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Abstract

Design and Implementation of a Hypervisor-Based PlatfanDiynamic Information
Flow Tracking in a Distributed Environment

by

Andrey Ermolinskiy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

One of the central security concerns in managing an orgaoiizes protecting the flow of
sensitive information, by which we mean either maintairangaudit trail or ensuring that
sensitive documents are disseminated only to the autltbpiadies.

A promising approach to securing sensitive data involvesgieng mechanisms that
interpose at the software-hardware boundary and track ataedf information with high
precision — at the level of bytes and machine instructiomsefgrained information flow
tracking (IFT) is conceptually simple: memory and registesntaining sensitive data are
tagged with taint labels and these labels are propagatedar@ance with the computation.
However, previous efforts have demonstrated that fultessydFT faces two major practi-
cal limitations — enormous performance overhead and txjplbsion. These challenges
render existing IFT implementations impractical for dgph@nt outside of a laboratory
setting.

This dissertation describes our progress in addressirgg tbleallenges. We present
the design and implementation of PIFT (for Practical Infation Flow Tracking) — a
hypervisor-based IFT platform that achieves substangdiopmance improvements over
previous systems and largely eliminates the problem ofdtgaint explosion. PIFT takes
advantage of spare CPU cores to track the flow of informatsymehronously and in par-
allel with the primary instruction stream.

To the best of our knowledge, PIFT is the most efficient fydtem IFT platform avail-
able at the time of writing and is the only implementationt thapports real-time tracking
of information flow in graphical desktop environments.
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Chapter 1

Introduction

“Information wants to be free because it has become so chealistribute,
copy, and recombine — too cheap to meter. It wants to be exednscause it
can be immeasurably valuable to the recipient. That tenaidmot go away.”

Stewart Brand, 1987.

One of the central security concerns in managing an orgamiizégs controlling the
flow of sensitive internal information, by which we mean emsgithat data and documents
can be accessed only by the authorized parties. The recgntyhdf major leakages of
sensitive information [85, 54] has demonstrated that maggrazations, including those
in government, education, and the commercial world, arerséy deficient in this regard.
This is hardly surprising — as our reliance on computingdsfructure continues to grow,
it becomes increasingly difficult to track the disseminatad sensitive data and enforce
confidentiality policies. Considering the sheer numberdainersity of information transfer
channels that are available to users in a typical IT enviremn{e-mail, instant messaging,
wikis, blogs, databases, distributed filesystems, andplatstorage devices, to name just
a few examples), tracking the flow of information acrosstadise channels may seem like
a daunting, if not altogether impossible, task.

Unauthorized disclosure of private or classified inforrmatcan cause catastrophic
damages to the business interests of an organization aedtenrthe well-being of the
broader society. As an illustrative example, consider tigali+-publicized incident [85]
from March 2009, when one of the Transportation Security Ausiration employees in-
advertently posted a 93-page internal TSA document to agulgbsite on the Internet.
This federal document, marked “sensitive informationtyes as a manual for airport se-
curity screening personnel and contains detailed degmmgpbdf passenger screening proce-
dures. This leak of information revealed the criteria foemption from certain screening
measures and could offer insight into how to sidestep digErurity.

1



After all the money and effort devoted to developing new sgctechnology, why is
it so hard to prevent leaks of sensitive information even ellAmanaged organizations
with well-intentioned employees? Although it would be imgent to place the blame on
any one factor, it is difficult to overestimate the significarof basic human error. Today,
protecting sensitive material requires users to remenuipelerstand, and always obey the
appropriate dissemination restrictions. Yet we know thaéality, users tend to be careless
and impatient; they occasionally email documents to thengnoarties, transfer sensitive
data to insecure machines, or otherwise inadvertentlyvadlata to leak. Stricter security
regulations are not necessarily the answer because, as @areN notes....when security
gets in the way, sensible, well-meaning, dedicated peagleldp hacks and workarounds
that defeat the security84]. According a recent survey by ISACA, 35% of corporate
employees admitted that they hakeowinglyviolated corporate data dissemination re-
strictions at least once. 42% have e-mailed confidentiaérn@tto their home system and
22% have transferred sensitive corporate data using aljp@itiSB storage device, acting
in direct violation of corporate rules [2].

Can technology assist in identifying such manifestatidracelessness and mitigating
their consequences? We believe that the answer is a clesih, ty@ devising an effective
and practical technological solution to this problem wdbuire addressing a number of
complex issues. One of the most significant challenges ig¢gacking the vast array of
information transfer channels available to users and atowy for the myriad ways, in
which data can be manipulated, transformed, and transdferre

Most of the widely-used operating systems and user apitabffer very little as-
sistance in this regard. Simply put, current OSes and agipits provide mechanisms
for mediating access to data objects, such as files or databbkes, but are not well-
positioned to track subsequent manipulations on thesewgad the flow of information
between them. Consider a user, who opens a confidential dexintent in her word pro-
cessor for editing. In a rare moment of carelessness, shescagparagraph of this text
into a public document, on which no dissemination restiitdiare imposed. This elemen-
tary action produces a second copy of the confidential papagibut this new copy lacks
any association with the original document, its confideityiatatus, and restrictions on its
dissemination — a situation that is precariously close tormation leakage.

We believe that preventing incidents of this nature, witre@eomplete bottom-up re-
design of the software stack, requires a comprehensiverangparent platform for track-
ing the flow of user data, intercepting the channels of inftion exchange, and enforcing
security policies. Our hypothesis is that (1) a comprehenaformation flow tracking plat-
form that works with unmodified applications and operatipgtems is within the realm of
being practical on today’s commodity hardware; and (2) zigieedhypervisorprovides
the most effective and natural architectural foundatiarstech a platform.

To explore this hypothesis, we present PIFT (Practicalrmédion Flow Tracking) —
a novel security architecture and a set of associated meschsifor fine-grained informa-
tion flow tracking in enterprise environments. Our highelegoal is to develop a robust
information management platform that will enable orgatiares to specify and enforce
end-to-end policies concerning the dissemination andaushgensitive information.



1.1 Design Goals for a Comprehensive IFT Platform

To provide context and delineate the scope of this dissentatve begin by describing
the central goals of PIFT and the overall principles thatlgdiits design. We begin by
noting that none of the incidents cited above were causedabgimus activity on the part
of insiders; the cited leaks were all caused by human ermbcarelessness. Although ma-
licious entities (such as rogue employees, hackers, anglara) undoubtedly pose a threat
to security, a large fraction of data breaches occurrinén.S. (77% percent according
to a recent survey [49]) can be attributed to negligence ackl &f discipline among em-
ployees. Hence, our goal in PIFT is to design a practicaksysif safeguards — one that
recognizes the limitations of human users and focuses oddhenant issue of internal
carelessness, rather than the far less common problemaoftadt. PIFT aims to provide a
comprehensive deployable andusableinformation flow tracking (IFT) platform. More
specifically:

1. To becomprehensive PIFT should track the flow of information across all compu-
tational elements, data storage devices, and communiczti@nnels.

2. To beeasily deployable our platform should not require significant reconfigunatio
in existing IT environments and should be fully compatibléwidely-deployed op-
erating systems and applications. While there are othéntgues that can produce
simpler and perhaps more efficient mechanisms by modifyperating systems,
application runtimes, or applications themselves, thesertiques face a very signif-
icant barrier to adoption given the large investment alyeadde in legacy software
stacks.

3. To beadopted for everyday usean IFT platform has to be efficient and not demon-
strably impair user-perceived application performancertdermore, it has to be
correct and parsimonious in how it propagates the sertgistatus.

To avoid confusion, it is important to state explicitly oussamptions regarding the
environment, in which PIFT intends to operate:

1. Users are benign, in that they do not intentionally exdfiirdata, but are intolerant of
inconvenience and liable to forget dissemination restmat.

2. The software used by these users is non-malicious, ngémat it does not attempt
to circumvent our information flow tracking techniques.

This dissertation describes how to devise a comprehenBivellatform for sensitive
user data that functions in an environment, where thesergggans hold. Viewed from
a different angle, these assumptions reveal our explicitgmals — what we do not hope
to accomplish in the context of this dissertation. In broawinis, we do not hope to track
information flow and enforce policies in the presence of sstpdated malicious activity. In
particular, we do not try to protect sensitive data agalmest by rogue employees or against



exfiltration by malicious or compromised software. Mal@rdlcode intent on stealing has
myriad channels (includingnplicit data flowq23] andcovert information channelg8]),
through which it can siphon off sensitive data. Maliciouspéogees can exploit the ana-
logue gap (for instance by printing sensitive documentsayep [76] or taking a picture
of the screen showing sensitive data [83]) for the same marpdracking all these chan-
nels in a comprehensive manner is technically hard for akiexg information flow control
systems and we do not attempt to close these gaps with PIFT.

1.2 The Design Philosophy of PIFT

Practical Information Flow Tracking (PIFT) is a novel infieation security architecture
that focuses on preventing sensitive information leakaltieg from the actions of well-
intentioned, but forgetful and careless users. In generaig, this requires mechanisms for
tracking the propagation of user data as it is manipulatetborputed upon, intercepting
access to exit points, and enforcing the appropriate sgawstrictions. The high-level
goals and assumptions outlined in the previous subsective led us to adopt a specific
set of design principles, which we now describe:

1. Granularity of information flow tracking : In order to provide a comprehensive
solution and reduce the risk of false positives, we trackfliwe of information at
byte-levelgranularity. Furthermore, since PIFT must retain complattwith un-
modified applications and can make no assumptions regatdeiginternal struc-
ture and data manipulation behavior, the most natural degi¢gon is to interpose at
the software-hardware boundary and track the computatitimedevel ofmachine
instructions

An alternative strategy would be to maintain a coarsemg@diview of data sensitiv-
ity (e.g., page-level labels for the information stored atatile memory and sector-
level labels for data residing on disk). While this approacild alleviate the storage
and computational burden incurred by our current implewte, it would sacrifice
the precision of tracking and make the system more susdéeptifalse positives. For
instance, copying a block of text from a world-readable fijento a sensitive file,
and then copying the same text frd to F3 could causé; to wrongly acquire the
sensitivity tag with this strategy.

2. Point of interception and enforcement Since PIFT focuses mainly on restricting
the flow of information between users in an organizationysgcchecks need to be
performedonlywhen the data is externalized in some fashion and no liroitatheed
to be imposed on how the data is handled locally on a usersfimacHence, PIFT
intercepts device 1/O requests that externalize data ieraenforce policies, but
does not try to prevent application code from touching ofgraring computation
on sensitive data. As we explain below, this method of padinforcement enables
several novel and important performance optimizations.
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Given the above design choices, an architecture based opeavisor with byte- and
instruction-level information flow tracking appears to I tmost natural and practical
solution. Modern hypervisors are fully compatible withdeg software stacks, yet have
sufficient privileges to monitor and track the computatiorihe guest machine. Further-
more, hypervisors routinely virtualize and mediate actesit points (i.e., output devices
such as network interfaces and block storage devices). PéRTreuse this functionality
to intercept the data at these exit points and impose sgalméicks. Finally, although hy-
pervisors add management complexity, we believe that vaghrécent rapid increase in
hypervisor deployment, it is not unreasonable for a secadtution to require their use on
every endhost that handles sensitive data.

PIFT is based upon the theory that a hypervisor-based irgtom flow tracking plat-
form strikes the most reasonable balance between secusiility, deployability, and
performance. In the broader perspective, this view apgeaoe gaining general accep-
tance in the research community and a similar position has lagticulated in a recent
paper by another research team [98].

Instruction-level information flow tracking is conceptlyaimple: memory containing
sensitive data is tagged withint labelsand the label values are propagated in a manner
that mirrors the computation. The typical implementatippr@ach for full-system IFT in-
volves running the guest system in a hardware emulator @sI€EMU), which has been
augmented with machine instruction analysis and tainkingccapabilities. Both opera-
tions incur very significant computational costs — prior won full-system IFT reports
slowdown factors in the range 50-200x relative to unmoeiianative code execution. Al-
though such levels of overhead are acceptable for the pespdffline security analysis,
which has been the dominant focus of previous IFT efforts,tatget usage scenario re-
quires the ability to track the movement of sensitive datd @mforce security policies in
real-time, minimizing the user-perceivable slowdown.

The runtime performance costs associated with previousictfon-level IFT systems
render them unsuitable for the purpose of real-time infalonelow tracking. This disser-
tation presents our progress on addressing the perfornchatlenges and proposes several
novel optimizations that enable us to reduce the runtimeh@as to a much more man-
ageable level. The key insight behind our performance apétions is that emulation and
information flow tracking can be viewed as two separate amrdthfe most part, indepen-
dent computations. As we demonstrate in the evaluatiomgug®ing these operations can
be extremely beneficial and enables us to achieve dramaticrpance improvements.
Furthermore, unlike previous implementations, whichkrde propagation of taint labels
by analyzing emulator-specific microinstructions, PIFAcks these labels at the level of
abstraction that directly matches the semantics of theeatstruction set. This enables a
range of additional optimizations that are difficult or géther impossible to apply at the
microinstruction level.



1.3 Evaluating PIFT

PIFT investigates a novel architecture for tracking the fldvsensitive information,
based on the claim that interposition at the software-hardwoundary using a hypervisor
can produce a practical and usable solution. To evaluae&khim, we must examine PIFT
in the context of the original design goals and requiremexrg®utlined in Section 1.1. A
practical system for sensitive information tracking mustiave reasonable performance
on common application workloads and propagate taint latmiectly, avoiding over- and
under-tainting.

PIFT’s runtime performance overhead is easily quantifiabl& Chapter 5 presents our
detailed performance evaluation based on microbenchraatkapplication-level measure-
ments. Encouragingly, tracking the flow of information atighter level of abstraction
(native machine instructions) using multiple processaesanables PIFT to reduce the
computational overhead by a significant margin. While it widfscult for us to provide di-
rect side-by-side comparisons with previous systems [88he two specific cases where
we could do so, PIFT achieved a slowdown of roughly<1(8ompared to native code), as
opposed to prior efforts in which the two comparison caséfermd slowdowns of roughly
one and two orders of magnitude, respectively. The restitisicapplication-level experi-
ments indicate that although PIFT’s code analysis andmmdion flow tracking primitives
impose a nontrivial performance overhead for CPU-intensierkloads, our design suc-
ceeds in mitigating these sources of overhead through beymgand parallelism. Further,
our user studies suggest that PIFT does not significanthaimyser experience and pro-
ductivity in interactive graphical application environnts.

Turning to the question of label propagation correctnegsyere able to directly eval-
uate the natural flow of user data in several popular consamications and we report
the results from this application study in Chapter 6. Thes#&l results are encouraging,
but we also observed limitations in applying the technigiu@iot tracking to environments
that use commodity off-the-shelf software products.

First, we observed that in some scenarios, the guest eméontsuffers accident&int
poisoning which then amplifies into full-scal&int explosiorand causes significant por-
tions of the guest system state to become tainted. Thesevalisas are fully consistent
with the results of earlier studies [80], but present a mafallenge for platforms such
as PIFT. Left unchecked, this phenomenon significantly insgae performance of our
information flow tracking substrate in two important redge€irst, it unnecessarily forces
our system to spend more time emulating the guest environameiradds perceptible over-
head. Second, it confuses users and applications, singcbakre no way of telling whether
a piece of sensitive data has been tainted due to the righdmsar accidentally.

One of the most alarming cases of taint explosion is accallgmbpagation of taint
into the internal data structures of the OS kernel and ody eaperimentation with PIFT
revealed that the Linux kernel is highly susceptible to gflienomenon. In this scenario,
applications that do not operate on sensitive user dataddoetome tainted when they
interact with the kernel via system calls, causing taintlatio spread between applica-
tions and eventually rendering the whole system unusabie.if®depth analysis of this
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phenomenon reveals that kernel-level tainting is accalesmid does not reflect explicit
information transfer. PIFT leverages this insight to etffeddy eliminate kernel taint poi-
soning by interposing and scrubbing taint labels at a smatilver of kernel entry points.

We also examine the dynamicswuser-levekaint propagation within the address space
of an application. For some applications, we were able tdicorthat PIFT propagates
taint labels correctly, in a manner that directly reflects tiser’s actions and intentions.
Other applications appear to be susceptible to variousedegof taint poisoning and ex-
plosion, whereby non-protected data items (such as coafiguarfiles and non-sensitive
user documents) acquire the taint status of sensitive dectsithat have been previously
manipulated in the same application instance. It appeatdritorder to fully take advan-
tage of hypervisor-based information flow tracking, apgtiiens must follow the natural
channels for information exchange and several do not. Weeptea preliminary analysis
of these phenomena and discuss their overall implicatiari;ie-grained information flow
tracking systems such as PIFT.

1.4 Summary of Contributions

The main contribution of this thesis is the architecture mmplementation of PIFT —
a robust information management platform that is desigoedack the flow of sensitive
data and enforce confidentiality policies, while satisfythe design constraints outlined
in Section 1.1. Although our prototype implementation isdrhupon completely standard
building blocks (the Xen hypervisor and QEMU), its architee is novel. PIFT provides
a taint-aware filesystem that enables users to store senddta (annotated with the ap-
propriate taint labels) persistently on disk. Further, idev to ensure that taint labels are
preserved across network transfers, PIFT transparengisnants the networking stack in
the guest environment to intercept all outbound networlkecand annotate the payload
with the corresponding taint label(s).

The performance overhead of fine-grained information flowalysis constitutes one
of the most significant obstacles that must be overcome beéai-time IFT systems can
become fully practical. PIFT makes several important ¢buations in this area. Our im-
plementation employsn-demand taint tracking— a technique whereby the guest system
is dynamically transferred between emulated executionguQEMU and native execu-
tion within a Xen guest domain. Enabling emulation and IFimpatation only for those
regions of guest code that directly interact with tainteth@lows PIFT to substantially re-
duce the runtime performance costs. Just as cruciallyntbemation flow analysis compu-
tation is performed at a higher level of abstraction thagatiy matches the semantics of the
native machine instruction set (x86 in our implementatidrjis is a significant departure
from existing systems, which track information flow on theisaof QEMU microinstruc-
tions. Furthermore, while previous approaches tend to a@émulation with information
flow tracking, PIFT explicitly decouples these two openasioAs we demonstrate later on,
this strategy enables asynchronous parallelized taickitrg and leads to a further reduc-



tion of runtime performance costs. Operating togethesdhechniques enable our PIFT
prototype to achieve 60 x performance improvement over the best previously-pubtish
results.

For kernel taint explosion, we show that a major cause ofgthéenomenon on Linux is
accidental tainting of kernel control data structures. \Wdartake a detailed analysis and
track its origin to a small number of kernel entry functioi®y interposing at these spe-
cific entry points and securely scrubbing taint, we prevenidental tainting of these data
structures and effectively eliminate Linux kernel tainplsion for all practical purposes.

The cumulative effect of our techniques is making transptareal-time information
flow tracking significantly more practical. In fact, our Plpfototype is now fully usable
and supports real interactive user activities — we editatiqgoes of this dissertation in a
Linux guest environment running on top of PIFT. To the besbwf knowledge, PIFT is
the first real-time instruction-level IFT platform that hasen demonstrated to be usable
with an interactive graphical guest environment. Whiler¢his more work to be done
before real-time taint-tracking can be widely used in pcagtwe wanted to report on our
progress-to-date so that the community can help in ovemghie remaining barriers.

1.5 Thesis Roadmap

This dissertation is divided into seven chapters. The neapter places PIFT in per-
spective with other academic research, introduces theseageterminology, and provides
a brief survey of existing literature in several relevargtaa. Chapter 3 presents the over-
all system architecture of PIFT ands explain the partitigrof functionality between the
hypervisor and the augmented emulator. This chapter alsagI®IFT’s overall security
model and discusses the semantics of fine-grained (bytensatndction-level) information
flow tracking. Chapter 4 provides an in-depth descriptiomaf prototype implementa-
tion, including its hypervisor-level components, the aegted emulator, the label-aware
storage and networking stacks, and the mechanism for enfpopolicies. For readers in-
terested in understanding the low-level technical aspw&otsir work, this chapter details
the implementation of PIFT’s information flow analysis aigfoms within QEMU, dis-
cusses parallelization techniques for taint tracking, presents the on-disk layout of our
label-aware filesystem. We present our detailed performa&valuation of PIFT across
a range of experimental environments, which include mienabhmarks, application-level
measurements, and usability studies in Chapter 5. Thenhap®@r 6 we turn our atten-
tion to the dynamics of taint label propagation and exantiegoroblem of taint explosion.
Finally, we conclude in Chapter 7 by summarizing our worlscdssing the remaining
barriers, and outlining what we believe to be promisingaiomns for further research.



Chapter 2

Background and Related Work

This dissertation builds on a large body of prior work in theas of information flow
control and dynamic taint analysis. This chapter intendsrtwide a brief survey of pre-
vious research and review some of the most relevant and mtidlefforts in these related
areas.

Information Flow Control (IFC) is concerned with restrigjithe flow of user data and
protecting it against theft and misuse by untrusted apfpica. Section 2.1 discusses the
state of the art in IFC, examining both static and dynamibnegues, and reviews some of
the existing systems that influenced the design of PIFT.

Section 2.2 discusses prior work on dynamic taint analysig -€emplementary set
of techniques, which provide a means of tracking infornmrafiow within an application
with high precision. Previous applications of taint tragkihave, by and large, focused
on detecting security attacks and analyzing the behaviorabivare in a laboratory setting;
PIFT is among the first systems to apply taint tracking to tledlem of confining sensitive
information flow.

It would be disingenuous to suggest that the work presemi¢his dissertation does
not borrow from these previous studies and, indeed, manyso$ystems described in this
chapter provided inspiration for our design, while otheaed as direct building blocks.
Yet, all of these previous efforts face limitations, whialeyent them from being directly
applicable to the central problem we seek to address in theexbof this dissertation;
namely, controlling the flow of sensitive user data in a distied environment without
modifying the software stack or augmenting the hardwardqia.



2.1 Information Flow Control

Most modern operating systems provide mechanisms foretisaary access control
(DAC); examples of mechanisms in this category include fdengssions, ACLs, and ca-
pabilities. In broad terms, the DAC security model imposssrictions on which principals
(users, processes, or machines) can access a particadatgatt at a specific pointin time,
but does not track the propagation and usage of this dataitsfieitial release. A DAC-
based security architecture delegates the responsitatitgnforcing data flow policies to
the application and offers little protection against thitaars of careless users or malicious
code.

Information flow control (IFC) provides a more powerful aretsre alternative to DAC
by allowing users to specify high-level system-wide resimns on the use and dissemina-
tion of sensitive data. As an informal example, the follogvirigh-level policy may arise
in an enterprise environmeriffhe contents of a sensitive fileé and all data derived from
F' can be disseminated only to the members of a project groupD&tretionary access
control schemes offer mechanisms for restricting theahiglease of the information con-
tained inF', but are not sufficiently powerful to enforce restrictiomstbe derived data.

An information security framework based on IFC abstradtioffers tighter controls
over the use and dissemination of sensitive informationpamed to the traditional DAC-
based model, but providing such controls requires additiorechanisms. Most signifi-
cantly, the system must have the capability to track thegapon of sensitive data through
computation and enforce policies at a set of well-definedrmftion flow boundaries.

Prior work on information flow control can be broadly categed intostaticlanguage-
based techniques, which seek to detect and prevent infammlaakage at compile time,
anddynamicruntime enforcement.

2.1.1 Static Language-Level Analysis

Static checking of information flow policies has a long higtothe initial research
in this area was done in the 1970s and driven by the needs afeflemse industry [24].
Denning’s pioneering work in this area [22] introduced tbeaept of asecurity lattice—
an abstract model of access control, whereby each datat @jdqrincipal is assigned a
security clasqalso called itssecurity labe). Information flow is controlled by imposing
restrictions on the transfer of information between theg#ies.

In 1997, Myers and Liskov [56] introduceddgcentralizeanodel for information flow
control (DIFC), which defines a set of rules that programstrfalw in order to prevent
leaks of sensitive information. The DIFC model providesusiég by allowing users to
associate integrity and secrecy labels with data resoamggonstraining the flow of in-
formation according to these labels. JFlow [55] and its easor Jif [58] apply the DIFC
model to the Java programming language, enabling infoondkow control within a pro-
gram at the granularity of individual language-level vhales. In Jif, all variables and
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expressions are labeled with security policies which, ttegiewith ordinary Java type dec-
larations, form an extended type system. The Jif compiléiopas static type checking
and rejects programs that might violate information flowtnregons. Informally, a value
can be assigned to a variablenly if the policy associated with is at least as restrictive as
the policy forv, in which case the assignment does not leak information @ndrisidered
legitimate. To prevent “label creep”, Jif provides langedgvel features for selective de-
classification that enable a trusted code module to relagips! Fabric [50] is a follow-on
effort that extends the Jif programming language to a tisted environment and provides
support for transactional semantics.

Static IFC analysis is a powerful technique, which provitles ability to track the
propagation of sensitive data within a program (and betwaegrams) with little or no
runtime overhead. During compilation, the static checkeistructs a proof that no possible
execution path in a program contains data flows that arelolgadl by the IFC policies. As
a result, this technique can detect implicit informatiow8p as well as some classes of
covert channels, both of which can be extremely difficult ébedt with dynamic runtime
tracking mechanisms.

However, these research efforts have demonstrated thitgastatic information flow
control to a powerful general-purpose programming languagdlifficult. Jif is based on
Java — the most expressive language for which static IFC éas attempted — but does
not currently support several of its essential features) s multithreading. Further, static
IFC analysis imposes a new programming model and requireslajgers to rewrite ap-
plications. Finally and perhaps most importantly, manyiséa usage scenarios involve
dynamic policies that fundamentally cannot be evaluatetietime of program analysis
and necessitate some form of runtime tracking and enfoncemiehe above scenario in-
volving a sensitive corporate document and a project gream iexample of such a policy.

PIFT focuses on supporting this broader class of policiesutih dynamic runtime
enforcement and offers full compatibility with legacy ajpption code. Another important
distinction concerns the granularity and the level of aution, at which these mechanisms
operate: PIFT tracks the flow of sensitive data across CPidtezg, physical memory ad-
dresses, and disk sectors, as opposed to language-lavatiyes. Our architecture does
not attempt to track implicit data flows and enforces poti@ea the movement of informa-
tion between principals in a distributed environment, ipsing at the software-hardware
boundary.

2.1.2 Dynamic Enforcement of Information Flow Rules

OS- and runtime-level information tracking:  There has been significant work on incor-
porating DIFC mechanisms into operating systems and renginvironments with the goal
of tracking the dissemination of user data and enforcingadyio end-to-end information
flow constraints. Asbestos [25] and HiStar [93] are new djiggaystems, which track in-
formation flow dynamically and guarantee strong isolatibapplication code using a rela-
tively small, trusted kernel. In Asbestos, each processssaasecrecyabel that provides a

11



conservative estimate of all sensitive inputs observedhbytocess. The operating system
intercepts all inter-process communication and verifieam@nce with security policies.
HiStar defines several low-level objects types (threadstatoers, quotas, address spaces,
gates) and controls information flow to and from each objestance. Collectively, these
object classes provide building blocks for traditional Q8ngtives, such as file systems
and processes, which are implemented in an untrusted exsdrilbrary. Both systems
provide mechanisms for controlled declassification thianaprivileged application-level
components to externalize sensitive data through a segiiate and well-defined in-
formation channels. Assuming trustworthy declassifierd am uncompromised kernel,
these systems can enforce IFC policies even in the presémaisioehaving or malicious
application-level code. DStar [94] extends the OS-levigdrimation flow control architec-
ture to a distributed environment with the goal of mitiggtihe effects of untrustworthy
distributed applications and compromised machines. FIli4g one of the more recent
efforts, demonstrates that runtime DIFC does not requiteaneslate redesign of the soft-
ware stack and can be retrofitted into an existing UNIX-baseerating system. Lok-
i/LoStar [97] is a follow-on effort to the HiStar system arehdonstrates that the amount of
trusted code can be further reduced by extending the haedavehitecture with support for
byte-level memory labeling. The resulting system impletaelynamic IFC in a minimal
security monitothat resides underneath the OS and can enforce informabwrpflicies
despite kernel compromises.

Compared to static analysis, OS-level dynamic IFC techesguan support a much
broader range of policies, but invariably impose some perémce overhead. Furthermore,
DIFC-enabled operating systems can only track informaflimn on the basis of coarse-
grained OS-level primitives (e.g., processes, files, ssglead are oblivious to fine-grained
information transfers between variables or data strustuiehin a process. Laminar [77],
one of the more recent proposals, investigates a hybrigdésat integrates language-level
and dynamic OS-level DIFC abstractions in an effort to caraltheir strengths. Lam-
inar designs a new operating system, which mediates accesstem resources, and a
specialized VM, which enforces fine-grained DIFC rules witthe address space of an
application. This system provides DIFC guarantees at theudarity of lexically scoped
code blocks (calledecurity regiony which makes it relatively easy to retrofit existing
applications with security policies.

Another recent effort, RESIN [92], proposes a new applcatuntime that associates
policies with application-level data objects and filterformation transfer at system I/O
boundaries. RESIN helps application developers detectarréct errors in the security
logic by enforcing application-specific information flowsastions. Unlike the OS-level
solutions discussed above, RESIN operates in an intethptgramming environment
(such as Python or PHP) and tracks the propagation of senddia at the level of program
variables. Program assertions offer a more flexible way &xifp data flow restrictions
compared to OS-level labels and can be used to express dughdpplication-specific
policies (e.g.,'the password of a user U can leave the system only as part ad-arail
message sent to U’s e-mail addreks”

Systems that rely on OS- and runtime-level IFC mechanismsime substantial
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changes in the structure of the OS kernel and thus face disagrtibarrier to deployment.
At the application level, programmers have to expose datesflo the OS by explicitly
restructuring their applications into multiple modulesstordance with data flow restric-
tions and writing trusted declassifiers. Even systems ssiétiuame, which seek to provide
compatibility with current operating system interfacesguire developers to partition the
application into unprivileged and trusted privileged caments.

PIFT aims to achieve similar goals, namely data containnaeEntlynamic informa-
tion flow control, but makes very different tradeoffs. A ke&guirement for our system is
deployability, which implies compatibility with legacy #ware stacks and rules out ap-
proaches that require kernel redesign or applicationuestring. Our system does not
change the programming model and can be deployed as an etanextension to cur-
rent IT environments with little or no modification to exisgi software stacks. PIFT inter-
poses a hypervisor at the software-hardware boundary ankistthe flow of information
at the granularity of bytes. While the coarser processtkeaeking exemplified by HiStar
suffices to intercept all potentially sensitive outputstecheme offers only a binary “ham-
mer” when it comes to policy enforcement: once a prodebsas observed a sensitive input
S, all subsequent external output producedmys conservatively assumed to be tainted
with S. In practice, this means that declassification can be oveslyictive or excessively
permissive, reducing the application’s usability and d@dbihity. In contrast, PIFT tracks
sensitive data at the granularity of bytes and monitors tmeputation at the level of ma-
chine instructions. This allows PIFT to maintain a more aatiview of sensitive data
movement and make more informed enforcement decisionsdukety if the specific data
being externalized is sensitive or not.

At a conceptual level, the design of PIFT bears some sintylgwiLoki, which pushes
the data labeling functionality into the hardware platfoi@ur approach extends the (vir-
tual) machine architecture with mechanisms for both lalgefiensitive data and tracking
its propagation. A hypervisor-based design enables us tbetethese features in software
and thus maintain full compatibility with current hardwanlatforms.

VM-level isolation: Yet another influential and related research direction rsered
around theRed/Greenisolation paradigm articulated by Butler Lampson and his co
leagues [28]. In this scheme, users interact with appbioatand sensitive data using two
independent and mutually isolated environments. The geegimonment confines impor-
tant data and does not permit the use of untrusted applisat@onversely, the red environ-
ment allows users to execute potentially untrustworthyecaid access external networks,
but prohibits access to sensitive documents. Lampsonduattyues that a virtual machine
monitor (another term for a hypervisor) provides the rigletcimnisms for enforcing such
isolation and that the two environments should thus comegto virtual machines. This
paradigm erects an effective first-class isolation bountatween valuable data and the
threats posed by malicious code. It also provides a costtfe alternative to the practice
of physical air-gapping that has been the traditional methioseparating user activities
in high-security environments. Other systems that usealirthachine technology for the
purposes of data containment and isolation include LiveWs6](a VM-based intrusion
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detection platform) and the NetTop [60] project. The amttiire of PIFT is influenced by
these proposals, but focuses on the broader goal of enddi@@icy enforcement. This
requires the ability to track the propagation of confiddntilormation among users and
intercept external output.

2.2 Dynamic Taint Analysis

A complementary body of work applies machine code analysisecompilation tech-
niques to track information flow at the level of machine instions — a technique known
asdynamic taint analysi®r taint tracking Broadly, taint analysis mechanisms operate
by annotating the low-level machine state (CPU registeesmory addresses, and disk re-
gions) with byte-levetaint labels examining the machine instruction stream to determine
the information flow effects of each instruction, and pragtayy the taint labels accord-
ingly. In order to enable such fine-grained analysis faedittaint tracking systems must
instrument the target application at the binary code levelio it in a specialized emulator.

2.2.1 Applications of Taint Tracking Techniques

Byte-level taint analysis is one of the central functionaytives in PIFT, but its appli-
cations extend far beyond monitoring the computation osisea user data. In its general
form, taint tracking is a powerful and widely-used techmighat has been applied to a
broad range of problems in the areas of security and infoomatanagement.

TaintCheck [61], one of the foundational efforts in thisagraims to provide an effec-
tive defense mechanism against fast-spreading Internehsvthrough automated exploit
detection and signature generation. TaintCheck marks atayttat originates from an un-
trusted external source (e.g., network sockets) as taamddises binary rewriting mech-
anisms to track the subsequent propagation of such data.etéatdattacks, TaintCheck
looks for dangerous and potentially illegitimate openasion tainted data, such as the use
of a tainted value as the destination for a jump instructwimich would be suggestive of
an attempt to redirect control flow. The implementation isdzhon Valgrind [59] and can
track the propagation of tainted inputs within the virtuddleess space of a single user-level
process.

Sweeper [86] user dynamic taint analysis as a component onmgiehensive worm
defense system that offers low overhead and efficient gtatkarecovery. During normal
execution, the system takes periodic process-level clogatgpand performs lightweight
monitoring to detect suspicious activity. After an attasldetected, Sweeper performs a
rollback and re-executes the process from an earlier clogaidip a controlled environment.
At that stage, heavyweight analysis tools such as TainiCaecemployed to identify the
exact nature of the attack and produceaatibodythat protects the process against further
attacks.
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Analogously to these systems, PIFT uses emulation andigtgin-level information
flow tracking to monitor the propagation of tainted data witine system and enforce poli-
cies. We extend on these efforts with a broader goal of emgutata confidentiality in a
distributed enterprise setting. While in TaintCheck ande8per policies impose restric-
tions on fine-grained data movement within a process (dlgg,ihstruction pointer cannot
be loaded with a tainted value”) with the overall goal of enfiag system integrityPIFT
policies seek to ensunfidentialityby confining the flow of sensitive user data between
principals.

Turning to confidentiality, there has been significant pyasiwork in the use of taint
tracking to protect sensitive information against malwdanorama [91] uses full-system
emulation and dynamic taint analysis to detect maliciouw®ss to sensitive user data and
identify privacy-breaching malware. A code sample is lehdeo an emulated system
environment and subjected to a series of automated testsetrsensitive user inputs are
introduced into the guest system. The taint tracking engioritors how sensitive (tainted)
information propagates within the system and flags any sims interaction between the
unknown code sample and the tainted data.

Another recent proposal [26] combines system-level taatking with static analysis
to identify malicious behavior in BHOs (browser helper a@tgy. The BHO framework
allows third-party code to execute within the address smddaternet Explorer and is
a common deployment vehicle for spyware. The proposed rsygtes taint analysis to
accurately track the flow of potentially sensitive data.(evipited URLS) as it is processed
by the browser and any loaded BHOs. When tainted data leaksodactivity on behalf of
a BHO, the resulting information flow is flagged as maliciodightweight form of static
analysis is used to identify direct control dependenciesthis information helps mitigate
some instances of evasion via implicit channels.

PIFT is analogously concerned with protecting sensitifermation against misuse,
but extends on these efforts with a broader goal of enforemdyto-end information flow
restrictions that are both more general and more macrosgopature. Our system focuses
on regulating the flow of sensitive data between benign ppéais in a distributed setting
and uses taint analysis techniques to track its disseramand usage.

Polyglot [11] applies dynamic taint analysis to the problehautomated protocol re-
verse engineering. This system takes as input the binargéméa program along with
some tainted input data (such as messages received fronetilverk), monitors how the
program processes the data, and produces a fine-grainedotréaint propagation. This
information is used in conjunction with the instructionéexecution trace to reconstruct
the protocol message format. For example, if the prograrfopas an indirect memory
access that touches tainted data at a memory addressld has itself been derived from
a tainted value at another addrésthen one can reasonably assume ttsabres the length
of a variable-length message field that terminates at

Dispatcher [10] extends this work and presents a novel tqakrfor inferring the full
protocol format and semantics, which requires analyzinty bdbound and outbound ap-
plication messages. Dispatcher proposes a techniquel ¢alfeer deconstructionwhich
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extracts the structure of outbound messages and inferssiehdntics by tainting the in-
puts and outputs of specific system APIs with well-known s&tica and observing their
propagation to/from the message buffers. Collectivelgséhtechniques provide a power-
ful tool for black-box protocol analysis and have been useverse-engineer a complex
command-and-control protocol for botnets.

