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Abstract 

 
The Path of the Blind Watchmaker: 

 
A Model of Evolution 

 
by 
 

Andrew Anthony Poggio 
 

Doctor of Philosophy in Computer Science 
 

University of California, Berkeley 
 

Professor David Patterson, Chair 
 
 

Evolution has been described by Richard Dawkins as a blind watchmaker due to its being 
unconscious and random but selective and able to produce complex forms.  Evolution from an 
early, primitive organism (the Last Universal Common Ancestor of all life, LUCA) to Homo 
sapiens is the most dramatic biological process that has taken place on Earth and knowledge of it 
is important to understanding many aspects of biology including disease prevention and 
treatment. 
 We claim that computational biology has now reached the point that astronomy reached 
when it began to look backward in time to the Big Bang.  Our goal is look backward in 
biological time, and to begin to describe, in more detail, LUCA and the evolution from LUCA to 
us.  This evolution process is the path of the blind watchmaker. 
 This thesis presents a novel dataset of LUCA and other early, genome sequences that we 
have reconstructed.  These ancestors serve as reference species for our models.  We develop a 
sequence evolution model that reflects biological processes more accurately than prior work and 
apply it to the ancestral genome dataset.  This model uses empirical mutation probabilities for 
scoring alignments and includes inversion mutations.  The results of this model describe the 
mutations that must have taken place during the evolution of our reference species. 
 We then apply the sequence evolution results to our population evolution model. This 
model uses a dynamic set of population pools with related but distinct, mutating genomes 
reproducing sexually and asexually, and subject to speciation effects, selection pressures, and 
environmental carrying capacity limitations.  Due to a dearth of empirical data needed to 
estimate model parameters of earlier organisms, our population model did not extend all the way 
back to LUCA; it instead extended back to a more recent, common ancestor.  The results of this 
model are population size estimates, evolution duration estimates, and identification of critical 
evolution parameters and estimates of their values. 
 We present the results of these models along with evidence for some tantalizing, if 
speculative, discoveries along the path.  This work also identifies significant opportunities for 
further efforts in silico, in vitro, and in vivo. 
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1 Introduction 

The evolution from a very primitive organism to Homo sapiens, as put forth by Darwin [1], is the 
most dramatic biological process that has taken place on Earth.  In his popular book The Blind 
Watchmaker [2], Dawkins states that a stone being found in a field needs no explanation as it can 
be assumed to be formed by natural processes.  However, a watch so found, as it has mechanical 
complexity and apparent purpose, cannot be so simply explained – if there is a watch then there 
must have been a watchmaker.  In the context of biology, he uses the widely varying capabilities 
of bat echolocation as an example of biological complexity that is in need of explanation.  He 
further argues effectively that evolution through natural selection (an unconscious and natural 
but complex and selective process analogous to a blind watchmaker) is the source of this 
biological complexity.   

Although evolution is a blind watchmaker to be sure, there has nonetheless been a path 
that it has taken, unchosen and unplanned, that has resulted in the current genome of each 
existing species.  Beginning with an early genome, the path consists of the ordered set of 
mutations that have taken place in the genome over subsequent generations.  This path was not 
followed because it did not pre-exist; the evolutionary process itself, in fact, created it. 
 When astronomy reached a critical mass of theory, technology, and observational data, 
astronomers were able to look backward in time, and describe the primordial Big Bang and the 
changes in the universe between the Big Bang and the present.  We argue that computational 
biology has reached an analogous critical mass of theory (mutation mechanisms, phylogenetic 
and sequence alignment algorithms), technology (genome sequencers and fast, multicore 
computers), and observational data (DNA sequence and protein data, mutation rates).  This mass 
of capability and data enables us to now look backward in time, and to begin to describe LUCA 
in more detail and evolution's path from LUCA to us. 
 In this research, our goal is to further illuminate the path of the blind watchmaker. 

1.1 Motivation 
There is a fundamental scientific value to the more comprehensive understanding of evolution 
over the substantial periods of time that this research pursues.  Such understanding should 
enable: 
 

• More accurate homology (gene relationships); 
• More accurate phylogeny (species relationships); and 
• Evolution prediction (under some circumstances). 
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Beyond the fundamental scientific value of this research, we have substantial practical 
motivation for this effort.  In particular, we note that pathogens, primarily in the form of viruses 
and bacteria, continue to plague us.  In 2005, 4.9 million people were newly infected with HIV 
and 3.1 million were killed by it [3].  The avian flu virus H5N1 has a fatality rate of greater than 
50% [4] and “ordinary” flu causes 250,000 to 500,000 deaths per year worldwide [5]. 

In the bacterial realm, increased use of antibiotics in developed countries has caused an 
increase in antibiotic-resistant bacteria.  Vancomycin has become known as a drug of last resort 
and there was a 20-fold increase in Vancomycin-resistant bacteria in some hospitals from 1987-
1993 [6]. 

A fundamental challenge in preventing and treating these pathogenic infections is that the 
pathogens evolve, changing in ways that reduce or eliminate the effects of our countermeasures.  
Viruses evolve into new strains such that the antibodies produced due to vaccines are ineffective.  
Bacteria evolve into new strains such that they are resistant to existing antibiotics.  These 
organisms evolve over time and it would be advantageous for us to be able to predict their 
evolutionary pathways. 
 For example, cancer is a disease of mutations [7].  There are six essential alterations in 
cell physiology that collectively dictate malignant growth: self-sufficiency in growth signals, 
insensitivity to growth-inhibitory (antigrowth) signals, evasion of programmed cell death 
(apoptosis), limitless replicative potential, sustained ability to increase blood supply for nutrients 
(angiogenesis), and movement allowing tissue invasion (metastasis).  Mutations cause all of 
these alterations.  According to CDC data [8], cancer was the second leading cause of death in 
the United States in 2009.  In addition, like pathogenic bacteria and viruses, cancer acquires drug 
resistance through mutation.  Once again, it would be advantageous to both predict evolutionary 
the pathways that enable malignant growth and the pathways that confer drug resistance. 

With an appropriately comprehensive evolution model that would allow us to make 
predictions about future evolution, we could potentially: 
 

• Be prepared with effective disease treatments in advance of need; and 
• Create treatments that act on multiple targets such that anticipated mutation events would 

not confer resistance to all of the treatment targets. 
 

Long available geologic and fossil data provide ample evidence of the gross process of evolution 
on Earth.  Though the fossil record contains many gaps among different organisms as well as 
gaps between possible ancestors and descendents [9], this data indicates a coarse temporal 
relationship among different species as well as allowing a measurement of the duration from the 
origin of one species to the origin of a subsequent one.  The species, between whose origins 
duration may be measured, may have widely separated origins; cyanobacteria and Homo sapiens 
are an example.  Over the past two decades, developments in three areas have provided a 
significant source of relevant data that is independent of the fossil record: 
 

1. Computational biology algorithms – the intellectual convergence of biology and 
mathematics has resulted in a comprehensive set of algorithms for the creation and 
manipulation of biological data.  Shotgun sequencing and genome alignment [10], used to 
sequence a partial or complete genome, is exemplary.  Phylogenetic, sequence alignment, 
and sequence reconstruction algorithms have also made significant progress. 
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2. Computer technology – the capabilities of computer components, and therefore computer 
systems, have been on an exponential growth curve along several dimensions.  Among 
them are instruction execution rate, bus bandwidth, memory capacity, disk capacity, and 
network bandwidth.  This exponential curve, known as Moore’s Law [11], has resulted in 
a doubling of capability every 12 to 36 months.   

3. Biological laboratory instrumentation – partially due to the positive effects of items 1 and 
2 above, certain relevant laboratory instrumentation, such as genome sequencers, has also 
been on an exponential curve in terms of capability.  At the initiation of the Human 
Genome Project, the cost to sequence a human genome was on the order of 
US$1,000,000,000; the National Institutes of Health is now funding technology expected 
to lead to a cost of US$100,000 in 2011 and a cost of US$1000 in 2016 [12]. 

 
As a result of these developments, there is a rapidly growing mass of new data relevant to the 
process of evolution on earth.  In particular, the National Library of Medicine announced in 2006 
that the three leading public repositories of sequence data had reached a total of 100 Gigabases 
from over 165,000 organisms [13].  Appropriate application and analysis of this body of data can 
provide us with the broader, more comprehensive understanding of evolution that we seek. 

1.2 Background 
As described in [14], the hereditary information of all life on earth is carried by 
DeoxyriboNucleic Acid (DNA) in one or more long strands known as chromosomes.  DNA is a 
double-stranded helix, consisting of a series of nucleotide base pairs.  Each base pair consists of 
one of two purines, adenine (a) or guanine (g), paired with one of two pyrimidines, thymine (t) or 
cytosine (c).  The base a always pairs with t and c always pairs with g; the elements of a pair are 
known as complements.  Each of the two strands in a DNA molecule has a polarity that is 
evident from one end (the 5’ end) to the other end (the 3’ end).  The polarity of a strand is 
opposite its paired strand.   
 During cell division, the means of cellular reproduction, the cell’s DNA is duplicated.  
During this duplication process, errors sometimes occur which cause the two copies to be 
different; these errors are a common type of mutation.  Mutations are fully described in Chapter 
6. 

Cells use proteins to perform nearly all their functions, including reproduction and 
metabolism.   Synthesizing proteins is thus a central function of cells.  Some sequences of a 
cell’s DNA code for the amino acid sequences of proteins that a cell produces; these are coding 
regions.  A regulatory region precedes many coding regions; it controls the circumstances under 
which the protein(s) defined by a coding region is produced.  The combination of the regulatory 
region, if present, together with the coding region (and for Eukaryotes additional, interspersed 
sequences of noncoding DNA called introns [14]; the coding regions are called exons) is known 
as a gene. 

Genes are described as homologous if they have a common ancestor gene and thus are 
related through one of two evolutionary mechanisms: 
 

1. A gene may be duplicated in a species and the two copies may evolve independently; 
these homologous genes are paralogs. 



 
5 

2. A speciation event, where a new species divides itself from an existing species, may 
occur; the corresponding genes in each species’ genome are homologous and are known 
as orthologs. 
 

The process of synthesizing a protein from a gene has two steps.  Once the process begins, 
typically controlled by a regulatory region, the first step is transcription and it occurs on the 
DNA molecule.  During transcription, one strand of the coding region of a gene is transcribed 
into complementary RiboNucleic Acid (RNA).  RNA is a single-stranded molecule similar in 
structure and content to a single strand of DNA.   

The second step in protein synthesis is translation and it occurs in a cellular organelle 
known as the ribosome.  During translation, the sequence of nucleotides in an RNA molecule, 
produced during transcription, is translated into the sequence of amino acids that constitute the 
protein.  There are four types of RNA nucleotides (that correspond to the four types of DNA 
nucleotides) and there are 20 amino acids.  Thus, a one-to-one correspondence between RNA 
nucleotides and protein amino acids is not possible.  The RNA nucleotides are translated by the 
ribosome as triples – each combination of three RNA nucleotides (known as a codon) is 
translated into one of the 20 amino acids or as an indication to stop the protein synthesis.  Since 
there are 64 combinations of RNA and 20 amino acids plus the protein stop code, the coding is 
redundant – some codons translate into the same amino acid and are said to be synonymous. 

