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Abstract

Design and Implementation of a Hypervisor-Based Platform for Dynamic Information
Flow Tracking in a Distributed Environment

by

Andrey Ermolinskiy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

One of the central security concerns in managing an organization is protecting the flow of
sensitive information, by which we mean either maintainingan audit trail or ensuring that
sensitive documents are disseminated only to the authorized parties.

A promising approach to securing sensitive data involves designing mechanisms that
interpose at the software-hardware boundary and track the flow of information with high
precision — at the level of bytes and machine instructions. Fine-grained information flow
tracking (IFT) is conceptually simple: memory and registers containing sensitive data are
tagged with taint labels and these labels are propagated in accordance with the computation.
However, previous efforts have demonstrated that full-system IFT faces two major practi-
cal limitations — enormous performance overhead and taint explosion. These challenges
render existing IFT implementations impractical for deployment outside of a laboratory
setting.

This dissertation describes our progress in addressing these challenges. We present
the design and implementation of PIFT (for Practical Information Flow Tracking) — a
hypervisor-based IFT platform that achieves substantial performance improvements over
previous systems and largely eliminates the problem of kernel taint explosion. PIFT takes
advantage of spare CPU cores to track the flow of information asynchronously and in par-
allel with the primary instruction stream.

To the best of our knowledge, PIFT is the most efficient full-system IFT platform avail-
able at the time of writing and is the only implementation that supports real-time tracking
of information flow in graphical desktop environments.
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Chapter 1

Introduction

“Information wants to be free because it has become so cheap to distribute,
copy, and recombine — too cheap to meter. It wants to be expensive because it
can be immeasurably valuable to the recipient. That tensionwill not go away.”

Stewart Brand, 1987.

One of the central security concerns in managing an organization is controlling the
flow of sensitive internal information, by which we mean ensuring that data and documents
can be accessed only by the authorized parties. The recent history of major leakages of
sensitive information [85, 54] has demonstrated that many organizations, including those
in government, education, and the commercial world, are severely deficient in this regard.
This is hardly surprising — as our reliance on computing infrastructure continues to grow,
it becomes increasingly difficult to track the dissemination of sensitive data and enforce
confidentiality policies. Considering the sheer number anddiversity of information transfer
channels that are available to users in a typical IT environment (e-mail, instant messaging,
wikis, blogs, databases, distributed filesystems, and portable storage devices, to name just
a few examples), tracking the flow of information across all these channels may seem like
a daunting, if not altogether impossible, task.

Unauthorized disclosure of private or classified information can cause catastrophic
damages to the business interests of an organization and threaten the well-being of the
broader society. As an illustrative example, consider the highly-publicized incident [85]
from March 2009, when one of the Transportation Security Administration employees in-
advertently posted a 93-page internal TSA document to a public website on the Internet.
This federal document, marked “sensitive information”, serves as a manual for airport se-
curity screening personnel and contains detailed descriptions of passenger screening proce-
dures. This leak of information revealed the criteria for exemption from certain screening
measures and could offer insight into how to sidestep airport security.
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After all the money and effort devoted to developing new security technology, why is
it so hard to prevent leaks of sensitive information even in well-managed organizations
with well-intentioned employees? Although it would be imprudent to place the blame on
any one factor, it is difficult to overestimate the significance of basic human error. Today,
protecting sensitive material requires users to remember,understand, and always obey the
appropriate dissemination restrictions. Yet we know that in reality, users tend to be careless
and impatient; they occasionally email documents to the wrong parties, transfer sensitive
data to insecure machines, or otherwise inadvertently allow data to leak. Stricter security
regulations are not necessarily the answer because, as Don Norman notes,“...when security
gets in the way, sensible, well-meaning, dedicated people develop hacks and workarounds
that defeat the security”[64]. According a recent survey by ISACA, 35% of corporate
employees admitted that they haveknowinglyviolated corporate data dissemination re-
strictions at least once. 42% have e-mailed confidential material to their home system and
22% have transferred sensitive corporate data using a portable USB storage device, acting
in direct violation of corporate rules [2].

Can technology assist in identifying such manifestations of carelessness and mitigating
their consequences? We believe that the answer is a clear “yes”, but devising an effective
and practical technological solution to this problem will require addressing a number of
complex issues. One of the most significant challenges lies in tracking the vast array of
information transfer channels available to users and accounting for the myriad ways, in
which data can be manipulated, transformed, and transferred.

Most of the widely-used operating systems and user applications offer very little as-
sistance in this regard. Simply put, current OSes and applications provide mechanisms
for mediating access to data objects, such as files or database tables, but are not well-
positioned to track subsequent manipulations on these objects and the flow of information
between them. Consider a user, who opens a confidential text document in her word pro-
cessor for editing. In a rare moment of carelessness, she copies a paragraph of this text
into a public document, on which no dissemination restrictions are imposed. This elemen-
tary action produces a second copy of the confidential paragraph, but this new copy lacks
any association with the original document, its confidentiality status, and restrictions on its
dissemination — a situation that is precariously close to information leakage.

We believe that preventing incidents of this nature, without a complete bottom-up re-
design of the software stack, requires a comprehensive and transparent platform for track-
ing the flow of user data, intercepting the channels of information exchange, and enforcing
security policies. Our hypothesis is that (1) a comprehensive information flow tracking plat-
form that works with unmodified applications and operating systems is within the realm of
being practical on today’s commodity hardware; and (2) a specializedhypervisorprovides
the most effective and natural architectural foundation for such a platform.

To explore this hypothesis, we present PIFT (Practical Information Flow Tracking) —
a novel security architecture and a set of associated mechanisms for fine-grained informa-
tion flow tracking in enterprise environments. Our high-level goal is to develop a robust
information management platform that will enable organizations to specify and enforce
end-to-end policies concerning the dissemination and usage of sensitive information.
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1.1 Design Goals for a Comprehensive IFT Platform

To provide context and delineate the scope of this dissertation, we begin by describing
the central goals of PIFT and the overall principles that guided its design. We begin by
noting that none of the incidents cited above were caused by malicious activity on the part
of insiders; the cited leaks were all caused by human error and carelessness. Although ma-
licious entities (such as rogue employees, hackers, and malware) undoubtedly pose a threat
to security, a large fraction of data breaches occurring in the U.S. (77% percent according
to a recent survey [49]) can be attributed to negligence and lack of discipline among em-
ployees. Hence, our goal in PIFT is to design a practical system of safeguards — one that
recognizes the limitations of human users and focuses on thedominant issue of internal
carelessness, rather than the far less common problem of data theft. PIFT aims to provide a
comprehensive, deployable, andusableinformation flow tracking (IFT) platform. More
specifically:

1. To becomprehensive, PIFT should track the flow of information across all compu-
tational elements, data storage devices, and communication channels.

2. To beeasily deployable, our platform should not require significant reconfiguration
in existing IT environments and should be fully compatible with widely-deployed op-
erating systems and applications. While there are other techniques that can produce
simpler and perhaps more efficient mechanisms by modifying operating systems,
application runtimes, or applications themselves, these techniques face a very signif-
icant barrier to adoption given the large investment already made in legacy software
stacks.

3. To beadopted for everyday use, an IFT platform has to be efficient and not demon-
strably impair user-perceived application performance. Furthermore, it has to be
correct and parsimonious in how it propagates the sensitivity status.

To avoid confusion, it is important to state explicitly our assumptions regarding the
environment, in which PIFT intends to operate:

1. Users are benign, in that they do not intentionally exfiltrate data, but are intolerant of
inconvenience and liable to forget dissemination restrictions.

2. The software used by these users is non-malicious, meaning that it does not attempt
to circumvent our information flow tracking techniques.

This dissertation describes how to devise a comprehensive IFT platform for sensitive
user data that functions in an environment, where these assumptions hold. Viewed from
a different angle, these assumptions reveal our explicit non-goals — what we do not hope
to accomplish in the context of this dissertation. In broad terms, we do not hope to track
information flow and enforce policies in the presence of sophisticated malicious activity. In
particular, we do not try to protect sensitive data against theft by rogue employees or against
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exfiltration by malicious or compromised software. Malevolent code intent on stealing has
myriad channels (includingimplicit data flows[23] andcovert information channels[48]),
through which it can siphon off sensitive data. Malicious employees can exploit the ana-
logue gap (for instance by printing sensitive documents on paper [76] or taking a picture
of the screen showing sensitive data [83]) for the same purpose. Tracking all these chan-
nels in a comprehensive manner is technically hard for all existing information flow control
systems and we do not attempt to close these gaps with PIFT.

1.2 The Design Philosophy of PIFT

Practical Information Flow Tracking (PIFT) is a novel information security architecture
that focuses on preventing sensitive information leaks resulting from the actions of well-
intentioned, but forgetful and careless users. In general terms, this requires mechanisms for
tracking the propagation of user data as it is manipulated orcomputed upon, intercepting
access to exit points, and enforcing the appropriate security restrictions. The high-level
goals and assumptions outlined in the previous subsection have led us to adopt a specific
set of design principles, which we now describe:

1. Granularity of information flow tracking : In order to provide a comprehensive
solution and reduce the risk of false positives, we track theflow of information at
byte-levelgranularity. Furthermore, since PIFT must retain compatibility with un-
modified applications and can make no assumptions regardingtheir internal struc-
ture and data manipulation behavior, the most natural design option is to interpose at
the software-hardware boundary and track the computation at the level ofmachine
instructions.

An alternative strategy would be to maintain a coarser-grained view of data sensitiv-
ity (e.g., page-level labels for the information stored in volatile memory and sector-
level labels for data residing on disk). While this approachwould alleviate the storage
and computational burden incurred by our current implementation, it would sacrifice
the precision of tracking and make the system more susceptible to false positives. For
instance, copying a block of text from a world-readable fileF1 into a sensitive fileF2

and then copying the same text fromF2 to F3 could causeF3 to wrongly acquire the
sensitivity tag with this strategy.

2. Point of interception and enforcement: Since PIFT focuses mainly on restricting
the flow of information between users in an organization, security checks need to be
performedonlywhen the data is externalized in some fashion and no limitations need
to be imposed on how the data is handled locally on a user’s machine. Hence, PIFT
intercepts device I/O requests that externalize data in order to enforce policies, but
does not try to prevent application code from touching or performing computation
on sensitive data. As we explain below, this method of policyenforcement enables
several novel and important performance optimizations.
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Given the above design choices, an architecture based on a hypervisor with byte- and
instruction-level information flow tracking appears to be the most natural and practical
solution. Modern hypervisors are fully compatible with legacy software stacks, yet have
sufficient privileges to monitor and track the computation in the guest machine. Further-
more, hypervisors routinely virtualize and mediate accessto exit points (i.e., output devices
such as network interfaces and block storage devices). PIFTcan reuse this functionality
to intercept the data at these exit points and impose security checks. Finally, although hy-
pervisors add management complexity, we believe that with the recent rapid increase in
hypervisor deployment, it is not unreasonable for a security solution to require their use on
every endhost that handles sensitive data.

PIFT is based upon the theory that a hypervisor-based information flow tracking plat-
form strikes the most reasonable balance between security,usability, deployability, and
performance. In the broader perspective, this view appearsto be gaining general accep-
tance in the research community and a similar position has been articulated in a recent
paper by another research team [98].

Instruction-level information flow tracking is conceptually simple: memory containing
sensitive data is tagged withtaint labelsand the label values are propagated in a manner
that mirrors the computation. The typical implementation approach for full-system IFT in-
volves running the guest system in a hardware emulator (suchas QEMU), which has been
augmented with machine instruction analysis and taint tracking capabilities. Both opera-
tions incur very significant computational costs — prior work on full-system IFT reports
slowdown factors in the range 50-200x relative to unmonitored native code execution. Al-
though such levels of overhead are acceptable for the purposes of offline security analysis,
which has been the dominant focus of previous IFT efforts, our target usage scenario re-
quires the ability to track the movement of sensitive data and enforce security policies in
real-time, minimizing the user-perceivable slowdown.

The runtime performance costs associated with previous instruction-level IFT systems
render them unsuitable for the purpose of real-time information flow tracking. This disser-
tation presents our progress on addressing the performancechallenges and proposes several
novel optimizations that enable us to reduce the runtime overhead to a much more man-
ageable level. The key insight behind our performance optimizations is that emulation and
information flow tracking can be viewed as two separate and, for the most part, indepen-
dent computations. As we demonstrate in the evaluation, decoupling these operations can
be extremely beneficial and enables us to achieve dramatic performance improvements.
Furthermore, unlike previous implementations, which track the propagation of taint labels
by analyzing emulator-specific microinstructions, PIFT tracks these labels at the level of
abstraction that directly matches the semantics of the native instruction set. This enables a
range of additional optimizations that are difficult or altogether impossible to apply at the
microinstruction level.
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1.3 Evaluating PIFT

PIFT investigates a novel architecture for tracking the flowof sensitive information,
based on the claim that interposition at the software-hardware boundary using a hypervisor
can produce a practical and usable solution. To evaluate this claim, we must examine PIFT
in the context of the original design goals and requirements, as outlined in Section 1.1. A
practical system for sensitive information tracking must achieve reasonable performance
on common application workloads and propagate taint labelscorrectly, avoiding over- and
under-tainting.

PIFT’s runtime performance overhead is easily quantifiableand Chapter 5 presents our
detailed performance evaluation based on microbenchmarksand application-level measure-
ments. Encouragingly, tracking the flow of information at a higher level of abstraction
(native machine instructions) using multiple processor cores enables PIFT to reduce the
computational overhead by a significant margin. While it wasdifficult for us to provide di-
rect side-by-side comparisons with previous systems [98],in the two specific cases where
we could do so, PIFT achieved a slowdown of roughly 1.5× (compared to native code), as
opposed to prior efforts in which the two comparison cases suffered slowdowns of roughly
one and two orders of magnitude, respectively. The results of our application-level experi-
ments indicate that although PIFT’s code analysis and information flow tracking primitives
impose a nontrivial performance overhead for CPU-intensive workloads, our design suc-
ceeds in mitigating these sources of overhead through asynchrony and parallelism. Further,
our user studies suggest that PIFT does not significantly impair user experience and pro-
ductivity in interactive graphical application environments.

Turning to the question of label propagation correctness, we were able to directly eval-
uate the natural flow of user data in several popular consumerapplications and we report
the results from this application study in Chapter 6. These initial results are encouraging,
but we also observed limitations in applying the technique of taint tracking to environments
that use commodity off-the-shelf software products.

First, we observed that in some scenarios, the guest environment suffers accidentaltaint
poisoning, which then amplifies into full-scaletaint explosionand causes significant por-
tions of the guest system state to become tainted. These observations are fully consistent
with the results of earlier studies [80], but present a majorchallenge for platforms such
as PIFT. Left unchecked, this phenomenon significantly impairs the performance of our
information flow tracking substrate in two important respects. First, it unnecessarily forces
our system to spend more time emulating the guest environment and adds perceptible over-
head. Second, it confuses users and applications, since they have no way of telling whether
a piece of sensitive data has been tainted due to the right reasons or accidentally.

One of the most alarming cases of taint explosion is accidental propagation of taint
into the internal data structures of the OS kernel and our early experimentation with PIFT
revealed that the Linux kernel is highly susceptible to thisphenomenon. In this scenario,
applications that do not operate on sensitive user data would become tainted when they
interact with the kernel via system calls, causing taint labels to spread between applica-
tions and eventually rendering the whole system unusable. Our in-depth analysis of this
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phenomenon reveals that kernel-level tainting is accidental and does not reflect explicit
information transfer. PIFT leverages this insight to effectively eliminate kernel taint poi-
soning by interposing and scrubbing taint labels at a small number of kernel entry points.

We also examine the dynamics ofuser-leveltaint propagation within the address space
of an application. For some applications, we were able to confirm that PIFT propagates
taint labels correctly, in a manner that directly reflects the user’s actions and intentions.
Other applications appear to be susceptible to various degrees of taint poisoning and ex-
plosion, whereby non-protected data items (such as configuration files and non-sensitive
user documents) acquire the taint status of sensitive documents that have been previously
manipulated in the same application instance. It appears that in order to fully take advan-
tage of hypervisor-based information flow tracking, applications must follow the natural
channels for information exchange and several do not. We present a preliminary analysis
of these phenomena and discuss their overall implications on fine-grained information flow
tracking systems such as PIFT.

1.4 Summary of Contributions

The main contribution of this thesis is the architecture andimplementation of PIFT —
a robust information management platform that is designed to track the flow of sensitive
data and enforce confidentiality policies, while satisfying the design constraints outlined
in Section 1.1. Although our prototype implementation is based upon completely standard
building blocks (the Xen hypervisor and QEMU), its architecture is novel. PIFT provides
a taint-aware filesystem that enables users to store sensitive data (annotated with the ap-
propriate taint labels) persistently on disk. Further, in order to ensure that taint labels are
preserved across network transfers, PIFT transparently augments the networking stack in
the guest environment to intercept all outbound network packets and annotate the payload
with the corresponding taint label(s).

The performance overhead of fine-grained information flow analysis constitutes one
of the most significant obstacles that must be overcome before real-time IFT systems can
become fully practical. PIFT makes several important contributions in this area. Our im-
plementation employson-demand taint tracking— a technique whereby the guest system
is dynamically transferred between emulated execution using QEMU and native execu-
tion within a Xen guest domain. Enabling emulation and IFT computation only for those
regions of guest code that directly interact with tainted data allows PIFT to substantially re-
duce the runtime performance costs. Just as crucially, the information flow analysis compu-
tation is performed at a higher level of abstraction that directly matches the semantics of the
native machine instruction set (x86 in our implementation). This is a significant departure
from existing systems, which track information flow on the basis of QEMU microinstruc-
tions. Furthermore, while previous approaches tend to conflate emulation with information
flow tracking, PIFT explicitly decouples these two operations. As we demonstrate later on,
this strategy enables asynchronous parallelized taint tracking and leads to a further reduc-
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tion of runtime performance costs. Operating together, these techniques enable our PIFT
prototype to achieve a60× performance improvement over the best previously-published
results.

For kernel taint explosion, we show that a major cause of thisphenomenon on Linux is
accidental tainting of kernel control data structures. We undertake a detailed analysis and
track its origin to a small number of kernel entry functions.By interposing at these spe-
cific entry points and securely scrubbing taint, we prevent accidental tainting of these data
structures and effectively eliminate Linux kernel taint explosion for all practical purposes.

The cumulative effect of our techniques is making transparent real-time information
flow tracking significantly more practical. In fact, our PIFTprototype is now fully usable
and supports real interactive user activities — we edited portions of this dissertation in a
Linux guest environment running on top of PIFT. To the best ofour knowledge, PIFT is
the first real-time instruction-level IFT platform that hasbeen demonstrated to be usable
with an interactive graphical guest environment. While there is more work to be done
before real-time taint-tracking can be widely used in practice, we wanted to report on our
progress-to-date so that the community can help in overcoming the remaining barriers.

1.5 Thesis Roadmap

This dissertation is divided into seven chapters. The next chapter places PIFT in per-
spective with other academic research, introduces the necessary terminology, and provides
a brief survey of existing literature in several relevant areas. Chapter 3 presents the over-
all system architecture of PIFT ands explain the partitioning of functionality between the
hypervisor and the augmented emulator. This chapter also details PIFT’s overall security
model and discusses the semantics of fine-grained (byte- andinstruction-level) information
flow tracking. Chapter 4 provides an in-depth description ofour prototype implementa-
tion, including its hypervisor-level components, the augmented emulator, the label-aware
storage and networking stacks, and the mechanism for enforcing policies. For readers in-
terested in understanding the low-level technical aspectsof our work, this chapter details
the implementation of PIFT’s information flow analysis algorithms within QEMU, dis-
cusses parallelization techniques for taint tracking, andpresents the on-disk layout of our
label-aware filesystem. We present our detailed performance evaluation of PIFT across
a range of experimental environments, which include microbenchmarks, application-level
measurements, and usability studies in Chapter 5. Then, in Chapter 6 we turn our atten-
tion to the dynamics of taint label propagation and examine the problem of taint explosion.
Finally, we conclude in Chapter 7 by summarizing our work, discussing the remaining
barriers, and outlining what we believe to be promising directions for further research.
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Chapter 2

Background and Related Work

This dissertation builds on a large body of prior work in the areas of information flow
control and dynamic taint analysis. This chapter intends toprovide a brief survey of pre-
vious research and review some of the most relevant and influential efforts in these related
areas.

Information Flow Control (IFC) is concerned with restricting the flow of user data and
protecting it against theft and misuse by untrusted applications. Section 2.1 discusses the
state of the art in IFC, examining both static and dynamic techniques, and reviews some of
the existing systems that influenced the design of PIFT.

Section 2.2 discusses prior work on dynamic taint analysis —a complementary set
of techniques, which provide a means of tracking information flow within an application
with high precision. Previous applications of taint tracking have, by and large, focused
on detecting security attacks and analyzing the behavior ofmalware in a laboratory setting;
PIFT is among the first systems to apply taint tracking to the problem of confining sensitive
information flow.

It would be disingenuous to suggest that the work presented in this dissertation does
not borrow from these previous studies and, indeed, many of the systems described in this
chapter provided inspiration for our design, while others served as direct building blocks.
Yet, all of these previous efforts face limitations, which prevent them from being directly
applicable to the central problem we seek to address in the context of this dissertation;
namely, controlling the flow of sensitive user data in a distributed environment without
modifying the software stack or augmenting the hardware platform.
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2.1 Information Flow Control

Most modern operating systems provide mechanisms for discretionary access control
(DAC); examples of mechanisms in this category include file permissions, ACLs, and ca-
pabilities. In broad terms, the DAC security model imposes restrictions on which principals
(users, processes, or machines) can access a particular data object at a specific point in time,
but does not track the propagation and usage of this data after its initial release. A DAC-
based security architecture delegates the responsibilityfor enforcing data flow policies to
the application and offers little protection against the actions of careless users or malicious
code.

Information flow control (IFC) provides a more powerful and secure alternative to DAC
by allowing users to specify high-level system-wide restrictions on the use and dissemina-
tion of sensitive data. As an informal example, the following high-level policy may arise
in an enterprise environment:“The contents of a sensitive fileF and all data derived from
F can be disseminated only to the members of a project group G”. Discretionary access
control schemes offer mechanisms for restricting the initial release of the information con-
tained inF , but are not sufficiently powerful to enforce restrictions on the derived data.

An information security framework based on IFC abstractions offers tighter controls
over the use and dissemination of sensitive information compared to the traditional DAC-
based model, but providing such controls requires additional mechanisms. Most signifi-
cantly, the system must have the capability to track the propagation of sensitive data through
computation and enforce policies at a set of well-defined information flow boundaries.

Prior work on information flow control can be broadly categorized intostaticlanguage-
based techniques, which seek to detect and prevent information leakage at compile time,
anddynamicruntime enforcement.

2.1.1 Static Language-Level Analysis

Static checking of information flow policies has a long history; the initial research
in this area was done in the 1970s and driven by the needs of thedefense industry [24].
Denning’s pioneering work in this area [22] introduced the concept of asecurity lattice—
an abstract model of access control, whereby each data object and principal is assigned a
security class(also called itssecurity label). Information flow is controlled by imposing
restrictions on the transfer of information between these entities.

In 1997, Myers and Liskov [56] introduced adecentralizedmodel for information flow
control (DIFC), which defines a set of rules that programs must follow in order to prevent
leaks of sensitive information. The DIFC model provides security by allowing users to
associate integrity and secrecy labels with data resourcesand constraining the flow of in-
formation according to these labels. JFlow [55] and its successor Jif [58] apply the DIFC
model to the Java programming language, enabling information flow control within a pro-
gram at the granularity of individual language-level variables. In Jif, all variables and
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expressions are labeled with security policies which, together with ordinary Java type dec-
larations, form an extended type system. The Jif compiler performs static type checking
and rejects programs that might violate information flow restrictions. Informally, a valuev
can be assigned to a variablex only if the policy associated withx is at least as restrictive as
the policy forv, in which case the assignment does not leak information and is considered
legitimate. To prevent “label creep”, Jif provides language-level features for selective de-
classification that enable a trusted code module to relax policies. Fabric [50] is a follow-on
effort that extends the Jif programming language to a distributed environment and provides
support for transactional semantics.

Static IFC analysis is a powerful technique, which providesthe ability to track the
propagation of sensitive data within a program (and betweenprograms) with little or no
runtime overhead. During compilation, the static checker constructs a proof that no possible
execution path in a program contains data flows that are disallowed by the IFC policies. As
a result, this technique can detect implicit information flows, as well as some classes of
covert channels, both of which can be extremely difficult to detect with dynamic runtime
tracking mechanisms.

However, these research efforts have demonstrated that adding static information flow
control to a powerful general-purpose programming language is difficult. Jif is based on
Java — the most expressive language for which static IFC has been attempted — but does
not currently support several of its essential features, such as multithreading. Further, static
IFC analysis imposes a new programming model and requires developers to rewrite ap-
plications. Finally and perhaps most importantly, many realistic usage scenarios involve
dynamic policies that fundamentally cannot be evaluated atthe time of program analysis
and necessitate some form of runtime tracking and enforcement. The above scenario in-
volving a sensitive corporate document and a project group is an example of such a policy.

PIFT focuses on supporting this broader class of policies through dynamic runtime
enforcement and offers full compatibility with legacy application code. Another important
distinction concerns the granularity and the level of abstraction, at which these mechanisms
operate: PIFT tracks the flow of sensitive data across CPU registers, physical memory ad-
dresses, and disk sectors, as opposed to language-level primitives. Our architecture does
not attempt to track implicit data flows and enforces policies on the movement of informa-
tion between principals in a distributed environment, interposing at the software-hardware
boundary.

2.1.2 Dynamic Enforcement of Information Flow Rules

OS- and runtime-level information tracking: There has been significant work on incor-
porating DIFC mechanisms into operating systems and runtime environments with the goal
of tracking the dissemination of user data and enforcing dynamic end-to-end information
flow constraints. Asbestos [25] and HiStar [93] are new operating systems, which track in-
formation flow dynamically and guarantee strong isolation of application code using a rela-
tively small, trusted kernel. In Asbestos, each process carries asecrecylabel that provides a
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conservative estimate of all sensitive inputs observed by the process. The operating system
intercepts all inter-process communication and verifies compliance with security policies.
HiStar defines several low-level objects types (threads, containers, quotas, address spaces,
gates) and controls information flow to and from each object instance. Collectively, these
object classes provide building blocks for traditional OS primitives, such as file systems
and processes, which are implemented in an untrusted user-level library. Both systems
provide mechanisms for controlled declassification that allow privileged application-level
components to externalize sensitive data through a set of legitimate and well-defined in-
formation channels. Assuming trustworthy declassifiers and an uncompromised kernel,
these systems can enforce IFC policies even in the presence of misbehaving or malicious
application-level code. DStar [94] extends the OS-level information flow control architec-
ture to a distributed environment with the goal of mitigating the effects of untrustworthy
distributed applications and compromised machines. Flume[47], one of the more recent
efforts, demonstrates that runtime DIFC does not require a clean-slate redesign of the soft-
ware stack and can be retrofitted into an existing UNIX-basedoperating system. Lok-
i/LoStar [97] is a follow-on effort to the HiStar system and demonstrates that the amount of
trusted code can be further reduced by extending the hardware architecture with support for
byte-level memory labeling. The resulting system implements dynamic IFC in a minimal
security monitorthat resides underneath the OS and can enforce information flow policies
despite kernel compromises.

Compared to static analysis, OS-level dynamic IFC techniques can support a much
broader range of policies, but invariably impose some performance overhead. Furthermore,
DIFC-enabled operating systems can only track informationflow on the basis of coarse-
grained OS-level primitives (e.g., processes, files, sockets) and are oblivious to fine-grained
information transfers between variables or data structures within a process. Laminar [77],
one of the more recent proposals, investigates a hybrid design that integrates language-level
and dynamic OS-level DIFC abstractions in an effort to combine their strengths. Lam-
inar designs a new operating system, which mediates access to system resources, and a
specialized VM, which enforces fine-grained DIFC rules within the address space of an
application. This system provides DIFC guarantees at the granularity of lexically scoped
code blocks (calledsecurity regions), which makes it relatively easy to retrofit existing
applications with security policies.

Another recent effort, RESIN [92], proposes a new application runtime that associates
policies with application-level data objects and filters information transfer at system I/O
boundaries. RESIN helps application developers detect andcorrect errors in the security
logic by enforcing application-specific information flow assertions. Unlike the OS-level
solutions discussed above, RESIN operates in an interpreted programming environment
(such as Python or PHP) and tracks the propagation of sensitive data at the level of program
variables. Program assertions offer a more flexible way to specify data flow restrictions
compared to OS-level labels and can be used to express high-level application-specific
policies (e.g.,“the password of a user U can leave the system only as part of ane-mail
message sent to U’s e-mail address”).

Systems that rely on OS- and runtime-level IFC mechanisms require substantial
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changes in the structure of the OS kernel and thus face a significant barrier to deployment.
At the application level, programmers have to expose data flows to the OS by explicitly
restructuring their applications into multiple modules inaccordance with data flow restric-
tions and writing trusted declassifiers. Even systems such as Flume, which seek to provide
compatibility with current operating system interfaces, require developers to partition the
application into unprivileged and trusted privileged components.

PIFT aims to achieve similar goals, namely data containmentvia dynamic informa-
tion flow control, but makes very different tradeoffs. A key requirement for our system is
deployability, which implies compatibility with legacy software stacks and rules out ap-
proaches that require kernel redesign or application restructuring. Our system does not
change the programming model and can be deployed as an incremental extension to cur-
rent IT environments with little or no modification to existing software stacks. PIFT inter-
poses a hypervisor at the software-hardware boundary and tracks the flow of information
at the granularity of bytes. While the coarser process-level tracking exemplified by HiStar
suffices to intercept all potentially sensitive output, this scheme offers only a binary “ham-
mer” when it comes to policy enforcement: once a processP has observed a sensitive input
S, all subsequent external output produced byP is conservatively assumed to be tainted
with S. In practice, this means that declassification can be overlyrestrictive or excessively
permissive, reducing the application’s usability and adoptability. In contrast, PIFT tracks
sensitive data at the granularity of bytes and monitors the computation at the level of ma-
chine instructions. This allows PIFT to maintain a more accurate view of sensitive data
movement and make more informed enforcement decisions by checking if the specific data
being externalized is sensitive or not.

At a conceptual level, the design of PIFT bears some similarity to Loki, which pushes
the data labeling functionality into the hardware platform. Our approach extends the (vir-
tual) machine architecture with mechanisms for both labeling sensitive data and tracking
its propagation. A hypervisor-based design enables us to emulate these features in software
and thus maintain full compatibility with current hardwareplatforms.

VM-level isolation: Yet another influential and related research direction is centered
around theRed/Greenisolation paradigm articulated by Butler Lampson and his col-
leagues [28]. In this scheme, users interact with applications and sensitive data using two
independent and mutually isolated environments. The greenenvironment confines impor-
tant data and does not permit the use of untrusted applications. Conversely, the red environ-
ment allows users to execute potentially untrustworthy code and access external networks,
but prohibits access to sensitive documents. Lampson further argues that a virtual machine
monitor (another term for a hypervisor) provides the right mechanisms for enforcing such
isolation and that the two environments should thus correspond to virtual machines. This
paradigm erects an effective first-class isolation boundary between valuable data and the
threats posed by malicious code. It also provides a cost-effective alternative to the practice
of physical air-gapping that has been the traditional method of separating user activities
in high-security environments. Other systems that use virtual machine technology for the
purposes of data containment and isolation include LiveWire [36](a VM-based intrusion
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detection platform) and the NetTop [60] project. The architecture of PIFT is influenced by
these proposals, but focuses on the broader goal of end-to-end policy enforcement. This
requires the ability to track the propagation of confidential information among users and
intercept external output.

2.2 Dynamic Taint Analysis

A complementary body of work applies machine code analysis and recompilation tech-
niques to track information flow at the level of machine instructions — a technique known
as dynamic taint analysisor taint tracking. Broadly, taint analysis mechanisms operate
by annotating the low-level machine state (CPU registers, memory addresses, and disk re-
gions) with byte-leveltaint labels, examining the machine instruction stream to determine
the information flow effects of each instruction, and propagating the taint labels accord-
ingly. In order to enable such fine-grained analysis facilities, taint tracking systems must
instrument the target application at the binary code level or run it in a specialized emulator.

2.2.1 Applications of Taint Tracking Techniques

Byte-level taint analysis is one of the central functional primitives in PIFT, but its appli-
cations extend far beyond monitoring the computation on sensitive user data. In its general
form, taint tracking is a powerful and widely-used technique that has been applied to a
broad range of problems in the areas of security and information management.

TaintCheck [61], one of the foundational efforts in this area, aims to provide an effec-
tive defense mechanism against fast-spreading Internet worms through automated exploit
detection and signature generation. TaintCheck marks any data that originates from an un-
trusted external source (e.g., network sockets) as taintedand uses binary rewriting mech-
anisms to track the subsequent propagation of such data. To detect attacks, TaintCheck
looks for dangerous and potentially illegitimate operations on tainted data, such as the use
of a tainted value as the destination for a jump instruction,which would be suggestive of
an attempt to redirect control flow. The implementation is based on Valgrind [59] and can
track the propagation of tainted inputs within the virtual address space of a single user-level
process.

Sweeper [86] user dynamic taint analysis as a component in a comprehensive worm
defense system that offers low overhead and efficient post-attack recovery. During normal
execution, the system takes periodic process-level checkpoints and performs lightweight
monitoring to detect suspicious activity. After an attack is detected, Sweeper performs a
rollback and re-executes the process from an earlier checkpoint in a controlled environment.
At that stage, heavyweight analysis tools such as TaintCheck are employed to identify the
exact nature of the attack and produce anantibodythat protects the process against further
attacks.
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Analogously to these systems, PIFT uses emulation and instruction-level information
flow tracking to monitor the propagation of tainted data within the system and enforce poli-
cies. We extend on these efforts with a broader goal of ensuring data confidentiality in a
distributed enterprise setting. While in TaintCheck and Sweeper policies impose restric-
tions on fine-grained data movement within a process (e.g., “the instruction pointer cannot
be loaded with a tainted value”) with the overall goal of enforcing system integrity, PIFT
policies seek to ensureconfidentialityby confining the flow of sensitive user data between
principals.

Turning to confidentiality, there has been significant previous work in the use of taint
tracking to protect sensitive information against malware. Panorama [91] uses full-system
emulation and dynamic taint analysis to detect malicious access to sensitive user data and
identify privacy-breaching malware. A code sample is loaded into an emulated system
environment and subjected to a series of automated tests, whereby sensitive user inputs are
introduced into the guest system. The taint tracking enginemonitors how sensitive (tainted)
information propagates within the system and flags any suspicious interaction between the
unknown code sample and the tainted data.

Another recent proposal [26] combines system-level taint tracking with static analysis
to identify malicious behavior in BHOs (browser helper objects). The BHO framework
allows third-party code to execute within the address spaceof Internet Explorer and is
a common deployment vehicle for spyware. The proposed system uses taint analysis to
accurately track the flow of potentially sensitive data (e.g., visited URLs) as it is processed
by the browser and any loaded BHOs. When tainted data leaks due to activity on behalf of
a BHO, the resulting information flow is flagged as malicious.A lightweight form of static
analysis is used to identify direct control dependencies and this information helps mitigate
some instances of evasion via implicit channels.

PIFT is analogously concerned with protecting sensitive information against misuse,
but extends on these efforts with a broader goal of enforcingend-to-end information flow
restrictions that are both more general and more macroscopic in nature. Our system focuses
on regulating the flow of sensitive data between benign principals in a distributed setting
and uses taint analysis techniques to track its dissemination and usage.

Polyglot [11] applies dynamic taint analysis to the problemof automated protocol re-
verse engineering. This system takes as input the binary image of a program along with
some tainted input data (such as messages received from the network), monitors how the
program processes the data, and produces a fine-grained trace of taint propagation. This
information is used in conjunction with the instruction-level execution trace to reconstruct
the protocol message format. For example, if the program performs an indirect memory
access that touches tainted data at a memory addressd, andd has itself been derived from
a tainted value at another addressl, then one can reasonably assume thatl stores the length
of a variable-length message field that terminates atd.

Dispatcher [10] extends this work and presents a novel technique for inferring the full
protocol format and semantics, which requires analyzing both inbound and outbound ap-
plication messages. Dispatcher proposes a technique called buffer deconstruction, which
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extracts the structure of outbound messages and infers fieldsemantics by tainting the in-
puts and outputs of specific system APIs with well-known semantics and observing their
propagation to/from the message buffers. Collectively, these techniques provide a power-
ful tool for black-box protocol analysis and have been used to reverse-engineer a complex
command-and-control protocol for botnets.

