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Abstract. A multi-protein module is a collection of proteins exhibiting modularity in their
interactions. Multi-protein modules may perform essential functions and be conserved by pu-
rifying selection. Detecting essential multi-protein modules that change infrequently during
evolution is a challenging algorithmic task. A new linear-time algorithm named Produles offers
significant algorithmic advantages over previous approaches. An algorithmic framework for eval-
uation is presented that facilitates evaluation of algorithms for detecting conserved modularity
with respect to their algorithmic goals.

1 Introduction

The biological cell is a fascinating complex system with much to be understood. Proteins are
molecular machines of the cell. Each protein functions in a neighborhood, interacting with other
proteins and molecules to perform its tasks. There are approximately 22,000 genes in the human
genome [1] and still more proteins due to alternative splicing [2]. As it is difficult to determine
exactly how most proteins interact, preliminary work has focused on determining whether two
given proteins can bind to each other [3]. Binding relationships for the proteins of an organism
yield a graph, the interactome, with vertices representing proteins and edges representing potential
interactions [3]. The interactome is only an approximation to cell organization as two proteins that
could bind to each other may be carefully separated into separate locations by cell machinery and
may never interact in vivo [4]. Moreover, in multi-cellular organisms, there are many cell types,
and only a subset of genes are expressed in each cell type [4]. There are also temporal separations
in which various genes are expressed at different times in the cell cycle [4]. Yet, the interactome is
a reasonable beginning for understanding organization of protein interactions in the cell.

There is primary evidence of multi-protein modularity conserved for hundreds of millions of
years including fundamental molecular mechanisms underlying cell-to-cell communication such as
the Notch pathway [5]. How widespread are these instances of conserved multi-protein modularity?
How can we effectively use computational techniques to identify conserved modularity in inter-
actomes with thousands of proteins? Detecting modularity in large biological data sets can be
challenging, both because modules have imprecise boundaries in biological systems [6] and because
data sets are incomplete and imprecise [7].

Early ground-breaking studies searched for conserved pathways in interactomes for H. pylori
and S. cerevisiae [8], and for conserved complexes in interactomes for C. elegans, D. melanogaster,
and S. cerevisiae [9]. Additional attempts to identify conserved modularity in various interactomes
have been subsequently published [10–15].

Following this introduction, Section 2 describes the input data for this study. Section 3 intro-
duces Produles, a new linear-time algorithm to detect conserved multi-protein modules under the
premise that a multi-protein module is a set of proteins with low conductance in an interactome.
Section 4 describes software tools that facilitate comparison of algorithms on current interactomics



data. Section 5 describes a collection of quality measures for evaluating algorithms. Section 6
discusses previously-published algorithms for detecting conserved modularity. Section 7 evaluates
the performance of Produles with respect to algorithmic goals and compares with other algorithms.
Section 8 discusses findings of the study. Section 9 concludes the paper.

2 Input data

An interactome is an undirected graph G = (V,E), where V is a set of proteins and (v1, v2) ∈ E iff
protein v1 interacts with protein v2. In this study the input is restricted to a pair of interactomes,
Gi = (Vi, Ei) for i ∈ {1, 2} and protein sequence similarity values, h : V1 × V2 → R+, based
on BLAST [16], defined only for the most sequence similar pairs of proteins appearing in the
interactomes. As BLAST E-values change when the order of the interactomes is reversed, h is
defined with the rule

h(v1, v2) = h(v2, v1) =
E(v1, v2) + E(v2, v1)

2
where E(v1, v2) is the minimum BLAST E-value for v1 ∈ V1, v2 ∈ V2 when v1 is tested for homology
against the database formed by V2. Any algorithm using only this data is a general tool as it can
be applied easily to any pair of interactomes, including those for newly studied species.

3 Produles

One definition of a modular system is a system with parts organized in such a way that strong
interactions occur within each group or module, but parts belonging to different modules interact
only weakly [17,18]. Following this, a natural definition of multi-protein modularity is that proteins
within a module are more likely to interact with each other than to interact with proteins outside
of the module. Let G = (V,E) be an interactome. A multi-protein module is a set of proteins
M ⊂ V such that |M | � |V | and M has a large value of

µ(M) =
|E(M)|

|cut(M,V \M)|+ |E(M)|

where E(M) is the set of interactions with both interactants in M , and cut(M,V \M) is the set
of interactions spanning M and V \M . Of the interactions involving proteins in M , the fraction
contained entirely within M is given by µ(M).

The conductance of a set of vertices in a graph is a well-studied quantity in graph theory [19]
defined as

Φ(M) =
|cut(M,V \M)|

|cut(M,V \M)|+ 2 min(|E(M)|, |E(V \M)|)
.

When |E(M)| ≤ |E(V \M)|, as for all applications in this study,

Φ(M) =
|cut(M,V \M)|

|cut(M,V \M)|+ 2|E(M)|
=

1− µ(M)
1 + µ(M)

.

Thus, when searching for relatively small modules in a large interactome, minimizing conductance
is equivalent to maximizing modularity.

The Produles algorithm begins by finding a small module,

M ⊂ V1

with high modularity in G1 using a local module-finding algorithm as described in Appendix E.
Let

HT (M) = {v | ∃ u ∈M such that h(u, v) ≤ T}



Modules corresponding to the connected components of the subgraph of G2 induced by HT (M) are
candidates for conservation with M . Let these modules be N1, N2, ..., Nk. For i = 1, ..., k, let

RT (M,Ni) = {u ∈M | ∃ v ∈ Ni such that h(u, v) ≤ T}

If the following are true:

a ≤ |RT (M,Ni)| ≤ b
a ≤ |Ni| ≤ b

1
c
|Ni| ≤ |RT (M,Ni)| ≤ c|Ni|

µ(RT (M,Ni)) ≥ d

µ(Ni) ≥ d

where a is a lower bound on size, b is an upper bound on size, c is a balance parameter, and d is
a lower bound on desired modularity, and if RT (M,Ni) yields a connected induced subgraph of
G1, then Produles returns the pair (RT (M,Ni), Ni) as a conserved multi-protein module. Each
protein is used exactly once as a starting vertex for the local module-finding algorithm. When all
proteins in G1 have been used as starting vertices, the roles of G1 and G2 are reversed, and the
entire process is repeated.

With careful implementation and refinement of the basic idea sketched above, Produles requires
time linear in the size of the input. Appendix B contains algorithm details and proof of linear
running time.

4 Software tools

In order to compare various algorithms on current data, certain software development was necessary.

4.1 EasyProt

EasyProt [20] is a parallel software architecture for acquiring and processing proteomics and inter-
actomics data, and for analyzing results of algorithms that detect conserved multi-protein modules.
EasyProt builds on the dataflow concepts from SEDA [21]. In EasyProt, each task, called an el-
ement, executes in parallel and passes messages along a DAG in which the elements are vertices.
A type system has been developed suitable for proteomics and interactomics data that is used for
the messages passed along the DAG. Each message stores a description that identifies the elements
through which it and its predecessors have passed, along with any parameters that were used. The
user specifies the elements, sets their parameters, and specifies the DAG edges, using a simple
graph language that is compiled into Java using ANTLR [22]. Several message-passing protocols
are supported, including broadcast and round-robin.

Elements have been developed for several classes of tasks: obtaining interactomics and pro-
teomics data, managing a cache for intermediate storage, running protein homology detection
algorithms, running various algorithms for detecting conserved multi-protein modules and convert-
ing to standardized formats, analyzing sets of conserved multi-protein modules, and generating
VieprotML for visualization in VieProt as described in Subsection 4.2.

All steps from data acquisition to final analysis are entirely within the EasyProt framework.
This ensures that all algorithms are treated fairly, running on the same data sets and receiving
the same analysis. The EasyProt framework allows previously published proof-of-concept imple-
mentations for detecting conserved multi-protein modules to be used robustly as practical tools.
Currently Produles, NetworkBlast-M [23], MaWISh [10], and Match-and-Split [13] are fully sup-
ported in EasyProt and can be run on any data set with clear algorithmic evaluation of results.



4.2 VieProt

VieProt [24] is a tool for visualizing conserved multi-protein modules with a dynamic force-directed
layout, that accepts data in a custom XML format, VieprotML, generated by EasyProt. VieProt is
an enormous improvement on the most current alternate visualization tools such as VANLO [25].
With VieProt, it is easy to evaluate visually new and old algorithmic ideas for detecting conserved
multi-protein modularity. Proteins, interactions and interaction sources, protein sequence similari-
ties, GO annotations [26], and algorithmic measures of quality are displayed in a visually-appealing
format. An image from VieProt is included as Appendix H.