Renovo [44] uses dynamic binary analysis to undo the effgfat®de packing and re-
cover malicious executable code that has been obfuscataagthhcompression or encryp-
tion. Given an executable code sample containing hidder,d@dnovo loads it into an
emulated environment and carefully tracks its executioheWéver the program performs
a memory write operation, the emulator marks the correspgndestination address as
tainted. If, at some point during program execution, therutsion pointer jumps to a
tainted memory address, Renovo infers that the correspgmiemory location stores ex-
ecutable code that has been generated at runtime. Thighgfoaivard technique can be
used to identify the completion of the code unpacking reutind the point of entry into
hidden code.

HookFinder [90] proposes a framework for systematic anslgé malware hooking
behavior. This system uses binary analysis and fine-graaetktracking to identifypoints
of impact which emerge when the contents of OS-level data strucanesnodified by
untrusted external code. Analyzing the effects of theseahpoints on the control flow
can assist in identifying the placement of hooks.

TaintDroid [27] is a recently-proposed system for moniigrihe flow of sensitive user
data through third-party applications on smart mobile devi This system extends An-
droid [4] (a popular Linux-based open-source platform foastphones) with fine-grained
taint tracking and analysis capabilities. Sensitive us&rmation is first identified and
labeled as such at a set of well-defined taint sources, whidhde local sensors (such as
a microphone, camera, and GPS receiver), shared informdéitabases (such as address
books and SMS message repositories), and unique devic&ielsn The Dalvik VM in-
terpreter is modified to track the computation on taintec deithin an application and
several additional OS-level extensions provide mechasfemtracking its propagation be-
tween applications, as well as transfers to/from persistenage. In contrast to most other
systems discussed in this section, which track informétmm on the basis of native ma-
chine instructions and low-level hardware registers, {Cxioid analyzes Dalvik byte-code
and tracks taint propagation at the level of architectaceependent byte-code variables.
A detailed application study conducted with the aid of TAnmaid revealed numerous in-
stances of potential misuse, suggesting that popular Ash@gplications routinely exter-
nalize users’ private information without their explicgresent.

Neon [98] explores system support for derived data managearal proposes a set
of mechanisms that enable organizations to enforce emtdodata containment policies.
Analogously to PIFT, this system seeks to achieve binargtleompatibility with existing
operating systems and applications using a hypervisaebdssign. Neon associates a
32-bittint, which represents a policy, with each byte in the guest @intiachine and uses
a modified version of QEMU to track the propagation of tintsAmen memory and CPU
registers at the level of machine instructions. Similadyits predecessor [41] and our
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system, Neon implements on-demand emulation and uses giregdaardware to trap the
initial access to sensitive data during native execution.

PIFT and Neon have very similar goals and share some asgéehtsaesign, but differ
in several crucial respects. First, Neon assumes thatraltse files reside persistently on
a central server and supports only coarse-grained fild-pmley labels. Centralized file
access may present a usability hindrance, while maintgiomy coarse file-level labels
can lead to overtainting and unwarranted denial of dissatiwn privileges. In contrast,
PIFT implements a specialized taint-aware filesystem thahfs users to store sensitive
data persistently on the local disk, without a central seeued supports both file- and byte-
level labeling. Second, while both systems track infororafiow by analyzing machine
code, PIFT implements a number of advanced code analysisramslation techniques
that substantially reduce the computational burden of ohfaanformation flow tracking.
Specifically, our system analyzes information flow at theelef native x86 machine in-
structions, without first decomposing them into sequenégsimitive microinstructions.
PIFT also tracks information flow asynchronously and in previth the main instruction
stream using a separate CPU core. Section 3.3.2 compassstthe systems in greater
detail and further describes our novel optimization teghas. Operating in concert, these
techniques allow PIFT to achieve an order-of-magnitudeawpment over Neon in a direct
performance comparison.

2.2.2 Improving the Performance of Dynamic Taint Analysis

Dynamic instruction-level taint tracking is a computatiy expensive task and reduc-
ing its runtime performance costs is one of the major dioestiof our work. A number
of optimizations to speed up taint analysis have been eaglor earlier work and many
of them are directly applicable in our context. idbal.[41] proposesiemand emulation
as a practical technique for online full-system taint tiagk whereby a hypervisor and a
taint-tracking emulator cooperate to dynamically switieb guest system betweeative
virtualized and emulatedmodes of execution. Our system uses a similar technique, but
focuses on the broader goal of confining sensitive data afata@mg high-level restric-
tions on the movement of information between principal&TPracks information flow at
a higher level of abstraction (native x86 instructions apaged to QEMU microinstruc-
tions) and attains further performance gains through dsymous parallelized execution
of the taint tracking instruction stream.

Another method of exploiting asynchrony for taint analysiseleration was proposed
by Nightingaleet al. [63]. The Speck framework allows taint tracking (and othannfs
of runtime security analysis) to execute in parallel on sas&fe core, while providing the
safety guarantees of pure synchronous taint tracking. kSéies on OS-level support for
speculative execution, rollback, and deterministic ne2] to prevent malicious code
from permanently damaging the system, thereby permittogjgoned asynchronous ex-
ecution of security checks. Analogously to our system, a orgrbased log is used to
achieve coordination between the main application thremblthe taint analysis threads.
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Providing support for speculative execution requires ificant changes to the operating
system kernel, which we hope to avoid in PIFT. The currenié@mgntation of Speck sup-
ports taint tracking only within a single-threaded useelgrocess, whereas PIFT tracks
the flow of sensitive data across process and machine baesdeing a hardware emula-
tor, aiming to achieve a comprehensive view of informatiomfl

LIFT [73] investigates a low-overhead IFT system for detersecurity attacks and
proposes several algorithmic optimizations to improveghgormance of taint tracking.
The Fast-Path optimization extends the concept of demarndiagion with the goal of fur-
ther reducing the amount of unnecessary taint tracking wa@&fore executing a basic
code block, LIFT checks the taint status of its live-in angdbut locations (registers and
memory) and decides whether it is necessary to run the fiodfirumented version that
tracks information flow. If all live-in and live-out locatis carry empty taint labels, it
can be deduced that the code block performs only zero-mtaert propagation and thus,
the fast non-instrumented version can be safely executééd. Merged Check optimiza-
tion exploits the temporal locality and spatial localityoperties to reduce the number of
taint transfer and taint checking operations. LIFT perfermemory reference analysis and
clusters nearby references into a group, which allows ibdesce the corresponding taint
transfers.

Some of the optimization techniques proposed in this woek general-purpose in
nature and are directly applicable to our system, while rgtlage more implementation-
specific and take advantage of specialized features of tH&4lArchitecture — the hard-
ware platform, on which LIFT intends to operate. The two eyt also differ in the scope
of information flow tracking: LIFT focuses on tracking talabels within thevirtual ad-
dress space of an application and is currently limited tqsuing single-threaded user-
level programs, while our system aims to track informatiowfacross the entire machine,
including the OS kernel, and maintains taint labels at thesiglal address level.

2.2.3 Hardware Extensions for Dynamic Taint Analysis

Yet another thread of related work investigates hardwased architectural extensions
for dynamic information flow analysis. Compared to PIFT,sthesfforts take a more
forward-looking view and agree to forfeit compatibility tiexisting hardware architec-
tures in hopes of producing more robust and efficient harehdlaiven IFT platforms.

One of the key concerns in designing a hardware-assistedrecis deciding how to
partition the information flow analysis and enforcementctionality among the various
components of the architecture: pushing a set of functiotesthe hardware platform pro-
vides a way to reduce the runtime performance costs, whitdtaare-based implementa-
tion is inherently more flexible and configurable.

Minos [20] is one of the first systems to investigate hardvemsisted IFT. This effort
proposes a complete microarchitecture that tracks thgrityeof all data in the system and
aims to protect against control diversion attacks thatwrigz return addresses or function
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pointers with untrusted values. Minos augments every mgnvord and machine register
with an integrity bit and propagates this additional valamas all stages of the processor
pipeline. The system uses this additional bit to implemehbaB low-water-mark integrity
policy [8], which is hard-wired into the Minos architecture

Raksha [21], a more recent effort, investigates a hybridlDdFchitecture that tries to
combine the strengths of hardware- and software-baseditpets in order to provide a
flexible low-overhead solution. This work proposes an auget processor architecture
that annotates all storage locations, including registsshes, and main memory, with
taint tags. Analogously, all machine instructions are motégl with additional functionality
to propagate these tags from input to output registers amexhct rules for taint transfer
are specified by a set of dedicated control registers. Angjtaip of registers specifies
which operands or elements of the processor state shouldb#ared for the acquisition
of taint tags and a security exception is raised when a nqgmyetag propagates into one
of these locations. When an exception occurs, Raksha otslitiee execution to a user-
level exception handler, which can implement arbitraryusiég checks and policies. By
partitioning the IFT functionality in this manner and pushithe low-level mechanical
functions of taint tracking into the hardware platform, RBla& can provide highly flexible
and programmable security policies with low performancerbead.

Integrating information flow tracking functionality intma&xisting CPU design requires
significant modifications to the processor core, which iases design complexity and may
affect the footprint and clock frequency. In a follow-onaftfto Raksha, Kannaet al.[45]
proposed an alternative hardware-driven IFT archite¢haktdecouples taint tracking func-
tionality onto a separate coprocessor, thereby elimigdtie need to modify the design or
layout of the main processor. The coprocessor encaps@htstate and functionality as-
sociated with taint tag propagation and the main CPU coreab@g only on data without
any concern for the presence of tags. The key observatidrettebles this approach is
that the state of taint tags need not be maintained withuostm-level accuracy and that
synchronized instruction-by-instruction propagatiortads is an overkill for most prac-
tical applications of taint tracking. In many security sagas, it suffices to maintain a
loosely-synchronized view and provide up-to-date taifgrimation only at a set of coarse-
grained and well-defined synchronization points, such ategy call entry or generation
of externally-observable output. Hence, the coprocesanrexecute the stream of IFT
operationsasynchronousland the main CPU core must only communicate the necessary
information about the sequence of committed instructiamd their effects on the state
of taint tags. In the current implementation, a shared quewsed to communicate the
instruction encodings and the addresses of memory opebmtaeen the two processors.

The Log-Based Architectures (LBA) project [14, 15] propos@ alternative and even
less disruptive design, which executes the information fi@agking computation using
a general-purpose processor on a multi-core CPU, insteaglefating it to a special-
ized coprocessor. In this design, the hardware platforndsié® be extended only with a
low-level logging facility that captures an instructicew€l trace of execution on the main
processor core and relays it to a software-based tracesasmalygine, running on a separate
core. While LBA seeks to provide a low-overhead generappse framework for detailed
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monitoring and tracing of application-level code, dynamistruction-level taint tracking
is one of the natural applications of this technology. Retan work [78] proposes several
novel techniques for parallelizing the IFT computationt fleaerage hardware support for
instruction-level tracing and achieve significant speadoip realistic workloads. While
explicit computation of taint values is not naturally amielesto parallelization due to se-
rial dependencies between instructions, the taint statnde computedymbolicallyby
tracking its inheritance and then producing a concise suyifahe net propagation ef-
fects for each code segment. The latter technique is eaamigllplizable and explicit taint
values can then be computed by performing a single sequpaga over the intermediate
symbolic state. Another significant challenge to efficieanighiel execution is posed by bi-
nary taint operators, which aggregate taint values fromdwmore sources. While several
techniques for mitigating the performance impact of bingpgrations can be considered,
it has been pointed out that for some applications, the IFdsrcan be relaxed in a manner
that avoids tracking the propagation of tags through biogerators [78]. This approach is
controversial, since it weakens security guarantees,rimitltat enables significant parallel
speedups.

Another recent proposal, SHIFT [13], investigates a hardviemsed IFT scheme that
operates omnmodifiedcommodity processors by leveraging some of their existnaia
tectural features and reusing them for the purposes ofttaiciting. SHIFT’s starting point
is a novel and somewhat unusual observation — the architdanachinery needed for
associating taint bits with low-level processor composamid propagating them along the
program execution path bears a strong resemblance to themems for trackingpecula-
tiveanddeferredexceptions, which are already present in many modern psocesHence,
treating tags that describe tainted data as deferred e@nsatllows reusing these existing
mechanisms to compute the propagation of taint tags betywemessor registers. Based
on this observation, SHIFT implements a single-bit taiatking substrate that functions
on unmodified Itanium processors with minimal performaneeribbead. Although this ap-
proach does not easily generalize to multi-bit taint lagetfemonstrates the importance of
studying the full capabilities of modern processors andyapg their architectural features
to novel problems.

The design proposed in this dissertation is similar in spiriall these previous sys-
tems in that it provides fine-grained information flow tragkicapabilities by augmenting
the hardware platform. As we explain in Chapter 4, PIFT immats a specializethint
processorwith a custom ISA, which operates in tandem with the main CRU @acks
information flow along its execution path using opaque 32dint label values. Some of
the previous efforts [45, 14, 15] argue in favor of decouplmmogram execution from in-
formation flow analysis and letting these computations @eddn a loosely-synchronized
manner. PIFT espouses a similar point of view and leveraggschronyandparallelism
to attain dramatic overhead reductions. In our design,ah processor is implemented
within a software-based emulator that operates on a sep@rRit) core and explicit syn-
chronization is required only when the guest environmesuds a request to externalize
data via device /0.

The key distinction from these earlier efforts is that in PlEhe hardware extension
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takes on asirtual form and weemulatdts functionality on a general-purpose CPU in order
to preserve full compatibility with existing commodity lavare platforms. Such emula-
tion is inherently expensive and PIFT must devise sevenalqmerformance optimization
techniques in order to bring the overhead down to a managéalsl. Further, while most
of the previous systems focus on tracking information flowhim a single user-level pro-
cess and apply IFT techniques to the problem of detectingpesenting low-level security
attacks (such as hijacking control flow by overwriting theura address), PIFT assumes
a benign environment and focuses on the broader goal ofin@dtke flow of user data
between applications, as well as between machines in abditgtd environment. Thus,
existing mechanisms for monitoring data flow within an isethvirtual address space are
insufficient for our purposes; PIFT must also track the pgapian of user data between ap-
plications and the OS kernel (and hence monitor the exetofiprivileged instructions),
as well as intercept all network data transfers.
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Chapter 3

The PIFT Architecture and Information

Flow Tracking Model

This chapter describes the overall system architecturdFof Bnd outlines its central
functional components. We introduce the notion of dataltaimeSection 3.1 and describe
our model of information flow tracking in Section 3.2. FiralSection 3.3 describes the
core functional components of PIFT, including the hypesyishe augmented emulator,
and our label-aware filesystem.

3.1 Data Labels and the Policy Model

The cornerstone of our policy model is the notion gbrancipal, which represents a
recipient of information and serves as a basic unit of granitylfor the purposes of access
control. A principal can represent an individual user in eganization or a group of users
that share the same access privilegeg,(employees in the accounting department).

PIFT’s mechanisms for policy specification and enforcenaeatbased on theecen-
tralized label mode]56, 57] — a simple, but powerful model of access control gratbles
multiple principals to protect their private informationdashare it in a controlled manner.

In the decentralized label model, each data value is assiglabel, which expresses
a certain set of restrictions on its dissemination. Congapyt a label represents an un-
ordered set otonfidentiality policies Each policy has anwnerand defines a set @fu-
thorized readersThe owner of a policy associated with a data itém a principal, whose
information was observed to create its value and who wishesdtrict its exposure by
defining a policy. The reader set specified by the policy denptincipals that are autho-
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rized by the owner to observe and computel/oA single principal may appear in multiple
reader sets and may own multiple policies. Furthermorejrecipal can modify (relax or
strengthen) its own policy on a specific data item by altetiregreader set accordingly.

By default, all newly-created data items are assigneshapty labe(denoted.y = {}),
which contains no policies and represents completely pulata. We say that a data item
is taintedif it carries a non-empty label. In the case of labels with tiplé policies, data
may be observed by a principalf and only if all of the policies specify as an authorized
reader. The intersection of all reader sets in a label fosaffective reader set

To illustrate these definitions, consider a data iténabeled withZ; = {{o; :
r1,7e},{0a 1 1To,73},{03 : T, 74}}. This label has three policies, owned by principals
01, 02, andosz. The policy of principab;, permitsr; andr, to observe the value af;, the
policy of o, allowsr, andr; to observel, and the policy ob; grants permissions tg and
r4. In this example, the effective reader set contains the comslement-, and thus, only
this principal has the authority to access and manipulate

As a more concrete example, consider two employees, Aliddab, who are collabo-
rating on an internal project that involves confidentiabmmfiation. Suppose that Alice has
a confidential filef; on her machine that she wishes to share securely with Bobc&he
do this by defining a new confidentiality poligyy = { Alice : Alice, Bob} and labelingf;
with p4 before releasing it to Bob. This policy allows Bob to accesdsre, and compute
on f1, while preventing him from disclosing its contents to otpharties. Suppose that Bob
owns another filg, that is labeled withvy = { Bob : Bob, Charles} and, at a certain point,
decides to combine the information in these two files, fomepl@ by cross-referencingy
against the contents gf. The output of this computation is a new fifg labeled with
the union of their policies{p., pp}. Forgetting that the output contains data derived from
Alice’s private file, Bob inadvertently tries to releageto Charles. However, since Alice’s
policy does not specify Charles as an authorized readergiodéita, PIFT must block this
action in order to prevent information leakage.

Suppose that at a later stage, another employee, David, floenconfidential project
and asks for permission to access the associated fileen@ f3, but not f;). In order to
grant him access t¢, Alice adds David to the set of authorized readersgnin order to
make f; available, Bob establishes a new poligy = {Bob : Bob, David} and relabels
f3, replacing his previous policy with pg.. Note that as an alternative, Bob could make
f3 available to David by adding him to the reader sepgf but this action would have an
unwanted side-effect of exposirfgto David.

3.2 The Model of Information Flow Tracking

PIFT tracks computation on sensitive data values at theutaeity of machine instruc-
tions and propagates the labels accordingly. Some inginginvolve combining the val-
ues of multiple (typically two) distinct operands and PIFAndles such operations merg-
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int compute_sum(int a, int b) { <compute_sum>:
return a + b; +0x0 push %ebp
} +0x1 mov %esp,%ebp

+0x3 mov Oxc(%ebp),%edx
+0x6 mov 0x8(%ebp),%eax
+0x9 add %edx,%eax

+0xb pop %ebp

+0xc ret

Figure 3.1. An example of instruction-level IFT: thempute_sum function.

ing the labels of the input values. Label merging is a foundatifumctional primitive that
produces a new data label by aggregating the policies spadifi the input labels. More
formally, given a pair of labeld.; = {p;} andL, = {p>}, wherep, andp, represent ar-
bitrary policy sets, thenerge operato{denotedp) produces a new label that corresponds
to the union of the input policy setd:; ® L, = {p; U p»}. Defined in this manner, label
merging precludes any possibility of information leakalgetigh computation expressed
via binary operators. The resulting label defines the lezstictive confidentiality policy
that also enforces all the restrictions on the input opesarsed in the computation.

In our current design, PIFT tracks all explicit data flowautéag from variable assign-
ments and arithmetic operations. We also track indirectdlthat occur as result of pointer
dereferencing, whereby a sensitive data value is used aseapoénter or an offset to ac-
cess another value in memory. However, PIFT does not clyreatk implicit channels
that arise from control flow dependencies, such as when &ldbelue influences a condi-
tional branch. It is exceedingly difficult to identify suckmkendencies correctly at runtime
without the benefit of prior static analysis at the source=deslel.

Next, we provide several basic examples to illustrate th@nf instruction-level la-
bel tracking and clarify the differentiation between eggland implicit information chan-
nels. As a first example, consider a simple functtompute_sum, whose C-language im-
plementation and the corresponding assembly code are shdwgure 3.1. As the name
suggests, this function accepts as input two integer argtsyand returns their sum. Sup-
pose that the input variables &ndb) are tainted with data labels, and L, respectively.
When this function is executed in a PIFT-managed environn®&R T tracks the compu-
tation at the instruction level and propagates the labetlserfollowing manner: The first
instruction pushes the old value of the stack base poinggisterebp) onto the stack. In
the context of information flow tracking, we considgip to be acontrol registerthat does
not normally carry sensitive user data. For this reason, evedl track the propagation of
labels into this register and assume that its contents areeansitivei(e., labeled withLg)
at all times. Hence, this instruction has the effect of tframsg a non-sensitive four-byte
value to the top of the stack and, as a result, PIFT clearsehsittvity label associated
with the respective memory addreds;,..jesp+(0..3) < Lo. The instruction at offset 0x3
loadsb from the stack intedx and to track its effects, PIFT assigns the labglto edx:
Legx < Ly. Analogously, the next instruction propagates the ldehto eax: Leax < La.
Finally, the instruction at offset 0x9 computes the sum bgiagl the value iredx to the
contents okax and PIFT updates the register labels accordingly, by mertie labels of
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int table[] = {...}; <table_lookup>:
+0x0 push %ebp
int table_lookup(int index) { +0x1 mov %esp,%ebp
return table[index]; +0x3 mov 0x8(%ebp),%eax
} +0x6 mov 0x8049700(,%eax,4),%eax

+0xd pop S%ebp
+0xe ret

Figure 3.2. An example of instruction-level IFT: theble_lookup function.

the two input operanddcay < Leax © Legx- The last two instructions return control to the
caller by restoring the values ebp andeip from the stack and since PIFT does not track
the flow of information through these registers, no actioedsao be taken.

The example shown in Figure 3.2 implements a basic tableujpolperation and illus-
trates the propagation of data labels through pointer degr€ing. Suppose that the table
stores sensitive values marked with and that the input argument (table index) is tainted
with L;. We observe from the assembly code that the lookup opergionplemented
via a sequence of two instructions: loadihgiex from the stack int@ax (offset 0x3) and
computing a pointer to the respective table entry and demefing it intoeax (offset 0x6).

In this scenario, the instruction at 0x3 taints #wx register with the label of the input
argument:L.,x < L;i. The instruction at 0x6 performs an indirect memory refeeevia
a tainted pointer and PIFT handles it by merging the poirgbel with the label of the
memory location(s) being accessédsy < Leax P Lt.

While several previous studies [80, 91] have questionedidigility and usefulness
of tracking indirect pointer-based channels, suggestiag this method tends to generate
explosive and unwanted propagation of taint, we believeiththe context of our design,
tracking labels across pointer access is beneficial andcindssential for correctness. Ta-
ble lookups are an extremely common operation and occur iriaty of scenarios that
involve manipulation of sensitive user data, characterceeversion being one specific
example. Failure to track indirect flows arising from tabdeess can easily lead to unde-
sirable loss of sensitivity status in many common scenarios

While the issue of taint explosion undoubtedly merits anlépth study, our analysis
and experience with the PIFT prototype suggest that thelyhjggssimistic conclusions
regarding the utility of pointer tracking presented in #npsevious studies are unwarranted.
As we demonstrate in Chapter 6, several simple preventpsstan be taken to eliminate
kernel-level taint explosion, allowing us to proceed wittmprehensive tracking of all
direct and indirect information channels.

Finally, the example in Figure 3.3 illustrates iamplicit information channel that does
not get tracked by PIFT. Note that the value of the input arguim influences the condi-
tional branch instruction at offset Oxa:\fis not equal to 0, the execution jumps to 0x15
and otherwise, it proceeds to the next instruction (Oxc)odth cases, this function loads
an immediate (constant) value (0 or 1, depending on whichdbras taken) into a tem-
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int is_nonzero(int v) { <is_nonzero>:
if (v == 0) +0x0 push %ebp
return 0; +0x1 mov %esp,%ebp
else +0x3 sub $0x4,%esp
return 1; +0x6 cmpl $0x0,0x8(%ebp)
} +0xa jne <is_nonzero+0x15>

+0xc movl $0x0, -0x4(%ebp)
+0x13 jmp <is_nonzero+0xlc>
+0x15 movl $0x1, -0x4(%ebp)
+0x1c mov -0x4(%ebp),%eax
+0x1f leave

+0x20 ret

Figure 3.3. An example of instruction-level IFT: the_nonzero function.

porary memory location and subsequently transfers itéato An immediate value is, by
definition, non-sensitive and hence, this function will ajs return a value tainted witty,
regardless of how the input value in tainted. Putting itedigtly, this function leaks one
bit of information about the input value

Prior work [58, 26] suggests that implicit channels are exiely difficult to track
through runtime dynamic analysis and most previous appesathat attempt to track such
channels rely on some form of static analysis at the sourde te&vel. The inability to
track implicit channels is problematic in the presence diecmaus code, since they provide
a relatively easy way to “launder” sensitive data for exdiiton. However, since our current
focus is on securing the flow of information in a benign emiment, implicit flows do not
present a major problem for PIFT. In the course of our ingiglerimentation with the sys-
tem, we confirmed that non-malicious applications rarélgyer, leak information through
implicit channels and that our current tracking mechanisoraprehensively capture all
explicit data manipulation activity in several widely-dsa&pplications.

3.3 System Architecture

Figure 3.4 sketches the high-level architecture of PIFe fbical component of our de-
sign is an augmented hypervisor — a thin software layer thaoges the underlying hard-
ware platform in virtualized form and allows several vitta@achines to execute concur-
rently. Our current system prototype is based on Xen [89, &r-epen-source hypervisor
platform that achieves high performance on x86 by impleigrihe paravirtualization
model of virtualized execution. In our architecture, theérwisor conceptually extends
the capabilities of the underlying physical machine, givinthe ability to track the flow
of information with high precision — at the granularity ofdiridual bytes and machine
instructions.

All user-facing applications run insidepaotected virtual machine (VM)n top of the
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Figure 3.4. The high-level architecture of PIFT.

hypervisor. In addition, a specializedntrol VM operating in background provides a num-
ber of supporting modules: a robust full-system emulatdgb&l-aware filesystem, and
drivers for virtualized 1/0 devices. PIFT-Xen tracks thepagation of labels between the
virtual CPU registers, memory, and disk belonging to thequted VM. The hypervisor
also intercepts all externally observable output actiers. ( network communication, writ-
ing data to a mobile storage device, sending data to a premerenforces security policies,
allowing or denying specific application requests to exdBre sensitive data.

We illustrate the overall machinery of PIFT by walking thgbua typical usage scenario
— enforcing confidentiality policy on the contents of a séusifile f stored on a user’s
local machine. For simplicity of exposition, we assume thatuser taints the entire file
with a single label containing one poligyand that this file initially resides on the local
disk.

Initially, all application- and OS-level code in the proted VM executes at native
speed directly on the host CPU, but the hypervisor instruste hardware page tables in
a manner that allows us to intercept instructions that actzsted memory pages. When
an application first opens the sensitive file, the call isedwtia the hypervisor to the label-
aware filesystem running in the control VM. Before returniing file handle, the filesystem
makes a call to the hypervisor, informing it of the file’s labke response, the hypervisor
marks the memory pages holding the file contents as taintedipdates the page tables
accordingly.

When an application running in the protected VM tries to asdée file contents from
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a tainted memory page, the hardware memory managementanataes a page fault and
immediately transfers control to PIFT-Xen. The hypervisaspends the native execution
context of the protected VM, takes a snapshot of its CPU tegssate, and transfers control
to our augmented emulator, which resumes the executioregirtitected VM in emulated
mode. Our current implementation handles emulation usimgaaily-modified version of
QEMU, which runs as a user-level process in the control VM @mulator is instrumented
to track the movement of labels in accordance with the IFT ehddscribed in Section 3.2.

On a conceptual level, PIFT associates a data label withiedohdually-addressable
byte in the protected VM, including:

e \olatile memory: PIFT maintains a label for each byte of physical memory-allo
cated to the protected VM. Since a straightforward lineappivag would incur pro-
hibitive storage costs, PIFT stores memory labels in a palgledike data structure
that exploits spatial locality and achieves a reasonahbietoff between the storage
overhead and the latency of label lookups.

e User CPU registers PIFT maintains a label for each byte of every data register
accessible from application-level (non-privileged) co@n the x86 platform these
include:

— The general-purpose integer registers, excluding thé& gi@ioter gsp) and the
stack base pointeekp).

— The FPU register stacls10 throughsT7).

— Registers associated with the various vendor-specifimeidas to the core in-
struction set, such as SSE2 and MMX.

e Network: Our design seeks to provide end-to-end information tragkjuarantees
in a distributed setting. To this end, PIFT annotates thégaalyof outgoing packets
with the associated labels. Upon receiving a packet fronneote PIFT-enabled
endpoint, the hypervisor analogously transfers the ladmdsciated with the payload
to memory.

While emulating the protected virtual machine, QEMU exesuadditional logic to
update data structures that keep track of labels for mackgisters and memory addresses.
When the protected VM ceases to manipulate tainted data, \QEMpends the emulated
machine context and notifies the hypervisor, which reveggrotected VM back to native
virtualized execution.

When the protected VM tries to externalize tainted dataubhoan 1/0O device, PIFT
intercepts the device request and invokes the appropeateisy checks. These operations
are handled by a group of device-specifiterception moduleghat are implemented as
extensions to the backend device drivers operating in tiér@loVM. As an illustrative
example, if an application tries to externalize the dataddrfrom f through a virtualized
network interface, the backend driver for the network caodil intercept the outgoing
network packets and invoke a security check based on thédalethe policies attached
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to the payload. As an example, the policy may specify thatcth@ents off may not
be forwarded to network endpoints situated outside thenizgtional boundaries. In this
case, the backend driver would inspect the destinationorktaddress and, if this address
specifies an external destination, it would drop the offegdgackets and signal an error
condition to the frontend driver. The error handler in thentend component provides a
convenient insertion point for custom policy filters, whican either propagate the error
up the stack, log it for audit purposes, or filter the contegint externalized. To en-
sure end-to-end tracking between PIFT-enabled endhastieithe enterprise, the network
enforcement module also prepends all outgoing packetsavithim header carrying the
associated labels.

One must keep in mind that a decentralized label can hold kitraly large set of
policies and each policy can define an arbitrary number afeegrincipals. Of course,
it would be impractical to annotate each byte of memory ais#t dpace in the protected
VM with a complete and self-contained representation ottireesponding label, since the
latter can be arbitrarily large. Instead, PIFT introducésval of indirection and maps de-
centralized data labels onto a space of opaque 32-bit vehliesitaint labels These fixed-
length surrogates carry no inherent meaning and their sojgoge is to provide a concise,
easily-manipulatable, and globally-recognizable nammeafdecentralized data label. The
mappings between these 32-bit names and the respectiviatlata are maintained using
an external infrastructure, whose design and implememtatie beyond the scope of this
dissertation. PIFT does not specify how these mappingsoaboe stored and distributed,
nor does it impose any restrictions on the meaning of the mintipal. Our system is
also oblivious to the specifics of authentication proceslihat establish user credentials
and bind network endpoints to principals.

Given these explicit non-goals, the overall purpose of AE-D provide a robust and
comprehensive information flow tracking substrate thatajes at the level of abstract taint
labels. Our system monitors the computation inside theeptett VM, tracks the propa-
gation of taint labels at the instruction level, and invokesernal user-supplied security
checks when it detects an attempt to disclose a piece oftsendata to another principal
through device 1/O. It is up to these external security mesgub resolve the 32-bit taint
value into the corresponding data label and evaluate tloe@ésd policies.

3.3.1 PIFT-ext3: A Label-Aware Filesystem

A comprehensive IFT solution requires the ability to tralok flow of tainted data to
and from persistent storage. Our system enables this deypdlyi providing a specialized
label-aware filesystem.

When it comes to designing a persistent storage layer fotetdidata, one of the cen-
tral design considerations involves choosing the levebstraction, at which to maintain
these labels. As an alternative to designing a specialitesi/ftem, PIFT could instead
maintain the taint metadata at the level of the underlyingspdal block device, for in-
stance by associating taint labels with individual diskteec While a sector-based taint
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storage scheme would lead to a simpler (and arguably moreeetfj design, we believe
that a filesystem-based solution is a more desirable o®it,allows PIFT to deliver the
expected behavior in a variety of common usage scenariagseXample, consider the ac-
tion of appending new data to an existing file. If the file hasrbtinted with a specific
confidentiality policyp, the owner ofp probably expects that any new data subsequently
appended to this file will automatically become associatil this policy, without requir-

ing her to re-apply the label to the entire file. Such semantiguld be difficult to provide

in a design, which maintains taint labels only at the levaploysical disk sectors and, as
the above example suggests, the notiofileflevellabels appears to be useful in practice.

Our label-aware filesystem is based on an augmented versiext®[87] — one of
the most robust and mature Linux filesystem implementatiomently in use. PIFT-ext3
maintains additional on-disk metadata that conciselyasgmts the taint status of each
individual byte offset within a file, as well as a file-levelrtalabel that logically covers
the entire length of the file. The file-level label is maintadnn a new dedicated i-node
field, while for byte-level taint values we extend the forméthe leaf indirect block to
carry pointers tdlock taint descriptorslongside pointers to the data blocks themselves.
A block taint descriptor is a new on-disk data structure t@hpactly stores byte-level
taint labels for the corresponding data block.

PIFT-ext3 is a large and complex software module that, likestnother full-strength
Linux filesystems, integrates directly with the kernel. gmng a PIFT-ext3 partition
directly within the protected VM would be highly disruptigad require significant changes
to its software stack (at the very least — recompiling itslleéor inserting a new custom-
built kernel module). Since we seek a solution that requitde or no change to the
software running in the protected VM, we look for alternatand less disruptive methods
of making this functionality available in the user-facingvg@onment.

In the current design, we create and deploy a PIFT-ext3 &tesy inside the control
VM and export it to the user-facing VM through a standard renfde access protocol
(NFSv3). While this split-up configuration is not as effidias running PIFT-ext3 directly
inside the protected VM and incurs additional latency ogard it allows us to maintain
full compatibility with unmodified OS binaries. Furthernepmvhile our current prototype
implementation focuses on supporting paravirtualizedikiguests, this scheme enables us
to reuse our current filesystem implementation for othesgjaperating systems we may
support in the future. In principle, any guest OS that canamuNFS client can connect to
a PIFT-ext3 partition and take advantage of its taint stefagctionality.

As a performance optimization, we designed and implememtagtom RPC transport
mechanism that optimizes the transfer of file data betweeifrtimt-end (NFS client in the
protected VM) and the backend (NFS server in the control Vdtiponents. By default,
NFS uses TCP as the underlying transport for its clientesesgmmunication and the two
sides submit RPC messages directly to the Linux networkiagks NFS commands that
carry file data (such asMRITE request or a response tBBAD request) must execute several
expensive memory transfer operations that impose a headydo the memory subsystem
and increase latency. Typically, the sender first copiesi#ita from the filesystem cache
into its network socket buffers and then transfers the dathd destination machine via a
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memory copy to its network buffers. When the destinationimraereceives these packets,
it performs yet another memory transfer to move the data treemetwork buffers into its
local filesystem cache. These memory transfers are unrsggaeasour configuration and
represent pure overhead, since the client and the serveatepm the same physical host
and share its physical memory address space. Our new RP&paramechanism (Xen-
RPC) takes advantage of this property and provides a wajfimentlytransfer file data
between a pair of VM instances by setting up temporary shaxetory page references.
Xen-RPC eliminates the unnecessary memory transfers teramdnetwork-level buffers
and enables direct transfers between filesystem cachesiorséc3 describes Xen-RPC
and the other components of our label-aware filesystem théudetail.

3.3.2 Comparing PIFT to Existing Hypervisor-Based IFT Sysems

At a high level, the overall machinery described thus farnalagous to Neon [98]
(another recent proposal) and our system makes use of simnilding blocks; namely, a
hypervisor and an emulator augmented with instructioell&vT. However, Neon fails to
meet the important requirements of high performance anccbyet parsimonious label
propagation for the following reasons:

1. Taint tracking by plain instrumented emulation is extefyrexpensive. The results
reported in the Neon study indicate that even a simple coatiputon tainted data
can incur a slowdown on the order@fx when only 1/64th of the input file is tainted
and no data is provided on how the system behaves with a nresskil amount
of taint. Such a slowdown is unacceptable in practice andifgigntly hinders the
adoption of dynamic real-time IFT systems for everyday use.

2. To be comprehensive, IFT systems have to track indiréatrimation flows resulting
from pointer-based memory references. However, prior w8€k has shown that
this leads to accidental tainting of kernel data structulesy other application that
interacts with the kernel also acquires taint and eventuak taint status propagates
to all data in the system. Such taint explosion renders th@levgystem ineffective
(since the taint ceases to have the correct significance$agtantially impairs the
performance of the system, as running in emulated modesrecheavy performance
penalty.

PIFT proposes and implements several novel techniquebétaus address the above
challenges and thus bring real-time information flow tragksignificantly closer to the
realm of practicality. Specifically:

1. PIFT performs taint tracking in the emulator at a highestedztion level than Neon
and other previous systems. Emulators such as QEMU break dash emulated
guest instruction into a series of micro-instructionsoPwork performs taint track-
ing by instrumenting each micro-instruction to propagatatt which incurs a sig-
nificant, but non-essential overhead. In contrast, PIFdkgahe flow of information
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directly at the level of native machine instructions (x8®ur implementation). As
we explain in Section 4.2, tracking at a semantic level thaticimes the physical ar-
chitecture of the emulated machine enables a range of (atiions that are difficult
or altogether impossible to apply at the micro-instructerel.

