, for instance in
the famous Newell trilogy [80]. The formal link between the density function ρ(·, ·), the flow
function q(·, ·) and the Moskowitz function M(·, ·) is given by:

M(t2, x2)−M(t1, x1) =

∫ x2

x1

−ρ(t1, x)dx+

∫ t2

t1

q(t, x2)dt (2.3)

Conversely, the flow and density functions q(·, ·) and ρ(·, ·) are related to the spatial and
temporal derivatives of the Moskowitz function M(·, ·):

q(t, x) = ∂M(t,x)
∂t

ρ(t, x) = −∂M(t,x)
∂x

(2.4)

The Moskowitz function M(·, ·) solves the following equation, obtained by combining (2.4)
and the LWR PDE (2.2):

∂M(t, x)

∂t
− ψ

(
−∂M(t, x)

∂x

)
= 0 (2.5)

Equation (2.5) is an Hamilton-Jacobi (HJ) PDE [35, 8]. In the context of HJ PDEs, the
parameter ψ(·) is known as Hamiltonian, while it is known as fundamental diagram in the
context of the LWR PDE (2.2) and traffic engineering [39].

2.1.4 Hamiltonian

The LWR PDE (2.2) and its associated HJ PDE (2.5) are both characterized by a Hamil-
tonian ψ(·), which describes the relationship between density and flow. For low densities,

the average velocity of traffic v(·, ·) = q(·,·)
ρ(·,·) is close to maximal velocity allowed on the road

section, denoted by ν[. As the density increases, traffic velocity progressively drops and
vanishes for the maximal density ω that the highway section can contain and known as jam
density. Hence, the Hamiltonian ψ(·) satisfies the following properties:

• lim
ρ→0

ψ(ρ)

ρ
= ν[

• the function ρ→ ψ(ρ)
ρ

is decreasing

• ψ(ω) = 0

An example of flow-density plot using experimental data from the Performance Measure-
ment System (PeMS) [103] is shown in Figure 2.1.
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Figure 2.1: Illustration of the flow-density relationship.
The horizontal axis represents the density of vehicles, while the vertical axis corresponds to
the flow of vehicles. Each point of this plot corresponds to a simultaneous measurement of
flow and density at a fixed location, using an inductive loop detector [103].

For mathematical reasons, the Hamiltonian is often assumed to be either concave or
convex [35, 8] in the HJ PDE theory, though this requirement is not dictated by the physics
of the problem. In this dissertation, we assume once and for all that the Hamiltonian is a
concave and upper semicontinuous function defined on [0, ω], where ω is called jam density
and that ψ(0) = ψ(ω) = 0. We also assume that ψ(·) satisfies ψ′(0) = ν[ and ψ′(ω) = −ν],
where ν[ > 0 and ν] > 0, which implicitly assumes that ψ(·) is differentiable at 0 and ω.
However, we do not assume that ψ(·) is differentiable on ]0, ω[ and construct our analysis
for this general set of concave ψ(·) functions.

Different choices of Hamiltonians satisfying these properties are possible, including the
two examples presented below.

Example 1. [Greenshields Hamiltonian] [56, 5]. One of the first Hamiltonian identified
in the context of traffic-flow modeling is the Greenshields Hamiltonian [56], defined by:

∀ ρ ∈ R, ψ(ρ) :=
ν

ω
ρ (ω − ρ) (2.6)

where ω and ν are model parameters, respectively referred to as jam density and free flow
velocity in the transportation literature. Note that the Greenshields Hamiltonian depends
only on two parameters, which makes it compact and easy to calibrate. The Greenshields
Hamiltonian is however not used very often in practice, since it predicts unrealistically high
maximal flows.

Another example of Hamiltonian is the Trapezoidal Hamiltonian, widely used in traffic
flow modeling [39].
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Example 2. [Trapezoidal Hamiltonian] [39, 40, 93]. The trapezoidal Hamiltonian is
commonly used to model the hybrid nature of traffic flow propagation:

ψ(ρ) =


ν[ρ if ρ ≤ γ[

δ if ρ ∈ [γ[, γ]]
ν](ω − ρ) if ρ ≥ γ]

where ν[, ν], ω, δ, γ[ and γ] are constants and satisfy the following relations: δ ≤ ων[ν]

ν[+ν]

(called capacity in the transportation engineering literature),γ[ := δ
ν[

(called lower critical

density in the transportation engineering literature) and γ] := ν]ω−δ
ν]

(called upper critical

density in the transportation engineering literature). When γ[ = γ], the Hamiltonian is
triangular, as used in the applications of Chapter 4.

The Greenshields and trapezoidal Hamiltonians are illustrated in Figure 2.2.

Figure 2.2: Illustration of the Greenshields and trapezoidal Hamiltonians.
Numerical values are represented in the context of transportation, i.e. the variable ρ is
homogeneous to the vehicle density (in percent of the maximal density). The Hamiltonian
ψ(ρ) is represented in vehicles per hour. Left: representation of a Greenshields Hamiltonian.
Right: representation of a trapezoidal Hamiltonian.

Solving the HJ PDE (2.5) requires the definition of value conditions, which we now define.

2.2 Value conditions

2.2.1 General definition

Value conditions encompass the traditional concepts of initial, boundary and internal
conditions and are defined as follows.
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Definition 2. [Value condition] A value condition c(·, ·) is a lower semicontinuous function
defined on a subset of [0, tmax]×X.

By convention, a value condition c(·, ·) as defined in definition 2 satisfies c(t, x) = +∞
if (t, x) /∈ Dom(c). The domain of definition of a value condition represents the subset of
the space time domain R+ × X in which we want the value condition to apply. Different
types of value condition exist, including the traditional initial, upstream and downstream
boundary conditions [8, 39]. More complex value conditions do exist however. Internal
conditions consist in value condition whose domains of definition are connected and of empty
interior [41, 69]. Hybrid conditions [29] are the most general type of value condition, but are
out of the scope of this dissertation.

2.2.2 Initial, boundary and internal conditions

Initial, boundary are common in problems involving PDEs. Internal conditions are spe-
cific to the problem introduced in this thesis, though it applies to numerous other fields.
These value conditions are defined as follows.

Definition 3. [Initial condition] An initial condition is a value condition c(·, ·) defined
on Dom(c) := {0} ×X.

Note that the traditional Cauchy problem consists in finding the solution to (2.5) associ-
ated with a value condition defined on {0}×R, i.e. an initial condition defined on an infinite
spatial domain.

In contrast, the upstream and downstream boundary conditions are related to the value
of the state on the boundaries of the physical domain.

Definition 4. [Upstream and downstream boundary conditions] An upstream bound-
ary condition is a value condition c(·, ·) defined on the set Dom(c) := [0, tmax]×{ξ}. A down-
stream boundary condition is a value condition c(·, ·) defined on Dom(c) := [0, tmax]× {χ}.

Note that the traditional mixed Initial-Boundary conditions problem [91] consists in find-
ing the solution to (2.5) associated with a value condition defined on {0} ×X ∪R+ × {ξ} ∪
R+ × {χ}, i.e. an initial condition, an upstream boundary condition and a downstream
boundary condition defined on an infinite temporal domain.

Note that the initial, upstream and downstream boundary conditions are all defined at the
boundary of the computational domain [0, tmax] × X. Since probe measurements originate
from the interior of the computational domain, a specific type of value condition, known
as internal condition has to be defined as follows.

Definition 5. [Internal condition] An internal condition is a value condition c(·, ·) defined
on a domain of the form Dom(c) := {(t, xv(t)), t ∈ Dom(xv)}, where xv(·) is a function of
[0, tmax].
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In definition 5, the function xv(·) represents the velocity function associated with the
internal condition. The set {(t, xv(t)), t ∈ Dom(xv)} is the trajectory associated with the
internal condition.

Note that in the applications of this dissertation, measurement data alone is not sufficient
to define the value conditions unambiguously, since some of coefficients used to build these
value conditions are impossible to measure, or are not perfectly known due to measurement
errors.

We now present a characterization of the solutions to the HJ PDE (2.5) associated with
the value conditions defined earlier. This characterization uses Viability theory, an area
of optimal control studying the evolution of dynamical systems evolving under state con-
straints [6, 7] known as viability constraints.

2.3 Viability formulation of the solution

2.3.1 Barron-Jensen/Frankowska solutions

As mentioned earlier, several classes of solutions to HJ PDEs exist. Viscosity solu-
tions [35] to HJ PDEs are continuous functions. The specific type of solutions to (2.5) that
we consider in the present work is the Barron-Jensen/Frankowska (B-J/F) solutions [14, 52].
B-J/F solutions extend the concept of viscosity solutions by allowing the solution to be lower
semicontinuous. Note that both concepts are identical for mixed initial-boundary conditions
problems involving Lipschitz-continuous initial and boundary conditions [52].

The B-J/F solutions to (2.5) can be derived using the control framework of Viability
theory [6], presented in the following section.

2.3.2 Viability characterization of Barron-Jensen/Frankowska so-
lutions

We now introduce some tools used in the context of viability theory [6, 7], which are
essential building blocks for the work presented here.

Definition 6. [6, 7] [Capture basin] Given a dynamical system F and two sets K
(called the constraint set) and C (called the target set) satisfying C ⊂ K, the capture basin
CaptF (K, C) is the subset of states of K from which there exists at least one evolution solution
to F reaching the target C in finite time while remaining in K.

Note that the capture basin associated with a given dynamical system, constraint and
target set can be numerically computed using the Capture Basin Algorithm [22, 23, 88]. In
order to properly define the dynamical system used to construct B-J/F solutions to (2.5),
we first need to define a convex transform ϕ∗(·) of the Hamiltonian ψ(·) as follows.
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Definition 7. [Convex transform] Given a concave and upper semicontinuous function
ψ(·) with domain Dom(ψ), we define the convex transform ϕ∗(·) of ψ(·) as follows:

ϕ∗(u) := sup
p∈Dom(ψ)

[p · u+ ψ(p)] (2.7)

The inverse transform of a convex and lower semicontinuous function ϕ∗(·) is defined [8]
by:

ψ(p) := inf
u∈Dom(ϕ∗)

[ϕ∗(u)− p · u] (2.8)

Note that equation (2.7) in definition 7 differs from the traditional definition of the
Legendre-Fenchel transform by a sign change.

The function ϕ∗(·) defined by (2.7) is convex as the pointwise supremum of affine func-
tions [18, 87] and is defined on the interval Dom(ϕ∗) := [−ν[, ν]]. Since ϕ∗(·) is convex,
it is subdifferentiable [18] on [−ν[, ν]] and its subderivative satisfies the Legendre-Fenchel
inversion formula [8]:

u ∈ −∂+ψ(ρ) if and only if ρ ∈ ∂−ϕ∗(u) (2.9)

in which, following [18], we use the following definition of the subderivative ∂−(·) and the
superderivative ∂+(·):

v ∈ ∂−F(x0) if and only if ∀x ∈ Dom (F) , F(x) ≥ F(x0) + v(x− x0) (2.10)

v ∈ ∂+F(x0) if and only if ∀x ∈ Dom (F) , F(x) ≤ F(x0) + v(x− x0) (2.11)

Note that any convex (respectively concave) function F(·) is subdifferentiable (respec-
tively superdifferentiable) on its domain of definition [18].

The convex transform satisfies ϕ∗(−ν[) := sup
p∈Dom(ψ)

[−pν[ + ψ(p)] = 0 since ψ(·) is

concave and satisfies ψ′(0) = ν[. In addition, it is positive by (2.7) since ψ(0) = 0 and
0 ∈ [0, ω].

The convex transforms associated with Greenshields and trapezoidal Hamiltonians de-
fined in section 2.1.4 are represented in Figure 2.3.



16

Figure 2.3: Illustration of the convex transforms associated with the Greenshields
and trapezoidal Hamiltonians.
Left: representation of the function ϕ∗ associated with a Greenshields Hamiltonian. Right:
representation of the function ϕ∗(·) associated with a trapezoidal Hamiltonian.

The convex transform ϕ∗(·) enables the definition of an auxiliary dynamical system, which
will be used to characterize the solutions to (2.5) as capture basins.

Definition 8. [Auxiliary dynamical system] We define an auxiliary dynamical system
F associated with the HJ PDE (2.5):

F :=


τ ′(t) = −1
x′(t) = u(t) where u(t) ∈ Dom(ϕ∗)
y′(t) = −ϕ∗(u(t))

(2.12)

The function u(·) is called auxiliary control of the dynamical system F .

The dynamical system (2.12) is both Marchaud and Lipschitz [8]. To be rigorous, we
have to mention once and for all that the controls u(·) are measurable integrable functions
with values in Dom(ϕ∗), and thus, ranging L1(0,+∞; Dom(ϕ∗)) and that the above system
of differential equations is valid for almost all t ≥ 0. We illustrate the auxiliary dynamical
system in Figure 2.4.
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Figure 2.4: Illustration of the auxiliary dynamical system used to construct the
solutions to the HJ PDE.
The auxiliary dynamical system (2.12) is illustrated by a box. The compound line represents
a possible evolution of this dynamical system.

The environment set K is defined in epigraphical form as K := Epi(b(·, ·)), where b(·, ·)
is a lower semicontinuous function. b(·, ·) represents a lower bound that we impose on the
solution to the HJ PDE (2.5). The problem of finding a solution to (2.5) under lower bound
constraints is extensively studied in [8]. In the present dissertation, we do not impose a lower
bound on the solution and thus choose the following environment set:

Definition 9. [Environment set] We define the environment K as K := R+ × [ξ, χ]× R.

The target set is also defined in epigraphical form as C := Epi(c(·, ·)), where c(·, ·)
represents an upper bound that we impose on the solution to the HJ PDE (2.5).

Definition 10. [Target set] Let a value condition c(·, ·) be given. The epigraphical target
set associated with c(·, ·) is defined as C := Epi(c).

Note that the target set C = Epi(c) associated with a value condition c(·, ·) is closed,
since it is the epigraph of a lower semicontinuous function.

Using the above definitions of auxiliary dynamical system F , environment set K and
target set C, we can now represent the capture basin CaptF (K, C) as in definition 6. We
illustrate the construction of CaptF (K, C) in Figure 2.5.
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Figure 2.5: Illustration of a capture basin associated with an epigraphical target.
Left: element (t, x, y) of the capture basin CaptF (K, C): there exists an evolution starting
from (t, x, y) and reaching C in finite time while remaining in K := R+ × X × R. Right:
element (t, x, y) not belonging to the capture basin CaptF (K, C): all evolutions starting from
(t, x, y) exit the set K before reaching C (only two evolutions are represented for clarity).

Definition 11. [Viability episolution] The viability episolution Mc(·, ·) associated with
the epigraphical target C = c(·, ·) is defined by

Mc(t, x) := inf
(t,x,y)∈CaptF (K,C)

y (2.13)

Remark 1. The capture basin CaptF (K, C) of a target C viable in the environment K is the
subset of initial states (t, x, y) for which there exists a measurable control u(·) such that its
associated evolution

s 7→
(
t− s, x+

∫ s

0

u(τ)dτ, y −
∫ s

0

ϕ∗(u(τ))dτ

)
(2.14)

is viable in K (i.e. remains in K at all times) until it reaches the target C in finite time.

Remark 2. The capture basin CaptF (K, C) is actually the epigraph of the function Mc(·, ·)
defined by (2.13). Indeed, let (t, x, y) ∈ CaptF (K, C). We thus have that (2.14) is an
evolution viable in K reaching C in finite time. Since K and C are epigraphs, we have for
any y′ ≥ y that the evolution

s 7→
(
t− s, x+

∫ s

0

u(τ)dτ, y′ −
∫ s

0

ϕ∗(u(τ))dτ

)
(2.15)

also remains in K at all times until it reaches the target C. Hence, (t, x, y′) also belongs to
CaptF (K, C), which proves that CaptF (K, C) = Epi(Mc).
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We illustrate the viability episolution associated with a given value condition in Fig-
ure 2.6.

Figure 2.6: Illustration of a viability episolution.
We represent on the same figure a target C and its associated viability episolution Mc(·, ·).
The episolution is the lower boundary of the capture basin CaptF (K, C), shaded in this figure.

The viability episolution Mc(·, ·) defined by equation (2.13) is shown in theorem 1 to be
a B-J/F solution to equation (2.5). If furthermore Mc(·, ·) is differentiable, it is a classical
solution to equation (2.5).

The work [8] defines the B/J-F solution in hypographical form for a function N(·, ·)
satisfying an inhomogeneous HJ PDE:

∂N(t, x)

∂t
+ ψ

(
∂N(t, x)

∂x

)
= ψ(v(t)) (2.16)

The following theorem is identical to the main existence and uniqueness theorem of [8]
modulo the variable change M(t, x) = −N(t, x)+

∫ t
0
ψ(v(u))du, the translation of hypographs

into epigraphs and the corresponding change on epi/hypo derivatives and differentials.

Theorem 1. [Barron-Jensen/Frankowska solution] [8] For any lower semicontinuous
value condition ci, the associated solution Mci is the unique lower semicontinuous function
lower than ci satisfying:

{
(i) ∀(t, x) ∈ Dom(Mci)\Dom(ci), ∀(pt, px) ∈ d−Mci(t, x), pt − ψ(−px) = 0
(ii) ∀(t, x) ∈ Dom(Mci)\Dom(ci), ∀(pt, px) ∈ (Dom(D↑Mci(t, x)))+, pt − σ(Dom(ϕ∗), px) = 0

(2.17)

where the epiderivative D↑ is defined by its epigraph:

Ep(D↑Mci(t, x)) := TEp(Mci )
(t, x,Mci(t, x)) (2.18)
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where in the formulae (2.18) and (2.17) TZ(z) represents the contingent cone to Z at z
(see [10]), σ(·, ·) is the support function (see [6, 10, 9]), the + superscript denotes the normal
cone (see [8]) and where the subdifferential d− of a function u : X → R ∪ {+∞} is defined
by d−u(x) = {p ∈ X∗|∀v ∈ X, 〈p, v〉 ≤ D↑u(x)(v)}.

Theorem 1 ensures that Mci is a solution to the HJ PDE (2.5) in the B-J/F sense. In

particular, since d−Mci(t, x) = {(∂Mci (t,x)

∂t
,
∂Mci (t,x)

∂x
)} whenever Mci(t, x) is differentiable,

equation (2.17) implies the following property:

∀(t, x) ∈ Dom(Mci)\Dom(ci) such that Mci is differentiable,
∂Mci (t,x)

∂t
− ψ

(
−∂Mci (t,x)

∂x

)
= 0

(2.19)
The construction of the B-J/F solution to (2.5) as a capture basin enables the definition

of a Lax-Hopf formula.

2.3.3 The Lax-Hopf formula

The viability episolution Mc(·, ·) associated with a general value condition c(·, ·) can be
computed using the following generalized Lax-Hopf formula. The classical Lax-Hopf formulae
can be found in [8] for initial and upstream boundary conditions.

Theorem 2. [Generalized Lax Hopf formula] The viability episolution Mc(·, ·) associ-
ated with a target C := Epi(c), for a given lower semicontinuous function c(·, ·) and defined
by equation (2.13) can be expressed as:

Mc(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+

(c(t− T, x+ Tu) + Tϕ∗(u)) (2.20)

Proof — We fix (t, x) ∈ R+ × X and define R as the set of elements (u(·), T, y)
belonging to L1(0,∞; Dom(ϕ∗))× R+ × R and satisfying viability property (2.21):

∀s ∈ [0, T ]

(
t− s, x+

∫ s

0

u(τ)dτ, y −
∫ s

0

ϕ∗(u(τ))dτ

)
∈ K (2.21)

Equations (2.13) and (2.14) thus imply the following formula:

Mc(t, x) = inf
(u(·),T,y)∈R such that (t−T,x+

∫ T
0 u(τ)dτ,y−

∫ T
0 ϕ∗(u(τ))dτ)∈Epi(c)

y (2.22)

Since the graph of the value condition c(·, ·) (denoted Graph(c)) is the lower boundary
of Epi(c), we have that(

t− T, x+
∫ T
0
u(τ)dτ, y −

∫ T
0
ϕ∗(u(τ))dτ

)
∈ Epi(c)

and
(
t− T, x+

∫ T
0
u(τ)dτ, z −

∫ T
0
ϕ∗(u(τ))dτ

)
∈ Graph(c)

}
⇒ z ≤ y (2.23)
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Hence, we can (without any further assumption) write equation (2.22) as:

Mc(t, x) = inf
(u(·),T,y)∈R such that (t−T,x+

∫ T
0 u(τ)dτ,y−

∫ T
0 ϕ∗(u(τ))dτ)∈Graph(c)

y (2.24)

Since c is infinite outside of its domain of definition and given the definition of Graph(c),
equation (2.24) can be expressed as follows:

Mc(t, x) = inf
(u(·),T,y)∈R

[
c

(
t− T, x+

∫ T

0

u(τ)dτ

)
+

∫ T

0

ϕ∗(u(τ))dτ

]
(2.25)

We consider a fixed element (u(·), T, y) ∈ R and define the following constant control
function û on the time interval [0, T ] as:

û :=
1

T

∫ T

0

u(τ)dτ (2.26)

The control function û is the average value of the control function u(·) on the time interval
[0, T ]. Note that by convexity of K, (û, T, y) ∈ R if (u(·), T, y) ∈ R. In the following, we
slightly abuse the notation by calling û(·) the constant function t→ û.