5 Algorithm quality measures

A collection of quality measures for individual conserved multi-protein module pairs is defined.
Algorithms are evaluated by taking expectations and standard deviations over the sets of module
pairs that they return.

Let
M = {(M i

1,M
i
2) | i ∈ {1, ..., k}}

be k pairs of conserved modules returned by an algorithm. Let

(M1,M2) ∈M

Let
M ∈ {M1,M2}

Let
Gint(M) = (M,E(M))

be the interaction graph corresponding to M where E(M) is the set of interactions with both
interactants in M . Let

Ghom(M) = (M,H(M))

be the homology graph corresponding to M where, for p1, p2 ∈ M , (p1, p2) ∈ H(M) iff h(p1, p2) is
defined. Let

S(M) = |M |

Let

∆(M) = |E(M)|/
(
|M |

2

)
be a measure of module interaction density: the actual number of interactions divided by the
maximum possible number of interactions. Let C(M) be the number of connected components in
Gint(M). Let

fa(M1,M2) = (f(M1) + f(M2))/2
fd(M1,M2) = |f(M1)− f(M2)|

where f ∈ {µ, S,∆, C}. The subscript a denotes average over the two modules in the pair and the
subscript d denotes difference between the two modules in the pair.

An appropriate measure of overlap between pairs of conserved modules considers that a module
may have undergone duplication in a lineage, leading to the same module being conserved in two
different locations of the interactome for the lineage that underwent module duplication. Thus, for
module pair (M i

1,M
i
2), we define its overlap by other module pairs in the set to be

Oi = max
j 6=i

min{|M j
1 ∩M

i
1|/|M i

1|, |M
j
2 ∩M

i
2|/|M i

2|}



A value of Oi = x implies that no module pair j 6= i exists that covers more than fraction x of each
module in module pair i.

Let (M1,M2) be a conserved module pair. Consider a pair of sets (P1, P2) where

P1 ⊆M1, P2 ⊆M2

and all proteins in P1 ∪P2 form a single connected component in Ghom. It is reasonable to assume
that all proteins in P1∪P2 evolved either from a single ancestral protein or from a small number of
ancestral proteins whose domains have become commingled in the descendants. By a slight abuse
of notation, we call p = (P1, P2) an ancestral protein. Pi is called the projection of p on Mi for
i ∈ {1, 2}.

Let Ma be the ancestral module defined as the set of ancestral proteins. Note that Ma is a
function of (M1,M2). Let p, q ∈ Ma where p = (P1, P2), q = (Q1, Q2). For i, j ∈ {1, 2}, if there
is an interaction in Gi between some p′ ∈ Pi and some q′ ∈ Qi but no interaction in Gj between
any p′′ ∈ Pj with any q′′ ∈ Qj , then there is said to be relationship disagreement concerning the
ancestral interaction between p and q. The maximum possible number of relationship disagreements
is

Rmax(M1,M2) =
(
|Ma|

2

)
If (M1,M2) has R(M1,M2) relationship disagreements, then the modules in the pair disagree on
fraction

Er(M1,M2) = R(M1,M2)/Rmax(M1,M2)

of ancestral relationships.
The ancestral module is a hypothesis for the number of protein losses and protein duplications

in the lineages leading to the present-day modules. For ` ∈ {1, 2}, let

π`(Ma) = {p ∈Ma | P` 6= ∅}

be the set of ancestral proteins that have a nonempty projection on module M` in interactome `.
If the projection of an ancestral protein on M` contains k distinct proteins, then we say that k− 1
duplications of the ancestral protein occurred. Thus, the number of protein duplications in M` is
|M`| − |π`(Ma)|. The total number of protein duplications in the module pair is

D(M1,M2) = |M1| − |π1(Ma)|+ |M2| − |π2(Ma)|

The maximum possible number of protein duplications occurs when |Ma| = 1,

Dmax(M1,M2) = |M1|+ |M2| − 2

The fraction of possible protein duplications exhibited by M1 and M2 is

Ed(M1,M2) = D(M1,M2)/Dmax(M1,M2)

The number of protein losses is

L(M1,M2) = (|Ma| − |π1(Ma)|) + (|Ma| − |π2(Ma)|)
= 2|Ma| − |π1(Ma)| − |π2(Ma)|

which is maximized over Ma when each of the two differences in parentheses is maximized. The
maximum possible number of protein losses occurs when |Ma| = |M1|+ |M2|,

Lmax(M1,M2) = |M2|+ |M1|



The fraction of possible protein losses exhibited by M1 and M2 is

E`(M1,M2) = L(M1,M2)/Lmax(M1,M2)

(Er, Ed, E`) is a measure of purifying selection. Under the assumption that (M1,M2) is a
conserved module pair, when Er, Ed, and E` are small, few changes took place during evolution,
evidence of strong purifying selection. ||(Er, Ed, E`)||2 is a summary measure of the strength of
purifying selection.
|Ma| is a measure of significance of a conserved module pair. It describes how many ancestral

proteins participated in the ancestral module.
Let C(Ma) be the number of connected components in an interaction graph with vertex set

Ma, where an interaction is defined between two ancestral proteins p, q ∈Ma if any protein in the
projection of p on Mi interacts with any protein in the projection of q on Mi, for some i ∈ {1, 2}.
Any value of C(Ma) > 1 implies that the module pair is not well-defined as there is no evidence
that the various connected components belong in the same ancestral module.

Let (M1,M2) be a random variable distributed according to the empirical distribution function
on the module pairs:

prob[(M1,M2) = (M i
1,M

i
2)] =

1
k

for i ∈ {1, ..., k}. Let O, |Ma|, C(Ma), Er, Ed, E`, and ||(Er, Ed, E`)|| be random variables
distributed according to the empirical distribution functions on Oi, |M i

a|, C(M i
a), E

i
r, E

i
d, E

i
`,

and ||(Eir, Eid, Ei`)||2, respectively, where M i
a = Ma evaluated on the module pair (M i

1,M
i
2), and

Eix = Ex(M i
1,M

i
2) for x ∈ {r, d, `}. For each random variable, a summary quality measure is the

pair (E(·),
√

var(·)), the expected value and standard deviation, evaluated on the random variable.
Two non-statistical measures of quality are the number of conserved modules k and the fraction

of proteins in the interactomes that participate in conserved multi-protein modules. Let Ui be the
set of unique proteins that are part of conserved modules in interactome i. Let Ci = |Ui|/|Vi|. Then
C = (C1 + C2)/2 is a measure of proteome coverage.

6 Previous algorithms

6.1 NetworkBlast

NetworkBlast [9] is based on a maximum-likelihood scoring model that gives high scores to module
pairs inducing dense subgraphs with high sequence-similarity between proteins in the module pair.
The model is additive in the densities of the two modules in the pair so the difference in the
densities of the modules in a reported conserved pair is often large. A significant fraction of the
reported conserved module pairs from NetworkBlast-M [23], including some of its highest scoring
results, consist of module pairs such that one module induces a dense subgraph and the other
module induces a subgraph with zero or a small number of interactions. This leads to large values
of ∆d, Ca, Cd, and Er. Moreover, it is often the case that C(Ma) > 1. The search algorithm starts
with high-scoring module pairs consisting of one or a few proteins in each interactome and grows
them with a greedy algorithm based on the scoring function [9, 23].

6.2 MaWISh

MaWISh [10] is based on an evolutionary duplication-divergence scoring model that penalizes pro-
tein interaction divergence and infers protein duplications directly from sequence similarity, reward-
ing recent protein duplications and penalizing ancient protein duplications. The search algorithm
is similar to that for NetworkBlast, starting with high-scoring seeds and growing them with a
greedy algorithm based on the scoring function. Appendix G describes the scoring model in detail,
explaining why MaWISh returns some module pairs with large Ed value and with C(Ma) > 1.