Renovo [44] uses dynamic binary analysis to undo the effectsof code packing and re-
cover malicious executable code that has been obfuscated through compression or encryp-
tion. Given an executable code sample containing hidden code, Renovo loads it into an
emulated environment and carefully tracks its execution. Whenever the program performs
a memory write operation, the emulator marks the corresponding destination address as
tainted. If, at some point during program execution, the instruction pointer jumps to a
tainted memory address, Renovo infers that the corresponding memory location stores ex-
ecutable code that has been generated at runtime. This straightforward technique can be
used to identify the completion of the code unpacking routine and the point of entry into
hidden code.

HookFinder [90] proposes a framework for systematic analysis of malware hooking
behavior. This system uses binary analysis and fine-grainedtaint tracking to identifypoints
of impact, which emerge when the contents of OS-level data structuresare modified by
untrusted external code. Analyzing the effects of these impact points on the control flow
can assist in identifying the placement of hooks.

TaintDroid [27] is a recently-proposed system for monitoring the flow of sensitive user
data through third-party applications on smart mobile devices. This system extends An-
droid [4] (a popular Linux-based open-source platform for smartphones) with fine-grained
taint tracking and analysis capabilities. Sensitive user information is first identified and
labeled as such at a set of well-defined taint sources, which include local sensors (such as
a microphone, camera, and GPS receiver), shared information databases (such as address
books and SMS message repositories), and unique device identifiers. The Dalvik VM in-
terpreter is modified to track the computation on tainted data within an application and
several additional OS-level extensions provide mechanisms for tracking its propagation be-
tween applications, as well as transfers to/from persistent storage. In contrast to most other
systems discussed in this section, which track informationflow on the basis of native ma-
chine instructions and low-level hardware registers, TaintDroid analyzes Dalvik byte-code
and tracks taint propagation at the level of architecture-independent byte-code variables.
A detailed application study conducted with the aid of TaintDroid revealed numerous in-
stances of potential misuse, suggesting that popular Android applications routinely exter-
nalize users’ private information without their explicit consent.

Neon [98] explores system support for derived data management and proposes a set
of mechanisms that enable organizations to enforce end-to-end data containment policies.
Analogously to PIFT, this system seeks to achieve binary-level compatibility with existing
operating systems and applications using a hypervisor-based design. Neon associates a
32-bit tint, which represents a policy, with each byte in the guest virtual machine and uses
a modified version of QEMU to track the propagation of tints between memory and CPU
registers at the level of machine instructions. Similarly to its predecessor [41] and our
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system, Neon implements on-demand emulation and uses the paging hardware to trap the
initial access to sensitive data during native execution.

PIFT and Neon have very similar goals and share some aspects of the design, but differ
in several crucial respects. First, Neon assumes that all sensitive files reside persistently on
a central server and supports only coarse-grained file-level policy labels. Centralized file
access may present a usability hindrance, while maintaining only coarse file-level labels
can lead to overtainting and unwarranted denial of dissemination privileges. In contrast,
PIFT implements a specialized taint-aware filesystem that permits users to store sensitive
data persistently on the local disk, without a central server, and supports both file- and byte-
level labeling. Second, while both systems track information flow by analyzing machine
code, PIFT implements a number of advanced code analysis andtranslation techniques
that substantially reduce the computational burden of dynamic information flow tracking.
Specifically, our system analyzes information flow at the level of native x86 machine in-
structions, without first decomposing them into sequences of primitive microinstructions.
PIFT also tracks information flow asynchronously and in parallel with the main instruction
stream using a separate CPU core. Section 3.3.2 compares these two systems in greater
detail and further describes our novel optimization techniques. Operating in concert, these
techniques allow PIFT to achieve an order-of-magnitude improvement over Neon in a direct
performance comparison.

2.2.2 Improving the Performance of Dynamic Taint Analysis

Dynamic instruction-level taint tracking is a computationally expensive task and reduc-
ing its runtime performance costs is one of the major directions of our work. A number
of optimizations to speed up taint analysis have been explored in earlier work and many
of them are directly applicable in our context. Hoet al. [41] proposesdemand emulation
as a practical technique for online full-system taint tracking, whereby a hypervisor and a
taint-tracking emulator cooperate to dynamically switch the guest system betweennative
virtualized andemulatedmodes of execution. Our system uses a similar technique, but
focuses on the broader goal of confining sensitive data and enforcing high-level restric-
tions on the movement of information between principals. PIFT tracks information flow at
a higher level of abstraction (native x86 instructions as opposed to QEMU microinstruc-
tions) and attains further performance gains through asynchronous parallelized execution
of the taint tracking instruction stream.

Another method of exploiting asynchrony for taint analysisacceleration was proposed
by Nightingaleet al. [63]. The Speck framework allows taint tracking (and other forms
of runtime security analysis) to execute in parallel on a separate core, while providing the
safety guarantees of pure synchronous taint tracking. Speck relies on OS-level support for
speculative execution, rollback, and deterministic replay [62] to prevent malicious code
from permanently damaging the system, thereby permitting postponed asynchronous ex-
ecution of security checks. Analogously to our system, a memory-based log is used to
achieve coordination between the main application thread and the taint analysis threads.
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Providing support for speculative execution requires significant changes to the operating
system kernel, which we hope to avoid in PIFT. The current implementation of Speck sup-
ports taint tracking only within a single-threaded user-level process, whereas PIFT tracks
the flow of sensitive data across process and machine boundaries using a hardware emula-
tor, aiming to achieve a comprehensive view of information flow.

LIFT [73] investigates a low-overhead IFT system for detecting security attacks and
proposes several algorithmic optimizations to improve theperformance of taint tracking.
The Fast-Path optimization extends the concept of demand emulation with the goal of fur-
ther reducing the amount of unnecessary taint tracking work. Before executing a basic
code block, LIFT checks the taint status of its live-in and live-out locations (registers and
memory) and decides whether it is necessary to run the fully-instrumented version that
tracks information flow. If all live-in and live-out locations carry empty taint labels, it
can be deduced that the code block performs only zero-to-zero taint propagation and thus,
the fast non-instrumented version can be safely executed. The Merged Check optimiza-
tion exploits the temporal locality and spatial locality properties to reduce the number of
taint transfer and taint checking operations. LIFT performs memory reference analysis and
clusters nearby references into a group, which allows it to coalesce the corresponding taint
transfers.

Some of the optimization techniques proposed in this work are general-purpose in
nature and are directly applicable to our system, while others are more implementation-
specific and take advantage of specialized features of the IA-64 architecture — the hard-
ware platform, on which LIFT intends to operate. The two systems also differ in the scope
of information flow tracking: LIFT focuses on tracking taintlabels within thevirtual ad-
dress space of an application and is currently limited to supporting single-threaded user-
level programs, while our system aims to track information flow across the entire machine,
including the OS kernel, and maintains taint labels at the physical address level.

2.2.3 Hardware Extensions for Dynamic Taint Analysis

Yet another thread of related work investigates hardware-based architectural extensions
for dynamic information flow analysis. Compared to PIFT, these efforts take a more
forward-looking view and agree to forfeit compatibility with existing hardware architec-
tures in hopes of producing more robust and efficient hardware-driven IFT platforms.

One of the key concerns in designing a hardware-assisted scheme is deciding how to
partition the information flow analysis and enforcement functionality among the various
components of the architecture: pushing a set of functions into the hardware platform pro-
vides a way to reduce the runtime performance costs, while a software-based implementa-
tion is inherently more flexible and configurable.

Minos [20] is one of the first systems to investigate hardware-assisted IFT. This effort
proposes a complete microarchitecture that tracks the integrity of all data in the system and
aims to protect against control diversion attacks that overwrite return addresses or function
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pointers with untrusted values. Minos augments every memory word and machine register
with an integrity bit and propagates this additional value across all stages of the processor
pipeline. The system uses this additional bit to implement Biba’s low-water-mark integrity
policy [8], which is hard-wired into the Minos architecture.

Raksha [21], a more recent effort, investigates a hybrid DIFT architecture that tries to
combine the strengths of hardware- and software-based techniques in order to provide a
flexible low-overhead solution. This work proposes an augmented processor architecture
that annotates all storage locations, including registers, caches, and main memory, with
taint tags. Analogously, all machine instructions are extended with additional functionality
to propagate these tags from input to output registers and the exact rules for taint transfer
are specified by a set of dedicated control registers. Another group of registers specifies
which operands or elements of the processor state should be monitored for the acquisition
of taint tags and a security exception is raised when a non-empty tag propagates into one
of these locations. When an exception occurs, Raksha redirects the execution to a user-
level exception handler, which can implement arbitrary security checks and policies. By
partitioning the IFT functionality in this manner and pushing the low-level mechanical
functions of taint tracking into the hardware platform, Raksha can provide highly flexible
and programmable security policies with low performance overhead.

Integrating information flow tracking functionality into an existing CPU design requires
significant modifications to the processor core, which increases design complexity and may
affect the footprint and clock frequency. In a follow-on effort to Raksha, Kannanet al.[45]
proposed an alternative hardware-driven IFT architecturethat decouples taint tracking func-
tionality onto a separate coprocessor, thereby eliminating the need to modify the design or
layout of the main processor. The coprocessor encapsulatesall state and functionality as-
sociated with taint tag propagation and the main CPU core operates only on data without
any concern for the presence of tags. The key observation that enables this approach is
that the state of taint tags need not be maintained with instruction-level accuracy and that
synchronized instruction-by-instruction propagation oftags is an overkill for most prac-
tical applications of taint tracking. In many security scenarios, it suffices to maintain a
loosely-synchronized view and provide up-to-date taint information only at a set of coarse-
grained and well-defined synchronization points, such as system call entry or generation
of externally-observable output. Hence, the coprocessor can execute the stream of IFT
operationsasynchronouslyand the main CPU core must only communicate the necessary
information about the sequence of committed instructions and their effects on the state
of taint tags. In the current implementation, a shared queueis used to communicate the
instruction encodings and the addresses of memory operandsbetween the two processors.

The Log-Based Architectures (LBA) project [14, 15] proposes an alternative and even
less disruptive design, which executes the information flowtracking computation using
a general-purpose processor on a multi-core CPU, instead ofdelegating it to a special-
ized coprocessor. In this design, the hardware platform needs to be extended only with a
low-level logging facility that captures an instruction-level trace of execution on the main
processor core and relays it to a software-based trace analysis engine, running on a separate
core. While LBA seeks to provide a low-overhead general-purpose framework for detailed
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monitoring and tracing of application-level code, dynamicinstruction-level taint tracking
is one of the natural applications of this technology. Follow-on work [78] proposes several
novel techniques for parallelizing the IFT computation that leverage hardware support for
instruction-level tracing and achieve significant speedups on realistic workloads. While
explicit computation of taint values is not naturally amenable to parallelization due to se-
rial dependencies between instructions, the taint status can be computedsymbolicallyby
tracking its inheritance and then producing a concise summary of the net propagation ef-
fects for each code segment. The latter technique is easily parallelizable and explicit taint
values can then be computed by performing a single sequential pass over the intermediate
symbolic state. Another significant challenge to efficient parallel execution is posed by bi-
nary taint operators, which aggregate taint values from twoor more sources. While several
techniques for mitigating the performance impact of binaryoperations can be considered,
it has been pointed out that for some applications, the IFT rules can be relaxed in a manner
that avoids tracking the propagation of tags through binaryoperators [78]. This approach is
controversial, since it weakens security guarantees, but one that enables significant parallel
speedups.

Another recent proposal, SHIFT [13], investigates a hardware-based IFT scheme that
operates onunmodifiedcommodity processors by leveraging some of their existing archi-
tectural features and reusing them for the purposes of tainttracking. SHIFT’s starting point
is a novel and somewhat unusual observation — the architectural machinery needed for
associating taint bits with low-level processor components and propagating them along the
program execution path bears a strong resemblance to the mechanisms for trackingspecula-
tiveanddeferredexceptions, which are already present in many modern processors. Hence,
treating tags that describe tainted data as deferred exceptions allows reusing these existing
mechanisms to compute the propagation of taint tags betweenprocessor registers. Based
on this observation, SHIFT implements a single-bit taint tracking substrate that functions
on unmodified Itanium processors with minimal performance overhead. Although this ap-
proach does not easily generalize to multi-bit taint labels, it demonstrates the importance of
studying the full capabilities of modern processors and applying their architectural features
to novel problems.

The design proposed in this dissertation is similar in spirit to all these previous sys-
tems in that it provides fine-grained information flow tracking capabilities by augmenting
the hardware platform. As we explain in Chapter 4, PIFT implements a specializedtaint
processorwith a custom ISA, which operates in tandem with the main CPU and tracks
information flow along its execution path using opaque 32-bit taint label values. Some of
the previous efforts [45, 14, 15] argue in favor of decoupling program execution from in-
formation flow analysis and letting these computations proceed in a loosely-synchronized
manner. PIFT espouses a similar point of view and leveragesasynchronyandparallelism
to attain dramatic overhead reductions. In our design, the taint processor is implemented
within a software-based emulator that operates on a separate CPU core and explicit syn-
chronization is required only when the guest environment issues a request to externalize
data via device I/O.

The key distinction from these earlier efforts is that in PIFT, the hardware extension

20



takes on avirtual form and weemulateits functionality on a general-purpose CPU in order
to preserve full compatibility with existing commodity hardware platforms. Such emula-
tion is inherently expensive and PIFT must devise several novel performance optimization
techniques in order to bring the overhead down to a manageable level. Further, while most
of the previous systems focus on tracking information flow within a single user-level pro-
cess and apply IFT techniques to the problem of detecting andpreventing low-level security
attacks (such as hijacking control flow by overwriting the return address), PIFT assumes
a benign environment and focuses on the broader goal of tracking the flow of user data
between applications, as well as between machines in a distributed environment. Thus,
existing mechanisms for monitoring data flow within an isolated virtual address space are
insufficient for our purposes; PIFT must also track the propagation of user data between ap-
plications and the OS kernel (and hence monitor the execution of privileged instructions),
as well as intercept all network data transfers.
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Chapter 3

The PIFT Architecture and Information

Flow Tracking Model

This chapter describes the overall system architecture of PIFT and outlines its central
functional components. We introduce the notion of data labels in Section 3.1 and describe
our model of information flow tracking in Section 3.2. Finally, Section 3.3 describes the
core functional components of PIFT, including the hypervisor, the augmented emulator,
and our label-aware filesystem.

3.1 Data Labels and the Policy Model

The cornerstone of our policy model is the notion of aprincipal, which represents a
recipient of information and serves as a basic unit of granularity for the purposes of access
control. A principal can represent an individual user in an organization or a group of users
that share the same access privileges (e.g., employees in the accounting department).

PIFT’s mechanisms for policy specification and enforcementare based on thedecen-
tralized label model[56, 57] — a simple, but powerful model of access control thatenables
multiple principals to protect their private information and share it in a controlled manner.

In the decentralized label model, each data value is assigned a label, which expresses
a certain set of restrictions on its dissemination. Conceptually, a label represents an un-
ordered set ofconfidentiality policies. Each policy has anownerand defines a set ofau-
thorized readers. The owner of a policy associated with a data itemd is a principal, whose
information was observed to create its value and who wishes to restrict its exposure by
defining a policy. The reader set specified by the policy denotes principals that are autho-
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rized by the owner to observe and compute ond. A single principal may appear in multiple
reader sets and may own multiple policies. Furthermore, a principal can modify (relax or
strengthen) its own policy on a specific data item by alteringthe reader set accordingly.

By default, all newly-created data items are assigned anempty label(denotedL∅ ≡ {}),
which contains no policies and represents completely public data. We say that a data item
is tainted if it carries a non-empty label. In the case of labels with multiple policies, data
may be observed by a principalp if and only if all of the policies specifyp as an authorized
reader. The intersection of all reader sets in a label forms iseffective reader set.

To illustrate these definitions, consider a data itemd labeled withLd = {{o1 :
r1, r2}, {o2 : r2, r3}, {o3 : r2, r4}}. This label has three policies, owned by principals
o1, o2, ando3. The policy of principalo1 permitsr1 andr2 to observe the value ofd; the
policy of o2 allowsr2 andr3 to observed, and the policy ofo3 grants permissions tor2 and
r4. In this example, the effective reader set contains the common elementr2 and thus, only
this principal has the authority to access and manipulated.

As a more concrete example, consider two employees, Alice and Bob, who are collabo-
rating on an internal project that involves confidential information. Suppose that Alice has
a confidential filef1 on her machine that she wishes to share securely with Bob. Shecan
do this by defining a new confidentiality policypA = {Alice : Alice, Bob} and labelingf1
with pA before releasing it to Bob. This policy allows Bob to access,store, and compute
onf1, while preventing him from disclosing its contents to otherparties. Suppose that Bob
owns another filef2 that is labeled withpB = {Bob : Bob, Charles} and, at a certain point,
decides to combine the information in these two files, for example by cross-referencingf1
against the contents off2. The output of this computation is a new filef3 labeled with
the union of their policies:{pA, pB}. Forgetting that the output contains data derived from
Alice’s private file, Bob inadvertently tries to releasef3 to Charles. However, since Alice’s
policy does not specify Charles as an authorized reader for her data, PIFT must block this
action in order to prevent information leakage.

Suppose that at a later stage, another employee, David, joins the confidential project
and asks for permission to access the associated files (f1 andf3, but notf2). In order to
grant him access tof1, Alice adds David to the set of authorized readers inpA. In order to
makef3 available, Bob establishes a new policypB′ = {Bob : Bob,David} and relabels
f3, replacing his previous policypB with pB′ . Note that as an alternative, Bob could make
f3 available to David by adding him to the reader set ofpB, but this action would have an
unwanted side-effect of exposingf2 to David.

3.2 The Model of Information Flow Tracking

PIFT tracks computation on sensitive data values at the granularity of machine instruc-
tions and propagates the labels accordingly. Some instructions involve combining the val-
ues of multiple (typically two) distinct operands and PIFT handles such operations bymerg-
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int compute_sum(int a, int b) {

return a + b;

}

<compute_sum>:

+0x0 push %ebp

+0x1 mov %esp,%ebp

+0x3 mov 0xc(%ebp),%edx

+0x6 mov 0x8(%ebp),%eax

+0x9 add %edx,%eax

+0xb pop %ebp

+0xc ret

Figure 3.1. An example of instruction-level IFT: thecompute_sum function.

ing the labels of the input values. Label merging is a foundational functional primitive that
produces a new data label by aggregating the policies specified by the input labels. More
formally, given a pair of labelsL1 = {p1} andL2 = {p2}, wherep1 andp2 represent ar-
bitrary policy sets, themerge operator(denoted⊕) produces a new label that corresponds
to the union of the input policy sets:L1 ⊕ L2 ≡ {p1 ∪ p2}. Defined in this manner, label
merging precludes any possibility of information leakage through computation expressed
via binary operators. The resulting label defines the least restrictive confidentiality policy
that also enforces all the restrictions on the input operands used in the computation.

In our current design, PIFT tracks all explicit data flows resulting from variable assign-
ments and arithmetic operations. We also track indirect flows that occur as result of pointer
dereferencing, whereby a sensitive data value is used as a base pointer or an offset to ac-
cess another value in memory. However, PIFT does not currently track implicit channels
that arise from control flow dependencies, such as when a labeled value influences a condi-
tional branch. It is exceedingly difficult to identify such dependencies correctly at runtime
without the benefit of prior static analysis at the source code level.

Next, we provide several basic examples to illustrate the notion of instruction-level la-
bel tracking and clarify the differentiation between explicit and implicit information chan-
nels. As a first example, consider a simple functioncompute_sum, whose C-language im-
plementation and the corresponding assembly code are shownin Figure 3.1. As the name
suggests, this function accepts as input two integer arguments and returns their sum. Sup-
pose that the input variables (a andb) are tainted with data labelsLa andLb, respectively.
When this function is executed in a PIFT-managed environment, PIFT tracks the compu-
tation at the instruction level and propagates the labels inthe following manner: The first
instruction pushes the old value of the stack base pointer (registerebp) onto the stack. In
the context of information flow tracking, we considerebp to be acontrol registerthat does
not normally carry sensitive user data. For this reason, we do not track the propagation of
labels into this register and assume that its contents are non-sensitive (i.e., labeled withL∅)
at all times. Hence, this instruction has the effect of transferring a non-sensitive four-byte
value to the top of the stack and, as a result, PIFT clears the sensitivity label associated
with the respective memory address:Lmem[esp+(0...3)] ← L∅. The instruction at offset 0x3
loadsb from the stack intoedx and to track its effects, PIFT assigns the labelLb to edx:
Ledx ← Lb. Analogously, the next instruction propagates the labelLa intoeax: Leax ← La.
Finally, the instruction at offset 0x9 computes the sum by adding the value inedx to the
contents ofeax and PIFT updates the register labels accordingly, by merging the labels of
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int table[] = {...};

int table_lookup(int index) {

return table[index];

}

<table_lookup>:

+0x0 push %ebp

+0x1 mov %esp,%ebp

+0x3 mov 0x8(%ebp),%eax

+0x6 mov 0x8049700(,%eax,4),%eax

+0xd pop %ebp

+0xe ret

Figure 3.2. An example of instruction-level IFT: thetable_lookup function.

the two input operands:Leax ← Leax⊕Ledx. The last two instructions return control to the
caller by restoring the values ofebp andeip from the stack and since PIFT does not track
the flow of information through these registers, no action needs to be taken.

The example shown in Figure 3.2 implements a basic table lookup operation and illus-
trates the propagation of data labels through pointer dereferencing. Suppose that the table
stores sensitive values marked withLt and that the input argument (table index) is tainted
with Li. We observe from the assembly code that the lookup operationis implemented
via a sequence of two instructions: loadingindex from the stack intoeax (offset 0x3) and
computing a pointer to the respective table entry and dereferencing it intoeax (offset 0x6).
In this scenario, the instruction at 0x3 taints theeax register with the label of the input
argument:Leax ← Li. The instruction at 0x6 performs an indirect memory reference via
a tainted pointer and PIFT handles it by merging the pointer label with the label of the
memory location(s) being accessed:Leax ← Leax ⊕ Lt.

While several previous studies [80, 91] have questioned theviability and usefulness
of tracking indirect pointer-based channels, suggesting that this method tends to generate
explosive and unwanted propagation of taint, we believe that in the context of our design,
tracking labels across pointer access is beneficial and, in fact, essential for correctness. Ta-
ble lookups are an extremely common operation and occur in a variety of scenarios that
involve manipulation of sensitive user data, character setconversion being one specific
example. Failure to track indirect flows arising from table access can easily lead to unde-
sirable loss of sensitivity status in many common scenarios.

While the issue of taint explosion undoubtedly merits an in-depth study, our analysis
and experience with the PIFT prototype suggest that the highly pessimistic conclusions
regarding the utility of pointer tracking presented in these previous studies are unwarranted.
As we demonstrate in Chapter 6, several simple preventive steps can be taken to eliminate
kernel-level taint explosion, allowing us to proceed with comprehensive tracking of all
direct and indirect information channels.

Finally, the example in Figure 3.3 illustrates animplicit information channel that does
not get tracked by PIFT. Note that the value of the input argumentv influences the condi-
tional branch instruction at offset 0xa: ifv is not equal to 0, the execution jumps to 0x15
and otherwise, it proceeds to the next instruction (0xc). Inboth cases, this function loads
an immediate (constant) value (0 or 1, depending on which branch is taken) into a tem-
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int is_nonzero(int v) {

if (v == 0)

return 0;

else

return 1;

}

<is_nonzero>:

+0x0 push %ebp

+0x1 mov %esp,%ebp

+0x3 sub $0x4,%esp

+0x6 cmpl $0x0,0x8(%ebp)

+0xa jne <is_nonzero+0x15>

+0xc movl $0x0,-0x4(%ebp)

+0x13 jmp <is_nonzero+0x1c>

+0x15 movl $0x1,-0x4(%ebp)

+0x1c mov -0x4(%ebp),%eax

+0x1f leave

+0x20 ret

Figure 3.3. An example of instruction-level IFT: theis_nonzero function.

porary memory location and subsequently transfers it intoeax. An immediate value is, by
definition, non-sensitive and hence, this function will always return a value tainted withL∅,
regardless of how the input value in tainted. Putting it differently, this function leaks one
bit of information about the input valuev.

Prior work [58, 26] suggests that implicit channels are extremely difficult to track
through runtime dynamic analysis and most previous approaches that attempt to track such
channels rely on some form of static analysis at the source code level. The inability to
track implicit channels is problematic in the presence of malicious code, since they provide
a relatively easy way to “launder” sensitive data for exfiltration. However, since our current
focus is on securing the flow of information in a benign environment, implicit flows do not
present a major problem for PIFT. In the course of our initialexperimentation with the sys-
tem, we confirmed that non-malicious applications rarely, if ever, leak information through
implicit channels and that our current tracking mechanismscomprehensively capture all
explicit data manipulation activity in several widely-used applications.

3.3 System Architecture

Figure 3.4 sketches the high-level architecture of PIFT. The focal component of our de-
sign is an augmented hypervisor — a thin software layer that exposes the underlying hard-
ware platform in virtualized form and allows several virtual machines to execute concur-
rently. Our current system prototype is based on Xen [89, 6] —an open-source hypervisor
platform that achieves high performance on x86 by implementing theparavirtualization
model of virtualized execution. In our architecture, the hypervisor conceptually extends
the capabilities of the underlying physical machine, giving it the ability to track the flow
of information with high precision — at the granularity of individual bytes and machine
instructions.

All user-facing applications run inside aprotected virtual machine (VM)on top of the
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Figure 3.4. The high-level architecture of PIFT.

hypervisor. In addition, a specializedcontrol VMoperating in background provides a num-
ber of supporting modules: a robust full-system emulator, alabel-aware filesystem, and
drivers for virtualized I/O devices. PIFT-Xen tracks the propagation of labels between the
virtual CPU registers, memory, and disk belonging to the protected VM. The hypervisor
also intercepts all externally observable output actions (e.g., network communication, writ-
ing data to a mobile storage device, sending data to a printer) and enforces security policies,
allowing or denying specific application requests to externalize sensitive data.

We illustrate the overall machinery of PIFT by walking through a typical usage scenario
— enforcing confidentiality policy on the contents of a sensitive file f stored on a user’s
local machine. For simplicity of exposition, we assume thatthe user taints the entire file
with a single label containing one policyp and that this file initially resides on the local
disk.

Initially, all application- and OS-level code in the protected VM executes at native
speed directly on the host CPU, but the hypervisor instruments the hardware page tables in
a manner that allows us to intercept instructions that access tainted memory pages. When
an application first opens the sensitive file, the call is routed via the hypervisor to the label-
aware filesystem running in the control VM. Before returningthe file handle, the filesystem
makes a call to the hypervisor, informing it of the file’s label. In response, the hypervisor
marks the memory pages holding the file contents as tainted and updates the page tables
accordingly.

When an application running in the protected VM tries to access the file contents from
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a tainted memory page, the hardware memory management unit generates a page fault and
immediately transfers control to PIFT-Xen. The hypervisorsuspends the native execution
context of the protected VM, takes a snapshot of its CPU register state, and transfers control
to our augmented emulator, which resumes the execution of the protected VM in emulated
mode. Our current implementation handles emulation using aheavily-modified version of
QEMU, which runs as a user-level process in the control VM. The emulator is instrumented
to track the movement of labels in accordance with the IFT model described in Section 3.2.

On a conceptual level, PIFT associates a data label with eachindividually-addressable
byte in the protected VM, including:

• Volatile memory: PIFT maintains a label for each byte of physical memory allo-
cated to the protected VM. Since a straightforward linear mapping would incur pro-
hibitive storage costs, PIFT stores memory labels in a page table-like data structure
that exploits spatial locality and achieves a reasonable trade-off between the storage
overhead and the latency of label lookups.

• User CPU registers: PIFT maintains a label for each byte of every data register
accessible from application-level (non-privileged) code. On the x86 platform these
include:

– The general-purpose integer registers, excluding the stack pointer (esp) and the
stack base pointer (ebp).

– The FPU register stack (ST0 throughST7).

– Registers associated with the various vendor-specific extensions to the core in-
struction set, such as SSE2 and MMX.

• Network: Our design seeks to provide end-to-end information tracking guarantees
in a distributed setting. To this end, PIFT annotates the payload of outgoing packets
with the associated labels. Upon receiving a packet from a remote PIFT-enabled
endpoint, the hypervisor analogously transfers the labelsassociated with the payload
to memory.

While emulating the protected virtual machine, QEMU executes additional logic to
update data structures that keep track of labels for machineregisters and memory addresses.
When the protected VM ceases to manipulate tainted data, QEMU suspends the emulated
machine context and notifies the hypervisor, which reverts the protected VM back to native
virtualized execution.

When the protected VM tries to externalize tainted data through an I/O device, PIFT
intercepts the device request and invokes the appropriate security checks. These operations
are handled by a group of device-specificinterception modulesthat are implemented as
extensions to the backend device drivers operating in the control VM. As an illustrative
example, if an application tries to externalize the data derived fromf through a virtualized
network interface, the backend driver for the network card would intercept the outgoing
network packets and invoke a security check based on the label and the policies attached
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to the payload. As an example, the policy may specify that thecontents off may not
be forwarded to network endpoints situated outside the organizational boundaries. In this
case, the backend driver would inspect the destination network address and, if this address
specifies an external destination, it would drop the offending packets and signal an error
condition to the frontend driver. The error handler in the frontend component provides a
convenient insertion point for custom policy filters, whichcan either propagate the error
up the stack, log it for audit purposes, or filter the content being externalized. To en-
sure end-to-end tracking between PIFT-enabled endhosts inside the enterprise, the network
enforcement module also prepends all outgoing packets witha shim header carrying the
associated labels.

One must keep in mind that a decentralized label can hold an arbitrarily large set of
policies and each policy can define an arbitrary number of reader principals. Of course,
it would be impractical to annotate each byte of memory and disk space in the protected
VM with a complete and self-contained representation of thecorresponding label, since the
latter can be arbitrarily large. Instead, PIFT introduces alevel of indirection and maps de-
centralized data labels onto a space of opaque 32-bit valuescalledtaint labels. These fixed-
length surrogates carry no inherent meaning and their sole purpose is to provide a concise,
easily-manipulatable, and globally-recognizable name for a decentralized data label. The
mappings between these 32-bit names and the respective datalabels are maintained using
an external infrastructure, whose design and implementation are beyond the scope of this
dissertation. PIFT does not specify how these mappings are to be stored and distributed,
nor does it impose any restrictions on the meaning of the termprincipal. Our system is
also oblivious to the specifics of authentication procedures that establish user credentials
and bind network endpoints to principals.

Given these explicit non-goals, the overall purpose of PIFTis to provide a robust and
comprehensive information flow tracking substrate that operates at the level of abstract taint
labels. Our system monitors the computation inside the protected VM, tracks the propa-
gation of taint labels at the instruction level, and invokesexternal user-supplied security
checks when it detects an attempt to disclose a piece of sensitive data to another principal
through device I/O. It is up to these external security modules to resolve the 32-bit taint
value into the corresponding data label and evaluate the associated policies.

3.3.1 PIFT-ext3: A Label-Aware Filesystem

A comprehensive IFT solution requires the ability to track the flow of tainted data to
and from persistent storage. Our system enables this capability by providing a specialized
label-aware filesystem.

When it comes to designing a persistent storage layer for tainted data, one of the cen-
tral design considerations involves choosing the level of abstraction, at which to maintain
these labels. As an alternative to designing a specialized filesystem, PIFT could instead
maintain the taint metadata at the level of the underlying physical block device, for in-
stance by associating taint labels with individual disk sectors. While a sector-based taint
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storage scheme would lead to a simpler (and arguably more efficient) design, we believe
that a filesystem-based solution is a more desirable option,as it allows PIFT to deliver the
expected behavior in a variety of common usage scenarios. For example, consider the ac-
tion of appending new data to an existing file. If the file has been tainted with a specific
confidentiality policyp, the owner ofp probably expects that any new data subsequently
appended to this file will automatically become associated with this policy, without requir-
ing her to re-apply the label to the entire file. Such semantics would be difficult to provide
in a design, which maintains taint labels only at the level ofphysical disk sectors and, as
the above example suggests, the notion offile-levellabels appears to be useful in practice.

Our label-aware filesystem is based on an augmented version of ext3 [87] — one of
the most robust and mature Linux filesystem implementationscurrently in use. PIFT-ext3
maintains additional on-disk metadata that concisely represents the taint status of each
individual byte offset within a file, as well as a file-level taint label that logically covers
the entire length of the file. The file-level label is maintained in a new dedicated i-node
field, while for byte-level taint values we extend the formatof the leaf indirect block to
carry pointers toblock taint descriptorsalongside pointers to the data blocks themselves.
A block taint descriptor is a new on-disk data structure thatcompactly stores byte-level
taint labels for the corresponding data block.

PIFT-ext3 is a large and complex software module that, like most other full-strength
Linux filesystems, integrates directly with the kernel. Deploying a PIFT-ext3 partition
directly within the protected VM would be highly disruptiveand require significant changes
to its software stack (at the very least — recompiling its kernel or inserting a new custom-
built kernel module). Since we seek a solution that requireslittle or no change to the
software running in the protected VM, we look for alternative and less disruptive methods
of making this functionality available in the user-facing environment.

In the current design, we create and deploy a PIFT-ext3 filesystem inside the control
VM and export it to the user-facing VM through a standard remote file access protocol
(NFSv3). While this split-up configuration is not as efficient as running PIFT-ext3 directly
inside the protected VM and incurs additional latency overhead, it allows us to maintain
full compatibility with unmodified OS binaries. Furthermore, while our current prototype
implementation focuses on supporting paravirtualized Linux guests, this scheme enables us
to reuse our current filesystem implementation for other guest operating systems we may
support in the future. In principle, any guest OS that can runan NFS client can connect to
a PIFT-ext3 partition and take advantage of its taint storage functionality.

As a performance optimization, we designed and implementeda custom RPC transport
mechanism that optimizes the transfer of file data between the front-end (NFS client in the
protected VM) and the backend (NFS server in the control VM) components. By default,
NFS uses TCP as the underlying transport for its client-server communication and the two
sides submit RPC messages directly to the Linux networking stack. NFS commands that
carry file data (such as aWRITE request or a response to aREAD request) must execute several
expensive memory transfer operations that impose a heavy load on the memory subsystem
and increase latency. Typically, the sender first copies thedata from the filesystem cache
into its network socket buffers and then transfers the data to the destination machine via a
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memory copy to its network buffers. When the destination machine receives these packets,
it performs yet another memory transfer to move the data fromthe network buffers into its
local filesystem cache. These memory transfers are unnecessary in our configuration and
represent pure overhead, since the client and the server operate on the same physical host
and share its physical memory address space. Our new RPC transport mechanism (Xen-
RPC) takes advantage of this property and provides a way toefficientlytransfer file data
between a pair of VM instances by setting up temporary sharedmemory page references.
Xen-RPC eliminates the unnecessary memory transfers to andfrom network-level buffers
and enables direct transfers between filesystem caches. Section 4.3 describes Xen-RPC
and the other components of our label-aware filesystem in further detail.

3.3.2 Comparing PIFT to Existing Hypervisor-Based IFT Systems

At a high level, the overall machinery described thus far is analogous to Neon [98]
(another recent proposal) and our system makes use of similar building blocks; namely, a
hypervisor and an emulator augmented with instruction-level IFT. However, Neon fails to
meet the important requirements of high performance and correct yet parsimonious label
propagation for the following reasons:

1. Taint tracking by plain instrumented emulation is extremely expensive. The results
reported in the Neon study indicate that even a simple computation on tainted data
can incur a slowdown on the order of95×when only 1/64th of the input file is tainted
and no data is provided on how the system behaves with a more stressful amount
of taint. Such a slowdown is unacceptable in practice and significantly hinders the
adoption of dynamic real-time IFT systems for everyday use.

2. To be comprehensive, IFT systems have to track indirect information flows resulting
from pointer-based memory references. However, prior work[80] has shown that
this leads to accidental tainting of kernel data structures. Any other application that
interacts with the kernel also acquires taint and eventually, the taint status propagates
to all data in the system. Such taint explosion renders the whole system ineffective
(since the taint ceases to have the correct significance) andsubstantially impairs the
performance of the system, as running in emulated mode incurs a heavy performance
penalty.