In biological evolution, three components must be present for evolution by natural 
selection to take place [15]: 

 
1. Each subsequent generation must inherit the characteristics of the previous generation.  In 

biology, duplicate copies of DNA carry this inheritance from one generation to the next. 
2. A mutation mechanism must act to make changes to individuals and these changes must 

be inheritable.  In biology, these mutations change the DNA directly. 
3. The environment must be such that it causes differential selection on individuals.  This 

differential arises due to differing characteristics of individuals and causes an increase or 
decrease in the population size of their progeny due to changes in longevity or fecundity. 

 
With these components present, evolution by natural selection is not only capable of taking 
place, it must and will take place unless otherwise prevented.  We observe such evolution 
actually taking place in the development of antibiotic resistance among Staphylococcus aureus in 
hospitals and we observe innumerable instances of evidence of such evolution in every 
sequenced genome. 
 Many different types of mutations occur when DNA is duplicated during mitosis (cell 
reproduction via division); these are discussed in depth in Chapter 6.  The most common type of 
mutation is the substitution of one nucleotide for another.  Other common types of mutations are 
the insertion or deletion of one or more DNA nucleotides. Chapter 6 contains a comprehensive 
list of mutations. 
 Any mutation may have an attendant phenotypic effect, that is, one that affects the 
physical characteristics of the organism and the way in which it interacts with the environment. 
When phenotypic effects occur, there may in turn be natural selection pressure either positive or 
negative, or the phenotypic effect may be neutral.  In the case of no phenotypic effect or a neutral 
phenotypic effect, the mutation is said to be neutral [16]. 
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1.3 Hypothesis 
Our hypothesis is that through the application of algorithms – existing and novel to this work – 
to available sequence, phylogenetic, and related data, a novel model of evolution may be created 
that will further our knowledge of evolution.  We create such a model of evolution, produce a 
computer-based implementation of it, run the model with a range of inputs, collect and analyze 
the results it produces, and draw conclusions about the evolution process. 

1.4 Contributions 
In this research, we have made the following contributions to computational biology as applied 
to the understanding of evolution: 
 

1. [Model]  A long-term, evolution model based on a wide swath of sequence, phylogenetic, 
mutation, growth, and related data and the application of existing and novel relevant 
algorithms.  The model is actually a metamodel composed of two distinct models, a 
sequence evolution model and a population evolution model.  This model provides an 
ongoing, computational test bed for evolutionary theory, as new theoretical and empirical 
results can be applied to it and their validity tested or consistency verified. 

2. [Algorithms]  We produced algorithms in two areas: 
a. Sequence evolution modeling using alignment with inversion mutations, mutation 

probabilities for scoring alignments, and multiple alignments per sequence pair. 
b. Population modeling using a dynamic set of population pools with related but 

distinct, mutating genomes reproducing sexually and asexually, and subject to 
speciation effects, selection pressures, and environmental carrying capacity 
limitations. 

3. [LUCA Genome] Completed first phase of LUCA genome project.  Determined gene 
sequences for LUCA and other LUCA reference species. 

4. [Sequence Evolution Model Results]: 
a. Inversions identified as an important mutation mechanism, though typically 

ignored in sequence alignments. 
b. Discovery that nonhomologous genes are more likely to evolve from coding 

sequence than from random sequence. 
c. Evidence that some coding sequences more likely to evolve to multiple, 

nonhomologous genes than other coding sequences.  Speculation about universal 
source sequences. 

d. Estimate of required mutations that occurred in the evolution from LUCA to 
Homo sapiens. 

5. [Population Evolution Model Results]: 
a. Discovery of four epochs in the population evolution from one reference species 

to the next. 
b. Discovery of new population evolution parameter, mating radius. 
c. Analysis of population evolution sensitivity to multiple parameters of the process. 
d. Identification and analysis of the four most significant parameters in population 

evolution. 
e. Improved understanding of population evolution process over time. 



 
7 

f. An independent measurement of long-term evolution duration consistent with that 
obtained via geologic and fossil duration-related data.  

g. Discovery of the speciation ratchet. 
6. [Software]: 

a. To make use of our model, we created a computer-based implementation, the 
Blind Watchmaker Path (BWMPath) software and made it publically available. 

b. To complete our model runs in an acceptable timeframe by using multiple 
computer systems at varying locations, we created a simple, distributed 
processing implementation, Dropbox Distributed Processing (DDP). 
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2 A Simple Evolution Model 

2.1 Structure of the simple model 
 
We assume a primitive organism whose origin is relatively near to the beginning of life on earth.   
This organism is an ancestor of Homo sapiens as well as all other life on the planet.  This 
organism is known as the Last Universal Common Ancestor (LUCA) [17]. Figure 1 shows that 
LUCA reproduced and mutated until eventually one of the LUCA offspring first mutated in some 
way, occasionally beneficial with respect to natural selection, and, most importantly, that made it 
different from other LUCA progeny and a more recent ancestor of ours than LUCA.  We refer to 
this offspring as More Recent Ancestor 1 (MRA1) and the mutation as a transitional mutation.  
Note that the majority of transitional mutations are not speciation (creation of a new species) 
events, though some are such.   
 MRA1’s mutation proliferated in the population over multiple generations as it and its 
progeny reproduced; by definition, we know that it didn’t die out without producing offspring.  
At some point, one of the MRA1 offspring again mutated in a way that made it different from 
MRA1 and a more recent ancestor of ours than MRA1 – we refer to this individual as MRA2.  
This process repeats up to some MRAN, where N is an integer to be determined which is very 
likely large. 
 

 
Figure 1:  Simple model population timeline 

. . . 

Log 
population 

LUCA MRA1 MRA2 

Time (not to scale) 
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 Note that in Figure 1, as organism complexity increases (for example, evolves from a 
unicellular to a multicellular organism), the rate of population growth slows and peak population 
size diminishes.  These changes are due to the longer, more complex reproductive process.  In 
the simplest unicellular organisms, reproduction consists of a single mitosis.  Organism 
complexity increases over time until reproduction requires meiosis and massive mitosis in 
combination with cellular differentiation. 

Note also that in reality the leading edge of each triangle is neither necessarily smooth 
nor is monotonically increasing.  For a mutation that is detrimental, despite being a transitional 
mutation, the leading edge of the related triangle will at some times have a negative first 
derivative, indicating a diminishing population.   By definition, however, the progeny of each 
MRAi will not die out before they produce an MRAi+1. 

Finally, the expected integral of each triangle is to a first order approximation the inverse 
of the mutation rate.  In particular, if we demand a specific transitional mutation at any given 
time, the expected number of individuals produced before that specific mutation occurs is the 
inverse of the rate of that mutation.  That is, the lower the rate of the mutation that transitions a 
predecessor MRA to its successor MRA, the more the predecessor MRA must reproduce and the 
higher its total population will become before the successor MRA is produced. 

2.2 Duration calculation using simple model 
To serve as an application and to provide evidence that our approach has merit, we used this 
simple model to calculate an estimate of evolution’s duration.  We began with population 
calculations.  For a species with a growth rate per unit time (years) g, the total number of 
individuals N produced by time t starting from a single individual is 

 
N = (1 + g)t. 
 

Taking the log of both sides of the equation we have 
 
 log N = log (1 + g)t 
  = t * log (1 + g) 
 
and solving for t we obtain 
 

 t = log N / log(1 + g) Equation 1:  Population time 
 
The mutation rates we used were mutations per site per generation, abbreviated µ in the 
literature.  The expected number N of individuals produced in order to have a mutation at a 
particular site is 
 
 N = 1 / µ 
 
To calculate the time required for this mutation to take place, we substitute into Equation 1: 
 

 t = log (1 / µ) / log(1 + g) Equation 2:  Evolution time 
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As a proxy for LUCA, we used cyanobacteria, which are the source of fossils over 3 billion years 
old based on the geologic record [18].  For this simplified model – rather than do a sequence 
alignment of any cyanobacteria, H. sapiens, or intermediate genomes – we took the approach that 
was limited to point mutations [19].  That is, we assumed that, for a transitional mutation, a base 
at a specific site must change from the ancestral, incorrect base to the correct base (Specific Site, 
Correct Base:  SSCB).  We further assumed that gene duplication, ploidy increases (duplication 
of an entire genome), and other mechanisms that increase genome size provide sufficient raw 
DNA for mutation and do so at a sufficient rate such that it is not a significant factor in the 
model.  Thus in this simple model, we did not further consider mutation mechanisms, beyond 
substitutions, that increase genome size nor did we allow additional time for them. 

For the mutation rate, we could not use a rate determined by molecular clock models 
based on fossil data, as using such a rate would not allow us to determine a duration for 
evolution independent of fossil data.  Instead, we used a fixed mutation rate (2.1*10-8) 

experimentally observed for C. elegans [20], an organism whose complexity is intermediate 
between cyanobacteria and Homo sapiens.  Of these mutations, 13 out of 30 were substitutions. 

 
mutation rate = (13/30) * 2.1*10-8 mutations per base pair per generation 
  = 9.1*10-9 
   

We further assumed that only the biologically effective portion of the genome has to be correct, 
that is, that it must have mutated from the LUCA bases to their corresponding Homo sapiens 
bases.  We defined the biologically effective portion of the genome to be the coding portion plus 
the highly conserved, noncoding portion under the assumption that this latter portion has 
biological significance (for example, it contains gene regulatory regions), as evidenced by its 
being conserved.  We used an estimate of the coding portion of the human genome of approx. 
2% [21].  In addition, we used an estimate of 2% for the noncoding portion of the human genome 
that is highly conserved [22].  Thus, we used a total of 4% as the portion of the human genome 
that evolved from LUCA by changing to the correct Homo sapiens nucleotides. 

For this point mutation model, we considered only base substitution mutations and we 
very strictly required that an SSCB change be from the incorrect base to the one correct base out 
of the three remaining bases.  Thus, we use a rate of 

  
mutation rateSSCB = mutation rate / 3  

= 3*10-9 SSCB mutations per base pair per generation  
 

Note that with unicellular organisms, a generation consists of a single cell division.  For 
multicellular organisms that reproduce sexually, there are many mitotic divisions between a 
gamete in one generation and a progeny gamete in the next.  Thus, we considered mutations per 
generation. 

The reciprocal of mutation rateSSCB is 3.3*108.  Thus, a population of one must produce 
an expected number of 3.3*108 progeny in order for an SSCB mutation to occur.  This expected 
number equals the expected integral of each individual triangle in Figure 1. 

Cyanobacteria have a growth rate of approx. 1 / day.   
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 t = log (3.3*108) / log (1 + 1) 
   = 28 days = .077 years 
 
Thus, cyanobacteria produce one SSCB mutation every 28 days or .077 years.  The 2004 mean 
human growth rate in the Western Sahara is 2.1% annually [23]; we chose the Western Sahara as 
it more closely approximates the conditions of early human than developed areas.   
 
 t = log (3.3*108) / log (1 + .021) 
   = 944 years 
 
Thus, the time for a SSCB mutation in Homo sapiens is 944 years.  Strictly speaking, no further 
SSCB mutations need take place in H. sapiens, as our species is the final reference species for 
our model.  This time is appropriate, however, for complex, relatively slowly reproducing 
species that are recent ancestors of ours. 

The human genome consists of approx. 3.2*109 base pairs [24].  The biologically 
effective portion, 4% as described above, is 1.3*108 base pairs.  Starting with our proxy for 
LUCA, cyanobacteria, this base pair count is the number of SSCB mutations needed to evolve to 
H. sapiens and is also the number of MRAs in our simple model.  