. PIFT performs information flow tracking asynchronoushdan parallel with the
main emulation codepath. The key insight is that up-to-del information is
needed only at the point where policies are invoked. Hentsead of tracking
the propagation of data labels synchronously and in lopksféh emulation, PIFT
generates a separate stream of taint tracking instrucindsexecutes them asyn-
chronously on another processor core.

In Chapter 5, we demonstrate that asynchronous trackirigrpezd at a level of ab-
straction that directly matches the architecture of thelatad machine can produce
a60x performance improvement over the best previous results.

. Finally, we identify via empirical evaluation that aceidal tainting of kernel data
structures happens through a very narrow interface — a fegifp functions in
the kernel. We design techniques to intercept such chaohédsnt explosion and
securely control taint flow, such that kernel data strucul@ not unnecessarily get
tainted. We propose several minor modifications to the Likepnel that eliminate
accidental tainting and solve the kernel taint explosiaybpgm for all practical pur-
poses.
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Chapter 4

Prototype Implementation

We have implemented a proof-of-concept prototype of PIFI thAis chapter presents a
detailed description of our implementation. Before we peatto this description, we note
that PIFT is a large and relatively complex system that undiRypervisor-based virtualiza-
tion environment with a fully-featured emulator and augteehe resulting platform with
policy enforcement and IFT capabilities. While the trazhthl practices of software engi-
neering encourage layering, modularization, and wellréefiinterfaces and these princi-
ples are, without a doubt, useful in a variety of contextss guite common for low-level
systems projects to deviate from these principles and egpaunon-modular monolithic
design in an effort to improve performance.

The Linux kernel, the Xen hypervisor, and QEMU (the core diinily blocks, on which
our implementation is based) are best viewed as monoli#smas and each of these sys-
tems implements a range of non-trivial optimizations thatiove performance, but violate
modularity. Unsurprisingly, PIFT is also an unambiguouaragle of a monolithic system,
and one that readily forfeits architectural elegance iofaf runtime performance.

This property makes it slightly more challenging to presestear and structured de-
scription of our implementation, as its components caneatdsily broken apart and pre-
sented in isolation. Still, we make an effort to modularize discussion as much as pos-
sible and divide our description of the implementation ifite self-contained sections,
which correspond to the high-level architectural compt®ehPIFT. Section 4.1 describes
the hypervisor-level component and our extensions to Xetti& 4.2 describes the in-
ternals of the emulation component, which encapsulates ofitise IFT functionality. We
present the implementation of our taint-aware filesyste®eation 4.3 and discuss policy
enforcement in Section 4.4. Finally, Section 4.5 explaios ho extend the single-node
PIFT implementation to a distributed environment and pievhe ability to track informa-
tion flow across network transfers.

While a comprehensive full-system performance evaluaifaur prototype is the sub-
ject of Chapter 5, we are also interested in understandimgéinformance characteristics
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of the individual components. Hence, in the following seiet we also report the results of
our low-level performance measurements based on compspenific microbenchmarks.

4.1 The Hypervisor-Level Component of PIFT

The focal component of the PIFT architecture is an augmentpdrvisor, which moni-
tors the protected VM and selectively enables emulatiox¢éoete the regions of code that
manipulate tainted data values. Our prototype implememas based on Xen (version
3.3.0) — arobust open-source hypervisor platform thatexas high performance on com-
modity processors through paravirtualization. In thisisec we describe the hypervisor-
level component of PIFT; we start off with a general overvaen (Section 4.1.1) and
then present our extensions (Section 4.1.2).

4.1.1 Overview of Xen

Xen [89, 6] is a widely-used hypervisor-driven virtualimet system that originated as
a research project at the University of Cambridge. It ogsrain commodity hardware
platforms and enables multiple strongly-isolated OS inrsdageun concurrently on a single
host machine.

Although the widely-deployed x86 architecture does notlgdand itself to full vir-
tualization, requiring the use of complex and computatigrexpensive binary rewriting
techniques to virtualize certain privileged instructiopken sidesteps these issues by pre-
senting a somewhat simplified VM abstraction that is simbat not completely identical,
to the underlying physical machine. This approach, terpeedvirtualization[88], allows
Xen to run multiple isolated OS instances on a single phyg&&processor with high per-
formance, but requires the guest OS to be explicitly porbetie¢ paravirtualized interface.

The hypervisor interposes itself between the hardwardogptatand the set of virtual
machines, mediating all access to the physical resoursegelhas all inter-VM communi-
cation. All controlled interactions between the hypervigond an overlying guest VM are
implemented upon the foundation of two generic control naeems: synchronousy-
percallsand asynchronousvent notificationsHypercalls are analogous to thgstem call
facility provided by conventional operating systems anovabuest VMs to perform privi-
leged operations by trapping into the hypervisor. As a $peexample of hypercall usage,
Xen exposes hardware page tables to the guest environmesadronly mode in order to
ensure proper isolation of memory resources and the guestlkeust issue a hypercall
if it wishes to update an entry in its page table. Recent gassof Xen implement hyper-
calls using the software interrupt instructiaint 0x82) and pass hypercall arguments in
general-purpose integer registers.

Lightweight event notifications are a form of virtual intepts; they replace the
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usual delivery mechanisms for hardware device interrupts @low Xen to commu-
nicate other low-level system events to a guest VM asynausly. Xen events also
serve as the primary means of inter-VM communication, ahgwa pair of virtual ma-
chines to signal each other in a controlled and lightweigatbner. Pending notifications
are maintained using a per-VM bitmap of event types, whicides in a shared mem-
ory page. To deliver an event to a guest system, Xen updaieditinap, interrupts
the guest VM, and redirect its execution to ament callback— a specialized rou-
tine in the guest kernel, whose addressch.guest context.event_callback cs
and arch.guest_context.event_callback_eip) Iis specified by the guest sys-
tem during startup. The guest also specifies the address odrelkevel stack
(arch.guest_context.kernel_ss and arch.guest_context.kernel_sp) to be used
for executing the event callback and the hypervisor enghashe stack pointer registers
(ss andesp) are loaded with these values prior to invoking the callbamiine. Analo-
gously to non-virtualized “bare-metal” platforms, whigfpically allow the OS kernel to
temporarily suspend the delivery of hardware interrupts) Xan disable the invocation of
event callbacks at the discretion of the guest kernel.

In addition to mediating the reception of asynchronous aeunterrupts, Xen inter-
poses on the delivery of all synchronous processor exaeptisuch as page faults and
software interrupts. On the x86 platform, this is acconi@c by modifying the contents
of the interrupt descriptor table (IDT) and replacing thesfis descriptor entries with al-
ternate descriptors that reference a hypervisor-levetllleanAs a result, every hardware
exception triggers a trap into the hypervisor, where theneigeexamined and, in typical
cases, relayed to the appropriate guest machine for pinges3ne notable exception in
this scheme, introduced in recent versions of Xen as a pedioce optimization, pertains
to the use of thent 0x80 instruction. This instruction provides the standard medma
for invoking system calls on Linux, but trapping into the lyyisor upon each system call
entry can become a source of significant overhead. Thusptreeesions of Xen allow
paravirtualized Linux guests to register a guest-levaringpt descriptor for this particular
interrupt type. Xen loads this descriptareh.int80_desc) directly into the hardware
IDT, thereby allowing guest applications to invoke systeatiscwithout the hypervisor’s
involvement.

MMU Virtualization and Shadow Paging

Xen'’s approach to virtualizing the functions of the memorgmagement unit (MMU)
deserves special attention in the context of our discusdionthe paravirtualized model,
the guest OS kernel is exposed to real physical memory askfesnd assumes patrtial
responsibility for managing its own page tables. Duringnmalroperation, the hypervisor
exposes the guest’s hardware page tables (i.e., those¢Hatnded into the physical MMU)
directly to the guest OS without any form of translation atwalization, but restricts the
guest’s access privileges to read-only. Thus, the guesekean read its virtual-to-physical
mappings, but does not have the privileges to modify theno awtitch page tables. To
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update an entry in its page table, the guest invokes a hylprééen, which performs the
appropriate security checks and applies the update.

Recent versions of Xen support a variation of this stratégynedshadow paging
which was initially introduced to facilitate the tracking writable working sets for live
VM migration [16]. When this mode of operation is enabled ttypervisor maintains a
private (shadow) copy of each guest page table and exposss thternal copies to the
paging hardware. The shadow tables are completely ineisibthe guest environment and
are populated on-demand by translating the correspondutgss of the guest page tables.
When the guest kernel issues a hypercall to update a pagediaioy (PTE), Xen validates
the request and updates the corresponding PTE in the shabtitav t

This approach to virtualizing the MMU incurs additional nagement overhead, requir-
ing the system to maintain and update two distinct sets o palgles, but makes it easy to
deploy a range of advanced and novel features in a manneistiatirely transparent to
the guest environment. For example, the hypervisor can iggeoed to track the writable
working set in the guest system by initializing the shadoviePWith read-only mappings
that are otherwise identical to the original guest mappifAdeen, if the guest VM tries to
write to a page of memory, the hypervisor can trap the resujtiage fault and update the
working set information [16]. As we explain below, PIFT inrepients similar mechanisms
and leverages the shadow paging infrastructure to deteldnéercept the initial access to
tainted memory areas.

4.1.2 Transforming Xen into a Comprehensive IFT Platform

Xen provides a suitable and attractive foundation for a aamgnsive information flow
tracking platform such as PIFT. While some of the previotdisref [61] propose running
the guest environment inside a full-system emulator (sscQEMU) augmented with taint
tracking, PIFT explores a more intricate design that combian emulation environment
with a hypervisor-based virtualization platform. In PIRfiese modules operate in concert
to enable a novel feature calleth-demand emulation- the ability to seamlessly move
the guest system betweegimtualizedexecution within a Xen VM anémulatedexecution
within QEMU. In the first mode, the guest system runs at nafpeed directly on the phys-
ical CPU with minimal supervision and with little or no addital overhead. In the second
mode, the system runs on an emulated processor and suféeovéihhead of emulation,
but benefits from the ability to track information flow at tlewél of machine instructions.
On-demand emulation allows PIFT to improve the performaridall-system information
flow tracking by dynamically switching between these modss @nabling the IFT com-
putation only when needed. In principle, any piece of OS-ppliaation-level code that
does not interact with tainted data (and thus does not métkfgtate of taint labels) can be
executed at native speed in the virtualized mode and heaghiiaformation flow analysis
must be enabled only for those regions of code that direcilgipulate sensitive data.

On-demand emulation is a powerful technique that can héip Rilfill its promises of
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comprehensive tracking and high performance. From a peddtandpoint, enabling this
feature requires addressing two non-trivial technicallehges, specifically:

1. We must design a mechanism that enables the hypervisetéotdand securely in-
tercept the initial access to tainted data during virtwalizxecution.

2. We must design a mechanism that enables seamless migoditirocessor state
between a paravirtualized Xen VM and an emulated machine. tf#msition must
be performed in a manner that is fully transparent to thegotetl environment and
does not overburden the system with context-switchingtoaas.

Fortunately, both mechanisms can be realized with a modssbar of extensions to
the standard implementation of Xen and we describe thesm&irins on the following
pages.

Intercepting the Initial Access to Sensitive Data

The key challenge in trapping tainted data access is eftigighnaive implementation
would trap to the hypervisor upaverymemory access from the guest VM to determine
whether sensitive data is being accessed, but this strateglgd incur unacceptable over-
head. Instead, we leverage the capabilities of the hardpaging unit and configure it to
generate a trap upon every access to a memory page that is knoontain sensitive data.
To accomplish this, PIFT-Xen creates a set of shadow padestédr the guest environ-
ment, clearing theAGE_PRESENT (P) flag in the shadow PTESs that hold mappings to tainted
memory pages. Thus, when the guest VM tries to access adqate (either for reading
or writing), the memory management unit generates a padgesfiad transfers control to a
hypervisor-level fault handler.

The set of tainted memory pages is stored using a page-lévsfp— a simple data
structure managed by the augmented emulator and mappetidoedsaccess from the
hypervisor context. This data structure maintains onedbiefich page of physical memory
assigned to the protected VM and the emulator is resporfsibsynchronizing its contents
with the fine-grained byte-level memory taint data struesur

The PTE modification logic is implemented via a simple exi@msto the
_sh_propagate function (defined irken/arch/x86/mm/shadow/multi.c) — the “heart”
of the shadow paging code, which constructs the shadow PbEs the corresponding
guest entries. In this function, we clear tPiGE_PRESENT bit in the shadow PTE if the
physical memory page referenced from the PTE is marked asioarg sensitive data
according to the bitmap. Figure 4.1 illustrates the fornfa page table entry on a 32-bit
machine, highlighting the position of ttRAGE_PRESENT bit.

Naturally, we must also extend Xen’s page fault handing raems to differ-
entiate a genuine page-not-present condition from the-efidets of shadow pag-
ing. Our current implementation modifies tke_page_fault routine (also defined in
xen/arch/x86/mm/shadow/multi.c), which is invoked to handle a hardware page fault
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64 36 12 9 7 6 5 3 2 1 O
RSV Page frame address Unused RSV |ID|A| RSV |U[W]|P

D: Dirty U: User-level P: Present
RSV: Reserved A: Accessed W: Writable

Figure 4.1. The format of a leaf page table entry on a 32-bEf#Aabled x86 machine.

in the shadow paging mode. In this function, we walk the gpesfe table to obtain the
guest PTE and then examine its contents. If the guest PTEerefes a valid physical page,
the fault must have been triggered by an attempt to accesatadanemory area and in
this case, PIFT-Xen initiates a transition to emulation bitisg theenable_emulation
flag in thevcpu structure representing the faulting virtual processoned@wise, if the page
is marked as “not present” in the guest PTE, the hypervisakias the non-interception
codepath, which propagates the fault to the guest OS usiatjrgxmechanisms.

Note that while the guest system accesses and manipulatesdtadata at the granu-
larity of machine words, PIFT-Xen’s faulting mechanism ntains a more coarse-grained
view, which allows us to intercept access only on the basisagi-level taint bits. This
mismatch can be seen as an inherent limitation of our desiich hurts performance
in certain cases by incurring unnecessary context switahdgransitions to the emulated
mode. On a conceptual level, this issue bears a strong rémecetio the problem of false
sharing that affects memory coherence protocols on modettipmocessors [9]. Unfor-
tunately, commodity x86 processors do not offer a mechafsrgenerating faults upon
access to specific byte-level memory addresses. However, \pork [72] has demon-
strated that ECC-enabled memory controllers can be usedval nvays to implement
finer-grained memory fault mechanisms and we believe thayagy similar techniques to
PIFT can help ameliorate this mismatch.

Switching between Virtualized and Emulated Execution

Migrating the protected system from the virtualized modexacution to the emulated
mode involves suspending the native VM, producing a congareire snapshot of its vir-
tual CPU state, and initializing the emulated processanfthis snapshot. In PIFT, the
hypervisor and the emulator coordinate their activitie$ @xchange state using a common
data structuresftruct shared_info_xen_gemu). This data structure resides on a shared
memory page and Figure 4.2 illustrates its format.

The starting point for a virtual-to-emulated (V2E) traiwsitis the page fault handler
(_sh_page_fault), which, as we explain in the preceding subsection, cossh# page-
level taint status bitmap and sets #able_emulation flag if the page fault was a side-
effect of accessing a tainted memory page. This flag ing&deh to suspend the native
guest VM and switch to emulation immediately upon returmfithe hypervisor context.
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struct shared_info_xen_qgemu {

struct guest_cpu_context ctxt; /* Snapshot of the virtual CPU x/
int evtchn_upcall_pending; /* "Event pending’ flag */
int status; /* PIFT_EMULATION_REQUESTED or PIFT_EMULATION_COMPLETED x*/

}

Figure 4.2. The format of thehared_info_xen_gemu structure.

Guest SS
Saved by the Guest ESP
processor < | Guest EFLAGS
Guest CS
Guest EIP

Guest EAX
Guest EBP
Guest EDI
Guest ESI
Guest EDX
Guest ECX
Guest EBX

Saved by the <
hypervisor

Hypervisor ESP

Figure 4.3. The contents of the hypervisor-level stack wgrany to
restore_all_guest.

The real work begins imestore_all_guest (xen/arch/x86/x86_32/entry.S) —
the final stage of the hypervisor exit codepath, which restéhe guest's CPU state and
returns control to the VM by executing thieet instruction. Restoring the processor
state involves loading the hardware CPU registers with treesponding guest register
values. For the purposes of this discussion, it is importaniote that Xen maintains
the guest registers on the hypervisor’s stack, as Figurelldsdrates. We modify the
restore_all_guest code block to check the value of tkeable_emulation flag. If this
flag is set, the hypervisor invokes the cenpraft_emulate_guest function, whose imple-
mentation is illustrated with pseudocode in Figure 4.4.sThnction can be broken down
into three distinct phases, which correspond to the V2Esttim, the period of emulated
execution within QEMU, and the reverse emulated-to-vir(E&V) transition.

In the first phase, the hypervisor initializes teest_cpu_context structure, which
encapsulates a comprehensive snapshot of the virtual Giile 7.1 details the individual
fields of this data structure and describes how their valueesbtained during the transi-
tion. The snapshot of user-level registersx, ebx, esp, eip, and others) is initialized from
the guest CPU context residing on the hypervisor’s stackevdontrol register snapshots
(cro, cr3, cr4) are initialized by reading the live values in the corregping physical reg-
isters. The FPU context is recorded by executingftkeave instruction, which marshals
the complete state of the FPU into a 512-byte memory buffete khat we must also record
and transfer the values of several additional variablesdbanot represent any specific el-
ements of thehysicalCPU, but are essential to attaining a comprehensive repesm
of the virtual machine. These variables can be viewed as artefacts ofigagdzation
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extern struct shared_info_xen_gemu *shared_info;

asmlinkage void pift_emulate_guest() {
/**x Phase 1: virtual-to-emulated (V2E) transition sxxx/
save_shared_cpu_snapshot() {
save user registers
save segment registers
save FPU state
save control registers
save clock cycle counter
save local and global descriptor table registers
save artefacts of paravirtualiation

}

local_irg_enable(); /* Enable hardware interrupts */

shared_info->status = PIFT_EMULATION_REQUESTED; /* Notify the emulator */
send_guest_vcpu_virq(dom@->vcpu[0], VIRQ_PIFT_EMULATE);

/*xx Phase 2: emulated execution xxx/
while(shared_info->status != PIFT_EMULATION_COMPLETED) {
process_pending_timers();
if (current->vcpu_info->evtchn_upcall_pending & Oxff) {
shared_info->evtchn_upcall_pending = 1;
mb () ; /* Memory barrier x/
}
}

/**x Phase 3: emulated-to-virtual (E2V) transition sxxx/
local_irqg_disable(); /* Disable hardware interrupts =/

restore_from_shared_cpu_snapshot() {
restore user registers
restore segment registers
restore FPU state

}

invalidate_dirty_shadow_ptes() {
for (each page p in the dirty page list)
sh_remove_all_mappings(current, _mfn(p));

}

current->enable_emulation = 0;
return; /* Return to restore_all_guest */

}

Figure 4.4. The implementation of tipe ft_emulate_guest function.

and include the kernel stack pointéefnel_ss andkernel_sp), the address of the event
callback gallback_cs andcallback_eip), and the interrupt descriptor to be used for
servicing guest system callsnt80_desc). Once a comprehensive snapshot has been ob-
tained, the hypervisor signals QEMU (operating as a usetl-jgocess in the control VM)
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Fields Initialized from
/* User registers x/
unsigned int eax, ebx, ecx,
edx, esi, edi, ebp,

esp, eip, eflags;

/* Segment registers x/
unsigned int cs, ss, ds, Values saved on the hypervisor’s stack
es, fs, gs;

/* FPU state */

Values saved on the hypervisor’s stack

char fpu_state[512]; Hardware FPU context fetched usifigsave
/* Control registers x/

unsigned int cro; Physical register value fetched usingad_cro
unsigned int cr3; arch.guest_table.pfn

unsigned int cré4; Physical register value fetched usinggd_cr4
/* Clock cycle counter x/

unsigned long long tsc; Physical register value fetched usingtsc

/* Global descriptor table x/
unsigned int gdt_base, gdt_limit; | Physical register value fetched usisgyt
/* Local descriptor table x/
unsigned int ldt_base, ldt_limit; | Physical register value fetched usisigit
/* Artefacts of
paravirtualization x/

unsigned int callback_cs; arch.guest_context.event_callback_cs
unsigned int callback_eip; arch.guest_context.event_callback_eip
unsigned int kernel_ss; arch.guest_context.kernel_ss

unsigned int kernel_sp; arch.guest_context.kernel_sp

char int80_desc[8]; arch.int80_desc

Table 4.1. The components of thgaest_cpu_context structure (left) and the sources,
from which they are initialized (right).

through a virtual IRQ and instructs it to initiate emulati®ihen QEMU receives this sig-
nal, it initializes the state of the emulated CPU based onrttoemation contained in the
snapshot and launches the main emulation loop.

In the meantime, the native virtual machine enters the gkcstage of
pift_emulate_guest, during which it waits for the completion of emulated execu-
tion. The current version of Xen does not allow blocking tliesgt context at an arbitrary
point within the hypervisor, which is why our prototype cmtly implements a form of
busy waiting. During the waiting period, the native versadrthe protected VM has the
appearance of being “stuck” in the page fault handler, winileeality the VM continues
executing on the emulated processor managed by QEMU. Fuathe/e explain in Section
4.2.7, all event signals (such as virtual timer interruptd aotifications from paravirtual-
ized 1/O devices) sent to the native VM in this phase must tex@epted by the hypervisor
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and relayed to the emulated context in a proper manner. @iyré¢his is accomplished
by polling thecurrent->vcpu_info->evtchn_upcall_pending variable and propagating
its value toshared_info->evtchn_upcall_pending. The emulator periodically polls the
latter location and, when an event notification arriveserinipts the emulated CPU and
redirects execution to the guest event callback, imitatiegactions of the hypervisor.

When QEMU decides to stop emulation and resume native erecutt sig-
nals this decision to the hypervisor by setting #teared_info->status variable to
PIFT_EMULATION_COMPLETED. This action initiates the third and final phase of procegsin
in which the emulator and the hypervisor cooperate on paifuy the reverse (E2V) tran-
sition. QEMU writes the most recent (post-emulation) CPgigter values to the shared
snapshot and Xen transfers them back to the hypervisordtaek of the native VM.

Note that prior to relinquishing control, the hypervisor shupdate the native VM'’s
shadow page tables and synchronize them with the most rstzatof the page-level taint
bitmap in order to ensure that all subsequent accessesntedanemory locations are
properly trapped. The most straightforward way to accostpthis is by destroying all
existing shadow tables and letting the hypervisor recansthem on-demand, one entry at
atime, in response to subsequent page faults. Howevetetifigique is not very practical,
since it would incur an enormous performance penalty, éiigg page faults upoavery
subsequent memory access irrespective of the page taun.sta

PIFT implements a different and somewhat less heavy-hastdategy based on the ob-
servation that the taint status of a memory page (and hesxslkadow PTE) can changely
if the page has been modified during emulated execution. ¢jeme instrument QEMU
to maintain a list of dirty memory pages and provide thistiisthe hypervisor during the
E2V transition. The hypervisor walks through the list of dba page tables, examines
their entries, and reconstructs those that reference a miemory page. This technique
minimizes the number of subsequent page faults, but regsoanning all shadow PTEs
to locate all mappings of a specific physical page — still atre¢ly expensive operation.
Further improvements to our prototype may include addingwadiliary data structure that
will enable us to identify such mappings more efficiently.

In the final step, theift_emulate_guest function returns, transferring control back
to the hypervisor exit codepathestore_all_guest). The hypervisor restores the native
VM'’s processor registers from its stack and returns cortobdhe VM by executing the
iret instruction.

4.2 Information Flow Tracking with QEMU

Our system uses QEMU as a foundational building block forlatran and extends it
with fine-grained information flow tracking capabilities. il the standard implementa-
tion of QEMU offers a self-contained and robust emulationi@mment, significant mod-
ifications and extensions were needed to transform it intorapcehensive and efficient
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IFT platform. In this section, we describe the design andémentation of our extended
emulator that tracks the flow of taint labels in the guesteaysind explain how it integrates
with the other major components of PIFT.

Section 4.2.1 starts our discussion by reviewing the deaigh implementation of
QEMU, with a special focus on its code translation mechasis@ur approach to taint
tracking is based on augmenting the emulated machine withiwsalvhardware extension
in the form of ataint processor We discuss our general approach and highlight the key
distinctions from earlier taint tracking systems in Sectb2.2. Section 4.2.3 describes
the instruction set architecture, upon which the taint pssor is based and Section 4.2.4
illustrates its usage with several examples. We discussitbmals of the taint processor
and introduce the key data structures for managing regstmemory taint labels in Sec-
tion 4.2.5. Section 4.2.6 discusses how our system ex@syschrony and parallelism to
improve the runtime performance of taint tracking. Finafgction 4.2.7 discusses how
we integrate the augmented version of QEMU with the othee components of the PIFT
architecture, such as the hypervisor and the taint-awasytem. We defer the detailed
performance evaluation of our taint tracking substratehaper 5.

4.2.1 Overview of QMU

QEMU [7, 70] is a robust open-source processor emulatogiraily developed by
Fabrice Bellard. It provides a full-system emulation eomiment for several popular hard-
ware platforms, including x86, x86-64, ARM, Alpha, ETRAX R MIPS, MicroBlaze,
PowerPC, and SPARC. The emulated (guest) machine exeaoutles context of a single
user-space emulator process in the host OS and all elenfehtsguest machine state, in-
cluding its CPU registers, physical memory, and variougpperals, are represented with
corresponding data structures in the address space ofrtiiegs. To emulate memory
accesses from the guest machine, QEMU implements a softveasesd memory manage-
ment unit that provides guest-virtual to guest-physicalrads translation, mimicking the
behavior of a hardware MMU for the guest architecture. Intald a software-based TLB
maintains mappings between guest virtual addresses anmbthesponding addresses in
the emulator’s own virtual address space.

Unlike Xen and other paravirtualized environments, QEMl@gloot require patching
or otherwise modifying the guest operating system and doealter the software-hardware
interface. Conversely, QEMU aims to provide an accuratersoé-based representation
of the guest hardware platform, whose behavior is indistisitable from that of a real
“physical” machine from the vantage point of the guest OS.

Like other powerful emulators, QEMU achieves good perfarogaby implementing
just-in-time dynamic code translation mechanisms. Théchasit of granularity for the
purposes of code recompilation igranslation block defined as a block of guest machine
instructions terminated by a jump or by a CPU state changetwbannot be deduced
statically by the compiler [71]. When the emulator first emgirs a new translation block
(By), it analyzes the constituent instructions and generatesrasponding block of code
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in the host instruction set;,), which emulates3; and updates the logical representation
of the guest machine according to its effects. The resultmde blockB; is executed
natively on the host CPU and when its execution completegyais transferred back to
the main emulation dispatch loop. At that point, QEMU exagsithe emulated instruction
pointer gip) to locate the next translation block and then executesdiregponding native
code block. In cases where the new instruction pointer vedinebe determined in advance
(i.e., at the time of code translation), QEMU can patch tisailteng code so that it jumps
directly to the next native block without returning conttolthe central dispatch loop —
an important performance optimization referred tdrasslation block chaining For the
purposes of PIFT, the emulated processor is simply a repfitt@e physical host CPU and
thus, the dynamic code compiler is configured to perform &Bg86 translation.

Just-in-time code recompilation is a well-known technidmeimproving the runtime
performance of emulated systems and has been succesgpligchin a number of con-
texts. This approach is more complex, but at the same timgyva®re efficient, than
its main alternative — straightforward binary interpreiat Early on in the development
process, we experimented with several other x86 emulatigima@ments, which were all
based on binary interpretation. We have found that they temdpose a severe slowdown
(up to 3 orders of magnitude relative to native code exenlitmd such costs are clearly
unacceptable for our purposes.

On a more concrete level, code recompilation in QEMU is a s$tame pro-
cess. In the first stage, the “frontend” component of the dEngimplemented in
target-i386/translate.c) disassembles a basic block of guest code one instruction at
a time and transforms it into a machine-independent intdrate representation. In this
intermediate form, the code is expressed as a sequence GFHRESmicroinstructions
based on the TCG (Tiny Code Generator) notation. In the sepbase, the “backend”
component (implemented itcg/i386/tcg-target.c) translates the TCG representation
into a block of native instructions for the host machine. alimportant optimizations,
including liveness analysis and constant expression atialu[5], are attempted during
this stage. The results of code translation are cached ie-alfmcated memory buffer,
which allows QEMU to amortize the computational costs obrapilation.

Next, we elucidate the inner workings of the QEMU code tratws| with a concrete
example. Consider thgush %ebx instruction, which pushes one of the general-purpose
registers onto the stack. Figure 4.5 demonstrates the oo both stages of code trans-
lation for this particular instruction. In the first stageERQU decomposes it into a series of
six TCG microinstructions. The first microinstruction |eaal 32-bit word located at offset
oxc from the memory address pointed to &y into a temporary internal variablenpo.
env is a pointer to a global data structure that maintains theptet® state of the guest
CPU and offsetxc represents the location of the emulatac register within this data
structure. Hence, this microinstruction has the effectafdferring the current value of
the gueskbx register into a temporary variabtep6. Using similar machinery, the second
microinstruction loads the emulated stack pointer inta@erary variableemp2. The next
two microinstructions decrement the valuetip2, thereby updating the stack pointer in a
manner that reflects the effects of a push operation with and@nd-growing stack. Mi-
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Guest instruction (x86) Host instructions (x86)

push %ebx I (1)

nov Oxc(%bp) , Yeax
(2) nov 0x10( %ebp) , %edx

(3, 4) nov %edx, ¥ecx

Stage 1 add soxfffffffc, %ecx
nmv %eax, ¥ebx

nov %eax, 0x6b08( %ebp)

nov %ecx, 0x6b0c( %ebp)
. . nmv %ecx, Yedx
Intermediate representation (TCG) oV Yecx. Yeax

0,
(1) 1d_i 32 tnpO, env, $0xc Z:(rj :g;((?f f/f%%, %eax
(2) 1d_i 32 tnp2, env, $0x10 Stage 2 and $0xf f 0, %edx
(3) nmovi_i32 tnpl4, $oxfffffffc | ea 0x30¢( %edx, %ebp, 1) , Y%edx
(4) add_i 32 tnp2,tnmp2, tnpl4d 5 cnp (%edx) , Y%eax
(5) gemu_st32 tnpo, t np2, $0x0 4 e Oxad29f 554
(6) st_i32 tnp2, env, $0x10

nmv %ecx, Yeax

nov %ebx, ¥edx

xor %ecx, Yecx

cal | 0x8162ce0

jmp Oxad29f 55b

nmv %ecx, Yeax

add 0x8( %edx) , Yeax
nov %ebx, (Yeax)

nov 0x6b0c(%ebp) , Yeax
(6) nmov %eax, 0x10( %ebp)

Figure 4.5. An example of dynamic code translation in QEMU.

croinstruction 5 performs an emulated memory store, whigtestmp0 (holding the value
of theebx register) into the memory location that corresponds to twe top of the stack.
The last microinstruction writes the updated stack poitdets permanent location within
the globalenv structure.

In the second phase of code translation, QEMU transformaltbge sequence of mi-
croinstructions into native code for the host processorthis phase, the compiler maps
the abstract temporary variables onto the host CPU regiatef attempts several optimiza-
tions. The block of machine instructions that emerges frioim pphase represents the final
results of the translation process. As Figure 4.5 showspntains 25 instructions and
combines two distinct execution paths segregated by a tondi branch. The “fast” path
handles the case where the address translation entry fouthent stack page is present in
the software TLB, while the “slow” path, invoked in the evefita TLB miss, calls a pre-
compiled helper routinecbé11 0x8162ce0) to resolve the translation entry using the guest
page table. The fast execution path contains a total of 2thimadnstructions, which in-
clude 9 memory accesses and 1 conditional branch. Viewéettokly, these numbers can
be taken as a rough approximation of the fundamental coghafating apush instruction
with the current implementation of QEMU.

In a number of special cases, QEMU refrains from dynamic apeleeration in the
second stage of translation and instead redirects the hmstgsor to a statically-compiled
native routine, which updates the state of the emulated mach the desired manner.
This method of emulation is used to handle instructions watinplex semantics and side-
effects (often involving conditionals on the runtime statéhe machine), for which writing
a dynamic code translator would be a cumbersome and emoepmdertaking.

Figure 4.6 illustrates emulation using statically-getetehelper routines on the ex-
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QEMU helper routine
Guest instruction (x86)

sysenter |

1 voi d hel per_sysenter(void) {
! .
K if (env->sysenter_cs == 0)
! rai se_exception_err( EXCPOD_GPF, 0);

/* Update EFLAGS and the current privilege level */
env->eflags & ~(VM_MASK | | F_MASK | RF_MASK);
I cpu_x86_set _cpl (env, 0);

Stage 1

/* Load the new code and stack segment selectors */
cpu_x86_| oad_seg_cache(env, R_CS,
/’ env->sysenter_cs & Oxfffc,

i i ! 0, Oxffffffff,
Intermediate representation ’,: DESC G MASK | DESC_B_MASK |

(TCG) / DESC_P_MASK | DESC_S_MASK |
| call hel per_sysenter DESC_CS_MASK | DESC_R MASK |
| DESC_A_MNASK) ;
\ cpu_x86_l oad_seg_cache(env, R_SS,
(env->sysenter_cs + 8) & Oxfffc,

\ 0, Oxffffffff,
\ DESC G MASK | DESC B _MASK |
\ DESC P_MASK | DESC_S_MASK |
“ DESC W MASK | DESC_A_ MASK);

\ /* Update the stack pointer */
\ env->regs[ R_ESP] = env->sysenter_esp;

\ /* Update the instruction pointer */
\ env->regs[ R EI Pl = env->sysenter_eip;

Figure 4.6. An example of code translation with static instion handler routines.

ample of thesysenter instruction. This x86 instruction provides an efficient inagism
for invoking system calls and transferring control to the k&8nel without incurring the
full overhead of a software interrupt. This instruction makatively complex semantics,
which involve changing the processor’s privilege leveldifiging several bits in theflags
status register, loading the new code and stack segmentgtese from the global de-
scriptor table, and finally setting the instruction and ktpointers to preconfigured val-
ues maintained in a pair of designated model-specific Egidtysenter_eip_msr and
sysenter_esp_msr). Under certain abnormal conditions, such as wégenter_cs_msr
contains an invalid kernel code segment selector, thisuosbn raises a processor ex-
ception and transfers control to a kernel-level exceptiandfer routine instead of the
system call handler. To emulate this complex sequence ahtiprs, QEMU invokes a

pre-compiled helper functiomelper_sysenter, whose source code is shown on the right
side of Figure 4.6.

This emulation strategy results in a more readable and less@one implementa-
tion; after all, a C-language function is much easier to detoad maintain than a piece
of compiler code that dynamically synthesizes a functigrediuivalent block of machine
instructions. However, as is often the case with systemwaaé, readability and maintain-
ability come at the cost of performance. Invoking a stalyeabmpiled helper routine from
the emulator context incurs the full costs of a function callthe x86 platform. These
include the overhead of adjusting the stack frame and this afssaving and restoring
the host machine registers used as temporaries by the melgere. Further, a statically-
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compiled instruction handler does not easily integraté wie dynamic code generator and
cannot benefit from its liveness analysis and register afiog optimizations.

4.2.2 Extending QEMU with Taint Tracking: Approach Overvie w

Having provided a brief introduction to QEMU and its codenskation mechanisms,
we can now discuss our approach to designing a comprehengvmation flow tracking
substrate on top of this emulation technology. Doing soireguaddressing several impor-
tant design questions. Perhaps most crucially, we mustaersnd decide at what level of
abstraction we should track the flow of sensitive informafiiepresented by taint labels)
in the guest environment.

One possible approach, and one that has been extensivédyekm prior work, is to
track the propagation of taint labels at the level of TGC pires. This can be accom-
plished by instrumenting each microinstruction handlehwidditional logic that updates
the taint data structures in the corresponding manner. Aduaitrative example, consider
the microinstructioradd_i32 tmp2,tmp2,tmpl4 from the code fragment shown in Fig-
ure 4.5. When the backend compiler reaches this instruydtigenerates a block of host
machine code that adds the value storednip14 to the contents ofmp2. With this ap-
proach, the compiler extends the output with an additioequence of instructions, which
merges the taint label ofmp2 with the label oftmp14 and taintstmp2 (the destination
operand) with the resulting label. Other microinstrucsi@re handled in an analogous
manner.

This approach to taint tracking is straightforward, congaty and relatively easy to
implement, since TGC microinstructions have very simpleaatics. However, as we
demonstrate below, this technique inevitably imposes atidraerformance penalty that
would render the resulting implementation unusable in arget setting, i.e., real-time IFT
for interactive user-facing applications. However, destiis inherent performance hit, all
previous systems [61, 41, 98] that have attempted to extétd@with instruction-level
taint tracking employ this technique.

PIFT starts with the same foundational building block — tHeMQJ emulator, but takes
a very different approach and, accordingly, makes diffeteade-offs. While previous
techniques tend to intertwine emulation with taint tragkiour approach views them as
two separate and, for the most part, independent compnsatio conceptual terms, our
system offloads the taint tracking workload to a dedic#séut processor— a specialized
hardware extension to the x86 architecture similar to a Sttialule for vector algebra or
an FPU. We devise a new instruction set architecture (ISAgXpressing taint propagation
actions in a concise and efficient form and this new ISA presithe primary means of
programming the taint processor.