PIFT proposes and implements several novel techniques thathelp us address the above
challenges and thus bring real-time information flow tracking significantly closer to the
realm of practicality. Specifically:

1. PIFT performs taint tracking in the emulator at a higher abstraction level than Neon
and other previous systems. Emulators such as QEMU break down each emulated
guest instruction into a series of micro-instructions. Prior work performs taint track-
ing by instrumenting each micro-instruction to propagate taint, which incurs a sig-
nificant, but non-essential overhead. In contrast, PIFT tracks the flow of information
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directly at the level of native machine instructions (x86 inour implementation). As
we explain in Section 4.2, tracking at a semantic level that matches the physical ar-
chitecture of the emulated machine enables a range of optimizations that are difficult
or altogether impossible to apply at the micro-instructionlevel.

2. PIFT performs information flow tracking asynchronously and in parallel with the
main emulation codepath. The key insight is that up-to-datelabel information is
needed only at the point where policies are invoked. Hence, instead of tracking
the propagation of data labels synchronously and in lockstep with emulation, PIFT
generates a separate stream of taint tracking instructionsand executes them asyn-
chronously on another processor core.

In Chapter 5, we demonstrate that asynchronous tracking performed at a level of ab-
straction that directly matches the architecture of the emulated machine can produce
a60× performance improvement over the best previous results.

3. Finally, we identify via empirical evaluation that accidental tainting of kernel data
structures happens through a very narrow interface — a few specific functions in
the kernel. We design techniques to intercept such channelsof taint explosion and
securely control taint flow, such that kernel data structures do not unnecessarily get
tainted. We propose several minor modifications to the Linuxkernel that eliminate
accidental tainting and solve the kernel taint explosion problem for all practical pur-
poses.

32



Chapter 4

Prototype Implementation

We have implemented a proof-of-concept prototype of PIFT and this chapter presents a
detailed description of our implementation. Before we proceed to this description, we note
that PIFT is a large and relatively complex system that unifies a hypervisor-based virtualiza-
tion environment with a fully-featured emulator and augments the resulting platform with
policy enforcement and IFT capabilities. While the traditional practices of software engi-
neering encourage layering, modularization, and well-defined interfaces and these princi-
ples are, without a doubt, useful in a variety of contexts, itis quite common for low-level
systems projects to deviate from these principles and espouse a non-modular monolithic
design in an effort to improve performance.

The Linux kernel, the Xen hypervisor, and QEMU (the core building blocks, on which
our implementation is based) are best viewed as monolithic designs and each of these sys-
tems implements a range of non-trivial optimizations that improve performance, but violate
modularity. Unsurprisingly, PIFT is also an unambiguous example of a monolithic system,
and one that readily forfeits architectural elegance in favor of runtime performance.

This property makes it slightly more challenging to presenta clear and structured de-
scription of our implementation, as its components cannot be easily broken apart and pre-
sented in isolation. Still, we make an effort to modularize our discussion as much as pos-
sible and divide our description of the implementation intofive self-contained sections,
which correspond to the high-level architectural components of PIFT. Section 4.1 describes
the hypervisor-level component and our extensions to Xen. Section 4.2 describes the in-
ternals of the emulation component, which encapsulates most of the IFT functionality. We
present the implementation of our taint-aware filesystem inSection 4.3 and discuss policy
enforcement in Section 4.4. Finally, Section 4.5 explains how to extend the single-node
PIFT implementation to a distributed environment and provide the ability to track informa-
tion flow across network transfers.

While a comprehensive full-system performance evaluationof our prototype is the sub-
ject of Chapter 5, we are also interested in understanding the performance characteristics
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of the individual components. Hence, in the following sections we also report the results of
our low-level performance measurements based on component-specific microbenchmarks.

4.1 The Hypervisor-Level Component of PIFT

The focal component of the PIFT architecture is an augmentedhypervisor, which moni-
tors the protected VM and selectively enables emulation to execute the regions of code that
manipulate tainted data values. Our prototype implementation is based on Xen (version
3.3.0) — a robust open-source hypervisor platform that achieves high performance on com-
modity processors through paravirtualization. In this section, we describe the hypervisor-
level component of PIFT; we start off with a general overviewof Xen (Section 4.1.1) and
then present our extensions (Section 4.1.2).

4.1.1 Overview of Xen

Xen [89, 6] is a widely-used hypervisor-driven virtualization system that originated as
a research project at the University of Cambridge. It operates on commodity hardware
platforms and enables multiple strongly-isolated OS images to run concurrently on a single
host machine.

Although the widely-deployed x86 architecture does not easily lend itself to full vir-
tualization, requiring the use of complex and computationally expensive binary rewriting
techniques to virtualize certain privileged instructions, Xen sidesteps these issues by pre-
senting a somewhat simplified VM abstraction that is similar, but not completely identical,
to the underlying physical machine. This approach, termedparavirtualization[88], allows
Xen to run multiple isolated OS instances on a single physical x86 processor with high per-
formance, but requires the guest OS to be explicitly ported to the paravirtualized interface.

The hypervisor interposes itself between the hardware platform and the set of virtual
machines, mediating all access to the physical resources, as well as all inter-VM communi-
cation. All controlled interactions between the hypervisor and an overlying guest VM are
implemented upon the foundation of two generic control mechanisms: synchronoushy-
percallsand asynchronousevent notifications. Hypercalls are analogous to thesystem call
facility provided by conventional operating systems and allow guest VMs to perform privi-
leged operations by trapping into the hypervisor. As a specific example of hypercall usage,
Xen exposes hardware page tables to the guest environment inread-only mode in order to
ensure proper isolation of memory resources and the guest kernel must issue a hypercall
if it wishes to update an entry in its page table. Recent versions of Xen implement hyper-
calls using the software interrupt instruction (int 0x82) and pass hypercall arguments in
general-purpose integer registers.

Lightweight event notifications are a form of virtual interrupts; they replace the
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usual delivery mechanisms for hardware device interrupts and allow Xen to commu-
nicate other low-level system events to a guest VM asynchronously. Xen events also
serve as the primary means of inter-VM communication, allowing a pair of virtual ma-
chines to signal each other in a controlled and lightweight manner. Pending notifications
are maintained using a per-VM bitmap of event types, which resides in a shared mem-
ory page. To deliver an event to a guest system, Xen updates this bitmap, interrupts
the guest VM, and redirect its execution to anevent callback— a specialized rou-
tine in the guest kernel, whose address (arch.guest_context.event_callback_cs

and arch.guest_context.event_callback_eip) is specified by the guest sys-
tem during startup. The guest also specifies the address of a kernel-level stack
(arch.guest_context.kernel_ss and arch.guest_context.kernel_sp) to be used
for executing the event callback and the hypervisor ensuresthat the stack pointer registers
(ss andesp) are loaded with these values prior to invoking the callbackroutine. Analo-
gously to non-virtualized “bare-metal” platforms, which typically allow the OS kernel to
temporarily suspend the delivery of hardware interrupts, Xen can disable the invocation of
event callbacks at the discretion of the guest kernel.

In addition to mediating the reception of asynchronous device interrupts, Xen inter-
poses on the delivery of all synchronous processor exceptions, such as page faults and
software interrupts. On the x86 platform, this is accomplished by modifying the contents
of the interrupt descriptor table (IDT) and replacing the guest’s descriptor entries with al-
ternate descriptors that reference a hypervisor-level handler. As a result, every hardware
exception triggers a trap into the hypervisor, where the event is examined and, in typical
cases, relayed to the appropriate guest machine for processing. One notable exception in
this scheme, introduced in recent versions of Xen as a performance optimization, pertains
to the use of theint 0x80 instruction. This instruction provides the standard mechanism
for invoking system calls on Linux, but trapping into the hypervisor upon each system call
entry can become a source of significant overhead. Thus, recent versions of Xen allow
paravirtualized Linux guests to register a guest-level interrupt descriptor for this particular
interrupt type. Xen loads this descriptor (arch.int80_desc) directly into the hardware
IDT, thereby allowing guest applications to invoke system calls without the hypervisor’s
involvement.

MMU Virtualization and Shadow Paging

Xen’s approach to virtualizing the functions of the memory management unit (MMU)
deserves special attention in the context of our discussion. In the paravirtualized model,
the guest OS kernel is exposed to real physical memory addresses and assumes partial
responsibility for managing its own page tables. During normal operation, the hypervisor
exposes the guest’s hardware page tables (i.e., those that are loaded into the physical MMU)
directly to the guest OS without any form of translation or virtualization, but restricts the
guest’s access privileges to read-only. Thus, the guest kernel can read its virtual-to-physical
mappings, but does not have the privileges to modify them or to switch page tables. To
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update an entry in its page table, the guest invokes a hypercall to Xen, which performs the
appropriate security checks and applies the update.

Recent versions of Xen support a variation of this strategy,termedshadow paging,
which was initially introduced to facilitate the tracking of writable working sets for live
VM migration [16]. When this mode of operation is enabled, the hypervisor maintains a
private (shadow) copy of each guest page table and exposes these internal copies to the
paging hardware. The shadow tables are completely invisible to the guest environment and
are populated on-demand by translating the corresponding sections of the guest page tables.
When the guest kernel issues a hypercall to update a page table entry (PTE), Xen validates
the request and updates the corresponding PTE in the shadow table.

This approach to virtualizing the MMU incurs additional management overhead, requir-
ing the system to maintain and update two distinct sets of page tables, but makes it easy to
deploy a range of advanced and novel features in a manner thatis entirely transparent to
the guest environment. For example, the hypervisor can be configured to track the writable
working set in the guest system by initializing the shadow PTEs with read-only mappings
that are otherwise identical to the original guest mappings. Then, if the guest VM tries to
write to a page of memory, the hypervisor can trap the resulting page fault and update the
working set information [16]. As we explain below, PIFT implements similar mechanisms
and leverages the shadow paging infrastructure to detect and intercept the initial access to
tainted memory areas.

4.1.2 Transforming Xen into a Comprehensive IFT Platform

Xen provides a suitable and attractive foundation for a comprehensive information flow
tracking platform such as PIFT. While some of the previous efforts [61] propose running
the guest environment inside a full-system emulator (such as QEMU) augmented with taint
tracking, PIFT explores a more intricate design that combines an emulation environment
with a hypervisor-based virtualization platform. In PIFT,these modules operate in concert
to enable a novel feature calledon-demand emulation— the ability to seamlessly move
the guest system betweenvirtualizedexecution within a Xen VM andemulatedexecution
within QEMU. In the first mode, the guest system runs at nativespeed directly on the phys-
ical CPU with minimal supervision and with little or no additional overhead. In the second
mode, the system runs on an emulated processor and suffers the overhead of emulation,
but benefits from the ability to track information flow at the level of machine instructions.
On-demand emulation allows PIFT to improve the performanceof full-system information
flow tracking by dynamically switching between these modes and enabling the IFT com-
putation only when needed. In principle, any piece of OS- or application-level code that
does not interact with tainted data (and thus does not modifythe state of taint labels) can be
executed at native speed in the virtualized mode and heavyweight information flow analysis
must be enabled only for those regions of code that directly manipulate sensitive data.

On-demand emulation is a powerful technique that can help PIFT fulfill its promises of
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comprehensive tracking and high performance. From a practical standpoint, enabling this
feature requires addressing two non-trivial technical challenges, specifically:

1. We must design a mechanism that enables the hypervisor to detect and securely in-
tercept the initial access to tainted data during virtualized execution.

2. We must design a mechanism that enables seamless migration of processor state
between a paravirtualized Xen VM and an emulated machine. The transition must
be performed in a manner that is fully transparent to the protected environment and
does not overburden the system with context-switching overhead.

Fortunately, both mechanisms can be realized with a modest number of extensions to
the standard implementation of Xen and we describe these extensions on the following
pages.

Intercepting the Initial Access to Sensitive Data

The key challenge in trapping tainted data access is efficiency. A naïve implementation
would trap to the hypervisor uponeverymemory access from the guest VM to determine
whether sensitive data is being accessed, but this strategywould incur unacceptable over-
head. Instead, we leverage the capabilities of the hardwarepaging unit and configure it to
generate a trap upon every access to a memory page that is known to contain sensitive data.
To accomplish this, PIFT-Xen creates a set of shadow page tables for the guest environ-
ment, clearing thePAGE_PRESENT (P) flag in the shadow PTEs that hold mappings to tainted
memory pages. Thus, when the guest VM tries to access a tainted page (either for reading
or writing), the memory management unit generates a page fault and transfers control to a
hypervisor-level fault handler.

The set of tainted memory pages is stored using a page-level bitmap — a simple data
structure managed by the augmented emulator and mapped for shared access from the
hypervisor context. This data structure maintains one bit for each page of physical memory
assigned to the protected VM and the emulator is responsiblefor synchronizing its contents
with the fine-grained byte-level memory taint data structures.

The PTE modification logic is implemented via a simple extension to the
_sh_propagate function (defined inxen/arch/x86/mm/shadow/multi.c) — the “heart”
of the shadow paging code, which constructs the shadow PTEs from the corresponding
guest entries. In this function, we clear thePAGE_PRESENT bit in the shadow PTE if the
physical memory page referenced from the PTE is marked as containing sensitive data
according to the bitmap. Figure 4.1 illustrates the format of a page table entry on a 32-bit
machine, highlighting the position of thePAGE_PRESENT bit.

Naturally, we must also extend Xen’s page fault handing mechanisms to differ-
entiate a genuine page-not-present condition from the side-effects of shadow pag-
ing. Our current implementation modifies thesh_page_fault routine (also defined in
xen/arch/x86/mm/shadow/multi.c), which is invoked to handle a hardware page fault
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Figure 4.1. The format of a leaf page table entry on a 32-bit PAE-enabled x86 machine.

in the shadow paging mode. In this function, we walk the guestpage table to obtain the
guest PTE and then examine its contents. If the guest PTE references a valid physical page,
the fault must have been triggered by an attempt to access a tainted memory area and in
this case, PIFT-Xen initiates a transition to emulation by setting theenable_emulation
flag in thevcpu structure representing the faulting virtual processor. Otherwise, if the page
is marked as “not present” in the guest PTE, the hypervisor invokes the non-interception
codepath, which propagates the fault to the guest OS using existing mechanisms.

Note that while the guest system accesses and manipulates tainted data at the granu-
larity of machine words, PIFT-Xen’s faulting mechanism maintains a more coarse-grained
view, which allows us to intercept access only on the basis ofpage-level taint bits. This
mismatch can be seen as an inherent limitation of our design,which hurts performance
in certain cases by incurring unnecessary context switchesand transitions to the emulated
mode. On a conceptual level, this issue bears a strong resemblance to the problem of false
sharing that affects memory coherence protocols on modern multiprocessors [9]. Unfor-
tunately, commodity x86 processors do not offer a mechanismfor generating faults upon
access to specific byte-level memory addresses. However, prior work [72] has demon-
strated that ECC-enabled memory controllers can be used in novel ways to implement
finer-grained memory fault mechanisms and we believe that applying similar techniques to
PIFT can help ameliorate this mismatch.

Switching between Virtualized and Emulated Execution

Migrating the protected system from the virtualized mode ofexecution to the emulated
mode involves suspending the native VM, producing a comprehensive snapshot of its vir-
tual CPU state, and initializing the emulated processor from this snapshot. In PIFT, the
hypervisor and the emulator coordinate their activities and exchange state using a common
data structure (struct shared_info_xen_qemu). This data structure resides on a shared
memory page and Figure 4.2 illustrates its format.

The starting point for a virtual-to-emulated (V2E) transition is the page fault handler
(_sh_page_fault), which, as we explain in the preceding subsection, consults the page-
level taint status bitmap and sets theenable_emulation flag if the page fault was a side-
effect of accessing a tainted memory page. This flag instructs Xen to suspend the native
guest VM and switch to emulation immediately upon return from the hypervisor context.
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struct shared_info_xen_qemu {

struct guest_cpu_context ctxt; /* Snapshot of the virtual CPU */

int evtchn_upcall_pending; /* ’Event pending’ flag */

int status; /* PIFT_EMULATION_REQUESTED or PIFT_EMULATION_COMPLETED */

};

Figure 4.2. The format of theshared_info_xen_qemu structure.
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Figure 4.3. The contents of the hypervisor-level stack uponentry to
restore_all_guest.

The real work begins inrestore_all_guest (xen/arch/x86/x86_32/entry.S) —
the final stage of the hypervisor exit codepath, which restores the guest’s CPU state and
returns control to the VM by executing theiret instruction. Restoring the processor
state involves loading the hardware CPU registers with the corresponding guest register
values. For the purposes of this discussion, it is importantto note that Xen maintains
the guest registers on the hypervisor’s stack, as Figure 4.3illustrates. We modify the
restore_all_guest code block to check the value of theenable_emulation flag. If this
flag is set, the hypervisor invokes the centralpift_emulate_guest function, whose imple-
mentation is illustrated with pseudocode in Figure 4.4. This function can be broken down
into three distinct phases, which correspond to the V2E transition, the period of emulated
execution within QEMU, and the reverse emulated-to-virtual (E2V) transition.

In the first phase, the hypervisor initializes theguest_cpu_context structure, which
encapsulates a comprehensive snapshot of the virtual CPU. Table 4.1 details the individual
fields of this data structure and describes how their values are obtained during the transi-
tion. The snapshot of user-level registers (eax, ebx, esp, eip, and others) is initialized from
the guest CPU context residing on the hypervisor’s stack, while control register snapshots
(cr0, cr3, cr4) are initialized by reading the live values in the corresponding physical reg-
isters. The FPU context is recorded by executing thefxsave instruction, which marshals
the complete state of the FPU into a 512-byte memory buffer. Note that we must also record
and transfer the values of several additional variables that do not represent any specific el-
ements of thephysicalCPU, but are essential to attaining a comprehensive representation
of the virtual machine. These variables can be viewed as artefacts of paravirtualization
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extern struct shared_info_xen_qemu *shared_info;

asmlinkage void pift_emulate_guest() {

/*** Phase 1: virtual-to-emulated (V2E) transition ***/

save_shared_cpu_snapshot() {

save user registers

save segment registers

save FPU state

save control registers

save clock cycle counter

save local and global descriptor table registers

save artefacts of paravirtualiation

}

local_irq_enable(); /* Enable hardware interrupts */

shared_info->status = PIFT_EMULATION_REQUESTED; /* Notify the emulator */

send_guest_vcpu_virq(dom0->vcpu[0], VIRQ_PIFT_EMULATE);

/*** Phase 2: emulated execution ***/

while(shared_info->status != PIFT_EMULATION_COMPLETED) {

process_pending_timers();

if (current->vcpu_info->evtchn_upcall_pending & 0xff) {

shared_info->evtchn_upcall_pending = 1;

mb(); /* Memory barrier */

}

}

/*** Phase 3: emulated-to-virtual (E2V) transition ***/

local_irq_disable(); /* Disable hardware interrupts */

restore_from_shared_cpu_snapshot() {

restore user registers

restore segment registers

restore FPU state

}

invalidate_dirty_shadow_ptes() {

for (each page p in the dirty page list)

sh_remove_all_mappings(current, _mfn(p));

}

current->enable_emulation = 0;

return; /* Return to restore_all_guest */

}

Figure 4.4. The implementation of thepift_emulate_guest function.

and include the kernel stack pointer (kernel_ss andkernel_sp), the address of the event
callback (callback_cs and callback_eip), and the interrupt descriptor to be used for
servicing guest system calls (int80_desc). Once a comprehensive snapshot has been ob-
tained, the hypervisor signals QEMU (operating as a user-level process in the control VM)
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Fields Initialized from
/* User registers */

Values saved on the hypervisor’s stack
unsigned int eax, ebx, ecx,

edx, esi, edi, ebp,

esp, eip, eflags;
/* Segment registers */

Values saved on the hypervisor’s stackunsigned int cs, ss, ds,

es, fs, gs;

/* FPU state */

char fpu_state[512]; Hardware FPU context fetched usingfxsave
/* Control registers */

unsigned int cr0; Physical register value fetched usingread_cr0
unsigned int cr3; arch.guest_table.pfn

unsigned int cr4; Physical register value fetched usingread_cr4
/* Clock cycle counter */

unsigned long long tsc; Physical register value fetched usingrdtsc
/* Global descriptor table */

unsigned int gdt_base, gdt_limit; Physical register value fetched usingsgdt
/* Local descriptor table */

unsigned int ldt_base, ldt_limit; Physical register value fetched usingsldt
/* Artefacts of

paravirtualization */

unsigned int callback_cs; arch.guest_context.event_callback_cs

unsigned int callback_eip; arch.guest_context.event_callback_eip

unsigned int kernel_ss; arch.guest_context.kernel_ss

unsigned int kernel_sp; arch.guest_context.kernel_sp

char int80_desc[8]; arch.int80_desc

Table 4.1. The components of theguest_cpu_context structure (left) and the sources,
from which they are initialized (right).

through a virtual IRQ and instructs it to initiate emulation. When QEMU receives this sig-
nal, it initializes the state of the emulated CPU based on theinformation contained in the
snapshot and launches the main emulation loop.

In the meantime, the native virtual machine enters the second stage of
pift_emulate_guest, during which it waits for the completion of emulated execu-
tion. The current version of Xen does not allow blocking the guest context at an arbitrary
point within the hypervisor, which is why our prototype currently implements a form of
busy waiting. During the waiting period, the native versionof the protected VM has the
appearance of being “stuck” in the page fault handler, whilein reality the VM continues
executing on the emulated processor managed by QEMU. Further, as we explain in Section
4.2.7, all event signals (such as virtual timer interrupts and notifications from paravirtual-
ized I/O devices) sent to the native VM in this phase must be intercepted by the hypervisor
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and relayed to the emulated context in a proper manner. Currently, this is accomplished
by polling thecurrent->vcpu_info->evtchn_upcall_pending variable and propagating
its value toshared_info->evtchn_upcall_pending. The emulator periodically polls the
latter location and, when an event notification arrives, interrupts the emulated CPU and
redirects execution to the guest event callback, imitatingthe actions of the hypervisor.

When QEMU decides to stop emulation and resume native execution, it sig-
nals this decision to the hypervisor by setting theshared_info->status variable to
PIFT_EMULATION_COMPLETED. This action initiates the third and final phase of processing,
in which the emulator and the hypervisor cooperate on performing the reverse (E2V) tran-
sition. QEMU writes the most recent (post-emulation) CPU register values to the shared
snapshot and Xen transfers them back to the hypervisor-level stack of the native VM.

Note that prior to relinquishing control, the hypervisor must update the native VM’s
shadow page tables and synchronize them with the most recentstate of the page-level taint
bitmap in order to ensure that all subsequent accesses to tainted memory locations are
properly trapped. The most straightforward way to accomplish this is by destroying all
existing shadow tables and letting the hypervisor reconstruct them on-demand, one entry at
a time, in response to subsequent page faults. However, thistechnique is not very practical,
since it would incur an enormous performance penalty, triggering page faults uponevery
subsequent memory access irrespective of the page taint status.

PIFT implements a different and somewhat less heavy-handedstrategy based on the ob-
servation that the taint status of a memory page (and hence its shadow PTE) can changeonly
if the page has been modified during emulated execution. Hence, we instrument QEMU
to maintain a list of dirty memory pages and provide this listto the hypervisor during the
E2V transition. The hypervisor walks through the list of shadow page tables, examines
their entries, and reconstructs those that reference a dirty memory page. This technique
minimizes the number of subsequent page faults, but requires scanning all shadow PTEs
to locate all mappings of a specific physical page — still a relatively expensive operation.
Further improvements to our prototype may include adding anauxiliary data structure that
will enable us to identify such mappings more efficiently.

In the final step, thepift_emulate_guest function returns, transferring control back
to the hypervisor exit codepath (restore_all_guest). The hypervisor restores the native
VM’s processor registers from its stack and returns controlto the VM by executing the
iret instruction.

4.2 Information Flow Tracking with QEMU

Our system uses QEMU as a foundational building block for emulation and extends it
with fine-grained information flow tracking capabilities. While the standard implementa-
tion of QEMU offers a self-contained and robust emulation environment, significant mod-
ifications and extensions were needed to transform it into a comprehensive and efficient
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IFT platform. In this section, we describe the design and implementation of our extended
emulator that tracks the flow of taint labels in the guest system and explain how it integrates
with the other major components of PIFT.

Section 4.2.1 starts our discussion by reviewing the designand implementation of
QEMU, with a special focus on its code translation mechanisms. Our approach to taint
tracking is based on augmenting the emulated machine with a virtual hardware extension
in the form of ataint processor. We discuss our general approach and highlight the key
distinctions from earlier taint tracking systems in Section 4.2.2. Section 4.2.3 describes
the instruction set architecture, upon which the taint processor is based and Section 4.2.4
illustrates its usage with several examples. We discuss theinternals of the taint processor
and introduce the key data structures for managing registerand memory taint labels in Sec-
tion 4.2.5. Section 4.2.6 discusses how our system exploitsasynchrony and parallelism to
improve the runtime performance of taint tracking. Finally, Section 4.2.7 discusses how
we integrate the augmented version of QEMU with the other core components of the PIFT
architecture, such as the hypervisor and the taint-aware filesystem. We defer the detailed
performance evaluation of our taint tracking substrate to Chapter 5.

4.2.1 Overview of QEMU

QEMU [7, 70] is a robust open-source processor emulator, originally developed by
Fabrice Bellard. It provides a full-system emulation environment for several popular hard-
ware platforms, including x86, x86-64, ARM, Alpha, ETRAX CRIS, MIPS, MicroBlaze,
PowerPC, and SPARC. The emulated (guest) machine executes in the context of a single
user-space emulator process in the host OS and all elements of the guest machine state, in-
cluding its CPU registers, physical memory, and various peripherals, are represented with
corresponding data structures in the address space of this process. To emulate memory
accesses from the guest machine, QEMU implements a software-based memory manage-
ment unit that provides guest-virtual to guest-physical address translation, mimicking the
behavior of a hardware MMU for the guest architecture. In addition, a software-based TLB
maintains mappings between guest virtual addresses and thecorresponding addresses in
the emulator’s own virtual address space.

Unlike Xen and other paravirtualized environments, QEMU does not require patching
or otherwise modifying the guest operating system and does not alter the software-hardware
interface. Conversely, QEMU aims to provide an accurate software-based representation
of the guest hardware platform, whose behavior is indistinguishable from that of a real
“physical” machine from the vantage point of the guest OS.

Like other powerful emulators, QEMU achieves good performance by implementing
just-in-time dynamic code translation mechanisms. The basic unit of granularity for the
purposes of code recompilation is atranslation block, defined as a block of guest machine
instructions terminated by a jump or by a CPU state change which cannot be deduced
statically by the compiler [71]. When the emulator first encounters a new translation block
(Bt), it analyzes the constituent instructions and generates acorresponding block of code
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in the host instruction set (Bh), which emulatesBt and updates the logical representation
of the guest machine according to its effects. The resultingcode blockBh is executed
natively on the host CPU and when its execution completes, control is transferred back to
the main emulation dispatch loop. At that point, QEMU examines the emulated instruction
pointer (eip) to locate the next translation block and then executes the corresponding native
code block. In cases where the new instruction pointer valuecan be determined in advance
(i.e., at the time of code translation), QEMU can patch the resulting code so that it jumps
directly to the next native block without returning controlto the central dispatch loop —
an important performance optimization referred to astranslation block chaining. For the
purposes of PIFT, the emulated processor is simply a replicaof the physical host CPU and
thus, the dynamic code compiler is configured to perform x86-to-x86 translation.

Just-in-time code recompilation is a well-known techniquefor improving the runtime
performance of emulated systems and has been successfully applied in a number of con-
texts. This approach is more complex, but at the same time vastly more efficient, than
its main alternative — straightforward binary interpretation. Early on in the development
process, we experimented with several other x86 emulation environments, which were all
based on binary interpretation. We have found that they tendto impose a severe slowdown
(up to 3 orders of magnitude relative to native code execution) and such costs are clearly
unacceptable for our purposes.

On a more concrete level, code recompilation in QEMU is a two-stage pro-
cess. In the first stage, the “frontend” component of the compiler (implemented in
target-i386/translate.c) disassembles a basic block of guest code one instruction at
a time and transforms it into a machine-independent intermediate representation. In this
intermediate form, the code is expressed as a sequence of RISC-like microinstructions
based on the TCG (Tiny Code Generator) notation. In the second phase, the “backend”
component (implemented intcg/i386/tcg-target.c) translates the TCG representation
into a block of native instructions for the host machine. Several important optimizations,
including liveness analysis and constant expression evaluation [5], are attempted during
this stage. The results of code translation are cached in a pre-allocated memory buffer,
which allows QEMU to amortize the computational costs of recompilation.

Next, we elucidate the inner workings of the QEMU code translator with a concrete
example. Consider thepush %ebx instruction, which pushes one of the general-purpose
registers onto the stack. Figure 4.5 demonstrates the output from both stages of code trans-
lation for this particular instruction. In the first stage, QEMU decomposes it into a series of
six TCG microinstructions. The first microinstruction loads a 32-bit word located at offset
0xc from the memory address pointed to byenv into a temporary internal variabletmp0.
env is a pointer to a global data structure that maintains the complete state of the guest
CPU and offset0xc represents the location of the emulatedebx register within this data
structure. Hence, this microinstruction has the effect of transferring the current value of
the guestebx register into a temporary variabletmp0. Using similar machinery, the second
microinstruction loads the emulated stack pointer into a temporary variabletmp2. The next
two microinstructions decrement the value intmp2, thereby updating the stack pointer in a
manner that reflects the effects of a push operation with a downward-growing stack. Mi-
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push %ebx

(1) ld_i32 tmp0,env,$0xc
(2) ld_i32 tmp2,env,$0x10
(3) movi_i32 tmp14,$0xfffffffc
(4) add_i32 tmp2,tmp2,tmp14
(5) qemu_st32 tmp0,tmp2,$0x0
(6) st_i32 tmp2,env,$0x10

Host instructions (x86)

mov 0xc(%ebp),%eax
mov 0x10(%ebp),%edx
mov %edx,%ecx
add    $0xfffffffc,%ecx
mov %eax,%ebx
mov %eax,0x6b08(%ebp)
mov %ecx,0x6b0c(%ebp)
mov %ecx,%edx
mov %ecx,%eax
shr $0x8,%edx
and    $0xfffff003,%eax
and    $0xff0,%edx
lea    0x30c(%edx,%ebp,1),%edx
cmp (%edx),%eax
je 0xad29f554
mov %ecx,%eax
mov %ebx,%edx
xor %ecx,%ecx
call   0x8162ce0
jmp 0xad29f55b
mov %ecx,%eax
add    0x8(%edx),%eax
mov %ebx,(%eax)
mov 0x6b0c(%ebp),%eax
mov %eax,0x10(%ebp)

(1)

(2)

(3,4)

(5)

(6)

Intermediate representation (TCG)

Guest instruction (x86)

Stage 1

Stage 2

Figure 4.5. An example of dynamic code translation in QEMU.

croinstruction 5 performs an emulated memory store, which writestmp0 (holding the value
of theebx register) into the memory location that corresponds to the new top of the stack.
The last microinstruction writes the updated stack pointerto its permanent location within
the globalenv structure.

In the second phase of code translation, QEMU transforms theabove sequence of mi-
croinstructions into native code for the host processor. Inthis phase, the compiler maps
the abstract temporary variables onto the host CPU registers and attempts several optimiza-
tions. The block of machine instructions that emerges from this phase represents the final
results of the translation process. As Figure 4.5 shows, it contains 25 instructions and
combines two distinct execution paths segregated by a conditional branch. The “fast” path
handles the case where the address translation entry for thecurrent stack page is present in
the software TLB, while the “slow” path, invoked in the eventof a TLB miss, calls a pre-
compiled helper routine (call 0x8162ce0) to resolve the translation entry using the guest
page table. The fast execution path contains a total of 20 machine instructions, which in-
clude 9 memory accesses and 1 conditional branch. Viewed collectively, these numbers can
be taken as a rough approximation of the fundamental cost of emulating apush instruction
with the current implementation of QEMU.

In a number of special cases, QEMU refrains from dynamic codegeneration in the
second stage of translation and instead redirects the host processor to a statically-compiled
native routine, which updates the state of the emulated machine in the desired manner.
This method of emulation is used to handle instructions withcomplex semantics and side-
effects (often involving conditionals on the runtime stateof the machine), for which writing
a dynamic code translator would be a cumbersome and error-prone undertaking.

Figure 4.6 illustrates emulation using statically-generated helper routines on the ex-
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sysenter

call helper_sysenter

QEMU helper routine

void helper_sysenter(void) {
if (env->sysenter_cs == 0)

raise_exception_err(EXCP0D_GPF, 0);

/* Update EFLAGS and the current privilege level */
env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
cpu_x86_set_cpl(env, 0);

/* Load the new code and stack segment selectors */
cpu_x86_load_seg_cache(env, R_CS, 

env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK |
DESC_P_MASK | DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK |
DESC_A_MASK);

cpu_x86_load_seg_cache(env, R_SS, 
(env->sysenter_cs + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK |
DESC_P_MASK | DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);

/* Update the stack pointer */
env->regs[R_ESP] = env->sysenter_esp;

/* Update the instruction pointer */
env->regs[R_EIP] = env->sysenter_eip;

}

Intermediate representation 
(TCG)

Guest instruction (x86)

Stage 1

Figure 4.6. An example of code translation with static instruction handler routines.

ample of thesysenter instruction. This x86 instruction provides an efficient mechanism
for invoking system calls and transferring control to the OSkernel without incurring the
full overhead of a software interrupt. This instruction hasrelatively complex semantics,
which involve changing the processor’s privilege level, modifying several bits in theeflags
status register, loading the new code and stack segment descriptors from the global de-
scriptor table, and finally setting the instruction and stack pointers to preconfigured val-
ues maintained in a pair of designated model-specific registers (sysenter_eip_msr and
sysenter_esp_msr). Under certain abnormal conditions, such as whensysenter_cs_msr

contains an invalid kernel code segment selector, this instruction raises a processor ex-
ception and transfers control to a kernel-level exception handler routine instead of the
system call handler. To emulate this complex sequence of operations, QEMU invokes a
pre-compiled helper functionhelper_sysenter, whose source code is shown on the right
side of Figure 4.6.

This emulation strategy results in a more readable and less error-prone implementa-
tion; after all, a C-language function is much easier to debug and maintain than a piece
of compiler code that dynamically synthesizes a functionally equivalent block of machine
instructions. However, as is often the case with systems software, readability and maintain-
ability come at the cost of performance. Invoking a statically-compiled helper routine from
the emulator context incurs the full costs of a function callon the x86 platform. These
include the overhead of adjusting the stack frame and the costs of saving and restoring
the host machine registers used as temporaries by the helperroutine. Further, a statically-
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compiled instruction handler does not easily integrate with the dynamic code generator and
cannot benefit from its liveness analysis and register allocation optimizations.

4.2.2 Extending QEMU with Taint Tracking: Approach Overvie w

Having provided a brief introduction to QEMU and its code translation mechanisms,
we can now discuss our approach to designing a comprehensiveinformation flow tracking
substrate on top of this emulation technology. Doing so requires addressing several impor-
tant design questions. Perhaps most crucially, we must consider and decide at what level of
abstraction we should track the flow of sensitive information (represented by taint labels)
in the guest environment.

One possible approach, and one that has been extensively explored in prior work, is to
track the propagation of taint labels at the level of TGC primitives. This can be accom-
plished by instrumenting each microinstruction handler with additional logic that updates
the taint data structures in the corresponding manner. As anillustrative example, consider
the microinstructionadd_i32 tmp2,tmp2,tmp14 from the code fragment shown in Fig-
ure 4.5. When the backend compiler reaches this instruction, it generates a block of host
machine code that adds the value stored intmp14 to the contents oftmp2. With this ap-
proach, the compiler extends the output with an additional sequence of instructions, which
merges the taint label oftmp2 with the label oftmp14 and taintstmp2 (the destination
operand) with the resulting label. Other microinstructions are handled in an analogous
manner.

This approach to taint tracking is straightforward, convenient, and relatively easy to
implement, since TGC microinstructions have very simple semantics. However, as we
demonstrate below, this technique inevitably imposes a drastic performance penalty that
would render the resulting implementation unusable in our target setting, i.e., real-time IFT
for interactive user-facing applications. However, despite this inherent performance hit, all
previous systems [61, 41, 98] that have attempted to extend QEMU with instruction-level
taint tracking employ this technique.

PIFT starts with the same foundational building block — the QEMU emulator, but takes
a very different approach and, accordingly, makes different trade-offs. While previous
techniques tend to intertwine emulation with taint tracking, our approach views them as
two separate and, for the most part, independent computations. In conceptual terms, our
system offloads the taint tracking workload to a dedicatedtaint processor— a specialized
hardware extension to the x86 architecture similar to a SIMDmodule for vector algebra or
an FPU. We devise a new instruction set architecture (ISA) for expressing taint propagation
actions in a concise and efficient form and this new ISA provides the primary means of
programming the taint processor.