To calculate evolution’s duration, we must know the growth rate of all of the MRAs.  For 
this simple model, we used the mean of cyanobacteria and Homo sapiens rates.   Since growth 
rate is multiplicative (we multiply the current population by 1 plus the growth rate to calculate 
the new population), we calculated the geometric mean of cyanobacteria and human times 
 
 expected time per mutation = 

€ 

.077*944  
     = 8.5 years 
 
Thus, the mean expected time for one SSCB mutation is 8.5 years and the time ttotal for complete 
evolution is  
 
 ttotal = expected time per mutation * number of mutations 

= 8.5 * 1.3*108 

  = 1.1*109 years 
 
This result is within an order of magnitude of the geologic and fossil data result of approx. 
3.5*109 years [18].  This order-of-magnitude agreement between the measurement of 
evolutionary duration provided by this simple model and the measurement provided by geologic 
and fossil data offered evidence that our overall approach to the problem had some merit. 
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3 Comprehensive Evolution Model Overview 

We created the simple model based on a significant number of significant assumptions and 
simplifications.  To the extent that an assumption or simplification is not, in fact, a valid one, it 
may induce a severe limitation in the simple model.  The approach taken in this research has 
been to create a comprehensive evolution model derived from the simple model by: 
 

• Analyzing each assumption in the simple model and either confirming its validity and 
retaining it in our comprehensive model, or recognizing that it is invalid and eliminating 
it in our comprehensive model, which will have the effect of alleviating any limitation it 
induced. 

• Increasing the set of reference species from two (LUCA and Homo sapiens) to many. 
• Increasing the range of data applied to each reference species, for example, in terms of 

genome sequence, population model, and mutation type. 
 
We begin with an analysis of the simple model, followed by a summary of the comprehensive 
model. 

3.1 Simple model analysis 
 
The simple model described in Chapter 2 makes a number of implicit and explicit assumptions 
and simplifications.  Some are valid and we examine their validity in this Section.  The 
remaining ones do not sufficiently reflect reality to apply in our comprehensive evolutionary 
model and we need to devise means to alleviate them.  Our analysis of all of these follows. 
 
All bases must change.  The first assumption in the simple model is that during the evolution 
from LUCA to Homo sapiens, all bases (including those that are added over time as the genome 
grows in size) have to change – none are correct in their ancestral form.  By this assumption, we 
mean that every site in a biologically effective region of the Homo sapiens genome had to 
change from its ancestral nucleotide in LUCA to its current nucleotide.  For example, consider a 
particular site in an exon in the human genome that is an A.  In the simple model, we assume its 
ancestral nucleotide in LUCA was C, T, or G. 

This assumption is clearly too strict.  One relevant fact is that 24% of point mutations are 
synonymous for exons – although a single base changes, the amino acid produced upon 
translation of the codon containing it does not [19].  In addition, no attempt at any sort of 
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genome alignment or other comparison between cyanobacteria (our proxy for LUCA) and Homo 
sapiens was made in the simple model.  Such a comparison would identify conserved regions 
between the two genomes [22], thus reducing the need for bases in those regions to change.  
Thus, the simple model assumes that evolution took a nearly worst-case path to Homo sapiens, a 
significantly less unlikely event than a best-case path.   

The comprehensive model quantified these conserved regions by using multiple reference 
species which act as proxies for various MRAs and did an alignment between the genomes of 
adjacent reference species. 
 
One specific base must change.  The simple model assumes that each mutation must occur to 
the base at one specific site.  That is, in order to progress from MRAi to MRAi+1, one specific 
base, out of all of the existing bases in the genome, must change.  In reality, at any given time 
there will typically be multiple possible changes that could take place that would represent 
progress from the current MRA to its successor.  The comprehensive model alleviated this 
assumption by allowing all possible potential changes (mutations) for MRA transitions at any 
given time point. 
 
All mutations are point mutations.  The simple model limits mutations to substitutions only.  A 
substantial number of additional mutation mechanisms have been observed, from single base 
insertion or deletion to duplication of entire genomes through ploidy change [19].  The 
comprehensive model considered all mutation mechanisms relevant to the specific reference 
species characteristics. 
  
No time is needed for genome size increase.  The simple model considers substitutions only 
and that genome size increase mutations (such as gene duplication), provide sufficient “raw 
material” for mutation.  No additional time is allocated for genome-size-increase mutations.  The 
comprehensive model considered relevant genome-size-increase mutation mechanisms as 
needed. 
 
Mutation rate is constant.  The simple model assumes the mutation rate is constant and uses the 
experimentally determined rate of an organism, C. elegans, which is intermediate in complexity 
between LUCA and Homo sapiens.  We know that mutation rate is a function of several factors: 
 

• Species [25]:  To alleviate the species-variability of mutation rate, our comprehensive 
model used rates appropriate for our reference species to the extent possible. 

• Environment [26]:  As detailed empirical evidence for the relevant environmental 
characteristics during the time periods we considered was not generally available, we 
continued to use constant mutation rates. 

• Genomic context [27]:  Highly conserved regions, which have relatively low effective 
mutation rate, are assumed to be not only biologically effective but, in fact, so significant 
that mutations in these regions prevent viability or reproduction.  However, we claim that 
the fundamental, spontaneous mutation rate continues to apply.  This fundamental, 
spontaneous rate is masked in measuring allele (alternative form of a gene) frequencies, 
as any mutated allele is absent from the population as a result of its not being reproduced 
due to the lack of viability or reproduction of any individual containing the mutated 
allele. 
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• Mutation type:  Among point mutations, for example, transitions are sometimes more 
common than transversions [28].  For our comprehensive model, we used experimentally 
measured rates when available to refine our results. 

 
MRAs do not regress.  The simple model assumes that MRAs do not regress, that is, they do 
not lose any of their previous SSCB changes through further mutations at those same locations.  
In reality, a fundamental, spontaneous mutation rate applies at all locations and so regression of 
MRA transition mutations is inevitable.  Our comprehensive model includes MRA regression. 
 
A previous MRA never overtakes a current MRA.  The simple model assumes once a new 
MRAi+1 has been produced, no member of the MRAi population will overtake it.  For example, 
consider a population of MRAi’s.  One of them mutates and becomes MRAi+1A.  Before its 
progeny can produce an MRAi+2, a different member of the MRAi population mutates to become 
MRAi+1B and one of its progeny mutates to become MRAi+2.  Our comprehensive model makes 
no assumptions about relative evolutionary progress of individuals. 
 
Independence from exogenesis.  Exogenesis is the hypothesis that life developed at a location 
elsewhere, came to Earth by some means, and was the origin of life on Earth.  One form of 
exogenesis is Panspermia [29], the hypothesis that some form of life is ubiquitous in the universe 
and that this form of life came to Earth, serving as the basis for life here.  If exogenesis is 
correct, we postulate that either that form of life was LUCA or was a LUCA ancestor.  Since 
both the simple and the comprehensive model begin with LUCA, our both models are 
independent of the factual nature of exogenesis. 
 
A simple population model is accurate.  In the simple model, we fully characterized the 
population model by a single parameter, growth rate, and each MRA reproduces at this rate.  
Further, we based growth rate on a geometric average between cyanobacteria and human.  In 
reality, an accurate population model must be based on a number of parameters: 
 

• A most significant factor in a population model is the species itself.  Between 
cyanobacteria and Homo sapiens, we note a factor of more than 10,000 in difference in 
the time needed to produce one SSCB change. 

• For many species, the effective population size Ne is smaller than the census population 
size [30] under some conditions. 

• Some MRA mutations will be beneficial due to improvement of reproduction and/or 
survival rates; they increase the fitness of the MRA.  Those MRAs and their progeny who 
inherit the beneficial mutation(s) will have a higher growth rate than the remainder of the 
population. 

• Growth requires external resources and population growth may be limited by 
environmental carrying capacity [31]. 

 
The comprehensive model had multiple population pools and took into account all of the above 
parameters. 
 
A small fraction of the human genome is biologically effective.  The simple model assumes 
that 4% of human genome is biologically effective [21 22] and ignores any need for mutation 
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outside of the biologically effective regions.  Our comprehensive model made this same 
assumption; in the future, it could be adjusted if and when evidence of biological effects from 
DNA outside of these regions becomes available.   

3.2 A comprehensive model of evolution and its application 
In the previous sections, we presented a vision for a unique model of evolution, presented the 
results of a simple model, analyzed the assumptions it made, and discussed how those 
assumptions would be retained or eliminated (along with their induced model limitations) in our 
comprehensive model.  Our goal for this research has been to create the comprehensive evolution 
model, apply it to our set of reference species, and analyze the model results.  We now describe 
this comprehensive model and its application.  We divided this description into the set of steps 
we performed for the research. 

3.2.1 Reference species 
Our first step was to choose a set of reference species that represent points on the lineage from 
LUCA to Homo sapiens.  Reference species were presumed root ancestors of relevant 
phylogenetic trees, created using reconstruction algorithms [32].  The first of these reference 
species is LUCA.  The last reference species is, of course, Homo sapiens.  For each reference 
species, actual, relevant genome sequence data must be available and we must estimate the 
fraction that is biologically effective if it differs from Homo sapiens. 

3.2.2 Reference species genome reconstruction 
In the simple model described above and the subsequent discussion, we focused completely on 
evolution at the level of individual nucleotides.  It is possible to observe evolution at a number of 
other levels, among them codon, exon, gene, and gene family.   We needed to decide at which of 
these levels to focus our efforts in the comprehensive model.  Since mutations actually occur to 
nucleotides, we continued to use nucleotide level data and added codon-level information.  An 
interesting observation is that, given that evolution may be said to operate at all of these levels 
and that the mutation component of evolution is a stochastic process, evolution may have a 
fractal geometry [33] aspect to it.  
 In addition, we had to make a determination of the size of the genome fractions to 
consider.  The ideal would have been to consider whole genomes, providing a maximum of 
information for our model.  However, considerations of available data, computational resource 
constraints, and time constraints precluded the use of entire genomes.  We thus needed to 
determine which genome portions to consider and which existing species to use to reconstruct 
the ancestral, reference species genome. 
 With these determinations, we used existing tools and our BWMPath software (described 
in Section 10.1.1) to reconstruct the ancestral, reference species genomes. 

3.2.3 Mutations 
We define a mutation [19 25 34] as an alteration of a genome’s DNA sequence with respect to 
the expectation based on the individual’s parent(s) genome.  Since we are interested in inherited 
mutations, we consider only germ line mutations, which can be inherited by offspring, and 
ignore somatic mutations. 
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 Our tasks with respect to mutation mechanisms were threefold: 
 

1. Identify all relevant mutation mechanisms.  Note that for our purposes we interpreted the 
term mutation broadly so that it included mechanisms such as horizontal gene transfer. 

2. Characterize each reference species with respect to individual mutation mechanisms.  Not 
all species are capable of every mutation mechanism.  For example, species that do not 
reproduce sexually are not capable of unequal crossover. 

3. Obtain rates for each mutation type from the literature.  Some of these were 
experimentally determined.  We did not perform laboratory experiments to obtain these 
rates but rather leveraged the existing work of biologists in this field, for example [25]. 