While our long-term objective is to implement the taint pgssor in real hardware,
this extension takes onwvartual form in our current design and we emulate its functional-
ity in software via a set of functional extensions to QEMU. ésesult, PIFT provides a
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Guest machine
instructions (x86)

Taint Taint tracking Intermediate
processor instructions representation (TCG)
lStage 2
Host machine
instructions (x86) :>[Emu|ator]

Figure 4.7. Our extensions to QEMU’s dynamic code translato

software-only solution that is fully compatible with exigg and widely-deployed hardware
platforms, while retaining the potential for incrementagjmation to hardware-assisted plat-
forms at a later stage.

Our design makes several modifications to QEMU’s dynamieammpiler, as illus-
trated in Figure 4.7. For each input block of guest machirgecthe code translator in
PIFT generates two distinct sequences of instructionsetigéated version of the original
guest code and the corresponding bloctadrdit tracking instruction$or the taint processor.
To produce the latter, we interpose at the first stage of tde t@nslation process, where
the initial stream of guest x86 instructions is disassenhhled converted into intermediate
code blocks. We examine each instruction in the input bldekermine its effects on the
state of taint labels in the system, and synthesize some euohtaint tracking instructions
that capture these effects. Crucially, the taint trackiodecis generated directly from guest
x86 instructions, prior to their decomposition into the T@@&ation. As we explain below,
preserving the semantics of the original guest instrucsieincan be highly beneficial to
performance, as it enables the taint processor to apply @ewuof important optimiza-
tions. During emulation, QEMU submits these auxiliary i®of instructions to the taint
processor in the order that matches the execution sequéras#ual code blocks in the
emulated machine. The taint processor executes taintimiakstructions in a sequential
manner and updates the state of labels in the system acgdadineir specifications.

The main complication with the basic scheme described ailsdhat in certain scenar-
ios, the information needed to fully specify a taint tragkaction may not be available at
the time of code translation. In other words, given a guesthime instruction, the code
translator must determine its precise effects on the statnd labels in the emulated sys-
tem and, in certain cases, this requires knowing somettuagtahe system’s runtime state.
To illustrate this problem, we return to the example invotythepush %ebx instruction,
which pushes one of the guest machine registers onto thie $tagrder to account for the
flow of information produced by this instruction, we mustpagate the taint label from the
source register to the memory location that representfheftthe stack. While the taint
source operand (registetsx) is encoded into the instruction and is thus readily avéel&in
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Guest instruction (x86)
I push %ebx I

7 N\

Taint tracking instruction Intermediate representation (TCG)

Set MenReg( Dst =Log[ 0], Sr c=ebx) I
ZN

1) 1d_i32 tnpO, env, $0xc

2) 1d_i 32 tnp2, env, $0x10

3) novi_i32 tnpld, $Oxffiffffc
4) add_i 32 tnp2,tnp2, tnpld
5)
6)

genmu_st 32_| ogaddr t npO, t np2, $0x0

(
(
(
(
==
( st_i 32 tnp2, env, $0x10

I
1
1
I
1
1
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1
1
I
1
1
I
[}
1
I
[}
1
: 0xc123450 Taint argument log

Figure 4.8. An illustrative example of dynamic code tratistain PIFT.

the compiler, the destination memory address is, of com®seknown at the time of code
analysis.

To handle such cases, the compiler instruments the emuwlatsidn of the problematic
instruction with a small amount of additional logic thatok®&s these unknown values at
runtime and communicates them to the taint processor. Inrcowent implementation,
these dynamic temporary values are communicated via adcsleailar memory-based
log. In operational terms, the emulator and the taint traeke in a producer-consumer
relationship and use the log to coordinate their activities

Most of these problematic cases involve instructions thamipulate (read or update)
the contents of memory, as tracking the resulting flow of rimfation requires knowing
the exact physical address of the memory operand. To hahdeparticularly com-
mon scenario, we define new variants of the emulated load tame shicroinstructions:
gemu_1ld_logaddr and gemu_st_logaddr (replacing the original versiongemu_1d and
gemu_st, respectively). In addition to reading or updating a meniopation in the em-
ulated machine, these microinstructions also resolve tlysipal address of the memory
operand and record it into the shared log for subsequentogptson by the taint processor.

Figure 4.8 illustrates how our system handles theh instruction from one of
the previous examples. Upon reaching this instruction,TRIBynamic compiler syn-
thesizes the corresponding taint tracking instruction,ctvhhas the following form:
Set (Dst=MEM_LONG, Src=ebx, ArglLogPos=0). This instruction sets the taint label for
the destination memory address to the label associatedtwetisource register operand.
Since the destination address cannot be resolved at theofigwe translation, the com-
piler specifies a placeholder that references slot O in tim #&agument log. To generate
this address, the compiler modifies the intermediate ratateplacing the emulated store
microinstruction withgemu_st_logaddr. At runtime, this microinstruction causes the em-
ulator to compute the physical address of the destinatianong operand and write it into
the argument log.
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TCG microinstruction Taint tracking action

(1) 1d_i32 tmpO,env, $0xc Limpo < Leps

(2) 1d_i32 tmp2,env, $0x10 Lipmpo < Lo(= Lesp)

(3) movi_i32 tmpl4,$0xfffffffc | Lynpia < Lo(= Leonstant)
(4) add_i32 tmp2,tmp2,tmpld Limp2 < Limp2 © Limpi4
(5) gemu_st32 tmpO,tmp2,$0x0 Lnemltmp2+0..3)] < Limpo
(6) st_i32 tmp2,env,$0x10 No-op

Table 4.2. The sequence of taint tracking actions requdthndle thepush %ebx in-
struction with previous approaches.

To summarize, PIFT proposes a novel design for informatiow flracking using
QEMU that differs from the previous techniques in two crucgspects:

1. PIFT explicitly decouples information flow tracking froemulation, treating them
as two separate and largely independent computations.

2. PIFT tracks the flow of information at a higher level of ahstion that captures the
specifics of the guest ISA.

We believe that the above points warrant a more detaileg/sisadnd we now proceed
to examining these design choices with the goal of artiougatheir main advantages and
implications.

One of the central contentions of this dissertation is ttaaiing the flow of information
at a level that directly matches the semantics of the gusstiction set is inherently more
efficient than tracking at the microinstruction level. white defer the detailed description
of the taint processor and its instruction set to the nexsasciiion, it is quite easy to show
informally that our approach can be expected to provideiogmt performance gains.

First and foremost, mapping the stream of guest machineutiginsdirectly onto
taint-tracking instructions, without first decomposingrininto TCG, allows us to avoid
tracking the propagation of taint through the intermediaternal variables defined by the
TCG language. Looking again at the decompositiopush in Figures 4.5 and 4.8, we note
that if we instrument each microinstruction with taint kaag, as previous systems do, we
must track the propagation of labels through the internmtedrariablestmp0, tmp2, and
tmp14. This results in five distinct taint propagation actionsillastrated in Table 4.2. In
contrast, handling this example in PIFT requires only oird teansfer action — one that is
specified by the taint tracking instructisat (Dst=MEM_LONG, Src=ebx, ArglLogPos=0).

Another noteworthy point is that the presence of higheellsemantics enables a range
of novel and highly effective optimizations that are difficor altogether impossible to ap-
ply at the microinstruction level. As an illustrative examponsider the widely-use@pz
movsd [19] mnemonic on x86, which provides an efficient way to copyagbitrarily-sized
region of memory between a pair of virtually-contiguous noeyrbuffers. This instruction
is commonly used to implement tmemcpy C library routine and the Linux kernel uses
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repz movsd to transfer file data between an application-level buffet tre kernel-level
page cache when servicisgs_read andsys_write system calls. To emulate this seem-
ingly simple instruction, QEMU converts it into a looped geqce of microinstructions.
Each iteration of the loop decrements a counter and tranmsiee word of data between
the two buffers using one emulated loa@nfu_1d) and one emulated storgefnu_st) mi-
croinstruction. Instrumenting these microinstructionthvFT logic (the approach taken
by earlier systems) implies that memory taint labels are ajglated one word at a time.
The costs of traversing the memory taint data structureach geration of the loop quickly
add up and can lead to a tremendous slowdown — up to 3 orderagritade relative to
the data transfer itself.

PIFT handles this situation quite differently. In the codenslation stage, our com-
piler examines theepz movsd guest mnemonic and emits its taint tracking equivalent:
RepSet (Dst=MEM_LONG, Src=MEM_LONG). When this instruction executes, the taint pro-
cessor carefully examines the buffer size and alignmergepties and optimizes the trans-
fer accordingly. In a common scenari@pz movsd is invoked with page-aligned memory
buffers and the source page(s) carry uniformly-tainted.datthis case, it suffices to trans-
fer page-level taint values, instead of copying the comstit fine-grained taints one word
at a time. Assuming 4KB-sized memory pages, 32-bit wordd geB2-bit taint label space,
this technique reduces the computational burden of ta@icking by a factor of 1024 in
this common case. It is essential to note that this optinumas enabled by the presence
of higher-level semantics. In this example, they allow thiattprocessor to recognize an
important special case — a contiguous transfer between-alagreed regions of memory
— and such information would be difficult to recover one@z movsd is decomposed into
a loop of microinstructions.

Finally, by explicitly separating information flow trackgrirom emulation and treating
them as two loosely-coupled computations, PIFT gains ewhdit flexibility in scheduling
these tasks. In particular, we can let the taint trackingmatation proceedsynchronously
with respect to the main emulation context. Moving the oearhof taint tracking out of the
critical execution path in this manner allows us to impropelecation response time and
interactivity, as we demonstrate in our evaluation. On roaite architectures, performance
can be further improved by executing the emulation and teacking contexts concurrently
on two distinct processor cores. The detailed design of@dswmous parallel taint tracking
is provided in Section 4.2.6.

Granted, our approach has costs. First, our implementegisignificantly more com-
plex than previous systems. While annotating TCG microutsion handlers with taint
tracking logic is a relatively straightforward task, cnaff a specialized machine code trans-
lator for the x86 instruction set is a more daunting undénigkSynthesizing taint tracking
instructions requires understanding and correctly hagdhe rich semantics and intrica-
cies of the guest instruction set. However, notwithstagdie complexity and semantic
richness of the x86 ISA, we have found that its taint propagagffects can be efficiently
mapped onto a modest number of well-chosen taint trackistguations, which we present
in the next subsection.

The second concern pertains to the portability of our im@etation. Our specialized
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Opcode (4 bits) | Dst (6 bits) | Src (6 bits)
ArgLogPos (16 bhits)

Figure 4.9. The general format of a PIFT taint tracking instion.

code translator and taint tracking processor extensions designed for the x86 machine
architecture and are not directly usable on other platforfosperform taint tracking on a

different processor architecture (such as ARM or PowerR€)ill have to design a new

virtual instruction set and implement a new code transldtawever, given the dominant
deployment of x86-based hardware, we believe that thisdbgenerality is a prudent cost
to pay for the performance improvements.

4.2.3 The PIFT Instruction Set

PIFT constructs a virtual processor extension and a newuictgin set for manipulating
taint labels. This instruction set tries to capture the iseesemantics of the guest machine
ISA and avoids decomposing multi-stage taint propagatitinas associated with complex
x86 instructions into groups of simpler actions, since Hitel are necessarily suboptimal
from the performance standpoint. Each taint tracking utston specifies a certain trans-
formation on the state of taint labels in the emulated systectuding the taint status of its
CPU registers and physical memory.

General instruction format: A PIFT taint tracking instruction comprises a fixed-length
32-bit static component and a variable number of dynanyigginerated instruction ar-
guments. The static portion of an instruction is synthekizgthe PIFT compiler during
the first stage of code translation. The dynamic componemiiagts a set of instruction-
specific arguments, whose values depend on the runtimeoétidie guest system and thus
cannot be determined at compile time. As described in theéque section, these values
are resolved at runtime from the main emulation context ardmaunicated to the taint
processor through a circular memory-based log.

Figure 4.9 illustrates the high-level format of the statistruction component. In its
general form, this component specifies a source and a diéstirgerand, an instruction
opcode, and afrgLogPos value, which indicates the position of the first dynamic angat
for this instruction in the taint tracking log. This positits specified as an offset relative
to the starting point of the argument array for the curreartgtation block. For instructions
that require more than one dynamic argument, additionairaemts are written to the log
at consecutive positions and thus, the taint processor &sity docate them based on the
position of the first argument.
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Fixed Integer registers
0x0 0x01 | Ox02 | Ox03 | 0x04 | 0x05 | Ox06
NULL eax | ecx | edx | ebx | esi edi

FPU registers
0x07 | Ox08 | Ox09 | Ox0A | OxOB | OxOC | OxOD | OxOE
sto stl st2 st3 st4 st5 st6 st7

Memory
OxOF 0x10 0Ox11 0x12 0x13
MEM_BYTE | MEM_WORD | MEM_LONG | MEM_QUAD | MEM_10BYTES

Other
0x14 | Ox15| Ox16
TMP1 | TMP2 | NONE

Table 4.3. Taint tracking instruction operands.

Instruction operands: The Src and Dst fields specify the source and destination
operands for a taint transfer action. Table 4.3 lists théitegte operand values and we
describe them in further detail below.

0x00: This value represents a fixed “null” taint label. It carly be specified as a source
operand and provides an easy and efficient way to clear thmdtsn’s taint label
(i.e., replace it withlg).

0x01-0x0E: Values in this range provide a means of manimgdhe taint status of guest
machine registers. As in previous approaches [98, 41], Ri&dks the current taint
label for each of the data registers, which include the gavymIrpose integer regis-
ters and the FPU register stack. Our current prototype dotesatk the propagation
of labels through SIMD vector data registers associateti Wié various vendor-
specific extensions to the core x86 architecture, but wetplanplement support for
at least one such extension in future work. Also in line witbvious efforts, PIFT
does not maintain taint labels for system registers thatagathe processor’s control
plane and system resources. These include the stack p(spgrstack base pointer
(ebp), instruction pointerdip), segment registers, control registers, descriptor table
registers, status flags, MSRs, hardware counters, andsotfaintaining taint labels
for these low-level components would incur unnecessaryhaaal, since it would be
unusual for sensitive application-level data to propagdtethese registers.

0x0F-0x13: Values in this range are used to specify memoeyams. Memory access
instructions on the x86 platform come in different forms agbport several dif-
ferent units of transfer, includingytes words (16 bits),long words(32 bits), and
quad-words(64 bits). PIFT supports all of these options by providing atching
set of operandsMEM_BYTE, MEM_WORD, MEM_LONG, andMEM_QUAD. The last memory
operand typeMEM_160BYTES) was added to handle an important special case — mov-
ing numbers in the 80-bit extended precision format betwaemory and the FPU
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| Opcode | Mnemonic | Accepts destination operand| Accepts source operand

0x0 Set yes yes
Ox1 Merge yes yes
0x2 CondSet yes yes
0x3 CondMerge yes yes
0x4 RepSet yes yes
0x5 RepMerge yes yes
0x6 FPUPush no yes
Ox7 FPUPop yes no

0x8 ExtendedOp n/a n/a

Table 4.4. Taint tracking instruction opcodes.

register bank using instructions suchfas andfstp. Note that in most cases, the
actual physical address of a memory operand cannot be essat\compile time and
must be supplied to the taint processor in the form of a dynamgument.

0x14-0x15: We define two internal temporary variabledP{ and TMP2) for storing in-
termediate results during multi-stage taint label comipania. These variables assist
us in a small number of special cases that involve a complestgastruction and a
specific pattern of taint propagation. More concretelyséhgcenarios require merg-
ing taint labels from multiple sources and propagating @saiitant label to multiple
destinations. Saving the result of the merging step in a tearp variable allows us
to avoid recomputing it for each destination.

0x16: This value indicates that the operand field is unused.

Instruction opcodes: PIFT defines 9 distinct instruction opcodes which, in corabon
with the abovementioned set of operands, allow us to exprasde range of taint manip-
ulation actions. We summarize these opcodes in Table 4.diesatibe them more fully in
the following paragraphs.

[0x0] set: This opcode sets the destination operand’s taint labélddetbel of the source
operand:Lpy < Lgye.

[Ox1] Merge: This opcode merges the destination operand’s taint lakibltive label of
the source operand:p,; < Lps @ Lgye-

[0x2] CondSet: This opcode implements tlenditional setction, which sets the destina-
tion operand’s taint label to the label of the source opeitie value of a condition
flag is non-zero. This opcode was added to provide suppoddoditional transfer
instructions, such asmov, defined by the x86 architecture. The emulator evaluates
the conditional parameter at runtime and communicatesthédaint processor in
the form of a dynamic argument.
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[0x3] CondMerge: This opcode implements th@nditional mergeaction predicated on
the value of a dynamic argument.

[Ox4] RepSet: This opcode implements threpeat sefaction, which propagates the taint
label from the source operand to multiple contiguous insgarof the destination
operand. This opcode was added to provide support for repé@nsfer instructions
defined by the x86 architecture. One particularly imporexdample is therepz
movs instruction, which allows applications to set up an arbitydong data trans-
fer between a pair of contiguous memory buffers. In our eéepee, such repeated
transfer actions have proved to be among the most difficliatadle and the main
complication arises from the fact that thember ofdynamic arguments for these in-
structions cannot be determined (or reliably estimatedpatpile time. To see why,
we must consider the fact that whitepz movs defines a virtually contiguous mem-
ory copy operation, the resulting data transfer may not Iogigoous at the level of
physicalmemory pages. Hence, in order to describe the effects oirtsiigiction to
the taint processor, it is not enough to simply specify tlaetstg memory addresses
and the length of the transfer; we must examine the sidetsftd the level of physi-
cal pages and record the resulting physical addressesmtaint argument log. The
problem is that the number of such addresses (and hencenhigenwf log slots we
must reserve prior to emulating the instruction) cannot étemined at the time of
code translation — it depends on the length of the transféctwib, in turn, specified
by the runtime value of thecx register.

PIFT handles this nontrivial scenario by allocating a setemiondary argument logs
which can grow and shrink dynamically. When handling a régbé&ransfer guest
instruction, the emulated version of the instruction resersome number of such
logs and fills them with the necessary address informatiate khat since memory
addressewithin a page are physically contiguous, it suffices to record orysipal
address for each page in the source and destination bufféesse arrays of page-
level addresses, together with the starting page offsettim louffers and the transfer
length, provide sufficient information to fully describeetkffects of the instruction
for taint tracking purposes. The addresses of these segoludgs are then commu-
nicated to the taint processor via the main argument log.

[0x5] RepMerge: This opcode implements thhepeat mergection. It is semantically and
functionally equivalent to th®epSet instruction described above, except that the
labels in the destination buffer are merged with (rathen tigglaced by) the source
labels.

[0x6] FPUPush: This opcode pushes the source operand’s taint label oattabiel stack
representing the FPU register bank:
Lst? — Lst6

Lstl — LstO
LstO — LSrc-

[0x7] FPUPop: This opcode pops the topmost value from the label staclesemiting the
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FPU register bank and taints the destination operand wishsdiue:
LDst — LstO
LstO — Lstl

Lstﬁ — Lst?
Lst7 < LQ)

[0x8] ExtendedOp: While the set of opcodes and operands described above affgow-
erful language for expressing taint propagation actiongjeselements of the x86
instruction set do not naturally fit into this framework. FEleenon-conforming in-
structions have relatively complex taint tracking sidkeets that are not easily ex-
pressible via the source-destination operand notationsome cases, the instruc-
tion’s exact semantics (and hence its information flow effeare influenced by a
set of conditionals on the state of the emulated machinewiniust be evaluated at
runtime and communicated to the taint processor.

We consider such problematic instructions on a case-bg-basis and define a set

of custom taint tracking routines to handle them. In ordeintwke one of such
custom handlers at runtime, the compiler synthesizesaended0p instruction and
specifies one of thextended opcodealues in the 12 least-significant bits, replacing
the Dst andSrc fields. Next, we enumerate these extended opcodes and briefly
comment on their usage:

[Ox0] ExtFSave
Dynamic arguments:
‘ DstMemStartAddr ‘ DstMemEndAddr ‘ RegisterAddrMask ‘

This extended opcode handles ttsave guest instruction, which saves the en-
tire state of the guest FPU (marshalled into a 108-byte datiatare) to the
memory location specified by the destination operand. F®ptirposes of in-
formation flow tracking, we must propagate taint values fribra individual
components of the emulated FPU to the corresponding regiomgmory and
hence, the emulator must provide the destination memomeadas a dynamic
argument to the taint processor. If the destination areassfveo virtually con-
secutive memory pages, we record both the starting and thegphysical
address in order to obtain the mappings for both pages. I§ifahny of the
general-purpose registers were used to compute the déstimaemory ad-
dress, we must capture the resulting indirect flow by tagntime destination
memory area with the labels of the corresponding regigtelfe specify the
set of registers that participated in the computation ofdéstination address
via a bitmask in the third dynamic argument.

[Ox1] ExtFRstor
Dynamic arguments:
‘ SrcMemStartAddr ‘ SrcMemEndAddr RegisterAddrMask
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This extended opcode handles taint propagation forftkeor guest instruc-
tion, which restores the state of the FPU previously savedgmory using the
fsave instruction. The taint processor transfers the taint breim the source
memory area to the corresponding elements of the FPU sthgesdurce mem-
ory address and the set of registers used to compute it anmonivated to the
taint processor as dynamic arguments.

[Ox2] ExtFXSave
Dynamic arguments:
BooleanFlags

[bit 0] SaveXMMState
RegisterAddrMask

DstMemStartAddr DstMemEndAddr

This extended opcode handles taint propagation forfisave guest instruc-
tion, which writes the current state of the FPU, MMX, SSE, MYCSR
processing elements to a 512-byte memory area specifiedebglestination
operand. Since our current implementation does not traekatint status of the
MMX, SSE, and MXCSR components, we only propagate tainti$afioem the
emulated FPU and clear the destination taint status foetbdser components.

[Ox3] ExtFXRstor
Dynamic arguments:
‘ SrcMemStartAddr ‘ SrcMemEndAddr ‘ RegisterAddrMask ‘

This extended opcode handles taint propagation forfimetor guest instruc-
tion, which restores the contents of the FPU, MMX, SSE, andQ8R pro-
cessing elements from the memory area specified by the sopetand.

[Ox4] ExtFStenv
Dynamic arguments:
‘ DstMemStartAddr ‘ DstMemEndAddr ‘ RegisterAddrMask ‘

This extended opcode handles taint propagation foftléenv guest instruc-
tion, which saves the current FPU operating environmertiatiemory loca-
tion specified by the destination operand. Since we do nck tfze taint status

of FPU control data structures, we clear the taint labelgfedestination mem-
ory area.

[Ox5] ExtFPURotateUp
Dynamic arguments: none

This extended opcode handles taint propagation forfthestp guest instruc-
tion, which “rotates the barrel” of the FPU register bankving st1 into sto,
st2 into st1, and so forth.
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[Ox6] ExtFPURotateDown
Dynamic arguments: none
This extended opcode handles taint propagation forftleestp guest instruc-

tion, which “rotates the barrel” of the FPU register bankhe bpposite direc-
tion.

[OX7] ExtInterrupt
Dynamic arguments:
BooleanFlags
[bit O] HasErrorCode
[bit 1] IsTaskGate DstMemStartAddr | DstMemEndAddr
[bit 2] PerformStackSwitch
[bit 3] VM86ModeEnabled

This extended opcode handles taint propagation for thevacdtinterrupt {nt)
instruction — the standard mechanism for implementingesystalls on the
Linux platform. In typical cases, this instruction reditethe processor to a
pre-defined interrupt service routine, switches the staxktpr to an alternate
kernel-level stack area, and pushes a 20-byte control datetwre onto this
new stack. This data structure records the old valuespfss, eip, cs, and
eflags. Our system does not maintain taint labels for any of thesgrab
registers and thus, the taint processor handles this etgiruby clearing the
taint status in the destination memory area.

[0x8] ExtLCall
Dynamic arguments:

BooleanFlags

[bit O] IsTaskGate DstMemStartAddr | DstMemEndAddr
[bit 1] PerformStackSwitch

SrcMemStartAddr SrcMemEndAddr NumParameters

This extended opcode handles taint propagation fottb&l guest instruction,
which performs a far (inter-segment or inter-privilegedg procedure call. In
typical cases, the processor switches to the stack for thidgege level of the

called procedure and pushes the calless, ss, eip, andcs values onto the
new stack. Our system does not maintain taint labels for &tlgese control

registers and thus, the taint processor clears the taitussita the destination
stack area. This instruction may additionally copy an aploset of 32-bit

function parameters from the calling procedure’s stackéotew stack and we
transfer their labels between the two stack regions aceghyli
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4.2.4 Taint Tracking Code Generation

The focal point of our taint tracking extensions to the QEMUOmMpiler is the
disas_insn function intarget-i386/translate.c, which decomposes and translates a
single instruction from the guest code stream. This fumctoplements a state machine,
analyzing the input instruction one byte at a time, deconmgpis into TCG notation, and
(with our extensions) generating the corresponding taawking code. Although a com-
prehensive review of the x86 instruction set is beyond tlopsof this document, as is an
exhaustive description of PIFT’s code translation rules,can elucidate the general logic
of taint tracking code generation by providing several egpntative examples.

Example 1: movb %eax, (%edx)

This x86 mnemonic dereferences the byte pointer storedxand loads the resulting 8-bit
value intoeax. In our model of information flow tracking, this instructigerforms two
information transfers: a direct transfer from the sourcenmey location to the destination
registereax and an indirect transfer frordx to eax. The latter arises from the fact that
the value okdx is used to compute the address of the source memory operammapiure
these effects, our compiler generates the following paiaoit tracking instructions:

Set(Dst=eax, Src=MEM_BYTE, ArgLogPos=0)
Merge(Dst=eax, Src=edx)

Example 2: fstp st3

This mnemonic modifies the state of the FPU register stackopying the contents of
st0 to st3 and then popping the stack, discarding the topmost valaenfiormation flow
effects can be captured via the following sequence of teacking instructions:

Set(Dst=st3, Src=st0)
FPUPop (Dst=NONE)

Example 3: idiv (%ebx)

This mnemonic implements the signed integer division dpara It divides the 64-bit
integer inedx:eax (constructed by viewingdx as the most significant four bytes aesak

as the least significant portion) by the 32-bit value stotemirmaemory location referenced
by ebx. The quotient and the remainder results of the division &aegal ineax andedx,
respectively. We capture the resulting information flow bygervatively tainting the entire
result with the labels of all source operandsx, edx, and the memory location). We
additionally taint the destination wittbx in order to capture the indirect flow. Our compiler
handles this scenario by generating the following sequehtant tracking instructions:

Merge(Dst=eax, Src=edx)

Merge(Dst=eax, Src=MEM_LONG, ArglLogPos=0)
Merge(Dst=eax, Src=ebx)

Set(Dst=edx, Src=eax)
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4.2.5 Taint Processor Internals

The taint processor is the central architectural moduleuofr@formation flow tracking
substrate. This module is tasked with consuming and exegliiocks of taint tracking
instructions produced by the code translator. In Secti@®4we alluded to the possibil-
ity of implementing the taint processor as a real hardwatenskon, but since our current
design constraints call for compatibility with legacy hasde platforms, our implemen-
tation emulateshe taint processor’s functionality in software. In the gienand purely
synchronous mode of information flow tracking, the emulaseat processor and the guest
emulator itself execute in the same QEMU thread and opardtekstep: QEMU executes
a translated block of guest code and then switches to theagealdaint processor, which
consumes the corresponding block of taint tracking insibas and updates the state of
taint labels in the guest environment.

We now present the core data structures used by the tairgggocto manage the taint
status of guest machine registers and memory.

Maintaining register taint status: As we mentioned in the preceding section, our cur-
rent implementation maintains taint labels for all six of theneral-purpose integer regis-
ters gax, ebx, ecx, edx, esi, andedi), as well as the FPU data register stacko(through
st7). We manage the taint status of these processor regisiagaisery straightforward
array-based scheme. For general-purpose integer registermaintain a simple linear
array of 32-bit label values, one label per register. ForRR& data register stack, we
maintain an array of 8 labels representing the individuatlsslots, along with the position
of the topmost stack element in this array. Organizing taeksin this manner allows us
to handle push and pop operations very efficiently — simplypgating the topmost ele-
ment pointer, without having to shift the actual label valbetween array slots. However,
accessing an arbitrary stack element is slightly more esigenn this scheme, requiring
two memory accesses instead of one.

Maintaining memory taint status: Tracking the byte-level taint status of guest memory
requires a somewhat more sophisticated scheme. A naivenmgpitation that maintains a
label for every byte of physical memory would incur a protiua storage overhead and is
clearly impractical. Our memory taint management modud&séo achieve computational
efficiency, while being parsimonious in its use of memoryreses. We devise a set of
data structures that exploit spatial locality and allow a®alance the memory overhead
against the latency of label lookups.

Our current prototype supports environments with up to 4&ghysical memory and
is optimized for the standard page size of 4KB. In this comfitjan, a physical memory
address occupies 32 bits (which matches the size of a sifglénsthe taint argument
log) and can be decomposed into a 20ghiysical page numbeand a 12-bippage offset
For each page of physical memory addressable by the guaésts\BIFT maintains a data
structure called page taint descripto(PTD), which encapsulates a fine-grained byte-level
view of taint labels within the respective page. This vieweigresented using one of three
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Figure 4.10. Th®ageTaintSummary lookup procedure.

different formats, which allow us to trade off lookup latgrand storage overhead. These

formats include:

Uniform: Used in situations, where all byte offsets within a pagetairged with the
same value. The PTD carries a single 32-bit page-level taiet.

Run-Length Encodingrhe PTD carries a sequence(éfngth, label) tuples, as in the
standard RLE compression scheme. This format offers a sgfficeent way to
represent pages carrying more than one label, but lookgjsreea linear scan.

Taintmap The PTD carries a flat linear array of byte-level taint Isheithin the page.
This representation provides constant-time lookups ohljiffagmented pages,
but incurs significant storage costs (16KB per page of guestony).

We use a three-level tree data structure analogous to a patgeto resolve 20-bit
physical page numbers into the corresponding page taimtrigess and Figure 4.10 il-

lustrates the resolution process schematically. A noh{ledex) node stores an array

of

32-bit pointers to child nodes. A leaf node maintains anyanf@ageTaintSummary struc-

tures, which concisely summarize the taint status of eagisipal memory page. Ea
PageTaintSummary instance comprises two 32-bit words and holds the folloviielgs:

ptdFormat (bits 0-1):
Stores the format of the PTD associated with the respecteraaony page.
One of {Uniform, RLE, Taintmapg.

ptdValue (bits 32-63):
For Uniformformat: stores the actual page-level taint label.
For RLE and Taintmapformats: stores the address of the PTD in the virt
address space of the emulator.

Bits 2-31 are currently unused and are reserved for futuensions.

ch

hal
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The computational and memory bandwidth costs incurred byllaPTD lookup are
nontrivial: we have to walk the tree data structure and parfat least three memory ac-
cesses. In order to reduce the recurring costs of tree salgerour implementation also
maintains a TLB-like cache of mappings between the phygsiage numbers and the cor-
respondingPageTaintSummary structures. This cache is organized as a hash table (indexed
by the physical page number) and implements a random repkdepolicy. We have also
experimented with LRU replacement, but found that its penéince gains were overshad-
owed by the costs of age tracking.

Executing taint tracking instructions: Having defined the taint label storage primitives
for guest machine registers and memory, the next step is pitement the taint tracking
instruction handlers that manipulate and update the stdédels. Most of these handlers
can be implemented in a fairly straightforward manner, betkey concern is computa-
tional efficiency. The overall performance of a guest systenming on top of PIFT is
influenced to a large extent by the overhead of informatiow timcking and instruction
handlers can be viewed as the “inner loop” of the IFT companaflhus, any conceivable
optimization that reduces the number of clock cycles speiiis inner loop can have a
significant payoff and can be worth exploring.

Our overall philosophy in designing the virtual taint preser and implementing the
instruction handlers was to perform as much preprocessmpssible. Some fragments
of the computation can be moved out of the inner loop and padd at the compilation
stage — either the dynamic compilation of emulation codeaongilation of the QEMU
executable itself. As a specific example of this strategypreegenerate a separate handler
function for every valid combination @dbpcode, Dst, Src) and compile them statically into
the QEMU executable. The taint processor maintains an afraginters to these handlers
(handler_array), indexed by the numeric valugopcode << 12) + (Dst << 6) + Src).
As shown in Figure 4.9, this value always matches the 16 migsificant bits of the
instruction’s binary value. Hence, given a taint trackimgtruction with valueob, the
taint processor can locate the handler function for thisrilesion simply by evaluating
handler_array[b » 16]. Although pre-generating handler functions in this marsigf
nificantly increases the memory footprint of the QEMU codgnsent (from 5.2MB in
the unmodified implementation to 27.1MB in PIFT), this opaation allows us to avoid
spending precious CPU cycles on decoding the operand fiettigexforming pointer arith-
metic to locate these operands.

Next, we illustrate the internals of several commonly-uséuat instruction handlers, re-
turning to the instruction sequence from Example 1 in theiptes subsection. Figure 4.11
shows the pre-constructed handler $ett (Dst=eax, Src=MEM_BYTE) in the source code
form and in the final form compiled for the host machine platfo Note that the taint
destination address (0x9442184), which represents tlaidocof theeax label in the reg-
ister taint array, has been hard-coded into the instrucioeam and does not need to be
computed in the inner loop. Figure 4.12 shows the implentiemaf the pre-constructed
handler fomMerge (Dst=eax, Src=edx).
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typedef uint32_t taint_label; push %ebp
mov  %esp,%ebp
/* Register taint labels x*/ sub $0x8,%esp
extern taint_label *reg_labels; mov  0x93e8128,%eax
shl $0x2,%eax
/* Pointer to the argument buffer for the current add 0x9442124,%eax
code block *x/ mov (%eax),%eax
extern uint32_t xtaintarg_blk; mov  S%eax, (%esp)
call
/* ArgLogPos for the current instruction =/ <get_mem_label_byte>
extern uint32_t arglogpos; mov  (%eax),%eax
mov %eax,0x9442184
void taintop_handler_SET_EAX_MEMBYTE() { leave
uint32_t src_addr = x(taintarg_blk + arglogpos); ret
taint_label xsrc_taint_p =
get_mem_label_byte(src_addr);
reg_labels[0] = *src_taint_p;
}

Figure 4.11. The implementation of the pre-generated leaufiot Set (Dst=eax,
Src=MEM_BYTE) in the source code form (left) and in the final form compiledtfee x86
platform (right).

void taintop_handler_MERGE_EAX_EDX() { push %ebp
taint_label src_taint = reg_labels[3]; mov  %esp,%ebp
taint_label *dst_taint_p = &reg_labels[0]; sub $0x18,%esp
mov 0x94421c4,%edx
if ('IS_NULL_LABEL(src_taint) && test %edx,%edx
'LABELS_EQUAL(src_taint, xdst_taint_p)) { je <.L1>
if (IS_NULL_LABEL(*dst_taint_p)) { mov 0x9442184,%ecx
xdst_taint_p = src_taint; cmp  %ecx, %sedx
} else { je <.L1>
xdst_taint_p = test %ecx,%ecx
merge_labels(*xdst_taint_p, src_taint); jne <.L2>
} mov %edx,0x9442184
} .L1: leave
} ret

.L2: lea -0x4(%ebp),%eax
mov  %eax, (%esp)
mov  %edx,0x8(%esp)
mov  %ecx,0x4(%esp)
call <merge_labels>
mov  -0x4(%ebp) ,%eax
mov %eax,0x9442184
sub $0x4,%esp
leave
ret

Figure 4.12. The implementation of the pre-generated learfdr Merge (Dst=eax,
Src=edx) inthe source code form (left) and in the final form compilecthe x86 platform

(right).

63



Merging taint labels: Label merging, as defined in Section 3.2, is one of the founda-
tional operations in the decentralized label model. Thisrafjon outputs a new data label
that aggregates the confidentiality policies defined by ripatilabels. The resulting label
defines the least restrictive policy that also enforceshallrestrictions associated with the
input labels.

Recall that while decentralized data labels are at the fatioid of our security model,
our augmented emulator tracks information flow on the bas&ebit taint labels, which
serve as concise fixed-length surrogates for the full deakzed data labels. Our architec-
ture treats these 32-bit taint values as opaque bitstringsedies on external infrastructure
to translate them into decentralized data labels and thecia$ed policies. Since PIFT
does not prescribe a specific format for decentralized $adedl is not concerned with the
details of their representation and storage, we also didelya label merging function to
an external user-defined module. When the taint processalsne merge a pair of taint
values, it invokes the user-suppliedrge_labels routine, as shown in Figure 4.12. This
function is declared as follows:
taint_label merge_labels(taint_label a, taint_label b);

This routine is expected to resolve the supplied taint \&faeandb) into the corre-
sponding data labeld.{ andL;), merge them (i.e., compute, ® L,), assign a new 32-bit
taint value to the resulting label, and return this valueh tiaint processor. The imple-
mentation ofnerge_labels depends on the specifics of the mapping between taint values
and the corresponding data labels and is beyond the scop# afrchitecture. Our taint
tracking substrate imposes no restrictions on the impléatiem of this user-supplied rou-
tine, but assumes this operation to be idempotent and coativeit(It is worth noting that
any function that implements the merge operator accordngststandard definition, as
given in Section 3.2, possesses these properties). PlETvessthe numeric taint value 0
to represent the null labeL() and further assumes that merging withhas no effect, that
is:

Va:L,®Ly=Ly® L, = L,.