While our long-term objective is to implement the taint processor in real hardware,
this extension takes on avirtual form in our current design and we emulate its functional-
ity in software via a set of functional extensions to QEMU. Asa result, PIFT provides a
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Figure 4.7. Our extensions to QEMU’s dynamic code translator.

software-only solution that is fully compatible with existing and widely-deployed hardware
platforms, while retaining the potential for incremental migration to hardware-assisted plat-
forms at a later stage.

Our design makes several modifications to QEMU’s dynamic code compiler, as illus-
trated in Figure 4.7. For each input block of guest machine code, the code translator in
PIFT generates two distinct sequences of instructions: theemulated version of the original
guest code and the corresponding block oftaint tracking instructionsfor the taint processor.
To produce the latter, we interpose at the first stage of the code translation process, where
the initial stream of guest x86 instructions is disassembled and converted into intermediate
code blocks. We examine each instruction in the input block,determine its effects on the
state of taint labels in the system, and synthesize some number of taint tracking instructions
that capture these effects. Crucially, the taint tracking code is generated directly from guest
x86 instructions, prior to their decomposition into the TCGnotation. As we explain below,
preserving the semantics of the original guest instructionset can be highly beneficial to
performance, as it enables the taint processor to apply a number of important optimiza-
tions. During emulation, QEMU submits these auxiliary blocks of instructions to the taint
processor in the order that matches the execution sequence of actual code blocks in the
emulated machine. The taint processor executes taint tracking instructions in a sequential
manner and updates the state of labels in the system according to their specifications.

The main complication with the basic scheme described aboveis that in certain scenar-
ios, the information needed to fully specify a taint tracking action may not be available at
the time of code translation. In other words, given a guest machine instruction, the code
translator must determine its precise effects on the state of taint labels in the emulated sys-
tem and, in certain cases, this requires knowing something about the system’s runtime state.
To illustrate this problem, we return to the example involving thepush %ebx instruction,
which pushes one of the guest machine registers onto the stack. In order to account for the
flow of information produced by this instruction, we must propagate the taint label from the
source register to the memory location that represents the top of the stack. While the taint
source operand (registerebx) is encoded into the instruction and is thus readily available to
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push %ebx

(1) ld_i32 tmp0,env,$0xc
(2) ld_i32 tmp2,env,$0x10
(3) movi_i32 tmp14,$0xfffffffc
(4) add_i32 tmp2,tmp2,tmp14
(5) qemu_st32_logaddr tmp0,tmp2,$0x0
(6) st_i32 tmp2,env,$0x10

Intermediate representation (TCG)

Guest instruction (x86)

SetMemReg(Dst=Log[0], Src=ebx)

Taint tracking instruction

0xc123450 Taint argument log

Figure 4.8. An illustrative example of dynamic code translation in PIFT.

the compiler, the destination memory address is, of course,not known at the time of code
analysis.

To handle such cases, the compiler instruments the emulatedversion of the problematic
instruction with a small amount of additional logic that resolves these unknown values at
runtime and communicates them to the taint processor. In ourcurrent implementation,
these dynamic temporary values are communicated via a shared circular memory-based
log. In operational terms, the emulator and the taint tracker are in a producer-consumer
relationship and use the log to coordinate their activities.

Most of these problematic cases involve instructions that manipulate (read or update)
the contents of memory, as tracking the resulting flow of information requires knowing
the exact physical address of the memory operand. To handle this particularly com-
mon scenario, we define new variants of the emulated load and store microinstructions:
qemu_ld_logaddr and qemu_st_logaddr (replacing the original versionsqemu_ld and
qemu_st, respectively). In addition to reading or updating a memorylocation in the em-
ulated machine, these microinstructions also resolve the physical address of the memory
operand and record it into the shared log for subsequent consumption by the taint processor.

Figure 4.8 illustrates how our system handles thepush instruction from one of
the previous examples. Upon reaching this instruction, PIFT’s dynamic compiler syn-
thesizes the corresponding taint tracking instruction, which has the following form:
Set(Dst=MEM_LONG, Src=ebx, ArgLogPos=0). This instruction sets the taint label for
the destination memory address to the label associated withthe source register operand.
Since the destination address cannot be resolved at the timeof code translation, the com-
piler specifies a placeholder that references slot 0 in the taint argument log. To generate
this address, the compiler modifies the intermediate notation, replacing the emulated store
microinstruction withqemu_st_logaddr. At runtime, this microinstruction causes the em-
ulator to compute the physical address of the destination memory operand and write it into
the argument log.
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TCG microinstruction Taint tracking action
(1) ld_i32 tmp0,env,$0xc Ltmp0 ← Lebx

(2) ld_i32 tmp2,env,$0x10 Ltmp2 ← L∅(= Lesp)
(3) movi_i32 tmp14,$0xfffffffc Ltmp14 ← L∅(= LConstant)
(4) add_i32 tmp2,tmp2,tmp14 Ltmp2 ← Ltmp2 ⊕ Ltmp14

(5) qemu_st32 tmp0,tmp2,$0x0 Lmem[tmp2+(0..3)] ← Ltmp0

(6) st_i32 tmp2,env,$0x10 No-op

Table 4.2. The sequence of taint tracking actions required to handle thepush %ebx in-
struction with previous approaches.

To summarize, PIFT proposes a novel design for information flow tracking using
QEMU that differs from the previous techniques in two crucial respects:

1. PIFT explicitly decouples information flow tracking fromemulation, treating them
as two separate and largely independent computations.

2. PIFT tracks the flow of information at a higher level of abstraction that captures the
specifics of the guest ISA.

We believe that the above points warrant a more detailed analysis and we now proceed
to examining these design choices with the goal of articulating their main advantages and
implications.

One of the central contentions of this dissertation is that tracking the flow of information
at a level that directly matches the semantics of the guest instruction set is inherently more
efficient than tracking at the microinstruction level. While we defer the detailed description
of the taint processor and its instruction set to the next subsection, it is quite easy to show
informally that our approach can be expected to provide significant performance gains.

First and foremost, mapping the stream of guest machine instructionsdirectly onto
taint-tracking instructions, without first decomposing them into TCG, allows us to avoid
tracking the propagation of taint through the intermediateinternal variables defined by the
TCG language. Looking again at the decomposition ofpush in Figures 4.5 and 4.8, we note
that if we instrument each microinstruction with taint tracking, as previous systems do, we
must track the propagation of labels through the intermediate variablestmp0, tmp2, and
tmp14. This results in five distinct taint propagation actions, asillustrated in Table 4.2. In
contrast, handling this example in PIFT requires only one taint transfer action — one that is
specified by the taint tracking instructionSet(Dst=MEM_LONG, Src=ebx, ArgLogPos=0).

Another noteworthy point is that the presence of higher-level semantics enables a range
of novel and highly effective optimizations that are difficult or altogether impossible to ap-
ply at the microinstruction level. As an illustrative example, consider the widely-usedrepz
movsd [19] mnemonic on x86, which provides an efficient way to copy an arbitrarily-sized
region of memory between a pair of virtually-contiguous memory buffers. This instruction
is commonly used to implement thememcpy C library routine and the Linux kernel uses
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repz movsd to transfer file data between an application-level buffer and the kernel-level
page cache when servicingsys_read andsys_write system calls. To emulate this seem-
ingly simple instruction, QEMU converts it into a looped sequence of microinstructions.
Each iteration of the loop decrements a counter and transfers one word of data between
the two buffers using one emulated load (qemu_ld) and one emulated store (qemu_st) mi-
croinstruction. Instrumenting these microinstructions with IFT logic (the approach taken
by earlier systems) implies that memory taint labels are also updated one word at a time.
The costs of traversing the memory taint data structures in each iteration of the loop quickly
add up and can lead to a tremendous slowdown — up to 3 orders of magnitude relative to
the data transfer itself.

PIFT handles this situation quite differently. In the code translation stage, our com-
piler examines therepz movsd guest mnemonic and emits its taint tracking equivalent:
RepSet(Dst=MEM_LONG, Src=MEM_LONG). When this instruction executes, the taint pro-
cessor carefully examines the buffer size and alignment properties and optimizes the trans-
fer accordingly. In a common scenario,repz movsd is invoked with page-aligned memory
buffers and the source page(s) carry uniformly-tainted data. In this case, it suffices to trans-
fer page-level taint values, instead of copying the constituent fine-grained taints one word
at a time. Assuming 4KB-sized memory pages, 32-bit words, and a 32-bit taint label space,
this technique reduces the computational burden of taint tracking by a factor of 1024 in
this common case. It is essential to note that this optimization is enabled by the presence
of higher-level semantics. In this example, they allow the taint processor to recognize an
important special case — a contiguous transfer between page-aligned regions of memory
— and such information would be difficult to recover oncerepz movsd is decomposed into
a loop of microinstructions.

Finally, by explicitly separating information flow tracking from emulation and treating
them as two loosely-coupled computations, PIFT gains additional flexibility in scheduling
these tasks. In particular, we can let the taint tracking computation proceedasynchronously
with respect to the main emulation context. Moving the overhead of taint tracking out of the
critical execution path in this manner allows us to improve application response time and
interactivity, as we demonstrate in our evaluation. On multicore architectures, performance
can be further improved by executing the emulation and tainttracking contexts concurrently
on two distinct processor cores. The detailed design of asynchronous parallel taint tracking
is provided in Section 4.2.6.

Granted, our approach has costs. First, our implementationis significantly more com-
plex than previous systems. While annotating TCG microinstruction handlers with taint
tracking logic is a relatively straightforward task, crafting a specialized machine code trans-
lator for the x86 instruction set is a more daunting undertaking. Synthesizing taint tracking
instructions requires understanding and correctly handling the rich semantics and intrica-
cies of the guest instruction set. However, notwithstanding the complexity and semantic
richness of the x86 ISA, we have found that its taint propagation effects can be efficiently
mapped onto a modest number of well-chosen taint tracking instructions, which we present
in the next subsection.

The second concern pertains to the portability of our implementation. Our specialized
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Opcode (4 bits) Dst (6 bits) Src (6 bits)

ArgLogPos (16 bits)

Figure 4.9. The general format of a PIFT taint tracking instruction.

code translator and taint tracking processor extensions were designed for the x86 machine
architecture and are not directly usable on other platforms. To perform taint tracking on a
different processor architecture (such as ARM or PowerPC),we will have to design a new
virtual instruction set and implement a new code translator. However, given the dominant
deployment of x86-based hardware, we believe that this lossof generality is a prudent cost
to pay for the performance improvements.

4.2.3 The PIFT Instruction Set

PIFT constructs a virtual processor extension and a new instruction set for manipulating
taint labels. This instruction set tries to capture the precise semantics of the guest machine
ISA and avoids decomposing multi-stage taint propagation actions associated with complex
x86 instructions into groups of simpler actions, since the latter are necessarily suboptimal
from the performance standpoint. Each taint tracking instruction specifies a certain trans-
formation on the state of taint labels in the emulated system, including the taint status of its
CPU registers and physical memory.

General instruction format: A PIFT taint tracking instruction comprises a fixed-length
32-bit static component and a variable number of dynamically-generated instruction ar-
guments. The static portion of an instruction is synthesized by the PIFT compiler during
the first stage of code translation. The dynamic component contains a set of instruction-
specific arguments, whose values depend on the runtime stateof the guest system and thus
cannot be determined at compile time. As described in the previous section, these values
are resolved at runtime from the main emulation context and communicated to the taint
processor through a circular memory-based log.

Figure 4.9 illustrates the high-level format of the static instruction component. In its
general form, this component specifies a source and a destination operand, an instruction
opcode, and anArgLogPos value, which indicates the position of the first dynamic argument
for this instruction in the taint tracking log. This position is specified as an offset relative
to the starting point of the argument array for the current translation block. For instructions
that require more than one dynamic argument, additional arguments are written to the log
at consecutive positions and thus, the taint processor can easily locate them based on the
position of the first argument.
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Fixed
0x0
NULL

Integer registers
0x01 0x02 0x03 0x04 0x05 0x06
eax ecx edx ebx esi edi

FPU registers
0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E
st0 st1 st2 st3 st4 st5 st6 st7

Memory
0x0F 0x10 0x11 0x12 0x13

MEM_BYTE MEM_WORD MEM_LONG MEM_QUAD MEM_10BYTES

Other
0x14 0x15 0x16
TMP1 TMP2 NONE

Table 4.3. Taint tracking instruction operands.

Instruction operands: The Src and Dst fields specify the source and destination
operands for a taint transfer action. Table 4.3 lists the legitimate operand values and we
describe them in further detail below.

0x00: This value represents a fixed “null” taint label. It canonly be specified as a source
operand and provides an easy and efficient way to clear the destination’s taint label
(i.e., replace it withL∅).

0x01-0x0E: Values in this range provide a means of manipulating the taint status of guest
machine registers. As in previous approaches [98, 41], PIFTtracks the current taint
label for each of the data registers, which include the general-purpose integer regis-
ters and the FPU register stack. Our current prototype does not track the propagation
of labels through SIMD vector data registers associated with the various vendor-
specific extensions to the core x86 architecture, but we planto implement support for
at least one such extension in future work. Also in line with previous efforts, PIFT
does not maintain taint labels for system registers that manage the processor’s control
plane and system resources. These include the stack pointer(esp), stack base pointer
(ebp), instruction pointer (eip), segment registers, control registers, descriptor table
registers, status flags, MSRs, hardware counters, and others. Maintaining taint labels
for these low-level components would incur unnecessary overhead, since it would be
unusual for sensitive application-level data to propagateinto these registers.

0x0F-0x13: Values in this range are used to specify memory operands. Memory access
instructions on the x86 platform come in different forms andsupport several dif-
ferent units of transfer, includingbytes, words (16 bits), long words(32 bits), and
quad-words(64 bits). PIFT supports all of these options by providing a matching
set of operands:MEM_BYTE, MEM_WORD, MEM_LONG, andMEM_QUAD. The last memory
operand type (MEM_10BYTES) was added to handle an important special case — mov-
ing numbers in the 80-bit extended precision format betweenmemory and the FPU
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Opcode Mnemonic Accepts destination operand Accepts source operand
0x0 Set yes yes
0x1 Merge yes yes
0x2 CondSet yes yes
0x3 CondMerge yes yes
0x4 RepSet yes yes
0x5 RepMerge yes yes
0x6 FPUPush no yes
0x7 FPUPop yes no
0x8 ExtendedOp n/a n/a

Table 4.4. Taint tracking instruction opcodes.

register bank using instructions such asfld andfstp. Note that in most cases, the
actual physical address of a memory operand cannot be resolved at compile time and
must be supplied to the taint processor in the form of a dynamic argument.

0x14-0x15: We define two internal temporary variables (TMP1 andTMP2) for storing in-
termediate results during multi-stage taint label computations. These variables assist
us in a small number of special cases that involve a complex guest instruction and a
specific pattern of taint propagation. More concretely, these scenarios require merg-
ing taint labels from multiple sources and propagating the resultant label to multiple
destinations. Saving the result of the merging step in a temporary variable allows us
to avoid recomputing it for each destination.

0x16: This value indicates that the operand field is unused.

Instruction opcodes: PIFT defines 9 distinct instruction opcodes which, in combination
with the abovementioned set of operands, allow us to expressa wide range of taint manip-
ulation actions. We summarize these opcodes in Table 4.4 anddescribe them more fully in
the following paragraphs.

[0x0] Set: This opcode sets the destination operand’s taint label to the label of the source
operand:LDst ← LSrc.

[0x1] Merge: This opcode merges the destination operand’s taint label with the label of
the source operand:LDst ← LDst ⊕ LSrc.

[0x2] CondSet: This opcode implements theconditional setaction, which sets the destina-
tion operand’s taint label to the label of the source operandif the value of a condition
flag is non-zero. This opcode was added to provide support forconditional transfer
instructions, such ascmov, defined by the x86 architecture. The emulator evaluates
the conditional parameter at runtime and communicates it tothe taint processor in
the form of a dynamic argument.

54



[0x3] CondMerge: This opcode implements theconditional mergeaction predicated on
the value of a dynamic argument.

[0x4] RepSet: This opcode implements therepeat setaction, which propagates the taint
label from the source operand to multiple contiguous instances of the destination
operand. This opcode was added to provide support for repeated transfer instructions
defined by the x86 architecture. One particularly importantexample is therepz
movs instruction, which allows applications to set up an arbitrarily long data trans-
fer between a pair of contiguous memory buffers. In our experience, such repeated
transfer actions have proved to be among the most difficult tohandle and the main
complication arises from the fact that thenumber ofdynamic arguments for these in-
structions cannot be determined (or reliably estimated) atcompile time. To see why,
we must consider the fact that whilerepz movs defines a virtually contiguous mem-
ory copy operation, the resulting data transfer may not be contiguous at the level of
physicalmemory pages. Hence, in order to describe the effects of thisinstruction to
the taint processor, it is not enough to simply specify the starting memory addresses
and the length of the transfer; we must examine the side-effects at the level of physi-
cal pages and record the resulting physical addresses into the taint argument log. The
problem is that the number of such addresses (and hence the number of log slots we
must reserve prior to emulating the instruction) cannot be determined at the time of
code translation — it depends on the length of the transfer which is, in turn, specified
by the runtime value of theecx register.

PIFT handles this nontrivial scenario by allocating a set ofsecondary argument logs,
which can grow and shrink dynamically. When handling a repeated transfer guest
instruction, the emulated version of the instruction reserves some number of such
logs and fills them with the necessary address information. Note that since memory
addresseswithin a page are physically contiguous, it suffices to record one physical
address for each page in the source and destination buffers.These arrays of page-
level addresses, together with the starting page offset in both buffers and the transfer
length, provide sufficient information to fully describe the effects of the instruction
for taint tracking purposes. The addresses of these secondary logs are then commu-
nicated to the taint processor via the main argument log.

[0x5] RepMerge: This opcode implements therepeat mergeaction. It is semantically and
functionally equivalent to theRepSet instruction described above, except that the
labels in the destination buffer are merged with (rather than replaced by) the source
labels.

[0x6] FPUPush: This opcode pushes the source operand’s taint label onto the label stack
representing the FPU register bank:
Lst7 ← Lst6

...
Lst1 ← Lst0

Lst0 ← LSrc.

[0x7] FPUPop: This opcode pops the topmost value from the label stack representing the
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FPU register bank and taints the destination operand with this value:
LDst ← Lst0

Lst0 ← Lst1

...
Lst6 ← Lst7

Lst7 ← L∅.

[0x8] ExtendedOp: While the set of opcodes and operands described above offers a pow-
erful language for expressing taint propagation actions, some elements of the x86
instruction set do not naturally fit into this framework. These non-conforming in-
structions have relatively complex taint tracking side-effects that are not easily ex-
pressible via the source-destination operand notation. Insome cases, the instruc-
tion’s exact semantics (and hence its information flow effects) are influenced by a
set of conditionals on the state of the emulated machine, which must be evaluated at
runtime and communicated to the taint processor.

We consider such problematic instructions on a case-by-case basis and define a set
of custom taint tracking routines to handle them. In order toinvoke one of such
custom handlers at runtime, the compiler synthesizes anExtendedOp instruction and
specifies one of theextended opcodevalues in the 12 least-significant bits, replacing
the Dst and Src fields. Next, we enumerate these extended opcodes and briefly
comment on their usage:

[0x0] ExtFSave

Dynamic arguments:

DstMemStartAddr DstMemEndAddr RegisterAddrMask

This extended opcode handles thefsave guest instruction, which saves the en-
tire state of the guest FPU (marshalled into a 108-byte data structure) to the
memory location specified by the destination operand. For the purposes of in-
formation flow tracking, we must propagate taint values fromthe individual
components of the emulated FPU to the corresponding regionsof memory and
hence, the emulator must provide the destination memory address as a dynamic
argument to the taint processor. If the destination area spans two virtually con-
secutive memory pages, we record both the starting and the ending physical
address in order to obtain the mappings for both pages. Finally, if any of the
general-purpose registers were used to compute the destination memory ad-
dress, we must capture the resulting indirect flow by tainting the destination
memory area with the labels of the corresponding register(s). We specify the
set of registers that participated in the computation of thedestination address
via a bitmask in the third dynamic argument.

[0x1] ExtFRstor

Dynamic arguments:

SrcMemStartAddr SrcMemEndAddr RegisterAddrMask
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This extended opcode handles taint propagation for thefrstor guest instruc-
tion, which restores the state of the FPU previously saved tomemory using the
fsave instruction. The taint processor transfers the taint labels from the source
memory area to the corresponding elements of the FPU state. The source mem-
ory address and the set of registers used to compute it are communicated to the
taint processor as dynamic arguments.

[0x2] ExtFXSave
Dynamic arguments:
BooleanFlags

DstMemStartAddr DstMemEndAddr
[bit 0] SaveXMMState

RegisterAddrMask

This extended opcode handles taint propagation for thefxsave guest instruc-
tion, which writes the current state of the FPU, MMX, SSE, andMXCSR
processing elements to a 512-byte memory area specified by the destination
operand. Since our current implementation does not track the taint status of the
MMX, SSE, and MXCSR components, we only propagate taint labels from the
emulated FPU and clear the destination taint status for these other components.

[0x3] ExtFXRstor
Dynamic arguments:
SrcMemStartAddr SrcMemEndAddr RegisterAddrMask

This extended opcode handles taint propagation for thefxrstor guest instruc-
tion, which restores the contents of the FPU, MMX, SSE, and MXCSR pro-
cessing elements from the memory area specified by the sourceoperand.

[0x4] ExtFStenv
Dynamic arguments:
DstMemStartAddr DstMemEndAddr RegisterAddrMask

This extended opcode handles taint propagation for thefnstenv guest instruc-
tion, which saves the current FPU operating environment at the memory loca-
tion specified by the destination operand. Since we do not track the taint status
of FPU control data structures, we clear the taint labels forthe destination mem-
ory area.

[0x5] ExtFPURotateUp
Dynamic arguments: none
This extended opcode handles taint propagation for thefincstp guest instruc-
tion, which “rotates the barrel” of the FPU register bank, moving st1 into st0,
st2 into st1, and so forth.
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[0x6] ExtFPURotateDown

Dynamic arguments: none

This extended opcode handles taint propagation for thefdecstp guest instruc-
tion, which “rotates the barrel” of the FPU register bank in the opposite direc-
tion.

[0x7] ExtInterrupt

Dynamic arguments:
BooleanFlags

DstMemStartAddr DstMemEndAddr

[bit 0] HasErrorCode

[bit 1] IsTaskGate

[bit 2] PerformStackSwitch

[bit 3] VM86ModeEnabled

This extended opcode handles taint propagation for the software interrupt (int)
instruction — the standard mechanism for implementing system calls on the
Linux platform. In typical cases, this instruction redirects the processor to a
pre-defined interrupt service routine, switches the stack pointer to an alternate
kernel-level stack area, and pushes a 20-byte control data structure onto this
new stack. This data structure records the old values ofesp, ss, eip, cs, and
eflags. Our system does not maintain taint labels for any of these control
registers and thus, the taint processor handles this instruction by clearing the
taint status in the destination memory area.

[0x8] ExtLCall

Dynamic arguments:

BooleanFlags

DstMemStartAddr DstMemEndAddr[bit 0] IsTaskGate

[bit 1] PerformStackSwitch

SrcMemStartAddr SrcMemEndAddr NumParameters

This extended opcode handles taint propagation for thelcall guest instruction,
which performs a far (inter-segment or inter-privilege-level) procedure call. In
typical cases, the processor switches to the stack for the privilege level of the
called procedure and pushes the caller’sesp, ss, eip, andcs values onto the
new stack. Our system does not maintain taint labels for any of these control
registers and thus, the taint processor clears the taint status in the destination
stack area. This instruction may additionally copy an optional set of 32-bit
function parameters from the calling procedure’s stack to the new stack and we
transfer their labels between the two stack regions accordingly.
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4.2.4 Taint Tracking Code Generation

The focal point of our taint tracking extensions to the QEMU compiler is the
disas_insn function intarget-i386/translate.c, which decomposes and translates a
single instruction from the guest code stream. This function implements a state machine,
analyzing the input instruction one byte at a time, decomposing it into TCG notation, and
(with our extensions) generating the corresponding taint tracking code. Although a com-
prehensive review of the x86 instruction set is beyond the scope of this document, as is an
exhaustive description of PIFT’s code translation rules, we can elucidate the general logic
of taint tracking code generation by providing several representative examples.

Example 1: movb %eax, (%edx)

This x86 mnemonic dereferences the byte pointer stored inedx and loads the resulting 8-bit
value intoeax. In our model of information flow tracking, this instructionperforms two
information transfers: a direct transfer from the source memory location to the destination
registereax and an indirect transfer fromedx to eax. The latter arises from the fact that
the value ofedx is used to compute the address of the source memory operand. To capture
these effects, our compiler generates the following pair oftaint tracking instructions:

Set(Dst=eax, Src=MEM_BYTE, ArgLogPos=0)

Merge(Dst=eax, Src=edx)

Example 2: fstp st3

This mnemonic modifies the state of the FPU register stack by copying the contents of
st0 to st3 and then popping the stack, discarding the topmost value. Its information flow
effects can be captured via the following sequence of taint tracking instructions:

Set(Dst=st3, Src=st0)

FPUPop(Dst=NONE)

Example 3: idiv (%ebx)

This mnemonic implements the signed integer division operation. It divides the 64-bit
integer inedx:eax (constructed by viewingedx as the most significant four bytes andeax
as the least significant portion) by the 32-bit value stored at a memory location referenced
by ebx. The quotient and the remainder results of the division are placed ineax andedx,
respectively. We capture the resulting information flow by conservatively tainting the entire
result with the labels of all source operands (eax, edx, and the memory location). We
additionally taint the destination withebx in order to capture the indirect flow. Our compiler
handles this scenario by generating the following sequenceof taint tracking instructions:

Merge(Dst=eax, Src=edx)

Merge(Dst=eax, Src=MEM_LONG, ArgLogPos=0)

Merge(Dst=eax, Src=ebx)

Set(Dst=edx, Src=eax)
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4.2.5 Taint Processor Internals

The taint processor is the central architectural module of our information flow tracking
substrate. This module is tasked with consuming and executing blocks of taint tracking
instructions produced by the code translator. In Section 4.2.2, we alluded to the possibil-
ity of implementing the taint processor as a real hardware extension, but since our current
design constraints call for compatibility with legacy hardware platforms, our implemen-
tation emulatesthe taint processor’s functionality in software. In the simple and purely
synchronous mode of information flow tracking, the emulatedtaint processor and the guest
emulator itself execute in the same QEMU thread and operate in lockstep: QEMU executes
a translated block of guest code and then switches to the emulated taint processor, which
consumes the corresponding block of taint tracking instructions and updates the state of
taint labels in the guest environment.

We now present the core data structures used by the taint processor to manage the taint
status of guest machine registers and memory.

Maintaining register taint status: As we mentioned in the preceding section, our cur-
rent implementation maintains taint labels for all six of the general-purpose integer regis-
ters (eax, ebx, ecx, edx, esi, andedi), as well as the FPU data register stack (st0 through
st7). We manage the taint status of these processor registers using a very straightforward
array-based scheme. For general-purpose integer registers, we maintain a simple linear
array of 32-bit label values, one label per register. For theFPU data register stack, we
maintain an array of 8 labels representing the individual stack slots, along with the position
of the topmost stack element in this array. Organizing the stack in this manner allows us
to handle push and pop operations very efficiently — simply byupdating the topmost ele-
ment pointer, without having to shift the actual label values between array slots. However,
accessing an arbitrary stack element is slightly more expensive in this scheme, requiring
two memory accesses instead of one.

Maintaining memory taint status: Tracking the byte-level taint status of guest memory
requires a somewhat more sophisticated scheme. A naïve implementation that maintains a
label for every byte of physical memory would incur a prohibitive storage overhead and is
clearly impractical. Our memory taint management module seeks to achieve computational
efficiency, while being parsimonious in its use of memory resources. We devise a set of
data structures that exploit spatial locality and allow us to balance the memory overhead
against the latency of label lookups.

Our current prototype supports environments with up to 4GB of physical memory and
is optimized for the standard page size of 4KB. In this configuration, a physical memory
address occupies 32 bits (which matches the size of a single slot in the taint argument
log) and can be decomposed into a 20-bitphysical page numberand a 12-bitpage offset.
For each page of physical memory addressable by the guest system, PIFT maintains a data
structure called apage taint descriptor(PTD), which encapsulates a fine-grained byte-level
view of taint labels within the respective page. This view isrepresented using one of three
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Figure 4.10. ThePageTaintSummary lookup procedure.

different formats, which allow us to trade off lookup latency and storage overhead. These
formats include:

Uniform: Used in situations, where all byte offsets within a page aretainted with the
same value. The PTD carries a single 32-bit page-level taintlabel.

Run-Length Encoding: The PTD carries a sequence of〈length, label〉 tuples, as in the
standard RLE compression scheme. This format offers a space-efficient way to
represent pages carrying more than one label, but lookups require a linear scan.

Taintmap: The PTD carries a flat linear array of byte-level taint labels within the page.
This representation provides constant-time lookups on highly-fragmented pages,
but incurs significant storage costs (16KB per page of guest memory).

We use a three-level tree data structure analogous to a page table to resolve 20-bit
physical page numbers into the corresponding page taint descriptors and Figure 4.10 il-
lustrates the resolution process schematically. A non-leaf (index) node stores an array of
32-bit pointers to child nodes. A leaf node maintains an array of PageTaintSummary struc-
tures, which concisely summarize the taint status of each physical memory page. Each
PageTaintSummary instance comprises two 32-bit words and holds the followingfields:

ptdFormat (bits 0-1):
Stores the format of the PTD associated with the respective memory page.
One of {Uniform, RLE, Taintmap}.

ptdValue (bits 32-63):
ForUniform format: stores the actual page-level taint label.
For RLE and Taintmapformats: stores the address of the PTD in the virtual
address space of the emulator.

Bits 2-31 are currently unused and are reserved for future extensions.
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The computational and memory bandwidth costs incurred by a full PTD lookup are
nontrivial: we have to walk the tree data structure and perform at least three memory ac-
cesses. In order to reduce the recurring costs of tree traversals, our implementation also
maintains a TLB-like cache of mappings between the physicalpage numbers and the cor-
respondingPageTaintSummary structures. This cache is organized as a hash table (indexed
by the physical page number) and implements a random replacement policy. We have also
experimented with LRU replacement, but found that its performance gains were overshad-
owed by the costs of age tracking.

Executing taint tracking instructions: Having defined the taint label storage primitives
for guest machine registers and memory, the next step is to implement the taint tracking
instruction handlers that manipulate and update the state of labels. Most of these handlers
can be implemented in a fairly straightforward manner, but the key concern is computa-
tional efficiency. The overall performance of a guest systemrunning on top of PIFT is
influenced to a large extent by the overhead of information flow tracking and instruction
handlers can be viewed as the “inner loop” of the IFT computation. Thus, any conceivable
optimization that reduces the number of clock cycles spent in this inner loop can have a
significant payoff and can be worth exploring.

Our overall philosophy in designing the virtual taint processor and implementing the
instruction handlers was to perform as much preprocessing as possible. Some fragments
of the computation can be moved out of the inner loop and performed at the compilation
stage — either the dynamic compilation of emulation code or compilation of the QEMU
executable itself. As a specific example of this strategy, wepre-generate a separate handler
function for every valid combination of〈Opcode, Dst, Src〉 and compile them statically into
the QEMU executable. The taint processor maintains an arrayof pointers to these handlers
(handler_array), indexed by the numeric value((Opcode << 12) + (Dst << 6) + Src).
As shown in Figure 4.9, this value always matches the 16 most-significant bits of the
instruction’s binary value. Hence, given a taint tracking instruction with valueb, the
taint processor can locate the handler function for this instruction simply by evaluating
handler_array[b » 16]. Although pre-generating handler functions in this mannersig-
nificantly increases the memory footprint of the QEMU code segment (from 5.2MB in
the unmodified implementation to 27.1MB in PIFT), this optimization allows us to avoid
spending precious CPU cycles on decoding the operand fields and performing pointer arith-
metic to locate these operands.

Next, we illustrate the internals of several commonly-usedtaint instruction handlers, re-
turning to the instruction sequence from Example 1 in the previous subsection. Figure 4.11
shows the pre-constructed handler forSet(Dst=eax, Src=MEM_BYTE) in the source code
form and in the final form compiled for the host machine platform. Note that the taint
destination address (0x9442184), which represents the location of theeax label in the reg-
ister taint array, has been hard-coded into the instructionstream and does not need to be
computed in the inner loop. Figure 4.12 shows the implementation of the pre-constructed
handler forMerge(Dst=eax, Src=edx).
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typedef uint32_t taint_label;

/* Register taint labels */

extern taint_label *reg_labels;

/* Pointer to the argument buffer for the current

code block */

extern uint32_t *taintarg_blk;

/* ArgLogPos for the current instruction */

extern uint32_t arglogpos;

void taintop_handler_SET_EAX_MEMBYTE() {

uint32_t src_addr = *(taintarg_blk + arglogpos);

taint_label *src_taint_p =

get_mem_label_byte(src_addr);

reg_labels[0] = *src_taint_p;

}

push %ebp

mov %esp,%ebp

sub $0x8,%esp

mov 0x93e8128,%eax

shl $0x2,%eax

add 0x9442124,%eax

mov (%eax),%eax

mov %eax,(%esp)

call

<get_mem_label_byte>

mov (%eax),%eax

mov %eax,0x9442184

leave

ret

Figure 4.11. The implementation of the pre-generated handler forSet(Dst=eax,
Src=MEM_BYTE) in the source code form (left) and in the final form compiled for the x86
platform (right).

void taintop_handler_MERGE_EAX_EDX() {

taint_label src_taint = reg_labels[3];

taint_label *dst_taint_p = &reg_labels[0];

if (!IS_NULL_LABEL(src_taint) &&

!LABELS_EQUAL(src_taint, *dst_taint_p)) {

if (IS_NULL_LABEL(*dst_taint_p)) {

*dst_taint_p = src_taint;

} else {

*dst_taint_p =

merge_labels(*dst_taint_p, src_taint);

}

}

}

push %ebp

mov %esp,%ebp

sub $0x18,%esp

mov 0x94421c4,%edx

test %edx,%edx

je <.L1>

mov 0x9442184,%ecx

cmp %ecx,%edx

je <.L1>

test %ecx,%ecx

jne <.L2>

mov %edx,0x9442184

.L1: leave

ret

.L2: lea -0x4(%ebp),%eax

mov %eax,(%esp)

mov %edx,0x8(%esp)

mov %ecx,0x4(%esp)

call <merge_labels>

mov -0x4(%ebp),%eax

mov %eax,0x9442184

sub $0x4,%esp

leave

ret

Figure 4.12. The implementation of the pre-generated handler for Merge(Dst=eax,
Src=edx) in the source code form (left) and in the final form compiled for the x86 platform
(right).
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Merging taint labels: Label merging, as defined in Section 3.2, is one of the founda-
tional operations in the decentralized label model. This operation outputs a new data label
that aggregates the confidentiality policies defined by the input labels. The resulting label
defines the least restrictive policy that also enforces all the restrictions associated with the
input labels.

Recall that while decentralized data labels are at the foundation of our security model,
our augmented emulator tracks information flow on the basis of 32-bit taint labels, which
serve as concise fixed-length surrogates for the full decentralized data labels. Our architec-
ture treats these 32-bit taint values as opaque bitstrings and relies on external infrastructure
to translate them into decentralized data labels and the associated policies. Since PIFT
does not prescribe a specific format for decentralized labels and is not concerned with the
details of their representation and storage, we also delegate the label merging function to
an external user-defined module. When the taint processor needs to merge a pair of taint
values, it invokes the user-suppliedmerge_labels routine, as shown in Figure 4.12. This
function is declared as follows:
taint_label merge_labels(taint_label a, taint_label b);

This routine is expected to resolve the supplied taint values (a andb) into the corre-
sponding data labels (La andLb), merge them (i.e., computeLa ⊕ Lb), assign a new 32-bit
taint value to the resulting label, and return this value to the taint processor. The imple-
mentation ofmerge_labels depends on the specifics of the mapping between taint values
and the corresponding data labels and is beyond the scope of our architecture. Our taint
tracking substrate imposes no restrictions on the implementation of this user-supplied rou-
tine, but assumes this operation to be idempotent and commutative. (It is worth noting that
any function that implements the merge operator according to its standard definition, as
given in Section 3.2, possesses these properties). PIFT reserves the numeric taint value 0
to represent the null label (L∅) and further assumes that merging withL∅ has no effect, that
is:

∀a : La ⊕ L∅ = L∅ ⊕ La = La.