6.3 Match-and-Split

Match-and-Split [13] attempts a symmetric split of both interactomes, recursively matching all
pairs of inter-interactome subnetworks that result from the split, where the two subnetworks in each
recursive call are induced subgraphs of the two interactomes. Match-and-Split splits the networks
by removing proteins in a network that do not have matching proteins in the other network, and
then defining the subnetworks as the resulting connected components. Two proteins are considered
matching if they are sequence similar and if both have neighboring proteins in the interactomes
that are sequence similar to each other. Unfortunately, this rarely leads to a symmetric split.
In most cases each network splits into a large component and many tiny components. The only
meaningful recursive comparisons in this case are comparisons involving a large component. The
large number of recursive calls in Match-and-Split affects the running time adversely. Several nice
features include guarantees that O = 0, Ca = 0, and C(Ma) = 0.

7 Results

7.1 Evaluation of Produles

All variants are applied to current iRefIndex [27] interactomes for H. sapiens and D. melanogaster,
Release 6.0, filtered to retain binary interactions with UniProtKB [28] identifiers. The resulting
networks consist of 74,554 interactions on 13,065 proteins for H. sapiens and 40,004 interactions on
10,050 proteins for D. melanogaster. Protein amino acid sequences were obtained from UniProtKB.
The blastp program from stand-alone NCBI BLAST [29] was applied with threshold 10−9 on
E-values yielding 138,824 pairs of homologous proteins. Using this threshold none of the data
is expected to be spurious as the total number of comparisons is 2 ∗ (13, 065 ∗ 10, 050) < 4 ∗ 108.
Conserved modules are taken as induced subgraphs. The subroutines based on Nibble and PageRank-
Nibble, as described in Appendix E, are modified to consider only connected sweep sets with at
most 20 proteins. All experiments were conducted using a MacBook Pro with 2.53 GHz Intel Core
i5 processor and 4GB 1067 MHz DDR3 memory running Mac OS X Version 10.6.4. Detailed results
tables are listed in Appendix A and discussed in Section 8.

7.2 Comparison of Algorithms

Unless otherwise indicated, data sets, programming environment, and parameters are identical to
those described in Subsection 7.1. For Produles-P, d = 0.05.

Algorithms are compared after using a filter to remove very large, very small, and unbalanced
module pairs. Only pairs of conserved modules with 5-20 proteins per species and with each module
having no more than 1.5 times as many proteins as its conserved partner are considered. For each
algorithm, the number of module pairs failing the filter and the reasons for the failure are listed in
Appendix F.

For MaWISh, intra-species BLAST E-values were computed with threshold 10−9, yielding
150,326 pairs of homologous proteins in H. sapiens and 51,956 pairs of homologous proteins in D.
melanogaster. For NetworkBlast-M, all interactions are given equal confidence of 1.0. For MaW-
ISh, stringent sequence similarity thresholds are used in place of COGs: inter-species pairs are
considered orthologous if they have sequence similarity h values at most T1 and intra-species pairs
are considered in-paralogous if they have sequence similarity h values at most T2 where T2 < T1.
Homology values are converted to MaWISh similiarity scores using the algorithm in their paper [10].
All algorithms are tested with varying sequence similarity threshold T where for MaWISh, T1 = T
and T2 = T ∗ 10−20. The full data set is used consistently for evolutionary model evaluation.

Let Ui be the set of unique proteins in interactome i that an algorithm reports to be part of con-
served modules. Let Yi be the analogous set reported by another algorithm. Let C̈i = |Ui∩Yi|/|Yi|.



Let C̈ = (C̈1+C̈2)/2. The tables in Appendix A report C̈ where the rows correspond to the algorithms
used as U and the columns correspond to the algorithms used as Y. Let {(M j

1 ,M
j
2 ) | j ∈ {1, ..., k1}}

and {(N i
1, N

i
2) | i ∈ {1, ..., k2}} be the output of two algorithms. Let

Öi = max
1≤j≤k1

min{|M j
1 ∩N

i
1|/|N i

1|, |M
j
2 ∩N

i
2|/|N i

2|}

Let Ö be distributed according to the empirical distribution on Öi. The tables in Appendix A

report the pair (E(Ö),
√

var(Ö)) where the rows correspond to the algorithms used as M and the
columns correspond to the algorithms used as N .

Detailed results tables are listed in Appendix A and discussed in Section 8.

8 Discussion

8.1 Algorithmic Goals

Clear algorithmic goals form an interface between biological problems and algorithm design, allow-
ing the following two questions to be examined separately: 1) if the algorithmic goals were perfectly
attained, would the biological problem be solved? and 2) how can algorithms be best designed to
attain the algorithmic goals? This work proposes algorithmic goals that may be useful for evalu-
ating algorithms to detect conserved modularity across interactomes. An algorithm, Produles, has
been designed that attains these algorithmic goals more closely than previous algorithms.

In the paper for NetworkBlast [9], from which NetworkBlast-M derives its scoring model, the
algorithmic goal is well-specified: “The goal is to find two sets of proteins, one in yeast and one
in bacteria, such that many of the proteins in each set have orthologous counterparts in the other,
there is a high level of interaction among the proteins in each set, and the patterns of interaction
in the two sets are similar [9].” The algorithm often does not achieve this algorithmic goal due to
density imbalance among the modules reported as conserved.

The MaWISh paper [10] recognizes the importance of modularity, stating, “functional modules
are likely to be densely connected while being separable from other modules [10].” Despite conse-
quences of the MaWISh scoring model described in Appendix G that produce a few module pairs
with C(Ma) > 1, MaWISh does well with respect to the algorithmic goals presented in this work.

In the paper for Match-and-Split [13], the algorithmic goal is well-specified: “A locally matching
subset pair comprises protein pairs that have similar sequences and similar neighborhood or context
in the networks [13].” The algorithm seems to achieve this algorithmic goal, though inefficiently.

8.2 Produles

It is remarkable that the Er values for Produles are so low and that the discovered module pairs have
similar topologies given that there is no attempt by Produles to match topologies. On arbitrary
graphs, Produles would match modules of differing densities and topologies. Produles overwhelm-
ingly finds module pairs with similar topologies in the interactomes seemingly due to conservation
of these multi-protein modules during evolution.

Over 10% of proteins in the interactomes for human and fly are found by Produles-P with
d = 0.05 to be part of conserved modules, a remarkable result, as the ancestors of chordates and
arthropods diverged more than 500 million years ago [30], and as the interactome data remains
incomplete [7].

Given incomplete and sometimes unreliable interactomics data [7], Produles attempts to find
regions of the interactomes that are reliable by ignoring those regions that do not exhibit modularity
in both interactomes. Less than 15% of the interactomes are found to be part of conserved multi-
protein modules even with the most lenient parameter settings. While this may reflect the actual



extent of conservation, it is possible that as interactomics data becomes more complete, a larger
fraction of the interactomes will be found to be part of conserved multi-protein modules.

When an algorithm detects conserved multi-protein modules that share proteins, these modules
can be combined into a larger composite module. Whenever this union takes place, Appendix D
shows that the modularity of the composite module is at least as large as the minimum modu-
larity of the modules being combined. This allows inspection of a hierarchy of modularity with
larger conserved modules consisting of smaller conserved modules. To investigate these composite
modules, all module pairs from Produles-P with d = 0.05 were combined into composite modules.
When two module pairs had overlapping proteins in both interactomes, they were combined. A
summary of the results is listed in Appendix A. The modularity for these composite modules is
similar to that of the original modules. The size increased significantly. Using VieProt for visual
inspection, many large reasonable pairs of composite modules are readily seen.

8.3 Comparison of Algorithms

Only Produles and Match-and-Split have C(Ma) = 1 in all cases.
Because of the large number of recursive calls, Match-and-Split cannot run on large data sets.

Match-and-Split is able to run on the smaller data set with T = 10−100 when there are 5,675
homologous pairs and less than 50% of the proteins can possibly be considered. MaWISh can
process somewhat larger networks but also encounters difficulties when many homologous proteins
are considered. MaWISh creates a graph with a vertex for each pair of homologous proteins and
then creates edges among these vertices as described in Appendix G.

In MaWISh, duplications are penalized equally for each duplicate pair so the penalty grows
quadratically with the number of duplicates, which, while desirable computationally, is not a rea-
sonable model of evolution. The duplication model in this study has similarities to the linear
duplication model described in the MaWISh paper [10]. The interaction model of MaWISh penal-
izes each duplicate equally for interaction loss or gain. During evolution, if a duplicate loses an
interaction and then duplicates again, the subsequent duplicate never participated in the interac-
tion and should not be penalized for interaction loss. Even when a copy of the interaction is truly
lost, this is not uncommon as duplication weakens purifying selection on redundant copies [31].
Development of a truly new interaction, complete loss of an interaction, complete loss of a pro-
tein, and, to a lesser extent, duplication of a protein, are primary rare events when multi-protein
modularity is conserved by purifying selection [31].