4.2.6 Asynchronous Parallel Taint Tracking

We now turn to a discussion of parallelized taint tracking r+raportant optimization
that substantially reduces the runtime performance pefalicertain types of workloads.
The key insight that enables this feature is that emulatahiaformation flow tracking can
be viewed as two separate and, for the most part, independemgutations. As described
above, the PIFT compiler generates two isolated streamesbifuctions: the emulated
version of the original guest instruction stream and thessponding block of taint tracking
code. The latter is handled by the taint processor; the dondaly needs to log the correct
execution sequence of the taint tracking blocks and supglyalues of dynamic arguments
that could not be resolved at compile time.

While the most straightforward implementation would hanbdbth tasks (emulation
and taint processing) in a single thread and execute theocksiep, it is easy to extend
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this scheme in a manner that allows the taint tracking icfitva stream to be processed
asynchronously and in parallel with emulation. This can t@eplished quite easily in
our design by moving the emulated taint processor into araggpthread and assigning this
thread to another CPU core on the host machine.

In this configuration, we subdivide the taint argument lotpia number of smaller
log regions which serve as basic units of synchronization between tbdyzer and the
consumer. We assign one of the regions to the guest emuldiead, which produces
dynamic information for subsequent consumption by thet f@iocessor. As the emulator
proceeds with the execution of guest instructions, it srigeinters to the corresponding
taint tracking code blocks, along with the dynamically-gexted arguments, into its current
log region. When the emulator exhausts all available spads current region, it signals
the taint processor thread, submits its current log regmwmcdnsumption, and then grabs
the next available region. The taint processor consume tlog regions as they arrive;
it updates the taint-related data structures in accordasitethe instructions specified in
the log and their arguments, but does not concern itself thithactual state of the emu-
lated machine. In operational terms, the emulator and thegeocessor are in a standard
producer-consumer relationship with a bounded buffer &eg synchronize their activi-
ties using a mutex and a pair of condition variables@_empty_region_available and
cond_full_region_available).

While the ability to offload the IFT computation to anotheogessor core is clearly
advantageous, the size of the taint argument log is a crpai@meter that largely deter-
mines the performance gains. Byte-level taint trackinggeificantly more expensive than
pure emulation and thus, the computational bottleneckusllysat the consumer side. If
the emulator (producer) runs out of free log regions, it ninlstk and wait for the taint
tracker to make progress and release a region. When thighsppe effectively return to
the synchronous mode of taint tracking, where the producértiae consumer operate in
lockstep.

We expect, however, that this scenario will rarely ariséhwiteractive 1/0-driven ap-
plications (and the results of our evaluation support thiigition). To see why, consider the
fact that most forms of interactive computing involve humesers, who make decisions,
act, and submit commands at human timescales. Hence, altgpimputational workload
on a user-facing machine can be characterized by the prexatd relatively short bursts of
computation (triggered by device interrupts) with largpghetween them (e.g., the user
pausing before entering more text). At the end of each borstlern operating systems
usually relinquish the processor withhat instruction or the corresponding hypercall and
wait for the arrival of the next interrupt. During these tinmgervals, the producer is in-
active and does not generate any new work for the consumesselgaps in computation
can be gainfully exploited by the taint processor to advatscposition and drain the log.
As a result, it becomes less likely that the emulator willdheeesuspend itself and wait for
additional log space while processing a burst of computatio

Of course, this reasoning does not apply equally well to @®uURd server workloads
or interactive applications that routinely launch comgiotzally-intensive tasks. For these
types of workloads, asynchrony can be viewed as providingigefiength buffer that can
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absorb a certain amount of taint tracking work, minimizitgyimpact on the overall per-
formance of the guest system. The size of the taint argurogrddtermines the amount of
computation that can be absorbed in this manner.

Finally, we note that in certain scenarios, PIFT must explisynchronize the state
of taint labels by suspending the emulator thread and vgaftin the taint processor to
consume the remaining items in its log. Typically, this aitan arises when the protected
machine makes a request to externalize data (e.g., by spadiatwork packet or writing
to a block storage device) and PIFT intercepts this reqogsetform security checks. In
this situation, the device driver backend makes an upctide @EMU process and requests
the up-to-date memory taint labels associated with thecaurtt data buffers. In order to
obtain the correct labels, we must wait for the taint prooceisread to drain the log and
synchronize its state before responding to the driver.

4.2.7 Integration with the Overall PIFT Architecture

Our discussion so far has focused on extending the QEMU eimmlplatform with
fine-grained information flow tracking capabilities. Whtlee taint tracking substrate is
the chief component of our architecture and perhaps repieseir most significant re-
search contribution, there remains one more crucial steptegiating this substrate with
the rest of the PIFT platform. Our extended version of QEMU lba configured to func-
tion in isolation, so as to provide a self-contained systemalation environment with taint
tracking. However, in order to realize the full benefits oFPJ including its taint-aware
storage and on-demand emulation capabilities, we mudblestgroper interactions be-
tween the emulator and the other central components of 8tersy such as the hypervisor
and the taint-aware filesystem. This necessitates sewtaianal changes and extensions
to QEMU, which we briefly summarize in this section.

Bootstrapping the emulator: Upon startup, the default implementation of QEMU
bootstraps the guest machine and immediately proceeds tadin emulation loop. How-
ever, in our system, the extended implementation of QEMtiaiteis emulation only upon
explicit request from the hypervisor. During startup, theuéator allocates a page-length
memory buffer for communication with the hypervisor andates a new virtual IRQ. The
hypervisor signals this VIRQ to request emulation and useshared buffer to commu-
nicate the processor state snapshot. In the main procelssipg QEMU waits for the
hypervisor’s signal and, when it arrives, initiates emolabased on the state provided in
the snapshot.

Emulating memory accessesAs a full-system emulator, QEMU is responsible for
providing the abstraction of a contiguous physical memalgrass space and managing
the associated memory resources. In the standard implatientQEMU acquires pages
for its emulated physical memory by allocating them dynaathydfrom its local heap area
and, clearly, this approach is inapplicable in our cont&dr the purposes of on-demand
emulation, memory accesses performed in the emulated mosieaperate directly on the
regions of physical memory that have been allocated by Xengaanted to the protected
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VM. We attain the desired behavior by modifying the addreasdlation logic in QEMU
and taking advantage of Xerfgsreign page mappinteature. When a TLB miss occurs in
the emulated environment, QEMU walks the current guest pge for the protected VM

to obtain the mapping between the guest virtual page ad(iresér,) and the correspond-
ing physical addreso¢ddr). Then, instead of allocating a page from its local heap, the
emulator makes a hypercall to Xen and maps the guest pagédrden virtual address
space at some pre-determined locatiem/(lr.). The mappingvaddr, — vaddr.) is then
recorded into the software TLB. During code translatiohjre@mory access instructions
are converted into reads and writes within QEMU’s virtuadlies$s space but in fact, these
instructions operate directly on the foreign memory pagesrging to the guest VM. The
mappings(vaddr, — paddr) are needed by the taint tracking infrastructure and we main-
tain them in a separate data structure.

Relaying Xen event notifications: The paravirtualized model supported by Xen dif-
fers from the “bare metal” emulated environment providedh®ystandard implementation
of QEMU in several important respects, most notably in holaidles asynchronous no-
tifications from devices. In the bare metal configuratiomsth notifications come in the
form of interrupts. Xen, on the other hand, shields paraslited guests from physical
device interrupts and replaces them watsynchronous event notificatiors a form of
abstract device-independent interrupts. The augmentediaon must account for these
differences and properly relay the stream of asynchrongasts from Xen to the pro-
tected VM during periods of emulated execution. To this emel have modified QEMU
to periodically check whether the guest has any pendingtawatifications (the hyper-
visor signals this condition via a flag in the shared memonyepa When a notification
arrives, QEMU interrupts the emulation loop and relays teneto the guest kernel by
setting up a bounce frame, effectively emulating ¢lheate_bounce_frame functionality
in xen/arch/x86/x86_32/entry.S. The emulator switches to the kernel-level stack (given
by kernel_ss:kernel_sp) and redirects execution to the event callback handlee(gby
callback cs:callback_eip). The guest kernel specifies all these parameters to the hy-
pervisor during initialization and Xen, in turn, relays théo the emulator via the shared
memory page.

Communicating with kernel-level components:Our extended QEMU-based emula-
tor operates in the control VM as a standard user-level goct certain scenarios, the
emulator must communicate and exchange information wihcttimponents of the PIFT
architecture that operate in kernel-space of the control Vivese include the device driver
backends for paravirtualized 1/O devices exposed to theepted VM and the taint-aware
filesystem. These components must occasionally contaetutpmented emulator and ask
it to update the state of memory taint labels or, convergebyide the up-to-date taint sta-
tus for specific memory pages. The filesystem can requestdatelpp memory taint data
structures when handling a fikeAD request, which transfers tainted user data from disk to
a memory buffer. Conversely, handlingiRITE system call requires fetching the memory
taint status from QEMU and propagating it to filesystem-fjmedata structures on disk.
Device drivers need to communicate with QEMU in order to asdee memory taint data
structures when performing security checks. To faciligdteient bidirectional transfer of
memory taint information, we implement a client-server moaf communication, using
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Netlink [79] as the foundational transport mechanism. iNktls a standard component of
the Linux kernel and provides a socket-like mechanism foicieht IPC between kernel-
and user-space contexts.

Returning from emulated execution: Another significant challenge is determining
in what situations it is safe and beneficial to exit from ertedaexecution within QEMU
and resume native execution within a Xen VM. In general terntnis safe to terminate
emulation as soon as we detect that no tainted data is cedtairthe registers of the emu-
lated machine (i.e., each emulated register cairj@sHowever, this might not be prudent,
since the very next instruction might again access seeditata and immediately trigger
a transition back to the emulated mode. Frequent contextises between emulated and
native execution can incur a significant overhead and, irdegte cases, lead to thrash-
ing. PIFT tackles this issue by introducing some delay teefeturning from emulation.
More specifically, QEMU counts the number of consecutivesgjuestructions that did not
access tainted data in memory. If this counter reaches aircehtreshold and if all CPU
registers are free of taint, QEMU terminates the emulatop land instructs the hypervisor
to resume virtualized execution. In our current prototypis, threshold is set to 50 instruc-
tions, as in previous work [98, 41]. This simple strategydmétedly suboptimal and does
not preclude the possibility of thrashing. We believe tmaestigating more robust and
well-tuned heuristics for transitioning to native exeouatcan be a meaningful direction for
future work.

Transient transfers to native execution:Finally, certain scenarios makenecessary
to jump out of emulation and temporarily enable native etieou Typically, these scenar-
ios involve handling the execution of hypercalls, softwiaterrupts, faults, and other types
of synchronous exceptions. In the paravirtualized moteke exceptions must go through
Xen and always trigger a transition to hypervisor-leveleogerating at the highest privi-
lege level. The current architecture of Xen makes it verfjjaift to emulate the execution
of hypervisor-level code in a user-space process. Ins@BdU temporarily suspends its
emulation loop, transfers the guest CPU context back to ypervisor, and instructs it to
perform atransient switcho native mode at the precise instruction that triggers Xoeg-
tion. For instance, if the guest system issues a hyperaathé@int 6x82 mnemonic, Xen
positions the guestip at this instruction and resumes the suspended native VMsdtte
ware interrupt immediately triggers a transition to ring@using the hypervisor to regain
control and invoke the hypercall handler routine. Transrmtive execution terminates
upon the return from hypervisor-level code.

4.3 A Taint-Aware Storage Layer

A comprehensive information flow tracking platform thatedésms to be practical must
have the ability to track the flow of tainted data to and fromrsstent storage devices, such
as magnetic disk drives. While it would be easy to augmenttistraction of a virtual
disk in a manner that would allow us to taint individual dis&dks, we believe that a fully-
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Figure 4.13. The on-disk layout of an ext2/ext3 filesystem.

featured taint-aware filesystem is a more usable altemgind we outline our reasoning
in Section 3.3.1).

In this section, we propose one such filesystem design. Toyoped scheme uses
ext3 (a popular and widely-available Linux filesystem inmpéntation) as a foundational
building block and extends it with additional metadata thédws us to associate taint
labels with entire files, as well as individual byte offseithm a file. In order to minimize
changes to the protected VM, we adopt a client-server actite and use NFS (a standard
remote file access protocol) to connect the two sides.

This section presents the detailed design of our taint-@fasystem layer. We begin
by reviewing the relevant aspects of ext3 in Section 4.3d then introduce our exten-
sions in Section 4.3.2. Section 4.3.3 discusses our moatidfitsato the NFS layer and
Section 4.3.4 presents the design of our new shared-menf@/tRnsport that seeks to
reduce the overhead of inter-VM communication. We evaltia¢eperformance of our
filesystem using an array of microbenchmarks in Sectiorb4.3.

4.3.1 ext3: Design Overview

The third extended filesystem (ext337] is a widely-used journaling filesystem that
has become a standard component of the Linux kernel. ex¢Bsadf relatively straightfor-
ward, but robust filesystem implementation and, at the tiweriting, serves as the default
filesystem choice for many popular Linux distributions.

69



Core data structures: ext3 was designed as an extension to the ext2 filesystem and re
tains full compatibility with its on-disk data structureytaut. Tracing the ancestral path one
step further, the overall format of ext2 is derived from tlesidn of the original Fast File
System for UNIX [53].

Figure 4.13 illustrates the high-level layout of a disk piem formatted with ext2 and
lists the most important data structures. The physical aikkess space is divided up into
an array of fixed-lengtblocks(typically of size 4KB) and organized into a seriestdck
groupssimilar to FFS cylinder groups. This is done to reduce exdnagmentation and
minimize the number of disk seeks incurred during sequiiigaaccess. In addition to the
actual data blocks, each block group contains an inode,tableell as bitmaps that track
the allocation of disk blocks and inodes within the groupcticalock group is identified by
ablock group descriptgwhich records the location of the block bitmap, the inodmbp,
and the start of the inode table for the respective groups&Hescriptors are, in turn, stored
in a top-level data structure, termedj@up descriptor tableThesuperblockanother top-
level data structure, maintains vital information abow thurrent filesystem state, as well
as various configuration parameters. The primary copy o$tiperblock resides at a fixed
disk location (typically offset 0x400) and several addiabbackup replicas are maintained
at other disk locations for reliability purposes.

A file in ext2 (and its descendant ext3) is represented by al{iegthinode data
structure that maintains its basic properties such asZéesiccess timestamps, and an
array of disk pointers to the data blocks. Using this aritag,dystem can locate the data at
any given file offset by following a chain of pointers, stagifrom the inode. Each inode
holds a total of 15 disk pointer slots. The first 12 slots sthrect pointers to the respective
data blocks; slot number 13 points to an indirect block, nemb?! to a doubly-indirect
block, and number 15 to a triply-indirect block.

Journaling: ext3 reuses the basic filesystem structure of ext2, but agujsost for jour-
naling to achieve fast recovery after crash failures. Fahg a standard and widely-used
approach, ext3 implements a basic form of write-ahead taggiith redo-only recovery
[37]. During normal operation, ext3 records all updatedsalata structures into a fully-
ordered circulajournal, grouping sets of related updates intansactions By forcing
journal updates to disk before modifying the correspondiata structures, the filesystem
guarantees that its on-disk image can always be recovegeddnsistent state after a crash
failure.

The journal is implemented as a special hidden file positianehe first block group
and ext3 defines a number of additional metadata structareshage its contents. The
journal superblockracks summary information about the journal, such as thekibsize
and its head and tail pointers.jéurnal descriptor blocknarks the beginning of a transac-
tion and, following the standard write-ahead logging pcotpacommit blockis appended
to the journal at the end of a transaction. Once the commikbi® written and flushed
to disk, the journaled updates can be recovered withoutifodge event of a subsequent
failure. During recovery, ext3 simply scans the journal egplays each committed trans-
action, while discarding the incomplete ones.
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4.3.2 Our Extensions to ext3

Taint label metadata: In order to provide support for file- and byte-level taint é&b
ing, PIFT-ext3 makes two extensions to the basic format 8 eata structures. First,
the ext3 inode is extended with a new 32-bit field, which "dhee file-level taint label
(fileTaintLabel). Another option would be to store this label in an extendés dt-
tribute, but since ext3 maintains such attributes in a sepdite block, accessing this value
would likely incur the cost of an additional disk seek.

Second, for each regular file in the filesystem, PIFT-ext3nta&ns some additional
metadata that records its fine-grained byte-level taintlabMore specifically, each file
data block in PIFT-ext3 is associated witlblack taint descriptor (BTD)hat stores byte-
level taint labels within the respective block. This dataicture is a direct analogue of
the page taint descriptor described in Section 4.2.5, wihictsystem uses to manage fine-
grained labels for memory-resident data. The byte-levwed taformation is encoded within
a BTD using the same choice of formats, namighjiform, Run-Length Encoding (RLE)
andTaintmap which allow us to trade off storage overhead and lookumatat different
levels of label fragmentation.

The BTDs are physically maintained in a dedicated regionsK gpace referred to as
thetaint descriptor store This region typically resides on a separate partition @nean
a separate physical disk, as specified by the user at the fifdlesystem creation. (Main-
taining the descriptor store on a dedicated device is adgaous from the performance
standpoint, since this allows file data requests to be ssvtoncurrently with disk re-
guests for the associated taint descriptors). Logicdiky,taint descriptor store comprises
a flat array of fixed-length BTD blocks preceded by an allarabitmap that keeps track
of unused disk space. The size of a BTD block is chosen to ntechmount of space re-
quired to store a complef@intmapencoding for a single data block. Hence, in the default
filesystem configuration with 4KB-sized data blocks and 82dnt labels, a single BTD
occupies 16KB of disk space. The taint descriptor storegéessed by PIFT-ext3 through
the standard low-level block device interface in the Linexrel, i.e., thell_rw_block
function.

Achieving efficiency on fileREAD andwWRITE operations requires the ability to quickly
locate the BTD for any given data block and to this end, we amgrthe format of leaf
indirect block entries. In addition to storing a data blodinper, each leaf indirect entry
in PIFT-ext3 holds a concisembedded taint locatofembTaintLoc). This data structure
comprises two 32-bit words and contains the following fields

btdFormat (bits 0-1):
Stores the format of the BTD associated with the respectva bllock.
One of {Uniform, RLE, Taintmapg.

btdvalue (bits 32-63):
For Uniformformat: stores the actual block-level taint label.
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For RLE and Taintmapformats: stores the disk location of the BTD in the taint
descriptor store.

Bits 2-31 are currently unused and are reserved for futuensions.

While this is one of several possible schemes for assogiéitandata blocks with the
corresponding BTDs, we believe that this particular methodimizes the overhead of
additional disk activity in typical usage scenarios. Fastamce, when servicing READ
request for a given data block, the filesystem must locatedhresponding BTD and then
transfer its contents into memory. In our scheme, the fiegi stquires accessing the leaf
indirect block to retrieve thembTaintLoc structure and this can be done with minimal
overhead, since the entire chain of indirect blocks need®taccessed anyway to locate
the data block. While the second step (fetching the BTD) neayire one additional disk
operation, this overhead is incurred only for those file k$othat carry fragmented taint
labels. For data blocks tainted witHumiform label (likely a common case), label lookup
comes essentially “for free”, since the label is storedaliyein the btdvalue field of the
embedded taint locator.

The principal downside of this approach is the reductionhef ¢ffective capacity of
leaf indirect blocks. Rather than storing a plain 32-bikgisinter, each leaf indirect entry
in PIFT-ext3 holds a 96-bit data structure that combinesiatpowith an embedded taint
locator. Only 341 such structures can be stored in a singiecict block of size 4KB and
as a result, the maximum filesize is reduced1® + 341(1 4+ 1024 + 1024%))x 4KB =
1.3TB. By comparison, the pointer structure in unmodifietBelows addressing up to
4TB of data. Furthermore, our design increases the lengtheoindirect block chain for
large files. A simple calculation shows that PIFT-ext3 reegitwo levels of indirection for
files larger than 1.3MB and three levels for file sizes abo8&B. (compared to 4MB and
4GB, respectively, for unmodified ext3). Increasing thegtérof the indirect block chain
tends to increase the latency of file I/O operations due tatiaddl disk seeks, but as the
above calculation suggests, this overhead becomes naigasaly for relatively large files.

Figure 4.14 illustrates how PIFT-ext3 organizes taint labhetadata with a simple
schematic example. This figure depicts the on-disk stractdira hypothetical file that
comprises four data blocks (denot&d through B,). The first three of these blocks are
tainted with fragmented labels, which are maintained irtéig descriptor partition, while
B, is tainted uniformly with labeL,. In this example, the disk pointers 18§y and B, are
maintained directly in the inode, whilg; and B, are referenced through an indirect block.
The pointers to BTDs foB; and B, are also maintained in the inode next to the respective
data block pointers, whereas the pointer to the block tastdptor forB; is stored in the
indirect block alongside the pointer 18 itself. Finally, sinceB, carries aUniform taint
label, we avoid allocating space for its BTD in the taint dggor partition and instead
store its taint labell,) in the indirect block together with the pointer &).
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Figure 4.14. The on-disk layout of taint label metadata iRTRéxt3.

Caching: In an effort to minimize the performance overhead incurrgdcess to the
taint descriptor store, PIFT-ext3 maintains an in-memaghe of recently-used BTDs.
This cache resides in heap-allocated kernel memory anduistgted as a hash table, in-
dexed by(inode Number, block Number). It has a fixed capacity (set to 1000 BTD entries
by default) and implements a basic LRU replacement poliapamage space.

Synchronization: Like most other kernel-level subsystems, PIFT-ext3 mugiément
proper synchronization mechanisms to protect its shawée sind ensure correct behav-
ior in the face of concurrent access. The need for synchatiniz in a Linux filesystem
arises from the fact that multiple kernel- or user-leveéttts may issue concurrent filesys-
tem requests that manipulate shared data structures. loaser such requests typically
originate from a pool of kernel-levelfsd worker threads which, in turn, receive requests
from the NFS client module executing in the protected VM. Tdiwing data structures
maintained by PIFT-ext3 require explicit synchronizatare to concurrent access from
multiple contexts:

e The block taint descriptor (BTD) caché&s mentioned above, we maintain a cache
of recently-used BTDs in kernel-level memory. This cachstiactured as a hash
table and represents a potential point of contention dyvargllel access. Our cur-
rent implementation utilizes a simple spinlock primitivei{nlock_t, defined in
<linux/spinlock.h>) to serialize hash table operations. In addition, everjhedc
BTD entry carries a blocking mutex{ruct mutex, defined in<linux/mutex.h>)
that serializes conflicting operations on its contents. idd servicing a filREAD
request must acquire this mutex before reading the contértee buffer that con-
tains the cached BTD. AnalogouslywRITE request handler must acquire this mutex
prior to updating the cached BTD with data from a memory tdegcriptor. All disk
operations (revalidating cached entries and flushing memtléntries to the backing
store) are also performed under the protection of the gooreding block-level mu-
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tex. Finally, each cache entry carries a reference countech tracks the number
of active users and defends against race conditions, wihemd thread decides to
evict a BTD entry from the cache while this entry is being aseel from another
thread. The use of reference counters to coordinate thé@viaf cache entries is a
well-known technique from the domain of database managesystems, where it
has traditionally been used to protect the contents of tffelocache against similar
race conditions [74].

e The block allocation bitmap for the taint descriptor stofiéhis shared on-disk data
structure tracks the allocation of disk space from the wé@sicriptor store. For effi-
ciency, PIFT-ext3 loads the entire bitmap from disk into meyrduring initialization
and all subsequent operations are handled using the medmasad version. Ensur-
ing the atomicity of updates to the bitmap is essential foraztiness and our current
implementation achieves this by dividing the bitmap intoaaray of fixed-length
chunks and serializing access to each chunk via a blockirtgxnu

4.3.3 Our Extensions to the NFS Layer

As we explain in Section 3.3, the protected VM accesses otdisifilesystem re-
motely through the NFS [12] protocol. The control VM runs amgmented NFS server,
which relays the client’s requests to the on-disk filesystem updates the taint-related
data structures. Thus, when servicin@EAD request for a specific file region, the NFS
server first dispatches a reguRkBAD operation through VES (by invokingfs_readv) and
then asks the filesystem to provide an array of BTDs that ctivespecified file region.
This fine-grained taint information is relayed to the ussfel taint tracker (described in
Section 4.2), along with the physical memory address of g€stilation buffer for th@EAD
operation. Using this information, the taint tracker ugdathe memory taint data struc-
tures in a manner that reflects the propagation of tainteddile into the destination buffer.
Analogously, when servicing WRITE operation, the NFS daemon must fetch an array of
byte-level labels attached to the source memory buffer fitwartaint tracker and transfer it
into the filesystem.

PIFT defines a standard interface for communicating fin@rgdataint descriptors be-
tween the NFS layer and the underlying on-disk filesystem.reMapecifically, we add
two new function pointer fields to thinode_operations structure and their definitions
are shown in Figure 4.15. While not strictly necessary, iy all interactions with
PIFT-ext3 to go through a generic VFS-level interface pdesiflexibility and allows us
to decouple the NFS server from the implementation of theetlyishg filesystem. From
the practical standpoint, such separation is useful becaesplan to experiment with al-
ternative taint-aware filesystem designs in future worguke 4.16 illustrates how the new
get_filerange_taint callback is implemented in PIFT-ext3.
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int (xget_filerange_taint)(struct inode *inode, // (In) VFS inode
loff_t file_offset, // (In) Starting offset
size_t len, // (In) Range length
taintdescr_fmt_t xdescr_fmt, // (Out) BTD format
size_t =xdescr_len, // (0Out) BTD length
void xxdescr_buf); // (Out) BTD buffer

int (xset_filerange_taint) (struct inode *inode, // (In) VFS inode
loff_t file_offset, // (In) Starting offset
size_t len, // (In) Range length
taintdescr_fmt_t descr_fmt, // (In) BTD format
size_t descr_len, // (In) BTD length
void xdescr_buf); // (In) BTD buffer

Figure 4.15. New VFS callbacks in ti@ode_operations structure.

4.3.4 Xen-RPC: An Efficient RPC Transport for Inter-VM Commu -
nication

The client-server design of our taint-aware filesystem ksals to minimize changes
to the protected VM, but at the same time incurs additiongbpmance costs due to inter-
VM communication and signaling. In particular, transferfitg data is significantly less
efficient in our two-sided design, since this data must beeddsetween the page cache
and the network-level buffers on both sides of the connactio

In the standard implementation, NFS uses TCP as the undgthgnsport for its client-
server communication and the two sides submit RPC messagetiydto the kernel net-
working stack. NFS commands that carry file data (suchweIaE request) must execute
several expensive memory transfers that increase latemtingose a significant load on
the memory subsystem. In typical cases, the sender firsesdpe data from the page
cache into its network socket buffers and then transferdd#tia to the destination VM
in a sequence of packets. When the destination VM receivesetpackets, it performs
yet another memory copy to transfer the data from the netwaffers to its local page
cache. These memory transfers represent unnecessargasierhour environment, since
the client and the server operate on the same physical hdstere its physical memory
address space.

To address these inefficiencies, we have designed and ireptecha special-purpose
RPC transport layer (Xen-RPC) that allows the systesffioientlytransfer RPC messages
and the associated file data between a pair of VMs by settingraporary shared memory
mappings. Xen-RPC replaces the conventional socket-ltesesport, thereby eliminat-
ing unnecessary transfers to and from network-level bsifferd allowing the server-side
filesystem to access file data directly from the client-sidgegxcache.

In operational terms, Xen-RPC mimics the traditional desifjparavirtualized I/O de-
vices by implementing the split-driver model. Xen-RPCusritend component, operating
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int pift_ext3_get filerange_taint(struct inode xinode, loff_t rangeFileOffset,
size_t rangelen, taintdescr_fmt_t *xdescrFmt,
size_t xdescrLen, void *xdescrBuf) {
int blockNum = rangeFileOffset / FILE_BLOCK_SIZE;
int blockOffset = rangeFileOffset % FILE_BLOCK_SIZE;

cachedBTD *btd = btdcache_lookup(inode->inodeNum, blockNum);
if (btd == NULL) { /* Not found in the cache x/
embTaintLoc *emb = read_embedded(inode, blockNum) {
/*x Traverse the chain of indirect block entries and return
the embedded taint locator in the leaf entry. x*/

}

btd = allocate_btd(inode, blockNum);
btd->fmt = emb->descrFmt;

if (emb->descrFmt == Uniform)
initialize_uniform_btd(btd, emb->btdValue);
else /* RLE or Taintmap format */

read_taint_descriptor_store(btd, emb->btdValue);

if (btdcache_full())
btdcache_evict_lru();
btdcache_insert(btd);

}

/* Compute the taint descriptor for the specified file range x/
taintDescr *xdescr = compute_btd_subrange(btd, blockOffset, rangelLen);

/* Merge the resulting descriptor with the file-level taint label x/
merge_taint_labels(descr, inode->fileTaintLabel);

xdescrFmt = descr->fmt; /% Return the results x/
xdescrLen = descr->len;
xdescrBuf = descr->buf;

}

Figure 4.16. The implementation of tget_filerange_taint callback in PIFT-ext3.

in the protected VM, registers itself with treanrpc client layer by defining a new in-
stance ofstruct rpc_xprt_ops. It exposes an interface for submitting RPC requests to
the server (theend_request callback), as well as functions for connection establistime
and teardowndonnect, destroy, andclose). The backend component, operating in the
control VM, relays the client’s requests to a pool of NFS sethireads and communicates
their completion status back to the client.

Following an established approach, Xen-RPC usssaed ring buffeto communicate
requests and the associated responses asynchronoushehetiwe two VMs. The ring
buffer holds a window of outstanding requests and resides dedicated memory page
(donated by the protected VM and mapped for shared accessbioth VMs). Xen event
channels provide a foundational signaling mechanismyalig the two sides to notify each
other when a new message is posted to the shared ring.
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struct xdr_buf {
struct kvec head[1l], // RPC header + non-page data
taill[ll; // Appended after page data
struct page *xpages; // Array of contiguous pages
unsigned int page_base, // Start of page data
page_len; // Length of page data
unsigned int buflen, // Total length of storage buffer
len; // Length of XDR-encoded message
b

Figure 4.17. The format of an XDR buffer structure.

In traditional client/server NFS implementations, the sudes communicate by mar-
shalling their requests and responses using the XDR (EaitBaita Representation) format
[81] and transmitting the resulting messages via the tramdsayer. The standard Linux
implementation of NFS defines a basic structurer(ct xdr_buf) to manage the con-
tents of an XDR message. As illustrated in Figure 4.17, this dtructure features a pair
of linear buffers fead andtail) and an array of pointers to data pages. Thbead buffer
stores the marshalled RPC header and the data payload fomsbgsages. For messages
that involve large transfers of contiguous file data, SuCRRASE requests and responses
to READ requests, th@ages array holds references to the actual data pages that serve as
sources or destinations for the transfer. Finally,thel buffer allows the sender to append
additional payload after the data in the page array. Thid fselised primarily for supply-
ing padding bytes in order to satisfy the 32-bit alignmeguieement in the XDR protocol.

In typical scenarios, theead andtail buffers both reference temporary heap-allocated
memory, whereas thege array holds pointers to file data buffers in the local pag&eac

When the sender submits atir_buf instance for transmission, the transport layer must
transfer the data referenced by/litsad, tail, andpages fields to the remote endpoint us-
ing transport-specific mechanisms. The traditional sebksed transport implementation
simply relays thexdr_buf structure to the TCP networking layer, which copies the en-
tire message into a local network-level buffer and prepdrés transmission. Notably,
the contents of the data buffer must be transferred from énedt-level page cache into
a network socket buffer. On the receiving end, the transpodule fetches the incoming
RPC message and loads its contents into a Ied¢albuf instance, which it then passes
over to the NFS server layer. With a traditional socket-ddsmnsport implementation, this
involves copying the file data in the reverse direction — frahocal network-level buffer
into a page cache buffer.

In contrast, Xen-RPC bypasses the networking layer andaddeverages Xen'’s inter-
VM memory sharing facility to communicate the data payloamterefficiently. Having set
up a pair ofxdr_buf structures for the RPC request and the associated respbasdient
(initiator of the request) temporarily shares the data pagkerenced by thehead, tail,
andpages elements with the control VM. (This is done by issuing a gtabte hypercall
from the protected VM). Upon receiving the request, theeeside transport module run-
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ning in the control VM maps these buffers into its local meyramd then synthesizes a pair
of localxdr_buf instances, which hold pointers to these foreign mappingsa fesult, the
NFS server can directly access the client's copy of the RRQeast and any associated
file data. Analogously, the server communicates its respbgswriting directly into its
foreign mapping of the client-side response buffer, avgjdinnecessary transfers through
the network-level buffers.

Next, we illustrate the operational aspects of our clietrsr filesystem stack with a
simple example. In this example, we track the end-to-endwian path of a synchronous
WRITE system call, which writes one page of application data toeaitilour label-aware
filesystem.

Client side (protected VM)

1. An application running in the protected VM issuesRATE system call, specifying
the file pointer, the address of a user-level source memdfgro{denotedBu ),
and the desired length of the transfer (one memory page).

2. VFS dispatches this request to the kernel-level NFS tlign invoking its
nfs_file write callback and this function, in turn, propagates the request
the page cache management module.

3. The page cache manager copies the application dataBoef{f to a kernel-level
cache buffer, which we denote B f~. This operation causes PIFT to transfer the
associated taint labels from the application’s addressesfmthe region of physical
memory that holds the kernel-level buffer.

4. Since the application has requested a synchronousératisf page cache manager
invokes the cache writeback routine, which propagates ittye chche buffer to the
backing filesystem (in our case the NFS client) by callingiitstepage callback.

5. The nfs_writepage_sync function receives control, prepares an RPC message
structure carrying aNFS3PROC_WRITE command, and forwards it to the RPC com-
munication subsystem by invokingc_call_sync.

6. The RPC layer allocates memory for the send and receive bi¥iers and marshals
the arguments of the RPC request into the send buffer. Upmpletion of this op-
eration,rq_snd_buf->head holds the marshalled arguments of #R&TE command,
the rq_snd_buf->pages array holds a reference #uf%, andrq_snd_buf->tail
points to optional padding data. The newly-created regsdben submitted to the
underlying transport layer, which forwards it to the Xen@RE&lient by invoking its
send_request callback.

7. Xen-RPC receives control and prepares the send XDR Hoffeemote access from
the NFS server operating in the control VM. Specificallyrémts access to the phys-
ical memory pages that hold thead andtail buffers, as well as the page containing
BufE. Thisis done by invoking thenttab_grant_foreign_access routine, which
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10.

11.

12.

13.

14.

in turn makes a hypercall to Xen. The hypercall updates thatgaeble permissions
and returns a set of grant references. Following an anatgocedure, the client
grants foreign access to thead, tail, andpages components of the receive XDR
buffer that will hold the response data. Finally, a Xen-RRQuest data structure is
initialized with the grant table references and writtenhte shared ring, after which
the client notifies the server-side endpoint by signalirggXlen-RPC event channel.

Server side (control VM)

On the server side, the kernel-level handler for the X@@&Rvent channel is invoked
in the interrupt context. The handler routine removes tiggiest structure from the
ring and passes it over to the NFS server for processingt, Ritsges to assign the

request to one of the idle server worker threads. If ther@aidle workers available

and the number of existing worker threads is at the maximtipgsts the request to
a shared queue that is periodically checked from the wotkeatl context.

. When amfsd worker receives a request, it instructs the transport layepnstruct

a server-side RPC request structurerict svc_rgst *rgstp).

Xen-RPC initializes theq_arg and res_arg fields of rqstp by setting up for-
eign page mappings to the send and receive XDR buffers ped\ngl the protected
VM. Thus, the RPC request header and the incoming data pagesapped into
rqstp->rg_arg->head andrgstp->rq_arg->pages, respectively. Analogously, the
pre-allocated buffers for the RPC response and any assddata are mapped into
rqstp->rg_res->head and rqstp->rqg_res->pages. To set up these mappings,
Xen-RPC issues GNTTABOP_map_grant_ref hypercall to Xen, supplying the grant
table references specified in the shared-ring request.

Next the worker thread invokes the main RPC dispatchreutbfsd_dispatch)

to process the RPC request. This function unmarshals the &§@nents from
rqstp->rg_arg->head into a local data structure and then invokes a procedure-
specific handlern(fsd_write in our example).

The procedure handler resolves the NFS file handle intB& file pointer and dis-
patches a write request to the VFS layer by callingwhe writev function. Note
that the source buffer pointer, which the NFS server spsdifgean argument to this
function, references a foreign mapping®fi .

VFS forwards the write request to our on-disk filesystBif(-ext3), which, in turn,
passes it over to the page cache manager.

The page cache manager in the control VM transfers the file data from the
foreign mapping ofBu f~ to a local page cache buffer, which we denoterhyf<.
Since a synchronous operation was requested, the page rmactager invokes the
cache writeback routine, which flushes the data frBmfS to the disk partition
managed by PIFT-ext3.
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15. When the data transfer is completed, the NFS worker dhreasfers the associated
taint labels from memory to the filesystem. To accomplisk,titi first makes an
upcall to the QEMU-based taint tracker to fetch the taintdesor associated with
the physical memory page containiBg. /.. Having fetched this descriptor, the NFS
server invokes theet_filerange_taint callback, which is routed via VFS to our
taint-aware filesystem. As we describe in Section 4.3.3, fimction transfers the
labels from the supplied memory taint descriptor to theesponding BTD.