4.2.6 Asynchronous Parallel Taint Tracking

We now turn to a discussion of parallelized taint tracking — an important optimization
that substantially reduces the runtime performance penalty for certain types of workloads.
The key insight that enables this feature is that emulation and information flow tracking can
be viewed as two separate and, for the most part, independentcomputations. As described
above, the PIFT compiler generates two isolated streams of instructions: the emulated
version of the original guest instruction stream and the corresponding block of taint tracking
code. The latter is handled by the taint processor; the emulator only needs to log the correct
execution sequence of the taint tracking blocks and supply the values of dynamic arguments
that could not be resolved at compile time.

While the most straightforward implementation would handle both tasks (emulation
and taint processing) in a single thread and execute them in lockstep, it is easy to extend
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this scheme in a manner that allows the taint tracking instruction stream to be processed
asynchronously and in parallel with emulation. This can be accomplished quite easily in
our design by moving the emulated taint processor into a separate thread and assigning this
thread to another CPU core on the host machine.

In this configuration, we subdivide the taint argument log into a number of smaller
log regions, which serve as basic units of synchronization between the producer and the
consumer. We assign one of the regions to the guest emulationthread, which produces
dynamic information for subsequent consumption by the taint processor. As the emulator
proceeds with the execution of guest instructions, it writes pointers to the corresponding
taint tracking code blocks, along with the dynamically-generated arguments, into its current
log region. When the emulator exhausts all available space in its current region, it signals
the taint processor thread, submits its current log region for consumption, and then grabs
the next available region. The taint processor consumes these log regions as they arrive;
it updates the taint-related data structures in accordancewith the instructions specified in
the log and their arguments, but does not concern itself withthe actual state of the emu-
lated machine. In operational terms, the emulator and the taint processor are in a standard
producer-consumer relationship with a bounded buffer and they synchronize their activi-
ties using a mutex and a pair of condition variables (cond_empty_region_available and
cond_full_region_available).

While the ability to offload the IFT computation to another processor core is clearly
advantageous, the size of the taint argument log is a crucialparameter that largely deter-
mines the performance gains. Byte-level taint tracking is significantly more expensive than
pure emulation and thus, the computational bottleneck is usually at the consumer side. If
the emulator (producer) runs out of free log regions, it mustblock and wait for the taint
tracker to make progress and release a region. When this happens, we effectively return to
the synchronous mode of taint tracking, where the producer and the consumer operate in
lockstep.

We expect, however, that this scenario will rarely arise with interactive I/O-driven ap-
plications (and the results of our evaluation support this intuition). To see why, consider the
fact that most forms of interactive computing involve humanusers, who make decisions,
act, and submit commands at human timescales. Hence, a typical computational workload
on a user-facing machine can be characterized by the prevalence of relatively short bursts of
computation (triggered by device interrupts) with large gaps between them (e.g., the user
pausing before entering more text). At the end of each burst,modern operating systems
usually relinquish the processor with ahlt instruction or the corresponding hypercall and
wait for the arrival of the next interrupt. During these timeintervals, the producer is in-
active and does not generate any new work for the consumer. These gaps in computation
can be gainfully exploited by the taint processor to advanceits position and drain the log.
As a result, it becomes less likely that the emulator will need to suspend itself and wait for
additional log space while processing a burst of computation.

Of course, this reasoning does not apply equally well to CPU-bound server workloads
or interactive applications that routinely launch computationally-intensive tasks. For these
types of workloads, asynchrony can be viewed as providing a finite-length buffer that can
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absorb a certain amount of taint tracking work, minimizing its impact on the overall per-
formance of the guest system. The size of the taint argument log determines the amount of
computation that can be absorbed in this manner.

Finally, we note that in certain scenarios, PIFT must explicitly synchronize the state
of taint labels by suspending the emulator thread and waiting for the taint processor to
consume the remaining items in its log. Typically, this situation arises when the protected
machine makes a request to externalize data (e.g., by sending a network packet or writing
to a block storage device) and PIFT intercepts this request to perform security checks. In
this situation, the device driver backend makes an upcall tothe QEMU process and requests
the up-to-date memory taint labels associated with the outbound data buffers. In order to
obtain the correct labels, we must wait for the taint processor thread to drain the log and
synchronize its state before responding to the driver.

4.2.7 Integration with the Overall PIFT Architecture

Our discussion so far has focused on extending the QEMU emulation platform with
fine-grained information flow tracking capabilities. Whilethe taint tracking substrate is
the chief component of our architecture and perhaps represents our most significant re-
search contribution, there remains one more crucial step — integrating this substrate with
the rest of the PIFT platform. Our extended version of QEMU can be configured to func-
tion in isolation, so as to provide a self-contained system emulation environment with taint
tracking. However, in order to realize the full benefits of PIFT, including its taint-aware
storage and on-demand emulation capabilities, we must establish proper interactions be-
tween the emulator and the other central components of the system, such as the hypervisor
and the taint-aware filesystem. This necessitates several additional changes and extensions
to QEMU, which we briefly summarize in this section.

Bootstrapping the emulator: Upon startup, the default implementation of QEMU
bootstraps the guest machine and immediately proceeds to the main emulation loop. How-
ever, in our system, the extended implementation of QEMU initiates emulation only upon
explicit request from the hypervisor. During startup, the emulator allocates a page-length
memory buffer for communication with the hypervisor and creates a new virtual IRQ. The
hypervisor signals this VIRQ to request emulation and uses the shared buffer to commu-
nicate the processor state snapshot. In the main processingloop, QEMU waits for the
hypervisor’s signal and, when it arrives, initiates emulation based on the state provided in
the snapshot.

Emulating memory accesses:As a full-system emulator, QEMU is responsible for
providing the abstraction of a contiguous physical memory address space and managing
the associated memory resources. In the standard implementation, QEMU acquires pages
for its emulated physical memory by allocating them dynamically from its local heap area
and, clearly, this approach is inapplicable in our context.For the purposes of on-demand
emulation, memory accesses performed in the emulated mode must operate directly on the
regions of physical memory that have been allocated by Xen and granted to the protected
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VM. We attain the desired behavior by modifying the address translation logic in QEMU
and taking advantage of Xen’sforeign page mappingfeature. When a TLB miss occurs in
the emulated environment, QEMU walks the current guest pagetable for the protected VM
to obtain the mapping between the guest virtual page address(vaddrg) and the correspond-
ing physical address (paddr). Then, instead of allocating a page from its local heap, the
emulator makes a hypercall to Xen and maps the guest page intoits own virtual address
space at some pre-determined location (vaddre). The mapping〈vaddrg → vaddre〉 is then
recorded into the software TLB. During code translation, all memory access instructions
are converted into reads and writes within QEMU’s virtual address space but in fact, these
instructions operate directly on the foreign memory pages belonging to the guest VM. The
mappings〈vaddrg → paddr〉 are needed by the taint tracking infrastructure and we main-
tain them in a separate data structure.

Relaying Xen event notifications:The paravirtualized model supported by Xen dif-
fers from the “bare metal” emulated environment provided bythe standard implementation
of QEMU in several important respects, most notably in how ithandles asynchronous no-
tifications from devices. In the bare metal configuration, these notifications come in the
form of interrupts. Xen, on the other hand, shields paravirtualized guests from physical
device interrupts and replaces them withasynchronous event notifications— a form of
abstract device-independent interrupts. The augmented emulator must account for these
differences and properly relay the stream of asynchronous events from Xen to the pro-
tected VM during periods of emulated execution. To this end,we have modified QEMU
to periodically check whether the guest has any pending event notifications (the hyper-
visor signals this condition via a flag in the shared memory page). When a notification
arrives, QEMU interrupts the emulation loop and relays the event to the guest kernel by
setting up a bounce frame, effectively emulating thecreate_bounce_frame functionality
in xen/arch/x86/x86_32/entry.S. The emulator switches to the kernel-level stack (given
by kernel_ss:kernel_sp) and redirects execution to the event callback handler (given by
callback_cs:callback_eip). The guest kernel specifies all these parameters to the hy-
pervisor during initialization and Xen, in turn, relays them to the emulator via the shared
memory page.

Communicating with kernel-level components:Our extended QEMU-based emula-
tor operates in the control VM as a standard user-level process. In certain scenarios, the
emulator must communicate and exchange information with the components of the PIFT
architecture that operate in kernel-space of the control VM. These include the device driver
backends for paravirtualized I/O devices exposed to the protected VM and the taint-aware
filesystem. These components must occasionally contact theaugmented emulator and ask
it to update the state of memory taint labels or, conversely,provide the up-to-date taint sta-
tus for specific memory pages. The filesystem can request an update to memory taint data
structures when handling a fileREAD request, which transfers tainted user data from disk to
a memory buffer. Conversely, handling aWRITE system call requires fetching the memory
taint status from QEMU and propagating it to filesystem-specific data structures on disk.
Device drivers need to communicate with QEMU in order to access the memory taint data
structures when performing security checks. To facilitateefficient bidirectional transfer of
memory taint information, we implement a client-server model of communication, using
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Netlink [79] as the foundational transport mechanism. Netlink is a standard component of
the Linux kernel and provides a socket-like mechanism for efficient IPC between kernel-
and user-space contexts.

Returning from emulated execution: Another significant challenge is determining
in what situations it is safe and beneficial to exit from emulated execution within QEMU
and resume native execution within a Xen VM. In general terms, it is safe to terminate
emulation as soon as we detect that no tainted data is contained in the registers of the emu-
lated machine (i.e., each emulated register carriesL∅). However, this might not be prudent,
since the very next instruction might again access sensitive data and immediately trigger
a transition back to the emulated mode. Frequent context switches between emulated and
native execution can incur a significant overhead and, in degenerate cases, lead to thrash-
ing. PIFT tackles this issue by introducing some delay before returning from emulation.
More specifically, QEMU counts the number of consecutive guest instructions that did not
access tainted data in memory. If this counter reaches a certain threshold and if all CPU
registers are free of taint, QEMU terminates the emulation loop and instructs the hypervisor
to resume virtualized execution. In our current prototype,this threshold is set to 50 instruc-
tions, as in previous work [98, 41]. This simple strategy is admittedly suboptimal and does
not preclude the possibility of thrashing. We believe that investigating more robust and
well-tuned heuristics for transitioning to native execution can be a meaningful direction for
future work.

Transient transfers to native execution:Finally, certain scenarios make itnecessary
to jump out of emulation and temporarily enable native execution. Typically, these scenar-
ios involve handling the execution of hypercalls, softwareinterrupts, faults, and other types
of synchronous exceptions. In the paravirtualized model, these exceptions must go through
Xen and always trigger a transition to hypervisor-level code operating at the highest privi-
lege level. The current architecture of Xen makes it very difficult to emulate the execution
of hypervisor-level code in a user-space process. Instead,QEMU temporarily suspends its
emulation loop, transfers the guest CPU context back to the hypervisor, and instructs it to
perform atransient switchto native mode at the precise instruction that triggers the excep-
tion. For instance, if the guest system issues a hypercall via theint 0x82 mnemonic, Xen
positions the guesteip at this instruction and resumes the suspended native VM. Thesoft-
ware interrupt immediately triggers a transition to ring 0,causing the hypervisor to regain
control and invoke the hypercall handler routine. Transient native execution terminates
upon the return from hypervisor-level code.

4.3 A Taint-Aware Storage Layer

A comprehensive information flow tracking platform that also aims to be practical must
have the ability to track the flow of tainted data to and from persistent storage devices, such
as magnetic disk drives. While it would be easy to augment theabstraction of a virtual
disk in a manner that would allow us to taint individual disk blocks, we believe that a fully-
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Figure 4.13. The on-disk layout of an ext2/ext3 filesystem.

featured taint-aware filesystem is a more usable alternative (and we outline our reasoning
in Section 3.3.1).

In this section, we propose one such filesystem design. The proposed scheme uses
ext3 (a popular and widely-available Linux filesystem implementation) as a foundational
building block and extends it with additional metadata thatallows us to associate taint
labels with entire files, as well as individual byte offsets within a file. In order to minimize
changes to the protected VM, we adopt a client-server architecture and use NFS (a standard
remote file access protocol) to connect the two sides.

This section presents the detailed design of our taint-aware filesystem layer. We begin
by reviewing the relevant aspects of ext3 in Section 4.3.1 and then introduce our exten-
sions in Section 4.3.2. Section 4.3.3 discusses our modifications to the NFS layer and
Section 4.3.4 presents the design of our new shared-memory RPC transport that seeks to
reduce the overhead of inter-VM communication. We evaluatethe performance of our
filesystem using an array of microbenchmarks in Section 4.3.5.

4.3.1 ext3: Design Overview

The third extended filesystem (ext3)[87] is a widely-used journaling filesystem that
has become a standard component of the Linux kernel. ext3 offers a relatively straightfor-
ward, but robust filesystem implementation and, at the time of writing, serves as the default
filesystem choice for many popular Linux distributions.
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Core data structures: ext3 was designed as an extension to the ext2 filesystem and re-
tains full compatibility with its on-disk data structure layout. Tracing the ancestral path one
step further, the overall format of ext2 is derived from the design of the original Fast File
System for UNIX [53].

Figure 4.13 illustrates the high-level layout of a disk partition formatted with ext2 and
lists the most important data structures. The physical diskaddress space is divided up into
an array of fixed-lengthblocks(typically of size 4KB) and organized into a series ofblock
groupssimilar to FFS cylinder groups. This is done to reduce external fragmentation and
minimize the number of disk seeks incurred during sequential file access. In addition to the
actual data blocks, each block group contains an inode table, as well as bitmaps that track
the allocation of disk blocks and inodes within the group. Each block group is identified by
ablock group descriptor, which records the location of the block bitmap, the inode bitmap,
and the start of the inode table for the respective group. These descriptors are, in turn, stored
in a top-level data structure, termed agroup descriptor table. Thesuperblock, another top-
level data structure, maintains vital information about the current filesystem state, as well
as various configuration parameters. The primary copy of thesuperblock resides at a fixed
disk location (typically offset 0x400) and several additional backup replicas are maintained
at other disk locations for reliability purposes.

A file in ext2 (and its descendant ext3) is represented by a fixed-length inode data
structure that maintains its basic properties such as filesize, access timestamps, and an
array of disk pointers to the data blocks. Using this array, the system can locate the data at
any given file offset by following a chain of pointers, starting from the inode. Each inode
holds a total of 15 disk pointer slots. The first 12 slots storedirect pointers to the respective
data blocks; slot number 13 points to an indirect block, number 14 to a doubly-indirect
block, and number 15 to a triply-indirect block.

Journaling: ext3 reuses the basic filesystem structure of ext2, but adds support for jour-
naling to achieve fast recovery after crash failures. Following a standard and widely-used
approach, ext3 implements a basic form of write-ahead logging with redo-only recovery
[37]. During normal operation, ext3 records all updates to its data structures into a fully-
ordered circularjournal, grouping sets of related updates intotransactions. By forcing
journal updates to disk before modifying the correspondingdata structures, the filesystem
guarantees that its on-disk image can always be recovered toa consistent state after a crash
failure.

The journal is implemented as a special hidden file positioned in the first block group
and ext3 defines a number of additional metadata structures to manage its contents. The
journal superblocktracks summary information about the journal, such as the block size
and its head and tail pointers. Ajournal descriptor blockmarks the beginning of a transac-
tion and, following the standard write-ahead logging protocol, acommit blockis appended
to the journal at the end of a transaction. Once the commit block is written and flushed
to disk, the journaled updates can be recovered without lossin the event of a subsequent
failure. During recovery, ext3 simply scans the journal andreplays each committed trans-
action, while discarding the incomplete ones.
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4.3.2 Our Extensions to ext3

Taint label metadata: In order to provide support for file- and byte-level taint label-
ing, PIFT-ext3 makes two extensions to the basic format of ext3 data structures. First,
the ext3 inode is extended with a new 32-bit field, which stores the file-level taint label
(fileTaintLabel). Another option would be to store this label in an extended file at-
tribute, but since ext3 maintains such attributes in a separate file block, accessing this value
would likely incur the cost of an additional disk seek.

Second, for each regular file in the filesystem, PIFT-ext3 maintains some additional
metadata that records its fine-grained byte-level taint labels. More specifically, each file
data block in PIFT-ext3 is associated with ablock taint descriptor (BTD)that stores byte-
level taint labels within the respective block. This data structure is a direct analogue of
the page taint descriptor described in Section 4.2.5, whichour system uses to manage fine-
grained labels for memory-resident data. The byte-level taint information is encoded within
a BTD using the same choice of formats, namelyUniform, Run-Length Encoding (RLE),
andTaintmap, which allow us to trade off storage overhead and lookup latency at different
levels of label fragmentation.

The BTDs are physically maintained in a dedicated region of disk space referred to as
the taint descriptor store. This region typically resides on a separate partition or even on
a separate physical disk, as specified by the user at the time of filesystem creation. (Main-
taining the descriptor store on a dedicated device is advantageous from the performance
standpoint, since this allows file data requests to be serviced concurrently with disk re-
quests for the associated taint descriptors). Logically, the taint descriptor store comprises
a flat array of fixed-length BTD blocks preceded by an allocation bitmap that keeps track
of unused disk space. The size of a BTD block is chosen to matchthe amount of space re-
quired to store a completeTaintmapencoding for a single data block. Hence, in the default
filesystem configuration with 4KB-sized data blocks and 32-bit taint labels, a single BTD
occupies 16KB of disk space. The taint descriptor store is accessed by PIFT-ext3 through
the standard low-level block device interface in the Linux kernel, i.e., thell_rw_block
function.

Achieving efficiency on fileREAD andWRITE operations requires the ability to quickly
locate the BTD for any given data block and to this end, we augment the format of leaf
indirect block entries. In addition to storing a data block pointer, each leaf indirect entry
in PIFT-ext3 holds a conciseembedded taint locator(embTaintLoc). This data structure
comprises two 32-bit words and contains the following fields:

btdFormat (bits 0-1):
Stores the format of the BTD associated with the respective data block.
One of {Uniform, RLE, Taintmap}.

btdValue (bits 32-63):
ForUniform format: stores the actual block-level taint label.
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For RLE andTaintmapformats: stores the disk location of the BTD in the taint
descriptor store.

Bits 2-31 are currently unused and are reserved for future extensions.

While this is one of several possible schemes for associating file data blocks with the
corresponding BTDs, we believe that this particular methodminimizes the overhead of
additional disk activity in typical usage scenarios. For instance, when servicing aREAD
request for a given data block, the filesystem must locate thecorresponding BTD and then
transfer its contents into memory. In our scheme, the first step requires accessing the leaf
indirect block to retrieve theembTaintLoc structure and this can be done with minimal
overhead, since the entire chain of indirect blocks needs tobe accessed anyway to locate
the data block. While the second step (fetching the BTD) may require one additional disk
operation, this overhead is incurred only for those file blocks that carry fragmented taint
labels. For data blocks tainted with aUniform label (likely a common case), label lookup
comes essentially “for free”, since the label is stored directly in thebtdValue field of the
embedded taint locator.

The principal downside of this approach is the reduction of the effective capacity of
leaf indirect blocks. Rather than storing a plain 32-bit disk pointer, each leaf indirect entry
in PIFT-ext3 holds a 96-bit data structure that combines a pointer with an embedded taint
locator. Only 341 such structures can be stored in a single indirect block of size 4KB and
as a result, the maximum filesize is reduced to(12 + 341(1 + 1024 + 10242))× 4KB =
1.3TB. By comparison, the pointer structure in unmodified ext3 allows addressing up to
4TB of data. Furthermore, our design increases the length ofthe indirect block chain for
large files. A simple calculation shows that PIFT-ext3 requires two levels of indirection for
files larger than 1.3MB and three levels for file sizes above 1.3GB (compared to 4MB and
4GB, respectively, for unmodified ext3). Increasing the length of the indirect block chain
tends to increase the latency of file I/O operations due to additional disk seeks, but as the
above calculation suggests, this overhead becomes noticeable only for relatively large files.

Figure 4.14 illustrates how PIFT-ext3 organizes taint label metadata with a simple
schematic example. This figure depicts the on-disk structure of a hypothetical file that
comprises four data blocks (denotedB1 throughB4). The first three of these blocks are
tainted with fragmented labels, which are maintained in thetaint descriptor partition, while
B4 is tainted uniformly with labelL4. In this example, the disk pointers toB1 andB2 are
maintained directly in the inode, whileB3 andB4 are referenced through an indirect block.
The pointers to BTDs forB1 andB2 are also maintained in the inode next to the respective
data block pointers, whereas the pointer to the block taint descriptor forB3 is stored in the
indirect block alongside the pointer toB3 itself. Finally, sinceB4 carries aUniform taint
label, we avoid allocating space for its BTD in the taint descriptor partition and instead
store its taint label (L4) in the indirect block together with the pointer toB4.
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Figure 4.14. The on-disk layout of taint label metadata in PIFT-ext3.

Caching: In an effort to minimize the performance overhead incurred by access to the
taint descriptor store, PIFT-ext3 maintains an in-memory cache of recently-used BTDs.
This cache resides in heap-allocated kernel memory and is structured as a hash table, in-
dexed by〈inodeNumber, blockNumber〉. It has a fixed capacity (set to 1000 BTD entries
by default) and implements a basic LRU replacement policy tomanage space.

Synchronization: Like most other kernel-level subsystems, PIFT-ext3 must implement
proper synchronization mechanisms to protect its shared state and ensure correct behav-
ior in the face of concurrent access. The need for synchronization in a Linux filesystem
arises from the fact that multiple kernel- or user-level threads may issue concurrent filesys-
tem requests that manipulate shared data structures. In ourcase, such requests typically
originate from a pool of kernel-levelnfsd worker threads which, in turn, receive requests
from the NFS client module executing in the protected VM. Thefollowing data structures
maintained by PIFT-ext3 require explicit synchronizationdue to concurrent access from
multiple contexts:

• The block taint descriptor (BTD) cache.As mentioned above, we maintain a cache
of recently-used BTDs in kernel-level memory. This cache isstructured as a hash
table and represents a potential point of contention duringparallel access. Our cur-
rent implementation utilizes a simple spinlock primitive (spinlock_t, defined in
<linux/spinlock.h>) to serialize hash table operations. In addition, every cached
BTD entry carries a blocking mutex (struct mutex, defined in<linux/mutex.h>)
that serializes conflicting operations on its contents. A thread servicing a fileREAD
request must acquire this mutex before reading the contentsof the buffer that con-
tains the cached BTD. Analogously, aWRITE request handler must acquire this mutex
prior to updating the cached BTD with data from a memory taintdescriptor. All disk
operations (revalidating cached entries and flushing modified entries to the backing
store) are also performed under the protection of the corresponding block-level mu-

73



tex. Finally, each cache entry carries a reference counter,which tracks the number
of active users and defends against race conditions, whereby one thread decides to
evict a BTD entry from the cache while this entry is being accessed from another
thread. The use of reference counters to coordinate the eviction of cache entries is a
well-known technique from the domain of database management systems, where it
has traditionally been used to protect the contents of the buffer cache against similar
race conditions [74].

• The block allocation bitmap for the taint descriptor store.This shared on-disk data
structure tracks the allocation of disk space from the taintdescriptor store. For effi-
ciency, PIFT-ext3 loads the entire bitmap from disk into memory during initialization
and all subsequent operations are handled using the memory-based version. Ensur-
ing the atomicity of updates to the bitmap is essential for correctness and our current
implementation achieves this by dividing the bitmap into anarray of fixed-length
chunks and serializing access to each chunk via a blocking mutex.

4.3.3 Our Extensions to the NFS Layer

As we explain in Section 3.3, the protected VM accesses our on-disk filesystem re-
motely through the NFS [12] protocol. The control VM runs an augmented NFS server,
which relays the client’s requests to the on-disk filesystemand updates the taint-related
data structures. Thus, when servicing aREAD request for a specific file region, the NFS
server first dispatches a regularREAD operation through VFS (by invokingvfs_readv) and
then asks the filesystem to provide an array of BTDs that coverthe specified file region.
This fine-grained taint information is relayed to the user-level taint tracker (described in
Section 4.2), along with the physical memory address of the destination buffer for theREAD
operation. Using this information, the taint tracker updates the memory taint data struc-
tures in a manner that reflects the propagation of tainted filedata into the destination buffer.
Analogously, when servicing aWRITE operation, the NFS daemon must fetch an array of
byte-level labels attached to the source memory buffer fromthe taint tracker and transfer it
into the filesystem.

PIFT defines a standard interface for communicating fine-grained taint descriptors be-
tween the NFS layer and the underlying on-disk filesystem. More specifically, we add
two new function pointer fields to theinode_operations structure and their definitions
are shown in Figure 4.15. While not strictly necessary, requiring all interactions with
PIFT-ext3 to go through a generic VFS-level interface provides flexibility and allows us
to decouple the NFS server from the implementation of the underlying filesystem. From
the practical standpoint, such separation is useful because we plan to experiment with al-
ternative taint-aware filesystem designs in future work. Figure 4.16 illustrates how the new
get_filerange_taint callback is implemented in PIFT-ext3.
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int (*get_filerange_taint)(struct inode *inode, // (In) VFS inode

loff_t file_offset, // (In) Starting offset

size_t len, // (In) Range length

taintdescr_fmt_t *descr_fmt, // (Out) BTD format

size_t *descr_len, // (Out) BTD length

void **descr_buf); // (Out) BTD buffer

int (*set_filerange_taint)(struct inode *inode, // (In) VFS inode

loff_t file_offset, // (In) Starting offset

size_t len, // (In) Range length

taintdescr_fmt_t descr_fmt, // (In) BTD format

size_t descr_len, // (In) BTD length

void *descr_buf); // (In) BTD buffer

Figure 4.15. New VFS callbacks in theinode_operations structure.

4.3.4 Xen-RPC: An Efficient RPC Transport for Inter-VM Commu -

nication

The client-server design of our taint-aware filesystem enables us to minimize changes
to the protected VM, but at the same time incurs additional performance costs due to inter-
VM communication and signaling. In particular, transfer offile data is significantly less
efficient in our two-sided design, since this data must be moved between the page cache
and the network-level buffers on both sides of the connection.

In the standard implementation, NFS uses TCP as the underlying transport for its client-
server communication and the two sides submit RPC messages directly to the kernel net-
working stack. NFS commands that carry file data (such as aWRITE request) must execute
several expensive memory transfers that increase latency and impose a significant load on
the memory subsystem. In typical cases, the sender first copies the data from the page
cache into its network socket buffers and then transfers thedata to the destination VM
in a sequence of packets. When the destination VM receives these packets, it performs
yet another memory copy to transfer the data from the networkbuffers to its local page
cache. These memory transfers represent unnecessary overhead in our environment, since
the client and the server operate on the same physical host and share its physical memory
address space.

To address these inefficiencies, we have designed and implemented a special-purpose
RPC transport layer (Xen-RPC) that allows the system toefficientlytransfer RPC messages
and the associated file data between a pair of VMs by setting uptemporary shared memory
mappings. Xen-RPC replaces the conventional socket-basedtransport, thereby eliminat-
ing unnecessary transfers to and from network-level buffers and allowing the server-side
filesystem to access file data directly from the client-side page cache.

In operational terms, Xen-RPC mimics the traditional design of paravirtualized I/O de-
vices by implementing the split-driver model. Xen-RPC’s frontend component, operating
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int pift_ext3_get_filerange_taint(struct inode *inode, loff_t rangeFileOffset,

size_t rangeLen, taintdescr_fmt_t *descrFmt,

size_t *descrLen, void **descrBuf) {

int blockNum = rangeFileOffset / FILE_BLOCK_SIZE;

int blockOffset = rangeFileOffset % FILE_BLOCK_SIZE;

cachedBTD *btd = btdcache_lookup(inode->inodeNum, blockNum);

if (btd == NULL) { /* Not found in the cache */

embTaintLoc *emb = read_embedded(inode, blockNum) {

/* Traverse the chain of indirect block entries and return

the embedded taint locator in the leaf entry. */

}

btd = allocate_btd(inode, blockNum);

btd->fmt = emb->descrFmt;

if (emb->descrFmt == Uniform)

initialize_uniform_btd(btd, emb->btdValue);

else /* RLE or Taintmap format */

read_taint_descriptor_store(btd, emb->btdValue);

if (btdcache_full())

btdcache_evict_lru();

btdcache_insert(btd);

}

/* Compute the taint descriptor for the specified file range */

taintDescr *descr = compute_btd_subrange(btd, blockOffset, rangeLen);

/* Merge the resulting descriptor with the file-level taint label */

merge_taint_labels(descr, inode->fileTaintLabel);

*descrFmt = descr->fmt; /* Return the results */

*descrLen = descr->len;

*descrBuf = descr->buf;

}

Figure 4.16. The implementation of theget_filerange_taint callback in PIFT-ext3.

in the protected VM, registers itself with thesunrpc client layer by defining a new in-
stance ofstruct rpc_xprt_ops. It exposes an interface for submitting RPC requests to
the server (thesend_request callback), as well as functions for connection establishment
and teardown (connect, destroy, andclose). The backend component, operating in the
control VM, relays the client’s requests to a pool of NFS server threads and communicates
their completion status back to the client.

Following an established approach, Xen-RPC uses ashared ring bufferto communicate
requests and the associated responses asynchronously between the two VMs. The ring
buffer holds a window of outstanding requests and resides ina dedicated memory page
(donated by the protected VM and mapped for shared access from both VMs). Xen event
channels provide a foundational signaling mechanism, allowing the two sides to notify each
other when a new message is posted to the shared ring.
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struct xdr_buf {

struct kvec head[1], // RPC header + non-page data

tail[1]; // Appended after page data

struct page **pages; // Array of contiguous pages

unsigned int page_base, // Start of page data

page_len; // Length of page data

unsigned int buflen, // Total length of storage buffer

len; // Length of XDR-encoded message

};

Figure 4.17. The format of an XDR buffer structure.

In traditional client/server NFS implementations, the twosides communicate by mar-
shalling their requests and responses using the XDR (External Data Representation) format
[81] and transmitting the resulting messages via the transport layer. The standard Linux
implementation of NFS defines a basic structure (struct xdr_buf) to manage the con-
tents of an XDR message. As illustrated in Figure 4.17, this data structure features a pair
of linear buffers (head andtail) and an array of pointers to data pages. Thehead buffer
stores the marshalled RPC header and the data payload for short messages. For messages
that involve large transfers of contiguous file data, such asWRITE requests and responses
to READ requests, thepages array holds references to the actual data pages that serve as
sources or destinations for the transfer. Finally, thetail buffer allows the sender to append
additional payload after the data in the page array. This field is used primarily for supply-
ing padding bytes in order to satisfy the 32-bit alignment requirement in the XDR protocol.
In typical scenarios, thehead andtail buffers both reference temporary heap-allocated
memory, whereas thepage array holds pointers to file data buffers in the local page cache.

When the sender submits anxdr_buf instance for transmission, the transport layer must
transfer the data referenced by itshead, tail, andpages fields to the remote endpoint us-
ing transport-specific mechanisms. The traditional socket-based transport implementation
simply relays thexdr_buf structure to the TCP networking layer, which copies the en-
tire message into a local network-level buffer and preparesit for transmission. Notably,
the contents of the data buffer must be transferred from the kernel-level page cache into
a network socket buffer. On the receiving end, the transportmodule fetches the incoming
RPC message and loads its contents into a localxdr_buf instance, which it then passes
over to the NFS server layer. With a traditional socket-based transport implementation, this
involves copying the file data in the reverse direction — froma local network-level buffer
into a page cache buffer.

In contrast, Xen-RPC bypasses the networking layer and instead leverages Xen’s inter-
VM memory sharing facility to communicate the data payload more efficiently. Having set
up a pair ofxdr_buf structures for the RPC request and the associated response,the client
(initiator of the request) temporarily shares the data pages referenced by theirhead, tail,
andpages elements with the control VM. (This is done by issuing a granttable hypercall
from the protected VM). Upon receiving the request, the server-side transport module run-
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ning in the control VM maps these buffers into its local memory and then synthesizes a pair
of localxdr_buf instances, which hold pointers to these foreign mappings. As a result, the
NFS server can directly access the client’s copy of the RPC request and any associated
file data. Analogously, the server communicates its response by writing directly into its
foreign mapping of the client-side response buffer, avoiding unnecessary transfers through
the network-level buffers.

Next, we illustrate the operational aspects of our client-server filesystem stack with a
simple example. In this example, we track the end-to-end execution path of a synchronous
WRITE system call, which writes one page of application data to a file in our label-aware
filesystem.

Client side (protected VM)

1. An application running in the protected VM issues aWRITE system call, specifying
the file pointer, the address of a user-level source memory buffer (denotedBufP

U ),
and the desired length of the transfer (one memory page).

2. VFS dispatches this request to the kernel-level NFS client by invoking its
nfs_file_write callback and this function, in turn, propagates the requestto
the page cache management module.

3. The page cache manager copies the application data fromBufP
U to a kernel-level

cache buffer, which we denote byBufP
K . This operation causes PIFT to transfer the

associated taint labels from the application’s address space to the region of physical
memory that holds the kernel-level buffer.

4. Since the application has requested a synchronous transfer, the page cache manager
invokes the cache writeback routine, which propagates the dirty cache buffer to the
backing filesystem (in our case the NFS client) by calling itswritepage callback.

5. The nfs_writepage_sync function receives control, prepares an RPC message
structure carrying anNFS3PROC_WRITE command, and forwards it to the RPC com-
munication subsystem by invokingrpc_call_sync.

6. The RPC layer allocates memory for the send and receive XDRbuffers and marshals
the arguments of the RPC request into the send buffer. Upon completion of this op-
eration,rq_snd_buf->head holds the marshalled arguments of theWRITE command,
therq_snd_buf->pages array holds a reference toBufP

K , andrq_snd_buf->tail
points to optional padding data. The newly-created requestis then submitted to the
underlying transport layer, which forwards it to the Xen-RPC client by invoking its
send_request callback.

7. Xen-RPC receives control and prepares the send XDR bufferfor remote access from
the NFS server operating in the control VM. Specifically, it grants access to the phys-
ical memory pages that hold thehead andtail buffers, as well as the page containing
BufP

K . This is done by invoking thegnttab_grant_foreign_access routine, which
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in turn makes a hypercall to Xen. The hypercall updates the grant table permissions
and returns a set of grant references. Following an analogous procedure, the client
grants foreign access to thehead, tail, andpages components of the receive XDR
buffer that will hold the response data. Finally, a Xen-RPC request data structure is
initialized with the grant table references and written to the shared ring, after which
the client notifies the server-side endpoint by signaling the Xen-RPC event channel.

Server side (control VM)

8. On the server side, the kernel-level handler for the Xen-RPC event channel is invoked
in the interrupt context. The handler routine removes the request structure from the
ring and passes it over to the NFS server for processing. First, it tries to assign the
request to one of the idle server worker threads. If there areno idle workers available
and the number of existing worker threads is at the maximum, it posts the request to
a shared queue that is periodically checked from the worker thread context.

9. When annfsd worker receives a request, it instructs the transport layerto construct
a server-side RPC request structure (struct svc_rqst *rqstp).

10. Xen-RPC initializes therq_arg and res_arg fields of rqstp by setting up for-
eign page mappings to the send and receive XDR buffers provided by the protected
VM. Thus, the RPC request header and the incoming data pages are mapped into
rqstp->rq_arg->head andrqstp->rq_arg->pages, respectively. Analogously, the
pre-allocated buffers for the RPC response and any associated data are mapped into
rqstp->rq_res->head and rqstp->rq_res->pages. To set up these mappings,
Xen-RPC issues aGNTTABOP_map_grant_ref hypercall to Xen, supplying the grant
table references specified in the shared-ring request.

11. Next the worker thread invokes the main RPC dispatch routine (nfsd_dispatch)
to process the RPC request. This function unmarshals the RPCarguments from
rqstp->rq_arg->head into a local data structure and then invokes a procedure-
specific handler (nfsd_write in our example).

12. The procedure handler resolves the NFS file handle into a VFS file pointer and dis-
patches a write request to the VFS layer by calling thevfs_writev function. Note
that the source buffer pointer, which the NFS server specifies as an argument to this
function, references a foreign mapping ofBufP

K .

13. VFS forwards the write request to our on-disk filesystem (PIFT-ext3), which, in turn,
passes it over to the page cache manager.

14. The page cache manager in the control VM transfers the dirty file data from the
foreign mapping ofBufP

K to a local page cache buffer, which we denote byBufC
K .

Since a synchronous operation was requested, the page cachemanager invokes the
cache writeback routine, which flushes the data fromBufC

K to the disk partition
managed by PIFT-ext3.
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15. When the data transfer is completed, the NFS worker thread transfers the associated
taint labels from memory to the filesystem. To accomplish this, it first makes an
upcall to the QEMU-based taint tracker to fetch the taint descriptor associated with
the physical memory page containingBufP

K . Having fetched this descriptor, the NFS
server invokes theset_filerange_taint callback, which is routed via VFS to our
taint-aware filesystem. As we describe in Section 4.3.2, this function transfers the
labels from the supplied memory taint descriptor to the corresponding BTD.