3.2.4 Sequence evolution model 
We then evolved each reference species genome into that of its successor reference species using 
our sequence evolution model.  A common form of modeling this evolution is by a genome 
alignment using an edit table; Section 5.1.1 describes these alignments.  This form of alignment 
considers only single nucleotide changes:  base insertions, deletions, and substitutions.  For our 
purposes, we must consider the entire suite of mutation mechanisms that have taken place.  Some 
whole genome alignment tools (such as MUMmer [35]), consider a wider range of mutations but 
assume that the genomes being aligned are those of closely related species.  Our reference 
species are related comparatively distantly.  In addition, typical alignment tools find a single 
alignment that is optimal based on a scoring criterion.  Due to the stochastic nature of evolution, 
it is unlikely to take an optimal path; thus, we determined multiple, probable paths.  Due to the 
limitations of existing alignment tools, we created our own alignment tool as part of the 
BWMPath software. 
 In general, we discovered several possible sets of mutations that would transform the 
genome of a given reference species into that of its successor reference species.  We call each 
such set a mutation path as it represents a path through a generalized edit table and a path that 
evolution may have taken.  For example, consider hypothetical, adjacent reference speciesi and 
reference speciesi+1 with differing genome segments genomei and genomei+1 where  
 
 genomei = GAGTCC 
 
and 
 
 genomei+1 = GGACTA 
 
One mutation path from genomei and genomei+1 is simply five single base substitutions, 
changing all but the first base in genomei to the corresponding base in genomei+1.  Another path 
is an inversion, in which the sequence is reversed and each nucleotide replaced with its 
complement, of genomei followed by a single base substitution of the sixth base G with an A.  
The set of mutation paths between two adjacent reference species constitutes a Hidden Markov 
Model (HMM) of evolution between the two species [36 37] as Figure 2 shows.  We classify the 
model as a hidden one in that we cannot observe the sequence of states that evolution moved 
through while progressing from one sequence to a successor sequence. 
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Figure 2:  Hidden Markov model of sequence evolution  

 In the hidden Markov model, the vertices between two adjacent reference species are all 
of the MRAs between them.  Note that MRA numbering is now more complex:  MRA 
numbering is relative to both a specific mutation path and to a specific position between a pair of 
reference species.  In particular, MRA
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j
i  is the jth MRA on mutation path i between two 

reference species.  The edges connecting the vertices are labeled with the type of mutation and 
the probability of that mutation which equals its mutation rate.  In our example, note that 
although there are two paths, they share a common vertex because that MRA has the same 
genome on both paths:  the 4th MRA on path 1 is the same as the 1st MRA on path 2; thus, 

€ 

MRA4
1 ≡  MRA1

2.  For convenience, reference species i is MRA0 for each path in the hidden 
Markov model and reference species i+1 is the last MRA on each path. 
 

 
Figure 3:  Multiple, hidden Markov model of evolution 

 Figure 3 shows our comprehensive, hidden Markov model of evolution.  It is clear at a 
glance that it has changed substantially from our simple model.  Our first reference species is 
unchanged as LUCA and our final reference species is unchanged as Homo sapiens; between 
these are all of the remaining, intermediate reference species i.  In total, these comprise the 
reference species selected earlier.  Between adjacent pairs of reference species are the hidden 
Markov models as shown in Figure 2, represented as simplified hexagons in Figure 3. 
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 All of our MRAs are now integral to the hidden Markov models.  Each transition of an 
MRA

€ 

j
i to an MRA  

€ 

j+1
i  still represents a mutation on a mutation path between a pair of reference 

species but now there are multiple paths between each pair.  We may interpret a wider hexagon 
in Figure 3 as containing paths whose probabilities are lower than those in narrower hexagons, 
implying that a greater expected number of individuals must be produced between that pair of 
reference species. 
 The primary results from our sequence evolution model were the mutation types, lengths 
and counts in the evolution of one reference species to the next. 

3.2.5 Population evolution model 
An important goal of our comprehensive model was an understanding of how a population of 
individuals evolves over time from one reference species to the next [38 39].  Our requirements 
for such a model were unmet in existing tools, so we created a novel population model as part of 
the BWMPath software.  This model uses a dynamic set of population pools each containing 
related but distinct, independently mutating genomes.  The individuals reproduce sexually and/or 
asexually as appropriate to their species and we modeled the effects of interbreeding.  The 
populations are subject to speciation effects, selection pressures, and environmental carrying 
capacity limitations. 
 The primary results of this model were population size estimates, evolution duration 
estimates, and identification of critical evolution parameters and estimation of their values. 
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4 Reference Species 

To construct our comprehensive model, we defined a set of reference species that were 
successive precursors to Homo sapiens.  By having intermediate reference species between 
LUCA and Homo sapiens, we provided a greater quantity of structured (for example, taxonomy) 
and raw (for example, nucleotide sequence) data to our model with the expectation that the 
model would be correspondingly more accurate in its results.  As with LUCA, our intermediate 
reference species are primarily theoretical constructs, though we know that they must have 
existed in the past and that they are likely now extinct.  Each of the members of this set of 
reference species must be individually characterized with respect to phylogenetic relationships, 
genome content, mutation mechanisms and rates, and population models.  The data that makes 
up these characterizations are the fundamental inputs to the comprehensive model. 

4.1 Reference species selection 
Initially we defined two of our reference species, the end points in our model:  LUCA and Homo 
sapiens.  We then selected several intermediate reference species.  Our process was to select a 
clade (branch of a phylogenetic tree) to represent the reference species that lies at the root of the 
clade.  We then chose a subset of the leaf nodes in such a way as to balance the number of 
species representing a subclade within the clade.  We used these leaf nodes, their sequences, and 
their phylogenetic relationship to reconstruct the reference species’ genome. 

Since our research has a significant speculative component, we chose to use data sources 
in which there is a high degree of trust.  We began with the Universal Protein Resource (Uniprot) 
[40] data, described as the gold standard in protein sequence and related data. We used Uniprot’s 
taxonomic data to guide our intermediate reference species selections. 

An important property of our reference species is that they have sufficiently distinct 
characteristics that there are substantial differences in their genomes.  These distinct 
characteristics ensure that our evolution model has substantial differences to analyze as it 
determines mutation occurrences between two adjacent reference species.  Requiring distinct 
characteristics suggests a relatively small number of reference species. 
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LUCA root clade containing all of life 
Eukaryota structured cells with a nucleus 
Metazoa sexual reproduction, motility, ingesting other organisms 
Chordata active animals with bilaterally symmetric bodies 
Craniata heads with a skull 
Vertebrata contains a vertebral column 
Euteleostomi contains bones 
Mammalia air-breathing, neocortex region in the brain 
Eutheria placental mammals 
Primates large brains 
Haplorrhini vision is primary sense 
Catarrhini diurnal, social groups 
Hominidae capacity for language, simple culture 
Homo   

Table 1:  Clades containing Homo sapiens 
 Table 1 lists all of the clades containing Homo sapiens, starting from the clade that 
represents all of life – we refer to this clade as the LUCA clade.  The sources for this data are [40 
41].  In this Table, each clade is a superset of the clades listed below it.  The second column of 
the table lists significant characteristics that distinguish the clade from its siblings. 

We concluded that many of the clade distinctions, such as the distinction between 
Catarrhini and Hominidae, are not substantial enough for our purposes.  For this reason, we 
would not choose both Catarrhini and Hominidae as reference species.  In the following sections, 
we discuss our reference species selections, the reasons for their selection, and their salient 
characteristics. 

4.2 Last universal common ancestor (LUCA) 
As discussed in [17], biologists grew confident that there must be a common, universal ancestor 
to all existing life on earth as the genetic code was deciphered during the 1960s and, as 
additional species were examined throughout the decade and indeed up to the present time, found 
to be universal in biological organisms.  Since we would like to examine the process of evolution 
over a substantial period of time, we wish our first reference species to be one taken from 
relatively early in the history of life on our planet.  This quest for an early beginning must be 
weighed against the need for considerable information about each of our reference species, 
including our first.  Since LUCA by definition has significant commonality with all species, we 
may infer much information about it, using sequence data from existing species, and applying 
genomic reconstruction techniques and phylogenetic techniques.  Thus, we chose LUCA to be 
our first reference species as it provides an optimum balance among antiquity, universality, and 
comprehensive knowledge that may be inferred relatively confidently. 

There was likely life on earth prior to LUCA.  In fact, the exogenesis conjecture, 
discussed earlier, presupposes life (or significant components critical to it such as ribosomes, the 
cellular organelle that translates messenger RNA into protein) predating that on earth and 
arriving here by extraterrestrial transport, for example, comets.  Panspermia [29] posits a galaxy 
ubiquitous with life and that this ubiquity formed the basis of life here on Earth and elsewhere.  
Since our model does not attempt to describe evolution prior to LUCA, as described earlier, it is 
independent of life and/or its components that predate LUCA. 
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For most of the twentieth century, it was thought that the fundamental division of life was 
between Eukaryota (structured cells with a nucleus, for example animals such as Homo sapiens) 
and Prokaryota (relatively unstructured cells without a nucleus, for example bacteria such as 
Escherichia coli) [42].  LUCA would then have been the species after which eukaryotes and 
prokaryotes split into two separate clades.  However, a division was found among the 
prokaryotes that was both ancient (approx. 3 billion years ago) and unique:  the species in one of 
the divisions were thermophiles, optimally growing at temperatures above 50˚ C.  The 
prokaryotes were then split into two domains:  Bacteria and the newly identified Archaea.  The 
matter of whether Eukaryotes are more closely related to Archaea or Bacteria is the subject of 
current controversy.  In fact, there is debate as to which of the three domains, Archaea, Bacteria, 
or Eukaryota, is most ancient.  Although it is tempting to assume that the one of the two 
prokaryote domains with simpler, unstructured cells came first, there is evidence that Eukaryotes 
are the most ancient and the Archaea and Prokaryotes are more recent simplifications of 
Eukaryotes. 

In [43], research on the nature of LUCA is surveyed extensively and an overall 
assessment is described which suggests a number of primary LUCA characteristics.  Many are 
diametrically opposed to earlier LUCA characterizations and the veracity of each of these 
characteristics remains controversial.  The most salient of them are: 
 

• LUCA was a complex protoeukaryote rather than a simple prokaryote. 
• LUCA had an RNA genome rather than a DNA genome. 
• LUCA was a mesophile, growing optimally at moderate temperatures, rather than a 

thermophile. 
• Horizontal gene transfer played a minor role subsequent to LUCA compared to more 

likely events, such as gene duplication within a species’s genome (creating paralogs), 
subsequent speciation, and finally differential loss of paralogs, that lead to similar 
phylogenetic anomalies. 

• Reductive evolution produced the prokaryote domains Bacteria and Archaea. 
 
Several of these characteristics are relevant to our evolution model.  LUCA being a complex 
protoeukaryote rather than a prokaryote has implications for our population model, in particular 
population growth rate.  With their greater complexity and slower cellular machinery (such as 
transcription mechanisms with alternate splicing), even single cell eukaryotes in general have a 
much slower growth rate than prokaryotes. 