Produles uses the evolutionary model defined in this paper only for evaluation. The evolutionary
model could be used directly to improve the evolutionary model score. If ||(Er, Ed, E`)||2 > E∗,
for some threshold E∗, this variant of Produles would neither report the modules as conserved
nor remove their proteins, other than the starting vertex, from future consideration, as done with
modularity. This may not, however, be desirable as natural modules would be carved to remove
those regions with lower similarity. As MaWISh explicitly attempts to optimize an evolutionary
model score, it may carve regions with better scores from natural modules. With MaWISh and this
variant of Produles, the reported conserved modules may be the most-highly conserved subsets of
actual conserved modules.

In the applications of MaWISh in their paper [10], T1 is set to a BLAST E-value smaller than
60% of the BLAST E-values between orthologous proteins in COG [32]. For fixed thresholds, using
a database of orthologous proteins as a reference leads to the same number of nonzero S(·) values
as our applications, so the running time and the sizes of data sets MaWISh can process remain
similar. To verify that the omission of a database of orthologous proteins as a reference does not
affect MaWISh results significantly, we used the set of all PHOG-T(D) orthologous proteins from
PhyloFacts 3.0 [33] between the H. sapiens and D. melanogaster proteins as a reference. Any PHOG



with more than 30 proteins was removed from consideration. MaWISh was run with the resulting
set of PHOGs as a reference and T1 = 3 ∗ 10−41, as 78% of h values between orthologous proteins
in this set of PHOGs were above 3 ∗ 10−41. Detailed results are listed in Appendices A and F.

Having discovered an algorithmic flaw in the NetworkBlast model, that density balance is not
considered, the module pairs that minimize this flaw, those with lowest ∆d value, were evaluated.
Of all module pairs returned by NetworkBlast-M on the full data set, a summary of the 245
module pairs with lowest ∆d value is listed in Appendix A. The evolutionary model results show
improvement over the 245 module pairs with highest NetworkBlast-M score.

To further evaluate the various algorithms, the interactomes were randomized while keeping
the protein sequence similarities fixed. The randomization, which consisted of a sequence of edge
endpoint swaps, maintained the degree distribution. More precisely, if (u1, u2), (u3, u4) are two
randomly chosen edges in an interactome, these edges are replaced by the edges (u1, u4), (u3, u2)
unless the four endpoints are not distinct, in which case they are left alone. After all edges in the
interactomes were randomized using this algorithm, the various algorithms for conserved module
detection were applied to the randomized interactomes. Produles-P with values of d at least 0.05
did not report any conserved module pairs in the random graphs. All other algorithms reported
conserved module pairs in the random graphs. MaWISh with T1 = 10−100, T2 = 10−120 reported
60 conserved module pairs, but did not report any module pair with more than four proteins
in either module. Match-and-Split with T = 10−100 reported four conserved module pairs, but
did not report any module pair with more than five proteins in either module. NetworkBlast-M
with T = 10−9 reported 4,281 conserved module pairs in the same size range as it reported on
the real interactomes. A table with quality measures for the conserved module pairs reported
by NetworkBlast-M with T = 10−9 on the real interactomes and the random graphs is listed in
Appendix A. For NetworkBlast-M, the modularity and density are smaller on the random graphs.
The evolutionary model scores on the real interactomes and the random graphs are similar. The
density shows improved balance on the random graphs.

The overlap among the module pairs from the various algorithms tends to be significant as
shown by tables in Appendix A, indicating that all algorithms are primarily searching for conserved
modules among the same proteins. The difference seems to be largely in how well the boundaries
of the conserved modules are discovered.

Though none of the algorithms in this study allow protein losses, and thus E` = 0 in all cases,
allowing protein losses may improve results, possibly by lowering Ca or increasing µa. Algorithms
that allow indirect interactions, such as PathBlast [8] and the variant of MaWISh with ∆ > 1 [10],
do allow protein losses.

Only Produles and NetworkBlast-M apply to larger networks that include a large number of
homologous protein pairs. The module pairs discovered by Produles at higher values of T are of
similar algorithmic quality to those discovered at lower values of T . Some of these module pairs
contain short homologous proteins with sequence similarity h values above 10−20. These module
pairs may be missed by algorithms that cannot process networks with higher values of T .

Graemlin [11] either returned no module pairs or ran for hours or days until being terminated
with parameter settings suggested by the authors, so it was not included in the comparisons. In the
future we plan to study additional algorithms such as PathBlast [8], Hirsh-Sharan [12], CAPPI [14],
and DOMAIN [15].

9 Conclusion

Several algorithms that detect multi-protein modularity conserved during evolution have been ex-
amined. A new algorithm named Produles has been designed that does well on clear algorithmic
goals. Promising future directions are discussed in Appendix I.



References

1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of
the human genome. Nature, 431:931–945, 2004.

2. Timothy W. Nilsen et al. Expansion of the eukaryotic proteome by alternative splicing. Nature,
463:457–463, 2010.

3. Marc Vidal. Interactome modeling. FEBS Letters, 579:1834–1838, 2005.

4. Bruce Alberts et al. Molecular Biology of the Cell. Garland Science, Fifth Reference edition,
2008.
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Appendix A: Results tables

Best entries are in bold.

Evaluation of Produles

Parameters are

• All variants: a = 5, b = 20, c = 1.5, e = 50

• P variants: α = 10−3, ε = 10−5

• N variants: tlast = 103, ε = 10−5



Produles-N d = 0.05 d = 0.06 d = 0.07 d = 0.08 d = 0.09 d = 0.10
Running time 4m 4m 4m 4m 4m 4m

k 169 151 138 118 101 89
µa (0.13,0.04) (0.14,0.04) (0.14,0.04) (0.15,0.03) (0.16,0.03) (0.16,0.03)
µd (0.08,0.06) (0.08,0.06) (0.08,0.06) (0.08,0.05) (0.08,0.05) (0.07,0.05)
Sa (7.93,2.86) (7.93,2.74) (7.91,2.74) (7.92,2.90) (7.90,2.87) (7.84,2.83)
Sd (1.56,1.34) (1.52,1.33) (1.51,1.28) (1.58,1.31) (1.60,1.30) (1.60,1.23)
∆a (0.32,0.10) (0.32,0.10) (0.33,0.10) (0.33,0.11) (0.32,0.09) (0.32,0.09)
∆d (0.07,0.09) (0.07,0.09) (0.07,0.09) (0.08,0.10) (0.07,0.07) (0.07,0.07)
Ca (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
Cd (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)
C 0.10 0.09 0.08 0.07 0.06 0.05
O (0.28,0.33) (0.28,0.34) (0.31,0.35) (0.29,0.36) (0.29,0.37) (0.32,0.37)
|Ma| (5.75,2.43) (5.87,2.50) (5.82,2.46) (5.80,2.61) (5.91,2.44) (5.81,2.35)
C(Ma) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
Er (0.05,0.13) (0.05,0.12) (0.05,0.12) (0.04,0.12) (0.03,0.10) (0.04,0.11)
Ed (0.30,0.26) (0.29,0.26) (0.29,0.26) (0.30,0.26) (0.28,0.24) (0.28,0.25)
E` (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.32,0.28) (0.31,0.27) (0.31,0.27) (0.32,0.27) (0.29,0.25) (0.29,0.26)

Produles-P d = 0.05 d = 0.06 d = 0.07 d = 0.08 d = 0.09 d = 0.10
Running time 3m 2m 2m 2m 3m 2m

k 248 217 179 160 129 107
µa (0.13,0.04) (0.13,0.04) (0.14,0.04) (0.14,0.04) (0.15,0.04) (0.16,0.04)
µd (0.08,0.06) (0.07,0.06) (0.07,0.06) (0.07,0.05) (0.07,0.06) (0.07,0.06)
Sa (7.61,2.62) (7.61,2.68) (7.70,2.73) (7.65,2.81) (7.75,2.87) (7.88,3.06)
Sd (1.39,1.27) (1.40,1.28) (1.42,1.25) (1.38,1.19) (1.49,1.25) (1.54,1.33)
∆a (0.34,0.10) (0.34,0.10) (0.34,0.10) (0.34,0.10) (0.33,0.09) (0.33,0.09)
∆d (0.08,0.10) (0.08,0.11) (0.08,0.11) (0.08,0.11) (0.08,0.10) (0.08,0.10)
Ca (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
Cd (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)
C 0.13 0.11 0.10 0.09 0.07 0.06
O (0.34,0.32) (0.34,0.32) (0.32,0.33) (0.33,0.35) (0.32,0.36) (0.33,0.37)
|Ma| (5.43,2.19) (5.48,2.21) (5.49,2.23) (5.48,2.34) (5.67,2.24) (5.72,2.28)
C(Ma) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)
Er (0.06,0.14) (0.05,0.14) (0.05,0.14) (0.05,0.14) (0.04,0.12) (0.05,0.13)
Ed (0.31,0.27) (0.31,0.27) (0.31,0.27) (0.31,0.27) (0.29,0.25) (0.28,0.25)
E` (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.34,0.28) (0.32,0.28) (0.33,0.28) (0.33,0.29) (0.30,0.26) (0.30,0.27)