16. Finally, the NFS worker thread prepares an RPC response message and communi-
cates it to the client by writing it intorqstp->rq_res->head. In the last step, the
NFS server signals request completion to Xen-RPC. The server-side component of
our transport layer unmaps all foreign pages, prepares a Xen-RPC response struc-
ture, pushes it to the shared ring, and signals the client-side component via the event
channel.

Client side (protected VM)

17. The client-side Xen-RPC module receives an event notification. The event handler
(invoked in the interrupt context) tears down the shared mappings and signals the
waiting application thread.

18. When the application thread (blocked on the RPC response) awakens, it processes
the response status and returns fromnfs_file_write, transferring control back to
the genericwrite system call handler.

19. The kernel-level system call handler terminates and returns control back to the appli-
cation.

As can be seen from the above discussion, servicing a file-related system call via the
PIFT infrastructure involves a carefully-orchestrated sequence of steps, but, crucially, the
contents of the data buffer are transferred between memory locations only twice: from
BufP

U to BufP
K and later on fromBufP

K to BufC
K . This process is only slightly less effi-

cient than the corresponding sequence of steps in a pure “bare-metal” system configuration,
which requires transferring file data exactly once; namely,between an application-level
buffer and a kernel-level page cache buffer.

4.3.5 Evaluation of PIFT-ext3

In this section, we evaluate the core components of our taint-aware storage stack using
an ensemble of microbenchmarks. The overall goal of this evaluation is to demonstrate
the viability of our design and its ability to achieve reasonable performance under highly
stressful workloads. More specifically, our evaluation focuses on addressing the following
key questions: (1) How efficient is our taint descriptor cache module and how well does
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Figure 4.18. Performance of the BTD cache module at varying levels of concurrency.

it scale to support parallel workloads on multi-core processors? (2) How does PIFT-ext3
affect the effective I/O bandwidth of the underlying storage device? (3) How successful is
our custom transport layer (Xen-RPC) at reducing the overhead of inter-VM data transfers?

All of the experiments presented in this section were run on aDell Optiplex 755 ma-
chine with a quad-core 1.6GHz Pentium 4 CPU, a 160GB 7200 RPM Seagate hard disk,
and 4GB of RAM. We created a PIFT-ext3 filesystem on one of the disk partitions and
assigned another partition (on the same physical disk) to serve as its taint descriptor store.
These partitions were sized at 10GB and 40GB, respectively.The filesystem partition was
configured with 4KB block size, which matched the memory pagesize in our environment.
Both virtual machines (the protected VM and the control VM) ran the Fedora Core [34]
distribution of Linux with kernel version 2.6.18-8.

Performance of the BTD Cache

The block taint descriptor (BTD) cache seeks to reduce the number of disk requests
to the taint descriptor partition by storing a subset of the recently-used BTDs in mem-
ory. Our first experiment measures its maximum sustainable throughput under stressful
and highly concurrent workloads. In this experiment, we connect the BTD cache module
to a multithreaded user-level request generator. Each thread produces a synthetic stream
of requests to the BTD cache, which alternate between reading and updating BTDs for
randomly-chosen data blocks.

Recall from Section 4.3.2 that BTDs maintain fine-grained taint information within a
data block using one of three different formats:Uniform, RLE, or Taintmap. TheUniform
representation is highly compact and can be manipulated very efficiently, while the lat-
ter two are more expensive to maintain. In this experiment, we quantify this performance
difference by measuring the overall request throughput foreach of the three descriptor for-
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mats at different levels of concurrency. Note that in this experiment, the BTD cache module
does not access the disk and hence, the performance its determined solely by its ability to
efficiently manipulate in-memory data structures and coordinate concurrent access from
multiple threads.

Figure 4.18(a) presents the throughput measurements for theRLEandTaintmapconfig-
urations. For a single-threaded workload, our implementation achieves 711237 and 155957
requests per second in these configurations, respectively.Under concurrent workloads, our
system can take advantage of additional processor cores, demonstrating near-linear speedup
to three processors for theRLE configuration. These results indicate that our method of
concurrency control — a combination of coarse-grained spinlocks (held for very short pe-
riods of time) and more granular block-level mutexes (held across disk access operations)
— enables a reasonable degree of parallelism and does not overburden the system with
synchronization overhead in these scenarios.

Figure 4.18(b) shows the performance in a scenario, where each cached BTD initially
carries aUniform taint label and each update request replaces this block-level label by an-
other randomly-chosen label. In this configuration, the performance characteristics of our
implementation are quite different: while our system can process uniformly-labeled data
blocks very efficiently in absolute terms, achieving an order-of-magnitude improvement
over theTaintmapconfiguration, we observe that the aggregate throughputdecreasesas
the level of concurrency grows. This result is noteworthy, but hardly surprising — we
expect uniformly-labeled file blocks to be a very common caseand our system has been
carefully tuned to handle this scenario efficiently. In our current implementation, process-
ing a read/update operation on a cachedUniform BTD requires only a few dozen machine
instructions and consumes around 280ns of CPU time on our test machine. However, each
operation must acquire a spinlock and a block-level mutex inorder to coordinate concurrent
access to shared state and these synchronization actions account for a significant fraction of
the total cost. We observe from these results that any performance improvement we obtain
by parallelizing across multiple hardware contexts is overshadowed by the significant costs
of synchronization and cache coherence traffic on the memorybus.

We note that despite this intrinsic overhead, our implementation handles uniformly-
labeled BTDs efficiently relative to the other descriptor formats even under concurrent
workloads. With 4 parallel client threads, our cache moduleachieves 1126650 requests per
second for uniformly-tainted descriptor blocks and, by comparison, 234907 requests per
second with theTaintmapformat. In order to remedy the slowdown observed in 4.18(b),
future versions of our filesystem may implement the BTD hash table using lock-free data
structures or use more granular (per-bucket) spinlocks.

The Disk I/O Overhead of Taint Label Manipulation

In the next set of experiments, we measure the additional disk overhead imposed by
PIFT-ext3 and its effects on the overall completion time of file access requests. We com-
pare the performance of PIFT-ext3 and the unmodified ext3 filesystem, both running inside
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Figure 4.19. Performance of the on-disk filesystem under data- and metadata-intensive
workloads.

a native Linux kernel on “bare-metal” hardware without the hypervisor. For PIFT-ext3, we
additionally modify its VFS operation callbacks to generate synthetic taint maintenance
requests that reflect the effects of the respective file operations. Thus, when handling
the writepage VFS callback, we generate a random page-sized taint descriptor and in-
voke pift_ext3_set_filerange_taint on the corresponding file range. Analogously,
for readpage andreadpages callbacks, we invokepift_ext3_get_filerange_taint to
read the taint descriptor for the corresponding file block from disk. As in the previous
experiment, we measure and report the performance for each of the three taint descriptor
formats. Each iteration of the experiment starts out with a cold page cache and a cold BTD
cache. At the end of each run, we issue async command to write back any dirty data that
remains in these caches and count its completion time towards the total running time.

In this experiment, we use FileBench [35] to generate the load and we chose this bench-
mark due to its flexibility, accuracy, and ease of configuration. Filebench was developed by
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Sun Microsystems and was used for performance analysis of the Solaris OS [52], as well
as in numerous recent academic studies [33, 39].

Figure 4.19 presents the results of this experiment. Subfigures (a) and (b) report the per-
formance of basic file access operations (reads and writes) on a pre-existing file, measuring
sequential and random access, respectively. As expected, the magnitude of the overhead
is highly dependent on the size of a taint descriptor block, which is determined by its for-
mat. Most strikingly, the filesystem suffers an 85% drop in throughput on sequential reads
with RLE and Taintmap descriptor formats. This is to be expected, since in our evaluation
environment PIFT-ext3 transforms sequential file access into a stream of random-access
disk requests. To understand this phenomenon, recall that for each file data block accessed
by an application, PIFT-ext3 must access the correspondingBTD on the auxiliary taint
descriptor partition. In our environment, both partitionsreside on the same disk drive and
hence, each data block access incurs the cost of two inter-partition disk seeks. As expected,
the overhead is much less noticeable with random file access,which naturally suffers the
disk seek overhead on every data block access. In the random read measurement, our ex-
tensions to ext3 decrease the throughput by 76% and this result reflects the reduction in the
effective disk bandwidth — for every file data block of size 4KB, PIFT-ext3 must read the
corresponding BTD, which occupies 16KB of disk space in bothrepresentations (RLE and
Taintmap). Random file writes are considerably less expensive than random reads, since
they benefit from asynchronous cache writebacks and requestreordering at the device level,
whereas read operations are fundamentally synchronous in our experiments.

Moving the auxiliary partition to a separate disk drive would allow PIFT-ext3 to pre-
serve sequentiality and service BTD accesses in parallel with data block transfers, thus
reducing latency and increasing the effective disk bandwidth. We plan to evaluate this
optimized configuration in future work.

Note that the performance of PIFT-ext3 on uniformly-tainted file blocks is comparable
to that of the unmodified ext3 implementation, as we expect. In our current design, uniform
block taint descriptors are maintained in leaf indirect blocks, which both implementations
must access on every file operation in order to obtain the datablock pointer. Hence, file
read operations on uniformly-tainted data blocks suffer noadditional latency or bandwidth
penalty. File writes are slightly more expensive in PIFT-ext3, since they require updating
the indirect blocks and periodically flushing them to disk. Viewed collectively, these results
confirm that our design is generally successful at minimizing the overhead associated with
access to uniformly-tainted file data, which we expect to be the most common case.

Figure 4.19(c) compares the performance on metadata-intensive workloads. In this
experiment, we first populate an empty directory with 100000files and then delete these
files by executing “rm -rf *”. Our design does not alter the processing of metadata-related
tasks, such as these, and hence imposes no additional overhead, as evidenced by these
results.
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Overall Performance of the Storage Subsystem

In our final set of experiments, we take a more macroscopic view and evaluate the
performance of the entire storage stack, which combines theon-disk filesystem, the NFS
wrappers, and the shared-memory RPC transport layer. Our goal is to assess the overall per-
formance of the storage component in a fully-featured PIFT configuration and measure the
worst-case overhead relative to “plain” paravirtualized and non-virtualized environments.
More specifically, we compare the following configurations:

• C1: A “bare-metal” configuration running unmodified Linux and ext3 without the
hypervisor.

• C2: A paravirtualized configuration running Linux and Xen. Thecontrol VM ex-
poses one disk partition as a paravirtualized block device;the guest VM mounts this
device as ext3.

• C3: A paravirtualized configuration running Linux and Xen. Thecontrol VM mounts
one of the disk partitions as ext3 and exposes it to the guest through unmodified NFS
with TCP transport.

• C4: A paravirtualized configuration running Linux and Xen. Thecontrol VM mounts
one of the disk partitions as ext3 and exposes it to the guest through NFS and our
shared-memory transport layer (Xen-RPC).

• C5: A fully-featured PIFT configuration. The control VM mountsone of the disk
partitions as PIFT-ext3 and exposes it to the protected VM through NFS and Xen-
RPC. Since our focus in this section is on evaluating filesystem performance, as
opposed to the computational overhead of taint tracking, weinstrument this config-
uration in a manner that allows the protected VM to submit fileI/O requests that
operate on tainted data without entering emulation. To accomplish this, we instru-
ment Xen-RPC to assign synthetic taint labels to all memory buffers that carry file
data once they have been submitted for transmission by the client-side NFS endpoint.
To simulate varying levels of taint label fragmentation, a fraction of the data buffers
(F ) is assigned a randomly-generatedTaintmapdescriptor and the rest are assigned
a randomUniformdescriptor.

In our first experiment, we test the performance under the sequential write workload
(described in the previous subsection) in these five configurations, varying the level of label
fragmentation inC5 between 0% and 100%. Table 4.5 shows the throughput in configura-
tionsC1-C5 with the value ofF fixed at0%. Figure 4.20(a) plots the performance inC5
for varying values ofF . We observe that at low levels of label fragmentation, the through-
put achieved by PIFT is comparable to that of the basic ext3/NFS configuration (C4), but
both are measurably slower than the non-virtualized configuration (C1). The difference
betweenC1 andC4/C5 is attributable to the overhead incurred by NFS and inter-domain
communication, which are inherent in our design.
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C1 C2 C3 C4 C5 with F = 0%
Operations / sec. 10609 10094 7715 7989 8354
Slowdown relative toC1 0.0% 4.9% 27.3% 24.7% 21.3%

Table 4.5. Operation throughput for sequential file writes (4KB request size, 100MB file
size) across all five benchmark configurations. InC5, each data block carries aUniform
taint label.
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Figure 4.20. Overall performance of the PIFT storage subsystem under data- and metadata-
intensive filesystem workloads.

As expected, the overall application-level throughput exhibits significant dependence
on the degree of taint label fragmentation. In the degenerate scenario ofF = 100%, our
storage subsystem achieves roughly1/6th of the maximum attainable throughput and this
result is also consistent with our expectations. Loosely speaking, writing a single file data
block that carries aTaintmapBTD incurs the cost of six disk writes in our current design:
writing the data block itself, writing the associated BTD (which occupies four filesystem
blocks), and updating the leaf indirect block with a pointerto the new BTD.

Our second experiment examines the performance of metadata-related operations using
two synthetic benchmarks:

• M1: Create a directory tree with depth 6 and fanout 6.

• M2: Delete the directory tree created inM1.

Figure 4.20(b) shows a side-by-side comparison of metadataoperation performance
and the results clearly indicate a significant level of variability among the five configura-
tions. The extreme slowdown observable in configurationC3 indicates the magnitude of the
overhead incurred by the NFS layer. In this experiment, our benchmark is best viewed as
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a CPU-bound workload consisting of a large number of fine-grained operations (directory
insertions and removals). Each such operation involves only several updates to in-memory
filesystem data structures and thus represents a relativelysmall unit of work. Focusing on
the performance gap betweenC2 andC3, these configurations differ mainly in how they
distribute this work among the two VMs. InC2, the guest VM mounts the paravirtualized
block device and the ext3 filesystem layer runs directly inside the guest kernel. Hence,
each directory update operation is processed locally by theguest VM and the costs of inter-
VM communication are incurred only occasionally, when the guest kernel decides to flush
the updated directory blocks to disk. In contrast,C3 deploys the on-disk filesystem in the
control VM and the guest mounts it remotely via NFS. In this two-sided configuration,
the guest must relay each directory update request to the control VM via the NFS stack.
Each such request must be marshalled into an RPC message, copied into a network-level
buffer, and transmitted to the server via TCP/IP. As our results suggest, these manipulations
become the dominant source of overhead and cause a drastic slowdown.

Next, comparingC3 to C4, the difference indicates the reduction of costs achieved by
replacing TCP with our custom shared-memory transport module. In C4, each directory
update must still cross the VM boundary, but the system bypasses the TCP layer and in-
stead allows the server to directly access the client-side RPC buffer by setting up a shared
mapping.

In C5, the on-disk filesystem in the control VM is replaced by our label-aware im-
plementation. Since the scope of the workload in this experiment is limited to directory
operations, PIFT-ext3 does not need to update taint labels on file data blocks and hence
does not impose a significant amount of additional load on theCPU or the storage device.
As a results, the performance achieved in this configurationis comparable to that ofC4.
However, both configurations are noticeably less efficient thanC1 andC2 and this differ-
ence is attributable to the costs of the NFS protocol and inter-domain signaling, which are
inherent in our client-server design.

Evaluation Summary

In summary, the microbenchmark results presented in this section and our usage ex-
periences lead us to conclude that our label-aware storage module can serve as a viable
building block for a comprehensive information flow tracking substrate such as PIFT. Al-
though the design of our filesystem was guided by a set of practical compromises that im-
pose non-essential overhead, the evaluation demonstratesthat our storage layer can deliver
competitive performance even under significant levels of stress.

The BTD cache offers a crucial optimization, allowing us to reduce the number of
accesses to the taint descriptor partition and thus improvethe effective disk bandwidth.
The challenge lies in scaling the cache implementation in a manner that would allow it to
achieve efficiency on parallel application workloads — an increasingly important consid-
eration in light of the inevitable and rapidly growing adoption of multi-core architectures.

The disk I/O overhead of accessing taint labels is negligible for metadata operations.
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For operations that manipulate file data, the disk overhead varies and depends on the level
of label fragmentation. Files and individual data blocks that are tainted uniformly with
a single label can be accessed very efficiently and PIFT-ext3incurs almost no additional
performance costs. Conversely, accessing data blocks thatcarry fragmented taint labels
is considerably more expensive due to the additional disk transfers. Most alarmingly, our
current design tends to transform sequential file workloadsinto random disk workloads and
future improvements to PIFT-ext3 will focus on reclaiming sequentiality.

Finally, the client-server design was introduced in order to minimize the required set
of changes to the protected VM’s software stack. The NFS layer imposes a noticeable
cost resulting from RPC marshalling and inter-VM communication, but our novel shared-
memory transport module helps mitigate this overhead.

4.4 Policy Enforcement

The previous sections have focused on the core mechanisms for tracking the flow of
tainted information and storing it persistently on disk. Itremains to describe one more
essential component of our implementation; namely, the module responsible for evaluating
policies and enforcing restrictions on the dissemination of sensitive information.

As we explain in Chapter 3, PIFT delegates policy enforcement to a set of user- or
administrator-defined modules calledenforcement handlers, whose specifications and im-
plementation are external to PIFT and are beyond the scope ofthis dissertation. When
PIFT detects that the protected VM has made a request to externalize tainted data through
a virtual I/O device, it intercepts the request and invokes adevice-specific enforcement
handler, supplying a 32-bit taint label that represents thedata being externalized. It is the
responsibility of the enforcement handler to resolve this opaque token into a decentralized
data label and evaluate its constituent policies.

Our current Xen-based prototype implements request interception for two types of vir-
tual I/O devices: the standard paravirtualized block storage device and the standard par-
avirtualized network interface. The former can be used to control the transfer of sensitive
data to removable hard drives, USB storage keys, and other secondary storage devices that
are not directly managed or controlled by PIFT. The latter mechanism provides a means
of controlling the transfer of information between principals over the network, as well as
restricting its release to external networks, such as the public Internet.

In the paravirtualized model, on which our implementation is based, virtual I/O device
abstractions are implemented using thesplit-driver scheme. In this scheme, thefront-end
component (operating in the protected VM) collects I/O requests issued by the guest kernel
and forwards them to theback-endcomponent through a shared ring buffer. The back-end
operates in the kernel space of the control VM and is responsible for relaying the protected
VM’s requests to the actual hardware device via the standardkernel-level device interface.
A data transfer request typically specifies a source or a destination buffer, which resides
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in protected VM’s memory, and in order to make this buffer available for DMA from the
control VM, the backend makes a hypercall to Xen, requestingthis buffer to be temporarily
mapped into the address space of the control VM.

The back-end driver, operating in the control VM, provides aconvenient point of in-
terposition and request interception. Before relaying aWRITE or TRANSMIT request to the
hardware device, our modified back-end drivers make an upcall to the user-level emula-
tor (described in Section 4.2) to obtain the taint labels associated with the outbound data
buffers. If the data carries a non-empty taint label, the back-end invokes a device-specific
enforcement handler, which runs as a kernel module in the control VM and is registered
with PIFT at the time of system startup. The enforcement handler examines the supplied
taint labels, resolves them into decentralized data labels, and evaluates the corresponding
policies. Based on these policies, the handler can decide toallow or block the release of
tainted information and this decision is signaled back to the driver via a status code.

Next, we discuss the functional aspects of back-end driversfor storage and network
devices, as well as our modifications to these modules, in further detail.

4.4.1 Enforcement for Virtual Block Devices

The core back-end driver functionality for paravirtualized storage devices is imple-
mented inlinux/drivers/xen/blkback/blkback.c. This file contains, among others,
the main request dispatch routine (dispatch_rw_block_io), which is invoked in the con-
text of a kernel worker thread when a new disk request appearson the shared ring. The
request (defined by the parameterblkif_request_t *req) specifies a set of page-level
segments, which reference the data buffers, and these segments constitute the basic units
of inter-VM sharing. The dispatch routine invokes theGNTTABOP_map_grant_ref hyper-
call to map these foreign buffers into the local address space of the control VM. Once
these mappings have been established, our modified implementation examines the opera-
tion type (req->operation) and, forWRITE operations, makes an upcall to the emulator
to obtain an aggregated taint label for each of the segments.This exchange is performed
though a client-server protocol running on top of Netlink, as discussed in Section 4.2.7.
The request message sent by the kernel-level driver includes the segment’s physical page
number, its offset within this page, and the length of the segment. Our extended emulator
looks up the page taint descriptor (PTD) for the specified page number and returns its taint
label. If the PTD specifies a non-uniform (i.e., fragmented)taint label, the emulator aggre-
gates the individual byte-level labels by invoking themerge_labels function (described
in Section 4.2.5) and returns a single aggregated taint label that represents the union of all
policies.

Another point worth mentioning about the taint label lookupprocedure is that if the
protected VM is running in the emulated mode at the time when the dispatch routine is
invoked and if the asynchronous mode of taint tracking is enabled, QEMU may need to
temporarily suspend the emulated guest context in order to allow the taint processor to
drain its log and bring the state of memory taint labels up-to-date. This is one of the very
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typedef uint32_t taint_label;

/* The enforcement handler for WRITE requests to a paravirtualized block

storage device */

int evaluate_policies_bdev(

struct block_device *dev, // (In) Description of physical block device

taint_label labels[], // (In) Array of segment-level labels

unsigned int num_segments); // (In) Number of segments

/* The enforcement handler for TRANSMIT requests to a paravirtualized network

interface */

int evaluate_policies_netif(

struct net_device *dev, // (In) Description of physical netw. interface

taint_label label, // (In) Packet taint label

void *payload); // (In) Pointer to the packet payload

Figure 4.21. Function prototypes of policy enforcement handlers for paravirtualized disk
and network devices.

few scenarios in PIFT that demand explicit synchronizationbetween the emulator thread,
which supplies blocks of taint tracking code, and the taint processor, which consumes these
blocks asynchronously and advances the view of taint label assignments. From an appli-
cation’s point of view, this synchronization period can be seen as a form of buffering and
manifests itself as a brief delay between the issuance of aWRITE request and its subsequent
release to the physical disk drive. We do not expect this delay to pose a significant practical
challenge, since current applications that exhibit sensitivity to the timing of disk operations
must already be equipped to deal with the effects of request buffering and reordering at
various levels in the stack — a standard practice in modern operating systems.

When the kernel-level dispatch routine regains control, itinvokes the external en-
forcement handler function for block storage devices, whose full prototype is shown in
Figure 4.21. In the current implementation, this function accepts three parameters: the
block_device structure that identifies the destination physical device,the array of aggre-
gated segment-level taint labels obtained from the emulator in the previous step, and the
size of this array. The enforcement callback evaluates the policies defined by the segment-
level labels, decides whether the data contained in these segments can be safely external-
ized to the specified storage device, and signals its decision to the driver via the return
code. If the enforcement handler returns 0, the dispatch routine continues along the normal
request processing codepath; it constructs a low-level disk request descriptor (struct bio)
and invokes thesubmit_bio kernel function, which propagates this request to the generic
physical block device layer. Otherwise, it immediately cancels the request and signals an
error condition (BLKIF_RSP_ERROR) to the front-end component.
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4.4.2 Enforcement for Virtual Network Interfaces

The central component of the back-end driver for virtual NICs is implemented in
linux/drivers/xen/netback/netback.c and the general procedure for intercepting net-
work output and enforcing policies is analogous to the one used for virtual storage devices.
When the backend receives an event notification from Xen indicating the appearance of a
TRANSMIT request on the shared ring, it schedules thenet_tx_action routine for execution
within a kernel-level tasklet. This routine copies the request control information from the
shared ring onto the local stack, allocates a generic kernelsocket buffer (struct sk_buff),
and instructs the hypervisor to map the foreign buffer containing the packet payload into
the address space of the control VM.

Our modified version then issues an upcall to QEMU and requests an aggregated taint
label for this foreign data buffer. The action routine then invokes the administrator-supplied
network enforcement handler, passing it the identifier of the physical interface (struct
net_device) and the taint label, as shown in Figure 4.21. Note that sinceXen guarantees
that the protected VM’s data buffer does not span page boundaries, it suffices to supply
only one taint label value (as opposed to passing an array of segment-level labels, as we
do for disk requests). However, in our current design the network enforcement handler ac-
cepts one additional parameter; namely, a pointer to the local mapping of the packet’s data
buffer. Exposing the data payload to the enforcement moduleappears to be advantageous
(and perhaps even essential) in this particular case, sincethis information can be gainfully
exploited to attain finer control and implement a wider rangeof useful policies. For in-
stance, exposing the packet header information allows the enforcement module to restrict
information flow on the basis of Ethernet- or IP-level destination addresses. Revealing the
full packet enables an even broader range of policies that can use information contained in
the TCP header or even perform deep packet inspection.

If the enforcement handler approves the attemptedTRANSMIT operation, the action rou-
tine proceeds to copying the payload from the foreign mapping into a local kernel socket
buffer and then passes this buffer to thenetif_rx function. Otherwise, the back-end driver
drops the request and invokes thenetbk_tx_err routine, which constructs an error re-
sponse, posts it to the shared ring, and signals the front-end component.

4.5 Extending PIFT to a Distributed Environment

The material presented in the preceding sections describeshow PIFT tracks the flow
of information and enforces policies within the boundariesof a single machine. The last
piece of the architectural puzzle to be specified is how to extend the single-node platform
in manner that would enable us to track information flow between machines and principals
in a networked environment. That is, when an application running on machineMa sends a
message containing some tainted dataD over the network to another machineMb, it is not
enough to simply invoke the enforcement handler and verify thatMb is authorized to access
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D. We must also ensure that whenMb receives this message, its copy ofD retains the taint
status and the confidentiality policies associated with theoriginal copy held byMa.

Extending the single-node PIFT design to track taint labelsacross network transfers is
conceptually straightforward: the hypervisor on the sender’s machine can simply annotate
each outbound network packet with a concise encoding of its taint labels. Analogously,
upon receiving a packet from the network, the hypervisor candetach the labels and propa-
gate them to the memory buffers holding the payload.

To implement this feature, we make another functional extension to the back-end com-
ponent of the network driver. On the sender’s side, if the back-end receives permission
from the enforcement handler to externalize the data to the receiver, it makes another
request to QEMU to obtain the fine-grained non-aggregated taint labels for the memory
buffer holding the payload. Using this information, the back-end constructs apacket taint
descriptor— a data structure that seeks to concisely describe the byte-level taint status of
a packet. This data structure is a direct analogue of the pagetaint descriptor (Section 4.2)
and the block taint descriptor (Section 4.3), which store taint metadata for memory pages
and filesystem blocks, respectively. The fine-grained byte-level view is represented using
one of three different formats (Uniform, RLE, or Taintmap) and the choice of format is
determined by the level of taint fragmentation within the packet. The back-end driver then
transfers the packet data and the associated taint descriptor to thecommunication daemon
— a lightweight user-level process that runs in background in the control VM. This dae-
mon concatenates the packet payload with the taint descriptor and forwards the resulting
message to its peer on the receiver’s machine through a TCP/IP tunnel.

When the packet reaches the destination machine, the control VM’s networking stack
demultiplexes it based on the outer packet headers and forwards the concatenated message
to the user-level communication daemon, which, in turn, relays it to the back-end driver
that implements the virtual NIC. The back-end detaches the packet taint descriptor from
the inner packet, injects the latter into the protected VM’sstack, and makes an upcall to
QEMU, instructing it to taint the destination memory bufferaccordingly.

Overall, our strategy of relaying traffic through a user-level daemon is a well-
established technique and we implement it using mechanismssimilar to those used by the
TUN/TAP [82] kernel driver, which enables packet tunnelingthrough a user-level process
on traditional non-virtualized Linux platforms. Unsurprisingly, our implementation faces
similar limitations, the most significant of which is the increased load on the CPU and the
memory bus resulting from the copying of packet data betweenkernel- and user-space con-
texts. In the next version of our prototype, we plan to eliminate this non-essential overhead
by pushing the tunneling functionality directly into the kernel.

4.5.1 Bandwidth Overhead Evaluation

The ability to track the flow of sensitive data across machines in a networked environ-
ment does not come for free; our extensions to the networkingstack consume a certain
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fraction of the available network bandwidth due to tunneling and taint label annotations.
We conducted a simple experiment to study the effects of these extensions on the effective
bandwidth and measure the extent to which they degrade the overall network performance.

In this experiment, we use theiperf [43] network benchmark to measure the effective
network bandwidth between a pair of PIFT-enabled machines connected by a point-to-point
100Mbps Ethernet link. In order to isolate the performance impact of tunneling from the
overhead of taint annotations, we runiperf and measure the resulting performance in three
different configurations, specifically:

• C1: A “bare-metal” configuration running unmodified Linux without the hypervisor.
iperf is configured to communicate directly over the physical network interface.

• C2: A “bare-metal” configuration running Linux without the hypervisor. iperf is
configured to communicate over a virtual interface that binds to a TUN/TAP kernel
device. This device relays all network packets to a minimal user-level communica-
tion daemon, which transmits them to the remote endpoint viaa TCP/IP tunnel.

• C3: A fully-featured PIFT configuration.iperf runs as a user-level process in the
protected VM and communicates via a paravirtulized networkinterface. The back-
end driver redirects all outbound packets to a user-level communication daemon,
which transmits them to the remote endpoint through a TCP/IPtunnel. In this con-
figuration, we also instrument the communication daemon to annotate a random sam-
pling of the outgoing packets with PTDs, varying two parameters: taint prevalence
(P ) and the level of label fragmentation (F ). The first parameter determines the frac-
tion of packets that are marked as containing tainted data. Afraction (F ) of these
tainted packets is assigned a randomly-generatedTaintmapdescriptor and the rest
are assigned a randomUniform descriptor. Since the intent of this microbenchmark
is to measure the network bandwidth penalty due to packet annotations, rather than
the computational overhead of emulation and taint tracking, we also instrument the
daemon to clear the taint labels on the receiving side prior to injecting packets into
the protected VM’s stack. This step is necessary because failing to clear the labels
would cause the protected VM to process incoming packets in the emulated mode
and this would interfere with our bandwidth measurements.

In all configurations,iperf is set up with a unidirectional TCP-based data stream.
To estimate the effective network bandwidth, we record and plot the overall connection
throughput, as reported by the client endpoint.

Figure 4.22 presents the results of our bandwidth measurements for three distinct val-
ues ofP and varyingF . Looking at these results, the difference betweenC1 and C2
reflects the overhead of packet encapsulation and tunneling. While certainly measurable,
the reduction in effective bandwidth is relatively modest and is limited to the cost of the
additional TCP, IP, and Ethernet headers (roughly 66 bytes per packet). InC3, the over-
head is strongly dependent on the prevalence of tainted data, as well as the degree of label
fragmentation, as we would expect. WithP = 50% andF = 10%, users would observe a
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Figure 4.22. The effective network bandwidth, as measured by iperf, for varying amounts
of tainted data (P ) and at varying levels of label fragmentation (F ).

20% reduction in effective bandwidth compared to the “bare-metal” configurationC1. In
an extremely stressful scenario, where 90% of all packets contain sensitive data and each
packet carries a highly-fragmentedTaintmapdescriptor, the sustainable bandwidth drops to
21.2Mbps. This can be seen as a dramatic penalty, but the result is fully consistent with our
expectations: with a 32-bit label space, each tainted packet of lengthL carries a byte-level
Taintmapdescriptor of length4L and hence, the application-level bandwidth is reduced to
approximately1/5th of its original value.
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Chapter 5

Full-System Performance Evaluation

In this chapter, we evaluate the performance of our PIFT prototype under a variety of
workloads, which range from computationally-intensive microbenchmarks to interactive
usage scenarios in graphical desktop environments. Our evaluation focuses on addressing
the following key questions:

• How large is the performance penalty incurred by PIFT on worst-case
computationally-bound workloads operating on tainted data (Section 5.1)?

• How effective are PIFT’s on-demand emulation techniques atreducing the amount
of time spent in the emulated mode (Section 5.1)?

• What are the benefits and limitations of asynchronous parallelized tracking and how
does the size of the taint argument log affect our system’s performance (Section 5.2)?

• How does our taint tracking platform affect interactivity and user productivity in
graphical application environments (Section 5.3)?

To answer these questions, we ran a series of experiments andcompared the overhead
in the following configurations:

• NL: A “bare metal” configuration running unmodified Linux on native hardware.

• PVL: A paravirtualized configuration running Linux and Xen.

• Emul: Linux running in a fully-emulated environment based on unmodified QEMU.

• PIFT-S: Our prototype implementation of PIFT with synchronous taint tracking.

• PIFT-A(x): Our prototype implementation of PIFT with asynchronous parallelized
taint tracking andx MB of physical memory reserved for the taint argument log.
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5.1 Computationally-Intensive Workloads

In our first set of experiments, we evaluate the performance of our prototype under a
variety of CPU-driven workloads, which intensively manipulate and perform computation
on sensitive input data. Naturally, CPU-bound workloads that actively manipulate tainted
data represent the most stressful scenario for PIFT, as eachinstruction that touches a sen-
sitive value must be carefully analyzed and emulated. Hence, the experiments presented in
this section can be viewed as measuring the worst-case performance overhead incurred by
PIFT’s emulation and information flow analysis components.

Our test machine for these experiments is a Dell Optiplex 755with a quad-core Intel
2.4GHz CPU and 4GB of RAM. The hypervisor-level component ofour prototype is based
on Xen version 3.3.0. The augmented emulator (based on QEMU version 0.10.0) runs in
the control VM as a multi-threaded user-level process. The protected VM is configured
with 512MB of RAM and one VCPU, as our current implementationdoes not yet offer
support for multi-processor guest environments. All tainted data files are accessed from
a PIFT-ext3 filesystem, which the protected VM mounts remotely over NFS and Xen-
RPC. PIFT-ext3 operates as a kernel extension in the controlVM and is configured to
access a 160GB 7200 RPM Seagate hard disk. Both virtual machines run the Fedora Core
distribution of Linux with kernel version 2.6.18-8.

5.1.1 Copying and Compressing

We begin by considering two simple, but very common data manipulation activities —
copying and compressing data files. In this experiment, we execute the following tasks
from the command line, measure their running times, and report the slowdown incurred by
PIFT:

LocalCopy: This task copies a sensitive file to another file in the same directory using the
cp command from the GNU coreutils package [18]. In operationalterms, copying a
file on Linux involves a sequence ofsys_read andsys_write system calls, which
transfer the data from the source file buffer in the kernel-level page cache to an in-
termediate user-level buffer in the address space of thecp process, and from there to
the destination file buffer in the page cache. From the vantage point of PIFT, the pro-
tected machine transfers tainted data between these memorybuffers in 32KB-sized
chunks using therepz movsd instruction, producing a memory-bound workload.

Compress: This task compresses a tainted input file using the GNUgzip command [40].
This command reads the contents of the input file into a user-level buffer via a se-
quence ofsys_read system calls, compresses the data using a combination of Huff-
man coding [42] and LZ77 [99], and writes the results to a kernel-level page cache
area that represents the output file usingsys_write. At the instruction level, this
operation involves a sequence of user-kernel data transfers using therepz movsd
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Figure 5.1. Performance ofPIFT-A(512)and Neon on file copying and compression tasks
with a varying amount of tainted data (F ).

instruction, as well as a nontrivial amount of user-level activity associated with com-
puting the Huffman tree and identifying redundancies in theinput byte stream.

This choice of benchmarks also allows us to compare our results with those in
Neon [98]. Neon builds on top of the on-demand emulation primitive developed by Ho
et al. [41] and hence provides a meaningful comparison to both systems most closely re-
lated to ours. To match Neon, we use a 4MB input file, measure the command completion
time, and report the slowdown relative to the native unmonitored configuration (NL). Be-
fore the start of each measurement, we pre-stage the input file into filesystem buffers in
the protected VM. This allows us to factor out the overhead ofdisk I/O (which remains
constant across all configurations) and measure the fundamental overhead of taint tracking
in the most stressful scenario — a CPU-bound task. In the PIFTconfiguration, we apply a
non-zero taint label to one contiguous subregion of the input file starting at a random offset.
Note that while the results reported in the Neon study focus on the case of sparsely-tainted
input files, we are also interested in understanding the worst-case performance impact of
taint tracking. To this end, we repeat the experiment multiple times, varying the length of
the tainted subregion (F ) between0% and100%.