We define y(u(·), T ) and y(û(·), T ) respectively as the values of the term minimized
in (2.25) obtained for the control functions u(·) and û(·) and for the capture time T :{

y(u(·), T ) = c(t− T, x+
∫ T
0
u(τ)dτ) +

∫ T
0
ϕ∗(u(τ))dτ

y(û(·), T ) = c(t− T, x+ T û) + Tϕ∗(û)
(2.27)

Since ϕ∗ is convex and lower semicontinuous, Jensen’s inequality implies

ϕ∗
(

1

T

∫ T

0

u(τ)dτ

)
≤ 1

T

∫ T

0

ϕ∗(u(τ))dτ (2.28)

and thus, since ûT =
∫ T
0
u(τ)dτ

y(û(·), T ) ≤ y(u(·), T ) (2.29)

Equation (2.29) thus implies that one can replace the search of the infimum over the class
of measurable functions u(·) by the search of the infimum over the set of constant functions
û(·).

Hence, we can write equation (2.25) as:

Mc(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+

(c(t− T, x+ Tu) + Tϕ∗(u)) (2.30)

which enables us to restrict ourselves to the set of constant controls and completes the
proof. �
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Remark 3. Given a constant control function u, the coefficient T used for the minimiza-
tion in equation (2.20) can be restricted to the elements of the set Sc(t, x, u) defined by
formula (2.31):

Sc(t, x, u) := {s ∈ R+ such that (t− s, x+ su) ∈ Dom(c)} (2.31)

Indeed, when T /∈ Sc(t, x, u), c(t− T, x+ Tu) is infinite.

We could also alternatively define for any (t, x) the set Rc(t, x) as Rc(t, x) := {(u, T ) ∈
Dom(ϕ∗) × R+ s. t. (t − T, x + Tu) ∈ Dom(c)}. Note that the coefficients (u, T ) used
for the minimization in equation (2.20) can also be restricted to the elements of Rc (when
(u, T ) /∈ Rc(t, x), c(t− T, x+ Tu) is infinite).

Remark 4. When ∀u ∈ Dom(ϕ∗), Sc(t, x, u) = ∅, equation (2.30) involves a minimization
on an empty set and Mc(t, x) is infinite.

Remark 5. Since c(t − T, x + Tu) = +∞ when (t − T, x + Tu) /∈ Dom(c), we can write
equation (2.30) as:

Mc(t, x) = inf
{(u,T )∈Dom(ϕ∗)×R+ such that T∈Sc(t,x,u)}

(c(t− T, x+ Tu) + Tϕ∗(u)) (2.32)

or alternatively as:

Mc(t, x) = inf
{(u,T )∈Rc(t,x)}

(c(t− T, x+ Tu) + Tϕ∗(u)) (2.33)

Specific forms of the Lax-Hopf formula (2.20) associated with affine initial, boundary and
internal conditions are presented in section 2.5.

2.4 Properties of the Barron-Jensen/Frankowska solu-

tions to Hamilton-Jacobi equations

2.4.1 Domain of definition

Proposition 1. [Domain of definition] For a given value condition c(·, ·), the domain of
definition of Mc(·, ·), also called domain of influence of c(·, ·), is defined by the following
formula:

Dom(Mc) =
⋃

(t,x)∈Dom(c)

 ⋃
T∈R+

{t+ T} × [x− ν]T, x+ ν[T ]

 (2.34)
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Proof — The generalized Lax Hopf formula (2.20) implies that

Dom(Mc) = {(t, x) ∈ R+ ×X such that ∃(T, u) ∈ R+ ×Dom(ϕ∗)
and (t− T, x+ Tu) ∈ Dom(c)}

Equation (2.34) is derived from the previous formula, observing that u ranges in Dom(ϕ∗) :=
[−ν[, ν]]. �

Remark 6. The domain of influence of c(·, ·) is the union of the cones originating at (t, x) ∈
Dom(c) and limited by the minimal −ν[ and maximal ν] slopes of the Hamiltonian. This
property is illustrated in Figure 2.7.

Figure 2.7: Illustration of the domain of influence of a value condition.
We define a value condition c(·) on a domain represented by two black segments at t = 0.
The domain of influence of c(·, ·) is highlighted in gray.
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Figure 2.8: Illustration of the inf-morphism property.
Top: representation of the target C1 := Epi(c1) (left), representation of the corresponding
episolution M1(·, ·) (right). Center: representation of the target C2 := Epi(c2) (left),
representation of the corresponding episolution M2(·, ·) (right). Bottom: Representation
of the target C := C1

⋃
C2 (left). The episolution M(·, ·) associated with the target C (right)

is the minimum of the episolutions M1(·, ·) and M2(·, ·) associated with C1 and C2.

2.4.2 The inf-morphism property

It is well known [6, 7, 8] that for a given environment K, the capture basin of a finite
union of targets is the union of the capture basins of these targets.
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CaptF

(
K,
⋃
i∈I

Ci

)
=
⋃
i∈I

CaptF (K, Ci) (2.35)

This property can be translated in epigraphical form as follows.

Proposition 2. [Inf-morphism property] [8] Let ci (i belongs to a finite set I) be a
family of functions whose epigraphs are the targets Ci. Since the epigraph of the minimum
of the functions ci is the union of the epigraphs of the functions ci, the target C :=

⋃
i∈I Ci

is the epigraph of the function c := mini∈I ci. Hence, equation (2.35) implies the following
property, known as inf-morphism property :

∀ t ≥ 0, x ∈ X, Mc(t, x) = min
i∈I

Mci(t, x) (2.36)

Remark 7. The inf-morphism property enables us to decompose a complex problem into
more tractable subproblems. For instance, a piecewise affine initial condition can be decom-
posed as the minimum of a finite number of affine initial conditions. Hence, the solution
associated with a piecewise affine initial condition is the minimum of a finite number of
solutions associated with affine initial conditions.

The inf-morphism property is illustrated in Figure 2.8.
Note that in the context of traffic flow engineering, this property was identified but not

proved mathematically by Newell in [80].

2.4.3 Convexity property of the solutions associated with convex
value conditions

We now show an important convexity property of the solution to (2.5) associated with
convex value conditions. Let a convex value condition c(·, ·) be defined defined on a compact
and nonempty domain Dom(c) ⊂ [0, tmax] × X. Since c(·, ·) is convex and defined on a
compact set, it is bounded below. In order to prove the convexity of the solution Mc(·, ·)
associated with c(·, ·), we first need to define a variable change as follows.

Definition 12. [Variable change for the auxiliary control] We define a new variable
v as v = Tu and define the cone D :=

{
[−ν[t, ν]t]× {t} | t ∈ R+

}
.

Note that definition 12 implies that (u, T ) ∈ Dom(ϕ∗)×R+ if and only if (v, T ) ∈ D. We
now define an auxiliary objective function f(·, ·, ·, ·), which is the argument of the Lax-Hopf
formula (2.20) with the variable change v = Tu.

Definition 13. [Auxiliary objective function] We define the function f(·, ·, ·, ·) as:

∀(t, x, v, T ) ∈ R+ ×X ×D,
f(t, x, v, T ) := c(t− T, x+ v) + Tϕ∗

(
v
T

)
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Note that f(·, ·, ·, ·) is bounded below since the value condition c(·, ·) is bounded below
and the function ϕ∗(·) is positive. By definition of f(·, ·, ·, ·), we can rewrite equation (2.20)
as:

Mc(t, x) = inf
(v,T )∈D

f(t, x, v, T ) (2.37)

Equation (2.37) implies:

Epi(Mc) = {(t, x, y) | ∃(v, T ) ∈ D s.t. (t, x, v, T, y) ∈ Epi(f)} (2.38)

The above variable change enables us to prove the following convexity property.

Proposition 3. [Convexity property of solutions associated with convex value
conditions] The solution Mc(·, ·) associated with a convex value condition c(·, ·) is convex.

Proof — Since ϕ∗(·) is convex, its associated perspective function (v, T )→ Tϕ∗( v
T

) is
also convex [18] for T > 0. Since the function (t, x, v, T )→ (t− T, x+ v) is affine and c(·, ·)
is convex, the function (t, x, v, T ) → c(t − T, x + v) is convex [87, 18]. Hence the function
f(·, ·, ·, ·) is convex as the sum of two convex functions.

Since the function f(·, ·, ·, ·) is convex, its epigraph Epi(f) is also convex. Since the
set Epi(c) is nonempty, the epigraph of Mc(·, ·) is nonempty by the inclusion Epi(c) ⊂
CaptF (K, Epi(c)) := Epi(Mc) (see [6] for a proof of this property).

Hence, equation (2.38) implies that the epigraph of Mc is convex, since it is the projection
of a convex set on a subspace [87, 18]. �

In particular, proposition 3 implies that the solutions associated with affine initial, bound-
ary and internal conditions are convex. We now prove that they can also be computed
explicitly for general concave Hamiltonians.
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2.5 Analytic solutions associated with affine initial, bound-

ary and internal conditions

In this section, we compute the solutions associated with affine initial, boundary and
internal conditions analytically. For each type of value condition, we follow the procedure
outlined below.

1. Write the Lax-Hopf formula associated with the corresponding affine value condition.
Because of the structure of the affine value condition, we can compute the set Sc(t, x, u)
defined by (2.31) explicitly, which enables us to express (2.32) as a minimization over
a single variable.

2. Write the minimization problem associated with this instantiation of the Lax-Hopf
formula as a convex optimization problem (convex objective and convex constraints).

3. Analytically find a minimizer of the convex optimization problem, using subderiva-
tives (2.10).

2.5.1 Analytic Lax-Hopf formula associated with an affine initial
condition

Definition 14. [Affine initial condition] We consider the following affine initial condition
M0,i(0, x), where i is an integer:

M0,i(0, x) =

{
aix+ bi if x ∈ [αi, αi+1]
+∞ otherwise

(2.39)

The following formula expresses the Lax-Hopf formula (2.20) for the specific initial con-
dition (2.39).

Proposition 4. [Lax-Hopf formula for an affine initial condition] The Lax-Hopf
formula associated with the initial condition (2.39) can be expressed as:

MM0,i
(t, x) = inf

u∈Dom(ϕ∗)∩
[
αi−x
t

,
αi+1−x

t

] (ai(x+ tu) + bi + tϕ∗(u)) , ∀(t, x) ∈ R∗+ ×X

(2.40)
and

∀x×X, MM0,i
(0, x) = inf

(T,u)∈Dom(ϕ∗)×[0,0]
(ai(x+ 0u) + bi + 0ϕ∗(u)) = aix+ bi (2.41)
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Proof — The Lax-Hopf formula associated with an initial condition reads:

MM0,i
(t, x) = inf

(T,u)∈Dom(ϕ∗)×[0,t] such that (x+Tu)∈[αi,αi+1] and t−T=0

(ai(x+ tu) + bi + Tϕ∗(u))

(2.42)
This formula is valid for all (t, x) ∈ R+×X. Since t−T = 0, we have T = t. Since t > 0,

the condition (x + tu) ∈ [αi, αi+1] is equivalent to u ∈ [αi−x
t
, αi+1−x

t
], which in turn implies

equation (2.40). �
The domain of definition of the solution can be explicitly characterized as follows.

Proposition 5. [Domain of influence of an affine initial condition] The domain of
definition of MM0,i

(·, ·) is given by the following formula:

Dom(MM0,i
) =

{
(t, x) ∈ R∗+ ×Xsuch that αi − ν]t ≤ x ≤ αi+1 + ν[t

}
(2.43)

Proof — The Lax-Hopf formula (2.40) implies:

Dom(MM0,i
) :=

{
(t, x) ∈ R∗+ ×Xsuch that ∃u ∈ Dom(ϕ∗) ∩

[
αi−x
t
, αi+1−x

t

]}
Equation (2.43) is obtained using the above formula and noting that Dom(ϕ∗) = [−ν[, ν]].
�

The solution can be computed analytically by minimizing an auxiliary function, which
we now define.

Definition 15. [Auxiliary objective function] For all (ai, bi, t, x) ∈ R2 × Dom(MM0,i
),

we define an objective function ζai,bi,t,x(·) by the following formula:

∀u ∈ Dom(ϕ∗), ζai,bi,t,x(u) := ai(x+ tu) + bi + tϕ∗(u) (2.44)

Given this definition, equation (2.40) becomes:

∀(t, x) ∈ R∗+ ×X, MM0,i
(t, x) = inf

u∈Dom(ϕ∗)∩
[
αi−x
t

,
αi+1−x

t

]ζai,bi,t,x(u)
(2.45)

The function ζai,bi,t,x(·) is convex as the sum of two convex functions and thus subdiffer-
entiable on Dom(ϕ∗) in the sense of (2.10). The subderivative of ζai,bi,t,x(·) is given by:

∀u ∈ Dom(ϕ∗), ∂−ζai,bi,t,x(u) = {w | ∃v ∈ ∂−ϕ∗(u), w = ait+ vt}
:= t · ({ai}+ ∂−ϕ

∗(u))
(2.46)

with a slight abuse of notation for the summation of the two sets in the second equality.
This last expression can now be used to analytically compute the minimizer.
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Proposition 6. [Explicit minimization of ζai,bi,t,x(·)] We now assume that ai in the
value condition M0,i given by (2.39) satisfies the condition −ai ∈ Dom(ψ) := [0, ω]. Since
ψ(·) is concave, it is also superdifferentiable on its domain of definition and thus ∀ρ ∈
[0, ω], ∂+ψ(ρ) 6= ∅.

Let u0(ai) be an element of −∂+ψ(−ai) 6= ∅. Note that the Legendre-Fenchel inversion
formula (2.9) implies that u0(ai) ∈ Dom(ϕ∗) and −ai ∈ ∂−ϕ∗(u0(ai)). Using this definition
of u0(ai), the function ζai,bi,t,x(·) has the following minimizer over Dom(ϕ∗) ∩ [αi−x

t
, αi+1−x

t
]:

u = u0(ai) if u0(ai) ∈ [αi−x
t
, αi+1−x

t
]

u = αi−x
t

if u0(ai) ≤ αi−x
t

u = αi+1−x
t

if u0(ai) ≥ αi+1−x
t

(2.47)

Proof — The function ζai,bi,t,x(u) is minimal for a given u ∈ Dom(ϕ∗) if and only if 0 ∈
∂−ζai,bi,t,x(u) by [18]. By equation (2.46), this happens if and only if for this u, −ai ∈ ∂−ϕ∗(u).
Using the Legendre-Fenchel inversion formula (2.9), we can rewrite u := u0(ai) ∈ −∂+ψ(−ai)
as −ai ∈ ∂−ϕ

∗(u0(ai)) and thus u0(ai) minimizes ζai,bi,t,x(·) over Dom(ϕ∗). Hence, since
ζai,bi,t,x(·) is convex, ζai,bi,t,x(u) is decreasing for u ≤ u0(ai) and increasing for u ≥ u0(ai),
which implies equation (2.47). �

Proposition 7. [Computation of MM0,i
(·, ·)] Let u0(ai) be defined as in proposition 6.

For all (t, x) ∈ Dom(MM0,i
), the expression MM0,i

(t, x) can be computed using the following
formula:

MM0,i
(t, x) =



(i) tψ(−ai) + aix+ bi
if u0(ai) ∈ [αi−x

t
, αi+1−x

t
]

(ii) aiαi + bi + tϕ∗(αi−x
t

)
if u0(ai) ≤ αi−x

t

(iii) aiαi+1 + bi + tϕ∗(αi+1−x
t

)

if u0(ai) ≥ αi+1−x
t

(2.48)

Proof — The cases (ii) and (iii) of equation (2.48) are trivially obtained by combining
equations (2.40) and (2.47). Since the function −ψ(·) is convex, it is identical [18] to its
Fenchel biconjugate:

∀ρ ∈ [0, ω], ψ(ρ) = inf
u∈Dom(ϕ∗)

(−ρu+ ϕ∗(u))

The function g : u → aiu + ϕ∗(u) is convex and thus subdifferentiable on Dom(ϕ∗).
By definition of u0(ai), 0 ∈ ∂−g(u0(ai)). This last property implies that u0(ai) minimizes
g(·) over Dom(ϕ∗) and thus that ψ(−ai) = aiu0(ai) + ϕ∗(u0(ai)). Hence, the case (i) of
equation (2.48) is obtained by combining equations (2.40), (2.47) and the property ψ(−ai) =
aiu0(ai) + ϕ∗(u0(ai)). �
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Figure 2.9 illustrates the different domains of equation (2.48) for the solution associated
with an affine initial condition defined by equation (2.39).

Figure 2.9: Construction of the solution associated with an affine initial condition.
Left: Illustration of the construction of a u0(ai) from the knowledge of ai. The transform
ϕ∗(u0(ai)) corresponds to the value intercepted on the vertical axis by the tangent line of
slope −u0(ai) to the graph of ψ in −ai. Right: The (t, x) domain of the solution corre-
sponding to the affine initial condition (2.39) can be separated in three different areas. The
domain highlighted in light gray corresponds to the case (i) in equation (2.48). The domain
highlighted in medium gray corresponds to the case (iii) and the remaining domain in dark
gray corresponds to the case (ii). The domain of the initial condition is represented by a
dashed line.

2.5.2 Analytic Lax-Hopf formula associated with an affine up-
stream boundary condition

Definition 16. [Affine upstream boundary condition] We consider the following up-
stream boundary condition γj(t, ξ) of γj(t, x):

γj(t, ξ) =

{
cjt+ dj if t ∈ [γj, γj+1]
+∞ otherwise

(2.49)

In the following derivation, we consider that x > ξ. We also assume that the value
condition (2.49) satisfies the condition cj ∈ Im(ψ) = [0, δ].

Proposition 8. [Lax-Hopf formula for an affine upstream boundary condition]
The Lax-Hopf formula (2.50) associated with the upstream boundary condition (2.49) can
be expressed as:

Mγj (t, x) = inf
T∈

[
− ξ−x

ν[
,+∞

[
∩[t−γj+1,t−γj]

(
cj(t− T ) + dj + Tϕ∗

(
ξ − x
T

))
∀(t, x) ∈ R∗+ ×X\{ξ} (2.50)
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Proof — The Lax-Hopf formula (2.32) associated with the upstream boundary condi-
tion reads:

Mγj(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+ such that x+Tu=ξ and γj≤t−T≤γj+1

(cj(t− T ) + dj + Tϕ∗(u))

(2.51)
We define the variable change T := ξ−x

u
> 0, which represents the capture time using

the control u (see [31]). Since T = ξ−x
u

> 0 and x > ξ, we have u < 0. The constraint

u ∈ Dom(ϕ∗) := [−ν[, ν]] thus implies T ∈ [− ξ−x
ν[
,+∞[. The additional constraint t− ξ−x

u
∈

[γj, γj+1] results from the definition of γj(·, ·) and implies T ∈ [t− γj+1, t− γj], which yields
equation (2.50). �

Proposition 9. [Domain of influence of an affine upstream boundary condition]
The domain of definition of Mγj(·, ·) is given by the following formula:

Dom(Mγj) =
{

(t, x) ∈ R+ ×X such that x ≤ ξ + ν[(t− γj)
}

(2.52)

Proof — The Lax-Hopf formula (2.51) implies:

Dom(Mγj) :=

{
(t, x) ∈ R+ ×X such that ∃T ∈

[
−ξ − x

ν[
,+∞

[
∩
[
t− γj+1, t− γj

]}
Hence, (t, x) ∈ Dom(Mγj) if and only if − ξ−x

ν[
≤ t − γj, which in turn implies equation

(2.52). �

Definition 17. [Auxiliary objective function] For all (t, x) ∈ Dom(Mγj), we define an
objective function ηcj ,dj ,t,x(·) by the following formula:

∀T ∈ R∗+ ηcj ,dj ,t,x(T ) := cj(t− T ) + dj + Tϕ∗
(
ξ − x
T

)
(2.53)

Given this definition, equation (2.50) becomes:

Mγj(t, x) =
inf

T∈
[
− ξ−x

ν[
,+∞

[
∩[t−γj+1,t−γj]

ηcj ,dj ,t,x(T )
(2.54)

Since ϕ∗(·) is convex, its associated perspective function T → Tϕ∗( ξ−x
T

) is also convex [18]
for T > 0. Hence the function ηcj ,dj ,t,x(·) is convex as the sum of two convex functions. The
subderivative of ηcj ,dj ,t,x(·) is given by:

∀T ∈ [− ξ−x
ν[
,+∞[, ∂−ηcj ,dj ,t,x(T ) =

{
w | ∃v ∈ ∂−ϕ∗( ξ−xT ), w = −cj + ϕ∗( ξ−x

T
)− ξ−x

T
v
}

:=
{
−cj + ϕ∗( ξ−x

T
)
}
− ξ−x

T
∂−ϕ

∗( ξ−x
T

)
(2.55)

with a slight abuse of notation for the second line as previously.
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Definition 18. [Density associated with cj] Recalling that Im (ψ) := [0, δ], we define ρc
as:

ρc = inf
ρ∈[0,ω] such that ψ(ρ)=δ

ρ

Since cj ∈ Im(ψ) = [0, δ], there exists ρj ∈ [0, ρc] such that ψ(ρj) = cj. Note that since
ψ(·) is concave and δ > 0, ψ(·) is increasing on [0, ρc] and thus ∂+ψ(ρj) ∩ R+ 6= ∅.

• Let u0(ρj) be an element of −∂+ψ(ρj) ∩ R− 6= ∅.

• Let T0(ρj, x) be defined as

T0(ρj, x) :=

{ ξ−x
u0(ρj)

if u0(ρj) 6= 0

+∞ if u0(ρj) = 0
(2.56)

We have by the Legendre-Fenchel inversion formula that u0(ρj) ∈ Dom(ϕ∗) and ρj ∈
∂−ϕ

∗(u0(ρj)).