Comparison of Algorithms

T = 10−100 (5,675 homologous protein pairs)

Produles-P NetworkBlast-M MaWISh Match-and-Split
Running time 2m 1m 0m 74m

k 16 134 22 13
µa (0.11,0.04) (0.05,0.02) (0.05,0.03) (0.07,0.04)
µd (0.07,0.07) (0.03,0.03) (0.04,0.06) (0.05,0.06)
Sa (6.03,0.94) (13.84,1.00) (7.41,2.13) (6.96,1.81)
Sd (0.94,0.83) (1.67,1.46) (1.00,0.95) (1.62,1.27)
∆a (0.44,0.13) (0.30,0.09) (0.33,0.10) (0.52,0.10)
∆d (0.16,0.19) (0.31,0.30) (0.04,0.04) (0.25,0.17)
Ca (1.00,0.00) (3.47,2.26) (1.00,0.00) (1.00,0.00)
Cd (0.00,0.00) (4.50,4.57) (0.00,0.00) (0.00,0.00)
C 0.01 0.06 0.01 0.01
O (0.16,0.27) (0.54,0.22) (0.06,0.10) (0.00,0.00)
|Ma| (3.88,1.36) (9.96,2.94) (5.41,2.19) (3.54,1.39)
C(Ma) (1.00,0.00) (1.05,0.22) (1.00,0.00) (1.00,0.00)
Er (0.03,0.09) (0.38,0.29) (0.00,0.01) (0.06,0.10)
Ed (0.44,0.23) (0.31,0.20) (0.33,0.25) (0.56,0.26)
E` (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.45,0.24) (0.55,0.25) (0.33,0.25) (0.57,0.26)

C̈, Ö Produles-P NetworkBlast-M MaWISh Match-and-Split
Produles-P 0.09, (0.05,0.11) 0.11, (0.09,0.17) 0.20, (0.18,0.33)

NetworkBlast-M 0.77, (0.67,0.27) 0.70, (0.47,0.22) 0.89, (0.73,0.23)
MaWISh 0.20, (0.22,0.29) 0.15, (0.11,0.12) 0.28, (0.21,0.22)

Match-and-Split 0.21, (0.24,0.41) 0.11, (0.16,0.18) 0.16, (0.10,0.12)



T = 10−40 (25,346 homologous protein pairs)

Produles-P NetworkBlast-M MaWISh Match-and-Split
Running time 2m 2m 5m NA

k 128 385 100 NA
µa (0.10,0.03) (0.07,0.03) (0.05,0.03) NA
µd (0.06,0.05) (0.05,0.04) (0.04,0.05) NA
Sa (7.14,2.12) (14.07,0.84) (7.33,2.58) NA
Sd (1.34,1.15) (1.48,1.42) (1.14,1.07) NA
∆a (0.35,0.09) (0.31,0.10) (0.39,0.13) NA
∆d (0.07,0.10) (0.26,0.27) (0.08,0.09) NA
Ca (1.00,0.00) (2.74,1.93) (1.00,0.00) NA
Cd (0.00,0.00) (2.97,3.86) (0.00,0.00) NA
C 0.07 0.17 0.04 NA
O (0.30,0.33) (0.55,0.23) (0.22,0.18) NA
|Ma| (5.31,2.01) (10.10,3.02) (4.43,2.26) NA
C(Ma) (1.00,0.00) (1.09,0.29) (1.00,0.00) NA
Er (0.03,0.11) (0.32,0.27) (0.03,0.09) NA
Ed (0.29,0.23) (0.31,0.22) (0.45,0.30) NA
E` (0.00,0.00) (0.00,0.00) (0.00,0.00) NA

||(Er, Ed, E`)|| (0.30,0.24) (0.50,0.26) (0.47,0.30) NA

C̈, Ö Produles-P NetworkBlast-M MaWISh
Produles-P 0.27, (0.17,0.16) 0.29, (0.15,0.22)

NetworkBlast-M 0.72, (0.57,0.28) 0.77, (0.45,0.22)
MaWISh 0.20, (0.11,0.19) 0.20, (0.15,0.12)



T = 10−25 (50,831 homologous protein pairs)

Produles-P NetworkBlast-M MaWISh Match-and-Split
Running time 2m 4m >120m NA

k 179 589 NA NA
µa (0.12,0.04) (0.07,0.03) NA NA
µd (0.06,0.06) (0.05,0.04) NA NA
Sa (7.39,2.51) (14.11,0.79) NA NA
Sd (1.34,1.26) (1.43,1.41) NA NA
∆a (0.34,0.10) (0.31,0.10) NA NA
∆d (0.07,0.09) (0.23,0.25) NA NA
Ca (1.00,0.00) (2.52,1.74) NA NA
Cd (0.00,0.00) (2.63,3.38) NA NA
C 0.10 0.23 NA NA
O (0.30,0.31) (0.55,0.22) NA NA
|Ma| (5.62,2.01) (9.73,3.12) NA NA
C(Ma) (1.00,0.00) (1.06,0.24) NA NA
Er (0.04,0.11) (0.32,0.26) NA NA
Ed (0.26,0.22) (0.33,0.23) NA NA
E` (0.00,0.00) (0.00,0.00) NA NA

||(Er, Ed, E`)|| (0.27,0.23) (0.52,0.25) NA NA

C̈, Ö Produles-P NetworkBlast-M
Produles-P 0.28, (0.14,0.15)

NetworkBlast-M 0.68, (0.51,0.27)



T = 10−9 (138,824 homologous protein pairs)

Produles-P NetworkBlast-M MaWISh Match-and-Split
Running time 3m 14m NA NA

k 248 974 NA NA
µa (0.13,0.04) (0.07,0.03) NA NA
µd (0.08,0.06) (0.05,0.04) NA NA
Sa (7.61,2.62) (14.25,0.76) NA NA
Sd (1.39,1.27) (1.30,1.39) NA NA
∆a (0.34,0.10) (0.32,0.10) NA NA
∆d (0.08,0.10) (0.20,0.21) NA NA
Ca (1.00,0.00) (2.28,1.41) NA NA
Cd (0.00,0.00) (2.01,2.74) NA NA
C 0.13 0.30 NA NA
O (0.34,0.32) (0.53,0.21) NA NA
|Ma| (5.43,2.19) (9.10,3.13) NA NA
C(Ma) (1.00,0.00) (1.07,0.26) NA NA
Er (0.06,0.14) (0.33,0.23) NA NA
Ed (0.31,0.27) (0.39,0.23) NA NA
E` (0.00,0.00) (0.00,0.00) NA NA

||(Er, Ed, E`)|| (0.34,0.28) (0.55,0.24) NA NA

C̈, Ö Produles-P NetworkBlast-M
Produles-P 0.28, (0.12,0.14)

NetworkBlast-M 0.68, (0.45,0.26)



Additional Comparisons

Produles Produles-P composite Produles
µa (0.13,0.04) (0.13,0.04)
µd (0.08,0.06) (0.07,0.06)
Sa (7.61,2.62) (11.17,7.37)
Sd (1.39,1.27) (1.76,1.60)
∆a (0.34,0.10) (0.29,0.14)
∆d (0.08,0.10) (0.08,0.11)
Ca (1.00,0.00) (1.00,0.00)
Cd (0.00,0.00) (0.00,0.00)
C 0.13 0.13
O (0.34,0.32) (0.00,0.00)
|Ma| (5.43,2.19) (7.65,6.28)
C(Ma) (1.00,0.00) (1.00,0.00)
Er (0.06,0.14) (0.07,0.16)
Ed (0.31,0.27) (0.39,0.29)
E` (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.34,0.28) (0.42,0.31)