Figure 5.1 reports the results of this experiment, presenting a comparison between Neon
and PIFT with asynchronous tracking and 512MB of memory reserved for the taint ar-
gument log. The overhead is expressed in terms of the slowdown factor relative to the
native Linux configuration (NL). Looking at these results,PIFT-A(512)increases the run-
ning time by 5.3× for file copy and 5.8× for file compression on lightly-tainted input files
(F = 10%). As the amount of tainted data grows, our system must spend more time in
the emulated mode and the slowdown becomes more noticeable.In the extreme case of
a fully-tainted input file, our implementation incurs slowdowns of 15.9× and 21.1× for
copying and compression, respectively. The copy operationinvolves no computation on
tainted data — it merely transfers file data between user- andkernel-level memory buffers
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NL PIFT-S PIFT-A(512)
LocalCopy 11.0 16.4 15.8
Compress 62.0 96.5 92.8

Table 5.1. Command completion time (in ms) for LocalCopy andCompress withF = 1
64

.

using therepz movsd instruction. The page-level taint transfer optimization described in
Section 4.2.2 allows the taint processor to handle this scenario efficiently. File compression
usinggzip represents a somewhat more stressful scenario and its algorithmic components,
Huffman coding and LZ77, produce a nontrivial amount of computational activity, which
PIFT must carefully analyze.

This experiment exercises the ability of PIFT to transitionefficiently between virtu-
alized and emulated execution modes. Ideally, one would expect the slowdown to scale
linearly with the length of the tainted file region, since theamount of taint should dictate
the amount of time spent in the high-overhead mode. Our system does not exhibit fully
linear scaling because the heuristics for transitioning are not well tuned in our current pro-
totype. These heuristics err on the conservative side, keeping the system in the emulated
mode even if one could have transitioned back to native execution a bit earlier.

Although we do not have enough data to draw definitive conclusions due to fundamen-
tal system differences and limitations in available data, we believe that these results are
promising and yield a favorable comparison to Neon. In a scenario withF = 1

64
, the only

data point available to us for comparison, Neon reports slowdown factors of10× and95×
for file copy and compression, respectively1. As Table 5.1 shows, the overhead in PIFT
with this amount of tainted data is only1.5× over native execution for both operations.

Although PIFT and Neon are quite similar in terms of the overall architecture, two fun-
damental aspects of our design tilt the results in our favor.First, PIFT tracks the flow of
tainted data at a higher level of abstraction (guest x86 instructions, as opposed to QEMU
micro-instructions). Second, PIFT leverages asynchrony by explicitly separating the taint
tracking computation from the main emulation workload and executing these tasks concur-
rently on two processor cores.

5.1.2 Text Search

In the next experiment, we consider another common operation — text search. Our
input dataset is a 100-MB sample of the Enron corporate e-mail database [29] spread across
100 equal-sized files and all files reside on disk at the start of the experiment. In the
PIFT configuration, we also mark a fraction (F ) of the files as sensitive, assigning them

1The Neon paper [98] presents the results of this experiment in Table 3. Note, however, that the textual
summary of the experiment provided in the accompanying textin Section 5.2.1 reports different levels of
overhead, which are inconsistent with the numeric results.The authors confirmed to us that the values in
Table 3 are the correct reference results, and not the ones provided in the text.
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NL PVL Emul PIFT- S PIFT- A(512)
Completion time (s) 2.42 2.87 18.45 58.87 25.57

Slowdown relative toNL 1.00× 1.19× 7.62× 24.33× 10.57×

Table 5.2. Command completion time (in seconds) for a text search task with fully-tainted
inputs (F = 100%).

unique uniform taint labels. We use the GNUgrep command [38] to search this sample
for a single-word string and measure the running time. We repeat the measurement thrice
with different search keywords, compute the average running time in all configurations of
interest, and report the performance in terms of the slowdown factor relative toNL.

grep represents a somewhat more complex and diverse workload that includes disk
reads, a text search computation based on the Tuned Boyer-Moore pattern matching al-
gorithm [3], and transmission of output (lines of text that contain the search keyword) to
the paravirtualized console. Note that since PIFT does not monitor and intercept the ex-
ternalization of tainted data through the local console, this experiment does not incur the
costs of suspending the emulator to synchronize the taint label state in the asynchronous
configuration.

Table 5.2 reports the results of this experiment in the most stressful scenario, where
all files in the input dataset are tainted (F = 100%). We observe that our implementa-
tion imposes a noticeable performance penalty in this worst-case configuration — a factor
of 10.6× with asynchronous parallelized taint tracking and 512MB ofmemory reserved
for the taint argument log. Still, the slowdown is much lowerthan in the previous set of
experiments, since the workload is not fully CPU-bound. Thecost of a pattern matching
computation (even including the associated overheads of emulation and information flow
analysis) fades in comparison to the latency cost of an I/O request to fetch input data from
disk and the latter is constant across all configurations. With a more modest amount of
tainted data (F = 10%), the slowdown is even less noticeable — only 1.46× relative to
native execution withPIFT-A(512).

Table 5.2 also helps us quantify the performance gains achieved by parallelizing the
IFT computation and executing it asynchronously. The results indicate thatgrep runs
24.3× slower with synchronous taint tracking on the same processor core and tracking
asynchronously on another core reduces the running time by afactor of 2.3×.

5.2 Benefits and Limitations of Asynchrony

The results in the previous section provide evidence for ourhypothesis that asyn-
chronous tracking can greatly improve performance, offering the ability to move the IFT
computation out of the critical path and preventing it from slowing down the execution of
the emulated machine. Of course, the size of the taint argument log is a crucial parame-

99



ter, which largely determines the degree of improvement we can obtain by tracking asyn-
chronously. In Section 5.1.1, a 512MB log provided sufficient space to absorb the entire
taint tracking computation for both operations (copy and compress) and thus, the impact of
information flow analysis on their completion times was minimal. Conversely, a small log
would make it difficult to absorb long bursts of computation,requiring the emulator to stall
and wait for the taint processor thread to make progress and release space. In situations,
where PIFT is routinely tasked with analyzing large CPU-bound workloads, the “log full”
condition can become prevalent and effectively cause the system to transition back to the
synchronous mode, in which the emulator and the taint processor operate in lockstep.

In the next experiment, we examine this transition phenomenon and evaluate PIFT’s
sensitivity to the size of the taint argument log. We focus onthe absolute worst-case sce-
nario — a CPU-bound workload operating on fully-tainted input files that have been pre-
staged into memory buffers. We consider two such workloads:compressing a sensitive file
usinggzip and sorting an array of integers using theqsort library routine. In this exper-
iment, we measure the running time for varying input sizes and, in PIFT configurations,
several different sizes of the taint argument log. We also evaluate a specialPIFT-A(∞)
configuration, in which the taint processor implementationis modified to consume taint
tracking blocks instantaneously, without executing the instructions. As a result, the main
emulation thread never stalls due to lack of log space in thisconfiguration. WhilePIFT-
A(∞) does not usefully track the propagation of taint labels, it enables us to establish the
absolute upper bound on the degree of performance improvement attainable by optimizing
the taint tracker. Viewed from a different angle, the performance difference betweenPIFT-
A(∞) andEmulquantifies the overhead our implementation adds to the critical emulation
codepath on the producer side. This overhead is associated with computing intermediate
values (such as physical memory addresses) and communicating them to the consumer via
the taint argument log.

Figure 5.2 presents the results of this experiment, plotting the slowdown relative toNL
for the compression (a) and sort (b) workloads.PVL shows the baseline performance on
unmodified Xen and reflects the overhead of paravirtualization. Emul isolates the impact
of basic emulation and, as we can see, both workloads suffer aslowdown of 10-12×.

Turning our attention to the performance of PIFT, compression runs22.4× slower on
PIFT-A(1024)and 22.5× slower onPIFT-A(512)for a 1MB input file. As we expect, these
numbers start to diverge as input size increases. With a 20MBinput file,PIFT-A(1024)still
offers sufficient log space to absorb most of the overhead andthus, computation proceeds
at a rate close to the upper bound given byPIFT-A(∞). An input file of size 20MB appears
to be the point of transition forPIFT-A(1024), beyond which the producer starts stalling
on log space for non-negligible periods of time. In thePIFT-A(512)configuration, this
transition occurs around the 5MB mark according to our estimates. We can see that in both
configurations, there is an asymptotic penalty as we increase the input size, plateauing at
a 35× slowdown. Viewed collectively, these results validate ourintuition thatPIFT-A can
take advantage of underutilized memory resources to alleviate the computational burden of
taint tracking.

The results from the integer sort benchmark reveal slightlyhigher levels of baseline
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Figure 5.2. Performance on worst-case CPU-bound computational tasks in all configura-
tions of interest.

emulation overhead, but are not qualitatively different. The taint tracking log provides
enough space to absorb the costs of sorting up to 500000 integers and we see that perfor-
mance starts to degrade beyond this point in both PIFT configurations. Still, we observe
that our implementation can gainfully exploit additional memory resources to improve per-
formance. Looking at the costs of sorting 1000000 array entries, PIFT configured with
a 512MB log suffers a slowdown of 31.5×, while PIFT-A(1024)achieves a slowdown of
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27.7×. The worst-case performance penalty, incurred for large input sizes that cause most
of the taint tracking computation to be done synchronously,is around 34× in both config-
urations.

Unfortunately, there does not exist much data on how previous dynamic taint tracking
systems behave at this level of stress, which makes it difficult to provide a direct com-
parison. We hope that the following data points, which we were able to collect from the
literature, can help initiate such a comparison:

• Neon [98] reports overheads ranging from 10× to 95× for CPU-bound workloads
when1/64th of the input file is tainted.

• The initial implementation of taint tracking using on-demand emulation with
Xen [41] reports a 155× slowdown for what appears to be a CPU-bound task op-
erating continuously on tainted data.

5.3 Interactivity and User Productivity in Graphical En-

vironments

While performance on isolated CPU-intensive tasks allows us to assess the fundamen-
tal computational costs of taint tracking, our system aims to provide a general-purpose IFT
substrate suitable for pervasive deployment in enterpriseenvironments. Today, most en-
terprise users interact with computers through a graphicalinterface and routinely rely on
large and complex applications, such as spreadsheets and word processors, to generate and
manipulate data. Can PIFT deliver the level of interactivity and performance users have
come to expect from these sophisticated graphical application stacks running on modern
hardware? In this section, we evaluate the performance of our prototype in a graphical
environment with the goal of understanding how our IFT primitives affect user experience
and productivity on common tasks in widely-used applications.

Interactive graphical environments present a set of additional challenges for dynamic
taint tracking systems such as PIFT. Although such environments rarely impose high com-
putational demands and typical workloads tend to be interrupt-driven, we found that the
task of rendering tainted data on the screen sometimes leadsto undesirable oscillation be-
tween native and emulated modes.

To understand the nature of this problem, consider a basic scenario, where a user is
editing a sensitive document in a word processor and entering text from the keyboard.
Each keystroke triggers an interrupt that propagates through the layers of the GUI stack
and eventually causes the text area widget to repaint itself. The widget’s screen image is a
rectangular array of pixels, whose values are computationally derived from tainted textual
data that corresponds to the visible region of the document.Thus, the protected VM must
access tainted data in the course of repainting the window, triggering a page fault and a

102



transition to the emulated mode. When it finishes computing the new window contents
(reflecting the keystroke) and relinquishes the CPU, we switch back to the native mode,
but find ourselves re-entering emulation once again upon thenext keystroke. This behavior
easily leads to thrashing and significantly impairs interactivity, which leads us to conclude
that the on-demand emulation technique, as presented in Chapter 3, may not be directly
applicable to interactive graphical environments. We found that undesirable oscillation can
be avoided and the overall usability of the system can be greatly improved with a simple
workaround:persistentlyswitching to the emulated mode of execution and remaining in
this mode for as long as tainted data remains on the screen.

Keeping the system persistently in emulation also enables us to leverage significant ben-
efits from asynchronous parallelized tracking. In fact, interactive graphical environments
seem to be a highly compelling use case for the asynchronous mode. Since the guest work-
load is interrupt-driven and proceeds mostly at human timescales, the taint processor can
easily keep up with the producer and the log helps absorb the short bursts of computation
that emerge as result of user activity.

Persistent emulation with asynchronous taint tracking ledus to a fully-operational and
usable graphical environment. In this environment, users observe minimal or no perceiv-
able degradation of interactivity for simple UI actions, such as moving the mouse pointer
and scrolling. In this section, we evaluate PIFT’s performance on these and longer, more
complicated, user activities. First, we evaluate how PIFT affects the start-up times of sev-
eral large and widely-used interactive applications. Then, in order to understand and quan-
tify PIFT’s impact on user experience and productivity, we examine how our system affects
users’ performance on two specific interactive tasks: typing text into a word processor and
editing a spreadsheet document.

Our benchmark machine for interactive graphical tests is a Lenovo H320 with an Intel
Core i3 540 processor and 6GB of RAM. As before, the guest environment is configured
with 512MB of physical memory and one VCPU. The guest runs Fedora Core Linux with
kernel version 2.6.18-8 and the graphical interface is provided through the GNOME desk-
top environment. To prevent the abovementioned thrashing behavior, we disabled PIFT’s
on-demand emulation facility and the tests took place entirely in the emulated mode. In
the asynchronous parallelized PIFT configuration, the taint argument log size is fixed at
1024MB.

To the best of our knowledge, PIFT is the first online taint tracking system to demon-
strate support for interactive workloads in a graphical desktop environment and hence, we
are unable to directly compare our substrate to previous work. When exploring perfor-
mance on realistic user tasks, we compare PIFT’s results to those achievable in an unmod-
ified emulated environment (Emul) and in a native Linux environment operating on bare
hardware (NL).

Graphical application launch: In the first batch of experiments, we measured the time it
took to launch an application, render its graphical components, load a document from disk,
and then close the program. The programs we measured were Abiword [1] (an open-source
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Figure 5.3. Application launch time for Abiword and OOCalc in all configurations of
interest.

Abiword OOCalc

Slowdown Slowdown Slowdown Slowdown
Configuration rel. toNL rel. toEmul rel. toNL rel. toEmul
PIFT-A(1024) 29.51× 1.82× 6.43× 1.60×
PIFT-S 52.80× 3.25× 9.79× 2.44×

Table 5.3. Slowdown relative toNL andEmul in the application launch experiment.

word processor) and OpenOffice Calc [65] (the spreadsheet component of the OpenOf-
fice.org productivity suite [67]). All tests were performedwith cold filesystem caches and
the time measurements were taken with the help of a stopwatch.

Figure 5.3 plots the average completion time of the application launch task in all con-
figurations of interest and Table 5.3 reports the slowdown incurred by PIFT relative toEmul
andNL. Looking at these results, we note that slowdowns are generally moderate and that
asynchronous parallelized tracking offers significant savings. Abiword launch appears to
be the more stressful scenario for our system, suffering a 29.5× slowdown withPIFT-
A(1024). However, the slowdown relative to the purely emulated configuration is only
1.8×, indicating that much of the overhead is attributable to thecosts of basic emulation.
In the OpenOffice Calc (OOCalc) experiment, the overall slowdown is even less noticeable
and we attribute this difference to the fact that OOCalc has alarger codebase and a more
complex set of external dependencies. Launching OOCalc requires loading a large number
of shared libraries and other external components and, as a result, launch time is dominated
by the costs of disk I/O, which are roughly equal in all configurations.

Entering text: In the next experiment, we evaluated the user-perceived slowdown on
one of the most common user activities — entering text from the keyboard. We used
vncplay [96, 95] to record the entry of a long passage of text into OpenOffice Writer [66]
(the word processor component of the OpenOffice.org productivity suite [67]). The log
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Figure 5.4. User-perceptible overhead in the text entry experiment.

contained a total of 749 distinct keystroke events and included backspaces, which corrected
typing mistakes. We then replayed the log in all configurations of interest, adjusting the
delay between successive keystrokes to simulate typing speeds ranging from 40 words per
minute (WPM) to 200 WPM. During replay, the passage was “typed” into the beginning of
a document that already contained text and, in both PIFT configurations, was tainted with
a non-zero uniform label. We measured the time for the entirepassage to appear on the
screen and used this measurement to calculate theeffective WPM.

Figure 5.4 reports the results of this test, plotting the effective WPM as a function of the
input WPM. In the optimal scenario, these two quantities areexactly equal, which means
that the system can “keep up” with the user at any typing speed. The difference between
these values indicates the magnitude of user-perceived overhead incurred by the system
and estimates the loss of productivity on typing.

Our results suggest that both PIFT configurations can sustain near-optimal performance
at “normal” typing speeds up to 140WPM. Beyond this threshold, PIFT-Ssuffers a fairly
dramatic performance drop-off, achieving only 84% of the optimal speed at 200WPM. On
the other hand, the asynchronous parallelized PIFT configuration imposes no such overhead
and can render text without observable delay even at extremetyping speeds. In both PIFT
configurations, we noticed a short “warm-up” period, wherein keystrokes were rendered
slowly for 2-3 seconds before catching up and matching the input speed imperceptibly.

Editing a spreadsheet: In our final experiment, we asked a human user to launch
OpenOffice Calc and perform a series of simple spreadsheet editing tasks. They included
opening a document, formatting cells, typing referential formulas, copying cells, and navi-
gating the spreadsheet using both mouse and keyboard. We then measured the time that it
took the user to complete these tasks in each configuration using a stopwatch. Compared
to the keyboard text entry experiment, this test produced a more diverse and somewhat
more stressful interactive workload, since it involved significant mouse movement, as well
as switching between mouse and keyboard. Several tasks required the user to activate and
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Figure 5.5. Time taken to complete the spreadsheet editing task in all configurations of
interest.

Slowdown Slowdown
Configuration rel. toNL rel. toEmul
PIFT-A(1024) 2.03× 1.14×
PIFT-S 2.74× 1.54×

Table 5.4. Slowdown relative toNL andEmul in the spreadsheet editing experiment.

interact with dialog boxes (for example, to modify cell border appearance) or to navigate
file menus.

Figure 5.5 plots the task completion times in this experiment and Table 5.4 reports the
slowdown incurred by both PIFT configurations. In the nativeLinux configuration (NL), the
editing session took roughly 74 seconds and it took the user 201 seconds (or 2.7× longer)
to complete the session in thePIFT-Sconfiguration. As before, asynchronous parallelized
tracking offered significant improvements, reducing the completion time to 149 seconds.

Looking at these results, it is essential to note that the dominant component of the
overhead inPIFT-A(1024)is associated with the costs of basic emulation and our IFT ex-
tensions add only 14% to these baseline costs. This results is remarkable, as it suggests that
with our performance improvements, information flow analysis ceases to be the principal
performance bottleneck, at least as far as its impact on userproductivity is concerned, and
does not present a serious obstacle to usability. This observation leads us to believe that the
next major performance improvement will come from optimizing the core mechanisms of
emulation and dynamic code translation within QEMU.

Finally, we note that this test demanded agility from the user, requiring him to complete
a series of mechanical tasks as quickly as possible, and did not allow for “think time”. In
more realistic scenarios, users tend to pause between theiractions and this factor would
further reduce the observable performance impact.
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5.4 Evaluation Summary

This chapter examined PIFT’s performance characteristicsin a variety of contexts rang-
ing from CPU-intensive microbenchmarks to interactive applications in a graphical desktop
environment. We believe that our overall results are encouraging and while there clearly
remains room for further improvement, these results demonstrate the effectiveness of our
performance optimization techniques, which are among the core technical contributions of
this dissertation.

It was difficult for us to provide direct comparisons with previous work due to funda-
mental design differences and limited availability of performance data for previous systems.
In the two specific cases where we could do so, our implementation achieved a slowdown
of roughly 1.5× and demonstrated a major improvement over previous efforts, in which
the two comparison cases suffered slowdowns of roughly one and two orders of magni-
tude, respectively. PIFT’s performance advancements are attributable to a combination
of high-level information flow instrumentation and asynchronous parallelized execution of
taint tracking.

The copy and compression experiments presented in Section 5.1.1 exercise PIFT’s abil-
ity to effectively switch between native unmonitored execution on the host CPU and em-
ulated execution. Ideally, on linear workloads one would expect the slowdown to scale
linearly with the amount of tainted data, since the latter dictates the amount of time spent
in the high-overhead emulated mode. The current prototype does not achieve fully lin-
ear scaling, since our mode switching heuristics keep the protected VM in emulation a bit
longer than strictly necessary in an effort to keep the aggregate costs of context switching
at a manageable level and prevent thrashing. Under worst-case conditions, where the entire
input file is marked as tainted, PIFT incurs slowdowns of roughly 16× and 21× on copying
and compression tasks, respectively.

The text search experiment described in Section 5.1.2 demonstrates that the slowdown
is even less noticeable for workloads that mix computational activity with disk I/O. With a
fully-tainted input dataset,grep runs 11 times slower in a PIFT-managed environment with
asynchronous parallelized tracking. The ability to track information flow asynchronously
on a dedicated CPU core reduces the observable slowdown by a factor of 2.3.

While our results unambiguously demonstrate the utility ofasynchronous tracking, it
would be a mistake to view asynchrony as a panacea for taint tracking performance chal-
lenges. It merely provides the ability to buffer a burst of taint tracking activity and execute
it opportunistically, so as to minimize the impact on the critical path of emulation. As
expected, the degree of improvement is largely determined by the amount of memory al-
located for the taint argument log. The results of Section 5.2 suggest that log sizes of
1024MB and higher tend to work well in practice and deliver substantial gains on non-
trivial workloads. Exploring log compression mechanisms and other techniques that could
reduce PIFT’s memory consumption would be an interesting direction for future work.

To the best of our knowledge, PIFT is the first dynamic taint analysis platform to
demonstrate support for interactive workloads in a graphical desktop environment. Al-
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though the presence of tainted data on the screen forces the system to stay in emulation
for extended periods of time, PIFT succeeds in masking the overhead through asynchrony.
For usage scenarios that impose a minimal computational load, such as entering text from
the keyboard, the usability impact is imperceptible. For more intensive operations, such
as editing a sensitive spreadsheet document, it takes a usertwo times longer on average
to complete the desired set of tasks in a PIFT-managed environment. We have not quite
reached the point, where the user-perceptible overhead of dynamic taint analysis and its
impact on productivity can be dismissed as negligible, but we believe that PIFT represents
a substantial step towards this goal. As evidenced by the results of Section 5.3, most of the
remaining overhead can be attributed to the fundamental costs of QEMU-based emulation
and our system is well-positioned to take advantage of further improvements in emulation
technology — an orthogonal, but important direction for future work.
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Chapter 6

Correctness of Taint Label Propagation

In the previous chapter, we evaluated the runtime overhead of PIFT and assessed the
effectiveness of our performance optimizations using a combination of microbenchmarks
and simulated usage scenarios. Although this dissertationfocuses predominantly on ad-
dressing the issues of runtime performance, we must also examine a separate, but equally
important question: does PIFT offer aneffectivetool for confining the flow of sensitive
information and do our mechanisms track its propagationcorrectly? After all, any effort
aimed at reducing the runtime performance costs would be an exercise in futility if the re-
sulting system does not track the flow of sensitive data in a manner that properly reflects
users’ actions, avoiding loss of sensitivity status and overtainting.

The question of effectiveness is a difficult one and a centralchallenge lies in expressing
the criterion of correctness in precise terms. It is crucialto note that in this context, cor-
rectness is fundamentally a subjective and user-centric notion — our IFT platform behaves
correctly if and only if it tracks the propagation of taint labels and enforces policies in a
way that is consistent with users’ intentions and expectations.

Although an in-depth investigation of taint propagation correctness is beyond the scope
of this dissertation and would be an appropriate topic for a follow-on study, this chapter
presents some of our preliminary findings in this area. Thesefindings have emerged from
our initial experimentation with the PIFT prototype and arebased on a range of straightfor-
ward usage scenarios, for which an intuitive and unambiguous definition of correct behavior
is easy to identify.

In general terms, these initial explorations have yielded mixed results. While fully
correct behavior was observed in a subset of scenarios, we have also found evidence of
problematic taint propagation dynamics, including drastic over-tainting of user information
and taint poisoning of control data structures within the OSkernel. These alarming find-
ings lead us to suggest that the current implementation of PIFT’s information flow analysis
mechanisms may not be directly applicable to certain classes of applications and user inter-
faces. These instances of false tainting must be studied andappropriate countermeasures
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must be developed before fine-grained (byte- and instruction-level) information flow anal-
ysis can become truly practical. We hope that the initial setof results, which we present in
this chapter, can serve as a starting point for such a study and help focus subsequent efforts.

Section 6.1 presents the key results from our study of taint propagation, providing rep-
resentative examples of both correct and problematic behavior. The latter suggest that the
hypervisor-based approach to IFT faces several fundamental limitations, which we try to
articulate in Section 6.2. Finally, in Section 6.3, we sketch a methodology for reducing or
altogether eliminating taint explosion in legacy codebases. As a case study, we demonstrate
how this methodology can be applied to address the taint explosion problem in the Linux
kernel.

6.1 Experimental Results

In this section, we present a representative set of results from our taint propagation
experiments. All of these tests employ the “black box” methodology: we start with an
input dataset that includes a combination of tainted (sensitive) and non-tainted data, execute
a series of high-level application-specific data manipulation tasks, and then examine the
output to determine whether its components are tainted in a manner consistent with our
expectations.

(1) Command-line data manipulation tools: In this experiment, we used a command-
line toolchain to execute a series of transformations on a text file. These transformations
included copying the input file (using thecp command from GNU coreutils [18]), searching
the resulting copy for a keyword using GNUgrep [38], sorting the output alphabetically
using thesort command from GNU coreutils, and finally compressing the output using
gzip [40]. The initial input file (F.txt) contained 1MB of English-language text and we
created two additional copies of this file (Fs.txt andFns.txt), representing sensitive and
public data, respectively.Fs.txt was assigned a uniform non-empty label andFns.txt

was tainted withL∅. After assigning taint labels, we executed the following sequence of
commands in the protected VM operating on top of the PIFT platform:
(1) cp Fns.txt F2ns.txt

(2) grep ’the’ F2ns.txt | sort | gzip > F3ns.txt; sync

(3) cp Fs.txt F2s.txt

(4) grep ’the’ F2s.txt | sort | gzip > F3s.txt; sync

(5) cp Fns.txt F4ns.txt

(6) grep ’the’ F4ns.txt | sort | gzip > F5ns.txt; sync

Note that commands(3) and(4) operate on sensitive inputs and, as a result, we expect
PIFT to propagate the non-empty taint label into the corresponding output files (F2s.txt
andF3s.txt). Conversely, commands(1), (2), (5), and(6) operate on the public version
of the input file and we thus expect their outputs (F2ns.txt, F3ns.txt, F4ns.txt, and
F5ns.txt) to carry the empty taint label.
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Figure 6.1. A time series showing the level of computationalactivity within the protected
VM in Experiment 1. The highlighted overlay illustrates thenumber of basic blocks that
touch at least one tainted operand.

After executing the above sequence of commands, we inspected the taint status of the
output files and verified that the labels were propagated according to our expectations:
F2ns.txt, F3ns.txt, F4ns.txt, andF5ns.txt were tainted uniformly withL∅, whereas
F2s.txt andF3s.txt carried a uniform non-empty taint label that matched the label of
the initial sensitive input fileFs.txt. These results lead us to conclude that PIFT exhibits
correct taint propagation behavior in this particular scenario.

Figure 6.1 offers additional evidence to support our claim of correctness, providing a
more fine-grained view of label propagation dynamics in thisexperiment. We repeated
the experiment in a fully-emulated environment and instrumented QEMU to track the total
number of basic code blocks executed by the guest VM, as well as the number of blocks
that touch at least one tainted operand in a CPU register or a memory location. The figure
plots these values as a time series: each data point corresponds to a 100ms time interval and
the vertical axis shows the number of basic code blocks executed in each interval. Look-
ing at this figure, we note that commands(1) and(2) produce substantial computational
activity, but do not touch tainted data, as expected. Commands(3) and(4) perform oper-
ations on the tainted copy of the input file and the time seriesreveals that, as expected, a
significant fraction of the corresponding code blocks manipulates tainted data values. In-
terestingly, the spike of activity representing the file copy operation(3) shows that only a
minuscule fraction of the corresponding code blocks accesses tainted data and the cause of
this counterintuitive behavior becomes apparent once we consider how this operation is im-
plemented. Copying a file on x86-based Linux involves a series of data transfers between
user- and kernel-level data buffers and modern implementations rely on therepz movsd
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instruction to perform these transfers efficiently. These heavyweight instructions transfer
tainted file data in 32KB-sized chunks and are the only instructions to touch tainted data
during the execution of command(3). Finally, commands(5) and(6) repeat the sequence
of operations on the non-tainted version of the file. The timeseries reveals no traces of taint
manipulation activity, indicating that the taint status ofthe affected memory areas and CPU
registers has been properly reset.

(2) Compiling a tainted source code tree: In our second experiment, we attempted to
compile PostgreSQL [69] (an open-source database management system) from source code
using the standard GNU toolchain. As in the previous experiment, we created two separate
copies of the source code tree:Ts (in which each file is labeled uniformly with a non-empty
taint label) andTns (in which each file is labeled withL∅). We then executedmake within
the tainted tree to compile the database server. We confirmedthat the resulting executable
was tainted with the correct label, but also observed that the system failed to return from
the emulated mode upon the completion of compilation. Further investigation revealed a
dramatic taint explosion scenario within the Linux kernel,which caused numerous control
data structures in the kernel address space to pick up taint.As we explain in Section 6.3.1,
this behavior is initially triggered by the propagation of taint through system call arguments.
For instance, supplying a tainted filename string (derived from the contents of a tainted
makefile) as an argument to thesys_open system call deposits taint labels into the kernel
and eventually causes a number ofdentry structures on various kernel-level lists to become
tainted. Subsequently, any other user-space process that interacts with these kernel data
structures becomes tainted as well. Most alarmingly, subsequent attempts to compile from
Tns (the non-tainted version of the source code tree) produce tainted executables.

(3) Editing text using a word processor: In our final test, we experimented with Abi-
word [1] (an open-source graphical text editor) running in aGNOME-based interactive
desktop environment. We began by applying a uniform non-empty taint label to a small
text document (Ds.txt) and then launched the Abiword editor. We opened the tainteddoc-
ument in Abiword, then immediately closed it (without modifying or saving its contents),
and issued a command to create an empty new document. We then entered several lines
of text from the keyboard into this newly-created document,saved it under a different file-
name, and closed the Abiword application window. We inspected the taint status of the
newly-created file and found that it carries the taint label assigned toDs.txt — an unex-
pected result, considering that no data has been explicitlytransferred between these two
documents. We conjecture that opening a tainted file in the first step of this experiment
caused taint labels to propagate fromDs.txt into Abiword’s shared internal data structures
and from there poison the new document. Further investigation revealed that taint labels
propagated into several other files, including:
(1) /home/user/.AbiSuite/AbiWord.Profile

(2) /home/user/.AbiSuite/AbiCollab.Profile

(3) /home/user/.config/gtk-2.0/gtkfilechooser.ini

(4) /home/user/.recently-used.xbel
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Files(1) and(2) maintain user-specific profile data for Abiword, while(3) and(4) store
a list of recently-used files for the “file open” dialog box provided by the GTK+ library.

The observed behavior is clearly unusual, as we would not expect the taint status of
these auxiliary files to be influenced by the simple act of opening a tainted user document.
Further experimentation revealed that once tainted data has entered Abiword through this
action, all subsequent “file save” operations within Abiword produce tainted output files
and this behavior persists across machine reboots. These unexpected results lead us to
suggest that fine-grained information flow analysis tools such as PIFT do not yet offer
natural support for complex applications such as Abiword and attaining a practical solution
will require further investigation into the causes of this taint poisoning phenomenon.

6.2 Fundamental Limitations

While a comprehensive evaluation of taint propagation behavior would be an appropri-
ate topic for a separate in-depth study, we believe that our preliminary results paint a useful
picture and can help understand some of the fundamental limitations associated with our
approach.

On a fundamental level, interposing at the software-hardware boundary using a hyper-
visor allows us to maintain full compatibility with legacy software stacks, while retaining
complete control over the protected VM and its interactionswith external entities. This
point of interposition happens to be highly advantageous for the purposes of IFT, as it
allows us to track data flowtransparentlyandcomprehensivelyacross application- and OS-
level contexts.

At the same time, the capabilities of a hypervisor-level solution are inherently restricted
by asemantic gapbetween application-specific data units and actions on the one hand and
the low-level architectural state of the underlying hardware platform on the other. In mod-
ern interactive computing environments, users manipulateinformation on the basis of ab-
stract human-centric entities and data types (e.g.,pages and paragraphs in a text document
or cells in a spreadsheet). The hypervisor is oblivious to these concepts and observes users’
actions as sequences of machine instructions that operate on the contents of physical mem-
ory and CPU registers, but carry no inherent meaning beyond describing specific low-level
bit manipulation tasks.

The Problem of Over-Tainting

This semantic gap can make it challenging for the hypervisorto track the propagation
of sensitive dataeffectively, in a manner that meaningfully captures users’ intended actions
and agrees with their expectations. Observing nothing other than a stream of low-level
machine instructions, the hypervisor is fundamentally incapable of meaningfully differ-
entiating between explicit information transfers (such ascutting and pasting text between
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documents) and accidental ones (such as tainting the kernel’s control data structures). The
latter can arise as unintended side-effects of explicit data manipulation activities and our
initial results suggest that such cases do, in fact, arise ina variety of common scenarios.
Left unchecked, these accidental data flows can reduce the fidelity of PIFT’s information
flow tracking primitives and, in extreme cases, render them completely ineffective through
taint explosion.

Lacking exposure to higher-level data types and application-specific knowledge, the
hypervisor must rely on the layers above it — applications, supporting libraries, and the
operating system — to confine intra-VM information flow to a set of well-defined channels
and avoid accidental contamination of control data structures. The results of our initial
studies suggest that some applications are not well-behaved in this sense and thus cannot
directly leverage our taint tracking infrastructure. In order to attain compatibility with
PIFT, these applications must be restructured or otherwisemodified to manipulate data in
a more orderly fashion.

Note that PIFT’s exposure to the semantic gap is a fundamental consequence of our key
design choices. An OS-level solution would have been inherently more disruptive to the
protected software stack, but would have allowed us to trackdata propagation on the basis
of OS-level primitives (such as files, sockets, and processes) and easily protect the kernel
from taint poisoning. Yet another alternative would be to focus on applications written in
a specific type-safe language, such as Java or Python, and implement tracking mechanisms
within a managed language runtime, as in RESIN [92]. This approach would provide
an even better view of how applications manipulate information, allowing the tracking
substrate to monitor the propagation of labels on the basis of language-level variables and,
at least in principle, reliably differentiate between intended and accidental propagation
of taint. However, this approach forfeits the generality ofa hypervisor-level design and
requires additional mechanisms to track the flow of data outside the boundaries of a single
application process.

It is also important to note that the taint explosion phenomenon can be viewed as a
direct manifestation oflabel escalation(or label creep) — a general problem that has
been observed in nearly all previous DIFC-based systems. Label creep refers to the notion
that once a variable’s data value has been tagged as “sensitive”, this tag must be retained
throughout the execution to ensure confidentiality, while reverse actions (clearing labels by
overwriting sensitive values with non-sensitive constants) tend to occur infrequently. As
the computation proceeds, label merge operations produce new labels with increasingly
restrictive policies, coercing them in the direction of confidentiality. As a result, an appli-
cation’s internal state experiences a monotonic and continuous increase in sensitivity and
information becomes increasingly difficult to externalize.

The threats and implications of label escalation were first observed decades ago in
Denning’s pioneering work [22] and, to this date, have not been fully resolved. These is-
sues could be among the key reasons why multi-level information flow control has not yet
reached widespread acceptance. Today, most DIFC-enabled systems address label escala-
tion through controlled declassification, in effect providing application developers with an
explicit “escape hatch” from strict information flow control rules. Declassification enables
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downward label movement, allowing applications to releasesensitive information through
careful relabeling of data values. While necessary in practice, declassification is difficult to
do correctly, makes it challenging to reason about the information flow behavior, and can
be abused for malicious purposes.

In PIFT, label escalation manifests itself as over-tainting and the semantic gap arguably
exacerbates the problem. As we explained above, the hypervisor’s inability to differentiate
between explicit and accidental data transfers can easily lead to the contamination of con-
trol data structures with taint. Once the initial contamination occurs, the sensitivity status
spreads and moves upwards due to label creep, leading to full-scale taint explosion. It can
be noted that the solution we propose in Section 6.3 to address kernel-level taint explosion
is essentially a form of explicit controlled declassification.