Proposition 10. [Explicit minimization of ηcj ,dj ,t,x(·)] Let T0(ρj, x) be given by defini-
tion 18. For all (t, x) ∈ Dom(Mγj), the function ηcj ,dj ,t,x(·) has the following minimizer over

[− ξ−x
ν[
,∞[∩[t− γj+1, t− γj]:

T0(ρj, x) if T0(ρj, x) ∈ [t− γj+1, t− γj]
t− γj if t− γj ≤ T0(ρj, x)
t− γj+1 if T0(ρj, x) ≤ t− γj+1

(2.57)

Proof — The function ηcj ,dj ,t,x(·) is minimal for a given T > 0 if and only if 0 ∈
∂−ηcj ,dj ,t,x(T ) by [18]. Since u0(ρj) ∈ −∂+ψ(ρj)∩R−, we have by the Legendre-Fenchel inver-
sion formula that ρj ∈ ∂−ϕ∗(u0(ρj)). This last formula implies 0 ∈ ∂− (ϕ∗(·)− ·ρj) (u0(ρj))
and thus that:

ψ(ρj) = inf
u∈Dom(ϕ∗)

[ϕ∗(u)− ρju] = ϕ∗(u0(ρj))− ρju0(ρj)

The property cj = ψ(ρj) implies that −cj + ϕ∗ (u0(ρj)) = ρju0(ρj) by the previous formula.
Equation (2.55) thus implies:

∂−ηcj ,dj ,t,x(
ξ−x
u0(ρj)

) = {w | ∃v ∈ ∂−ϕ∗ (u0(ρj)) , w = ρju0(ρj)− u0(ρj)v}
:= {ρju0(ρj)} − u0(ρj)∂−ϕ∗ (u0(ρj))

(2.58)

Since ρj ∈ ∂−ϕ
∗ (u0(ρj)), this last property implies that 0 ∈ ∂−ηcj ,dj ,t,x(

ξ−x
u0(ρj)

). Hence,

T0(ρj, x) := ξ−x
u0(ρj)

minimizes the convex function ηcj ,dj ,t,x(·) over R∗+.
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Since ηcj ,dj ,t,x(·) is convex, it is decreasing for T ≤ T0(ρj, x) and increasing for T ≥
T0(ρj, x). The values of the capture time T which minimize ηcj ,dj ,t,x(T ) over [− ξ−x

ν[
,∞[∩[t−

γj+1, t − γj] are thus given by equation (2.57). Note that the property u0(ρj) ∈ [−ν[, 0]

implies − ξ−x
ν[
≤ T0(ρj, x). Note also that since (t, x) ∈ Dom(Mγj), we have − ξ−x

ν[
≤ t − γj.

�

Proposition 11. [Computation of Mγj(·, ·)] For all (t, x) ∈ Dom(Mγj), the solution
Mγj(t, x) can be computed using the following formula:

Mγj(t, x) =


(i) tψ(ρj) + ρj(ξ − x) + dj if T0(ρj, x) ∈ [t− γj+1, t− γj]
(ii) ψ(ρj)γj + dj + (t− γj)ϕ∗( ξ−xt−γj

) if t− γj ≤ T0(ρj, x)

(iii) ψ(ρj)γj+1 + dj + (t− γj+1)ϕ
∗( ξ−x
t−γj+1

) if T0(ρj, x) ≤ t− γj+1

(2.59)

Proof — The cases (ii) and (iii) in equation (2.59) are trivially obtained by combining
equations (2.54) and (2.57). The case (i) in equation (2.59) is obtained by combining (2.53),

(2.57) and observing that ϕ∗
(

ξ−x
T0(ρj ,x)

)
= ψ(ρj) + ξ−x

T0(ρj ,x)
ρj. �

Remark 8. Equation (2.59) can also be obtained from equation (2.83), observing that the
affine upstream boundary condition (2.49) can be viewed as an affine internal condition of
the form (2.73), where: 

δl = γj
δl+1 = γj+1

xl = ξ
vl = 0
gl = cj
hl = cjγj + dj

(2.60)

Figure 2.10 illustrates the different domains of equation (2.59) for the solution associated
with an affine upstream condition defined by equation (2.49).
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Figure 2.10: Construction of the solution associated with an affine upstream
boundary condition.
Left: Illustration of the construction of a u0(ρj) from a known cj. The transform ϕ∗(u0(ρj))
corresponds to the value intercepted on the vertical axis by the tangent line of slope −u0(ρj)
to the graph of ψ in ρj. Right: The (t, x) domain of the solution corresponding to the
affine upstream boundary condition (2.49) can be separated in three different areas. The
domain highlighted in light gray corresponds to the case (i) in equation (2.59). The domain
highlighted in dark gray corresponds to the case (ii) and the remaining domain in medium
gray corresponds to the case (iii). The domain of the upstream boundary condition is
represented by a dashed line.

2.5.3 Analytic Lax-Hopf formula associated with an affine down-
stream boundary condition

Definition 19. [Affine downstream boundary condition] We consider the following
downstream boundary condition βk(t, χ) of β(t, x):

βk(t, x) =

{
ekt+ fk if t ∈ [βk, βk+1]
+∞ otherwise

(2.61)

In the following computation, we consider that x < χ. We also assume that the value
condition (2.61) satisfies the condition ek ∈ Im(ψ) = [0, δ].

Proposition 12. [Lax-Hopf formula for an affine downstream boundary condition]
The Lax-Hopf formula (2.62) associated with the downstream boundary condition (2.61) can
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be expressed as:

Mβk(t, x) = inf
T∈[χ−x

ν]
,+∞[∩[t−βk+1,t−βk]

(
ek(t− T ) + fk + Tϕ∗

(
χ− x
T

))
∀(t, x) ∈ R∗+ ×X

(2.62)

Proof — The Lax-Hopf formula (2.32) associated with the affine downstream boundary
condition can be written as:

Mβk(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+ such that x+Tu=χ and βk≤t−T≤βk+1

(ek(t− T ) + fk + Tϕ∗(u))

(2.63)
We define the variable change T := χ−x

u
, which represents the capture time using the

control u. Since T = χ−x
u

> 0 and x < χ, we have u > 0. The constraint u ∈ Dom(ϕ∗) :=

[−ν[, ν]] implies T ∈ [χ−x
ν]
,+∞[. The additional constraint t − χ−x

u
∈ [βk, βk+1] can be

expressed as T ∈ [t− βk+1, t− βk], which yields equation (2.62). �

Proposition 13. [Domain of influence of a downstream boundary condition] The
domain of definition of Mβk(·, ·) is given by the following formula:

Dom(Mβk) = {(t, x) ∈ R+ ×X such that x ≥ χ− ν](t− βk)} (2.64)

Proof — The Lax-Hopf formula (2.63) implies:

Dom(Mβk) :=

{
(t, x) ∈ R+ ×X such that ∃T ∈

[
χ− x
ν]

,+∞
[
∩
[
t− βk+1, t− βk

]}
Hence, (t, x) ∈ Dom(Mβk) if and only if χ−x

ν]
≤ t − βk, which in turn implies equation

(2.64). �

Definition 20. [Auxiliary objective function] For all (t, x) ∈ Dom(Mβk), we define an
objective function θek,fk,t,x(·) by:

∀T ∈ R∗+ θek,fk,t,x(T ) := ek(t− T ) + fk + Tϕ∗
(
χ− x
T

)
(2.65)

Given this definition, equation (2.62) becomes:

Mβk(t, x) = inf
T∈[χ−x

ν]
,+∞[∩[t−βk+1,t−βk]

θek,fk,t,x(T ) (2.66)

Since ϕ∗(·) is convex, its associated perspective function T → Tϕ∗(χ−x
T

) is also convex [18]
for T > 0. Hence the function θek,fk,t,x(·) is convex as the sum of two convex functions. The
subderivative of θek,fk,t,x(·) is given by:
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∀T ∈ [χ−x
ν]
,+∞[, ∂−θek,fk,t,x(T ) =

{
w | ∃v ∈ ∂−ϕ∗(χ−xT ), w = −ek + ϕ∗(χ−x

T
)− χ−x

T
v
}

:=
{
−ek + ϕ∗(χ−x

T
)
}
− χ−x

T
∂−ϕ

∗(χ−x
T

)
(2.67)

with a slight abuse of notation for the second line as in the previous two sections.

Definition 21. [Density associated with ek] Recalling that Im(ψ) = [0, δ], we define ρc
as:

ρc = sup
ρ∈[0,ω] such that ψ(ρ)=δ

ρ

Since ek ∈ Im(ψ) = [0, δ], there exists ρk ∈ [ρc, ω] such that ψ(ρk) = ek. Note that since ψ(·)
is concave and δ > 0, ψ(·) is decreasing on [ρc, ω] and thus ∂+ψ(ρk) ∩ R− 6= ∅.

• Let u0(ρk) be an element of −∂+ψ(ρk) ∩ R+

• Let T0(ρk, x) be defined as

T0(ρk, x) :=

{ ξ−x
u0(ρk)

if u0(ρk) 6= 0

+∞ if u0(ρk) = 0
(2.68)

We have by the Legendre-Fenchel inversion formula that ρk ∈ ∂−ϕ∗(u0(ρk)), which implies
that u0(ρk) ∈ Dom(ϕ∗).

Remark 9. Note that the definition of ρc differs from the previous section for functions ψ(·)
which are not strictly concave. This is sometimes referred as “lower critical density” (section
2.5.2) and “upper critical density” (section 2.5.3), but we have kept the same notation since
the two corresponding densities are only intermediate variables in our derivations.

Proposition 14. [Explicit minimization of θek,fk,t,x(·)] For all (t, x) ∈ Dom(Mβk), the
function θek,fk,t,x(·) has the following minimizer over [χ−x

ν]
,+∞[∩[t− βk+1, t− βk]:

T0(ρk, x) if T0(ρk, x) ∈ [t− βk+1, t− βk]
t− βk if t− βk ≤ T0(ρk, x)

t− βk+1 if T0(ρk, x) ≤ t− βk+1

(2.69)

Proof — The function θek,fk,t,x(·) is minimal for a given T > 0 if and only if 0 ∈
∂−θek,fk,t,x(T ) by [18]. Since u0(ρk) ∈ −∂+ψ(ρk), we have by the Legendre-Fenchel inversion
formula that ρk ∈ ∂−ϕ

∗(u0(ρk)). In the exact same way as the previous section, this last
formula implies that 0 ∈ ∂− (ϕ∗(·)− ·ρk) (u0(ρk)) and thus that:

ψ(ρk) = inf
u∈Dom(ϕ∗)

[ϕ∗(u)− ρku] = ϕ∗(u0(ρk))− ρku0(ρk)
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The property ek = ψ(ρk) implies that −ek + ϕ∗(u0(ρk)) = ρku0(ρk). Equation (2.67) thus
implies:

∂−θek,fk,t,x(
χ−x
u0(ρk)

) = {w | ∃v ∈ ∂−ϕ∗ (u0(ρk)) , w = ρku0(ρk)− u0(ρk)v}
:= {ρku0(ρk)} − u0(ρk)∂−ϕ∗ (u0(ρk))

(2.70)

with the same abuse of notation for the second line.
Since ρk ∈ ∂−ϕ∗ (u0(ρk)), this last property implies that 0 ∈ ∂−θek,fk,t,x(

χ−x
u0(ρk)

). Hence,

T0(ρk, x) := χ−x
u0(ρk)

minimizes the convex function θek,fk,t,x(·) over R∗+.

Since θek,fk,t,x(·) is convex, it is decreasing for T < T0(ρk, x) and increasing for T >
T0(ρk, x). The values of the capture time T which minimize θek,fk,t,x(T ) over [χ−x

ν]
,+∞[∩[t−

βk+1, t−βk] are thus given by equation (2.69). Note that the property u0(ρk) ∈ [0, ν]] implies
χ−x
ν]
≤ T0(ρk, x). Note also that since (t, x) ∈ Dom(Mβk), we have χ−x

ν]
≤ t− βk. �

Proposition 15. [Computation of Mβk(·, ·)] For all (t, x) ∈ Dom(Mβk), the expression
Mβk(t, x) can be computed using the following formula:

Mβk(t, x) =


(i) tψ(ρk) + ρk(χ− x) + fk if T0(ρk, x) ∈ [t− βk+1, t− βk]
(ii) ψ(ρk)βk + fk + (t− βk)ϕ∗( χ−xt−βk

) if t− βk ≤ T0(ρk, x)

(iii) ψ(ρk)βk+1 + fk + (t− βk+1)ϕ
∗( χ−x
t−βk+1

) if T0(ρk, x) ≤ t− βk+1

(2.71)

Proof — The cases (ii) and (iii) in equation (2.71) are trivially obtained by combining
equations (2.66) and (2.69). The case (i) in equation (2.71) is obtained by combining (2.66),

(2.69) and observing that ϕ∗
(

χ−x
T0(ρk,x)

)
= ψ(ρk) + χ−x

T0(ρk,x)
ρk. �

Remark 10. Equation (2.71) can be obtained from equation (2.84), observing that the affine
downstream boundary condition (2.61) can be viewed as an affine internal condition of the
form (2.73), where: 

δl = βk
δl+1 = βk+1

xl = χ
vl = 0
gl = ek
hl = ekβk + fk

(2.72)

Figure 2.11 illustrates the different domains of equation (2.71) for the solution associated
with an affine downstream boundary condition defined by equation (2.61).
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Figure 2.11: Construction of the solution associated with an affine downstream
boundary condition.
Left: Illustration of the construction of a u0(ρk) from a known ek. The transform ϕ∗(u0(ρk))
corresponds to the value intercepted on the vertical axis by the tangent line of slope −u0(ρk)
to the graph of ψ in ρk. Right: The (t, x) domain of the solution corresponding to the
affine downstream boundary condition (2.61) can be separated in three different areas. The
domain highlighted in light gray corresponds to the case (i) in equation (2.71). The domain
highlighted in dark gray corresponds to the case (ii) and the remaining domain in medium
gray corresponds to the case (iii). The domain of the downstream boundary condition is
represented by a dashed line.

2.5.4 Analytic Lax-Hopf formula associated with an affine internal
condition

The previous section explained how to compute the solution to affine initial and boundary
conditions. We now treat the problem of internal conditions using a similar approach. As
will appear in this section, the algebra involved in doing this mathematical construction is
more involved than the previous case.

Definition 22. [Affine internal condition] We consider the following affine internal con-
dition µl(·, ·), where l is an integer:

µl(t, x) =


gl(t− δl) + hl if x = xl + vl(t− δl)

and t ∈ [δl, δl+1]
+∞ otherwise

(2.73)

For the computation of the corresponding solution Mµl(t, x), we assume that (t, x) satisfy
x 6= xl + vl(t − δl). In addition, we assume that the constants gl and vl satisfy 0 ≤ gl ≤
ϕ∗(−vl).
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Proposition 16. [Lax-Hopf formula for affine internal condition] The Lax-Hopf for-
mula (2.74) associated with the internal boundary condition (2.73) can be expressed as:

Mµl(t, x) = inf
T∈R+∩[t−δl+1,t−δl]

(
gl(t− T − δl) + hl + Tϕ∗

(
xl + vl(t− δl − T )− x

T

))
(2.74)

Proof — The Lax-Hopf formula (2.32) associated with an affine internal condition
reads:

Mµl(t, x) =

inf
(u,T )∈Dom(ϕ∗)×R+ such that x+Tu=xl+vl(t−T−δl) and δl≤t−T≤δl+1

(
gl(t− T − δl) + hl + Tϕ∗(u)

)
(2.75)

Since x+Tu = xl+vl(t−T −δl), we have u = xl+vl(t−T−δl)−x
T

. In addition, the constraint

δl ≤ t− T ≤ δl+1 can be written as T ∈ [t− δl+1, t− δl], which yields (2.74). �
The solution to the affine internal condition has a domain of definition, which can be

computed analytically as follows.

Proposition 17. [Domain of influence of an affine internal condition] The domain
of definition of Mµl(·, ·) is given by the following formula:

Dom(Mµl) = {(t, x) ∈ R+ ×X such that t ≥ δl and xl − ν](t− δl) ≤ x ≤ xl + ν[(t− δl)}
(2.76)

Proof — The Lax-Hopf formula (2.74) implies:

Dom(Mµl) :=
{

(t, x) ∈ R+ ×X s.t. ∃T ∈ R∗+ ∩ [t− δl+1, t− δl]
and xl+vl(t−δl−T )−x

T
∈ Dom(ϕ∗)

}
Since T > 0, the condition xl+vl(t−δl−T )−x

T
∈ Dom(ϕ∗) = [−ν[, ν]] is equivalent to T ≥

xl+vl(t−δl)−x
ν]+vl

and T ≥ xl+vl(t−δl)−x
−ν[+vl

. Hence, (t, x) ∈ Dom(ϕ∗) if and only if the set R∗+ ∩ [t −
δl+1, t− δl] ∩ [xl+vl(t−δl)−x

ν]+vl
,+∞[∩[xl+vl(t−δl)−x−ν[+vl

,+∞[ is not empty, which implies

max

(
0,
xl + vl(t− δl)− x

−ν[ + vl
,
xl + vl(t− δl)− x

ν] + vl

)
≤ t− δl

This last inequality implies equation (2.76). �
The method followed next also makes use of an auxiliary objective function, which is

later used to explicitly find the minimizer.
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Definition 23. [Auxiliary objective function] For all (t, x) ∈ Dom(Mµl), we define the
function κδl,gl,hl,xl,vl,t,x(·) as:

∀T ∈ R∗+, κδl,gl,hl,xl,vl,t,x(T ) :=
(
gl(t− T − δl) + hl + Tϕ∗

(
xl+vl(t−δl−T )−x

T

))
(2.77)

Given this definition, equation (2.74) becomes:

Mµl(t, x) = inf
T∈
[
max

(
0,
xl+vl(t−δl)−x
−ν[+vl

,
xl+vl(t−δl)−x

ν]+vl
,t−δl+1

)
,t−δl

]κδl,gl,hl,xl,vl,t,x(T )
(2.78)

Since ϕ∗(·) is convex, the function h : u → ϕ∗(u − vl) is convex and its associated

perspective function T → Th(xl+vl(t−δl)−x
T

) is also convex for T > 0 by [18]. Hence the
function κδl,gl,hl,xl,vl,t,x(·) is convex as the sum of two convex functions. The subderivative of
κδl,gl,hl,xl,vl,t,x(·) is given by:

∀T ∈
[
max

(
0, xl+vl(t−δl)−x−ν[+vl

, xl+vl(t−δl)−x
ν]+vl

, t− δl+1

)
, t− δl

]
, ∂−κδl,gl,hl,xl,vl,t,x(T ) ={

w | ∃v ∈ ∂−ϕ∗(xl+vl(t−δl)−xT
− vl), w = −gl + ϕ∗(xl+vl(t−δl)−x

T
− vl)− xl+vl(t−δl)−x

T
v
}
(2.79)

which can be written using a slight abuse of notation as:

∂−κδl,gl,hl,xl,vl,t,x(T ) := −gl+ϕ∗(
xl + vl(t− δl)− x

T
−vl)−

xl + vl(t− δl)− x
T

∂−ϕ
∗(
xl + vl(t− δl)− x

T
−vl)

(2.80)

Because of the higher complexity of this case, we need to define intermediate quantities
used in the explicit minimization.

Definition 24. [Densities associated with vl and gl]

• We define the function fvl(·) as fvl : ρ→ ψ(ρ)−ρvl. The function fvl is concave as the
sum of concave functions and attains its maximum value ϕ∗(−vl) (by definition of the
function ϕ∗(·)) for a given ρ := ρl.

• Note that since vl ∈ [0, ν[[, the function fvl satisfies fvl(0) = 0 and fvl(ω) ≤ 0. By
assumption, we also have gl ≤ ϕ∗(−vl) and since fvl(·) is concave and continuous, there
exist two solutions ρ1(vl, gl) ∈ [0, ρl] and ρ2(vl, gl) ∈ [ρl, ω] such that fvl(ρp(vl, gl)) = gl
for p ∈ {1, 2} (see Figure 2.12).
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• For p ∈ {1, 2}, we also define up(vl, gl) as elements of −∂+ψ(ρp(vl, gl)). Note that since
fvl is concave, it is increasing on [0, ρl] and decreasing on [ρl, ω], which implies that
u1(vl, gl) ≤ −vl and u2(vl, gl) ≥ −vl. Note also that the Legendre-Fenchel inversion
formula implies that up(vl, gl) ∈ Dom(ϕ∗) for p ∈ {1, 2}.

Definition 25. [Capture times associated with up(vl, gl), for p ∈ {1, 2}]

• We define Tp(t, x, vl, gl) for p ∈ {1, 2} as:

Tp(t, x, vl, gl) :=

{
xl+vl(t−δl)−x
up(vl,gl)+vl

if up(vl, gl) 6= −vl
+∞ if up(vl, gl) = −vl

(2.81)

• The definition of Tp(·, ·, ·, ·) implies that T1(t, x, vl, gl) ≥ 0 if and only if xl+vl(t−δl)−
x ≤ 0 and that T2(t, x, vl, gl) ≥ 0 if and only if xl + vl(t− δl)− x ≥ 0.

• Note also that since up(vl, gl) ∈ [−ν[, ν]], we have T1(t, x, vl, gl) ≥ xl+vl(t−δl)−x
−ν[+vl

when

xl + vl(t− δl)− x ≤ 0 and T2(t, x, vl, gl) ≥ xl+vl(t−δl)−x
ν]+vl

when xl + vl(t− δl)− x ≥ 0.

The previous definitions can now be used to compute the explicit minimizer.