LUCA having an RNA genome [44] increases the complexity of our modeling its 
evolution into a reference species with a DNA-based genome.  It is clearly the case that the 
hypothesis of an RNA LUCA is significantly controversial.  In [45], Delaye et al argue that the 
monophyletic (single source) origin of ribonucleotide reductase suggests a DNA-based LUCA.  
In addition, they note that high fidelity duplication of RNA would be problematic for a large 
RNA genome.  Finally, it is clear that an RNA LUCA implies that DNA-based genomes evolved 
independently at least twice – an unlikely but not impossible set of events.  We believe that this 
body of evidence argues strongly for a DNA-based LUCA and our evolution model makes this 
assumption.  To adopt the RNA-based LUCA assumption, we could have simply mapped our 
DNA-based LUCA genome into the corresponding RNA bases; this change would have had 
trivial effect on our results. 
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Finally, the characteristic of relative rarity of horizontal gene transfer subsequent to 
LUCA’s genesis had an effect on the mutation component of our evolution model. 

Beyond the relevance of certain characteristics, we do not weigh in on these controversies 
but continue simply to define LUCA as the most recent, common ancestor of all three domains. 

4.3 Last universal common ancestor of Eukaryota (LUCAEukaryota) 
As described in [41 46], Eukaryota have a number of characteristics that distinguish them from 
their sibling clades, Archaea and Bacteria.  Among the salient characteristics are: 
 

• A cytoskeleton consisting of microtubules and microfilaments.  Microtubules are hollow 
rods that undergo continual assembly and disassembly within the cell.  They determine 
cell shape, function in cell movements including locomotion, and separate chromosomes 
during mitosis.  Microfilaments are smaller but similar to microtubules and also 
determine cell shape.  They allow movement of the cell surface enabling cells to engulf 
particles and divide. 

• An endomembrane system composed of related membranes within the cytoplasm.  These 
include endoplasmic reticulum, Golgi bodies, vacuoles, lysosomes, peroxisomes, and the 
nuclear membrane. 

• A primary genome of multiple, linear (as opposed to circular) chromosomes within a 
nuclear membrane.  Some species have multiple nuclei.  During mitosis, the genome is 
replicated and the copies segregated. 

• Mitochondria organelles that usually contain a genome distinct from the primary one.  
Mitochondria have diverse functions, among them aerobic respiration and synthesis of 
small molecules such as amino acids. 

 
Many, but not all, Eukaryotes also have the following characteristics: 
 

• They form multicellular organisms. 
• They reproduce sexually. 

 
It is these latter characteristics, distinguishing Eukaryota from LUCA, that motivate us to select 
LUCAEukaryota as one of our reference species.  In particular, sexual reproduction augments 
the set of mutations that occur universally with mutations that occur only in sexually reproducing 
species; this effect is further described in Chapter 6.  This substantial, additional set of mutations 
is sufficient reason to make LUCAEukaryota a reference species. 

4.4 Last universal common ancestor of Metazoa (LUCAMetazoa) 
Metazoa are commonly known as animals.  They share the following characteristics [47-50]: 
 

• They are heterotrophic, engulfing external food and digesting it in an internal chamber. 
• They lack rigid cell walls.  Instead, an extracellular matrix composed of collagen and 

elastic glycoproteins surrounds metazoan cells. 
• They are capable of motion during at least one life stage. 
• They have a developmental stage effectively defined by regulatory DNA.  Plants have 

regulatory DNA as well, but their development is significantly different. 
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This last characteristic of Metazoa, regulatory DNA controlled development, is of special interest 
for our purposes.  Animals as different as worms, flies, and humans use similar sets of genes to 
define their development from egg cell fused with spermatozoon to adult organism.  A small 
number of intercellular signaling pathways, defined by the genome and incorporating multiple 
proteins, are used repeatedly in different organisms at different times during development.  
These pathways ultimately create the differentiated cells, organized into tissues and organs, in 
the adult organism.  The wide differences in adult organisms of Metazoan species arise largely 
from differences in the regulatory DNA of the genes that define these pathways. 

It is primarily this last characteristic, regulatory DNA controlled development, which 
motivates us to make LUCAMetazoa a reference species.  This regulatory DNA has a substantial 
functional impact on the Metazoan genome. 

4.5 Last universal common ancestor of Mammalia (LUCAMammalia) 
Mammals share the following characteristics [51-53]: 
 

• They are warm-blooded and air breathing. 
• They are vertebrates. 
• Mammalian mothers nourish their young with milk or a similar, secreted substance. 
• Their brains have a neocortex region. 

 
The characteristic of mammals having a neocortex is of special interest for the purpose of 
reference species selection.  There is a large diversity in morphological patterns and organization 
of the neurons that occurred during the evolution of the neocortex.  In addition, there is a variety 
of neuron types with unique regional distributions.  Finally, there are a number of structural 
proteins, calcium-binding proteins, and neurotransmitters in the neocortex.  In aggregate, the 
development of the neocortex has had not only a selective advantage for mammals but also a 
functional impact on the mammalian genome.  As a result, we chose LUCAMammalia as a 
reference species. 

4.6 Homo sapiens 
In our evolution model, we needed an early biological species for our initial reference species 
and we chose LUCA to be our initial reference species.  Similarly, we needed a final reference 
species.  Our final reference species should be one that has recently evolved to allow our model 
to examine evolution over a large span of time.  Our final reference species must be fully 
sequenced to allow us to model the evolution of its sequence from earlier reference species.  
Finally, the ideal final reference species should have a complex genome to provide a wide 
variety of sequence content to model. 
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Species  Common name Mbp 
Colostethus marchesianus poison dart frog 6700 
Homo sapiens human 3200 
Mus musculus  mouse 2400 
Drosophila melanogaster fruit fly 120 
Arabidopsis thaliana mouse-ear cress 100 
Caenorhabditis elegans roundworm 78 
Saccharomyces cerevisiae yeast 12 
Escherichia coli bacteria 4.6 
H. influenzae  bacteria 1.8 

Table 2:  Genome sizes 
 Homo sapiens satisfies well each of these criteria.  We evolved some 300,000-400,000 
years ago, which is extremely recently in evolutionary time [54].  We were fully sequenced at the 
conclusion of the Human Genome Project [55].  Our genome is not the largest but is substantial; 
see Table 2 [56 57], which lists some genome sizes in millions of base pairs (Mbp).  As 
important, it contains the full complement of eukaryotic complexity in addition to content unique 
to our species.  Thus, we chose Homo sapiens as our final reference species.  An additional 
advantage to this choice is that there is a natural curiosity about our origins and this research may 
serve to satisfy that curiosity more fully. 
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5 Reference Species Genomes 

Having selected our reference species, we then reconstructed the genomes of these Homo sapiens 
ancestors.  We begin with a discussion of the theory of and algorithms applied to ancestral 
genome reconstruction.  We then describe the process we used for our reconstructions.  Finally, 
we discuss the reconstructed genomes we used for our model. 

5.1 Ancestral genome reconstruction background 
Using sequence information from existing species and the phylogenetic relationships among 
those species, one can infer and reconstruct sequence information for ancestral species [58-66].  
There are three phases in the process of ancestral genome reconstruction: 
 

1. Sequence alignment 
2. Phylogenetic tree creation 
3. Ancestral sequence reconstruction 

 
Sequence alignment identifies which sites in a set of sequences correspond to each other.  
Phylogenetic tree creation identifies the evolutionary relationships among the sequences.  
Ancestral sequence reconstruction takes the information from the previous two phases and 
determines which character (nucleotide or amino acid) is most likely present at each site in the 
sequence being reconstructed.  We describe each phase below. 

5.1.1 Sequence alignment 
The process of determining which nucleotides in two or more sequences correspond is called 
sequence alignment [67]. 
 

 
Figure 4:  Sequence alignment example 

 Figure 4 contains a portion of the alignment between a LUCA gene coding region, 
reconstructed as part of the research effort for this thesis, and its Homo sapiens ortholog.  The 
top line of the figure is the LUCA nucleotide sequence and the bottom line is the Homo sapiens 

cgaaagcggcgttccgaccttcagcggggccatggatggactgt 
 ||||| || |||||||||||||| || ||    | |      | 
agaaagtggtgttccgaccttcagaggagctggaggt---tatt 
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sequence.  Letters in the two sequences that are arranged directly over one another are said to be 
matched and the alignment process has inferred that they are corresponding sites in the 
sequences.  If two matched letters are identical, the match is known as an identity and a vertical 
bar connects them in Figure 4.  Two dissimilar letters indicate that one of the sequences has 
undergone a substitution.  A site where one or more sequences has a “-“ indicates an insertion or 
deletion (indel).  At these sites, a sequence with a “-“ may have undergone a deletion or a 
sequence with a letter may have undergone an insertion.  With no additional information, it is not 
possible to distinguish between these two cases.  In our alignments, we know which sequence is 
ancestral and we place this sequence above the descendent sequence.  Thus, a “-“ in the upper 
sequence indicates an insertion in the descendent and a “-“ in the lower sequence indicates a 
deletion in the ancestor. 

Any two sequences have a number of possible alignments that is exponential in their 
length.  As a result, much effort has been expended in determining “best” alignments in a 
computationally tractable manner [68-73].  Best alignments must be determined by a scoring 
method based on the probabilities of identities, substitutions, and indels in sequences.   

An example of a simplistic alignment score, derived from [67], is the following.  Assume 
an alignment with i identities, s substitutions, and d indels.  If the probabilities of individual 
identities, substitutions, and indels are p, q, and r respectively, then the probability P of the 
alignment is: 
 

P = piqsrd. 
 
We define S’ by the log likelihood of P: 
 

S’ = log P = i(log p) + s(log q) + d(log r). 
 

Finally, we derive score S from S’: 
 

S = i – sµ - dδ, 
 

where µ and δ are the total substitution and indel probabilities normalized against the identity 
probability, respectively.  The substitution probability has been empirically shown to be higher 
than the indel probability [74].  To summarize this scoring approach, identities increase a score 
but substitutions and indels decrease a score.  It is frequently the case that, rather than using the 
terminology of the score of an alignment, the distance between two sequences is described.  The 
distance between two sequences is larger if their alignment the score is smaller. 

With an ability to score different alignments against each other to determine the best one, 
we now address the problem of constructing the alignments in the face of their exponentially 
large quantities.  The typical approach is the use of edit graphs [75]. 
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Figure 5:  Edit graph 

 Figure 5 is an edit graph for two sequences of identical length, though edit graphs may be 
used for sequences of dissimilar lengths.  The first sequence is written along the left side of the 
edit graph and the second sequence along the top.  Any path through the edit graph from top left 
corner to bottom right corner, following diagonal, vertical, or horizontal moves through cells, 
represents an alignment.  A diagonal move through a cell indicates a match:  a solid line 
represents an identity and a dashed line represents a substitution.  A downward move represents 
a nucleotide the first sequence has that the second sequence lacks and a rightward move 
represents a nucleotide the second sequence has that the first sequence lacks.  These two latter 
moves cover any indel. 

It is clear that any two sequences may be trivially aligned via a path that first moves to 
the bottom of the graph, indicating the second sequence lacks all of the nucleotides in the first 
sequence and then moves to the far right of the graph, indicating the first sequence lacks all of 
the nucleotides in the second sequence.  Since there are only indels and no identities or 
substitutions in such a path, it has a minimal score and represents a worst-case alignment. 