MaWISh T1 = 10−40, T2 = 10−60 PHOG-T(D), T1 = 3 ∗ 10−41

Running time 5m 7m
k 100 93
µa (0.05,0.03) (0.05,0.02)
µd (0.04,0.05) (0.04,0.05)
Sa (7.33,2.58) (7.75,2.83)
Sd (1.14,1.07) (1.03,1.03)
∆a (0.39,0.13) (0.35,0.11)
∆d (0.08,0.09) (0.07,0.07)
Ca (1.00,0.00) (1.00,0.00)
Cd (0.00,0.00) (0.00,0.00)
C 0.04 0.05
O (0.22,0.18) (0.20,0.20)
|Ma| (4.43,2.26) (5.08,2.81)
C(Ma) (1.00,0.00) (1.00,0.00)
Er (0.03,0.09) (0.04,0.09)
Ed (0.45,0.30) (0.41,0.27)
E` (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.47,0.30) (0.42,0.27)

C̈, Ö MaWISh MaWISh-PHOG-T(D)
MaWISh 0.69, (0.70,0.37)

MaWISh-PHOG-T(D) 0.75, (0.64,0.37)



NetworkBlast-M full set highest score lowest ∆d

k 1021 248 248
µa (0.07,0.03) (0.09,0.03) (0.07,0.03)
µd (0.05,0.04) (0.06,0.04) (0.03,0.03)
Sa (14.12,0.98) (14.65,0.67) (14.24,0.87)
Sd (1.56,1.82) (0.70,1.34) (1.16,1.45)
∆a (0.32,0.10) (0.45,0.06) (0.30,0.11)
∆d (0.21,0.21) (0.28,0.29) (0.02,0.01)
Ca (2.28,1.39) (2.36,1.61) (1.52,0.62)
Cd (2.03,2.70) (2.27,3.21) (0.53,0.67)
C 0.32 0.09 0.14
O (0.52,0.21) (0.65,0.20) (0.44,0.27)
|Ma| (8.95,3.15) (8.80,3.35) (9.88,2.94)
C(Ma) (1.07,0.25) (1.09,0.28) (1.10,0.31)
Er (0.33,0.23) (0.36,0.29) (0.15,0.16)
Ed (0.39,0.23) (0.43,0.25) (0.33,0.22)
E` (0.00,0.00) (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.56,0.24) (0.64,0.23) (0.38,0.25)

NetworkBlast-M interactomes random graphs
k 1021 4281
µa (0.07,0.03) (0.04,0.01)
µd (0.05,0.04) (0.02,0.01)
Sa (14.12,0.98) (13.95,0.76)
Sd (1.56,1.82) (1.27,0.99)
∆a (0.32,0.10) (0.19,0.02)
∆d (0.21,0.21) (0.06,0.05)
Ca (2.28,1.39) (1.50,0.50)
Cd (2.03,2.70) (0.84,0.90)
C 0.32 0.44
O (0.52,0.21) (0.31,0.10)
|Ma| (8.95,3.15) (10.99,1.68)
C(Ma) (1.07,0.25) (1.00,0.02)
Er (0.33,0.23) (0.37,0.07)
Ed (0.39,0.23) (0.23,0.11)
E` (0.00,0.00) (0.00,0.00)

||(Er, Ed, E`)|| (0.56,0.24) (0.44,0.09)

Appendix B: Produles details and proof of running time

As described in Appendix E, local algorithms that run in constant time not depending on the size of
the input networks can be used to find modules with high modularity, with size at most b, and with
the degree in the interactome of each module vertex bounded above by b2(1+d)/d for constants b, d
as defined in Section 3. A counter is maintained for each protein in G1. When a protein is placed in
a module by the local module-finding algorithm, the counter for the protein is incremented. Each



counter has maximum value e for some constant e. If the local module-finding algorithm returns a
module containing any protein with counter value e, the entire module is ignored. If a protein in
G1 is reported to be in a conserved module, the counter for the protein is set to e in order to reduce
module overlap. Each value of h(v, ·) for v ∈ V is considered only when constructing HT (M) for
{M : v ∈M}, so each value of h(v, ·) is considered at most e times. If v is stored at each vertex in
HT (M) when constructing HT (M), then constructing RT (M,Ni) is simply a union of vertex lists
and does not require additional consideration of h(v, ·) values. As for all v ∈ V1,

|{M : v ∈M}| ≤ e

the number of consideration of h values is∑
M

∑
v∈M
|h(v, ·)| =

∑
v

∑
M :v∈M

|h(v, ·)|

≤ e
∑
v

|h(v, ·)|

= e|h(·, ·)|

After finding HT (M), it is necessary to compute N1, N2, ..., Nk. This can be problematic if
any of the vertices in HT (M) have large degree, which could conceivably be as large as |V2| − 1.
However, as we are only interested in Ni such that µ(Ni) ≥ d and |Ni| ≤ b, we can discard any
vertex v ∈ HT (M) with degree greater than b2(1 + d)/d in G2 as shown in Appendix C. We can
then run a modified depth-first search that only transitions among vertices in HT (M) to compute
N1, N2, ..., Nk. This requires time

O((
b2(1 + d)

d
)|HT (M)|) = O(|HT (M)|)

As
|HT (M)| ≤

∑
v∈M
|h(v, ·)|

all of these depth-first searches over the full run of the algorithm require time

O(
∑
M

|HT (M)|) = O(
∑
M

∑
v∈M
|h(v, ·)|) = O(|h(·, ·)|)

For a given M , constructing all RT (M,Ni) by concatenating lists of vertices stored at the
vertices in the Ni requires time O(|HT (M)|). Testing for connectivity of a single RT (M,Ni) with
a modified depth-first search that only transitions among vertices in RT (M,Ni) requires constant
time as |RT (M,Ni)| ≤ b and as each vertex in M has bounded degree. At most |HT (M)|/a of the
setsRT (M,Ni) are constructed when processing M . Thus, all of these constructions and depth-first
searches over the full run of the algorithm can be completed in time

O(
∑
M

|HT (M)|) = O(|h(·, ·)|)

Computing the modularity of module U ∈ {Ni,RT (M,Ni)} requires simply computing the sum
of degrees of the vertices in U and the number of edges with both endpoints in U . The sum of
degrees of the vertices in U can be computed in constant time as |U | ≤ b. The number of edges
with both endpoints in U can also be computed in constant time as each vertex in U has degree
bounded by a constant, so the endpoints of all edges incident on each vertex can be tested for set
inclusion in U in constant time.



Appendix C: Proof of module degree bound

Theorem: Any module M in a graph G = (V,E), such that |M | ≤ b and µ(M) ≥ d consists of
vertices with degree in G no greater than b2(1 + d)/d.

Proof: By observing that

Φ(M) =
∑

v∈M d(v)− 2|E(M)|∑
v∈M d(v)

where d(v) is the degree of v in G, we see that if any v ∈M has d(v) > b2(1 + d)/d where |M | ≤ b,
it would be the case that

Φ(M) =
∑

v∈M d(v)− 2|E(M)|∑
v∈M d(v)

>
b2(1 + d)/d− 2|E(M)|

b2(1 + d)/d

≥ b2(1 + d)/d− 2b2

b2(1 + d)/d

=
1− d
1 + d

which would imply
µ(M) < d

Appendix D: Proof of modularity for composite modules

Theorem: For modules M1,M2, it is true that µ(M1 ∪M2) ≥ min{µ(M1), µ(M2)}.

Proof:

µ(M1 ∪M2) =
|E(M1 ∪M2)|

|cut(M1 ∪M2, V \(M1 ∪M2))|+ |E(M1 ∪M2)|

=
|E(M1)|+ |E(M2)|+ |cut(M1,M2)|

|cut(M1, V \M1)|+ |cut(M2, V \M2)| − 2|cut(M1,M2)|+ |E(M1)|+ |E(M2)|+ |cut(M1,M2)|

=
|E(M1)|+ |E(M2)|+ |cut(M1,M2)|

|cut(M1, V \M1)|+ |cut(M2, V \M2)|+ |E(M1)|+ |E(M2)| − |cut(M1,M2)|

≥ |E(M1)|+ |E(M2)|
|cut(M1, V \M1)|+ |E(M1)|+ |cut(M2, V \M2)|+ |E(M2)|

≥ min{ |E(M1)|
|cut(M1, V \M1)|+ |E(M1)|

,
|E(M2)|

|cut(M2, V \M2)|+ |E(M2)|
}

= min{µ(M1), µ(M2)}

The final inequality follows from the lemma

a+ b

c+ d
≥ min{a

c
,
b

d
} for a, b ≥ 0 and c, d > 0

which can be proved by observing that

a+ b

c+ d
<
a

c
⇒ c(a+ b) < a(c+ d)⇒ bc < ad



whereas
a+ b

c+ d
<
b

d
⇒ d(a+ b) < b(c+ d)⇒ ad < bc

which cannot both be true.