Proposition 18. [Explicit minimization of κδl,gl,hl,xl,vl,t,x(·)] For all (t, x) ∈ Dom(Mµl),
the function κδl,gl,hl,xl,vl,t,x(·) has the following minimizer over[

max
(

0, xl+vl(t−δl)−x−ν[+vl
, xl+vl(t−δl)−x

ν]+vl
, t− δl+1

)
, t− δl

]
:

(i) T1(t, x, vl, gl) if xl + vl(t− δl)− x ≤ 0

and T1(t, x, vl, gl) ∈
[
t− δl+1, t− δl

]
(ii) t− δl if xl + vl(t− δl)− x ≤ 0

and T1(t, x, vl, gl) ≥ t− δl
(iii) t− δl+1 if xl + vl(t− δl)− x ≤ 0

and T1(t, x, vl, gl) ≤ t− δl+1

(iv) T2(t, x, vl, gl) if xl + vl(t− δl)− x ≥ 0

and T2(t, x, vl, gl) ∈
[
t− δl+1, t− δl

]
(v) t− δl if xl + vl(t− δl)− x ≥ 0

and T2(t, x, vl, gl) ≥ t− δl
(vi) t− δl+1 if xl + vl(t− δl)− x ≥ 0

and T2(t, x, vl, gl) ≤ t− δl+1

(2.82)

Proof — The function κδl,gl,hl,xl,vl,t,x(T ) is minimal for a given T > 0 if and only if
0 ∈ ∂−κδl,gl,hl,xl,vl,t,x(T ). Since up(vl, gl) ∈ −∂+ψ(ρp(vl, gl)) for p ∈ {1, 2}, we have by the
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Legendre-Fenchel inversion formula that ρp(vl, gl) ∈ ∂−ϕ∗(up(vl, gl)). This last formula imply
that 0 ∈ ∂− (ϕ∗(·)− ·ρp(vl, gl)) (up(vl, gl)) and thus that:

ψ(ρp(vl, gl)) = inf
u∈Dom(ϕ∗)

[ϕ∗(u)− ρp(vl, gl)u]

= ϕ∗(up(vl, gl))− ρp(vl, gl)up(vl, gl)

Since we consider only positive capture times T , we have to consider two situations:

• If xl + vl(t − δl) − x ≤ 0, we have that T2(t, x, vl, gl) ≤ 0 and T1(t, x, vl, gl) ≥ 0. The
relations ψ(ρ1(vl, gl))− ρ1(vl, gl)vl = gl, ρ1(vl, gl) ∈ ∂−ϕ∗(u1(vl, gl)) and ψ(ρ1(vl, gl)) =
ϕ∗(u1(vl, gl))− ρ1(vl, gl)u1(vl, gl) imply that
−gl + ϕ∗(u1(vl, gl)) − (u1(vl, gl) + vl)ρ1(vl, gl) = 0. Hence, using our definition of

T1(t, x, vl, gl) := xl+vl(t−δl)−x
u1(vl,gl)+vl

, we have that:

0 = −gl + ϕ∗
(
xl+vl(t−δl)−x
T1(t,x,vl,gl)

− vl
)
− xl+vl(t−δl)−x

T1(t,x,vl,gl)
ρ1(vl, gl)

Using equation (2.79), we have 0 ∈ ∂−κδl,gl,hl,xl,vl,t,x(T1(t, x, vl, gl)) and thus T1(t, x, vl, gl)
minimizes κδl,gl,hl,xl,vl,t,x(T ) for positive times T .

The cases (i), (ii) and (iii) in equation (2.82) are obtained using the convexity of
κδl,gl,hl,xl,vl,t,x(·). Note that in our situation, definition 25 implies that T1(t, x, vl, gl) ≥
xl+vl(t−δl)−x
−ν[+vl

.

Since xl + vl(t− δl)− x ≤ 0, we also have that xl+vl(t−δl)−x
ν]+vl

≤ 0. Hence, we have that:

T1(t, x, vl, gl) ≥ max
(

0, xl+vl(t−δl)−x−ν[+vl
, xl+vl(t−δl)−x

ν]+vl

)
Hence, the condition T1(t, x, vl, gl) ≥ max

(
0, xl+vl(t−δl)−x−ν[+vl

, xl+vl(t−δl)−x
ν]+vl

, t− δl+1

)
is sat-

isfied if and only if T1(t, x, vl, gl) ≥ t− δl+1. Note also that if the previous condition is

not satisfied, then max
(

0, xl+vl(t−δl)−x−ν[+vl
, xl+vl(t−δl)−x

ν]+vl
, t− δl+1

)
= t− δl+1.

• If xl + vl(t − δl) − x ≥ 0, we have that T1(t, x, vl, gl) ≤ 0 and T2(t, x, vl, gl) ≥ 0. The
relations ψ(ρ1(vl, gl))− ρ1(vl, gl)vl = gl, ρ2(vl, gl) ∈ ∂−ϕ∗(u2(vl, gl)) and ψ(ρ2(vl, gl)) =
ϕ∗(u2(vl, gl))−ρ2(vl, gl)u2(vl, gl) imply that−gl+ϕ∗(u1(vl, gl))−(u1(vl, gl)+vl)ρ1(vl, gl) =

0. Hence, using our definition of T2(t, x, vl, gl) := xl+vl(t−δl)−x
u2(vl,gl)+vl

, we have that:

0 = −gl + ϕ∗
(
xl+vl(t−δl)−x
T2(t,x,vl,gl)

− vl
)
− xl+vl(t−δl)−x

T2(t,x,vl,gl)
ρ2(vl, gl)

Using equation (2.79), we have 0 ∈ ∂−κδl,gl,hl,xl,vl,t,x(T2(t, x, vl, gl)) and thus T2(t, x, vl, gl)
minimizes κδl,gl,hl,xl,vl,t,x(T ) for positive times T .
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The cases (iv), (v) and (vi) in equation (2.82) are obtained using the convexity of
κδl,gl,hl,xl,vl,t,x(·). Note that in our situation, definition 25 implies that T2(t, x, vl, gl) ≥
xl+vl(t−δl)−x

ν]+vl
.

Since xl + vl(t− δl)− x ≥ 0, we also have that xl+vl(t−δl)−x
−ν[+vl

≤ 0. Hence, we have that:

T2(t, x, vl, gl) ≥ max
(

0, xl+vl(t−δl)−x−ν[+vl
, xl+vl(t−δl)−x

ν]+vl

)
Hence, the condition T2(t, x, vl, gl) ≥ max

(
0, xl+vl(t−δl)−x−ν[+vl

, xl+vl(t−δl)−x
ν]+vl

, t− δl+1

)
is sat-

isfied if and only if T2(t, x, vl, gl) ≥ t− δl+1. Note also that if the previous condition is

not satisfied, then max
(

0, xl+vl(t−δl)−x−ν[+vl
, xl+vl(t−δl)−x

ν]+vl
, t− δl+1

)
= t− δl+1.

Once the minimizer is computed, it can be used to find the explicit expression of the
value function.

Proposition 19. [Computation of Mµl(·, ·)] For all (t, x) ∈ Dom(Mµl), the expression
Mµl(t, x) can be computed using the following formulae:

Mµl(t, x) =



(i) ψ(ρ1(vl, gl))(t− δl) + (xl − x)ρ1(vl, gl) + hl
if xl + vl(t− δl) ≤ x
and T1(t, x, vl, gl) ∈

[
t− δl+1, t− δl

]
(ii) ψ(ρ2(vl, gl))(t− δl) + (xl − x)ρ2(vl, gl) + hl

if xl + vl(t− δl) ≥ x
and T2(t, x, vl, gl) ∈

[
t− δl+1, t− δl

]
(2.83)

and

Mµl(t, x) =



(iii) hl + (t− δl)ϕ∗
(
xl−x
t−δl

)
if xl + vl(t− δl) ≤ x and T1(t, x, vl, gl) ≥ t− δl
or if xl + vl(t− δl) ≥ x and T2(t, x, vl, gl) ≥ t− δl

(iv) gl(δl+1 − δl) + hl + (t− δl+1)ϕ∗
(
xl+vl(δl+1−δl)−x

t−δl+1

)
if xl + vl(t− δl) ≤ x and T1(t, x, vl, gl) ≤ t− δl+1

or if xl + vl(t− δl) ≥ x and T2(t, x, vl, gl) ≤ t− δl+1

(2.84)

Proof — The cases (iii) and (iv) in equation (2.84) are trivially obtained by combining
equations (2.78) and (2.82).

The cases (i) and (ii) in equation (2.83) are also obtained by combining equations

(2.78) and (2.82). By combining the formula ϕ∗(xl+vl(t−δl−Tp(t,x,vl,gl))−x
Tp(t,x,vl,gl)

) = ψ(ρp(vl, gl)) +
xl+vl(t−δl−Tp(t,x,vl,gl))−x

Tp(t,x,vl,gl)
ρp(vl, gl) and the definition of ρp(vl, gl), we have:

−gl + ϕ∗
(
xl + vl(t− δl − Tp(t, x, vl, gl))− x

Tp(t, x, vl, gl)

)
= ρp(vl, gl)

xl + vl(t− δl)− x
Tp(t, x, vl, gl)
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Using again the definition of ρp(vl, gl), we have gl − ρp(vl, gl)vl = ψ(ρp(vl, gl)), which after
some algebra leads to the cases (i) and (ii) in equation (2.83). �

Figure 2.12 illustrates the domains of equation (2.83) and (2.84), for the solution to an
affine internal condition defined by equation (2.73).

Figure 2.12: Construction of the solution associated with an affine internal condi-
tion.
Left: Illustration of the construction of a u1(vl, gl) and u2(vl, gl) from known vl and gl.
Right: The (t, x) domain of the solution corresponding to the affine internal condition (2.73)
can be separated in four different areas. The domains highlighted in dark gray correspond
to the case (iii) in equation (2.84). The domains highlighted in light gray correspond to the
cases (i) and (ii) in equation (2.83). The remaining domain in medium gray corresponds to
the case (iv) in (2.84). The domain of the internal condition is represented by a dashed line.

2.6 Extension to piecewise affine initial, boundary and

internal conditions

2.6.1 Semi-analytic solutions

Using the inf-morphism property (2.36), we can express the solution associated with
piecewise affine initial, boundary and internal conditions as a semi-analytic formula. A
semi-analytic formula is defined here as an operation (in the present case a minimization)
on a finite set of closed-form expression functions.

In order to establish the Lax-Hopf algorithm, we first need to establish the following
result.
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Proposition 20. [Decomposition of piecewise affine functions] Let c(·, ·) be a piece-
wise affine value condition defined on a finite number of segments of R2. There exists a finite
number of affine functions ci(·, ·), i ∈ I of R2 such that:

c(·, ·) = min
i∈I

ci(·, ·) (2.85)

Proof — Since c(·, ·) is a piecewise affine function defined on segments of R2, there
exist xmin,i, xmax,i, tmin,i, tmax,i, sx,i, st,i, sp,i such that

c(t, x) =


sp,i + sx,ix+ st,it if ∃i ∈ I and α ∈ [0, 1] such that x = xmin,i + α(xmax,i − xmin,i)

and t = tmin,i + α(tmax,i − tmin,i)
+∞ otherwise

(2.86)
Let us define the affine functions ci(·, ·) for i ∈ I as follows:

ci(t, x) =


sp,i + sx,ix+ st,it if ∃α ∈ [0, 1] such that x = xmin,i + α(xmax,i − xmin,i)

and t = tmin,i + α(tmax,i − tmin,i)
+∞ otherwise

(2.87)
This definition trivially implies (2.85), which completes the proof. �
Proposition 20 implies that a set of piecewise affine initial, boundary and internal condi-

tions can be decomposed as the minimum of a finite number of affine initial, boundary and
internal conditions. In addition, the solutions associated with affine initial, boundary and in-
ternal conditions have a closed form expression by equations (2.48), (2.59), (2.71), (2.83) and
(2.84). Hence, using the inf-morphism property (2.36), we can compute the solution associ-
ated with a set of piecewise affine initial, boundary and internal conditions semi-analytically.
The corresponding Lax-Hopf algorithm is presented in the following section.

2.6.2 Lax Hopf algorithm

We now present a specific instantiation of the Lax-Hopf algorithm for a rectangular grid
and for the mixed initial-boundary-internal conditions problem. Note that any grid can
be used, since each point of the solution is computed using the coefficients of the initial,
boundary and internal conditions only. The space and time steps are denoted by ∆x and
∆t respectively. The grid is defined by the set G := {1, . . . , nt} × {1, . . . , nx}, where nt and
nx are positive integers.
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Lax-Hopf algorithm for the Moskowitz function

Initialization
M(M,N)←− +∞ ∀(M,N) ∈ G [Output matrix containing the Moskowitz function]

Main loop
For M := 0 to nt do [time iteration]

For N := 0 to nx do [space iteration]
Definition of xN := N∆x+ ξ and tM := M∆t [space and time grid definition]
For i ∈ I do [iteration on the set of initial conditions]

Compute MM0i
(tM , xN) [using equation (2.48)]

If MM0,i
(tM , xN) ≤M(M,N) then M(M,N) = MM0,i

(tM , xN)
For j ∈ J do [iteration on the set of upstream boundary conditions]

Compute Mγj(tM , xN) [using equation (2.59)]
If Mγj(tM , xN) ≤M(M,N) then M(M,N) = Mγj(tM , xN)

For k ∈ K do [iteration on the set of downstream boundary conditions]
Compute Mβk(tM , xN) [using equation (2.71)]
If Mβk(tM , xN) ≤M(M,N) then M(M,N) = Mβk(tM , xN)

For l ∈ L do [iteration on the set of internal conditions]
Compute Mµl(tM , xN) [using equations (2.83) and (2.84)]
If Mµl(tM , xN) ≤M(M,N) then M(M,N) = Mµl(tM , xN)

Return M(M,N)

The quantity M(M,N) represents the exact value of the Moskowitz function at (tM , xN),
up to machine accuracy.

2.7 Extension to scalar conservation laws

In this section, we extend the Lax-Hopf algorithm for solving scalar conservation laws,
related to scalar HJ PDEs by a variable change. Indeed, as mentioned in section 2.1, the
derivatives of a function modeled by a HJ PDE satisfy a scalar conservation law themselves.

2.7.1 Spatial derivatives of the solutions to affine initial, boundary
and internal conditions

The solutions MM0i
(·, ·), γj(·, ·), βk(·, ·) and Mµl(·, ·) are convex since they are associated

with convex target functions defined on a compact subset of R+×X. Hence, these functions
are differentiable almost everywhere on their domains of definition. The spatial derivatives
of the above functions can be computed (whenever ϕ∗(·) is differentiable and using ϕ∗

′
(·) as

the notation for the derivative of ϕ∗(·)) explicitly as:
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∂MM0i
(t, x)

∂x
=


ai if u0(ai) ∈]αi−x

t
, αi+1−x

t
[

−ϕ∗′(αi−x
t

) if u0(ai) <
αi−x
t

−ϕ∗′(αi+1−x
t

) if u0(ai) >
αi+1−x

t

(2.88)

In the previous formula, u0(ai) is an element of −∂+ψ(−ai).

∂Mγj(t, x)

∂x
=


−ρj if T0(ρj, x) ∈ [t− βj+1, t− βj]
−ϕ∗′( ξ−x

t−βj
) if t− βj < T0(ρj, x)

−ϕ∗′( ξ−x
t−βj+1

) if T0(ρj, x) < t− βj+1

(2.89)

In the previous formula, ρj and T0 are computed by definition 18.

∂Mβk(t, x)

∂x
=


−ρk if T0(ρk, x) ∈]t− γk+1, t− γk[
−ϕ∗′( χ−x

t−γk
) if t− γk < T0(ρk, x)

−ϕ∗′( χ−x
t−γk+1

) if T0(ρk, x) < t− γk+1

(2.90)

In the previous formula, ρk and T0 are computed by definition 21.

∂Mµl(t, x)

∂x
=



−ρ1(vl, gl) if xl + vl(t− δl) < x

and T1(t, x, vl, gl) ∈
]
t− δl+1, t− δl

[
−ρ2(vl, gl) if xl + vl(t− δl) > x

and T2(t, x, vl, gl) ∈
]
t− δl+1, t− δl

[
−ϕ∗′

(
xl−x
t−δl

)
if xl + vl(t− δl) < x

and T1(t, x, vl, gl) > t− δl
or if xl + vl(t− δl) > x

and T2(t, x, vl, gl) > t− δl
−ϕ∗′

(
xl+vl(δl+1−δl)−x

t−δl+1

)
if xl + vl(t− δl) < x

and T1(t, x, vl, gl) < t− δl+1

or if xl + vl(t− δl) > x

and T2(t, x, vl, gl) < t− δl+1

(2.91)

In the previous formula, ρ1, ρ2, T1 and T2 are computed by definition 25.

2.7.2 Computation of the density function

In order to provide a similar algorithm for the density, we now assume that the Moskowitz
function is Lipschitz-continuous on R+×X in order to define a measurable-integrable density
function by equation (2.92). Note that this assumption is only required for the computation
of ρ and not for the computation of the Moskowitz function M(·, ·). For instance, the solution
to the HJ PDE (2.5) associated with any Lipschitz-continuous initial, left and downstream
boundary condition functions (but not internal conditions) is itself Lipschitz-continuous [35,
41, 42].
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Whenever the Moskowitz function is differentiable in (t, x), we compute the density func-
tion ρ(t, x) by:

ρ(t, x) = −∂M(t, x)

∂x
(2.92)

Proposition 21. [Computation of the spatial derivative of M(·, ·)] Let us consider
(t, x) ∈ R+ × X such that M(·, ·) is differentiable at (t, x). Since the Moskowitz function
M(·, ·) is the minimum of the convex functions MM0,i

(·, ·), Mγj(·, ·), Mβk(·, ·) and Mµl(·, ·)
for (i, j, k, l) ∈ I × J × K × L, there exists a solution Ma(·, ·) associated with a value
condition a(·, ·) which is equal to the Moskowitz function at (t, x), i.e. M(t, x) = Ma(t, x).
We assume that Ma(·, ·) is differentiable at (t, x). Given these assumptions, we have the
following property:

∂M(t, x)

∂x
=
∂Ma(t, x)

∂x
(2.93)

Proof — Let us define the function g(·, ·) as g(·, ·) := Ma(·, ·)−M(·, ·). Since M(·, ·)
and Ma(·, ·) are both differentiable at (t, x), g(·, ·) is also differentiable at (t, x). By definition
of M(·, ·), the function g(·, ·) is positive and satisfies g(t, x) = 0. Hence, (t, x) minimizes

g(·, ·) and we have ∂g(t,x)
∂x

= 0, which implies equation (2.93). �
Since M(·, ·) is the minimum of convex functions, it is differentiable almost every-

where [18]. Hence, its associated density function ρ(·, ·) is defined almost everywhere on
R+ ×X. We use equation (2.93) to compute the density function ρ(·, ·) exactly whenever it
is defined using the following algorithm, extending the Lax-Hopf algorithm.

2.7.3 Extension of the Lax-Hopf algorithm for scalar conservation
laws

We consider the specific instantiation of the extension of the Lax-Hopf algorithm for a
rectangular grid and for the mixed initial-boundary-internal conditions problem. Note again
that any grid can be used, since each point of the solution is computed using the coefficients
of the initial, boundary and internal conditions only. The space and time steps are denoted
by ∆x and ∆t respectively. The grid is defined by the set G := {1, . . . , nt} × {1, . . . , nx},
where nt and nx are positive integers.
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Lax-Hopf algorithm for the density function

Initialization
M(M,N)←− +∞ ∀(M,N) ∈ G [Output matrix containing the Moskowitz function]

D(M,N)←− NaN ∀(M,N) ∈ G [Output matrix containing the Density function]

Main loop
For M := 1 to nt do [time iteration]

For N := 1 to nx do [space iteration]
xN := N∆x+ ξ and tM := M∆t [space and time grid definition]
For i ∈ I do [iteration on the set of initial conditions]

Computation of MM0,i
(tM , xN) [using equation (2.48)]

If MM0,i
(tM , xN) ≤M(M,N) then

M(M,N) = MM0,i
(tM , xN)

If MM0,i
is differentiable at (tM , xN)

then

D(M,N) = −∂MM0,i
(tM ,xN )

∂x
[using equation (2.88)]

For j ∈ J do [iteration on the set of upstream boundary conditions]
Computation of Mγj(tM , xN) [using equation (2.59)]

If Mγj(tM , xN) ≤M(M,N) then
M(M,N) = Mγj(tM , xN)

If Mγj is differentiable at (tM , xN) then

D(M,N) = −∂Mγj (tM ,xN )

∂x
[using equation (2.89)]

For k ∈ K do [iteration on the set of downstream boundary conditions]
Computation of Mβk(tM , xN) [using equation (2.71)]

If Mβk(tM , xN) ≤M(M,N) then
M(M,N) = Mβk(tM , xN)

If Mβk is differentiable at (tM , xN) then

D(M,N) = −∂Mβk
(tM ,xN )

∂x
[using equation (2.90)]

For l ∈ L do [iteration on the set of internal conditions]
Computation of Mµl(tM , xN) [using equations (2.83) and (2.84)]

If Mµl(tM , xN) ≤M(M,N) then
M(M,N) = Mµl(tM , xN)

If Mµl is differentiable at (tM , xN) then

D(M,N) = −∂Mµl
(tM ,xN )

∂x
[using equation (2.91)]

Return D(M,N)

The quantity D(M,N) represents the exact value of the density function associated with
the Moskowitz function at (tM , xN), up to machine accuracy.
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2.8 Numerical examples

2.8.1 Integration of internal conditions into Hamilton-Jacobi equa-
tions

In this implementation, we consider a triangular Hamiltonian as defined in example 2,
with parameters ν[ = 1, γ = 1, ω = 6, ν] = 1

5
and δ = ϕ∗(0) = 1. We also consider

piecewise affine initial, upstream, downstream and internal condition functions defined by
equation (2.94):

M0(t, x) =

 aix+ bi if t = 0,
and ∃i ∈ I such that x ∈ [αi, αi+1]

+∞ otherwise

γ(t, x) =


cjt+ dj if x = ξ

and ∃j ∈ J such that t ∈ [γj , γj+1]
+∞ otherwise

β(t, x) =


ekt+ fk if x = χ

and ∃k ∈ K such that t ∈ [βk, βk+1]
+∞ otherwise

µp(t, x) =


gpl(t− δpl) + hpl if ∃l ∈ Lp such that

x = vpl(t− δpl) + xpl
and t ∈ [δpl, δpl+1]

+∞ otherwise

(2.94)

In this numerical application, we choose the following set of coefficients ai, bi, αi, cj, dj,
γj, ek, fk, βk: 

a := (−1,−7/2,−1/10,−7/5)
b := (0,−25

2
,−43

2
, 9
2
)

α := (0, 5, 10, 20, 25)
c := (1, 1/2, 4/5, 7/10)
d := (0, 3

2
,−9

5
,− 3

10
)

γ := (0, 3, 11, 15, 20)
e := (0, 2/5, 0, 4/5)
f := (−61

2
,−289

10
,−221

10
,−365

10
)

β := (0, 4, 17, 18, 20)

(2.95)

We first compute the solution to equation (2.5) associated with (2.95) numerically using
the Lax-Hopf algorithm. The results are shown in Figure 2.13.
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Figure 2.13: Example of integration of an internal condition into the solution of
the HJ PDE (2.5).
Left: Computation of the solution to the mixed initial-boundary conditions problem with pa-
rameters listed in (2.95). Right: Computation of the solution to the mixed initial-boundary-
internal conditions problem (2.95) and (2.96). The initial, boundary and internal conditions
are represented by solid lines.