16. Finally, the NFS worker thread prepares an RPC respoessage and communi-
cates it to the client by writing it intoqstp->rq_res->head. In the last step, the
NFS server signals request completion to Xen-RPC. The sside component of
our transport layer unmaps all foreign pages, prepares aRR¥D response struc-
ture, pushes it to the shared ring, and signals the clielgt«dmponent via the event
channel.

Client side (protected VM)

17. The client-side Xen-RPC module receives an event ratiific. The event handler
(invoked in the interrupt context) tears down the sharedpimgs and signals the
waiting application thread.

18. When the application thread (blocked on the RPC respa@veakens, it processes
the response status and returns frefa_file_write, transferring control back to
the generiawrite system call handler.

19. The kernel-level system call handler terminates anamestcontrol back to the appli-
cation.

As can be seen from the above discussion, servicing a figectlsystem call via the
PIFT infrastructure involves a carefully-orchestratedusnce of steps, but, crucially, the
contents of the data buffer are transferred between menogatibns only twice: from
Buff to BufE and later on fromBuf£ to Buf$. This process is only slightly less effi-
cient than the corresponding sequence of steps in a pure-thatal” system configuration,
which requires transferring file data exactly once; namlegtween an application-level
buffer and a kernel-level page cache buffer.

4.3.5 Evaluation of PIFT-ext3

In this section, we evaluate the core components of our-gaitre storage stack using
an ensemble of microbenchmarks. The overall goal of thituatian is to demonstrate
the viability of our design and its ability to achieve reaable performance under highly
stressful workloads. More specifically, our evaluationuees on addressing the following
key questions: (1) How efficient is our taint descriptor Gaomodule and how well does
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Figure 4.18. Performance of the BTD cache module at vargwmel$ of concurrency.

it scale to support parallel workloads on multi-core preces? (2) How does PIFT-ext3
affect the effective I/O bandwidth of the underlying staatgvice? (3) How successful is
our custom transport layer (Xen-RPC) at reducing the oatloé inter-VM data transfers?

All of the experiments presented in this section were run @rek Optiplex 755 ma-
chine with a quad-core 1.6GHz Pentium 4 CPU, a 160GB 7200 RBag&e hard disk,
and 4GB of RAM. We created a PIFT-ext3 filesystem on one of ibk partitions and
assigned another partition (on the same physical disk)rieeses its taint descriptor store.
These partitions were sized at 10GB and 40GB, respectiVély.filesystem partition was
configured with 4KB block size, which matched the memory p&ge in our environment.
Both virtual machines (the protected VM and the control Vidh the Fedora Core [34]
distribution of Linux with kernel version 2.6.18-8.

Performance of the BTD Cache

The block taint descriptor (BTD) cache seeks to reduce tmebeun of disk requests
to the taint descriptor partition by storing a subset of theently-used BTDs in mem-
ory. Our first experiment measures its maximum sustainddotighput under stressful
and highly concurrent workloads. In this experiment, wensm the BTD cache module
to a multithreaded user-level request generator. Eacladhpeoduces a synthetic stream
of requests to the BTD cache, which alternate between rgaghid updating BTDs for
randomly-chosen data blocks.

Recall from Section 4.3.2 that BTDs maintain fine-grainadttenformation within a
data block using one of three different formatmiform, RLE, or Taintmap TheUniform
representation is highly compact and can be manipulateg efficiently, while the lat-
ter two are more expensive to maintain. In this experimeptgwantify this performance
difference by measuring the overall request throughput&mh of the three descriptor for-
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mats at different levels of concurrency. Note that in thisesxment, the BTD cache module
does not access the disk and hence, the performance itsndsersolely by its ability to
efficiently manipulate in-memory data structures and cioaté concurrent access from
multiple threads.

Figure 4.18(a) presents the throughput measurementssfBiLiBandTaintmapconfig-
urations. For a single-threaded workload, our implemeématchieves 711237 and 155957
requests per second in these configurations, respectivetler concurrent workloads, our
system can take advantage of additional processor comegrggrating near-linear speedup
to three processors for tHeLE configuration. These results indicate that our method of
concurrency control — a combination of coarse-grainedlspks (held for very short pe-
riods of time) and more granular block-level mutexes (heldss disk access operations)
— enables a reasonable degree of parallelism and does ndifuogten the system with
synchronization overhead in these scenarios.

Figure 4.18(b) shows the performance in a scenario, whete@eched BTD initially
carries dJniformtaint label and each update request replaces this bloekivel by an-
other randomly-chosen label. In this configuration, thégrerance characteristics of our
implementation are quite different: while our system caocpss uniformly-labeled data
blocks very efficiently in absolute terms, achieving an omfemagnitude improvement
over theTaintmapconfiguration, we observe that the aggregate througtpateasess
the level of concurrency grows. This result is noteworthyt bardly surprising — we
expect uniformly-labeled file blocks to be a very common cas& our system has been
carefully tuned to handle this scenario efficiently. In ourrent implementation, process-
ing a read/update operation on a cachedform BTD requires only a few dozen machine
instructions and consumes around 280f CPU time on our test machine. However, each
operation must acquire a spinlock and a block-level mutexdier to coordinate concurrent
access to shared state and these synchronization actmmsdéor a significant fraction of
the total cost. We observe from these results that any pedioce improvement we obtain
by parallelizing across multiple hardware contexts is shadowed by the significant costs
of synchronization and cache coherence traffic on the metsy

We note that despite this intrinsic overhead, our implemgon handles uniformly-
labeled BTDs efficiently relative to the other descriptomfiats even under concurrent
workloads. With 4 parallel client threads, our cache modglgeves 1126650 requests per
second for uniformly-tainted descriptor blocks and, by panson, 234907 requests per
second with th&aintmapformat. In order to remedy the slowdown observed in 4.18(b),
future versions of our filesystem may implement the BTD haset using lock-free data
structures or use more granular (per-bucket) spinlocks.

The Disk I/O Overhead of Taint Label Manipulation
In the next set of experiments, we measure the additionklalisrhead imposed by

PIFT-ext3 and its effects on the overall completion time laf ficcess requests. We com-
pare the performance of PIFT-ext3 and the unmodified ext8yslem, both running inside
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Figure 4.19. Performance of the on-disk filesystem undes-datd metadata-intensive
workloads.

a native Linux kernel on “bare-metal” hardware without tlypérvisor. For PIFT-ext3, we
additionally modify its VFS operation callbacks to generaynthetic taint maintenance
requests that reflect the effects of the respective file dpasa Thus, when handling
thewritepage VFS callback, we generate a random page-sized taint descapd in-
voke pift_ext3_set_filerange_taint on the corresponding file range. Analogously,
for readpage andreadpages callbacks, we invokeift_ext3_get_filerange_taint to
read the taint descriptor for the corresponding file blodafrdisk. As in the previous
experiment, we measure and report the performance for datle three taint descriptor
formats. Each iteration of the experiment starts out witbld page cache and a cold BTD
cache. At the end of each run, we issugyac command to write back any dirty data that
remains in these caches and count its completion time t@thsitotal running time.

In this experiment, we use FileBench [35] to generate the el we chose this bench-
mark due to its flexibility, accuracy, and ease of configoratiFilebench was developed by
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Sun Microsystems and was used for performance analysie@akaris OS [52], as well
as in numerous recent academic studies [33, 39].

Figure 4.19 presents the results of this experiment. Sulefgyia) and (b) report the per-
formance of basic file access operations (reads and writes poe-existing file, measuring
sequential and random access, respectively. As expebtednagnitude of the overhead
is highly dependent on the size of a taint descriptor blodkictvis determined by its for-
mat. Most strikingly, the filesystem suffers an 85% drop mtilghput on sequential reads
with RLE and Taintmap descriptor formats. This is to be exgp@csince in our evaluation
environment PIFT-ext3 transforms sequential file accessanstream of random-access
disk requests. To understand this phenomenon, recalldhagth file data block accessed
by an application, PIFT-ext3 must access the corresponirig on the auxiliary taint
descriptor partition. In our environment, both partitioaside on the same disk drive and
hence, each data block access incurs the cost of two intetigradisk seeks. As expected,
the overhead is much less noticeable with random file acedssh naturally suffers the
disk seek overhead on every data block access. In the ranglmhmeasurement, our ex-
tensions to ext3 decrease the throughput by 76% and thils reBects the reduction in the
effective disk bandwidth — for every file data block of sizeBlKPIFT-ext3 must read the
corresponding BTD, which occupies 16KB of disk space in befiresentations (RLE and
Taintmap). Random file writes are considerably less expertean random reads, since
they benefit from asynchronous cache writebacks and recp@slering at the device level,
whereas read operations are fundamentally synchronous iexperiments.

Moving the auxiliary partition to a separate disk drive wiballow PIFT-ext3 to pre-
serve sequentiality and service BTD accesses in paraltél ddta block transfers, thus
reducing latency and increasing the effective disk banttwidVe plan to evaluate this
optimized configuration in future work.

Note that the performance of PIFT-ext3 on uniformly-taihfiée blocks is comparable
to that of the unmodified ext3 implementation, as we exp@abur current design, uniform
block taint descriptors are maintained in leaf indirectchigy which both implementations
must access on every file operation in order to obtain thelnlatk pointer. Hence, file
read operations on uniformly-tainted data blocks suffeadditional latency or bandwidth
penalty. File writes are slightly more expensive in PIFT3gsince they require updating
the indirect blocks and periodically flushing them to diskewed collectively, these results
confirm that our design is generally successful at miningizive overhead associated with
access to uniformly-tainted file data, which we expect tohgemhost common case.

Figure 4.19(c) compares the performance on metadatasingemworkloads. In this
experiment, we first populate an empty directory with 1000i@8 and then delete these
files by executingfm -rf «”. Our design does not alter the processing of metadatteckela
tasks, such as these, and hence imposes no additional adere evidenced by these
results.
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Overall Performance of the Storage Subsystem

In our final set of experiments, we take a more macroscopiwv @ed evaluate the
performance of the entire storage stack, which combinesrhaisk filesystem, the NFS
wrappers, and the shared-memory RPC transport layer. Qiirsjo assess the overall per-
formance of the storage component in a fully-featured PIéfifiguration and measure the
worst-case overhead relative to “plain” paravirtualized aon-virtualized environments.
More specifically, we compare the following configurations:

e Cl1: A "bare-metal” configuration running unmodified Linux ankt® without the
hypervisor.

e C2: A paravirtualized configuration running Linux and Xen. Témntrol VM ex-
poses one disk partition as a paravirtualized block devieeguest VM mounts this
device as ext3.

e C3: A paravirtualized configuration running Linux and Xen. Tdoatrol VM mounts
one of the disk partitions as ext3 and exposes it to the goesigh unmodified NFS
with TCP transport.

e C4: A paravirtualized configuration running Linux and Xen. Tdoatrol VM mounts
one of the disk partitions as ext3 and exposes it to the ghestigh NFS and our
shared-memory transport layer (Xen-RPC).

e C5: A fully-featured PIFT configuration. The control VM mourtise of the disk
partitions as PIFT-ext3 and exposes it to the protected Vitlduiph NFS and Xen-
RPC. Since our focus in this section is on evaluating filesysperformance, as
opposed to the computational overhead of taint trackinginsgument this config-
uration in a manner that allows the protected VM to submit fi@ requests that
operate on tainted data without entering emulation. To @agdish this, we instru-
ment Xen-RPC to assign synthetic taint labels to all memaiffebs that carry file
data once they have been submitted for transmission byith@-cide NFS endpoint.
To simulate varying levels of taint label fragmentationraction of the data buffers
(F) is assigned a randomly-generafedntmapdescriptor and the rest are assigned
a randonmlJniform descriptor.

In our first experiment, we test the performance under theesgenl write workload
(described in the previous subsection) in these five cordtgans, varying the level of label
fragmentation irC5 between 0% and 100%. Table 4.5 shows the throughput in caafigu
tions C1-C5 with the value ofF’ fixed at0%. Figure 4.20(a) plots the performance@5
for varying values off". We observe that at low levels of label fragmentation, tmeugh-
put achieved by PIFT is comparable to that of the basic eXS/NonfigurationC4), but
both are measurably slower than the non-virtualized cordigpn (C1). The difference
betweenC1 and C4/C5 is attributable to the overhead incurred by NFS and intenaia
communication, which are inherent in our design.
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C1 C2 C3 C4 | C5withF=0%
Operations / sec. 10609| 10094| 7715 | 7989 8354
Slowdown relative taC1 | 0.0% | 4.9% | 27.3%| 24.7% 21.3%

Table 4.5. Operation throughput for sequential file writliSE request size, 100MB file
size) across all five benchmark configurations.Cl each data block carriesl@niform
taint label.
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Figure 4.20. Overall performance of the PIFT storage subsysnder data- and metadata-
intensive filesystem workloads.

As expected, the overall application-level throughputileité significant dependence
on the degree of taint label fragmentation. In the degeae@¢nario o’ = 100%, our
storage subsystem achieves roughlg’ of the maximum attainable throughput and this
result is also consistent with our expectations. Loosedakmg, writing a single file data
block that carries daintmapBTD incurs the cost of six disk writes in our current design:
writing the data block itself, writing the associated BTDhfah occupies four filesystem
blocks), and updating the leaf indirect block with a poiritethe new BTD.

Our second experiment examines the performance of metaglatad operations using
two synthetic benchmarks:

e M1: Create a directory tree with depth 6 and fanout 6.

e M2: Delete the directory tree createdMti.

Figure 4.20(b) shows a side-by-side comparison of metanjagsation performance
and the results clearly indicate a significant level of Jaitiy among the five configura-
tions. The extreme slowdown observable in configurafi@imndicates the magnitude of the
overhead incurred by the NFS layer. In this experiment, @mchmark is best viewed as
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a CPU-bound workload consisting of a large number of finéagaaoperations (directory
insertions and removals). Each such operation involvegsaeral updates to in-memory
filesystem data structures and thus represents a relasimeil unit of work. Focusing on
the performance gap betwe&2 and C3, these configurations differ mainly in how they
distribute this work among the two VMs. @2, the guest VM mounts the paravirtualized
block device and the ext3 filesystem layer runs directlydeghe guest kernel. Hence,
each directory update operation is processed locally bygulkest VM and the costs of inter-
VM communication are incurred only occasionally, when theg kernel decides to flush
the updated directory blocks to disk. In contr&3B deploys the on-disk filesystem in the
control VM and the guest mounts it remotely via NFS. In thi®{sided configuration,
the guest must relay each directory update request to theot™MM via the NFS stack.
Each such request must be marshalled into an RPC messaga] adp a network-level
buffer, and transmitted to the server via TCP/IP. As ourltesuiggest, these manipulations
become the dominant source of overhead and cause a drastaosin.

Next, comparing_C3to C4, the difference indicates the reduction of costs achiewed b
replacing TCP with our custom shared-memory transport feodim C4, each directory
update must still cross the VM boundary, but the system Isgsmthe TCP layer and in-
stead allows the server to directly access the client-skIé Buffer by setting up a shared

mapping.

In C5, the on-disk filesystem in the control VM is replaced by ourelaaware im-
plementation. Since the scope of the workload in this expent is limited to directory
operations, PIFT-ext3 does not need to update taint lalmefieodata blocks and hence
does not impose a significant amount of additional load orCiR¥ or the storage device.
As a results, the performance achieved in this configurai@omparable to that 4.
However, both configurations are noticeably less efficieahC1 andC2 and this differ-
ence is attributable to the costs of the NFS protocol and-ohdenain signaling, which are
inherent in our client-server design.

Evaluation Summary

In summary, the microbenchmark results presented in tlusoseand our usage ex-
periences lead us to conclude that our label-aware storaglllencan serve as a viable
building block for a comprehensive information flow tradggisubstrate such as PIFT. Al-
though the design of our filesystem was guided by a set ofipehctompromises that im-
pose non-essential overhead, the evaluation demonstnatesur storage layer can deliver
competitive performance even under significant levelsrefsst

The BTD cache offers a crucial optimization, allowing us ¢aluce the number of
accesses to the taint descriptor partition and thus imptiogeeffective disk bandwidth.
The challenge lies in scaling the cache implementation irmamar that would allow it to
achieve efficiency on parallel application workloads — arréasingly important consid-
eration in light of the inevitable and rapidly growing adioptof multi-core architectures.

The disk 1/0 overhead of accessing taint labels is negkgibt metadata operations.
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For operations that manipulate file data, the disk overheaésand depends on the level
of label fragmentation. Files and individual data blockatthre tainted uniformly with
a single label can be accessed very efficiently and PIFTHext®s almost no additional
performance costs. Conversely, accessing data blocksahnat fragmented taint labels
is considerably more expensive due to the additional desksfiers. Most alarmingly, our
current design tends to transform sequential file worklaatdsrandom disk workloads and
future improvements to PIFT-ext3 will focus on reclaimirggigentiality.

Finally, the client-server design was introduced in oraeminimize the required set
of changes to the protected VM’s software stack. The NFSrlayposes a noticeable
cost resulting from RPC marshalling and inter-VM commutiarg but our novel shared-
memory transport module helps mitigate this overhead.

4.4 Policy Enforcement

The previous sections have focused on the core mechanismsdé&ing the flow of
tainted information and storing it persistently on disk.rdmains to describe one more
essential component of our implementation; namely, theuteaesponsible for evaluating
policies and enforcing restrictions on the disseminatiiosensitive information.

As we explain in Chapter 3, PIFT delegates policy enforcanem set of user- or
administrator-defined modules calledforcement handlersvhose specifications and im-
plementation are external to PIFT and are beyond the scopl@sotlissertation. When
PIFT detects that the protected VM has made a request tmekitas tainted data through
a virtual 1/0 device, it intercepts the request and invokekeace-specific enforcement
handler, supplying a 32-bit taint label that representsitita being externalized. It is the
responsibility of the enforcement handler to resolve tipiagque token into a decentralized
data label and evaluate its constituent policies.

Our current Xen-based prototype implements request igpéian for two types of vir-
tual I/0O devices: the standard paravirtualized block gferdevice and the standard par-
avirtualized network interface. The former can be used tarobthe transfer of sensitive
data to removable hard drives, USB storage keys, and otbendary storage devices that
are not directly managed or controlled by PIFT. The lattecima@ism provides a means
of controlling the transfer of information between priralg over the network, as well as
restricting its release to external networks, such as théglnternet.

In the paravirtualized model, on which our implementat®based, virtual I/O device
abstractions are implemented using #pdit-driver scheme. In this scheme, tfrent-end
component (operating in the protected VM) collects I/O exia issued by the guest kernel
and forwards them to thieack-endcomponent through a shared ring buffer. The back-end
operates in the kernel space of the control VM and is resptnfr relaying the protected
VM'’s requests to the actual hardware device via the standartl-level device interface.

A data transfer request typically specifies a source or ardgtn buffer, which resides
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in protected VM’s memory, and in order to make this bufferila@e for DMA from the
control VM, the backend makes a hypercall to Xen, requeshisgouffer to be temporarily
mapped into the address space of the control VM.

The back-end driver, operating in the control VM, providesoavenient point of in-
terposition and request interception. Before relayim®RETE or TRANSMIT request to the
hardware device, our modified back-end drivers make an upcéhe user-level emula-
tor (described in Section 4.2) to obtain the taint label®eissed with the outbound data
buffers. If the data carries a non-empty taint label, theklamd invokes a device-specific
enforcement handler, which runs as a kernel module in the@oviM and is registered
with PIFT at the time of system startup. The enforcement lesirekamines the supplied
taint labels, resolves them into decentralized data labeld evaluates the corresponding
policies. Based on these policies, the handler can decid#aw or block the release of
tainted information and this decision is signaled back &dtiver via a status code.

Next, we discuss the functional aspects of back-end drifeerstorage and network
devices, as well as our modifications to these modules, thdudetail.

4.4.1 Enforcement for Virtual Block Devices

The core back-end driver functionality for paravirtuatizetorage devices is imple-
mented inlinux/drivers/xen/blkback/blkback.c. This file contains, among others,
the main request dispatch routing ¢patch_rw_block_io), which is invoked in the con-
text of a kernel worker thread when a new disk request apmeatee shared ring. The
request (defined by the paramebdkif_request_t *req) specifies a set of page-level
segments, which reference the data buffers, and these segomnstitute the basic units
of inter-VM sharing. The dispatch routine invokes GNTTABOP_map_grant_ref hyper-
call to map these foreign buffers into the local address espdidhe control VM. Once
these mappings have been established, our modified imptatienexamines the opera-
tion type (req->operation) and, forwRITE operations, makes an upcall to the emulator
to obtain an aggregated taint label for each of the segma@ihiis. exchange is performed
though a client-server protocol running on top of Netlink,discussed in Section 4.2.7.
The request message sent by the kernel-level driver inslttdesegment’s physical page
number, its offset within this page, and the length of thersmgt. Our extended emulator
looks up the page taint descriptor (PTD) for the specifiecepagnber and returns its taint
label. If the PTD specifies a non-uniform (i.e., fragmentadht label, the emulator aggre-
gates the individual byte-level labels by invoking therge_labels function (described
in Section 4.2.5) and returns a single aggregated taint taerepresents the union of all
policies.

Another point worth mentioning about the taint label lookupcedure is that if the
protected VM is running in the emulated mode at the time winendispatch routine is
invoked and if the asynchronous mode of taint tracking isoesth QEMU may need to
temporarily suspend the emulated guest context in ordelldw ¢he taint processor to
drain its log and bring the state of memory taint labels updte. This is one of the very
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typedef uint32_t taint_label;

/* The enforcement handler for WRITE requests to a paravirtualized block
storage device x/
int evaluate_policies_bdev(
struct block_device xdev, // (In) Description of physical block device
taint_label labels[], // (In) Array of segment-level labels
unsigned int num_segments); // (In) Number of segments

/* The enforcement handler for TRANSMIT requests to a paravirtualized network
interface */
int evaluate_policies_netif(
struct net_device xdev, // (In) Description of physical netw. interface
taint_label label, // (In) Packet taint label
void =*payload); // (In) Pointer to the packet payload

Figure 4.21. Function prototypes of policy enforcementdbars for paravirtualized disk
and network devices.

few scenarios in PIFT that demand explicit synchronizaietween the emulator thread,
which supplies blocks of taint tracking code, and the taintpssor, which consumes these
blocks asynchronously and advances the view of taint ladsgaments. From an appli-
cation’s point of view, this synchronization period can kers as a form of buffering and
manifests itself as a brief delay between the issuanc&RIEE request and its subsequent
release to the physical disk drive. We do not expect thisydelpose a significant practical
challenge, since current applications that exhibit sesigito the timing of disk operations
must already be equipped to deal with the effects of requ&ftring and reordering at
various levels in the stack — a standard practice in modeenatimg systems.

When the kernel-level dispatch routine regains controinvokes the external en-
forcement handler function for block storage devices, whiodl prototype is shown in
Figure 4.21. In the current implementation, this functi@cepts three parameters: the
block_device structure that identifies the destination physical dewive array of aggre-
gated segment-level taint labels obtained from the emuiatthe previous step, and the
size of this array. The enforcement callback evaluatesdhieips defined by the segment-
level labels, decides whether the data contained in thepaesgs can be safely external-
ized to the specified storage device, and signals its dectsidhe driver via the return
code. If the enforcement handler returns 0, the dispatdin®uaontinues along the normal
request processing codepath; it constructs a low-levklrdiguest descriptosruct bio)
and invokes thaubmit_bio kernel function, which propagates this request to the gener
physical block device layer. Otherwise, it immediately @als the request and signals an
error condition BLKIF_RSP_ERROR) to the front-end component.
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4.4.2 Enforcement for Virtual Network Interfaces

The central component of the back-end driver for virtual 8lli€ implemented in
linux/drivers/xen/netback/netback.c and the general procedure for intercepting net-
work output and enforcing policies is analogous to the omel disr virtual storage devices.
When the backend receives an event notification from Xercatuolig the appearance of a
TRANSMIT request on the shared ring, it schedulesihie tx_action routine for execution
within a kernel-level tasklet. This routine copies the regfucontrol information from the
shared ring onto the local stack, allocates a generic keouoilet buffer§truct sk_buff),
and instructs the hypervisor to map the foreign buffer dointg the packet payload into
the address space of the control VM.

Our modified version then issues an upcall to QEMU and requesaggregated taint
label for this foreign data buffer. The action routine thevokes the administrator-supplied
network enforcement handler, passing it the identifier ef physical interfacesttruct
net_device) and the taint label, as shown in Figure 4.21. Note that skeeguarantees
that the protected VM’s data buffer does not span page boiasjat suffices to supply
only one taint label value (as opposed to passing an arraggrhent-level labels, as we
do for disk requests). However, in our current design thevot enforcement handler ac-
cepts one additional parameter; namely, a pointer to thed fnepping of the packet’s data
buffer. Exposing the data payload to the enforcement maajypears to be advantageous
(and perhaps even essential) in this particular case, giaformation can be gainfully
exploited to attain finer control and implement a wider ran§eseful policies. For in-
stance, exposing the packet header information allowsrif@e@ment module to restrict
information flow on the basis of Ethernet- or IP-level deation addresses. Revealing the
full packet enables an even broader range of policies thatisa information contained in
the TCP header or even perform deep packet inspection.

If the enforcement handler approves the attempBadSMIT operation, the action rou-
tine proceeds to copying the payload from the foreign magppito a local kernel socket
buffer and then passes this buffer to tleeif_rx function. Otherwise, the back-end driver
drops the request and invokes thetbk_tx_err routine, which constructs an error re-
sponse, posts it to the shared ring, and signals the frahtemponent.

4.5 Extending PIFT to a Distributed Environment

The material presented in the preceding sections desdni&sPIFT tracks the flow
of information and enforces policies within the boundaonés single machine. The last
piece of the architectural puzzle to be specified is how terekthe single-node platform
in manner that would enable us to track information flow betmveachines and principals
in a networked environment. That is, when an applicatiomingnon machinel/, sends a
message containing some tainted dataver the network to another maching,, it is not
enough to simply invoke the enforcement handler and vendyt/, is authorized to access
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D. We must also ensure that whéfy receives this message, its copylofetains the taint
status and the confidentiality policies associated witlotiigainal copy held by\/,,.

Extending the single-node PIFT design to track taint labetsss network transfers is
conceptually straightforward: the hypervisor on the s&€adeachine can simply annotate
each outbound network packet with a concise encoding ohitg tabels. Analogously,
upon receiving a packet from the network, the hypervisordetach the labels and propa-
gate them to the memory buffers holding the payload.

To implement this feature, we make another functional esttento the back-end com-
ponent of the network driver. On the sender’s side, if thekbawd receives permission
from the enforcement handler to externalize the data to éceiver, it makes another
request to QEMU to obtain the fine-grained non-aggregated l&bels for the memory
buffer holding the payload. Using this information, the k&mnd constructs packet taint
descriptor— a data structure that seeks to concisely describe thel&ygétaint status of
a packet. This data structure is a direct analogue of the faégiedescriptor (Section 4.2)
and the block taint descriptor (Section 4.3), which stonet taetadata for memory pages
and filesystem blocks, respectively. The fine-grained bsitel view is represented using
one of three different formatdJhiform, RLE, or Taintmap and the choice of format is
determined by the level of taint fragmentation within thelgat. The back-end driver then
transfers the packet data and the associated taint desdopghecommunication daemon
— a lightweight user-level process that runs in backgroumthé control VM. This dae-
mon concatenates the packet payload with the taint descipid forwards the resulting
message to its peer on the receiver’s machine through a P@Rihel.

When the packet reaches the destination machine, the ¢dre networking stack
demultiplexes it based on the outer packet headers andrds\wilae concatenated message
to the user-level communication daemon, which, in turrayelit to the back-end driver
that implements the virtual NIC. The back-end detaches #ukgt taint descriptor from
the inner packet, injects the latter into the protected VMack, and makes an upcall to
QEMU, instructing it to taint the destination memory buféecordingly.

Overall, our strategy of relaying traffic through a usereledaemon is a well-
established technique and we implement it using mecharssmikar to those used by the
TUN/TAP [82] kernel driver, which enables packet tunnelthgough a user-level process
on traditional non-virtualized Linux platforms. Unsurgrigly, our implementation faces
similar limitations, the most significant of which is the ieesed load on the CPU and the
memory bus resulting from the copying of packet data betvkeemel- and user-space con-
texts. In the next version of our prototype, we plan to eliatéthis non-essential overhead
by pushing the tunneling functionality directly into therkel.

4.5.1 Bandwidth Overhead Evaluation

The ability to track the flow of sensitive data across machinea networked environ-
ment does not come for free; our extensions to the networgiagk consume a certain
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fraction of the available network bandwidth due to tunnglamd taint label annotations.
We conducted a simple experiment to study the effects obthgensions on the effective
bandwidth and measure the extent to which they degrade #ralbmetwork performance.

In this experiment, we use thgerf [43] network benchmark to measure the effective
network bandwidth between a pair of PIFT-enabled machioesected by a point-to-point
100Mbps Ethernet link. In order to isolate the performamapadct of tunneling from the
overhead of taint annotations, we rigerf and measure the resulting performance in three
different configurations, specifically:

e C1: A*bare-metal” configuration running unmodified Linux witht the hypervisor.
iperf is configured to communicate directly over the physical nekinterface.

e C2: A “bare-metal” configuration running Linux without the hgyvisor. iperf is
configured to communicate over a virtual interface that siteda TUN/TAP kernel
device. This device relays all network packets to a mininsalrdevel communica-
tion daemon, which transmits them to the remote endpoiraVi€P/IP tunnel.

e C3: A fully-featured PIFT configurationiperf runs as a user-level process in the
protected VM and communicates via a paravirtulized netwotdrface. The back-
end driver redirects all outbound packets to a user-leveinoanication daemon,
which transmits them to the remote endpoint through a TC®#iRel. In this con-
figuration, we also instrument the communication daemontotate a random sam-
pling of the outgoing packets with PTDs, varying two paragngt taint prevalence
(P) and the level of label fragmentatiof’). The first parameter determines the frac-
tion of packets that are marked as containing tainted dat&adion (F) of these
tainted packets is assigned a randomly-generdaattmapdescriptor and the rest
are assigned a randoldniform descriptor. Since the intent of this microbenchmark
is to measure the network bandwidth penalty due to packedtatians, rather than
the computational overhead of emulation and taint tragkivigalso instrument the
daemon to clear the taint labels on the receiving side poianjecting packets into
the protected VM’s stack. This step is necessary becausegféd clear the labels
would cause the protected VM to process incoming packetsaremulated mode
and this would interfere with our bandwidth measurements.

In all configurations,iperf is set up with a unidirectional TCP-based data stream.
To estimate the effective network bandwidth, we record dodl the overall connection
throughput, as reported by the client endpoint.

Figure 4.22 presents the results of our bandwidth measuntsn@ three distinct val-
ues of P and varyingF. Looking at these results, the difference betwé&xdnand C2
reflects the overhead of packet encapsulation and tunnélifigle certainly measurable,
the reduction in effective bandwidth is relatively modestl as limited to the cost of the
additional TCP, IP, and Ethernet headers (roughly 66 by¢egpacket). InC3, the over-
head is strongly dependent on the prevalence of tainted aataell as the degree of label
fragmentation, as we would expect. With= 50% and F’ = 10%, users would observe a

93



100 T T T T T
BB~ — - -
(o)
© (o)
80 o .
* o [0} °
(0]
3 o ©oe
S el * _
=3 "
=
3 o X
= *
© 40 B] * 4
3 o * * * x
m o -
. =]
20 + 8% 7777777 = o
C3 (P=0.1) o
C3 (P=0.5) *
C3 (P=0.9) O
0 1 ] 1 1 1 1

0 20 40 60 80 100
F: taint label fragmentation (%)

Figure 4.22. The effective network bandwidth, as measuyeigpbrf, for varying amounts
of tainted data ) and at varying levels of label fragmentatiafi)(

20% reduction in effective bandwidth compared to the “baegal” configuratiorC1. In

an extremely stressful scenario, where 90% of all packettago sensitive data and each
packet carries a highly-fragment@&adintmapdescriptor, the sustainable bandwidth drops to
21.2Mbps. This can be seen as a dramatic penalty, but thi¢iseiuly consistent with our
expectations: with a 32-bit label space, each tainted padkength L carries a byte-level
Taintmapdescriptor of length L and hence, the application-level bandwidth is reduced to
approximatelyl /5" of its original value.
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Chapter 5

Full-System Performance Evaluation

In this chapter, we evaluate the performance of our PIFTopype under a variety of
workloads, which range from computationally-intensiveerabenchmarks to interactive
usage scenarios in graphical desktop environments. Oluagian focuses on addressing
the following key questions:

e How large is the performance penalty incurred by PIFT on woase
computationally-bound workloads operating on tainte8ection 5.1)?

e How effective are PIFT’s on-demand emulation techniquaga@iticing the amount
of time spent in the emulated mode (Section 5.1)?

e What are the benefits and limitations of asynchronous izl tracking and how
does the size of the taint argument log affect our systemfepeance (Section 5.2)?

e How does our taint tracking platform affect interactivitgdauser productivity in
graphical application environments (Section 5.3)?

To answer these questions, we ran a series of experimentamghred the overhead
in the following configurations:

e NL: A “bare metal” configuration running unmodified Linux on wathardware.
e PVL: A paravirtualized configuration running Linux and Xen.

e Emul: Linux running in a fully-emulated environment based on wified QEMU.

PIFT-S: Our prototype implementation of PIFT with synchronoustaiacking.

PIFT-A(z): Our prototype implementation of PIFT with asynchronousapelized
taint tracking and: MB of physical memory reserved for the taint argument log.
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5.1 Computationally-Intensive Workloads

In our first set of experiments, we evaluate the performarf@aioprototype under a
variety of CPU-driven workloads, which intensively marlgte and perform computation
on sensitive input data. Naturally, CPU-bound workloadd #ctively manipulate tainted
data represent the most stressful scenario for PIFT, asiestchction that touches a sen-
sitive value must be carefully analyzed and emulated. Haheeexperiments presented in
this section can be viewed as measuring the worst-caserpenfice overhead incurred by
PIFT’s emulation and information flow analysis components.

Our test machine for these experiments is a Dell Optiplexwib a quad-core Intel
2.4GHz CPU and 4GB of RAM. The hypervisor-level componerdwfprototype is based
on Xen version 3.3.0. The augmented emulator (based on QEdiéion 0.10.0) runs in
the control VM as a multi-threaded user-level process. Tiaepted VM is configured
with 512MB of RAM and one VCPU, as our current implementatitwes not yet offer
support for multi-processor guest environments. All thtlata files are accessed from
a PIFT-ext3 filesystem, which the protected VM mounts retgot@er NFS and Xen-
RPC. PIFT-ext3 operates as a kernel extension in the covtvbland is configured to
access a 160GB 7200 RPM Seagate hard disk. Both virtual meshiin the Fedora Core
distribution of Linux with kernel version 2.6.18-8.

5.1.1 Copying and Compressing

We begin by considering two simple, but very common data maation activities —
copying and compressing data files. In this experiment, veeue the following tasks
from the command line, measure their running times, andrtéjpe slowdown incurred by
PIFT:

LocalCopy: This task copies a sensitive file to another file in the samextbry using the
cp command from the GNU coreutils package [18]. In operatideiahs, copying a
file on Linux involves a sequence efs_read andsys_write system calls, which
transfer the data from the source file buffer in the kernedll@age cache to an in-
termediate user-level buffer in the address space ofghgocess, and from there to
the destination file buffer in the page cache. From the vapaint of PIFT, the pro-
tected machine transfers tainted data between these mdmfbeys in 32KB-sized
chunks using theepz movsd instruction, producing a memory-bound workload.

Compress: This task compresses a tainted input file using the GX¥ip command [40].
This command reads the contents of the input file into a wesatbuffer via a se-
guence okys_read system calls, compresses the data using a combination &f Huf
man coding [42] and LZ77 [99], and writes the results to a &kelevel page cache
area that represents the output file ussiyg_write. At the instruction level, this
operation involves a sequence of user-kernel data trangf@ng therepz movsd
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Figure 5.1. Performance #fIFT-A(512)and Neon on file copying and compression tasks
with a varying amount of tainted dat&’.

instruction, as well as a nontrivial amount of user-leveivaty associated with com-
puting the Huffman tree and identifying redundancies initipeit byte stream.

This choice of benchmarks also allows us to compare our teesuith those in
Neon [98]. Neon builds on top of the on-demand emulation piierdeveloped by Ho
et al. [41] and hence provides a meaningful comparison to botlesysimost closely re-
lated to ours. To match Neon, we use a 4MB input file, meas@edmmand completion
time, and report the slowdown relative to the native unnoed configurationNL). Be-
fore the start of each measurement, we pre-stage the inpubfd filesystem buffers in
the protected VM. This allows us to factor out the overheadisk 1/0 (which remains
constant across all configurations) and measure the funttahoverhead of taint tracking
in the most stressful scenario — a CPU-bound task. In the B&fTiguration, we apply a
non-zero taint label to one contiguous subregion of thetififgustarting at a random offset.
Note that while the results reported in the Neon study focuthe case of sparsely-tainted
input files, we are also interested in understanding the tvaarse performance impact of
taint tracking. To this end, we repeat the experiment migltijpnes, varying the length of
the tainted subregionf() betweer0% and100%.