The Challenges of Debugging Information Flow

Another fundamental issue resulting from the semantic gap is the difficulty of tracking
causal dependencies between taint propagation events, as well as explaininganomalous
behavior such as contamination of control variables. The PIFT platform monitors the ex-
ecution at the level of machine instructions and the currentdesign does not provide mech-
anisms for mapping the low-level architectural state (registers and memory words) onto
higher-level constructs (variables and data structures).In the absence of such mappings, it
is immensely difficult to “debug” information flow problems and explain unusual behavior,
such as the incidents of taint poisoning described in the previous section.

On the one hand, a linear instruction-level trace of execution fully captures the taint
propagation activity within the guest environment and, in principle, provides sufficient in-
formation for a variety of useful studies. In practice, techniques that are based on tracing
the execution at the instruction level tend to produce very large amounts of data, making it
difficult to capture, store, and subsequently analyze the interesting fragments. As an anec-
dotal example, after observing unexpected taint propagation activity in Scenario 3 (editing
tainted documents in Abiword), we attempted to analyze the behavior and identify the
likely causes of taint explosion. We used our QEMU-based tracing infrastructure to cap-
ture an instruction-level trace of taint propagation activity resulting from a short sequence
of user actions; namely, invoking the “file open” command, selecting a tainted plain-text
document from the file dialog box, and clicking the “open” button to load the selected doc-
ument into the text editor. This elementary sequence of actions produced over 15GB of
linear instruction-level execution traces and our attempts at identifying the sources of taint
explosion were hindered by the size and complexity of these resulting traces, even after we
have excluded the “non-interesting” segments that record null-to-null label propagation. At
such scale, execution traces are clearly not amenable to manual inspection and fine-grained
data flow analysis is computationally onerous.

These experiences lead us to suggest that instruction-level tracing may not be the most
appropriate tool for studying the correctness properties of dynamic IFT systems and we
believe that developing more effective analysis, introspection, and debugging tools is an
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important direction for further research. Of particular value would be tools that can help in
identifying the complete causal paths between interestingIFT events (such as specific files
on disk getting tainted) and the initial access to tainted data. To facilitate analysis, such
tools must provide cross-layer visibility and allow researchers to correlate interesting IFT
behavior with guest machine instructions and the associated source code.

6.3 Eliminating Taint Explosion

Given the mixed results from the taint propagation study, one could be inclined to ques-
tion the main hypothesis of this dissertation and ask whether PIFT, or perhaps hypervisor-
based taint analysis systems in general, are indeed suitable for the role of a comprehensive
and reliable data confinement platform. In particular, one could conclude that, lacking the
ability to reliably differentiate between explicit information transfers and accidental poi-
soning, hypervisors are simply not the right tools for the task at hand. Perhaps they are
limited to supporting a narrow class of well-behaved applications, which propagate sen-
sitive information according to carefully-defined data flowrules, but cannot reliably track
information flow in arbitrary executables.

Although our work merely scratches the surface of the problem and invites further
research on the accuracy of taint tracking, we believe that categorical and pessimistic con-
clusions of this nature would be imprudent. To see why, we must consider the fact that few,
if any, of the widely-deployed legacy applications were designed to function in a DIFC-
enabled environment. While information flow control has a rich history in the research
community and its principles are fairly well-understood, IFC techniques have not yet, at
the time of writing, reached widespread adoption within thebroader computing commu-
nity. In particular, the principles of information flow control are not widely known within
the industry of consumer software development and do not form a standard component
of the general computer science curriculum. As a consequence, programmers rarely take
information flow considerations into account when developing applications and systems
software stacks. The problem is exacerbated by modern compilers, which, in an effort to
squeeze out every last bit of performance, routinely transform code in a manner that causes
sensitive information spillage and taint poisoning, even in well-structured applications that
carefully confine information flow at the source code level. In light of these issues, it may
be unreasonable to expect unmodified legacy application stacks to cooperate and be fully
compatible with our low-level application-independent IFT infrastructure.

We believe, however, that the limitations we observed when applying PIFT to legacy ap-
plications can be eliminated by identifying the channels ofinformation leakage and closing
them via a limited number of simple and localized source codetransformations that do not
affect high-level program behavior. The general methodology for finding and eliminating
the culprits of overtainting would involve first identifying the set of high-level containers,
which are used by the application as explicit storage vessels for sensitive user data, and
then examining all channels of information exchange between these containers. To make
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this discussion somewhat more concrete, in a typical object-oriented application informa-
tion containers would likely be represented by object classes that encapsulate user data,
while the channels would correspond to the public functional interfaces between these
classes. These interfaces can be then examined and classified into explicit information
transfer channelsandspillage channelsaccording to their high-level taint dissemination
effects.

Having identified the set of spillage channels, we can mitigate or altogether eliminate
their undesirable taint propagation effects by removing (“scrubbing”) the taint label at the
destination endpoint. This can be done in a variety of ways and our current implementation
facilitates this step by exposing a new hypercall (__HYPERVISOR_scrub_taint). Applica-
tions can invoke this hypercall to explicitly label a regionof their virtual address space as
non-sensitive, causing PIFT-Xen to replace the corresponding memory taint labels withL∅.
Note that while this approach requires modifying and recompiling the application codebase,
these modifications are minimal and non-intrusive in their nature. Crucially, these changes
are limited to inserting a set of hypercall invocations and do not affect the program’s data
flow, control flow, or the overall application logic in any manner. An alternative approach
would be to trap the execution of functions that transfer data across spillage channels within
PIFT and automatically clear the taint labels at the destination endpoint without explicit
signaling from the application. This approach is applicable in cases where compatibility
with existing binaries is an absolute requirement, but is non-portable and involves pushing
a certain amount of application- and/or OS-specific information (such as the addresses and
signatures of functions that constitute spillage channels) into the hypervisor.

How much work would be involved in identifying and fixing all the spillage channels
that currently exist in large and widely-deployed legacy programs? After all, the proposed
methodology for eliminating such information flow leaks demands a non-trivial amount of
manual analysis and requires expert understanding of a program’s structure and data flow
properties. Might it not be more prudent to discard the existing implementations and rebuild
these programs from the grounds up, espousing the principles of information flow control
and carefully restricting the dissemination of sensitive data values to avoid overtainting?

We conjecture that even in very large and complex legacy codebases, the main culprits
of taint poisoning and explosion are represented by a small number of easily-detectable
spillage channels that can be intercepted and securely scrubbed. As an initial step in as-
sessing this conjecture, we undertook a systematic study oftaint explosion in one of the
most complex, yet universally deployed components of the software stack — the operating
system kernel. Since our prototype implementation of PIFT was tested and evaluated with
a paravirtualized (PV) Linux guest environment, we chose tofocus our investigation on
the PV Linux kernel version 2.6.8-18, although we expect ourresults to be fully applicable
to other recent versions of Linux. Focusing on execution scenarios that result in severe
kernel-level taint explosion, we found that the causes of initial kernel contamination can be
traced to two specific spillage channels situated at the user-kernel boundary. By invoking
__HYPERVISOR_scrub_taint at these two locations (which required adding 110 lines of
new code to the standard Linux kernel), we were able to close these information flow gaps
and eliminate kernel taint explosion for all practical purposes.
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6.3.1 Case Study: Eliminating Taint Explosion in the Linux Kernel

One of the most common and problematic cases of taint explosion involves accidental
propagation of taint labels into the internal data structures of the OS kernel and our early
experimentation with the system revealed that the Linux kernel is highly susceptible to this
phenomenon.

Recall from Section 6.1 that in one of our initial experiments we attempted to com-
pile an executable from a tainted C-language source code tree using the standard GNU
toolchain. In that experiment, we observed a dramatic taintexplosion within the kernel,
which was triggered by the propagation of tainted data through system call arguments. As
an illustrative example, supplying a tainted filename string (derived from the contents of a
tainted makefile) as an argument to theopen system call deposits taint into the kernel and
eventually causes a number ofdentry structures on various kernel-level lists to acquire
taint 1. Subsequently, any other user-space process that interacted with the kernel would
get tainted from these data structures and cause taint to propagate further along the exe-
cution path. Upon the completion of compilation, PIFT failed to return the protected VM
from the emulated mode and subsequent attempts to build fromnon-tainted source code
produced tainted binaries.

One way of approaching the problem of kernel taint explosionis by observing that for
the purposes of information flow tracking, the propagation of taint from the application
address space into kernel-level memory canalmost in all casesbe viewed as anomalous
and undesirable behavior. In a general-purpose operating system such as Linux and Win-
dows, the kernel provides a general-purpose substrate thatexposes a specific set of system
services through a well-defined and relatively narrow interface defined by system calls. By
design, these services areapplication-independentand are expected to function without
any knowledge of application-level data semantics. It follows that transfers of taint labels
from an application-level address space to kernel-level control data structures should not
occur under normal operating conditions. As a result, any information channel that per-
mits tainted information to cross the user-kernel boundaryand flow into kernel-level data
structures can be viewed as a spillage channel and treated assuch.

If we take this view, we can tackle the problem by identifyingthese accidental channels
of taint propagation and closing them, while retaining the legitimate channels of infor-
mation transfer the kernel is expected to provide as part of the system call contract. To
localize the codepaths in the kernel where such accidental tainting happens, we undertook
a systematic empirical study of taint propagation for a Linux-based guest environment.

Identifying and Closing Spillage Channels

We began by capturing an instruction-level trace of a usage session, which included
the initial stages of the compilation experiment and resulted in severe kernel-level taint
poisoning. Using this trace, we constructed a data flow graphillustrating the execution

1A detailed explanation of this taint poisoning scenario canbe found in an earlier study [80].
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Figure 6.2. A schematic depiction of the data flow graph that emerged from our empirical
study of kernel taint explosion. The shaded nodes depict thetwo kernel-level functions that
are responsible for the initial taint poisoning.

paths that resulted in kernel taint poisoning. In this graph, nodes correspond to individual
machine instructions and there is an edge fromI1 to I2 if I1 writes data to a memory
location that is subsequently read byI2.

This data flow graph helped us understand the general properties of execution paths
that deposited tainted application data into kernel-levelmemory areas. While the data flow
graph cannot be presented here in complete detail due to its size and complexity, Figure 6.2
depicts this graph in schematic form, which highlights our most significant finding. Specif-
ically, we found that in all execution paths that deposit taint into the Linux kernel, only two
kernel-level code blocks serve as entry points and enable the initial transfer of tainted data
from application-level memory.

In the first case, the transfer occurs when the system call entry routine (system_call in
linux/arch/i386/kernel/entry-xen.S) writes the user-level CPU register values (some
of them holding system call arguments) to the kernel-level stack and the spread of taint
starts when the system call handler fetches these argumentsfrom the stack. In the sec-
ond case, the transfer happens via thecopy_from_user routine and its variants. The ker-
nel invokes this function to fetch additional arbitrary-length system call parameters from
application-level memory buffers and this action can causetransfers of taint into kernel-
level stack and heap areas.

While the presence of these taint poisoning channels is not at all surprising, the inter-
esting fact that emerged from our analysis is that no other channels exist. As a result, we
can apply the methodology introduced above and easily stop kernel-level taint poisoning by
closing these two spillage channels. To close the first channel, we modify thesystem_call
entry routine and invoke the taint-scrubbing hypercall in the very first steps of system call
handling, instructing PIFT-Xen to clear the taint status ofsystem call arguments once they
have been transferred to the kernel stack. Note that since wedo not wish to change the
application-level taint propagation behavior, we must preserve the original user-level reg-
ister taint labels and restore them upon return from the system call handler. We accomplish
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Figure 6.3. The contents of the kernel-level stack upon system call entry in a paravirtualized
Linux guest environment with our taint scrubbing modifications.

this by storing a second copy of the user-level register context on the kernel-level stack,
as illustrated in Figure 6.3. This second copy is scrubbed and subsequently accessed by
the kernel-level code to obtain the system call arguments, while the first (tainted) copy is
used to restore the application-level registers upon the return from the kernel. Using sim-
ilar techniques, we modify thecopy_from_user routine (and its variations) to scrub the
destination kernel-level memory area once tainted data hasbeen copied from a user-space
buffer.

Identifying Legitimate Channels of Information Transfer

In practice, most operating systems provide a number of explicit and well-defined infor-
mation transfer channels, which enable applications to communicate and store data. While
the system call scrubbing technique described above offersan effective defense mecha-
nism against accidental kernel taint contamination, we must, of course, ensure that any
mechanism we adopt to address this issue does not interfere with these legitimate infor-
mation channels. We performed an in-depth inspection of theLinux system call interface
and identified the followingexplicitchannels of information transfer from application-level
memory to the kernel address space:

1. The write system call (and its variations):Like most modern OSes, Linux imple-
ments a kernel-level file block caching facility to speed up file access. The system
call handler forsys_write transfers file data from an application-space buffer into
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this kernel-level cache by invoking thecopy_from_user routine. In this situation,
we must avoid scrubbing the kernel-level copy in order to ensure that taint labels get
preserved across file I/O operations.

2. The send system call (and its variations):Analogously, the handler forsys_send
may invokecopy_from_user to transfer application data into kernel-level socket
buffers and the taint labels must be propagated accordingly.

3. Inter-process communication (IPC) system calls: The Linux kernel provides temporary
storage for user-level data buffers to support message-based IPC.

In each of the above cases, we modified the relevant codepathsin the Linux kernel
to invoke an alternate version ofcopy_from_user, which does not scrub the kernel-level
memory buffer.

Encouragingly, these modifications allowed us to eliminateall symptoms of kernel taint
explosion and prevent subsequent inter-process taint poisoning. To test our solution, we re-
executed the compilation experiment described above. We invoked 10 iterations ofmake,
alternating between tainted and non-tainted copies of the source code tree, and verified
that the resulting binaries are tainted in the expected manner. We then ran a series of
other control experiments, which included copying, compressing, searching, and editing
text using theemacs editor, and confirmed that taint labels do not leak into kernel-level
memory areas of the protected VM.

Discussion

In summary, our approach to the problem of kernel taint poisoning involves identifying
and closing all taint spillage channels, while making exceptions for a small number of
legitimate information channels that the kernel explicitly exposes through the system call
interface. Admittedly, our solution rests on the assumption that the user-kernel interface is
relatively narrow and can be manually audited to identify the set of legitimate channels. Our
approach also assumes that applications are “well-behaved” in the sense that they always
confine explicit transfers of sensitive user data to these legitimate channels.

Of course, the second assumption may not always hold and it isquite easy to come up
with a counterexample. Consider a scenario, in which two processes communicate tainted
information by reading and writing the contents of a directory file: P1 generates empty
files and encodes tainted data into their filenames, whileP2 fetches this data by issuing
readdir system calls. This is an example of animplicit information flow that would not be
captured by our taint tracking substrate. While theoretically possible, we expect that such
scenarios will rarely, if ever, arise in practice in the absence of malicious activity. In other
words, we expect that in the vast majority of cases, applications will communicate data
through the three explicit channels we have identified: file operations, socket operations,
and message-based IPC.
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no-op stat fork

PIFT-PVL (without scrubbing) 0.248 0.952 242.21
PIFT-PVL (with scrubbing) 0.557 1.593 243.00

Table 6.1. Latency (inµs) for several system calls in a paravirtualized Linux guestenvi-
ronment with and without taint scrubbing.

Analogously, it is difficult to argue that kernel-level control data structures will never
get contaminated through the channels we chose to keep open.In some scenarios, kernel-
level code may need to examine and perform simple computations on tainted application
data residing in a kernel-level cache, as in the case of filesystems that compute block-level
checksums or hashes before writing data blocks to disk. While it is conceivable that a
certain sequence of operations could trigger kernel-leveltaint explosion originating from a
tainted checksum value, we found no evidence of such activity in the course of extensive
experimentation with our Linux-based prototype.

Finally, one could note that our techniques are ineffectivein the presence of malicious
or compromised applications that want to circumvent the information flow tracking mech-
anisms. In particular, malicious code could exploit our kernel taint scrubbing functions to
create an exfiltration channel for sensitive data. We respond by noting that PIFT focuses
on tracking the flow of information in a benign environment, while protecting the integrity
of taint labels in the presence of malware is an explicit non-goal. Even without our kernel
scrubbing modifications, malicious software intent on stealing sensitive information has a
myriad other options, includingimplicit flow channelsandcovert channels. Detecting and
preventing data exfiltration through these channels is technically difficult for all existing
information flow tracking systems and we do not attempt to close these gaps with PIFT.

Performance Overhead of Scrubbing

To see if our explosion elimination measures impaired performance, we used LM-
Bench [51] to measure the latencies of three distinct systemcalls: no-op, stat, andfork.
We performed these measurements in our PIFT-enabled paravirtualized Linux configura-
tion both with and without the taint scrubbing extensions. Table 6.1 reports the results of
this comparison. We see that for theno-op system call, the cost of an additional hypercall
represents a significant (factor of2.2×) penalty, but this overhead is much less noticeable
for non-trivial system calls.
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Chapter 7

Summary and Conclusions

In this dissertation, we presented Practical Information Flow Tracking (PIFT) — a
novel information security architecture for enterprise environments that monitors the flow
of sensitive data and restricts its dissemination by enforcing high-level security policies. In
contrast to most previous efforts in this area, PIFT seeks toachieve full binary-level com-
patibility with existing software stacks, including widely-deployed legacy applications and
operating systems.

Our exploration begins with the intuition that a hypervisor— a thin layer of virtual-
ization software that can be interposed between the OS kernel and the hardware layer —
can serve as a robust foundational building block for a comprehensive information secu-
rity platform. Hypervisors are, by and large, compatible with existing software stacks, yet
provide sufficient control over the execution of the guest VMand can easily intercept its
interactions with external entities. Our hope was that by extending an off-the-shelf hyper-
visor implementation with dynamic taint analysis and policy enforcement capabilities, we
could attain a robust security platform that tracks information flow and enforces end-to-end
policies in a comprehensive manner.

Dynamic taint analysis is inherently a computationally-intensive task and its broad
adoption has been hindered, in part, by the enormous levels of runtime overhead. Previous
implementations of byte- and instruction-level taint tracking incur slowdowns of up to20×
(for user-level code) and100× (for full-system emulation). While perfectly adequate for
the contexts, in which these systems were proposed, such levels of overhead make previous
implementations unsuitable for our purposes, i.e., real-time monitoring of information flow
in interactive user-facing applications.

This dissertation proposes two novel algorithmic techniques, whose collective effects
allow us to reduce the runtime performance penalty to a much more manageable level.
First, we track information flow at the level of native machine instructions, without first
decomposing them into emulator-specific bytecodes. While this technique requires a much
more significant up-front engineering effort, it also enables a range of low-level optimiza-
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tions that are difficult or altogether impossible to apply atthe bytecode level. Second, we
observe that emulation and fine-grained information flow tracking can be viewed as two
separate and, for the most part, mutually independent computations. As a result, PIFT can
improve performance by batching and delaying the processing of taint label updates and
handling them “opportunistically” in an asynchronous manner. On multiprocessor CPUs,
our system attains further overhead reductions by offloading the taint tracking computation
to a separate processor core, allowing it to proceed asynchronously and in parallel with the
main execution stream of emulated instructions.

The combination of these two optimizations yields a significant reduction in runtime
overhead and allows PIFT to advance the state of the art in taint tracking performance,
in some cases achieving an order-of-magnitude improvementover the best previously-
published results [98]. To the best of our knowledge, PIFT isthe most efficient imple-
mentation of whole-system byte-level taint tracking available at the time of writing and
is the only system to demonstrate a fully-usable interactive graphical environment. While
the overhead on stressful CPU-bound microbenchmarks is still relatively high (up to35×
in worse-case scenarios), we were encouraged by the resultsof our usability study, which
indicated that the user-perceivable delays and PIFT’s overall impact on user productivity
are much less noticeable (no more than2×). Notably, most of the remaining overhead is
attributable to the fundamental performance costs of emulation using QEMU, while the
additional slowdown due to taint analysis is almost negligible.

Our techniques and results are, of course, not without limitations. A hypervisor-based
architecture is inherently limited by a semantic gap between high-level context (OS- and
application-level data constructs) and the low-level state of the virtual machine (processor
registers and memory locations). This mismatch makes it challenging for PIFT to differen-
tiate between intended transfers of sensitive informationand accidental ones, the latter of
which oftentimes arise as unintended side-effects.

Our empirical study of taint propagation behavior in legacyLinux applications revealed
an alarming number of false tainting scenarios, whereby taint labels were superfluously
propagated from sensitive data files into various shared application- and OS-level data
structures. This behavior leads to overtainting and causesunrelated data files to get con-
taminated with sensitivity policies. In some cases, it leads to full-scale taint explosion —
a degenerate state, in which nearly all components of the VM memory image acquire non-
empty taint labels. In this state, the system erroneously prevents users from externalizing
anydata, regardless of the original policy specification and atthat point, information flow
analysis ceases to be useful or meaningful.

These results lead us to conclude that machine-level IFT primitives, such as the ones we
explore in this dissertation, are not fully compatible withoff-the-shelf legacy application
binaries and further research into the dynamics of taint propagation is needed before the
vision of a robust and transparent data security platform, as outlined in the introductory
chapter, can be fully realized. As we explain in Chapter 6, these limitations are partly an
implication of the semantic gap, which renders the hypervisor incapable of differentiating
explicit information transfers from accidental “spilling”, and partly a consequence of the
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fact that today’s application developers are largely unaware of IFT and rarely take proper
precautions to confine sensitive data flowwithin an application to appropriate channels.

We believe that the current instantiation of PIFT can still serve as a useful tool for track-
ing information flow in legacy software, but in light of theselimitations, a certain amount
of application-level restructuring or modification appears inevitable. To assist software de-
velopers with this task, we have sketched a methodology for identifying the root causes of
taint label spillage through source code analysis. Once these channels have been identified,
they can be closed by issuing an explicit taint scrubbing request to PIFT or, alternatively,
augmenting the hypervisor with a certain amount of application-specific logic that enables
it to recognize transfers of information across these channels and scrub them automati-
cally, without involving the application. We conjecture that in most legacy software sys-
tems that are susceptible to taint explosion, the initial contamination of non-sensitive state
occurs through a small number of leakage channels, which canbe identified and closed
without excessive manual effort. As a feasibility study, weinvestigated the problem of
taint contamination and subsequent explosion within the Linux kernel. By applying our
methodology, we were able to identify and close all existingchannels of kernel-level con-
tamination, which required modifying only two kernel source files and adding 110 lines of
new code. While these initial results are clearly encouraging, we hasten to note that they
are of preliminary nature and further investigation is needed to assess whether the proposed
methodology generalizes to other classes of legacy software.

Taking a broader perspective, the aim of this dissertation was not to present dynamic
taint analysis as a panacea for information security problems within an enterprise, but rather
to explore and evaluate a novel hypervisor-based security architecture that comprehensively
tracks information flow and enforces end-to-end policies that are beyond the capabilities
of today’s DAC-based security mechanisms. By doing so, we hoped to assess the potential
of hypervisors in the domain of information security and develop understanding of their
unique strengths in this domain, as well as their limitations.

As a final point for discussion, we return to our original hypothesis — that a hypervisor
augmented with byte-level taint analysis primitives can serve as a foundation for a robust
and practical information flow tracking platform, which provides the above capabilities. At
this juncture, it is natural to ask: how well did this hypothesis hold?

The non-intrusive nature of hypervisors and the promise of full compatibility with ex-
isting application binaries are, quite clearly, a major advantage and allow us to interpose
IFT functionality in a fully-transparent manner. Further,while the computational overhead
of dynamic taint analysis has been a major obstacle for all previous IFT implementations,
this dissertation contributes several novel optimizationtechniques, which greatly reduce
the runtime performance costs. On-demand emulation, coupled with asynchronous paral-
lelized taint tracking, allow PIFT to reduce the performance impact to a point, where the
runtime overhead is no longer a significant practical concern.

On the other hand, the lack of visibility into higher-level data constructs turns out to
be a major practical limitation for hypervisor-based systems such as PIFT and, in some
scenarios, affects their ability to track the dissemination of sensitive data correctly. There
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remains more work to be done in understanding the causes of taint explosion, as well as
mitigating its effects, and we hope that subsequent research efforts will help overcome
these remaining hurdles.

In the final analysis, we believe that this dissertation contributes to a better understand-
ing of hypervisors from the angle of enterprise security andmakes a strong argument that
hypervisor-driven IFT systems hold a significant promise. We also believe that such sys-
tems will become fully practical and ready for broad adoption once the issues of taint
explosion are fully understood and resolved.

7.1 Directions for Future Work

In some sense, the core technical contribution of this dissertation is very narrow in
scope, focusing predominantly on improving the runtime performance of dynamic taint
analysis. Performance overhead was a major stumbling blockfor all previous dynamic IFT
proposals and has contributed to a widespread perception that dynamic taint analysis is
simply too slow and, for this reason, fundamentally unsuitable for real-time tracking. Our
work has demonstrated that these pessimistic notions are unfounded. A detailed analysis
of the existing bottlenecks, combined with several algorithmic advancements and careful
engineering, has enabled us to achieve substantial overhead reductions. The end result of
our efforts is a new and highly-efficient IFT implementation, which proves that fine-grained
(byte- and instruction-level) taint analysis can be performed in real-time on commodity
hardware with negligible impact on the user experience.

At the same time, it is abundantly clear that runtime performance is not theonly major
obstacle on the path to broad acceptance and other challenges must be overcome before
dynamic IFT systems (and the design principles they embody)can be considered truly
practical. This dissertation leaves many questions unanswered, but lays the groundwork
for further investigation and we plan to continue using our PIFT prototype as a platform
for taint tracking research. We conclude this dissertationby outlining what we believe to
be the most important and promising directions for further inquiry.

7.1.1 Bridging the Semantic Gap

We believe that addressing the implications of the semanticgap between application-
level constructs and VM-level state is among the most critical directions for future work,
and one that will likely determine the practical viability of systems such as PIFT. As we
have shown in this dissertation, state-of-the-art hypervisor-level IFT implementations do
not always track the flow of taint labels accurately in legacysoftware stacks and exhibit a
tendency to overtaint. Understanding the root causes of taint explosion in existing appli-
cations is an essential direction for future work. This willrequire developing an array of
robust tracing, introspection, and data flow analysis tools, which would enable researchers
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to study the dynamics of taint label propagation and correlate instances of unusual activity
with application-level events. Once the dominant causes oftaint poisoning and explosion
are sufficiently well understood, the next step would be to identify effective techniques for
eliminating taint explosion or mitigating its effects and the scrubbing technique introduced
in Chapter 6 might serve as a useful starting point. At that stage, developing a set of mean-
ingful quantitative metrics for evaluating the efficacy of such techniques and formulating a
precise definition oftaint propagation accuracywould be highly beneficial.

Another significant issue resulting from the semantic gap, and one that we largely
sidestep in this dissertation, is the question of initial data labeling. Human users trans-
act at the level of documents, e-mail messages, text paragraphs, and spreadsheet columns,
yet, as we discussed, these notions remain largely invisible to PIFT. Conversely, the hy-
pervisor tracks information flow and assigns policy labels on the basis of machine registers
and memory addresses, but these low-level primitives are hardly meaningful to a typical
desktop application user. Given this mismatch, how would a user indicate to the hypervisor
that a specific column in her spreadsheet contains sensitivedata and should be labeled with
policies? Developing a robust data labeling mechanism, which does not require significant
changes to the application layer and does not drastically alter the user experience, is another
essential step on the path towards practicality.

7.1.2 Further Performance Improvements

While progress has been made on improving the runtime performance of taint tracking,
our work leaves numerous opportunities for further optimization and we believe that careful
analysis of the remaining bottlenecks, coupled with diligent engineering, can lead to further
breakthroughs.

Our experimental results demonstrate that a significant fraction of the remaining over-
head (around 50%) is attributable to the baseline costs of emulated execution in the current
version of QEMU and improving the efficiency of core emulation mechanisms represents a
clear “low-hanging fruit”. While QEMU’s just-in-time (JIT) code translation mechanisms
are relatively efficient and offer a big improvement over plain binary interpretation, they do
not employ any of the advanced dynamic compilation and optimization techniques found in
today’s state-of-the-art VM runtime environments, such asthe Java HotSpot Server Com-
piler [68]. HotSpot translates from architecture-independent Java bytecode and achieves
near-native performance on commodity hardware, employingan array of advanced com-
piler optimization techniques [17, 84]. Retrofitting some of these optimizations into QEMU
may greatly improve performance for all applications of emulation, including PIFT.

Going further, the computational overhead of taint analysis could be reduced by JIT-
compiling the taint tracking instruction handlers. Recallfrom Chapter 4 that our current im-
plementation handles these instructions by repeatedly invoking pre-compiled instruction-
specific handler routines. While straightforward to implement, this approach adds the over-
head of a function call to each taint tracking instruction and precludes macroscopic code
optimizations that span multiple instruction handlers. Instead, we could aggregate taint

127



tracking instructions into larger blocks and JIT-compile them to native code for the host
CPU. During this step, we could apply register allocation and dead code elimination opti-
mizations in hopes of reducing the amount of computational work for the taint processor.

Parallelized execution is another interesting direction for future work, and one that
holds numerous promises and challenges. The current designof PIFT utilizes two processor
cores, providing the ability to execute the taint tracking instruction stream asynchronously
and in parallel to the main emulated context. This represents a clear step forward, but might
it be possible to achieve further speedups by parallelizingacross a larger number of cores?
In the current design, the actual execution of taint tracking instruction handlers proceeds
sequentially, mirroring the instruction stream in the emulated CPU, but the ordering of in-
structions within a basic block is determined by data dependencies and is only a partial
ordering. Would it be possible to identify sets of mutually-independent guest CPU instruc-
tions at the time of code analysis and translation, and partition the output taint tracking
code block into several independent sub-blocks, which could be executed in parallel on a
multi-core host processor. We believe that the answer is affirmative — data dependency
tracking is a routine activity in compiler design and techniques for identifying independent
instruction schedules are readily available. A less obvious question is whether these par-
allelization opportunities can be leveraged in practice toachieve speedups and one of the
challenges lies in overcoming the overhead of synchronization.

Finally, it may be beneficial to explore the potential of specialized hardware extensions
for information flow analysis. Recall that although compatibility with unmodified hardware
platforms was an explicit objective for our current implementation, at the core of our pro-
posal lies a new processor architecture and a new ISA specification for a specialized taint
analysis unit. The current implementation of PIFT emulatesits functionality in software
to achieve compatibility with existing platforms, but a true hardware-based taint processor
implementation could yield significant performance gains.While instantiating the full taint
processor design in hardware would be, without a doubt, an extremely ambitious project,
it is likely that a significant fraction of the gains could be realized by implementing only
a modestly-sized subset of the desired features and retrofitting them as incremental exten-
sions. As a specific example, consider thePageTaintSummary lookup procedure described
in Section 4.2.5, which translates physical page numbers into concise page taint descriptor
summaries using a two-level nested table. As it happens, this lookup procedure is highly
analogous to a standard page table lookup — an operation thattranslates from virtual to
physical page numbers and is typically handled by the hardware memory management unit
(MMU). The two-level nested structure illustrated in Figure 4.10 bears a strong resem-
blance to a standard page table and the auxiliary cache ofPageTaintSummary structures is
a direct analogue of a TLB. Hence, adding a new MMU instance for efficient handling of
PageTaintSummary lookups — an incremental and relatively straightforward extension —
could help us improve performance by eliminating 2-4 software-based memory accesses
per taint tracking instruction.
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7.1.3 Other Uses of Dynamic Taint Analysis

While tracking the flow of sensitive user data through third-party legacy applications
represents the primary focus of our efforts in this dissertation, we believe that PIFT can be
applied to a broader range of problems. Exploring additional use cases for the core set of
taint analysis technologies we have developed in the context of PIFT can a fruitful avenue
for further investigation. As a specific example, which emerged from discussions with
our industry partners, it would be interesting to explore the application of fine-grained IFT
techniques to the development and functional verification of large-scale Web applications.

Internet companies such as Google, Facebook, Amazon, eBay,and others rely on the
ability to store and manipulate large amounts of information about their users and cus-
tomers to drive their core business. These companies implement their services through an
array of sophisticated internally-developed applications and typically expose these services
to their users through a Web-based interface, while storingsensitive user-specific data in
a back-end database tier. Social networking sites such as Facebook collect and store de-
tailed information about their users’ interests and activities, as well as detailed histories of
communication with other users. Analogously, e-commerce sites such as Amazon face the
burden of securely storing and accessing users’ personal and financial data, including credit
card numbers, billing addresses, product preferences, anddetailed order histories. Ensuring
the safety of users’ private data and preventing its unauthorized disclosure to third parties
is a major concern for these companies, and one whose importance will only continue to
grow with time. In these scenarios, bugs in application-level logic, misconfigurations, or
imprecisely-specified SQL queries can trigger catastrophic violations of privacy policies,
such as when a user’s credit card information gets mistakenly revealed through the “account
settings” page to another user.

We believe that fine-grained information flow analysis toolssuch as PIFT can be of
great value in this setting by providing an auditing tool or an early warning system for
policy violations. One particularly interesting usage scenario would be to employ PIFT
as a “data flow debugger” during application development andtesting to obtain insight
into the application’s information flow behavior and flag potential violations of policy. An
example policy might state that a user’s credit card data maybe externalized from the
front-end Web tier only through an authenticated HTTP session that bears the credentials
of the same user. During testing, developers would load the database with a collection
of synthetically-generated user profiles, including credit card information, and taint them
with desired policies using PIFT. Later, they would exercise the application using synthetic
request workloads and observe how sensitive profile data disseminates throughout the com-
ponents of the system. The client-facing module in the Web tier could be instrumented to
query the taint labels in outgoing data packets and verify whether they are consistent with
the active privacy policies.

This use case is different from the central scenario of enterprise data confinement in
several crucial respects. First of all, the information flowtracking substrate would be de-
ployed in a development and testing environment with synthetic user data, as opposed to a
live production setting with real users. We expect that in this environment, the slowdown
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resulting from emulation and information flow tracking would not be perceived as a major
practical challenge, since it is well-understood that debugging and program analysis tools
inevitably introduce a certain amount of overhead.

Further, we believe that adopting a tool such as PIFT and applying it in a disciplined
manner would enable developers to study the application’s information flow properties
from the earliest stages of the development process and easily prevent the appearance of
leakage channels. As our study has shown, leakage channels naturally lead to taint poi-
soning and explosion, but detecting and closing these channels after the fact in large ap-
plications can be highly challenging. On the other hand, applying IFT tools during the
development of an application would help eliminate leakagechannels as they appear and
ensure that the end results of information flow analysis are fully accurate and meaningful.

Finally, we conjecture that the computational workloads associated with today’s Web
applications are inherently more amenable to instruction-level IFT and less susceptible to
taint poisoning than legacy desktop applications, such as the ones we evaluated in Chap-
ter 6. While Internet companies such as eBay and Amazon routinely store large volumes
of potentially sensitive user data (such as names, addresses, and credit card information),
their applications rarely require the server-side component to manipulate or perform sub-
stantial computation on such data. In most cases, the computational task involves no more
than basic string construction and copying — the application fetches the relevant user data
fields from the database, converts them to string format, andcombines these text strings
into a larger string that represents the entire output page,interspersing them with HTML
tags and non-sensitive data values. We hypothesize that dueto the constrained nature of
computational workloads, accidental taint propagation and explosion will be less prevalent
in this scenario.

The above factors highlight some of the important distinctions between the two use
cases of fine-grained byte-level IFT: tracking informationflow in legacy enterprise appli-
cations (the central focus of this dissertation) and debugging data flow in Web apps. It
would be interesting to fully explore the applicability andlimitations of PIFT in the latter
scenario and we have already taken several exploratory steps in this direction.

7.2 Final Remarks

Securing the flow of sensitive data in a distributed environment is a challenging prob-
lem, and one whose importance will only continue to grow as our society increases its
reliance on computerized information storage and processing systems. This dissertation
lays the groundwork for a new class of information security architectures, which utilize an
augmented hypervisor to track the flow of data in a comprehensive and transparent manner.
PIFT is a concrete instantiation of the general design principles and represents the core
technical contribution of this dissertation. In the courseof developing and evaluating PIFT,
we have gained valuable insights regarding the unique strengths of hypervisors in the con-
text of information security, as well as an understanding ofwhat goals and tradeoffs are not
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achievable with our approach. Our successes to date suggestthat PIFT offers a set of pow-
erful security primitives, which strike a meaningful balance between comprehensiveness,
deployability, and performance.

While fine-grained information flow tracking has traditionally been considered a heavy-
weight and expensive tool suitable only for offline analysis, we have demonstrated that
online real-time tracking on commodity hardware is within the realm of being practical.
We also hope that our work will help expose the principles of dynamic taint analysis more
broadly to the application developer community and that ourresults will help guide further
explorations of this topic.
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