We then incorporate a single internal condition, defined by the following coefficients.
v1 := (2/5, 0, 1/2, 1/2)
g1 := (1/5, 1, 1/4, 0)
h1 := (−18,−19,−20,−21,−21)

δ1 := (3, 8, 9, 14, 15)

(2.96)

As can be seen in Figure 2.13, the incorporation of the internal condition modifies the
value of the solution around it and enables us to add new information.

2.8.2 Numerical validation of the Lax-Hopf algorithm (density
function)

We compare the Lax-Hopf algorithm and the Godunov scheme [91, 54, 48] (and its specific
instantiation as the Daganzo cell transmission model [39, 40]), which is widely used by the
transportation research community.

In this implementation, we consider a (non piecewise affine) Greenshields Hamiltonian
defined as in example 1, where ν = 1 and ρ∗ = 4 (dummy values). We consider the following
initial and upstream boundary condition functions:

a := (−2,−4,−1)
b := (0, 20,−40)
α := (0, 10, 20, 30)


c := (2)
d := (0)
γ := (0, 20)

(2.97)
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These initial and upstream boundary conditions were used previously in the article [91].
We compute the Moskowitz and density functions solution to the initial and upstream

boundary conditions problem (2.97) using the Lax-Hopf algorithm and compare the results
with the analytical formula derived in [91]. The results are illustrated in Figure 2.14.

Figure 2.14: Comparison between the Lax-Hopf algorithm and the analytical so-
lution of problem (2.97).
The solutions at times t = 0, t = 5, t = 10 and t = 15 are represented in the upper left,
upper right, lower left and lower right subfigures respectively. In each of these subfigures, the
analytical solution is represented by a dashed line and the solution yielded by the Lax-Hopf
algorithm is represented using dots. The difference between the two solutions is of the order
of machine error and thus not visible on these figures.

As can be seen in Figure 2.14, the numerical solution of the LWR PDE using the Lax-Hopf
algorithm is identical to the analytical solution computed by the method of characteristics
in [16]. In addition to its high accuracy, the Lax-Hopf algorithm is not limited by the Courant
Friedrichs Lewy (CFL) time step size condition inherent to many finite difference schemes
and can thus compute the solution at a given time faster than finite difference schemes, such
as the Godunov scheme.

The Godunov scheme is only stable when the CFL condition ν∆t ≤ ∆x is satisfied,
where ∆t and ∆x represent the discretized time and space steps. We consider the mixed
initial-boundary-internal conditions problem (2.97) as previously and compute the solution
at time t = 15 using the Godunov scheme and the Lax-Hopf algorithm, for different space



53

resolutions ∆x. The computational times are shown in Figure 2.15. For fairness of the
comparison, all algorithms presented here have been implemented in the same programming
language (Matlab) and run on the same platform (Thinkpad T61 running Windows XP).

Figure 2.15: Computational time comparison between the Lax-Hopf algorithm
and the Godunov scheme (2.97).
This figure represents the time required to compute the solution of problem (2.97) at time
t = 15, using both the Godunov scheme (dots) and the Lax-Hopf algorithm (dashed line).

Figure 2.15 shows that the Lax-Hopf algorithm is significantly faster than the Godunov
scheme when high accuracy is required. Indeed, the Lax-Hopf algorithm can compute the
solution at time t = 15 using only the knowledge of the initial and boundary conditions. In
contrast, the Godunov scheme has to compute the solution for each time step ∆t, which is
upper-constrained by the CFL condition and thus cannot be arbitrary large.

2.8.3 Comparison with standard numerical schemes

The striking difference in terms of computational cost between the Lax-Hopf algorithm
and any finite difference scheme, such as the Lax-Friedrichs scheme, is that one does not
need intermediate computations for times M ∈ {1, . . . , nt} to compute the solution at time
step nt. In other words, no iteration is needed to compute the value of the solution at any
given time.

Another difference is that the computational cost of the Lax-Hopf algorithm is related
to the number of piecewise affine elements in the initial, boundary and internal conditions
only. In particular, the computational time required to solve a given problem depends
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upon its complexity (i.e. the total number of piecewise affine elements in the definition of
the piecewise affine initial, boundary and internal conditions). In finite difference schemes
however, the computational time is independent of the complexity of the problem to solve.

Unlike finite difference schemes, the solution computed using the Lax-Hopf algorithm is
(up to machine accuracy) exact. Indeed, the formulae (2.48), (2.59), (2.71), (2.83) and (2.84)
are closed form and the minimization process used in the Lax-Hopf algorithm yields exact
results.

Note that other computational methods such as front tracking methods [19, 38, 61]
can also be used to explicitly compute solutions to conservation laws, from which the HJ
PDE (2.5) is derived. However, the Lax-Hopf algorithm is different, since it can be ap-
plied to a general concave Hamiltonian, is not event-based and does not require the explicit
computation of shockwaves propagation.
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Chapter 3

Convex formulations of the model
constraints in Hamilton-Jacobi partial
differential equations

3.1 Model constraints for well-posedness

In this section, we investigate the constraints that must apply on a general set of value
conditions to ensure that the solution to the HJ PDE satisfies all prescribed value conditions.
One of the specificities of the HJ PDE (2.5) investigated in this dissertation is the fact that
the solution itself may not reflect the value conditions that are imposed on it. Indeed,
an arbitrary set of value conditions is said to apply in the strong sense if the solution is
identical to the set of value conditions (on their respective domains of definition) and in
the weak sense if at least one of the value conditions does not apply everywhere. In the
following, we determine the conditions on the value conditions and on the Hamiltonian ψ(·)
that ensure that all value conditions apply in the strong sense.

For this, we first have to define an binary relation that characterizes the order between
general concave or convex functions.

Definition 26. [Hypographical and epigraphical characterizations of pointwise
inequality between functions] Let Hyp(·) denote the hypograph of a function and Epi(·)
its epigraph. Let two concave functions ψ1(·) and ψ2(·) be given. The binary relation of
inequality between these functions is defined by:

ψ1(·) ≤ ψ2(·)⇐⇒ Hyp(ψ1) ⊂ Hyp(ψ2)⇐⇒
{

Dom(ψ1) ⊂ Dom(ψ2) and
∀p ∈ Dom(ψ1), ψ1(p) ≤ ψ2(p)

(3.1)

Let two convex functions ϕ1(·) and ϕ2(·) be given. The binary relation of inequality
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between these functions is defined by:

ϕ1(·) ≤ ϕ2(·)⇐⇒ Epi(ϕ1) ⊃ Epi(ϕ2)⇐⇒
{

Dom(ϕ1) ⊃ Dom(ϕ2) and
∀u ∈ Dom(ϕ2), ϕ1(u) ≤ ϕ2(u)

(3.2)

We now define the concept of true state, i.e. the actual value of the Moskowitz function,
which plays a particular role in our estimation problem.

Definition 27. [True state] The true state M(·, ·) represents the state of the system,
which could be obtained if measured by errorless sensors covering the entire space-time
domain [0, tmax]×X.

Some experimental data sets such as the NGSIM data [102] enable us to derive the true
state function M(·, ·). An example of true state function M(·, ·) derived from the NGSIM
data is illustrated in Figure 3.1.

Figure 3.1: NGSIM experimental data.
This figure represents of the experimental Moskowitz surface obtained from the NGSIM data.

In most real time applications, M(·, ·) is not known, since measuring it requires a sensor
observing the state of traffic on the whole spatial domain and for all times. In the NGSIM
dataset [102] for instance, the true state M(·, ·) was observed by using a camera filming
a highway section from above. This data however required post-processing and was not
available in real time.

Our data assimilation framework requires the following assumption on the true state
function M(·, ·).
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Fact 1. [Mathematical properties of the state] The true state M(·, ·) is assumed to be
Lipschitz-continuous [41, 42].

Note that the Lipschitz continuity of M(·, ·) implies the existence almost everywhere and

boundedness of the flow ∂M(t,x)
∂t

and the density −∂M(t,x)
∂x

. This assumption is true for most
physical systems, including highway traffic modeling [41]. Note also that no assumption
is made that M(·, ·) satisfies the HJ PDE (2.5) exactly, which is in general true for most
physical systems (i.e. their state does not satisfy a model perfectly).

The true state function enables the definition of corresponding true value conditions,
which will be later shown to satisfy specific constraints.

Definition 28. [True value condition] Let M(·, ·) denote the true state of the system.
A true value condition c(·, ·) is a function defined on a subset of [0, tmax]×X and satisfying:

c(t, x) :=

{
M(t, x) if(t, x) ∈ Dom(c)
+∞ otherwise

(3.3)

The following property holds:

Proposition 22. [Minimum of true value conditions] Let cj(·, ·)j∈J be a finite family
of true value conditions, as in definition 28. The minimum c(·, ·) := min

j∈J
(cj(·, ·)) of the true

value conditions cj(·, ·) is also a true value condition, whose domain of definition is given by:

Dom(c) :=
⋃
j∈J

Dom(cj) (3.4)

In addition, we have the following property:

∀j ∈ J, ∀(t, x) ∈ Dom(cj), c(t, x) = cj(t, x) (3.5)

Proof — The proof of this proposition is straightforward and follows directly from
definition 28. �

A value condition represents some knowledge of the true state of the system, which is
used in conjunction with the HJ PDE (2.5) to construct an estimated state of the system.

Definition 29. [Estimated state] Let a value condition c(·, ·) be defined as in defini-
tion 2. The estimated state is defined as the solution (2.20) associated with c(·, ·) and the
Hamiltonian ψ(·) and denoted by Mc,ψ(·, ·).

Note the ψ(·) index in the definition above, which as previously indicates that the value of
the solution Mc,ψ(·, ·) associated with the value condition c(·, ·) depends (implicitly) on the
Hamiltonian of the HJ PDE. As a consequence of theorem 1, the estimated state Mc,ψ(·, ·)
is a solution to (2.5) in the B-J/F sense. However, the estimated state does not necessarily
satisfy the true value condition that we want to impose on it [31, 32].
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In the following section, we find the conditions on a finite set of value conditions (cj(·, ·))j∈J
such that all of these value conditions apply in the strong sense when solving (2.5). In this
case, we say that the value conditions are compatible with the model. The corresponding
constraints on the value conditions are called model compatibility constraints. The value
conditions (cj(·, ·))j∈J satisfy the model compatibility constraints if and only if the following
equality is true:

∀j ∈ J, ∀(t, x) ∈ Dom(cj), Mcj ,ψ(t, x) = cj(t, x) (3.6)

The following section presents an equivalent formulation of (3.6), based on the properties
of the solution (2.20), which results in algebraic conditions to be verified for (3.6) to be
satisfied.

3.1.1 Compatibility conditions

Because of the inf-morphism property (2.36) and the Lax-Hopf formula (2.20), the equal-
ity (3.6) can be decomposed as a set of inequalities known as compatibility conditions, which
we now express.

Proposition 23. [Compatibility conditions] Let us define a finite family of value condi-
tion functions cj(·, ·), j ∈ J as in definition 2 and their minimum c(·, ·) := min

j∈J
cj(·, ·). The

estimated state Mc,ψ(·, ·) associated with c(·, ·) satisfies the property (3.6) if and only if the
following set of inequalities is satisfied:

Mci,ψ(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J (3.7)

Proof — Let us first start from (3.6). By definition of c(·, ·), we have that (t, x) ∈
Dom(c) if and only if (t, x) ∈ Dom(cj) for some j ∈ J . Hence, using equation (3.5), we can
equivalently rewrite (3.6) as:

∀j ∈ J, ∀(t, x) ∈ Dom(cj), Mc,ψ(t, x) = cj(t, x) (3.8)

We now prove that (3.8) implies (3.7). The inf-morphism property (2.36) implies that
the estimated state Mc,ψ(·, ·) associated with the value condition c(·, ·) is the minimum of
the estimated states Mci,ψ(·, ·) associated with the value conditions ci(·, ·):

Mc,ψ(t, x) = min
i∈J

Mci,ψ(t, x) (3.9)

Hence, the condition (3.8) implies the constraints (3.7).
Reciprocally, we prove that (3.7) implies the equality (3.8). When (3.7) is satisfied,

equation (3.9) implies that Mc,ψ(t, x) ≥ cj(t, x) for all j ∈ J and for all (t, x) ∈ Dom(cj).
The converse inequality is obtained from the Lax-Hopf formula (2.20):
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Mcj ,ψ(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+

(cj(t− T, x+ Tu) + Tϕ∗(u)) (3.10)

By taking T = 0 and u ∈ Dom(ϕ∗) in (3.10), we have that ∀j ∈ J, ∀(t, x) ∈
Dom(cj), Mcj ,ψ(t, x) ≤ cj(t, x). By the inf-morphism property, this last inequality im-
plies ∀j ∈ J, ∀(t, x) ∈ Dom(cj), Mc,ψ(t, x) ≤ cj(t, x) which completes the proof. �

We assumed in this section that ψ(·) was given. In the next section, we define conditions
on ψ(·) and the true state M(·, ·) which ensure that the compatibility conditions (3.7) asso-
ciated with true value condition cj(·, ·) are automatically satisfied, i.e. the equality (3.6) is
satisfied. In general, the true state M(·, ·) not given, but some of its properties are known.
Thus, the following results amount to finding the proper Hamiltonian ψ(·) such that the
compatibility conditions (3.7) are satisfied.

3.1.2 Sufficient conditions on the Hamiltonian for compatibility
of true value conditions

While the true state is generally unknown, the properties of its derivatives have been
extensively studied in the literature [56, 72, 86]. Note that by (2.4), the derivatives of the
true state function represent the true density and true flow functions. We assume that we
can measure some values of the derivatives of M(·, ·) which are representative of the range
of physical measurements of the system. Using these measurements, we define a particular
class of Hamiltonians as follows.

Proposition 24. [Upper estimate of the Hamiltonian]. For a given true state M(·, ·),
we define the set B(M) as follows:

B(M) :=
{(
−∂M(t,x)

∂x , ∂M(t,x)
∂t

)
, (t, x) ∈ [0, tmax]×X such that M(·, ·) is differentiable

}
There exists a concave and upper semicontinuous function ψ0(·) such that:

B(M) ⊂ Hyp(ψ0) (3.11)

Proof — Recall that the true state is Lipschitz-continuous by assumption. Thus, its
derivatives are defined almost everywhere and bounded, which implies the boundedness of
B(M). Hence, we can choose for ψ0(·) any concave function greater than the upper concave
envelope of B(M). �

Note that the choice of a function ψ0(·) compatible with (3.11) is not unique. An example
of choice of ψ0(·) satisfying (3.11) is illustrated in Figure 3.2 later.

The conditions (3.7) are necessarily satisfied for a true value condition c(·, ·) and for a
Hamiltonian ψ0(·) satisfying (3.11), as shown in the following proposition.
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Proposition 25. [Compatibility property for true value conditions] Let us define a
finite set of true value condition functions cj(·, ·), j ∈ J as in definition 28, a concave and
upper semicontinuous Hamiltonian ψ0(·) satisfying (3.11) and its associated convex transform
ϕ∗0 as in (2.7). Let us also define the set of solutions Mcj ,ψ0(·, ·) associated with cj(·, ·) as
in (2.20). Given these assumptions, the set of inequalities (3.7) are satisfied.

Proof — In the present case, the compatibility conditions (3.7) can be written as:

Mci,ψ0(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J (3.12)

Let us fix i ∈ J , j ∈ J and (t, x) ∈ Dom(cj).
We first express Mci,ψ0(t, x) in terms of ci(·, ·) using the Lax-Hopf formula (2.20):

Mci,ψ0(t, x) = inf
(u,T )∈Dom(ϕ∗0)×R+

(ci(t− T, x+ Tu) + Tϕ∗0(u)) (3.13)

Since (t, x) ∈ Dom(cj), we have by definition 28 that cj(t, x) = M(t, x). Hence, we can
write the inequality (3.12) which we want to prove as:

inf
(T,u)∈[0,tmax]×Dom(ϕ∗

0)
(ci(t− T, x+ Tu) + Tϕ∗0(u)) ≥M(t, x) (3.14)

By definition 28, we have that ci(t − T, x + Tu) ≥ M(t − T, x + Tu) for all (T, u) ∈
[0, tmax]×Dom(ϕ∗0). Indeed, ci(t−T, x+Tu) = M(t−T, x+Tu) if (t−T, x+Tu) ∈ Dom(ci)
and that ci(t− T, x+ Tu) = +∞ otherwise. Hence, if the equation (3.15) below is satisfied,
then inequality (3.14) will be automatically true:

inf
(T,u)∈[0,tmax]×Dom(ϕ∗

0)

(
M(t− T, x+ Tu) + Tϕ∗0(u)

)
≥M(t, x) (3.15)

We now prove that (3.15) holds. Since M(·, ·) is Lipschitz-continuous by assumption and
assuming that M(·, ·) is differentiable almost everywhere on {(t− τ, x+ τu), τ ∈ [0, T ]}, we
can write:

M(t− T, x+ Tu) + Tϕ∗0(u)−M(t, x) =
∫ T
0

(
−∂M(t−τ,x+τu)

∂t + u∂M(t−τ,x+τu)
∂x + ϕ∗0(u)

)
dτ (3.16)

Since ψ0(·) is concave and upper semicontinuous, it is equal to its Legendre-Fenchel
biconjugate [8]. Hence, we have that ψ0(ρ) = inf

u∈Dom(ϕ∗0)
(−ρu+ ϕ∗0(u)) and thus that ψ0(ρ) ≤

−ρu + ϕ∗0(u) for all u ∈ Dom(ϕ∗0). This result enables us to derive the following inequality
from equation (3.16):

M(t− T, x+ Tu) + Tϕ∗0(u)−M(t, x) ≥
∫ T
0

(
− ∂M(t−τ,x+τu)

∂t + ψ0

(
−∂M(t−τ,x+τu)

∂x

))
dτ (3.17)
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Using (3.11), we have that −∂M(t−τ,x+τu)
∂t

+ψ0

(
−∂M(t−τ,x+τu)

∂x

)
≥ 0 for all (τ, u) ∈ [0, T ]×

Dom(ϕ∗0). Since T > 0, the right hand side of equation (3.17) is nonnegative, which implies
the following inequality:

∀(T, u) ∈ R+ ×Dom(ϕ∗0), M(t− T, x+ Tu) + Tϕ∗0(u)−M(t, x) ≥ 0 (3.18)

Equation (3.15) is obtained from equation (3.18) by taking the infimum over (T, u) ∈
R+ × Dom(ϕ∗0), which completes the proof. Note that if M(·, ·) is not differentiable al-
most everywhere on the set {(t− τ, x+ τu), τ ∈ [0, T ]}, it will be differentiable on the set
{(t− τ, x+ δx+ τu), τ ∈ [0, T ]} for a small δx, by Lipschitz-continuity. Hence, we have
that M(t− T, x+ δx+ Tu) + Tϕ∗0(u)−M(t, x+ δx) ≥ 0, which implies M(t− T, x+ δx+
Tu) + Tϕ∗0(u)−M(t, x+ δx) ≥ 0 by (Lipschitz) continuity of M(·, ·). �

Proposition 25 thus implies that the estimated state Mc,ψ0(·, ·) associated with any true
value condition c(·, ·) satisfies the imposed true value condition when the Hamiltonian ψ0(·)
satisfies (3.11).

Because of the order-preserving property of (2.7), the constraints (3.7) are satisfied for
a given Hamiltonian ψ1(·) only if they are also satisfied for any Hamiltonian ψ2(·) greater
than ψ1(·), as expressed by the following proposition.

Proposition 26. [Hamiltonian inequality property] Let us define a finite set of true
value conditions cj(·, ·), j ∈ J as in definition 28. Let us also define two concave and
upper semicontinuous Hamiltonians ψ1(·) and ψ2(·), satisfying ψ1(·) ≤ ψ2(·). The associated
solutions Mcj ,ψ1(·, ·) and Mcj ,ψ2(·, ·) associated with the true value condition cj(·, ·) are
defined by (2.20). We have the following property:

Mci,ψ1(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J (3.19)

implies

Mci,ψ2(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J (3.20)

Proof — The proof of this proposition is a direct consequence of the following property:

Mci,ψ1(t, x) ≤Mci,ψ2(t, x), ∀(t, x) ∈ [0, tmax]×X, ∀i ∈ J (3.21)

Indeed, since ψ1(·) ≤ ψ2(·), we have that pu + ψ1(p) ≤ pu + ψ2(p) ∀(p, u) ∈ R2. Hence,
the convex transforms ϕ∗1(·) and ϕ∗2(·) respectively associated with ψ1(·) and ψ2(·) satisfy
ϕ∗1(·) ≤ ϕ∗2(·).