 
Figure 6a,b,c:  Paths through edit graphs 

 Figure 6 shows three different paths through the same edit graph and their corresponding 
sequence alignment. The path in (a) contains only matches, three identities and three 
substitutions.  The path in (b) contains five matches, all identities, and two indels, one in each 
sequence.  Finally, the path in (c) contains five matches, four identities and one substitution, and 
two indels, one in each sequence.  The paths are ordered left to right from best score to worst.  
Due to the relatively low probability of indels, paths without them score best and so (a) has the 
highest score.  Although paths (b) and (c) have identical numbers of matches and number of 
indels, path (b) scores better than (c) because all of its matches are identities and one of the 
matches in (c) is a substitution. 
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A common approach to identifying high-scoring paths through an edit graph is the 
application of dynamic programming [76-78].  Dynamic programming is a method of solving 
complex problems by breaking them down into simpler steps, in particular as a series of 
recursive steps.  The task of finding a path through an edit graph may be recursively broken 
down into finding a path through smaller and smaller edit graphs that are a subsets of the entire 
edit graph. 

Dynamic programming benefits from multiple techniques that reduce the path search 
space of an edit graph.  Branch and bound techniques can put bounds on path scores, eliminating 
entire branches of paths through an edit that fall outside of the established bound from further 
consideration. In addition, heuristics can also limit the search space at the cost of not finding the 
globally highest scoring path. One example of such a heuristic is to limit the search to paths near 
the diagonal of the edit graph as these will contain more matches.  A full description is given in 
Waterman [67]. 

It is frequently the case in this thesis, and in general, that an alignment must be found 
among more than two sequences; this problem is known as the multiple sequence alignment 
problem [79].  The issue of an exponentially large search space that is found when aligning two 
sequences is further exacerbated when aligning multiple sequences.  One approach to multiple 
sequence alignment is to consider the mutation distance of each site in each sequence to that of 
the same site in a common ancestor. 

Another approach is to let the total score for an alignment of n sequences to be the sum of 
the alignment scores of the n*(n-1)/2 pairs; this score is known as a sum of pairs score.  It is 
possible to simply compute an upper bound on the sum of pairs score and so significantly reduce 
the search space. 

5.1.2 Phylogenetic tree creation 
Figure 7 illustrates the problem of phylogenetic tree creation.  
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Figure 7:  Phylogenetic tree example 

In the tree depicted in Figure 7, nodes are labeled with capital letters.  Each of the nodes 
represents a species with an associated genome sequence.  The leaf nodes (E-J) represent 
existing species (referred to as Operational Taxonomic Units – OTUs) and their sequence 
information is obtained from sequencing the actual DNA of a species sample.  The remaining 
nodes (A-D) are ancestral species (referred to as Hypothetical Taxonomic Units – HTUs); we 
wish to infer the sequence information of one or more HTUs.  The tB through tJ represent the 
length of the edge from a node to its predecessor; they typically represent the inferred time taken 
for the sequence to have evolved from its predecessor sequence. 

Inferring a phylogenetic tree [64 80 81] is done by means of an estimation procedure – 
given that there is incomplete information (only the sequence information at the leaf nodes, 
representing existing species, is known), one can produce only a best estimate of the tree based 
on some objective criterion.  There are a variety of algorithmic approaches to this problem, 
which essentially fall into one of two categories:  Maximum Parsimony (MP) and Maximum 
Likelihood (ML). 
 
Maximum Parsimony 
In the maximum parsimony category of phylogenetic tree reconstruction, [82]  [83], the objective 
criterion for evaluating trees is the number of evolutionary changes; these are nucleotide 
insertions, deletions, or substitutions in the case of DNA sequences.  Trees constructed using 
maximum parsimony have a minimum number of such evolutionary changes.  For a given set of 
data, it may be that more than one tree has the same minimum number of changes and so there is 
no unique solution. 
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Each sequence in the set has an identical number of sites, simplifying our maximum 
parsimony algorithm as we need only consider nucleotide substitutions rather than substitutions, 
insertions, and deletions combined.  Each site in the known sequences is either: 

 
• invariant, if all OTUs have the identical value at the site, or  
• variable, if at least one OTU has a different value at the site compared to the other OTUs. 
 

Variable sites are further distinguished as being: 
 
• informative, if the site is able to distinguish among potential phylogenetic tress based on 
the number of evolutionary changes (parsimony) required to produce the variations 
observed at the site, or 
• uninformative. 
 

To create a maximum parsimony tree, we first identify the variable sites and, from these, choose 
the informative sites.  Then, for each possible phylogenetic tree containing all of the OTUs, we 
calculate the minimum number of evolutionary changes needed to produce the variations 
observed at the site.  Finally, we sum the number of changes required at each informative site for 
each possible tree.  The tree (or trees) with the minimum number of required changes is the 
maximum parsimony tree. 

Determining the number of evolutionary changes (substitutions) required can be 
accomplished using Fitch’s algorithm [82].  We need only consider variable sites.  For an 
informative site, the value(s) at an HTU site is the intersection of the values of the same site at all 
of its immediate descendents if the intersection is nonempty.  If the intersection is empty, it is the 
union of the values of the immediate descendents.  When a union is required, a nucleotide 
substitution must have occurred at this site.  Thus, the number of unions equals the number of 
evolutionary changes required to produce the variation at the site that is observed in the 
descendents. 

For an uninformative site, the number of changes is simply equal to the number of 
different nucleotides observed at the site minus one.  We subtract one because, for example, if 
there are two variations then there has been one change that changes one variant into the other.  
The total number of changes at both informative and uninformative sites is called the tree length 
and is our parsimony measure. 

When there are only a small number of OTUs, we can exhaustively enumerate the trees 
and calculate the tree length of each.  However, the number of possible trees grows rapidly with 
the number of OTUs.  With ten OTUs, the number of rooted trees exceeds 30 million.  
Exhaustive methods are impractical when the number of OTUs is significant. 

Two methods are applied to reduce the tree search space.  The first is branch-and-bound 
[84].  At any given point in the search, the tree length of the highest parsimony tree found so far 
serves as an upper bound and is compared to the current tree length for the tree being calculated.  
Once the tree length of the tree being calculated exceeds the upper bound, it may be abandoned 
as the current upper bound tree is shorter and so has higher parsimony. 

The second method is the application of heuristic approaches to prune the tree search 
space.  In such approaches, only a tractable subset of all possible trees is considered.  The 
essential principle is that an initial tree is constructed by an appropriate method such as 
neighbor-joining [85].  In neighbor-joining, pairs of OTUs are found that minimize total branch 
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length.  Similar trees (by an appropriate objective measure of similarity) are then examined to 
see if a shorter tree can be found.  If one is found, then it serves as a new starting point for the 
examination of similar trees.  The trial iterations are terminated when at a certain trial threshold 
we fail to find a shorter tree.  These heuristics approaches tradeoff a guarantee of finding the 
most parsimonious tree against acceptable compute time. 
 
Maximum Likelihood 
In the maximum likelihood category of phylogenetic tree reconstruction [86-89], the likelihood 
of a given tree is the probability of observing the data given the tree and a model of mutations 
used in constructing the tree, for example a substitution-only model.  This expression is written L 
= P(data|tree) which says that L, the likelihood of the tree, equals the probability of the data 
given the tree.  Maximum likelihood methods explore the search space of possible trees to find 
the one with the highest likelihood. 

An example adapted from [80] illustrates the principles.  Assume we have the sequences 
of four OTUs and we wish to determine the maximum likelihood tree for them.   

 
  Site 1 Site 2 

OTU1 C G 
OTU2 C G 
OTU3 A G 
OTU4 G G 

Table 3:  OTU sequence data 
 In Table 3, the sequence data at two sites in our four OTUs is presented.  In Figure 8, one 
of the three possible, unrooted trees that may be constructed from four OTUs is shown.  In this 
tree, the two, internal nodes are identified as HTU5 and HTU6. 

 
 
 

Figure 8:  Maximum likelihood tree example 
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 We first consider site 1.  At this site, The OTUs have data C, C, A, and G respectively.  
The internal nodes of the tree can each have any of A, C, T, or G since any nucleotide can mutate 
into any other.  Thus, for the sequence data at the internal nodes we must consider 42 = 16 
possibilities.  Some of these combinations are significantly more likely than others.  For 
example, C at HTU5 and G at HTU6 is more likely than G at HTU5 and C at HTU6 as the 
former requires one-quarter the number of mutations compared to the latter.  However, none of 
the possibilities has a zero probability and so the entire group of 16 must be considered.  Thus, 
for this tree the likelihood of observing the data that we do observe in the OTUs is the sum of the 
16 independent probabilities.  That is, the likelihood of site 1 given the tree example in Figure 8 
is 

 
Equation 3:  Phylogenetic tree likelihood 

 Note that probabilities depend on nucleotide mutation rates, for example, the rate that a C 
mutates to a G.  With the maximum likelihood methods, branch lengths are estimated together 
with tree topology. 

Maximum likelihood models have emerged as superior to maximum parsimony models 
as numerous studies [90] have noted the disadvantages of the latter models. 

5.1.3 Ancestral sequence reconstruction 
With existing sequences aligned and their relationships captured in phylogenetic trees, the final 
phase in ancestral genome reconstruction is the actual sequence reconstruction [59 62-64 66].  
As with phylogenetic tree creation, ancestral sequence reconstruction has two common 
approaches, maximum parsimony and maximum likelihood.  The following descriptions of the 
two approaches are adapted from [60]. 
 
Maximum parsimony 
As with maximum parsimony in phylogenetic tree reconstruction, maximum parsimony in 
ancestral sequence reconstruction attempts to minimize change.  In this case, it seeks to minimize 
the number of changes needed for the ancestral sequence, being reconstructed at the root of a 
phylogenetic tree, to evolve to the leaf sequences. 

The Fitch algorithm [82] proceeds as follows.  The tree is traversed in post order, 
assigning a set of nucleotides at each node, beginning with the internal nodes one level up from 
the leaf nodes – the set at each leaf node is simply the nucleotide at that site in the leaf sequence.  
The set at an internal node is the intersection of the sets of its descendents if non-empty or the 
union otherwise.  If the union is assigned, one change is counted in the reconstruction.  The total 
change count is the total number of union sets used in the reconstruction.  At the root, if the set 
consists of more than one nucleotide, then multiple, equally parsimonious, reconstructed 
sequences exist. 
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Maximum likelihood 
For an explanation of the ML approach to ancestral sequence reconstruction, we refer back to 
Figure 8 and Equation 3 in the explanation of the ML approach in phylogenetic tree creation.  
The ML approach in ancestral sequence reconstruction is very similar and the likelihood 
equations are analogous.  For tree creation, the goal is to find most probable tree topologies and 
branch lengths.  For sequence reconstruction, the goal is to find the most probable nucleotide at a 
given site in an ancestral sequence.  

5.2 Ancestral genome reconstruction process 
With the reference species selected, we then proceeded with the genome reconstruction process.  
We decided to focus our model at the nucleotide level (as opposed to higher levels of genome 
abstraction such as genes or gene families) since that is where the mutations we model actually 
took place.  We did take into consideration codon synonymy (the fact that several different 
codons code for the same amino acid and so are functionally equivalent) where appropriate.  The 
first phase of this process was to determine the orthologs among the existing species for which 
the reference species is an ancestor.  The determination of the orthologs used protein data and so 
we considered only coding DNA sequences.  The second phase was to determine the DNA 
sequence of each ortholog of each reference species.  These two phases are described below. 

5.2.1 Ortholog group selection 
Once again, we began with the Universal Protein Resource (Uniprot) [40] data.  We used 
Uniprot’s taxonomic data and considered only those entries that are species.  These entries 
exclude all but one of the variants of bacterial species that are known as strains.  We also 
included only those entries for which a lineage (the nested set of clades which contains the 
species) is specified so that we could properly represent our chosen clades.   