Figure 5.1 reports the results of this experiment, presgraticomparison between Neon
and PIFT with asynchronous tracking and 512MB of memoryrkeskfor the taint ar-
gument log. The overhead is expressed in terms of the slowdagtor relative to the
native Linux configurationNL). Looking at these result®IFT-A(512)increases the run-
ning time by 5.3 for file copy and 5.& for file compression on lightly-tainted input files
(F = 10%). As the amount of tainted data grows, our system must spemd time in
the emulated mode and the slowdown becomes more noticelbtbe extreme case of
a fully-tainted input file, our implementation incurs slosvehs of 15.% and 21.X for
copying and compression, respectively. The copy operatiesives no computation on
tainted data — it merely transfers file data between userkantkl-level memory buffers
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NL | PIFT-S| PIFT-A(512)
LocalCopy|| 11.0| 16.4 15.8
Compress || 62.0| 96.5 92.8

Table 5.1. Command completion time (in ms) for LocalCopy @athpress with’ = 6—14

using therepz movsd instruction. The page-level taint transfer optimizati@scribed in
Section 4.2.2 allows the taint processor to handle thissoefficiently. File compression
usinggzip represents a somewhat more stressful scenario and itsthigmr components,
Huffman coding and LZ77, produce a nontrivial amount of catagional activity, which
PIFT must carefully analyze.

This experiment exercises the ability of PIFT to transitefficiently between virtu-
alized and emulated execution modes. Ideally, one woulé&xjne slowdown to scale
linearly with the length of the tainted file region, since #imaount of taint should dictate
the amount of time spent in the high-overhead mode. Our sydiwes not exhibit fully
linear scaling because the heuristics for transitionimgrent well tuned in our current pro-
totype. These heuristics err on the conservative side,ilkgepbe system in the emulated
mode even if one could have transitioned back to native gi@cta bit earlier.

Although we do not have enough data to draw definitive commhssdue to fundamen-
tal system differences and limitations in available date,believe that these results are
promising and yield a favorable comparison to Neon. In aagerwith ' = 6—14 the only
data point available to us for comparison, Neon reports dowwn factors ofl0 x and95 x
for file copy and compression, respectivel\As Table 5.1 shows, the overhead in PIFT
with this amount of tainted data is only5x over native execution for both operations.

Although PIFT and Neon are quite similar in terms of the olfer@hitecture, two fun-
damental aspects of our design tilt the results in our fakst, PIFT tracks the flow of
tainted data at a higher level of abstraction (guest x8@unsbns, as opposed to QEMU
micro-instructions). Second, PIFT leverages asynchrgngxplicitly separating the taint
tracking computation from the main emulation workload axeogiting these tasks concur-
rently on two processor cores.

5.1.2 Text Search

In the next experiment, we consider another common operatiatext search. Our
input dataset is a 100-MB sample of the Enron corporate édatabase [29] spread across
100 equal-sized files and all files reside on disk at the sfathe experiment. In the
PIFT configuration, we also mark a fractioR’Y of the files as sensitive, assigning them

The Neon paper [98] presents the results of this experinmefable 3. Note, however, that the textual
summary of the experiment provided in the accompanyingitegection 5.2.1 reports different levels of
overhead, which are inconsistent with the numeric resdltse authors confirmed to us that the values in
Table 3 are the correct reference results, and not the opeglpd in the text.

98



NL PVL Emul | PIFT-S| PIFT- A(512)
Completiontime (s) || 2.42 | 2.87 | 18.45| 58.87 25.57
Slowdown relative toNL || 1.00x | 1.19x | 7.62x | 24.33x 10.57%«

Table 5.2. Command completion time (in seconds) for a teattcketask with fully-tainted
inputs ¢ = 100%).

unique uniform taint labels. We use the GNdep command [38] to search this sample
for a single-word string and measure the running time. Weatethe measurement thrice
with different search keywords, compute the average ryntime in all configurations of
interest, and report the performance in terms of the slowdaator relative ta\L.

grep represents a somewhat more complex and diverse workloadntiades disk
reads, a text search computation based on the Tuned BoyereMpattern matching al-
gorithm [3], and transmission of output (lines of text thahtain the search keyword) to
the paravirtualized console. Note that since PIFT does ratitor and intercept the ex-
ternalization of tainted data through the local consoles, ¢ixperiment does not incur the
costs of suspending the emulator to synchronize the tdel lstate in the asynchronous
configuration.

Table 5.2 reports the results of this experiment in the mivessful scenario, where
all files in the input dataset are taintefl (= 100%). We observe that our implementa-
tion imposes a noticeable performance penalty in this waase configuration — a factor
of 10.6x with asynchronous parallelized taint tracking and 512MBr@&mory reserved
for the taint argument log. Still, the slowdown is much lowlean in the previous set of
experiments, since the workload is not fully CPU-bound. €bst of a pattern matching
computation (even including the associated overheads afagion and information flow
analysis) fades in comparison to the latency cost of an I{Dest to fetch input data from
disk and the latter is constant across all configurationsth \&imore modest amount of
tainted data ' = 10%), the slowdown is even less noticeable — only k4lative to
native execution witfPIFT-A(512)

Table 5.2 also helps us quantify the performance gains aethiby parallelizing the
IFT computation and executing it asynchronously. The tesuldicate thaigrep runs
24.3x slower with synchronous taint tracking on the same progesse and tracking
asynchronously on another core reduces the running timddmter of 2.3«.

5.2 Benefits and Limitations of Asynchrony

The results in the previous section provide evidence for lyypothesis that asyn-
chronous tracking can greatly improve performance, aftethe ability to move the IFT
computation out of the critical path and preventing it frolmnsng down the execution of
the emulated machine. Of course, the size of the taint argtiog is a crucial parame-
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ter, which largely determines the degree of improvementaveabtain by tracking asyn-
chronously. In Section 5.1.1, a 512MB log provided suffitigmace to absorb the entire
taint tracking computation for both operations (copy anehpress) and thus, the impact of
information flow analysis on their completion times was mial. Conversely, a small log
would make it difficult to absorb long bursts of computatigequiring the emulator to stall
and wait for the taint processor thread to make progresserdse space. In situations,
where PIFT is routinely tasked with analyzing large CPU+imbworkloads, the “log full”
condition can become prevalent and effectively cause theesyto transition back to the
synchronous mode, in which the emulator and the taint psocesperate in lockstep.

In the next experiment, we examine this transition phenanend evaluate PIFT’s
sensitivity to the size of the taint argument log. We focuglmabsolute worst-case sce-
nario — a CPU-bound workload operating on fully-taintedunfiles that have been pre-
staged into memory buffers. We consider two such workloedsipressing a sensitive file
usinggzip and sorting an array of integers using s rt library routine. In this exper-
iment, we measure the running time for varying input sizes, &am PIFT configurations,
several different sizes of the taint argument log. We alssiuate a specidPIFT-A(x)
configuration, in which the taint processor implementaieomodified to consume taint
tracking blocks instantaneously, without executing thatrimnctions. As a result, the main
emulation thread never stalls due to lack of log space indbigiguration. WhilePIFT-
A(oco) does not usefully track the propagation of taint labelsnéldes us to establish the
absolute upper bound on the degree of performance impraoweattainable by optimizing
the taint tracker. Viewed from a different angle, the perfance difference betwe&hFT-
A(c0) andEmulquantifies the overhead our implementation adds to thearidmulation
codepath on the producer side. This overhead is associdtie@emputing intermediate
values (such as physical memory addresses) and commugitiagim to the consumer via
the taint argument log.

Figure 5.2 presents the results of this experiment, pipttie slowdown relative tbiL
for the compression (a) and sort (b) workload®/L shows the baseline performance on
unmodified Xen and reflects the overhead of paravirtuabpatEmulisolates the impact
of basic emulation and, as we can see, both workloads su#lemalown of 10-1X.

Turning our attention to the performance of PIFT, compassuns22.4x slower on
PIFT-A(1024)and 22.5 slower onPIFT-A(512)for a 1IMB input file. As we expect, these
numbers start to diverge as input size increases. With a 20l file, PIFT-A(1024)still
offers sufficient log space to absorb most of the overheadlarg] computation proceeds
at a rate close to the upper bound giverPdT-A(>o). An input file of size 20MB appears
to be the point of transition foPIFT-A(1024) beyond which the producer starts stalling
on log space for non-negligible periods of time. In ®E-T-A(512)configuration, this
transition occurs around the 5MB mark according to our esti@s1 \We can see that in both
configurations, there is an asymptotic penalty as we inerdasinput size, plateauing at
a 35x slowdown. Viewed collectively, these results validate iodmition thatPIFT-A can
take advantage of underutilized memory resources to atietine computational burden of
taint tracking.

The results from the integer sort benchmark reveal slighigyer levels of baseline
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Figure 5.2. Performance on worst-case CPU-bound computdtiasks in all configura-
tions of interest.

emulation overhead, but are not qualitatively differentheTaint tracking log provides
enough space to absorb the costs of sorting up to 50000G¢:nstegd we see that perfor-
mance starts to degrade beyond this point in both PIFT caorafigms. Still, we observe
that our implementation can gainfully exploit additiona¢mory resources to improve per-
formance. Looking at the costs of sorting 1000000 arrayietiPIFT configured with
a 512MB log suffers a slowdown of 31x5 while PIFT-A(1024)achieves a slowdown of
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27.7x. The worst-case performance penalty, incurred for largatisizes that cause most
of the taint tracking computation to be done synchronousiground 34 in both config-
urations.

Unfortunately, there does not exist much data on how prewvitymnamic taint tracking
systems behave at this level of stress, which makes it diffiouprovide a direct com-
parison. We hope that the following data points, which weenadsle to collect from the
literature, can help initiate such a comparison:

e Neon [98] reports overheads ranging fromx1@ 95x for CPU-bound workloads
when1/64 of the input file is tainted.

e The initial implementation of taint tracking using on-demdaemulation with
Xen [41] reports a 15% slowdown for what appears to be a CPU-bound task op-
erating continuously on tainted data.

5.3 Interactivity and User Productivity in Graphical En-

vironments

While performance on isolated CPU-intensive tasks allosvlassess the fundamen-
tal computational costs of taint tracking, our system aiongrovide a general-purpose IFT
substrate suitable for pervasive deployment in entergisg&ronments. Today, most en-
terprise users interact with computers through a graplmtaiface and routinely rely on
large and complex applications, such as spreadsheets adgvezessors, to generate and
manipulate data. Can PIFT deliver the level of interagtiahd performance users have
come to expect from these sophisticated graphical apmitatacks running on modern
hardware? In this section, we evaluate the performance opmiotype in a graphical
environment with the goal of understanding how our IFT ptives affect user experience
and productivity on common tasks in widely-used applig&tio

Interactive graphical environments present a set of amuitichallenges for dynamic
taint tracking systems such as PIFT. Although such enviemtsrarely impose high com-
putational demands and typical workloads tend to be inp¢adiven, we found that the
task of rendering tainted data on the screen sometimes feashslesirable oscillation be-
tween native and emulated modes.

To understand the nature of this problem, consider a basitasio, where a user is
editing a sensitive document in a word processor and egteext from the keyboard.
Each keystroke triggers an interrupt that propagates tfirabne layers of the GUI stack
and eventually causes the text area widget to repaint.itEbd widget's screen image is a
rectangular array of pixels, whose values are computdtiodarived from tainted textual
data that corresponds to the visible region of the documEnis, the protected VM must
access tainted data in the course of repainting the windaygetring a page fault and a

102



transition to the emulated mode. When it finishes computimegrtew window contents
(reflecting the keystroke) and relinquishes the CPU, wectwlitack to the native mode,
but find ourselves re-entering emulation once again upongkekeystroke. This behavior
easily leads to thrashing and significantly impairs intivég, which leads us to conclude
that the on-demand emulation technique, as presented ipt€h®, may not be directly
applicable to interactive graphical environments. We tbtivat undesirable oscillation can
be avoided and the overall usability of the system can betlgreaproved with a simple
workaround: persistentlyswitching to the emulated mode of execution and remaining in
this mode for as long as tainted data remains on the screen.

Keeping the system persistently in emulation also enalsiés leverage significant ben-
efits from asynchronous parallelized tracking. In facteiattive graphical environments
seem to be a highly compelling use case for the asynchronods.n$ince the guest work-
load is interrupt-driven and proceeds mostly at human toales, the taint processor can
easily keep up with the producer and the log helps absorbhibit Bursts of computation
that emerge as result of user activity.

Persistent emulation with asynchronous taint trackinguketb a fully-operational and
usable graphical environment. In this environment, usbsgrve minimal or no perceiv-
able degradation of interactivity for simple Ul actions¢lsias moving the mouse pointer
and scrolling. In this section, we evaluate PIFT’s perfanogaon these and longer, more
complicated, user activities. First, we evaluate how PIf@cés the start-up times of sev-
eral large and widely-used interactive applications. Thenrder to understand and quan-
tify PIFT’s impact on user experience and productivity, waraine how our system affects
users’ performance on two specific interactive tasks: typéxt into a word processor and
editing a spreadsheet document.

Our benchmark machine for interactive graphical tests isr@olko H320 with an Intel
Core i3 540 processor and 6GB of RAM. As before, the guestrenrient is configured
with 512MB of physical memory and one VCPU. The guest runooke€ore Linux with
kernel version 2.6.18-8 and the graphical interface isipexithrough the GNOME desk-
top environment. To prevent the abovementioned thrashehgwdor, we disabled PIFT's
on-demand emulation facility and the tests took place elgtin the emulated mode. In
the asynchronous parallelized PIFT configuration, thet taigument log size is fixed at
1024MB.

To the best of our knowledge, PIFT is the first online taintkiag system to demon-
strate support for interactive workloads in a graphicaktgs environment and hence, we
are unable to directly compare our substrate to previouk.wivhen exploring perfor-
mance on realistic user tasks, we compare PIFT’s resultogetachievable in an unmod-
ified emulated environmenEmul) and in a native Linux environment operating on bare
hardware KIL).

Graphical application launch: Inthe first batch of experiments, we measured the time it
took to launch an application, render its graphical comptsiéoad a document from disk,
and then close the program. The programs we measured wem#l]il] (an open-source
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launch time for Abiword and OOCaicall configurations of

| | Abiword | OOCalc |
Slowdown Slowdown| Slowdown Slowdown
Configuration| rel. toNL rel. toEmul| rel. toNL rel. toEmul
PIFT-A(1024)|| 29.51x 1.82x 6.43x 1.60x
PIFT-S 52.80x 3.25x 9.79x 2.44x

Table 5.3. Slowdown relative tdL andEmulin the application launch experiment.

word processor) and OpenOffice Calc [65] (the spreadshespaoent of the OpenOf-
fice.org productivity suite [67]). All tests were performetth cold filesystem caches and
the time measurements were taken with the help of a stopwatch

Figure 5.3 plots the average completion time of the apptiodaunch task in all con-
figurations of interest and Table 5.3 reports the slowdowurired by PIFT relative t&mul
andNL. Looking at these results, we note that slowdowns are giyenaderate and that
asynchronous parallelized tracking offers significaniregs. Abiword launch appears to
be the more stressful scenario for our system, suffering.&28lowdown withPIFT-
A(1024) However, the slowdown relative to the purely emulated gumétion is only
1.8x, indicating that much of the overhead is attributable todbsts of basic emulation.
In the OpenOffice Calc (OOCalc) experiment, the overall slown is even less noticeable
and we attribute this difference to the fact that OOCalc hisger codebase and a more
complex set of external dependencies. Launching OOCalgresgloading a large number
of shared libraries and other external components and,esuét,rlaunch time is dominated
by the costs of disk I/O, which are roughly equal in all confagions.

Entering text: In the next experiment, we evaluated the user-perceivasdsian on
one of the most common user activities — entering text froe kbyboard. We used
vncplay [96, 95] to record the entry of a long passage of text into @fBoe Writer [66]
(the word processor component of the OpenOffice.org prodiycsuite [67]). The log
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Figure 5.4. User-perceptible overhead in the text entresrgent.

contained a total of 749 distinct keystroke events and tedibackspaces, which corrected
typing mistakes. We then replayed the log in all configuragiof interest, adjusting the
delay between successive keystrokes to simulate typirgdspanging from 40 words per
minute (WPM) to 200 WPM. During replay, the passage was ‘dyjpeto the beginning of

a document that already contained text and, in both PIFT gorations, was tainted with
a non-zero uniform label. We measured the time for the eptissage to appear on the
screen and used this measurement to calculatefteetive WPM

Figure 5.4 reports the results of this test, plotting theetfze WPM as a function of the
input WPM. In the optimal scenario, these two quantitiesextactly equal, which means
that the system can “keep up” with the user at any typing spéee difference between
these values indicates the magnitude of user-perceivedhese incurred by the system
and estimates the loss of productivity on typing.

Our results suggest that both PIFT configurations can suségr-optimal performance
at “normal” typing speeds up to 140WPM. Beyond this thredhBIFT-S suffers a fairly
dramatic performance drop-off, achieving only 84% of th&éropl speed at 200WPM. On
the other hand, the asynchronous parallelized PIFT cormigurimposes no such overhead
and can render text without observable delay even at exttgpivey speeds. In both PIFT
configurations, we noticed a short “warm-up” period, wheretystrokes were rendered
slowly for 2-3 seconds before catching up and matching thetispeed imperceptibly.

Editing a spreadsheet: In our final experiment, we asked a human user to launch
OpenOffice Calc and perform a series of simple spreadshégtgethsks. They included
opening a document, formatting cells, typing referentaifulas, copying cells, and navi-
gating the spreadsheet using both mouse and keyboard. Wenisgsured the time that it
took the user to complete these tasks in each configuratiog asstopwatch. Compared
to the keyboard text entry experiment, this test producedeerdiverse and somewhat
more stressful interactive workload, since it involvedsiigant mouse movement, as well
as switching between mouse and keyboard. Several taskise@die user to activate and
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Slowdown  Slowdown
Configuration| rel. toNL rel. toEmul
PIFT-A(1024)| 2.03x 1.14x
PIFT-S 2.74x 1.54x

Table 5.4. Slowdown relative tdL. andEmulin the spreadsheet editing experiment.

interact with dialog boxes (for example, to modify cell berdppearance) or to navigate
file menus.

Figure 5.5 plots the task completion times in this experinag Table 5.4 reports the
slowdown incurred by both PIFT configurations. In the nativeix configuration NL), the
editing session took roughly 74 seconds and it took the ud&s2conds (or 27 longer)
to complete the session in tRFT-Sconfiguration. As before, asynchronous parallelized
tracking offered significant improvements, reducing theaptetion time to 149 seconds.

Looking at these results, it is essential to note that theidam component of the
overhead irPIFT-A(1024)is associated with the costs of basic emulation and our IFT ex
tensions add only 14% to these baseline costs. This resuéimiarkable, as it suggests that
with our performance improvements, information flow anely®ases to be the principal
performance bottleneck, at least as far as its impact onpseductivity is concerned, and
does not present a serious obstacle to usability. This eéisen leads us to believe that the
next major performance improvement will come from optimgihe core mechanisms of
emulation and dynamic code translation within QEMU.

Finally, we note that this test demanded agility from ther,usguiring him to complete
a series of mechanical tasks as quickly as possible, andadiallow for “think time”. In
more realistic scenarios, users tend to pause betweenaitteons and this factor would
further reduce the observable performance impact.
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5.4 Evaluation Summary

This chapter examined PIFT’s performance characteristiayvariety of contexts rang-
ing from CPU-intensive microbenchmarks to interactivel@ggions in a graphical desktop
environment. We believe that our overall results are eraging and while there clearly
remains room for further improvement, these results detnatesthe effectiveness of our
performance optimization techniques, which are amongahe technical contributions of
this dissertation.

It was difficult for us to provide direct comparisons with yiaus work due to funda-
mental design differences and limited availability of peniance data for previous systems.
In the two specific cases where we could do so, our implementathieved a slowdown
of roughly 1.5< and demonstrated a major improvement over previous effortehich
the two comparison cases suffered slowdowns of roughly odeta@o orders of magni-
tude, respectively. PIFT’s performance advancements titibudiable to a combination
of high-level information flow instrumentation and asyrmious parallelized execution of
taint tracking.

The copy and compression experiments presented in Seclidnexercise PIFT’s abil-
ity to effectively switch between native unmonitored exemnu on the host CPU and em-
ulated execution. Ideally, on linear workloads one woulgest the slowdown to scale
linearly with the amount of tainted data, since the lattetates the amount of time spent
in the high-overhead emulated mode. The current prototyes ot achieve fully lin-
ear scaling, since our mode switching heuristics keep toeepted VM in emulation a bit
longer than strictly necessary in an effort to keep the agggeecosts of context switching
at a manageable level and prevent thrashing. Under wosstaznditions, where the entire
input file is marked as tainted, PIFT incurs slowdowns of ldyd.6x and 21x on copying
and compression tasks, respectively.

The text search experiment described in Section 5.1.2 dsirates that the slowdown
is even less noticeable for workloads that mix computatiantvity with disk 1/0. With a
fully-tainted input dataseg,rep runs 11 times slower in a PIFT-managed environment with
asynchronous parallelized tracking. The ability to tratloimation flow asynchronously
on a dedicated CPU core reduces the observable slowdownreuayca bf 2.3.

While our results unambiguously demonstrate the utilita®ynchronous tracking, it
would be a mistake to view asynchrony as a panacea for taickitrg performance chal-
lenges. It merely provides the ability to buffer a burst eftéracking activity and execute
it opportunistically, so as to minimize the impact on thdical path of emulation. As
expected, the degree of improvement is largely determiiyeithdd amount of memory al-
located for the taint argument log. The results of Secticghsuggest that log sizes of
1024MB and higher tend to work well in practice and delivelbgantial gains on non-
trivial workloads. Exploring log compression mechanismd ather techniques that could
reduce PIFT’s memory consumption would be an interestirgction for future work.

To the best of our knowledge, PIFT is the first dynamic tairalgsis platform to
demonstrate support for interactive workloads in a graghiesktop environment. Al-
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though the presence of tainted data on the screen forceystensto stay in emulation

for extended periods of time, PIFT succeeds in masking teen@ad through asynchrony.
For usage scenarios that impose a minimal computationd) &aech as entering text from
the keyboard, the usability impact is imperceptible. Forenotensive operations, such
as editing a sensitive spreadsheet document, it takes awsdimes longer on average
to complete the desired set of tasks in a PIFT-managed emagot. \We have not quite

reached the point, where the user-perceptible overheagr@niic taint analysis and its

impact on productivity can be dismissed as negligible, beibelieve that PIFT represents
a substantial step towards this goal. As evidenced by thitsesf Section 5.3, most of the

remaining overhead can be attributed to the fundamenttd cdQEMU-based emulation

and our system is well-positioned to take advantage of éniithprovements in emulation

technology — an orthogonal, but important direction fouhetwork.
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Chapter 6

Correctness of Taint Label Propagation

In the previous chapter, we evaluated the runtime overhé®IFI and assessed the
effectiveness of our performance optimizations using akination of microbenchmarks
and simulated usage scenarios. Although this dissert&icuses predominantly on ad-
dressing the issues of runtime performance, we must alsniagaa separate, but equally
important question: does PIFT offer affectivetool for confining the flow of sensitive
information and do our mechanisms track its propagatimmectly? After all, any effort
aimed at reducing the runtime performance costs would beentise in futility if the re-
sulting system does not track the flow of sensitive data in amaathat properly reflects
users’ actions, avoiding loss of sensitivity status andtaueting.

The question of effectiveness is a difficult one and a centrallenge lies in expressing
the criterion of correctness in precise terms. It is crutmahote that in this context, cor-
rectness is fundamentally a subjective and user-centtiome- our IFT platform behaves
correctly if and only if it tracks the propagation of tainbkls and enforces policies in a
way that is consistent with users’ intentions and expemtati

Although an in-depth investigation of taint propagatiomreotness is beyond the scope
of this dissertation and would be an appropriate topic foolld-on study, this chapter
presents some of our preliminary findings in this area. Tlieséngs have emerged from
our initial experimentation with the PIFT prototype and based on a range of straightfor-
ward usage scenarios, for which an intuitive and unambigdefinition of correct behavior
is easy to identify.

In general terms, these initial explorations have yieldegeoh results. While fully
correct behavior was observed in a subset of scenarios, wediso found evidence of
problematic taint propagation dynamics, including diastier-tainting of user information
and taint poisoning of control data structures within theKegel. These alarming find-
ings lead us to suggest that the current implementationfof Binformation flow analysis
mechanisms may not be directly applicable to certain ctagkapplications and user inter-
faces. These instances of false tainting must be studiedjmebpriate countermeasures
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must be developed before fine-grained (byte- and instmdéeel) information flow anal-
ysis can become truly practical. We hope that the initiab$eesults, which we present in
this chapter, can serve as a starting point for such a stuttiizelp focus subsequent efforts.

Section 6.1 presents the key results from our study of taopggation, providing rep-
resentative examples of both correct and problematic behavhe latter suggest that the
hypervisor-based approach to IFT faces several fundamlenttations, which we try to
articulate in Section 6.2. Finally, in Section 6.3, we skedanethodology for reducing or
altogether eliminating taint explosion in legacy codeBages a case study, we demonstrate
how this methodology can be applied to address the tainbsiqul problem in the Linux
kernel.

6.1 Experimental Results

In this section, we present a representative set of results dbur taint propagation
experiments. All of these tests employ the “black box” melttilogy: we start with an
input dataset that includes a combination of tainted ($&e$and non-tainted data, execute
a series of high-level application-specific data manipoiatasks, and then examine the
output to determine whether its components are tainted iraaner consistent with our
expectations.

(1) Command-line data manipulation tools: In this experiment, we used a command-
line toolchain to execute a series of transformations orx@file. These transformations
included copying the input file (using tlke command from GNU coreutils [18]), searching
the resulting copy for a keyword using GNdJep [38], sorting the output alphabetically
using thesort command from GNU coreutils, and finally compressing the outsing
gzip [40]. The initial input file €.txt) contained 1MB of English-language text and we
created two additional copies of this files( txt andFns. txt), representing sensitive and
public data, respectivelyfs.txt was assigned a uniform non-empty label @nd . txt
was tainted withly. After assigning taint labels, we executed the followingusance of
commands in the protected VM operating on top of the PIFTiquiat:

(1) cp Fns.txt F2ns.txt

(2) grep '"the’ F2ns.txt | sort | gzip > F3ns.txt; sync

(3) cp Fs.txt F2s.txt

(4) grep 'the’ F2s.txt | sort | gzip > F3s.txt; sync

(5) cp Fns.txt F4ns.txt

(6) grep 'the’ F4ns.txt | sort | gzip > F5ns.txt; sync

Note that command&3) and(4) operate on sensitive inputs and, as a result, we expect
PIFT to propagate the non-empty taint label into the cowadmg output filesR2s. txt
andr3s. txt). Conversely, commandg), (2), (5), and(6) operate on the public version
of the input file and we thus expect their output@ns. txt, F3ns.txt, F4ns.txt, and
F5ns.txt) to carry the empty taint label.

110



400000

350000

300000

250000

200000

150000 |

Translation blocks

100000 |

50000

0 i N
0 20 4

80 100 120

0 60
Ep) 5 ©

Time (seconds)

Figure 6.1. A time series showing the level of computati@udivity within the protected
VM in Experiment 1. The highlighted overlay illustrates thember of basic blocks that
touch at least one tainted operand.

After executing the above sequence of commands, we ingp#wtdaint status of the
output files and verified that the labels were propagatedrdioap to our expectations:
F2ns.txt, F3ns.txt, F4ns.txt, andF5ns.txt were tainted uniformly withly, whereas
F2s.txt andF3s.txt carried a uniform non-empty taint label that matched thellaib
the initial sensitive input fil&s . txt. These results lead us to conclude that PIFT exhibits
correct taint propagation behavior in this particular scen

Figure 6.1 offers additional evidence to support our clafraarectness, providing a
more fine-grained view of label propagation dynamics in #gxperiment. We repeated
the experiment in a fully-emulated environment and insgntad QEMU to track the total
number of basic code blocks executed by the guest VM, as wehenumber of blocks
that touch at least one tainted operand in a CPU register @amaary location. The figure
plots these values as a time series: each data point con@spma 100ms time interval and
the vertical axis shows the number of basic code blocks ¢gdan each interval. Look-
ing at this figure, we note that commands and (2) produce substantial computational
activity, but do not touch tainted data, as expected. Contimé&s) and (4) perform oper-
ations on the tainted copy of the input file and the time sergsals that, as expected, a
significant fraction of the corresponding code blocks malates tainted data values. In-
terestingly, the spike of activity representing the file goperation(3) shows that only a
minuscule fraction of the corresponding code blocks aesesnted data and the cause of
this counterintuitive behavior becomes apparent once wsider how this operation is im-
plemented. Copying a file on x86-based Linux involves a sesfalata transfers between
user- and kernel-level data buffers and modern implemientately on therepz movsd
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instruction to perform these transfers efficiently. Thesadyweight instructions transfer

tainted file data in 32KB-sized chunks and are the only im$ioas to touch tainted data

during the execution of commarnid). Finally, commands$5) and(6) repeat the sequence

of operations on the non-tainted version of the file. The er@es reveals no traces of taint
manipulation activity, indicating that the taint statuslod affected memory areas and CPU
registers has been properly reset.

(2) Compiling a tainted source code tree: In our second experiment, we attempted to
compile PostgreSQL [69] (an open-source database manageystem) from source code
using the standard GNU toolchain. As in the previous expemntywe created two separate
copies of the source code tre. (in which each file is labeled uniformly with a non-empty
taint label) andrns (in which each file is labeled witl;). We then executeglake within

the tainted tree to compile the database server. We confitina¢dhe resulting executable
was tainted with the correct label, but also observed thas¥istem failed to return from
the emulated mode upon the completion of compilation. Feuritvestigation revealed a
dramatic taint explosion scenario within the Linux kerwehich caused numerous control
data structures in the kernel address space to pick up fsnie explain in Section 6.3.1,
this behavior is initially triggered by the propagationaifit through system call arguments.
For instance, supplying a tainted filename string (derivedhfthe contents of a tainted
makefile) as an argument to thgs_open system call deposits taint labels into the kernel
and eventually causes a numbedefitry structures on various kernel-level lists to become
tainted. Subsequently, any other user-space processntkeadts with these kernel data
structures becomes tainted as well. Most alarmingly, syupsat attempts to compile from
Tns (the non-tainted version of the source code tree) productethexecutables.

(3) Editing text using a word processor: In our final test, we experimented with Abi-
word [1] (an open-source graphical text editor) running iGEOME-based interactive
desktop environment. We began by applying a uniform nontergint label to a small
text documentl(s . txt) and then launched the Abiword editor. We opened the tathbeel
ument in Abiword, then immediately closed it (without madiifg or saving its contents),
and issued a command to create an empty new document. Wernterdeseveral lines
of text from the keyboard into this newly-created documsatged it under a different file-
name, and closed the Abiword application window. We insp@¢he taint status of the
newly-created file and found that it carries the taint lalssigned tds . txt — an unex-
pected result, considering that no data has been explicithsferred between these two
documents. We conjecture that opening a tainted file in tisé gbep of this experiment
caused taint labels to propagate from txt into Abiword’s shared internal data structures
and from there poison the new document. Further investigagvealed that taint labels
propagated into several other files, including:

(1) /home/user/.AbiSuite/AbiWord.Profile

(2) /home/user/.AbiSuite/AbiCollab.Profile

(3) /home/user/.config/gtk-2.0/gtkfilechooser.ini

(4) /home/user/.recently-used.xbel
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Files (1) and(2) maintain user-specific profile data for Abiword, whilg) and (4) store
a list of recently-used files for the “file open” dialog box pided by the GTK+ library.

The observed behavior is clearly unusual, as we would no¢axbe taint status of
these auxiliary files to be influenced by the simple act of apga tainted user document.
Further experimentation revealed that once tainted datahgered Abiword through this
action, all subsequent “file save” operations within Abid/groduce tainted output files
and this behavior persists across machine reboots. Thesgerted results lead us to
suggest that fine-grained information flow analysis toolshsas PIFT do not yet offer
natural support for complex applications such as Abiworl@taining a practical solution
will require further investigation into the causes of tt@sit poisoning phenomenon.

6.2 Fundamental Limitations

While a comprehensive evaluation of taint propagation biehavould be an appropri-
ate topic for a separate in-depth study, we believe that @linpinary results paint a useful
picture and can help understand some of the fundamentahtions associated with our
approach.

On a fundamental level, interposing at the software-hardwaundary using a hyper-
visor allows us to maintain full compatibility with legacgfsware stacks, while retaining
complete control over the protected VM and its interactiofith external entities. This
point of interposition happens to be highly advantageougHe purposes of IFT, as it
allows us to track data flotvansparentlyandcomprehensivelgcross application- and OS-
level contexts.

At the same time, the capabilities of a hypervisor-leveliBsoh are inherently restricted
by asemantic gafpetween application-specific data units and actions ontleehand and
the low-level architectural state of the underlying hardwalatform on the other. In mod-
ern interactive computing environments, users manipudéemation on the basis of ab-
stract human-centric entities and data typeg.(pages and paragraphs in a text document
or cells in a spreadsheet). The hypervisor is obliviouségd¢iconcepts and observes users’
actions as sequences of machine instructions that operahe @ontents of physical mem-
ory and CPU registers, but carry no inherent meaning beyeadribing specific low-level
bit manipulation tasks.

The Problem of Over-Tainting

This semantic gap can make it challenging for the hypentisdrack the propagation
of sensitive dataffectively in a manner that meaningfully captures users’ intendadrast
and agrees with their expectations. Observing nothingrdthen a stream of low-level
machine instructions, the hypervisor is fundamentallyapable of meaningfully differ-
entiating between explicit information transfers (sucltaing and pasting text between
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documents) and accidental ones (such as tainting the kecositrol data structures). The
latter can arise as unintended side-effects of explicia da&nipulation activities and our
initial results suggest that such cases do, in fact, arisevariety of common scenarios.
Left unchecked, these accidental data flows can reduce théyfidf PIFT’s information
flow tracking primitives and, in extreme cases, render thempietely ineffective through
taint explosion.

Lacking exposure to higher-level data types and applinagjecific knowledge, the
hypervisor must rely on the layers above it — applicationgpp®rting libraries, and the
operating system — to confine intra-VM information flow to &sfewell-defined channels
and avoid accidental contamination of control data stmestu The results of our initial
studies suggest that some applications are not well-behavhis sense and thus cannot
directly leverage our taint tracking infrastructure. Irder to attain compatibility with
PIFT, these applications must be restructured or othemuisdified to manipulate data in
a more orderly fashion.

Note that PIFT’s exposure to the semantic gap is a fundaimmaequence of our key
design choices. An OS-level solution would have been infigrenore disruptive to the
protected software stack, but would have allowed us to tdat propagation on the basis
of OS-level primitives (such as files, sockets, and procysaed easily protect the kernel
from taint poisoning. Yet another alternative would be tou® on applications written in
a specific type-safe language, such as Java or Python, atehi@pt tracking mechanisms
within a managed language runtime, as in RESIN [92]. Thisr@ggh would provide
an even better view of how applications manipulate inforomgtallowing the tracking
substrate to monitor the propagation of labels on the bdsanguage-level variables and,
at least in principle, reliably differentiate between mided and accidental propagation
of taint. However, this approach forfeits the generalityadfypervisor-level design and
requires additional mechanisms to track the flow of dataideithe boundaries of a single
application process.

It is also important to note that the taint explosion phenoomecan be viewed as a
direct manifestation ofabel escalation(or label creep — a general problem that has
been observed in nearly all previous DIFC-based systentsllcaeep refers to the notion
that once a variable’s data value has been tagged as “sefisitiis tag must be retained
throughout the execution to ensure confidentiality, wheleerse actions (clearing labels by
overwriting sensitive values with non-sensitive constatend to occur infrequently. As
the computation proceeds, label merge operations prodemelabels with increasingly
restrictive policies, coercing them in the direction of idantiality. As a result, an appli-
cation’s internal state experiences a monotonic and cootis increase in sensitivity and
information becomes increasingly difficult to externalize

The threats and implications of label escalation were fibsteoved decades ago in
Denning’s pioneering work [22] and, to this date, have narbkilly resolved. These is-
sues could be among the key reasons why multi-level infaomdlow control has not yet
reached widespread acceptance. Today, most DIFC-enafdtshss address label escala-
tion through controlled declassification, in effect pramglapplication developers with an
explicit “escape hatch” from strict information flow conitrales. Declassification enables
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downward label movement, allowing applications to relesegsitive information through
careful relabeling of data values. While necessary in practleclassification is difficult to
do correctly, makes it challenging to reason about the mé&tion flow behavior, and can
be abused for malicious purposes.

In PIFT, label escalation manifests itself as over-tagtind the semantic gap arguably
exacerbates the problem. As we explained above, the hygoelvinability to differentiate
between explicit and accidental data transfers can easilty o the contamination of con-
trol data structures with taint. Once the initial contantior occurs, the sensitivity status
spreads and moves upwards due to label creep, leading tsctll taint explosion. It can
be noted that the solution we propose in Section 6.3 to add¢tersel-level taint explosion
is essentially a form of explicit controlled declassificati

The Challenges of Debugging Information Flow

Another fundamental issue resulting from the semantic gaipa difficulty of tracking
causal dependencies between taint propagation eventsglhasexplaininganomalous
behavior such as contamination of control variables. The& Rllatform monitors the ex-
ecution at the level of machine instructions and the curdestgn does not provide mech-
anisms for mapping the low-level architectural state @&gys and memory words) onto
higher-level constructs (variables and data structutaghe absence of such mappings, it
is immensely difficult to “debug” information flow problemadexplain unusual behavior,
such as the incidents of taint poisoning described in theigue section.