Let us fix (t, x, j) ∈ [0, tmax]×X × J . The solutions Mci,ψ1(t, x) and Mci,ψ2(t, x) can be
expressed using the following Lax-Hopf formulae:
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Mci,ψ1(t, x) = inf
(u,T )∈Dom(ϕ∗1)×R+

(ci(t− T, x+ Tu) + Tϕ∗1(u))

Mci,ψ2(t, x) = inf
(u,T )∈Dom(ϕ∗2)×R+

(ci(t− T, x+ Tu) + Tϕ∗2(u))
(3.22)

Since ϕ∗1(·) ≤ ϕ∗2(·), we have that Dom(ϕ∗2) ⊂ Dom(ϕ∗1). Hence, equation (3.22) im-
plies (3.21) and thus, (3.19) implies (3.20). �

In consequence, the smallest concave function satisfying (3.11), illustrated in Figure 3.2
plays a particular role in our problem.

Figure 3.2: Illustration of an upper estimate function ψ0(·).
In this figure, the horizontal axis represents the density and the vertical axis the flow. The
scatter plot represents the values of flow and density obtained from experimental traffic flow

data [103]. Each point in this plot is a given
(
−∂M(t,x)

∂x
, ∂M(t,x)

∂t

)
for some (t, x) ∈ [0, tmax]×X.

A typical example of upper estimate function ψ0(·) is the upper concave envelope of the
points, represented by a dashed line and which satisfies (3.11).

Proposition 27. [Smallest concave upper estimate] Let M be given and let B(M) be
defined as in proposition 24. Let C be the set of upper semicontinuous concave functions
from R to R and let us define the set of functions A by:

A :=
{
ψ ∈ C such that B(M) ⊂ Hyp(ψ)

}
(3.23)

Let us define the function ψinf(·) as:

Hyp(ψinf) :=
⋂
ψ∈A

Hyp(ψ) (3.24)
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The function ψinf(·) defined by (3.24) is the smallest element of A.

Proof — The set A is not empty by proposition 24 and thus the function ψinf(·) defined
by (3.24) exists. We now prove that ψinf(·) is the smallest element of A. Let ψ(·) ∈ A. Since
ψ(·) is concave, upper semicontinuous and satisfies (3.11), its hypograph is closed, convex
and contains the set B(M). By (3.24), the hypograph of ψinf(·) is thus closed, convex and
contains B(M) since it is the (infinite) intersection of closed and convex sets containing
B(M). Hence, ψinf is concave, upper semicontinuous and satisfies (3.11), which implies
ψinf ∈ A. The function ψinf(·) is also the smallest element of A, since any element ψ(·) of A
satisfies Hyp(ψinf(·)) ⊂ Hyp(ψ(·)) by (3.24). �

Proposition 28. [Minimal conditions] Let A be defined as in proposition 27 and let
ψinf(·) be defined as in as in (3.24). Let ψ(·) ∈ A and let us define a finite set of true
value conditions cj(·, ·), j ∈ J and their associated solutions Mcj ,ψinf

(·, ·) and Mcj ,ψ(·, ·) as
in (2.20). Given the above definitions, we have the following property:

Mci,ψ(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J, ∀ψ(·) ∈ A (3.25)

if and only if

Mci,ψinf
(t, x) ≥ cj(t, x), ∀(t, x) ∈ Dom(cj), ∀i ∈ J, ∀j ∈ J (3.26)

Proof — The conditions (3.25) imply (3.26), since ψinf(·) ∈ A by proposition 27.
Conversely, the conditions (3.26) imply (3.25), by proposition 26, remarking thatHyp(ψinf) ⊂
Hyp(ψ). �

Proposition 28 enables the verification of the conditions (3.25) for a true value condi-
tion c(·, ·) and for all Hamiltonians ψ(·) satisfying (3.11) using the conditions (3.26) only.

We now present some important properties of the model compatibility constraints.

3.2 Properties of the model compatibility constraints

3.2.1 Concavity property of the solutions with respect to their
coefficients

Because of the Lax-Hopf formula (2.20), the solutions associated with affine initial,
boundary and internal conditions have a concavity property with respect to some of their
coefficients, which we now present.

Proposition 29. [Concavity property of the solution associated with an affine
initial condition] The solution MM0,i

(·, ·) associated with the affine initial condition (2.39)
is a concave function of the coefficients ai and bi.
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Proof — The Lax-Hopf formula (2.20) associated with the solution MM0,i
(·, ·) can be

written as:

MM0,i
(t, x) = inf

u∈Dom(ϕ∗) s. t. (x+tu)∈[αi,βi]
(ai(x+ tu) + bi + tϕ∗(u)) (3.27)

Let us fix (t, x, u) ∈ [0, tmax] ×X × Dom(ϕ∗). The function f(·, ·) defined as f(ai, bi) =
ai(x + tu) + bi + tϕ∗(u) is concave (indeed, affine). Hence, the solution MM0,i

(t, x) is a
concave function of (ai, bi), since it is the infimum of concave functions of (ai, bi) [18, 87].
�

Proposition 30. [Concavity property of the solution associated with an affine
upstream boundary condition] The solution Mγj(·, ·) associated with the affine upstream
boundary condition (2.49) is a concave function of the coefficients cj and dj.

Proof — The Lax-Hopf formula (2.20) associated with the solution Mγj(·, ·) can be
written as:

Mγj(t, x) = inf
T∈
[
− ξ−x

ν[
,+∞

[
∩[t−γj+1,t−γj]

(
cj(t− T ) + dj + Tϕ∗

(
ξ − x
T

))
(3.28)

Let us fix (t, x, T ) ∈ [0, tmax]×X ×
[
− ξ−x

ν[
,+∞

[
∩
[
t− γj+1, t− γj

]
. The function g(·, ·)

defined as f(cj, dj) = cj(t − T ) + dj + Tϕ∗
(
ξ−x
T

)
is concave (indeed, affine). Hence, the

solution Mγj(t, x) is a concave function of (cj, dj), since it is the infimum of concave functions
of (cj, dj) [18, 87]. �

Proposition 31. [Concavity property of the solution associated with an affine
downstream boundary condition] The solution Mβk(·, ·) associated with the affine down-
stream boundary condition (2.61) is a concave function of the coefficients ek and fk.

Proof — The Lax-Hopf formula (2.20) associated with the solution Mβk(·, ·) can be
written as:

Mβk(t, x) = inf
T∈[χ−x

ν]
,+∞[∩[t−βk+1,t−βk]

(
ek(t− T ) + fk + Tϕ∗

(
χ− x
T

))
(3.29)

Let us fix (t, x, T ) ∈ [0, tmax] ×X ×
[
χ−x
ν]
,+∞

[
∩
[
t− βk+1, t− βk

]
. The function h(·, ·)

defined as f(ek, fk) = ek(t − T ) + fk + Tϕ∗
(
χ−x
T

)
is concave (indeed, affine). Hence, the

solution Mβk(t, x) is a concave function of (ek, fk), since it is the infimum of concave functions
of (ek, fk) [18, 87]. �
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Proposition 32. [Concavity property of the solution associated with an affine
internal condition] The solution Mµl(·, ·) associated with the internal condition (2.73) is
a concave function of the coefficients gl and hl.

Proof — The Lax-Hopf formula (2.20) associated with the solution Mµl(·, ·) can be
written [31, 32] as:

Mµl(t, x) = inf
T∈R+∩[t−δl,t−γl]

gl(t− T − γl) + hl + Tϕ∗
(
xl + vl(t− γl − T )− x

T

)
(3.30)

Let us fix (t, x, T ) ∈ [0, tmax] × X × R+. The function d(·, ·) defined as d(gl, hl) :=

gl(t − T − γl) + hl + Tϕ∗
(
xl+vl(t−γl−T )−x

T

)
is concave (indeed, affine). Hence, the solution

Mµl(t, x) is a concave function of (gl, hl), since it is the infimum of concave functions [18, 87].
�

3.2.2 Convex formulation of the model compatibility constraints

For the initial, boundary and internal conditions defined by (2.39), (2.49), (2.61) and (2.73),
the model compatibility constraints (3.7) define constraints on the coefficients ai, bi, cj, dj,
ek, fk, gl, hl. We now prove that these constraints are convex.

Proposition 33. [Convexity property of the model constraints] Let initial, boundary
and internal conditions be defined as in (2.39), (2.49), (2.61) and (2.73), for i ∈ I, j ∈ J , k ∈
K and l ∈ L where I, J , K and L are finite sets. The model compatibility constraints (3.7)
are convex inequalities in the coefficients ai, bi, cj, dj, ek, fk, gl and hl.

Proof — The constraints (3.7) are of the form:

Mcn(t, x) ≥ cm(t, x), ∀(t, x) ∈ Dom(cm), ∀n ∈ N, ∀m ∈ N (3.31)

Let (n,m) ∈ N2 and (t, x) ∈ Dom(cm). The quantity cm(t, x) is an affine function of
the coefficients ai, bi, cj, dj, ek, fk, gl and hl. In addition, Mcn(t, x) is a concave function
of ai, bi, cj, dj, ek, fk, gl and hl. The constraint Mcn(t, x) ≥ cm(t, x) can be written as
−Mcn(t, x) + cm(t, x) ≤ 0 where −Mcn(t, x) + cm(t, x) is a convex function (as the sum of
convex functions) of ai, bi, cj, dj, ek, fk, gl and hl. Hence, Mcn(t, x) ≥ cm(t, x) is a convex
constraint [18] in ai, bi, cj, dj, ek, fk, gl and hl. �

Proposition 33 states that the inequality constraints (3.7) define a convex set in the space
(ai, bi, cj, dj, ek, fk, gl, hl). Using this property, we pose inverse modeling problems as convex
optimization programs in chapter 4.
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3.2.3 Monotonicity property of the model compatibility condi-
tions

An important property of the model compatibility constraints (3.7) is their monotonicity
with respect to new data, outlined in the following proposition.

Proposition 34. [Monotonicity property] Let a set of affine initial, boundary and in-
ternal conditions be defined as in (2.39), (2.49), (2.61) and (2.73) for i ∈ I, j ∈ J , k ∈ K
and l ∈ L where I, J , K and L are finite sets. The convex set defined by the inequality
constraints (3.31) is decreasing (in the sense of inclusion) as new initial, boundary or internal
conditions are added.

Proof — The model compatibility constraints can be written as:

Mcn(t, x) ≥ cm(t, x), ∀(t, x) ∈ Dom(cm), ∀n ∈ N, ∀m ∈ N (3.32)

Let N ⊂ R|N | be the convex set defined by (3.32). We now add a finite number of new
value conditions cp, defined for p ∈ P . The model compatibility constraints become:

Mcn(t, x) ≥ cm(t, x), ∀(t, x) ∈ Dom(cm), ∀n ∈ N ∪ P, ∀m ∈ N ∪ P (3.33)

Let M ⊂ R|N |+|P | be the convex set defined by (3.33). Since the constraints (3.33) im-
ply (3.32), we the projection of M on R|N | is a subset of N , which completes the proof.
�

The above property is very important in practice, since it ensures that the feasible sets
decreases in size when new data is added. Hence, the results of the estimation problems
derived in the next chapter necessarily improve when new data is added, which is not the
case for Monte-Carlo based estimation methods.
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Chapter 4

Applications

In chapter 3, we established the convexity of the model compatibility constraints. We now
use this result to solve different estimation problems arising in traffic-flow engineering. For
this, we first derive the relationship between value condition coefficients and measurement
data. We then instantiate the convex model compatibility constraints as linear inequalities
for triangular Hamiltonians defined by example 2. Similarly, we show that the measurement
data yields data compatibility constraints, which can also be formulated as linear inequalities.

4.1 Traffic flow measurement data and value conditions

In the context of traffic flow monitoring, measurement data traditionally originates from
Eulerian (i.e. fixed) sensors. This is in contrast with new Lagrangian (i.e. mobile) sensors,
which sense traffic conditions while moving alongside it.

4.1.1 Fixed detector data

Fixed sensors are currently the backbone of traffic monitoring. They measure various
quantities related to traffic flow at a fixed location and for all times. Current fixed-sensor
technology includes:

• Inductive loop detectors, such as the Performance Measurement System PeMS [103]
in California and magnetometers [24] are based on measurements of the inductance
of an electromagnetic loop. They can measure two quantities: the flow of vehicles
above the sensor and the occupancy which can be related to the density of vehicles
above the sensor. Dual loop detector arrangements [103], as well as some classes of
magnetometers [24] can also directly measure traffic speed.

• Speed radars, which are measuring the doppler shift as well as the time of flight of
electromagnetic waves. They can measure three quantities: the flow and density of
vehicles around the sensor, as well as the average traffic speed.
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• Speed cameras, which are paired with image recognition systems. They usually mea-
sure flow, density and average traffic speed.

One of the biggest problems associated with the fixed sensing infrastructure is their
deployment and maintenance costs. Since this sensing infrastructure is dedicated (i.e. the
infrastructure cannot be used to sense other physical phenomena besides traffic flow), these
high costs are limiting the deployment of new sensors. In practice, the Departments of
Transportation (DOTs) are operating these sensors, and usually have to spend their funding
on more urgent issues.

4.1.2 Mobile sensor data

The emergence of new portable computational platforms with communication and sens-
ing capabilities, provides the engineering community with unprecedented opportunities for
sensing. In the context of traffic flow, cellular phones [97, 57] located onboard vehicles and
equipped with positioning systems such as the GPS can act as traffic sensors. Other pos-
sible mobile sensing systems exist, including toll tag readers such as the FasTrak system in
California.

All mobile sensing systems pose an additional mathematical and computational challenge
with respect to fixed sensors. Since most of the current traffic sensing systems are fixed,
most of the estimation techniques for traffic-flow engineering are not specifically designed to
incorporate mobile measurements.

In order to estimate the state of traffic based on Eulerian and Lagrangian sensor measure-
ments, we first need to establish the relation between the measurement data and the value
conditions which incorporate the measurement constraints into the HJ PDE (2.5). This will
be explained later in the thesis

4.1.3 Experimental setup

In the following sections, we pose different problems arising in transportation engineering
as Linear Programs (LPs) or series of LPs and test their performance using experimental
data from the Mobile Century [57] experiment.

In all numerical applications, we consider a 3.858 km long spatial domain, located be-
tween the PeMS [103] stations 400536 and 400284 on Highway I − 880 N in Hayward,
California. The measurement data comes from two sources. The flow data qmeas

in (·) and
qmeas
out (·) is generated by the PeMS stations 400536 and 400284 respectively. The probe lo-

cation and timing data comes from GPS measurements generated by Nokia N95 cellphones
located onboard probe vehicles. The layout is illustrated in Figure 4.1.
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Figure 4.1: Experiment site layout.
The upstream and downstream PeMS stations are delimiting a 3.858 km spatial domain,
outlined by a solid line. The direction of traffic flow is represented by an arrow.

The complete experimental setting is described in [57]. The data set used in all numerical
applications of this dissertation can be freely downloaded from [101].

All LPs have been implemented in Matlab, using the package CVX [55]. The problems
solved in this dissertation are relatively tractable: they typically involve thousands of vari-
ables and constraints and can be solved numerically in a few seconds on a typical laptop
computer.

4.1.4 Link between measurement data and value conditions

In our specific application, the sensor data does not provide the initial condition of the
problem, since this would require us instrumenting the entire spatial domain. Fixed traf-
fic sensors traditionally measure the inflow and outflow of vehicles on the spatial domain,
which are related to the upstream and downstream boundary conditions. In addition to
fixed sensors, mobile sensors onboard vehicles track the vehicle trajectory and thus gener-
ate internal conditions [31]. The formal link between traffic measurement data and value
condition (boundary and internal conditions) blocks is shown in the following definition.

Definition 30. [Affine upstream, downstream and internal conditions] Let us define
N = {0, . . . , nmax} and M = {0, . . . ,mmax}. For all n ∈ N and m ∈M, we define the following
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upstream, downstream and internal conditions:

γn(t, x) =


∑n−1

i=0 qin(i)T + qin(n)(t− nT ) if x = ξ
and t ∈ [nT, (n+ 1)T ]

+∞ otherwise
(4.1)

βn(t, x) =

{∑n−1
i=0 qout(i)T + qout(n)(t− nT )−∆ if x = χ and t ∈ [nT, (n+ 1)T ]

+∞ otherwise
(4.2)

µm(t, x) =


Lm + rm(t− tmin(m)) if x = xmin(m) + vmeas(m)(t− tmin(m))

and t ∈ [tmin(m), tmax(m)]
+∞ otherwise

(4.3)

where vmeas(m) = xmax(m)−xmin(m)
tmax(m)−tmin(m)

.

The domains of definitions of these functions are illustrated in Figure 4.2.

Figure 4.2: Illustration of the domains of the possible value conditions used to
construct the solution of the Moskowitz HJ PDE.
The time is represented by the horizontal axis, while the location is represented by the
vertical axis. The coefficients ξ and χ represent respectively the upstream and downstream
boundaries of the highway segment of interest.

The coefficients in equations (4.1), (4.2) and (4.3) can be physically interpreted as follows:
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
qin(n) average inflow between times nT and (n+1)T
qout(n) average outflow between times nT and (n+1)T
∆ initial number of vehicles on the highway section

tmin(m) initial time at which the internal condition m applies
tmax(m) final time at which the internal condition m applies
xmin(m) initial location at which the internal condition m applies
xmax(m) final location at which the internal condition m applies
vmeas(m) speed of the internal condition m
Lm label of the vehicle m at time tmin(m)
rm rate of change of the label of vehicle m

(4.4)

Since the Moskowitz function is increasing in time and decreasing in space, the coefficients
of (4.1), (4.2) and (4.3) satisfy the following conditions:

∆ ≥ 0 positivity of the initial number of vehicles
∀n ∈ N, qin(n) ≥ 0 positivity of the inflow
∀n ∈ N, qout(n) ≥ 0 positivity of the outflow
∀m ∈M, rm ≥ 0 positivity of the passing rate

(4.5)

The monotonicity properties of the Moskowitz function with respect to its variables follow
directly from the positivity of flow and density functions (2.4) and are derived in [80].

Some of the above coefficients can be obtained (with some error) through traffic measure-
ment data. Inductive loop detectors [103] and speed radars located in ξ and χ can measure
the inflow qin(n) and outflow qout(n) for all time intervals [nT, (n + 1)T ]. The coefficients
tmin(m), tmax(m), xmin(m) and xmax(m) can be obtained using vehicle positioning systems,
such as GPS-enabled cellphones onboard vehicles [101]. In contrast, the coefficients Lm and
rm cannot be measured using conventional traffic sensors. Similarly, the initial number of ve-
hicles ∆ cannot be measured using conventional sensors. Hence, the available measurements
do not enable us to define the upstream (4.1), downstream (4.2) and internal conditions (4.3)
univocally. In order to estimate the state M(·, ·) of the system, one has to estimate the co-
efficients (4.4), which are constrained both by the model and the measurement data.

In the applications of this dissertation, the coefficients xmin(m), xmax(m), tmin(m) and
tmax(m) are measured by are measured by GPS systems, which are very accurate. Hence,
we assume that these coefficients are fixed. Given this assumption, we define the decision
variable of our estimation problems as follows.

Definition 31. The coefficients of the upstream, downstream and internal conditions to be
estimated are defined by the following decision variable:

y := (qin(1), . . . , qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax , r1, . . . , rmmax) (4.6)
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4.2 Explicit instantiation of the model compatibility

conditions for triangular Hamiltonians

We now instantiate (3.31) explicitly so it can be applied to traffic flow engineering prob-
lems. Following common assumptions in transportation engineering [41, 42], we assume that
the Hamiltonian ψ(·) is a continuous triangular function defined by:

ψ(ρ) =

{
vρ if ρ ≤ kc
w(ρ− km) otherwise

(4.7)

where v, w, kc and km are model parameters satisfying vkc = w(kc−km) and representing
the free flow speed (v), the critical density (kc), the congestion speed (w) and the maximal
density (km).

Explicit expression of the solutions to the affine value conditions

In this section, we compute the solutions associated with the value conditions (4.1),
(4.2) and (4.3) explicitly using the specific Hamiltonian (4.7). The results below are the
instantiation of equations (2.59), (2.71), (2.83) and (2.84) for (4.7).