Appendix E: Conductance minimization algorithms

Nibble [34] and PageRank-Nibble [35] are two algorithms for finding sets of vertices with low
conductance in a graph. Reasonable adaptations of the algorithms allow them to run in constant
time and to search only for small modules. The project of adapting Nibble and PageRank-Nibble
to search only for small modules was initiated in [36]. The adaptations described in [36] do not
guarantee constant running time for Nibble.

Nibble

Nibble [34] is an algorithm for finding a set of vertices with low conductance in a graph G with n
vertices. Let A be the adjacency matrix for G. Let D be a diagonal matrix with diagonal entries
Dii = d(i) where d(i) is the degree of vertex i in G. Let W = (AD−1 + I)/2 where I is the identity
matrix. W is a lazy random walk transition matrix for G that with probability 1/2 remains at the
current vertex and with probability 1/2 randomly walks to an adjacent vertex. Let q, r be vectors
representing distributions on the vertices of G, not necessarily normalized. Define the truncation
operator

[q]ε(u) =
{
q(u) if q(u) ≥ d(u)ε
0 otherwise

Define the distribution that places all mass at vertex v

χv(u) =
{

1 if u = v
0 otherwise

Each iteration of Nibble at time step t generates the vectors

qt =
{
χv if t = 0
Wrt−1 otherwise

rt = [qt]ε
Nibble is run for tlast iterations. After each iteration, the vertices are sorted by qt(·)/d(·). Let
Sj(qt) be a set of j vertices with highest values of qt(·)/d(·) where ties are broken arbitrarily while
maintaining Sj(qt) ⊂ Sj+1(qt). These sets Sj(qt) are called sweep sets and there are always n of
them. After each iteration the conductance is computed for at most the first b sweep sets for some
constant b, never including any vertex v with qt(v) = 0. No further sweep sets are considered if
a vertex with degree greater than b2(d + 1)/d is reached, where d is a constant parameter. This
ensures that all vertices in modules returned by the algorithm have degrees bounded by b2(d+1)/d,
which is useful for reasons described in Appendix B. The sweep set with minimum conductance
over all iterations so far is stored. In original Nibble, b is not a constant but rather a function of
the sum of degrees of vertices in the sweep sets, and there is no guarantee that vertices in returned
modules have bounded degree.

It remains to show that the algorithm can be implemented to run in constant time for constant
tlast, ε. Since tlast is constant, it suffices to show that a single iteration requires constant time. Let
σ(·) be the support function that returns the set of vertices with positive values in its distribution
argument. Define the volume of a set of vertices as the sum of degrees:

vol(S) =
∑
v∈S

d(v)



Rather than computing qt = Wrt−1 using matrix multiplication, qt can be computed by explic-
itly passing messages to neighbors in the graph. Each vertex v ∈ σ(rt−1) keeps half of rt−1(v)
and partitions half of rt−1(v) equally among its neighbors. By keeping a linked list of refer-
ences to vertices with nonzero distribution values, this requires vol(σ(rt−1)) messages, leading
to |σ(qt)| ≤ vol(σ(rt−1)). The truncated distribution [qt]ε can be computed simply by removing
references from the linked list for any vertex v such that qt(v) < d(v)ε. Only vertices with nonzero
values of qt(·)/d(·) need be sorted. If the degree of each vertex is stored at the vertex, making degree
lookup a constant-time operation, these vertices can be sorted in O(vol(σ(rt−1)) log vol(σ(rt−1)))
time. Conductances for the first b sweep sets can be computed in O(b5(d+ 1) log b/d) time by ob-
serving that the conductance of Sj(qt) can be computed by knowing the sum of degrees of vertices
in Sj(qt) and the number of edges with both endpoints in Sj(qt). The former can be computed in
O(|Sj(qt)|) = O(b) time, and the latter can be computed with at most b ∗ b2(d+ 1)/d set inclusion
tests in a balanced binary search tree of size at most b, which follows from the bound on the degree
of each vertex in Sj(qt).

It remains to show that vol(σ(rt−1)) never exceeds a constant value. For any v ∈ σ(rt−1), by
the truncation operation, rt−1(v) ≥ d(v)ε. Because the distribution starts with r0 = [χv]ε that has
total value at most 1 and never increases in total value,

1 ≥
∑

v∈σ(rt−1)

rt−1(v) ≥ ε
∑

v∈σ(rt−1)

d(v)

which implies

vol(σ(rt−1)) ≤ 1
ε

PageRank-Nibble

PageRank-Nibble [35] is an algorithm based on PageRank [37] and Nibble [34] for finding a module
with low conductance in a graph G = (V,E). A PageRank vector is a row vector solution pr(α, s)
to the equation

pr(α, s) = αs+ (1− α)pr(α, s)W T

where α ∈ (0, 1] is a teleportation constant, s is a row vector distribution on the vertices of the graph
called the preference vector, and W T = (D−1A+ I)/2 is a lazy random walk transition matrix in
a form suitable for row vector distributions. Intuitively, when s = χv, a PageRank vector can be
viewed as a weighted sum of the probability distributions obtained by taking a sequence of lazy
random walk steps starting from v, where the weight placed on the distribution obtained after t
walk steps decreases exponentially in t [35].

There is a unique PageRank vector since

p = αs+ (1− α)pW T

p[I − (1− α)W T ] = αs

p = αs[I − (1− α)W T ]−1

which follows as the matrix in brackets is strictly diagonally dominant and, thus, nonsingular.
The PageRank-Nibble algorithm consists of computing an approximate PageRank vector with

s = χv, defined as apr(α, χv, r) = pr(α, χv) − pr(α, r), where r is called a residual vector, and
returning the sweep set Sj(apr(α, χv, r)) with minimum conductance among the first b sweep sets.

From the definition, if p is a vector that satisfies p+pr(α, r) = pr(α, χv), then p = apr(α, χv, r).
Thus, 0 = apr(α, χv, χv). We can initialize p1 = 0, r1 = χv and improve the solution iteratively.
Each iteration, called a push operation, chooses an arbitrary vertex u such that ri(u)/d(u) ≥ ε.
Then pi+1 = pi and ri+1 = ri except for the following changes:



1. pi+1(u) = pi(u) + αri(u)

2. ri+1(u) = (1− α)ri(u)/2

3. For each v such that (u, v) ∈ E, ri+1(v) = ri(v) + (1− α)ri(u)/(2d(u))

Intuitively, αri(u) probability is sent to pi+1(u), and the remaining (1 − α)ri(u) probability is
redistributed in ri+1 using a single lazy random walk step.

It is shown that each push operation maintains the invariant

pi + pr(α, ri) = pr(α, χv)

The proof can be found in the text and appendix of [38]. When no additional pushes can be
performed, the final residual vector r satisfies

max
u∈V

r(u)
d(u)

< ε

The running time for computing apr(α, χv, r) is O(1/(εα)). This follows directly from the claim
that if T is the total number of push operations and di is the degree of the vertex pushed at the
ith iteration, then

T∑
i=1

di ≤
1
εα

To prove this claim, observe that the vertex u pushed at iteration i satisfies

ri(u) ≥ εdi
As αri(u) probability is sent to pi+1(u),

||ri+1||1 = ||ri||1 − αri(u)
≤ ||ri||1 − αεdi

Because the initial residual vector is r1 = χv with ||χv||1 = 1, the `1 norm of the residual vector
cannot decrease by more than 1 over all iterations, so

αε
T∑
i=1

di ≤ 1

from which the claim follows.
For PageRank-Nibble, it is not necessary to bound the degree explicitly for each vertex in the

considered sweep sets in order to guarantee that these degrees are bounded above by a constant.
PageRank-Nibble guarantees that

vol(σ(apr(α, χv, r))) ≤
2

(1− α)ε

This follows from the observation that the final push on a vertex v ∈ σ(apr(α, χv, r)) occurred at
an iteration i when ri(v) ≥ εd(v) and a fraction (1− α)/2 of that probability remained at ri+1(v).
Thus, for each v ∈ σ(apr(α, χv, r)),

r(v) ≥ 1− α
2
· εd(v)

Thus
1 ≥

∑
v∈σ(apr(α,χv ,r))

r(v) ≥ (1− α)ε
2

· vol(σ(apr(α, χv, r)))

from which the claim follows.