On the one hand, a linear instruction-level trace of exeoutillly captures the taint
propagation activity within the guest environment and,fimgiple, provides sufficient in-
formation for a variety of useful studies. In practice, teiciues that are based on tracing
the execution at the instruction level tend to produce vargd amounts of data, making it
difficult to capture, store, and subsequently analyze ttexesting fragments. As an anec-
dotal example, after observing unexpected taint propagaittivity in Scenario 3 (editing
tainted documents in Abiword), we attempted to analyze thieabior and identify the
likely causes of taint explosion. We used our QEMU-baseciritpinfrastructure to cap-
ture an instruction-level trace of taint propagation attivesulting from a short sequence
of user actions; namely, invoking the “file open” commandesting a tainted plain-text
document from the file dialog box, and clicking the “open”tbutto load the selected doc-
ument into the text editor. This elementary sequence obastproduced over 15GB of
linear instruction-level execution traces and our attenapidentifying the sources of taint
explosion were hindered by the size and complexity of theselting traces, even after we
have excluded the “non-interesting” segments that recolleto-null label propagation. At
such scale, execution traces are clearly not amenable toahiaispection and fine-grained
data flow analysis is computationally onerous.

These experiences lead us to suggest that instructiohttegang may not be the most
appropriate tool for studying the correctness propertfedyoamic IFT systems and we
believe that developing more effective analysis, intragipe, and debugging tools is an
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important direction for further research. Of particulalueawould be tools that can help in
identifying the complete causal paths between intereskimgevents (such as specific files
on disk getting tainted) and the initial access to tainte.ddo facilitate analysis, such
tools must provide cross-layer visibility and allow ressmars to correlate interesting IFT
behavior with guest machine instructions and the assatc&erce code.

6.3 Eliminating Taint Explosion

Given the mixed results from the taint propagation studg, avuld be inclined to ques-
tion the main hypothesis of this dissertation and ask whidRleT, or perhaps hypervisor-
based taint analysis systems in general, are indeed suftaithe role of a comprehensive
and reliable data confinement platform. In particular, om&la conclude that, lacking the
ability to reliably differentiate between explicit infoation transfers and accidental poi-
soning, hypervisors are simply not the right tools for thektat hand. Perhaps they are
limited to supporting a narrow class of well-behaved agians, which propagate sen-
sitive information according to carefully-defined data flavles, but cannot reliably track
information flow in arbitrary executables.

Although our work merely scratches the surface of the prabéad invites further
research on the accuracy of taint tracking, we believe thiggorical and pessimistic con-
clusions of this nature would be imprudent. To see why, wetmmssider the fact that few,
if any, of the widely-deployed legacy applications wereigiesd to function in a DIFC-
enabled environment. While information flow control has rhistory in the research
community and its principles are fairly well-understooBCltechniques have not yet, at
the time of writing, reached widespread adoption within bheader computing commu-
nity. In particular, the principles of information flow coat are not widely known within
the industry of consumer software development and do not frstandard component
of the general computer science curriculum. As a consegjgmogrammers rarely take
information flow considerations into account when deveigpapplications and systems
software stacks. The problem is exacerbated by modern ¢erspivhich, in an effort to
squeeze out every last bit of performance, routinely ti@nsicode in a manner that causes
sensitive information spillage and taint poisoning, evewell-structured applications that
carefully confine information flow at the source code levellight of these issues, it may
be unreasonable to expect unmodified legacy applicati@mksta cooperate and be fully
compatible with our low-level application-independent ligfrastructure.

We believe, however, that the limitations we observed wipgyéng PIFT to legacy ap-
plications can be eliminated by identifying the channelmfdrmation leakage and closing
them via a limited number of simple and localized source ¢omlesformations that do not
affect high-level program behavior. The general methoglpkor finding and eliminating
the culprits of overtainting would involve first identifygrthe set of high-level containers,
which are used by the application as explicit storage vedselsensitive user data, and
then examining all channels of information exchange betwibese containers. To make
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this discussion somewhat more concrete, in a typical olfggented application informa-
tion containers would likely be represented by object dagbat encapsulate user data,
while the channels would correspond to the public functionterfaces between these
classes. These interfaces can be then examined and ctassibeexplicit information
transfer channelandspillage channelsaccording to their high-level taint dissemination
effects.

Having identified the set of spillage channels, we can ntéiga altogether eliminate
their undesirable taint propagation effects by removirggi{ibbing) the taint label at the
destination endpoint. This can be done in a variety of waysoam current implementation
facilitates this step by exposing a new hypercalHYPERVISOR scrub_taint). Applica-
tions can invoke this hypercall to explicitly label a regiointheir virtual address space as
non-sensitive, causing PIFT-Xen to replace the correspgmdemory taint labels witl.
Note that while this approach requires modifying and reatingpthe application codebase,
these modifications are minimal and non-intrusive in thature. Crucially, these changes
are limited to inserting a set of hypercall invocations ancdt affect the program’s data
flow, control flow, or the overall application logic in any nreer. An alternative approach
would be to trap the execution of functions that transfeadatoss spillage channels within
PIFT and automatically clear the taint labels at the desBtinandpoint without explicit
signaling from the application. This approach is applieabl cases where compatibility
with existing binaries is an absolute requirement, but is-portable and involves pushing
a certain amount of application- and/or OS-specific infdrama(such as the addresses and
signatures of functions that constitute spillage chanrnets the hypervisor.

How much work would be involved in identifying and fixing alié spillage channels
that currently exist in large and widely-deployed legaaygrams? After all, the proposed
methodology for eliminating such information flow leaks d@1ds a non-trivial amount of
manual analysis and requires expert understanding of agrdg structure and data flow
properties. Might it not be more prudent to discard the eggmplementations and rebuild
these programs from the grounds up, espousing the prisagbleformation flow control
and carefully restricting the dissemination of sensitigtadvalues to avoid overtainting?

We conjecture that even in very large and complex legacylzagkes, the main culprits
of taint poisoning and explosion are represented by a snoatiber of easily-detectable
spillage channels that can be intercepted and securelplsedu As an initial step in as-
sessing this conjecture, we undertook a systematic studlgirtf explosion in one of the
most complex, yet universally deployed components of tlfisvane stack — the operating
system kernel. Since our prototype implementation of PIREE tested and evaluated with
a paravirtualized (PV) Linux guest environment, we chosétms our investigation on
the PV Linux kernel version 2.6.8-18, although we expectresults to be fully applicable
to other recent versions of Linux. Focusing on executiomades that result in severe
kernel-level taint explosion, we found that the causesitiirkernel contamination can be
traced to two specific spillage channels situated at thekesael boundary. By invoking
__HYPERVISOR scrub_taint at these two locations (which required adding 110 lines of
new code to the standard Linux kernel), we were able to clussetinformation flow gaps
and eliminate kernel taint explosion for all practical posps.
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6.3.1 Case Study: Eliminating Taint Explosion in the Linux Kernel

One of the most common and problematic cases of taint explosvolves accidental
propagation of taint labels into the internal data struegwf the OS kernel and our early
experimentation with the system revealed that the Linurdles highly susceptible to this
phenomenon.

Recall from Section 6.1 that in one of our initial experinmente attempted to com-
pile an executable from a tainted C-language source codeusing the standard GNU
toolchain. In that experiment, we observed a dramatic &iptosion within the kernel,
which was triggered by the propagation of tainted data thinaystem call arguments. As
an illustrative example, supplying a tainted filename gt(oherived from the contents of a
tainted makefile) as an argument to tipen system call deposits taint into the kernel and
eventually causes a number @dntry structures on various kernel-level lists to acquire
taint'. Subsequently, any other user-space process that irgdradth the kernel would
get tainted from these data structures and cause taint pagabe further along the exe-
cution path. Upon the completion of compilation, PIFT fdile return the protected VM
from the emulated mode and subsequent attempts to build fiamrtainted source code
produced tainted binaries.

One way of approaching the problem of kernel taint explogdry observing that for
the purposes of information flow tracking, the propagatibmamt from the application
address space into kernel-level memory eémost in all casede viewed as anomalous
and undesirable behavior. In a general-purpose operagstgra such as Linux and Win-
dows, the kernel provides a general-purpose substratexpates a specific set of system
services through a well-defined and relatively narrow fater defined by system calls. By
design, these services ampplication-independerdnd are expected to function without
any knowledge of application-level data semantics. liofol that transfers of taint labels
from an application-level address space to kernel-levetrobdata structures should not
occur under normal operating conditions. As a result, afgrimation channel that per-
mits tainted information to cross the user-kernel boundey flow into kernel-level data
structures can be viewed as a spillage channel and treateatias

If we take this view, we can tackle the problem by identifyihgse accidental channels
of taint propagation and closing them, while retaining tbgitimate channels of infor-
mation transfer the kernel is expected to provide as parmefsystem call contract. To
localize the codepaths in the kernel where such accideaitdlrig happens, we undertook
a systematic empirical study of taint propagation for a kilmased guest environment.

Identifying and Closing Spillage Channels

We began by capturing an instruction-level trace of a usagsisn, which included
the initial stages of the compilation experiment and reslih severe kernel-level taint
poisoning. Using this trace, we constructed a data flow griytrating the execution

LA detailed explanation of this taint poisoning scenario barfiound in an earlier study [80].
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User-level code

Kernel-level code

Figure 6.2. A schematic depiction of the data flow graph thagrged from our empirical
study of kernel taint explosion. The shaded nodes depidithéernel-level functions that
are responsible for the initial taint poisoning.

paths that resulted in kernel taint poisoning. In this grapdes correspond to individual
machine instructions and there is an edge fromo I, if I; writes data to a memory
location that is subsequently read by

This data flow graph helped us understand the general prep@tft execution paths
that deposited tainted application data into kernel-leveiory areas. While the data flow
graph cannot be presented here in complete detail due imetaisd complexity, Figure 6.2
depicts this graph in schematic form, which highlights owstrsignificant finding. Specif-
ically, we found that in all execution paths that deposittaito the Linux kernel, only two
kernel-level code blocks serve as entry points and enablmitial transfer of tainted data
from application-level memory.

In the first case, the transfer occurs when the system cajl emitine cystem_callin
linux/arch/i386/kernel/entry-xen.S) writes the user-level CPU register values (some
of them holding system call arguments) to the kernel-letatisand the spread of taint
starts when the system call handler fetches these argurftenisthe stack. In the sec-
ond case, the transfer happens via¢bgy_from_user routine and its variants. The ker-
nel invokes this function to fetch additional arbitrarysgh system call parameters from
application-level memory buffers and this action can cateesfers of taint into kernel-
level stack and heap areas.

While the presence of these taint poisoning channels istredt aurprising, the inter-
esting fact that emerged from our analysis is that no othanwéls exist. As a result, we
can apply the methodology introduced above and easily sopeklevel taint poisoning by
closing these two spillage channels. To close the first allam@ modify thesystem_call
entry routine and invoke the taint-scrubbing hypercalhia very first steps of system call
handling, instructing PIFT-Xen to clear the taint statusydtem call arguments once they
have been transferred to the kernel stack. Note that sinceéowet wish to change the
application-level taint propagation behavior, we musspree the original user-level reg-
ister taint labels and restore them upon return from theegysall handler. We accomplish
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Kernel ESP

Figure 6.3. The contents of the kernel-level stack uporesystall entry in a paravirtualized
Linux guest environment with our taint scrubbing modifioas.

this by storing a second copy of the user-level registereodrin the kernel-level stack,
as illustrated in Figure 6.3. This second copy is scrubbetisamsequently accessed by
the kernel-level code to obtain the system call argumentdewthe first (tainted) copy is
used to restore the application-level registers upon thugrrdrom the kernel. Using sim-
ilar techniques, we modify theopy_from_user routine (and its variations) to scrub the
destination kernel-level memory area once tainted datdé&eas copied from a user-space
buffer.

Identifying Legitimate Channels of Information Transfer

In practice, most operating systems provide a number of@kahd well-defined infor-
mation transfer channels, which enable applications tongonicate and store data. While
the system call scrubbing technique described above ddiersffective defense mecha-
nism against accidental kernel taint contamination, wetmofscourse, ensure that any
mechanism we adopt to address this issue does not interfédrgéhgse legitimate infor-
mation channels. We performed an in-depth inspection of thex system call interface
and identified the followingxplicitchannels of information transfer from application-level
memory to the kernel address space:

1. The write system call (and its variations):Like most modern OSes, Linux imple-
ments a kernel-level file block caching facility to speed U diccess. The system
call handler forsys_write transfers file data from an application-space buffer into
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this kernel-level cache by invoking th@py_from_user routine. In this situation,
we must avoid scrubbing the kernel-level copy in order taiem¢hat taint labels get
preserved across file 1/0O operations.

2. The send system call (and its variations): Analogously, the handler farys_send
may invokecopy_from_user to transfer application data into kernel-level socket
buffers and the taint labels must be propagated accordingly

3. Inter-process communication (IPC) system callsThe Linux kernel provides temporary
storage for user-level data buffers to support messageddBE.

In each of the above cases, we modified the relevant codepathe Linux kernel
to invoke an alternate version ebpy_from_user, which does not scrub the kernel-level
memory buffer.

Encouragingly, these modifications allowed us to elimirditesymptoms of kernel taint
explosion and prevent subsequent inter-process tainbpioig. To test our solution, we re-
executed the compilation experiment described above. Wiké&u 10 iterations ohake,
alternating between tainted and non-tainted copies of tlkece code tree, and verified
that the resulting binaries are tainted in the expected mranWe then ran a series of
other control experiments, which included copying, corspirg, searching, and editing
text using theemacs editor, and confirmed that taint labels do not leak into kiekenel
memory areas of the protected VM.

Discussion

In summary, our approach to the problem of kernel taint porspinvolves identifying
and closing all taint spillage channels, while making exicgys for a small number of
legitimate information channels that the kernel explcékposes through the system call
interface. Admittedly, our solution rests on the assunmptiat the user-kernel interface is
relatively narrow and can be manually audited to identig/gbt of legitimate channels. Our
approach also assumes that applications are “well-behavelde sense that they always
confine explicit transfers of sensitive user data to thegiineate channels.

Of course, the second assumption may not always hold anduitis easy to come up
with a counterexample. Consider a scenario, in which twagsses communicate tainted
information by reading and writing the contents of a diregthle: P, generates empty
files and encodes tainted data into their filenames, whiléetches this data by issuing
readdir system calls. This is an example ofiamplicit information flow that would not be
captured by our taint tracking substrate. While theoréjigaossible, we expect that such
scenarios will rarely, if ever, arise in practice in the atz®eof malicious activity. In other
words, we expect that in the vast majority of cases, appdicatwill communicate data
through the three explicit channels we have identified: fderations, socket operations,
and message-based IPC.
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no-op | stat fork
PIFT-PVL (without scrubbing) 0.248 | 0.952| 242.21
PIFT-PVL (with scrubbing) 0.557 | 1.593| 243.00

Table 6.1. Latency (inus) for several system calls in a paravirtualized Linux guest-
ronment with and without taint scrubbing.

Analogously, it is difficult to argue that kernel-level cavitdata structures will never
get contaminated through the channels we chose to keep bpsome scenarios, kernel-
level code may need to examine and perform simple computaba tainted application
data residing in a kernel-level cache, as in the case of §itegys that compute block-level
checksums or hashes before writing data blocks to disk. &\hils conceivable that a
certain sequence of operations could trigger kernel-tanet explosion originating from a
tainted checksum value, we found no evidence of such aciivithe course of extensive
experimentation with our Linux-based prototype.

Finally, one could note that our techniques are ineffedtiie presence of malicious
or compromised applications that want to circumvent therimfation flow tracking mech-
anisms. In particular, malicious code could exploit oumigtitaint scrubbing functions to
create an exfiltration channel for sensitive data. We regdfmynnoting that PIFT focuses
on tracking the flow of information in a benign environmenhile protecting the integrity
of taint labels in the presence of malware is an explicit goat. Even without our kernel
scrubbing modifications, malicious software intent on Igtgasensitive information has a
myriad other options, includingnplicit flow channelandcovert channelsDetecting and
preventing data exfiltration through these channels isnieally difficult for all existing
information flow tracking systems and we do not attempt tgelihese gaps with PIFT.

Performance Overhead of Scrubbing

To see if our explosion elimination measures impaired perémce, we used LM-
Bench [51] to measure the latencies of three distinct systdis: no-op, stat, andfork.
We performed these measurements in our PIFT-enabled paedidzed Linux configura-
tion both with and without the taint scrubbing extensionabl& 6.1 reports the results of
this comparison. We see that for the-op system call, the cost of an additional hypercall
represents a significant (factor 2R x) penalty, but this overhead is much less noticeable
for non-trivial system calls.
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Chapter 7

Summary and Conclusions

In this dissertation, we presented Practical InformatitowFTracking (PIFT) — a
novel information security architecture for enterprisgimmments that monitors the flow
of sensitive data and restricts its dissemination by eirigroigh-level security policies. In
contrast to most previous efforts in this area, PIFT seelkslweve full binary-level com-
patibility with existing software stacks, including wigetleployed legacy applications and
operating systems.

Our exploration begins with the intuition that a hypervisera thin layer of virtual-
ization software that can be interposed between the OS Ikandethe hardware layer —
can serve as a robust foundational building block for a ceim@nsive information secu-
rity platform. Hypervisors are, by and large, compatibléwéxisting software stacks, yet
provide sufficient control over the execution of the guest ¥iMl can easily intercept its
interactions with external entities. Our hope was that hgmaing an off-the-shelf hyper-
visor implementation with dynamic taint analysis and ppknforcement capabilities, we
could attain a robust security platform that tracks infatioraflow and enforces end-to-end
policies in a comprehensive manner.

Dynamic taint analysis is inherently a computationalliemsive task and its broad
adoption has been hindered, in part, by the enormous lefalsitme overhead. Previous
implementations of byte- and instruction-level taint kiag incur slowdowns of up ta0 x
(for user-level code) antl00x (for full-system emulation). While perfectly adequate for
the contexts, in which these systems were proposed, suels lehoverhead make previous
implementations unsuitable for our purposes, i.e., riea-monitoring of information flow
in interactive user-facing applications.

This dissertation proposes two novel algorithmic techegywhose collective effects
allow us to reduce the runtime performance penalty to a muclermanageable level.
First, we track information flow at the level of native maahimstructions, without first
decomposing them into emulator-specific bytecodes. Whigetéchnique requires a much
more significant up-front engineering effort, it also erah range of low-level optimiza-
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tions that are difficult or altogether impossible to applyhet bytecode level. Second, we
observe that emulation and fine-grained information flowkiag can be viewed as two

separate and, for the most part, mutually independent ctatipas. As a result, PIFT can
improve performance by batching and delaying the procgssinaint label updates and
handling them “opportunistically” in an asynchronous mamrOn multiprocessor CPUs,
our system attains further overhead reductions by offl@atiia taint tracking computation

to a separate processor core, allowing it to proceed asgnohsly and in parallel with the

main execution stream of emulated instructions.

The combination of these two optimizations yields a sigaificreduction in runtime
overhead and allows PIFT to advance the state of the artmh ti@cking performance,
in some cases achieving an order-of-magnitude improvemest the best previously-
published results [98]. To the best of our knowledge, PIFThes most efficient imple-
mentation of whole-system byte-level taint tracking aafalié at the time of writing and
is the only system to demonstrate a fully-usable interagjraphical environment. While
the overhead on stressful CPU-bound microbenchmarkdlisedatively high (up to35x
in worse-case scenarios), we were encouraged by the re$wlis usability study, which
indicated that the user-perceivable delays and PIFT sadivienpact on user productivity
are much less noticeable (no more ti2an). Notably, most of the remaining overhead is
attributable to the fundamental performance costs of emonlaising QEMU, while the
additional slowdown due to taint analysis is almost neplagi

Our techniques and results are, of course, not withoutditoihs. A hypervisor-based
architecture is inherently limited by a semantic gap betwlieigh-level context (OS- and
application-level data constructs) and the low-levelestdtthe virtual machine (processor
registers and memory locations). This mismatch makes ltestging for PIFT to differen-
tiate between intended transfers of sensitive informadioth accidental ones, the latter of
which oftentimes arise as unintended side-effects.

Our empirical study of taint propagation behavior in legairyux applications revealed
an alarming number of false tainting scenarios, wherebyt tabels were superfluously
propagated from sensitive data files into various sharedicappn- and OS-level data
structures. This behavior leads to overtainting and causesated data files to get con-
taminated with sensitivity policies. In some cases, it setdfull-scale taint explosion —
a degenerate state, in which nearly all components of the \@vhary image acquire non-
empty taint labels. In this state, the system erroneousyemts users from externalizing
anydata, regardless of the original policy specification antthat point, information flow
analysis ceases to be useful or meaningful.

These results lead us to conclude that machine-level IFiifves, such as the ones we
explore in this dissertation, are not fully compatible witf-the-shelf legacy application
binaries and further research into the dynamics of tainpg@gation is needed before the
vision of a robust and transparent data security platfosmulined in the introductory
chapter, can be fully realized. As we explain in Chapter sénlimitations are partly an
implication of the semantic gap, which renders the hypeniiscapable of differentiating
explicit information transfers from accidental “spilliygand partly a consequence of the
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fact that today’s application developers are largely umaved IFT and rarely take proper
precautions to confine sensitive data flaithin an application to appropriate channels.

We believe that the current instantiation of PIFT can stitve as a useful tool for track-
ing information flow in legacy software, but in light of thelsmitations, a certain amount
of application-level restructuring or modification appesrevitable. To assist software de-
velopers with this task, we have sketched a methodologydfmtifying the root causes of
taint label spillage through source code analysis. Oncgetbkannels have been identified,
they can be closed by issuing an explicit taint scrubbingiestito PIFT or, alternatively,
augmenting the hypervisor with a certain amount of appbeaspecific logic that enables
it to recognize transfers of information across these cesnand scrub them automati-
cally, without involving the application. We conjectureathn most legacy software sys-
tems that are susceptible to taint explosion, the initiatamination of non-sensitive state
occurs through a small number of leakage channels, whictbeadentified and closed
without excessive manual effort. As a feasibility study, meestigated the problem of
taint contamination and subsequent explosion within thukikernel. By applying our
methodology, we were able to identify and close all existhgnnels of kernel-level con-
tamination, which required modifying only two kernel soeifdes and adding 110 lines of
new code. While these initial results are clearly encourggive hasten to note that they
are of preliminary nature and further investigation is rezkth assess whether the proposed
methodology generalizes to other classes of legacy sadtwar

Taking a broader perspective, the aim of this dissertatias mot to present dynamic
taint analysis as a panacea for information security probMithin an enterprise, but rather
to explore and evaluate a novel hypervisor-based secuditytacture that comprehensively
tracks information flow and enforces end-to-end policieg #re beyond the capabilities
of today’s DAC-based security mechanisms. By doing so, weedo assess the potential
of hypervisors in the domain of information security and elep understanding of their
unique strengths in this domain, as well as their limitagion

As a final point for discussion, we return to our original hifpesis — that a hypervisor
augmented with byte-level taint analysis primitives carvaeeas a foundation for a robust
and practical information flow tracking platform, which prdes the above capabilities. At
this juncture, it is natural to ask: how well did this hypattsehold?

The non-intrusive nature of hypervisors and the promisaibtbmpatibility with ex-
isting application binaries are, quite clearly, a majoratage and allow us to interpose
IFT functionality in a fully-transparent manner. Furth&hile the computational overhead
of dynamic taint analysis has been a major obstacle for allipus IFT implementations,
this dissertation contributes several novel optimizatechniques, which greatly reduce
the runtime performance costs. On-demand emulation, edupith asynchronous paral-
lelized taint tracking, allow PIFT to reduce the performammpact to a point, where the
runtime overhead is no longer a significant practical camcer

On the other hand, the lack of visibility into higher-leveltd constructs turns out to
be a major practical limitation for hypervisor-based sysesuch as PIFT and, in some
scenarios, affects their ability to track the dissemimabbsensitive data correctly. There
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remains more work to be done in understanding the causesbfetglosion, as well as
mitigating its effects, and we hope that subsequent relsezfforts will help overcome
these remaining hurdles.

In the final analysis, we believe that this dissertation gbuates to a better understand-
ing of hypervisors from the angle of enterprise security aradkes a strong argument that
hypervisor-driven IFT systems hold a significant promisee &ls0 believe that such sys-
tems will become fully practical and ready for broad adaptamce the issues of taint
explosion are fully understood and resolved.

7.1 Directions for Future Work

In some sense, the core technical contribution of this disgen is very narrow in
scope, focusing predominantly on improving the runtimefqrerance of dynamic taint
analysis. Performance overhead was a major stumbling bboekl previous dynamic IFT
proposals and has contributed to a widespread perceptatrdyimamic taint analysis is
simply too slow and, for this reason, fundamentally unslédor real-time tracking. Our
work has demonstrated that these pessimistic notions doeinosted. A detailed analysis
of the existing bottlenecks, combined with several al¢ponic advancements and careful
engineering, has enabled us to achieve substantial owerbdactions. The end result of
our efforts is a new and highly-efficient IFT implementatiaich proves that fine-grained
(byte- and instruction-level) taint analysis can be penfed in real-time on commodity
hardware with negligible impact on the user experience.

At the same time, it is abundantly clear that runtime pertomoe is not thenly major
obstacle on the path to broad acceptance and other chadlemgst be overcome before
dynamic IFT systems (and the design principles they embodg)be considered truly
practical. This dissertation leaves many questions unaresiy but lays the groundwork
for further investigation and we plan to continue using ol¥TPprototype as a platform
for taint tracking research. We conclude this dissertatipmoutlining what we believe to
be the most important and promising directions for furtinepuiry.

7.1.1 Bridging the Semantic Gap

We believe that addressing the implications of the semaatizbetween application-
level constructs and VM-level state is among the most alitiirections for future work,
and one that will likely determine the practical viability ®ystems such as PIFT. As we
have shown in this dissertation, state-of-the-art hyenvievel IFT implementations do
not always track the flow of taint labels accurately in legacftware stacks and exhibit a
tendency to overtaint. Understanding the root causes wof éxplosion in existing appli-
cations is an essential direction for future work. This waétuire developing an array of
robust tracing, introspection, and data flow analysis taglsch would enable researchers
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to study the dynamics of taint label propagation and camefesstances of unusual activity
with application-level events. Once the dominant causdainf poisoning and explosion
are sufficiently well understood, the next step would be émtdy effective techniques for
eliminating taint explosion or mitigating its effects amnetscrubbing technique introduced
in Chapter 6 might serve as a useful starting point. At tredestdeveloping a set of mean-
ingful quantitative metrics for evaluating the efficacy ath techniques and formulating a
precise definition ofaint propagation accuracyould be highly beneficial.

Another significant issue resulting from the semantic gaya ane that we largely
sidestep in this dissertation, is the question of initigiadabeling. Human users trans-
act at the level of documents, e-mail messages, text pagragjrand spreadsheet columns,
yet, as we discussed, these notions remain largely ineistoPIFT. Conversely, the hy-
pervisor tracks information flow and assigns policy labe&lshe basis of machine registers
and memory addresses, but these low-level primitives amyneneaningful to a typical
desktop application user. Given this mismatch, how wouldex indicate to the hypervisor
that a specific column in her spreadsheet contains sendataeand should be labeled with
policies? Developing a robust data labeling mechanismchwtioes not require significant
changes to the application layer and does not drastica#lythle user experience, is another
essential step on the path towards practicality.

7.1.2 Further Performance Improvements

While progress has been made on improving the runtime pe#ioce of taint tracking,
our work leaves numerous opportunities for further optatian and we believe that careful
analysis of the remaining bottlenecks, coupled with diliggngineering, can lead to further
breakthroughs.

Our experimental results demonstrate that a significantifna of the remaining over-
head (around 50%) is attributable to the baseline costs afaad execution in the current
version of QEMU and improving the efficiency of core emulatinechanisms represents a
clear “low-hanging fruit”. While QEMU'’s just-in-time (Jl)lcode translation mechanisms
are relatively efficient and offer a big improvement oveliplainary interpretation, they do
not employ any of the advanced dynamic compilation and dpétion techniques found in
today’s state-of-the-art VM runtime environments, suclhasJava HotSpot Server Com-
piler [68]. HotSpot translates from architecture-indegiem Java bytecode and achieves
near-native performance on commodity hardware, emplogimgrray of advanced com-
piler optimization techniques [17, 84]. Retrofitting sonigh@se optimizations into QEMU
may greatly improve performance for all applications of &tian, including PIFT.

Going further, the computational overhead of taint analygsiuld be reduced by JIT-
compiling the taint tracking instruction handlers. Reéain Chapter 4 that our current im-
plementation handles these instructions by repeatedbking pre-compiled instruction-
specific handler routines. While straightforward to impésry this approach adds the over-
head of a function call to each taint tracking instruction @necludes macroscopic code
optimizations that span multiple instruction handlersstéad, we could aggregate taint
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tracking instructions into larger blocks and JIT-compher to native code for the host
CPU. During this step, we could apply register allocatiod daad code elimination opti-
mizations in hopes of reducing the amount of computatiormakvior the taint processor.

Parallelized execution is another interesting directionftiture work, and one that
holds numerous promises and challenges. The current dgRJRT utilizes two processor
cores, providing the ability to execute the taint trackingtiuction stream asynchronously
and in parallel to the main emulated context. This representear step forward, but might
it be possible to achieve further speedups by paralleliaorgss a larger number of cores?
In the current design, the actual execution of taint tragkirstruction handlers proceeds
sequentially, mirroring the instruction stream in the eatedl CPU, but the ordering of in-
structions within a basic block is determined by data depeoigs and is only a partial
ordering. Would it be possible to identify sets of mutuahgependent guest CPU instruc-
tions at the time of code analysis and translation, andtmartthe output taint tracking
code block into several independent sub-blocks, whichdcbelexecuted in parallel on a
multi-core host processor. We believe that the answer isaifive — data dependency
tracking is a routine activity in compiler design and tecjus for identifying independent
instruction schedules are readily available. A less olwiquestion is whether these par-
allelization opportunities can be leveraged in practicadbieve speedups and one of the
challenges lies in overcoming the overhead of synchroioizat

Finally, it may be beneficial to explore the potential of Spkzed hardware extensions
for information flow analysis. Recall that although comp#ity with unmodified hardware
platforms was an explicit objective for our current implettegion, at the core of our pro-
posal lies a new processor architecture and a new ISA spaaificfor a specialized taint
analysis unit. The current implementation of PIFT emulae$unctionality in software
to achieve compatibility with existing platforms, but agrbardware-based taint processor
implementation could yield significant performance gaitile instantiating the full taint
processor design in hardware would be, without a doubt, tnerely ambitious project,
it is likely that a significant fraction of the gains could ealized by implementing only
a modestly-sized subset of the desired features and retgfihem as incremental exten-
sions. As a specific example, consider PageTaintSummary lookup procedure described
in Section 4.2.5, which translates physical page numb&rsoncise page taint descriptor
summaries using a two-level nested table. As it happers)dbkup procedure is highly
analogous to a standard page table lookup — an operatiotrémsiates from virtual to
physical page numbers and is typically handled by the haielw@mory management unit
(MMU). The two-level nested structure illustrated in Figu4.10 bears a strong resem-
blance to a standard page table and the auxiliary cachegefraintSummary structures is
a direct analogue of a TLB. Hence, adding a new MMU instancefficient handling of
PageTaintSummary lookups — an incremental and relatively straightforwarteagion —
could help us improve performance by eliminating 2-4 sofeMaased memory accesses
per taint tracking instruction.
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7.1.3 Other Uses of Dynamic Taint Analysis

While tracking the flow of sensitive user data through thpadty legacy applications
represents the primary focus of our efforts in this dissieniawe believe that PIFT can be
applied to a broader range of problems. Exploring additiasa cases for the core set of
taint analysis technologies we have developed in the coofdXFT can a fruitful avenue
for further investigation. As a specific example, which egeer from discussions with
our industry partners, it would be interesting to exploe dpplication of fine-grained IFT
techniques to the development and functional verificatidarge-scale Web applications.

Internet companies such as Google, Facebook, Amazon, eBdypthers rely on the
ability to store and manipulate large amounts of informatbout their users and cus-
tomers to drive their core business. These companies inguietheir services through an
array of sophisticated internally-developed applicatiand typically expose these services
to their users through a Web-based interface, while st@ergsitive user-specific data in
a back-end database tier. Social networking sites such@bbak collect and store de-
tailed information about their users’ interests and atiéisi as well as detailed histories of
communication with other users. Analogously, e-commeites such as Amazon face the
burden of securely storing and accessing users’ persoddiremcial data, including credit
card numbers, billing addresses, product preferencesjetaded order histories. Ensuring
the safety of users’ private data and preventing its unaizda disclosure to third parties
is a major concern for these companies, and one whose inmgertaill only continue to
grow with time. In these scenarios, bugs in applicatioreléwgic, misconfigurations, or
imprecisely-specified SQL queries can trigger catastpialations of privacy policies,
such as when a user’s credit card information gets mistgkenéaled through the “account
settings” page to another user.

We believe that fine-grained information flow analysis toglieh as PIFT can be of
great value in this setting by providing an auditing tool arearly warning system for
policy violations. One particularly interesting usagersrg would be to employ PIFT
as a “data flow debugger” during application development t@sting to obtain insight
into the application’s information flow behavior and flag gatial violations of policy. An
example policy might state that a user’s credit card data begxternalized from the
front-end Web tier only through an authenticated HTTP sesthat bears the credentials
of the same user. During testing, developers would load #tabdse with a collection
of synthetically-generated user profiles, including dredrd information, and taint them
with desired policies using PIFT. Later, they would exezdlse application using synthetic
request workloads and observe how sensitive profile daselimates throughout the com-
ponents of the system. The client-facing module in the Webciould be instrumented to
guery the taint labels in outgoing data packets and verifgthver they are consistent with
the active privacy policies.

This use case is different from the central scenario of pris& data confinement in
several crucial respects. First of all, the information fliwacking substrate would be de-
ployed in a development and testing environment with sytichuser data, as opposed to a
live production setting with real users. We expect that is 8mvironment, the slowdown
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resulting from emulation and information flow tracking wdulot be perceived as a major
practical challenge, since it is well-understood that dgjing and program analysis tools
inevitably introduce a certain amount of overhead.

Further, we believe that adopting a tool such as PIFT andyapplt in a disciplined
manner would enable developers to study the applicatigricGa@mation flow properties
from the earliest stages of the development process anly pasvent the appearance of
leakage channels. As our study has shown, leakage charatelslty lead to taint poi-
soning and explosion, but detecting and closing these @tauafter the fact in large ap-
plications can be highly challenging. On the other handJyapg IFT tools during the
development of an application would help eliminate leakelggnnels as they appear and
ensure that the end results of information flow analysis alig &ccurate and meaningful.

Finally, we conjecture that the computational workloadsoagated with today’s Web
applications are inherently more amenable to instruciéwet IFT and less susceptible to
taint poisoning than legacy desktop applications, suclh@®hes we evaluated in Chap-
ter 6. While Internet companies such as eBay and Amazonelytstore large volumes
of potentially sensitive user data (such as names, addremse credit card information),
their applications rarely require the server-side compbi® manipulate or perform sub-
stantial computation on such data. In most cases, the catigal task involves no more
than basic string construction and copying — the applicefigdches the relevant user data
fields from the database, converts them to string format,camabines these text strings
into a larger string that represents the entire output pagerspersing them with HTML
tags and non-sensitive data values. We hypothesize thabdhe constrained nature of
computational workloads, accidental taint propagatiahexplosion will be less prevalent
in this scenario.

The above factors highlight some of the important distortsi between the two use
cases of fine-grained byte-level IFT: tracking informatflmw in legacy enterprise appli-
cations (the central focus of this dissertation) and delmggdata flow in Web apps. It
would be interesting to fully explore the applicability alimbitations of PIFT in the latter
scenario and we have already taken several exploratory stepis direction.

7.2 Final Remarks

Securing the flow of sensitive data in a distributed envirenhis a challenging prob-
lem, and one whose importance will only continue to grow assmgciety increases its
reliance on computerized information storage and proogssystems. This dissertation
lays the groundwork for a new class of information secunithdectures, which utilize an
augmented hypervisor to track the flow of data in a comprateasd transparent manner.
PIFT is a concrete instantiation of the general design jples and represents the core
technical contribution of this dissertation. In the cousgdeveloping and evaluating PIFT,
we have gained valuable insights regarding the uniquegtnsrof hypervisors in the con-
text of information security, as well as an understandingludit goals and tradeoffs are not
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achievable with our approach. Our successes to date subggeBiFT offers a set of pow-
erful security primitives, which strike a meaningful batarbetween comprehensiveness,
deployability, and performance.

While fine-grained information flow tracking has tradititigdoeen considered a heavy-
weight and expensive tool suitable only for offline analysi® have demonstrated that
online real-time tracking on commodity hardware is withne trealm of being practical.
We also hope that our work will help expose the principlesysfainic taint analysis more
broadly to the application developer community and thatresults will help guide further
explorations of this topic.
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