Mγn(t, x) =


+∞ if t ≤ nT + x−ξ

v∑n−1
i=0 qin(i)T + qin(n)(t− x−ξ

v − nT ) if nT + x−ξ
v ≤ t

and t ≤ (n+ 1)T + x−ξ
v∑n

i=0 qin(i)T + kcv(t− (n+ 1)T − x−ξ
v ) otherwise

Mβn(t, x) =


+∞ if t ≤ nT + x−χ

w

−∆ +
∑n−1
i=0 qout(i)T + qout(n)(t− x−χ

w − nT ) if nT + x−χ
w ≤ t

and t ≤ (n+ 1)T + x−χ
w

−∆ +
∑n
i=0 qout(i)T + kcv(t− (n+ 1)T − x−χ

w ) otherwise

(4.8)

Mµm(t, x) =



Lm + rm

(
t− x−xmin(m)−vmeas(m)(t−tmin(m))

v−vmeas(m) − tmin(m)
)

if x ≥ xmin(m) + vmeas(m)(t− tmin(m))

and x ≥ xmax(m) + v(t− tmax(m))

and x ≤ xmin(m) + v(t− tmin(m))

Lm + rm

(
t− x−xmin(m)−vmeas(m)(t−tmin(m))

w−vmeas(m) − tmin(m)
)

+kc(v − w)x−xmin(m)−vmeas(m)(t−tmin(m))
w−vmeas(m)

if x ≤ xmin(m) + vmeas(m)(t− tmin(m))

and x ≤ xmax(m) + w(t− tmax(m))

and x ≥ xmin(m) + w(t− tmin(m))

Lm + rm (tmax(m)− tmin(m)) + (t− tmax(m)) kc

(
v − x−xmax(m)

t−tmax(m)

)
if x ≤ xmax(m) + v(t− tmax(m))

and x ≥ xmax(m) + w(t− tmax(m))

+∞ otherwise

(4.9)
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Explicit instantiation of the model constraints

For the specific boundary and internal conditions (4.1), (4.2) and (4.3), the model com-
patibility constraints (3.31) are:

Mγn(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p+ 1)T ],∀(n, p) ∈ N2 (i)

Mγn(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p+ 1)T ],∀(n, p) ∈ N2 (ii)

Mγn(t, x) ≥ µm(t, x) ∀(t, x) ∈ Dom(µm),∀n ∈ N,∀m ∈M (iii)

Mβn(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p+ 1)T ],∀(n, p) ∈ N2 (iv)

Mβn(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p+ 1)T ],∀(n, p) ∈ N2 (v)

Mβn(t, x) ≥ µm(t, x) ∀(t, x) ∈ Dom(µm),∀n ∈ N,∀m ∈M (vi)

Mµm(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p+ 1)T ],∀(m, p) ∈M× N (vii)

Mµm(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p+ 1)T ],∀(m, p) ∈M× N (viii)

Mµm(t, x) ≥ µp(t, x) ∀(t, x) ∈ Dom(µp),∀(m, p) ∈M2 (ix)

(4.10)

Although inequalities (4.10) are a function of the decision variable (4.6), they cannot
necessarily be expressed as linear inequalities (in terms of the decision variable) in general.
However, because of the specific structure of the solutions (4.8) for triangular Hamiltonians,
the inequalities (4.10) can be rewritten as a finite number of linear inequality constraints, as
shown in the following proposition.

Proposition 35. [Model constraints for triangular Hamiltonians] For triangular
Hamiltonians defined by (4.7), the inequality constraints (4.10) can be expressed as a fi-
nite number of inequality constraints:

Mγn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2 (i)

Mγn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2 (ii)(a)

Mγn(nT + χ−ξ
v , χ) ≥ βp(nT + χ−ξ

v , χ) ∀(n, p) ∈ N2 such that

nT + χ−ξ
v ∈ [pT, (p+ 1)T ] (ii)(b)

(4.11)


Mγn(tmin(m), xmin(m)) ≥ µm(tmin(m), xmin(m)) ∀n ∈ N,∀m ∈M (iii)(a)

Mγn(tmax(m), xmax(m)) ≥ µm(tmax(m), xmax(m)) ∀n ∈ N,∀m ∈M (iii)(b)

Mγn(t1(m,n), x1(m,n)) ≥ µm(t1(m,n), x1(m,n)) ∀n ∈ N,∀m ∈M such that

t1(m,n) ∈ [tmin(m); tmax(m)] (iii)(c)

(4.12)


Mβn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2 (iv)(a)

Mβn(nT + ξ−χ
w , ξ) ≥ γp(nT + ξ−χ

w , ξ) ∀(n, p) ∈ N2 such that

nT + ξ−χ
w ∈ [pT, (p+ 1)T ] (iv)(b)

Mβn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2 (v)

(4.13)


Mβn(tmin(m), xmin(m)) ≥ µm(tmin(m), xmin(m)) ∀n ∈ N,∀m ∈M (vi)(a)

Mβn(tmax(m), xmax(m)) ≥ µm(tmax(m), xmax(m)) ∀n ∈ N,∀m ∈M (vi)(b)

Mβn(t2(m,n), x2(m,n)) ≥ µm(t2(m,n), x2(m,n)) ∀n ∈ N,∀m ∈M such that

t2(m,n) ∈ [tmin(m); tmax(m)] (vi)(c)

(4.14)
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

Mµm(pT, ξ) ≥ γp(pT, ξ) ∀(m, p) ∈M× N (vii)(a)

Mµm(t3(m), ξ) ≥ γp(t3(m), ξ) ∀(m, p) ∈M× N
such that t3(m) ∈ [pT, (p+ 1)T ] (vii)(b)

Mµm(t4(m), ξ) ≥ γp(t4(m), ξ) ∀(m, p) ∈M× N
such that t4(m) ∈ [pT, (p+ 1)T ] (vii)(c)

(4.15)



Mµm(pT, χ) ≥ βp(pT, χ) ∀(m, p) ∈M× N (viii)(a)

Mµm(t5(m), χ) ≥ βp(t5(m), χ) ∀(m, p) ∈M× N
such that t5(m) ∈ [pT, (p+ 1)T ] (viii)(b)

Mµm(t6(m), χ) ≥ βp(t6(m), χ) ∀(m, p) ∈M× N
such that t6(m) ∈ [pT, (p+ 1)T ] (viii)(c)

(4.16)



Mµm(tmin(p), xmin(p)) ≥ µp(tmin(p), xmin(p)) ∀(m, p) ∈M2 (ix)(a)

Mµm(tmin(p), xmax(p)) ≥ µp(tmax(p), xmax(p)) ∀(m, p) ∈M2 (ix)(b)

Mµm(t7(m, p), x7(m, p)) ≥ µp(t7(m, p), x7(m, p)) ∀(m, p) ∈M2 such that

t7(m, p) ∈ [tmin(p), tmax(p)] (ix)(c)

Mµm(t8(m, p), x8(m, p)) ≥ µp(t8(m, p), x8(m, p)) ∀(m, p) ∈M2 such that

t8(m, p) ∈ [tmin(p), tmax(p)] (ix)(d)

Mµm(t9(m, p), x9(m, p)) ≥ µp(t9(m, p), x9(m, p)) ∀(m, p) ∈M2 such that

t9(m, p) ∈ [tmin(p), tmax(p)] (ix)(e)

Mµm(t10(m, p), x10(m, p)) ≥ µp(t10(m, p), x10(m, p)) ∀(m, p) ∈M2 such that

t10(m, p) ∈ [tmin(p), tmax(p)] (ix)(f)

Mµm(t11(m, p), x11(m, p)) ≥ µp(t11(m, p), x11(m, p)) ∀(m, p) ∈M2 such that

t11(m, p) ∈ [tmin(p), tmax(p)] (ix)(g)

(4.17)

where 

t1(m,n) = nTv−vmeas(m)tmin(m)+xmin(m)−ξ
v−vmeas(m)

x1(m,n) = vmeas(m)
(
nTv−vmeas(m)tmin(m)+xmin(m)−ξ

v−vmeas(m) − tmin(m)
)

+ xmin(m)

t2(m,n) = nTw−vmeas(m)tmin(m)+xmin(m)−χ
w−vmeas(m)

x2(m,n) = vmeas(m)
(
nTw−vmeas(m)tmin(m)+xmin(m)−χ

w−vmeas(m) − tmin(m)
)

+ xmin(m)

t3(m) = ξ−xmin(m)+wtmin(m)
w

t4(m) = ξ−xmax(m)+wtmax(m)
w

t5(m) = χ−xmin(m)+vtmin(m)
v

t6(m) = χ−xmax(m)+vtmax(m)
v

(4.18)

and
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

t7(m, p) = xmin(m)−xmin(p)+v
meas(p)tmin(p)−vmeas(m)tmin(m)

vmeas(p)−vmeas(m)

x7(m, p) = vmeas(p)
(
xmin(m)−xmin(p)+v

meas(p)tmin(p)−vmeas(m)tmin(m)
vmeas(p)−vmeas(m) − tmin(p)

)
+ xmin(p)

t8(m, p) = xmax(m)−xmin(p)+v
meas(p)tmin(p)−vtmax(m)

vmeas(p)−v

x8(m, p) = vmeas(p)
(
xmax(m)−xmin(p)+v

meas(p)tmin(p)−vtmax(m)
vmeas(p)−v − tmin(p)

)
+ xmin(p)

t9(m, p) = xmin(m)−xmin(p)+v
meas(p)tmin(p)−vtmin(m)

vmeas(p)−v

x9(m, p) = vmeas(p)
(
xmin(m)−xmin(p)+v

meas(p)tmin(p)−vtmin(m)
vmeas(p)−v − tmin(p)

)
+ xmin(p)

t10(m, p) = xmax(m)−xmin(p)+v
meas(p)tmin(p)−vtmax(m)

vmeas(p)−w

x10(m, p) = vmeas(p)
(
xmax(m)−xmin(p)+v

meas(p)tmin(p)−vtmax(m)
vmeas(p)−w − tmin(p)

)
+ xmin(p)

t11(m, p) = xmin(m)−xmin(p)+v
meas(p)tmin(p)−vtmin(m)

vmeas(p)−w

x11(m, p) = vmeas(p)
(
xmin(m)−xmin(p)+v

meas(p)tmin(p)−vtmin(m)
vmeas(p)−w − tmin(p)

)
+ xmin(p)

(4.19)

Proof — The inequality constraints (4.10) are of the following form:

Mcj(t, x) ≥ ci(t, x), ∀(t, x) ∈ Dom(ci) (4.20)

where Dom(ci) is a line segment of R2, ci(·, ·) is an affine function of the form (4.1), (4.2)
or (4.3) and Mcj(·, ·) is a piecewise affine function of the form (4.8). Hence, Mcj(·, ·)−ci(·, ·)
is a piecewise affine function, defined on Dom(Mcj) ∩ Dom(ci). Note that Dom(Mcj) is
convex by proposition 3 and that Dom(ci) is a line segment of R2. Hence, Dom(Mcj) ∩
Dom(ci) is also a line segment of R2, which can thus be written as Dom(Mcj) ∩Dom(ci) =
{u+ αv, α ∈ [0, 1]} for some (u, v) ∈ R4.

Let us define f(·) on [0, 1] as f : α→Mcj(u+αv). With this definition, inequality (4.20)
can be written as:

f(α) ≥ 0, ∀α ∈ [0, 1] (4.21)

Since Mcj(·, ·) − ci(·, ·) is piecewise affine and continuous, so is f(·). Let us define the
intervals in which f(·) is affine by [0, α1], . . . , [αp, 1]. Since f(·) is monotonic on the intervals
[0, α1], . . . , [αp, 1], inequality (4.21) is satisfied if and only if f(0) ≥ 0, f(α1) ≥ 0,. . . ,f(αp) ≥
0 and f(1) ≥ 0, which yields the finite number of inequalities (4.11), (4.12), (4.13), (4.14),
(4.15), (4.16) and (4.17). �

Since the model inequality constraints (4.5), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16)
and (4.17) are all linear inequalities in the decision variable y defined by (4.6), we can write
them in a compact form as follows:

Amodel(ψ)y ≤ bmodel(ψ) (4.22)

Note that the model constraints are a function of the parameters of the Hamiltonian.
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4.3 Data constraints

Similarly to the model constraints shown above, measurement data also restricts the
possible values that the coefficients (4.4) can take. The values of tmin(·), tmax(·), xmin(·),
xmax(·), qin(·) and qout(·) can be directly measured, though we assume that tmin(·), tmax(·),
xmin(·) and xmax(·) are perfectly known. The measured values of qin(·) and qout(·) are denoted
by qmeas

in (·) and qmeas
out (·) respectively. In the remainder of this dissertation, we choose the

following error model for qin(·) and qout(·):

|| qin(·)−q
meas
in (·)

qmeas
in (·) ||p ≤ emax

|| qout(·)−q
meas
out (·)

qmeas
out (·) ||p ≤ emax

(4.23)

where || · ||p is the standard Lp norm:

||f(·)||p = (
nmax∑
n=1

|f(n)|p)
1
p (4.24)

Different choices of norm are possible, but all choices of p ≥ 1 yield convex constraints by
convexity of the norm. In particular, the choices p = 1 and p = +∞ yield linear constraints,
which can be written as:

Adatay ≤ bdata for p = 1 or p = +∞ (4.25)

The choice q = 2 yields quadratic convex constraints, which can be written as:

yTQ(i)y ≤ bdata(i), (Q(i) ≥ 0), ∀i ∈ [1, imax] for p = 2 (4.26)

Note that the error model (4.23), for p = +∞ is commonly used in practice. It corre-
sponds to a situation in which we assume that the relative error on each measurement of
the sensor is bounded by a constant value. In the remainder of this dissertation, we assume
that the error model yields linear inequalities of the form (4.25) for simplicity. Note that the
results presented below could be trivially extended for quadratic constraints (4.26), yielding
quadratically constrained convex programs.

4.4 Compatibility and consistency problems

We now define two fundamental convex feasibility problems which will play an important
role in the subsequent sections.
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4.4.1 Data and model compatibility problem

Let y denote the decision variable (4.6), and let the model and data constraints be defined
as in (4.22) and (4.25) respectively. The data and model compatibility constraints can be
satisfied at the same time if and only if the following problem is feasible:

Find y

such that

{
Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata

(4.27)

When the above problem is feasible, one can estimate the minimum (respectively max-
imum) of a piecewise affine convex (respectively concave) function of the decision variable
using a LP. One can thus estimate lower and upper bounds on linear functions of the deci-
sion variable using LPs. We apply this property in section 4.5 to estimate upper and lower
bounds on linear functions of the decision variable.

In contrast, when (4.27) is infeasible, no set of value conditions satisfying both the model
and data constraints can exist. However, by relaxing alternatively the model or data con-
straints, one can define [30] two problems of interest, which are the subject of section 4.6.
The data reconciliation problem consists in finding the set of value conditions satisfying
the model constraints, that is as close as possible (in some norm sense) to satisfy the data
constraints. In contrast, the data assimilation problem consists in finding the set of value
conditions satisfying the data constraints, that is as close as possible to satisfy the model
constraints.

4.4.2 Data consistency problem

The problem (4.27) must be feasible when the following conditions are satisfied:

1 - The Hamiltonian ψ(·) satisfies (3.11) (that is, the hypograph of the Hamiltonian
contains all experimental flow-density values, as in Figure 3.2.

2 - The coefficients y associated with the actual value condition satisfy
the data constraints (4.25)

(4.28)
Indeed, if the conditions (4.28) are met, the coefficients y associated with the true value

condition will satisfy (4.25) and (4.22) by proposition 25. The problem of checking the
feasibility of (4.27) under the constraints (4.28) is referred to as consistency check. This
problem is used in section 4.7 to detect cyberattacks and in section 4.5 to give guaranteed
bounds on some traffic-related quantities.
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4.5 Estimation problems

4.5.1 Definition for general functions of traffic-related coefficients

A number of traffic-flow related quantities can be written as linear functions of the
decision variable (4.29) and can be estimated using Linear Programming, as shown in the
following proposition.

y := (qin(1), . . . , qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax , r1, . . . , rmmax) (4.29)

Proposition 36. [Estimation of linear functions] Let f(·) be a linear function of (4.6),
defined as f(y) = cTy. The possible values that f(·) can take under the linear model (4.22)
and data (4.23) constraints (for the L1 or L∞ norms) is the interval [fmin, fmax], where fmin

and fmax are solutions to the following LPs:

Minimize (respectively Maximize) cTy

such that

{
Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata

(4.30)

Note that the above estimation problem has a sense only if the compatibility prob-
lem (4.27) is feasible. Not also that when the conditions (4.28) are satisfied, (4.27) is feasible
and the true value condition y is an element of the feasible set. Hence the actual value f(y)
of f(·) is guaranteed to be in the interval [fmin, fmax].

4.5.2 Lower and upper bounds on traffic coefficients

Estimation of the initial number of vehicles using linear programming

The initial number of vehicles ∆ on the highway section can be estimated through Lin-
ear Programming. Indeed, ∆ appears linearly in the decision variable (4.6), while the
model (4.22) and data constraints (4.25) are linear inequalities in (4.6). Since the feasi-
ble set is convex by the constraints of (4.30), the possible values of ∆ such that the model
and data constraints are satisfied are ∆min ≤ ∆ ≤ ∆max, where ∆min and ∆max are solutions
to the following optimization programs:

minimize (respectively maximize) ∆

such that

{
Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata

(4.31)

We illustrate the estimation process in Figure 4.3, in which we show the evolution of
the interval [∆min,∆max] as we increase the quantity of measurement data. In this prob-
lem, we consider the spatial domain defined in section 4.1.3, between the times 11:40 AM
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and 12:10 PM. We solve (4.40) using 60 blocks of upstream boundary conditions (4.1) and
downstream boundary conditions (4.2), and a variable number of internal conditions (4.3).

Figure 4.3: Initial number of vehicles estimation using linear programming.
This figure represents the evolution of the upper and lower bounds on the initial number
of vehicles ∆ as new internal condition data is added into the estimation problem. The
horizontal axis represents the number of probe measurement data blocks µm(·, ·) as defined
in (4.3). As predicted by proposition 34, the upper bound (dashed) on ∆ decreases and the
lower bound (solid line) on ∆ increases when additional data is added into the estimation
problem.

The same framework can also be applied for estimating other functions of the decision
variable (4.6), such as the travel time across the highway section. Unlike the initial number of
vehicles, the travel time is a nonlinear and nonconvex function of the decision variable (4.6),
which makes the estimation problem more challenging.

Travel time estimation using convex programming

In order to properly define a travel time function, we first need to assume [80] that no
vehicles can pass each other, which implies in particular rm = 0 for all m ∈ M. In this
situation, known in the transportation engineering as First In First Out (FIFO), the vehicle
trajectories are the isolines of the state function. In order to properly define the travel time
function, we also have to assume that the function β(·, ·) = min

n∈N
βn(·, ·) is strictly increasing.

Note that by (4.2), imposing this last condition amounts to impose qout(·) > 0 instead of the
inequality qout(·) ≥ 0 in (4.5). With these two assumptions, the travel time can be defined
as follows. Let t be given, and i = b t

T
c. The travel time σ(t) is defined as τ − t, where

γi(t, ξ) = β(τ, χ). Since β(·, χ) is strictly increasing, we can also define the travel time as:
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σ(y, t) = min
s∈R+ s. t. β(s,χ)≥γi(t,ξ)

(s− t) (4.32)

or alternatively:
σ(y, t) = max

s∈R+ s. t. β(s,χ)≤γi(t,ξ)
(s− t) (4.33)

Since βj(s, χ) and γi(t, χ) are functions of the decision variable (4.6), the travel time
function σ(·, ·) hereby defined is a function of the decision variable (4.6), though not linear.
While we cannot estimate the travel time using a LP of the form (4.30), we can still obtain
valuable information on upper and lower bounds of the travel time function using LPs, as
outlined in the following proposition.

Proposition 37. [Upper and lower bounds on travel time function] Let us assume
that (4.27) is feasible, that is, the model and data constraints are compatible. Let two times
t and τ be given, and let i = b t

T
c and j = b τ

T
c. We have that τ − t is a lower bound on

the travel time σ(y, t) (under the model and data constraints) if and only if the following
problem is infeasible:

find y

such that


Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata
βj(τ, χ)− γi(t, ξ) ≥ 0

(4.34)

Similarly, τ − t is an upper bound on the travel time σ(y, t) under the model and data
constraints if and only if the following problem is infeasible:

find y

such that


Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata
βj(τ, χ)− γi(t, ξ) ≤ 0

(4.35)

Proof — We prove that τ − t is a lower bound on the travel time function if and
only if (4.34) is infeasible. Let us assume that (4.34) is infeasible. This amounts to saying
that βj(τ, χ) < γi(t, ξ) whenever the model and data constraints Amodel(ψ)y ≤ bmodel(ψ)
and Adatay ≤ bdata are both satisfied. Hence, since β(τ, χ) = βj(τ, χ) by construction, this is
equivalent to saying that β(τ, χ) < γi(t, ξ) whenever the model and data constraints are both
satisfied. By the definition (4.33) of σ(y, t), this is equivalent to σ(y, t) > τ − t, whenever y
satisfies the model and data constraints, which completes the proof. The proof relative to
the upper bound is similar, and involves the definition (4.32) of σ(y, t). �

Note that the feasibility programs (4.34) and (4.35) enable us to compute the largest
lower bound σd(t) and the smallest upper bound σu(t) on the travel time by trial and error.
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We illustrate the above results by computing the upper and lower bounds on the travel time
function, using the experimental setup of section 4.1.3, between times 11:40 AM and 12:10
PM. For this, we check the feasibility of problems (4.34) and (4.35) for τ = jT , and plot
in Figure 4.4 respectively the lowest and highest value of jT such that (4.35) and (4.34)
are respectively infeasible. The lowest value jmaxT for which (4.35) is infeasible implies that
σu(t) is in the interval [(jmax − 1)T − t, jmaxT − t]. Similarly, the highest value jminT for
which (4.34) is infeasible implies that σd(t) is in the interval [jminT − t, (jmin + 1)T − t]. As
stated in proposition 34, the distance between the upper and lower bounds decreases as more
data is added into the estimation problem.
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0.7

Figure 4.4: Travel time estimation using linear programming.
In this figure, the horizontal axis represents the time, while the vertical axis represents the
travel time. The upper and lower bounds on the travel time function are represented by
a dashed and solid line respectively. Top: In this figure, we consider 60 upstream and
downstream boundary conditions blocks and 20 internal condition blocks. Bottom: In
this figure, we increase the number of internal condition blocks to 45. As can be seen, the
corresponding bounds on the travel time function are improved since more data is added
into the estimation problem, following proposition 34.