Appendix F: Unfiltered algorithm results

Let P be the set of module pairs returned by an algorithm. Let Pf ⊆ P be the set of module
pairs that fail the filter. Let Pk ⊆ Pf\(P1 ∪ · · · ∪ Pk−1) be the set of module pairs with at least
one module consisting of only k proteins, for k ∈ {1, 2, 3, 4}. Let P21+ ⊆ Pf\(P1 ∪ P2 ∪ P3 ∪ P4)
be the set of module pairs with at least one module consisting of more than 20 proteins. Let
Pb = Pf\(P1 ∪ P2 ∪ P3 ∪ P4 ∪ P21+) be the set of module pairs that fail the balance requirement.
Let k = |P |. Let ks = |Ps| where s is any subscript.

NetworkBlast-M / T 10−100 10−40 10−25 10−9

k 149 400 614 1021
kf 15 15 25 47
k1 0 0 0 0
k2 1 0 0 0
k3 0 0 0 0
k4 0 1 0 1
k21+ 0 0 0 0
kb 14 14 25 46

Filtering has little effect on the results from NetworkBlast-M.

MaWISh / T 10−100 10−40 PHOG-T(D) 10−25 10−9

k 395 982 976 NA NA
kf 373 882 883 NA NA
k1 0 0 0 NA NA
k2 263 437 476 NA NA
k3 72 286 256 NA NA
k4 30 104 102 NA NA
k21+ 5 24 20 NA NA
kb 3 31 29 NA NA

Most MaWISh results consist of modules that are conserved single interactions on two proteins
which have little significance, and conserved modules on three proteins. Some modules on four
proteins may be meaningful and could have been allowed to pass the filter, but they are less
significant than larger conserved modules and do not affect the conserved modules found in the
range of 5-20 proteins which are the focus of this study. MaWISh returns some modules containing
hundreds of proteins with more than 5% of all proteins each, which have C(Ma) > 1 and seem to
have little significance. Most modules that did not pass the filter were removed by the size filter
and relatively few by the balance filter.



Match-and-Split / T 10−100 10−40 10−25 10−9

k 63 NA NA NA
kf 50 NA NA NA
k1 0 NA NA NA
k2 0 NA NA NA
k3 28 NA NA NA
k4 21 NA NA NA
k21+ 0 NA NA NA
kb 1 NA NA NA

Most of the conserved module pairs reported by Match-and-Split involve modules with three or
four proteins.

Appendix G: MaWISh scoring model

The evolutionary model of MaWISh decomposes into an interaction model and a duplication model.
There is a score on each pair of edges from the complete bipartite graph on the proteins in the
two modules claimed to be conserved. The score of a module pair is the sum of these scores.
High scores are considered good. S : V1 × V2 → [0, 1] is a monotonically decreasing function
of BLAST E-values that gives a positive value to sequence-similar proteins and a value of 0 to
sequence-dissimilar proteins. Let (M1,M2) be a pair of conserved modules. Let u1, u2 ∈ M1 and
v1, v2 ∈M2. Two scores are associated with this collection of four proteins: score((u1, v1), (u2, v2))
and score((u1, v2), (u2, v1)). Each score is defined symmetrically as

score((u1, v1), (u2, v2)) = I(match)S(u1, v1)S(u2, v2)
−I(mismatch)S(u1, v1)S(u2, v2)
+I(S(u1, u2) > 0)(0.1)(S(u1, u2)− 0.9)
+I(S(v1, v2) > 0)(0.1)(S(v1, v2)− 0.9)

where I(·) is the indicator function such that I(false) = 0 and I(true) = 1. The vast majority of
these scores are 0 and are not explicitly represented, as the vast majority of S(·, ·) values are 0.
The first two terms are the interaction model and the second two terms are the duplication model.
match and mismatch are predicates defined by interactions among the two protein pairs (u1, u2)
and (v1, v2). If both interactions exist, match = true, mismatch = false which may lead to a
reward. If one interaction exists but not the other, mismatch = true, match = false which
may lead to a penalty. If neither interaction exists, match = false, mismatch = false and the
interaction model score is 0.

Considering only u1, u2 ∈ M1, but symmetrically for v1, v2 ∈ M2, the duplication model gives
a score of 0 if S(u1, u2) = 0 or S(u1, u2) = 0.9. It gives a penalty of (0.1)(S(u1, u2) − 0.9) if
0 < S(u1, u2) < 0.9. It gives a reward of (0.1)(S(u1, u2) − 0.9) if S(u1, u2) > 0.9. MaWISh
rewards placing highly similar protein pairs in the same module even if they have no interactions
between them. As the similarity decreases, the reward gets smaller until it becomes a penalty. As
the similarity decreases further, the penalty becomes harsher and harsher until eventually, at a
sharp discontinuous cutoff, the penalty vanishes and the duplication model score becomes 0. The
reward for placing highly similar proteins in the same module even when they do not involve any
interactions leads to a large Ed value.

The MaWISh paper generalizes the scoring model so that the default scoring model given above
would be parameterized by d = 0.9, δ = 0.1. The default value of δ = 0.1 places low emphasis on



the duplication model relative to the interaction model. However, as MaWISh rewards conserved
pairs of proteins with no interactions in either interactome when they are very similar according
to S(·, ·), even with δ = 0.1, a reported conserved module sometimes induces many disconnected
subgraphs leading to C(Ma) > 1.

Appendix H: VieProt

Appendix I: Future directions

As cell systems continue to be better understood with increased study of Systems Biology [39], this
direction of research has a bright future beyond the current concept of interactome. Interaction
assays are being designed to overcome limitations of the common yeast two-hybrid (Y2H) [40]
and affinity-purification mass spectrometry (AP-MS) assays [41]; these include surface plasmon
resonance (SPR) [41, 42], optical microscopic techniques such as FRET [4, 41, 43], and mating-
based split ubiquitin systems (mbSUS) [41]. As techniques are improved, each interactome is likely
to be separated into various sub-interactomes distinguished by cell type and interaction type. A
natural next step from the work already completed is to study the relationships between algorithms
being used to detect conserved modules, experimental assays being used to construct interactomes,
and organization of the cell. This should prove to be fertile ground for designing algorithms tailored
to specific experimental assays, with the aim to overcome limitations of each assay and to uncover
true organization of the cell.

A new algorithm, EvoNibble [44], has been designed for finding sets of vertices with low con-
ductance in a graph, which may possibly be adapted to find small modules in a large interactome.
EvoNibble is a randomized algorithm based on a volume-biased evolving set process. We plan
to test how EvoNibble compares with PageRank-Nibble and Nibble as a subroutine for Produles.
Though a randomized algorithm complicates replication of results, it can be run multiple times to
create a high-confidence set that may also include results from other module-detection algorithms.

In subsequent work we plan to use GO annotations [26] to evaluate whether our algorithm,
which does well on the algorithmic goals for network alignment, can be used for discovery of



new conserved modules. GO annotations are divided into three categories: cellular component,
molecular function, and biological process. Cellular component annotations serve as a filter for
noisy interaction data: if the proteins are primarily in different components of the cell, they are
not likely to interact meaningfully. Enrichment in molecular function annotations indicates that
the module contains proteins that work together to perform a particular molecular function such
as RNA splicing. Enrichment in biological process annotations indicates that the module contains
proteins that may have diverse molecular functions but work together to perform a particular
biological process such as signalling in a pathway.

Linear-time algorithms that extend Produles to multiple interactomes are in the design phase.
A fast near-progressive approach simply considers proteins homologous to those in the modules
already aligned, only slightly refining module boundaries. A more accurate iterative approach
applies a module-finding algorithm to the new interactomes, starting at proteins homologous to
those in the modules already aligned, more accurately detecting correct module boundaries. These
algorithms for detecting multi-protein modularity conserved across multiple interactomes are to
be incorporated into a larger functional genomics project that combines both interactomics and
conservation data across multiple organisms to support transfer of function annotations.