The Uniprot taxonomic data indicates the three major clades in biology:  Archaea, 
Bacteria, and Eukaryota.  These clades are also referred to as domains or kingdoms.  The 
Archaea clade contains just five subclades, some of which have only a single species.  When we 
reconstructed the genomes of our reference species, we required equal weighting from the clades 
that comprise our reference species.  This requirement prevents any clade comprised of a large 
number of species from dominating the reconstructed reference sequence result.  Since some of 
Archaea’s five clades only contain a single species, we allowed only five species to represent 
each of the other two clades.  Where there was a choice of subclades, we chose the most 
populous ones under the assumption that they are the most studied and so are likely to provide 
the most accurate data. 

Our first approach to finding genes in common used the Uniprot gene data.  Remaining 
conservative with our data selections, we considered only genes that have been reviewed for 
accuracy.  Analyzing this data with BWMPath, we found only six genes in common within the 
species of the Archaea clade.  This small number of genes would likely further diminish with the 
addition of more clades.  Since this approach yielded too few common genes in Archaea for our 
purposes even without additional clades, we did not pursue it further. 

We continued with a different approach using gene homology, again using a conservative 
data source, the Orthologous MAtrix (OMA) project [91 92].  For our research, we needed to 
find orthologs among the clades of our reference species and the OMA data is ideal for this 
purpose.  The OMA project has generated a total of approximately 500,000 ortholog groups from 
over 4 million proteins.  The following algorithm generated the ortholog groups: 
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1. Protein sequences were obtained from GenBank [93] and Ensembl [94].  Full alignments 

were performed between all pairs of sequences using dynamic programming [67], 
calculating similarity based on a comprehensive amino acid substitution matrix [95].  
Highly similar pairs form the initial set of potential orthologs.   

2. Stable pairs of sequences are then identified.  A stable pair of sequences, x in genome X 
and y in genome Y, is one in which x is more similar to y than any other sequence in Y 
and y is more similar to x than any other sequence in X.  Since the similarity measures 
are estimates, variance is also estimated and a 95% confidence interval is used. 

3. The stable pairs identified in the previous step will include paralogs as well as orthologs.  
In order to detect that a pair of sequences, x in X and y in Y, are paralogs, an exhaustive 
search is made of all other genomes Z for homologs of x and y that could indicate a 
paralogous relationship [96].  Such paralogous pairs are deleted from the set and the 
remaining pairs are described as verified pairs. 

4. A graph is then constructed with the sequences at the vertices and edges connecting 
verified pairs with edge weights being the sequence similarity.  Maximum weight cliques 
are identified in the graph and these cliques make up the OMA ortholog groups. 

 
The groups identified by the above algorithm comprise the central database of the OMA project. 
 

 
Figure 9:  OMA entry for group 558 

 An OMA database entry for group 558, which is included in our LUCA genome, is 
shown in Figure 9.  The entry begins with the group number followed by a “fingerprint”, which 
is a sequence of contiguous amino acids that uniquely identify the protein.  Following these are 
the 49 OMA protein ids for the orthologs that comprise the group.  Each id consists of a five-
letter identifier for the species and a five-digit number for the protein of that species.  Some 
species are divided into different strains, each with its own unique identifier; in our ortholog 
group selection process, we considered at most one strain per species based on the available 
taxonomy information.  As an example of a protein in the group, HUMAN26378 is a Homo 
sapiens deoxyribonuclease protein.  Since Homo sapiens is our terminal reference species, we 
required any group we select to have a HUMAN protein. 

558 NEQGADK  
METMA01264 PYRHO01249 PYRAB01059 SULTO02195      
CHICK09725 HUMAN26738 MOUSE02520 ERWCT01784      
CANFA06539 PYRKO00317 BOVIN07909 PANTR01190      
SULAC00094 STAHJ02450 MONDO04964 MACMU00889      
METBF00912 CIOSA02016 RABIT07485 DASNO02879      
SHESR01720 ORNAN08520 HAES101486 SPETR05182      
MYOLU09455 CAVPO02632 THEPD00118 SHESW01757      
METS300095 SHEB502213 SHEB802397 SHEPC02173      
SHEB902510 GEOUR04234 HORSE07527 METM500006      
NEMVE25830 HAES200504 TURTR08192 PTEVA07112      
CAEJA06662 CHOHO10123 TAEGU16266 SULIA01981      
SULIY02129 SULIL02055 SULIM01910 SULIN00635      
MACEU01389 
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558 NEQGADK     
  Eukaryota     
    HUMAN26738 Homo sapiens 
    NEMVE25830 Nematostella vectensis 
    CAEJA06662 Caenorhabditis japonica 
    CIOSA02016 Ciona savignyi 
    CHICK09725 Gallus gallus 
    MONDO04964 Monodelphis domestica 
    ORNAN08520 Ornithorhynchus anatinus 
    BOVIN07909 Bos taurus 
    MACEU01389 Macropus eugenii 
    DASNO02879 Dasypus novemcinctus 
    TAEGU16266 Taeniopygia guttata 
    MOUSE02520 Mus musculus 
    MYOLU09455 Myotis lucifugus 
    CHOHO10123 Choloepus hoffmanni 
    HORSE07527 Equus caballus 
    CAVPO02632 Cavia porcellus 
    TURTR08192 Tursiops truncatus 
    PTEVA07112 Pteropus vampyrus 
    MACMU00889 Macaca mulatta 
    SPETR05182 Spermophilus tridecemlineatus 
    PANTR01190 Pan troglodytes 
  Bacteria     

    ERWCT01784 
Erwinia carotovora subsp. 
atroseptica 

    SHESR01720 Shewanella sp. (strain MR-7) 
    SHESW01757 Shewanella sp. (strain W3-18-1) 
  Archaea     
    METMA01264 Methanosarcina mazei 
    SULTO02195 Sulfolobus tokodaii 
    PYRHO01249 Pyrococcus horikoshii 
    PYRKO00317 Pyrococcus kodakaraensis 
    SULAC00094 Sulfolobus acidocaldarius 
    PYRAB01059 Pyrococcus abyssi 

Table 4:  Ortholog group 558 proteins and species 
 We needed to select a number of ortholog groups for each reference species.  Each 
reference species is at the root of a clade containing multiple subclades.  For each ortholog 
group, our goal was to have the same number of species represent each subclade in a given clade, 
so that each subclade has equivalent effect on the reconstructed genome.  For example, Table 4 
lists the species for group 558; redundant strains are not included.  Note that the Bacteria 
subclade has two entries that appear to be different strains of the same species.  However, the 
taxonomy data indicates that they are different species and since we consistently apply this 
information, we treat them as different species.  The distinction between species is challenging 
for non-sexually reproducing species and this taxonomic result is simply an example of that 
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challenge.  The Bacteria subclade has the least number of species, three, of all of the subclades.  
Hence, we must select only three species from each of the other subclades to meet our balance 
goal.  This aspect of the selection process is described below. 

In determining the number of groups for the clade of a reference species, there is a 
tradeoff between the number of subclades included and the minimum number of species required 
for each subclade.  An increase in the subclade count that represents in a group decreases the 
number of applicable groups.  An increase in the minimum number of species required for each 
subclade also decreases the number of applicable groups.  As we sought to maximize diversity in 
terms of subclades, species, and ortholog groups, we explored the subclade and minimum 
required species parameter space for each reference species to determine the number of 
applicable groups. 

To explore this tradeoff, we used BWMPath, iterating over a range of subclade counts 
and number of species required per subclade, to search for groups meeting each set of 
parameters.  For subclade count c, the c most populous subclades in the clade were used.  For 
each clade count, the number of required species s was increased until no groups were found.  
For a given parameter set of subclade count c and required number of species s, BWMPath reads 
the entire OMA group set and selects groups that: 
 

• Contain the specified c subclades; 
• Contain at least s species from each subclade; and 
• Contain a Homo sapiens protein since that is our final reference species. 

 
Once an appropriate compromise among subclade count, number of required species per 
subclade, and number of applicable groups was selected, the specific species (and therefore 
proteins) applied had to be selected.  Since the required species parameter is a minimum, many 
groups and subclades within groups have more than the required species available and we needed 
to select which species to use in this case, constrained by having an equal number of species for 
each subclade.  To make these species choices, we chose to maximize diversity within the 
subclade.   
 

 
Figure 10:  Species tree 

 Any given species has a location in the overall taxonomic tree.  Figure 10 shows such a 
tree with species s1a1 to s3 at the leaf nodes and subclades sc1 to sc6 at intermediate nodes.  We 
used Dendroscope to view our trees; it is described in Section 10.1.8.  One approach to 
maximizing diversity is to choose the set of species that have the greatest distance sum.  Distance 
between two species could be measured by determining the nearest, common subclade of two 
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species and summing the number of edges from each species to the common subclade.  In our 
example, s1a1 and s2a1 would have a distance of six; s1a1 and s3 would have a distance of five.  
This distance measure indicates that s1a1 is closer to s3 than it is to s2a1.  However, the subclade 
divisions, such as sc3 and sc5, are somewhat arbitrary in number and location; thus distances 
measured in this way tend to give arbitrary results – s1a1 is actually more closely related to s2a1 
than it is to s3. 

We note that s1a1 and s2a1 have a nearest common subclade, sc2, which is closer than 
s1a1 and s3’s nearest common subclade, sc1.  We thus defined a closeness measure between two 
species that counts the number of subclades the species have in common.  Species s1a1 and s2a1 
have two subclades in common, sc1 and sc2; s1a1 and s3 have one subclade in common, sc1.  
Thus s1a1 and s2a1 are closer than s1a1 and s3.  To maximize diversity in our final species 
selection, we chose species that have the minimum closeness sum. 

We note that we could create a phylogenetic tree of all of the species in a group and base 
our diversity selections on that tree. However, such a tree would necessarily be based on only a 
single sequence for each species, the ortholog for that group.  We chose instead to use the overall 
taxonomic tree that is much more broadly based. 

To assemble a diverse set of species for a given subclade, we first included in the set any 
required species.  Our only required species is Homo sapiens, which of course is present in at 
most one subclade.  We then added species in order of decreasing diversity, which is equivalent 
to increasing closeness.  Initially when the set is empty, we added the species that is least close to 
all of the other species.  If there were already species contained in the set, we added the species 
that was least close to the species already contained in the set.  The genes in Table 4 are listed in 
order of decreasing diversity within their respective subclades. 

A given group in a given reference species must have had at least the minimum required 
species in each subclade to be included in that reference species’ group selection.  However, the 
group may have more than the minimum in each subclade.  In this case, the maximum number of 
proteins in the group was used within the constraint that the same number must be used in each 
subclade. 

At this point, we searched for common groups identified among our reference species 
(we did not include Homo sapiens here since it is the final reference species and has no ortholog 
groups but only ortholog genes).  We found that there were none.  This result was due to the 
differing group inclusion criteria used for each reference species.  Yet, we knew that LUCA must 
have orthologs with each of the later reference species and we desired to model the evolution 
between such orthologs.  To reconstruct the orthologs for each reference species, we used the 
genes from its predecessor reference species in a process we call lifting. 
 