Remark — The largest lower bound (or smallest upper bound) on travel time cannot
be directly estimated using convex programming. Indeed, by checking the feasibility of (4.34)
for increasing values of τ = nT , we can find the integer j such that σd(t) ∈ [jT−t, (j+1)T−t]
(in this situation, (4.34) is infeasible for τ = jT , and becomes feasible for τ = jT +1). When
such a j is identified, σd(t) is the solution to the following optimization program:
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minimize z
qout(j)

such that


Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata
βj(

z
qout(j)

, χ)− γi(t, ξ) ≤ 0

(4.36)

The decision variable of (4.36) can be written as (y, z), where y is the decision variable
defined by (4.6). The constraints Amodel(ψ)y ≤ bmodel(ψ) and Adatay ≤ bdata are both linear
in the new decision variable (they indeed depend only upon y). The constraint βj(

z
qout(j)

, χ)−
γi(t, ξ) ≤ 0 is also linear, since it can be written as:

j−1∑
k=0

qout(k)T + qout(j)(
z

qout(j)
− jT )

−∆−
i−1∑
k=0

qin(k)T − qin(i)(t− iT ) ≤ 0

(4.37)

The choice of z
qout(j)

in the objective function is made to enforce the linearity of the

constraints (and it plays the role of τ in the previous equations). The objective is however
nonconvex, since (z, q) → z

q
is not convex. Problem (4.36) thus cannot be solved using

convex programming, but may still be solved numerically using other optimization methods.
�

4.5.3 Guaranteed ranges for traffic coefficients estimation

The upper and lower bounds on functions of the decision variable investigated above do
not necessarily hold in practice, since the true value y of the decision variable (4.6) may not
satisfy the model and data constraints. However, when the conditions (4.28) hold, the values
of the upper and lower bounds are guaranteed. Indeed, when (4.28) is satisfied, y belongs
to the set {y|Amodel(ψ)y ≤ bmodel(ψ)} ∩ {Adatay ≤ bdata}, which implies

f(y) ≥

minimize f(y)

such that

{
Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata

(4.38)

and

f(y) ≤

maximize f(y)

such that

{
Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata

(4.39)

In order to obtain guaranteed bounds in practice, one has to choose the model parameter
such that the condition (4.28) holds. In the context of traffic flow, the typical values of the
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model parameter are accurately known, and do not vary significantly between experimental
sites. They are available from [75] for instance. In order to impose (4.28) on all practi-
cal traffic scenarios, one simply has to overapproximate these values to define the model
parameters.

4.6 Data assimilation and data reconciliation problems

4.6.1 Problem definition

In the field of distributed parameters system estimation, the problems of data assim-
ilation [47] and data reconciliation [37] are closely linked. The data assimilation process
consists in finding the value of the state of the system that satisfies the observations, and
that is the closest to being a solution to the evolution model. In contrast, the data reconcil-
iation process consists in finding a solution to the evolution model that is the closest to the
observations. Given the framework detailed above, the data assimilation and reconciliation
problems are related to the solutions of the following convex optimization program.

minimize ||y1 − y2||q

such that

{
Amodel(ψ)y1 ≤ bmodel(ψ)
Adatay2 ≤ bdata

(4.40)

In the above optimization program, we have to choose q = 1 or q = +∞ to obtain a
linear objective. Two situations can arise:

• If the optimal value of (4.40) is 0, the model and data constraints can be satisfied at the
same time. In this situation, the data assimilation and data reconciliation problems
coincide in a setting in which data and model are compatible. The solution is not
necessarily unique.

• If the optimal value of (4.40) is nonzero, the optimal solutions yoptimal
1 and yoptimal

2

enable us to compute the upstream, downstream and internal conditions respectively
associated with the data reconciliation and data assimilation problems. Note that these
solutions may not be unique. The value conditions associated with yoptimal

1 satisfy the
model constraints by construction, i.e. all upstream boundary, downstream boundary
and internal conditions blocks apply in the strong sense [8, 13]. They however do
not satisfy the data constraints, but are as close as possible in the || · ||q sense to

satisfy them. In contrast, the value conditions associated with yoptimal
2 satisfy the data

constraints by construction, but do not satisfy the model constraints (they are as close
as possible to satisfy them in the || · ||q sense).
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4.6.2 Numerical example

In this application, we consider the spatial domain defined in section 4.1.3, between
the times 11:40 AM and 12:05 PM for data collected on February 8th, 2008. We use the
following Hamiltonian parameters: kc = 0.048 m−1, v = 24.6 m/s, w = −4.5 m/s, and a
maximal relative error level of emax = 0.01. We solve (4.40) for q = 1, using 604 variables
and 17415 linear constraints. For this specific application, the optimal value of (4.40) is
+8.58, which ensures that the data assimilation and data reconciliation problems are well
defined. As mentioned above, yoptimal

1 and yoptimal
2 enable us to compute the value conditions

associated with the data assimilation and data reconciliation problems. We compute the
solutions to (2.5) associated with these value conditions, and display them in Figure 4.5. The
solution to the data reconciliation problem at the top of Figure 4.5 satisfies all the boundary
and internal conditions that are prescribed on it. The model applies in the strong sense,
however the decision variable violates the data constraints (4.25). In contrast, the upstream
and downstream boundary conditions do not apply everywhere in the solution to the data
assimilation problem (Figure 4.5, center). In the illustrated data assimilation example, the
data constraints some internal conditions to be set in a way that is incompatible with the
upstream and downstream boundary conditions. This can be seen for instance around time
t = 1100s: a back propagating wave hits the upstream boundary condition at x = 11000m,
which prevents it from applying between times t = 1100s and t = 1400s.
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Figure 4.5: Solutions to data assimilation and data reconciliation problems.
Top: Solution to the data reconciliation problem, in which the model constraints are satis-

fied, but the data constraints are not. Center: Solution to the data assimilation problem,
in which the data constraints are satisfied, but the model constraints are not. Both problems
are solved simultaneously by (4.40). Bottom: Difference (in number of vehicles) between
the solution to the data reconciliation problem and the solution to the data assimilation
problem.
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4.7 Cybersecurity, sensor fault detection and privacy

analysis problems

4.7.1 Consistency problems applied to sensor failure detection

The framework developed in section 4.4 can also be applied to detect failures in sensor
networks. In this section, we are interested in checking the consistency of the data generated
by sensors of the PeMS system [103], which is a network of loop detectors measuring traffic
on California highways. The PeMS system is one of the data feeds currently integrated in
the Mobile Millennium traffic monitoring system [98, 101], operated jointly by Nokia and
UC Berkeley. One of the main challenges arising when using data from the PeMS system is
the automated identification of the mislocated or faulty sensors. Previous approaches such
as [67] have successfully implemented sensor fault detection algorithms based on statistical
correlation with adjacent sensors. Our approach is different though, since it can guarantee
using the PDE model that at least one of the sensors in an array of sensors is failing.

We solve the fault detection problem either by checking the feasibility of the consistency
problem (4.27) using a Hamiltonian satisfying (4.28) on all pairs of consecutive sensors
present on the highway network.

We assume that the maximal allowable error of a PeMS sensor is emax = 0.3 in (4.23).
There are multiple sources of uncertainty arising when dealing with loop detectors, such as
pavement depth, loop layout, which typically creates maximal errors of this magnitude. We
also choose an Hamiltonian ψ(·) satisfying (4.28) by overapproximating the tabulated values
of [75]: kc = 0.05 m−1, v = 30 m/s, w = −7 m/s.

As an application, we consider five consecutive PeMS sensors, labeled 401339, 401714,
401376, 400609 and 400835 respectively, as illustrated in Figure 4.6. For each one of the
four adjacent pairs of sensors, we compute the minimal value of the error emax such that the
consistency problem (4.27) is feasible during a one month period at the frequency of one day.
The distribution of these results is shown in Figure 4.6. Note that since emax appears linearly
in the data constraints, the minimal value of the error emax such that (4.27) is feasible is also
a LP.

Figure 4.6 shows that there is no indication of malfunction for the first and the last pairs
of sensors. Note that the success to the minimal error test does not guarantee that a pair
of sensors is working, since the actual error of the pair of sensors can be above the maximal
allowable error.

The second and third pairs exhibit errors that are higher than 0.3, which indicates a
malfunction of the corresponding pairs. Further analysis has shown that the pair 401714−
400609 is passing the minimal error test and thus that sensor 401376 is likely incorrectly
mapped.
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Figure 4.6: Faulty sensor detection.
We consider here the traffic flow on highway I880-S near Oakland, CA. The minimal error
estimation problem (a LP) is run each day on a one-month period. The sensors of interests
are highlighted in the top figure and their corresponding minimal error distribution over
the one-month period is represented in the four bottom figures. Bottom: The top left
and bottom right subfigures represents the minimal errors of the pair 401339− 401714 and
40609− 400835. These minimal errors fall in the allowable range. In contrast, the minimal
errors of the pair 401714− 401376 and 401376− 400609 are above the allowable range. This
means that there must exist a fault in one of the sensors 401714, 401376, or 400609.
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4.7.2 Consistency problems applied to cybersecurity

One type of cyberattack [4] consists in faking sensor data and sending it to the monitoring
system as if it was originating from valid sensors. Detecting this form of cyberattack is a
complex problem in general. Detecting fake data that follows some pattern (for instance if
the faked data is periodic) or that falls out of physically reasonable bounds is easy. However,
detecting fake data that is both random and consistent with the expected value of sensor
measurements is difficult.

A possible approach for solving this problem is to check if (4.27) is feasible, under the
assumption (4.28). If (4.27) is feasible, this implies that the data is consistent with our
model and data assumptions. Note that this does not guarantee that no cyberattack occurs.
Indeed, an attacker can send fake data in a way that is consistent with the model and error
levels assumptions. However, if (4.27) is infeasible, at least one of the assumptions (4.28)
is false. Either the Hamiltonian does not satisfy (4.28), or the error model (4.28) is wrong.
Any of these two situations can denote a cyber-attack if the conditions (4.28) are known to
hold. However, note that other phenomena such as sensor failures can also cause (4.27) to
be infeasible. The same framework can be applied to sensor fault detection.

We illustrate the cyberattack detection method (4.27) by simulating an attacker sending
fake random values of xmin(·), xmax(·), tmin(·) and tmax(·), leading to the construction of new
fake internal conditions using (4.3). The values of xmin(·), xmax(·), tmin(·) and tmax(·) are cho-

sen randomly as follows. The speed xmax(·)−xmin(·)
tmax(·)−tmin(·) associated with the internal condition is

chosen uniformly in an interval [vmin, vmax]. The coefficients satisfy xmin(·) ≥ ξ, xmax(·) ≤ χ,
tmin(·) ≥ 0 and tmax(·) ≤ nmaxT . In the numerical applications, we consider the experimental
setup described in section 4.1.3, between times 11:40 AM and 12:00 PM. We use 30 exper-
imental internal conditions (4.3), 40 experimental upstream boundary conditions (4.1) and
40 experimental downstream boundary conditions (4.2). We progressively add fake internal
conditions (4.3) and solve problem (4.40) for q = 1, and for a Hamiltonian satisfying (4.28).
Note that (4.27) is feasible if and only if the solution to (4.40) is zero. Thus, the solution
to (4.40) is a measure of the “distance” or incompatibility between data and model. In order
to facilitate comparisons and reproduce the results, each result in Figure 4.7 top and bottom
was averaged over 10 different choices of fake internal conditions.

As illustrated in Figure 4.7 top, adding fake speed measurements increases the incom-
patibility between data and model. The incompatibility between data and model is 0 when
no fake measurements are added, which is consistent with the fact that (4.28) holds. Note
that adding fake speeds does not have a significant impact on the level of incompatibility
between data and model when the fake speeds are close to the average speed on the highway
section (20 mph in this experiment) which is also consistent with the physics of the problem.

Figure 4.7 bottom shows that the configuration of the measurement data plays a critical
role. In this figure, we study the influence of the measurement data on the detection of
cyberattacks. For this, we consider four different subsets of 30 internal conditions each,
extracted from our measurement data. An example of subset of 12 internal conditions among
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28 available measurements is illustrated in Figure 4.8. We fix the fake speeds range to [30
mph, 35 mph], and show the solution to (4.27) for these four configurations, represented on
the horizontal axis. As can be seen from this figure, depending on the configuration of our
measurement data, we can have very different ranges of level of incompatibility between data
and model, for identical number of actual measurements, number of fake internal conditions
and range of fake speeds. In the configurations ]1 and ]4, it is very difficult to detect that a
spoofing attack occurs, since no change in the optimal value of (4.40). However, the spoofing
attack is easily detected in the configuration ]2, even though all configurations contain the
same amount of measurement data. These results thus show that it is almost impossible
to determine if detecting a cyberattack is easy based on the amount of measurement data
alone.

4.7.3 Privacy analysis problems

Another possible application of the framework defined in section 4.5 is the analysis of
user privacy using linear programming. The label of the vehicle represented by the internal
condition µm(·, ·) defined by (4.3) is Lm. In practical problems, the same vehicle sends
different packets of information, representing different internal conditions (4.3). To what
extent is it possible to “reidentify” one vehicle, i.e. to track it by identifying the pieces of
data that came from the same vehicle?

Standard methods [60] do not take into account the model constraints: they usually
try to reidentify vehicles under the assumption that vehicles maintain a relatively constant
speed. While this is true for a large number of traffic scenarios, it does not take into account
the underlying model, and can fail if the the traffic speeds change significantly through the
computational domain.

If we assume that vehicles do not pass each other (this implies rm = 0 for all m ∈ M),
the minimal and maximal number of vehicles between two different internal condition blocks
µi(·, ·) and µj(·, ·) is solution to the following LP:

minimize (or maximize) |Li − Lj|

such that


Amodel(ψ)y ≤ bmodel(ψ)
Adatay ≤ bdata
rm = 0 ∀m ∈M

(4.41)

The above LP enables us to identify situations in which the privacy of users could be
breached. Indeed, when the maximal number of vehicles between µi(·, ·) and µj(·, ·) is zero,
these boundary conditions represent the same vehicle. In contrast, when the minimal number
of vehicles between µi(·, ·) and µj(·, ·) is nonzero, these boundary conditions cannot originate
from the same vehicle. We thus have three cases:
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1. If the optimal value |Li−Lj|max of the maximization problem (4.41) is zero, then µi(·, ·)
and µj(·, ·) have been generated by the same vehicle.

2. If the optimal value |Li − Lj|min of the minimization problem (4.41) is nonzero, then
µi(·, ·) and µj(·, ·) cannot have been generated from the same vehicle.

3. Other cases are inconclusive

We show an example of vehicle reidentification in Figure 4.9, using the experimental
setup of section 4.1.3.

In practical computations, given an internal condition µi(·, ·), there may exist multiple
j ∈ M such that the solution to the minimization problem (4.41) is zero. If this happen,
we lost track of vehicle i, which can be desirable in the context of traffic flow engineering
(see [60] for an analysis of user privacy in mobile traffic sensing systems).
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Figure 4.7: Cyberattack detection using linear programming.
In these figures, we represent the solution to (4.40) as a color map. Low values are represented
as dark areas, and correspond to situations in which the “compatibility” between model and
data is “good”, i.e. lower values of ||y2− yi|| in (4.27). High values are represented as light-
colored areas, and denote a higher degree of incompatibility between the model and data
constraints. Top: The horizontal axis in this figure represents the lower bound k of the
interval [k mph, k+5 mph] in which the fake speed data is drawn. The vertical axis represents
the number of fake internal conditions added. For instance, the cell (15, 12) corresponds to
12 fake internal conditions for which the speed is in the interval [15 mph, 20 mph]. As can
be seen from this figure, the distance increases when more fake measurements are added into
the estimation problem, and when they correspond to a speed that is far away from the true
average speed (around 20 mph in this application). Bottom: This figure illustrates the high
sensitivity of the solution to (4.40) with respect to the available measurement data. In this
figure, we consider four different sets of 30 actual internal boundary conditions each. The
procedure used for choosing a random subset of the available measurement data is illustrated
in Figure 4.8. For each of these subsets (configurations), we add an increasing quantity of
fake internal conditions, associated with random speeds ranging in [30 mph, 35 mph]. As
can be seen, the results vary dramatically depending on which subset of the available data
was chosen, even if the number of fake internal conditions is identical.
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Figure 4.8: Illustration of the choice of a subset of measurement data.
In this figure, each segment represents the domain of an internal condition (4.3), obtained
using experimental data. We illustrate the choice of two subsets of 12 internal conditions
among 28 speed measurements, which we call “configuration”. The same process applies for
Figure 4.7, bottom, with four different configurations involving 30 internal conditions each
among 94 available speed measurements.
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Figure 4.9: Vehicle reidentification using linear programming.
This figure represents the domains of definition of three internal conditions of the form (4.3).
The horizontal axis represents the time, while the vertical axis represents the spatial domain.
For this specific problem, the solutions to (4.41) are as follows: the minimal value of |L1−L2|
is zero, the maximal value of L1−L2 is 196, and the minimal value of |L1−L3| is 164. This
thus guarantees that the block ]3 cannot originate from the same vehicle as the block ]1.
The block ]2 can possibly come from the same vehicle as the block ]1 (and indeed is), but
we have no guarantee of this since the maximal possible value of L1 − L3 is nonzero.
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Chapter 5

Conclusion

5.1 Contributions

This dissertation presented a new computational method for solving the Hamilton Ja-
cobi (HJ) partial differential equation (PDE), as well as a new convex optimization-based
estimation framework based on this computational method. Using the control framework
of viability theory, we characterized the solutions to the HJ PDE by a Lax-Hopf formula
and derived an important inf-morphism property. With these properties, we showed that
the solution associated with piecewise affine initial, boundary and internal conditions can be
computed as the minimum of solutions associated with affine initial, boundary and internal
conditions. We then showed that the later can be computed explicitly, which enables the
construction of a semi-analytic numerical scheme for computing the solutions to HJ PDEs.
The key advantages of this numerical scheme over standard computational methods are its
exactness and fast computational speed.

The semi-explicit expression of the solutions enabled us to derive the HJ PDE model
constraints explicitly. Using the Lax-Hopf formula, we proved that these model constraints
are convex. Given that the measurement data constraints are also convex, a large number of
estimation problems for which the model is a HJ PDE can be posed as convex-optimization
programs. We presented various practical applications of this framework, which were im-
plemented as Linear Programs. Numerical applications using experimental data sets were
performed.

Some of the estimation problems developed in this thesis have been implemented in the
Mobile Millennium system, a real-time traffic flow monitoring system operated jointly by
UC Berkeley and Nokia. The main application of this framework to Mobile Millennium has
been the detection of faulty sensors. For this specific application, a set of algorithms runs
in real time and checks the consistency of the data generated by more than 2000 sensors in
Northern California every 30 seconds. These algorithms have already identified a number
of faulty and misplaced sensors, which enables the Mobile Millennium system to run faster
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and with greater confidence.

5.2 Open problems

5.2.1 Mathematical problems

Numerous mathematical and computational problems remain for the general problem of
control and estimation of highway networks. The extension of this framework to the highway
network as a whole is a very complex problem. Indeed, in networks, the boundary conditions
of each computational domain are not necessarily known because sensors are not necessarily
located at the edge of each link. Hence, while we assumed that the boundary conditions of
the computational domain were known in the numerical examples presented in this thesis,
this assumption is not necessarily satisfied in practice. In addition, the coupling between
links induces additional mathematical difficulties when relating the model compatibility con-
straints from link to link. This is a major problem, which only has a partial solution in the
case of LWR PDEs [53], and is still open for HJ PDEs.

The framework presented above could also be extended for the case in which we con-
sider the viscosity solutions to the HJ PDE. While Barron-Jensen/Frankowska solutions and
viscosity solutions to Hamilton-Jacobi equations can be shown to be equivalent for Lipschitz-
continuous initial and boundary conditions, they differ when internal boundary conditions
are present. In this case, the solution associated with the scalar conservation counterpart of
the HJ PDE is the derivative of the viscosity (and not the B-J/F) solution of the HJ PDE.
Hence, in order to extend this estimation framework to scalar conservation laws, one needs
to derive the model compatibility constraints for viscosity solutions, which differ from the
model constraints established in this dissertation. This extension would enable the estima-
tion of quantities related to the density and flow functions, which are more easily observed
than their integrals (the Moskowitz function).

Finally, the explicit mathematical link between weak boundary conditions in HJ PDEs
and weak boundary conditions of the associated conservation laws is still not established.
Neither is the proper functional space requirement needed to unify both theories.

5.2.2 Application problems

This framework has yet to be extended to other traffic estimation problems, such as queue
length estimation, which is of great interest for traffic estimation in urban environments.
These problems are usually driven by the periodic forcing of the boundary conditions by
traffic lights or stop signs which results in periodic behavior of the flow. Solving such
problems requires the identification of free-flow and congested areas, which is usually difficult
since it involves the derivatives of the Moskowitz function. Thus, the resulting problems
would be non-convex by nature, but may still be computationally tractable. Also, by nature
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of the problem, shock waves appear periodically, which need to be incorporated in the
method.

5.3 Future work

Future work will be first dedicated to extending the framework presented in this thesis
to systems modeled by conservation laws. Preliminary analysis shows that if we consider the
viscosity solutions to the HJ PDE, the resulting model compatibility constraints become non-
convex, and the estimation problems take the general form of mixed integer linear programs
(MILPs). MILPs are significantly harder to solve than LPs, but may still be tractable in
real time for specific systems.

Estimation on general highway networks will be the second focus, in particular the prob-
lem of integrating a set of boundary condition constraints into the estimation problem. The
state of networked highway sections is more complex to estimate, since the sections interact
at their respective boundaries. Hence, the estimation of the state of traffic on the highway
network cannot be decoupled into separate traffic estimation problems on highway sections.
Integrating the boundary condition constraints between sections into the respective estima-
tion problems yields a non-convex problem. Again, this problem may still be decomposed
into a series of convex problems.

Finally, a promising avenue is to study how flow models can enable us to better esti-
mate pollution levels in urban environments. While pollution can be directly measured and
mapped, the integration of traffic flow estimates (with traffic flow emission models) into
the problem of estimating urban pollution will improve the quality of the estimation. This
problem is mathematically very challenging because of the coupling of both phenomena. It
will however open the door to traffic flow control for controlling pollution levels in urban
environment to safe limits.
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