 
38 

group 558     
  Eukaryota   
    HUMAN26738 
    NEMVE25830 
    CAEJA06662 
  Bacteria   
    ERWCT01784 
    SHESR01720 
    SHESW01757 
  Archaea   
    METMA01264 
    SULTO02195 
    PYRHO01249 

Table 5:  Group selected proteins 
 Table 5 lists the proteins used for LUCA group 558.  Three proteins are used for each 
subclade.  We can see that group 558 has orthologs in the LUCAEukaryota reference species, 
namely HUMAN26738, NEMVE25830, and CAEJA06662.  To include group 558 in the more 
recent reference species LUCAEukaryota, we lifted it to the more recent reference species by 
reconstructing it for LUCAEukaryota using only the three Eukaryota proteins rather than all nine 
proteins used in reconstructing it for LUCA.  In this way, only sequences from species within the 
subclade were used for reconstructing the reference species sequences. 

Our sequence determination method, described below, required a minimum number of 
sequences to produce valid results; this minimum is four sequences in total; this count includes 
species from all relevant subclades.  In cases where there were not enough species in the lifted 
group’s subclade to meet the minimum number of sequences requirement, we added enough, 
maximally diverse species from the subclade to meet the minimum.  In the case of lifting group 
558 to LUCAEukaryota, we needed to add one more species to make the minimum requirement.  
We added CIOSA02016, shown in Table 4.  In a case where there were not enough species 
available to meet the minimum requirement for valid results, we omitted the group. 

For each reference species, we lifted all of its specific groups to all later reference 
species.  In each case, we reconstructed the sequence for the group using only the species 
contained in the reference species subclade; when more than the minimum number of species 
was available, choices were made to maximize diversity.   

With our subclades, species, and proteins selected, we used sequence data from the OMA 
project to make sequence files, one for each group.  Each group sequence file for each reference 
species contained the sequences for all of the selected proteins for that group in that reference 
species.  These files served as input to the second phase of this process. 

5.2.2 Sequence determination 
The second phase of the ancestral genome reconstruction process is sequence determination, 
which attempts to recreate the nucleotide sequences of our chosen reference species.  Once 
again, we took a conservative approach by including only those entries for which the vast 
majority, 90%, of the DNA sequence is specifically known – this constraint excluded a few 
entries that contained too large a fraction of unknown sites, signified by X’s in the sequence data. 
 After considerable experimentation with a number of existing computational biology 
tools for sequence alignment, phylogenetic tree creation, and ancestral genome reconstruction, 
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we settled on a “pipeline” of tools, mediated and augmented by BWMPath, for our sequence 
determination.  The tools selected for the pipeline were those that technical reviews and our own 
experience indicated were most accurate in the context in which they were applied.  As is typical 
with pipelines, in our pipeline each stage takes input from the previous stage and produces output 
for the next stage.  
 

 
Figure 11:  Sequence determination pipeline 

 Figure 11 depicts the pipeline we used for sequence determination.  The sequences for 
each ortholog group determined in phase one for each reference species were the input to the 
initial stage of the pipeline; the reconstructed reference species sequence for that ortholog was 
output from the final stage of the pipeline.  Each group in each reference species was passed 
through the pipeline. 

The first stage of our pipeline was Simultaneous Alignment and Tree estimation (SATe); 
it is described in Section 10.1.5.  SATe is the highest performing tool we found to both align 
multiple sequences and create the phylogenetic tree relating the sequences.  Its input was the set 
of sequences for an ortholog group from one of the reference species produced by BWMPath.  It 
output both an alignment of the sequences and the phylogenetic tree.  We used the phylogenetic 
tree in the next stage of our pipeline.  The alignment produced by SATe was not ideal for our 
purposes and was discarded. 

 

 
Figure 12:  LUCA group 558 phylogenetic tree 

 Figure 12 shows the LUCA group 558 phylogenetic tree produced by SATe.  This group 
contains three species (proteins) from each of three subclades.  As expected, the three proteins 
from a subclade are all on the same branch of the tree.  For example, the Eukaryotes Homo 
sapiens (HUMAN26738), Starlet sea anemone (NEMVE25830), and Japanese round worm 
(CAEJA06662) are all on the same branch. 

The next stage in our pipeline was PRANK; it is described in Section 10.1.7.  PRANK 
took as input the set of sequences from an ortholog group and the phylogenetic tree produced by 
SATe.  PRANK produced a sequence alignment and an ancestral genome sequence for each 
nonleaf node in the tree.  In the latter, PRANK excels at correctly inferring indels. 
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Figure 13:  PRANK group 558 sequence alignment 

 In Figure 13, we show a portion of the PRANK alignment for LUCA group 558.  Vertical 
bars indicate sites where there is 66% or higher agreement on which nucleotide is present. 

We used both the sequence alignment and the ancestral sequence at the root of the 
phylogenetic tree (which is the sequence for our reference species) produced by PRANK. 

The next stage in our pipeline was Phylogenetic Analysis by Maximum Likelihood 
(PAML); it is described in Section 10.1.6.  PAML took as input the SATe tree and the PRANK 
alignment.  PAML produced as output a sequence alignment and ancestral genome sequences.  
With the latter, PAML excels at correctly inferring which nucleotide is present at a given site.  
We used the root sequence of the ancestral sequences from PAML for input to the next stage. 

The final stage in our pipeline was performed by BWMPath; it is described in Section 
10.1.1.  The PRANK root ancestral sequence had the most accurate indels but the PAML root 
ancestral sequence had the most accurate nucleotides.  BWMPath created a combined root 
ancestral sequence by, for each potential site, including the nucleotide from the PAML sequence 
if the PRANK sequence indicated that the site is present. 
 
PRANK attggatgggtatccatgc---------------------------------tg 
PAML  atggaatacaaacccatgcggtcctttttatttatctgcttggaaattgctgct 
Combo atggaatacaaacccatgcct 

Figure 14:  Combining PRANK and PAML ancestral sequences 
 In Figure 14, we show a portion of the ancestral sequence for LUCA group 558 produced 
by  PRANK and a portion produced by PAML as well as the sequence that resulted from 
combining the PRANK and PAML results.  At the sites where the PRANK sequence had a 
nucleotide, indicating that the site was present in the ancestral sequence, the corresponding site 
in the PAML sequence, shown in bold, was included in the combination ancestral sequence.  At 

SHESW01757 c------tt---atcgattcacattgtcatcttga 
                  |    || ||||| || || ||||| || 
SHESR01720 c------tt---atcgattcacattgccatctcga 
                  |    || ||||| || || ||||| || 
ERWCT01784 t------ta---gtggattcccactgtcatcttga 
                  |    || ||||| || || ||||| || 
HUMAN26738 t------tg---gtggactgtcactgccacctctc 
                  |    || ||||| || || ||||| || 
NEMVE25830 ----------------------------------- 
                  |    || ||||| || || ||||| || 
CAEJA06662 a------tg---attgacgtccattgccatctggc 
                  |    || ||||| || || ||||| || 
PYRHO01249 ------atg---atagatgcgcatgcacatcttga 
                  |    || ||||| || || ||||| || 
SULTO02195 ------atgctagtagatgcgcacgctcatataga 
                  |    || ||||| || || ||||| || 
METMA01264 tatccaatc---attgattctcactgtcaccttga 
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the sites where the PRANK sequence showed a “-“, indicating the site was absent in the ancestral 
sequence, no nucleotide was included in the combination ancestral sequence. 

5.2.3 Parallel processing 
In total there were over 400 ortholog groups among the reference species, each of which needed 
to be run through the sequence determination pipeline at least once.  Most groups were run 
through the pipeline multiple times as the ortholog group selection and sequence determination 
methods were refined, and all groups were run through the final version of the pipeline.  Initial 
pipeline runs on a contemporary model Apple Macbook Pro laptop demonstrated that running a 
single group through the pipeline just once could take as much as 8 hours.  Fortunately, our 
ancestral genome reconstruction process is what computer scientists describe as an 
embarrassingly parallel problem, because each group may be processed independently of all of 
the others.  Thus, it is especially amenable to the application of parallel processing, where 
multiple processors operate on different parts of the overall problem simultaneously.  In the case 
of the sequence determination process, a problem part is simply running a single group through 
the pipeline. 

In a desire to complete this research prior to the conclusion of the current geologic epoch, 
we designed and programmed a suitable parallel, distributed processing framework.  We had 
significant restrictions due to our variety of compute resources.  Many of these were borrowed 
and behind network firewalls with various policies restricting network connections.  In 
particular, we could use only HTTP (Internet port 80) communication in many cases.  Using this 
port only, we needed a distributed file system and coordination communication.  We found no 
existing parallel framework that could meet our needs and function in such a restricted 
environment. 

We created our own framework and called it Dropbox Distributed Processing (DDP); it is 
described in Section 10.1.2.  DDP was used to process problem parts in parallel; in the case of 
sequence determination, DDP accomplished this parallel processing by running multiple 
instances of the pipeline simultaneously with each pipeline instance applied to a single group at a 
time.  DDP provided coordination services (for example, telling the processors which reference 
species to process), and mutual exclusion assurance, allowing at most a single processor to apply 
the pipeline to any given ortholog group and excluding all other processors from doing so. 

This effort was entirely successful.  DDP provided linear speedup of the ancestral 
genome reconstruction pipeline.  At the peak of available processing resources, we had a total of 
55 processors (actually cores, each used independently) simultaneously running our code in the 
DDP framework at three disparate locations.   

Although we recognized DDP as a necessity and then created it during the reference 
species genomes phase of this research, we also used it for all subsequent compute-intensive 
tasks.  We would not be writing this thesis today (it would be at a much later date) if not for the 
productivity increase provided by DDP. 

5.3 LUCA genome 
Considerable effort has been expended on characterizing LUCA’s putative genome [17 42-44 
97-100].  We noted in Section 4.2 that LUCA may have had either a DNA or an RNA genome 
and that we used the former assumption in our model, though adopting the latter assumption 
would have had little effect. Forterre and Poole [17 99] conclude that LUCA’s genome was 
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complex and contained elements otherwise unique to Eukaryota.  This conclusion implies that 
Archaea and Bacteria evolved their genetically simpler state through extensive gene loss. 

Glansdorff et al [43] conclude that LUCA’s genome was redundant.  Phylogenetic 
inferences on its metabolism produce a sophisticated result that can be taken as an indication of 
generalized genetic redundancy.  Further, it is likely that most LUCA cells possessed more than 
a single copy of essential genes as there would be positive selection for this characteristic given 
the primitive, error-prone reproduction mechanism in LUCA. 

Using a minimum gene set approach, Koonin [98] noted that only about 60 proteins, 
mostly involved in the translation of RNA to proteins (ribosomal proteins for example), are 
universal in all species.  His estimate is that LUCA had 500-600 genes.  Inferring ancestral gene 
content using a large number of extant genome sequences and their phylogenetic tree, Ouzounis 
et al [100] estimates just over 1000 genes in LUCA.   

In our research, we did not attempt to define a comprehensive genome for LUCA nor 
determine its gene count.  Rather, we sought to identify those genes that LUCA had in common 
with all three domains of life and those it had in common with the subclades that represent each 
of our reference species.  These latter genes are lifted to the later reference species as described 
in Section 5.2.1. 

Table 6 contains the LUCA subclades, which was generated by BWMPath. The number 
following a subclade name indicates the total number of species contained in the clade.  For the 
sake of brevity, subclades containing only a single species are not listed; the species totals in the 
table are correct, but will not sum correctly due to the omission of the single species subclades. 
Subclades within a subclade are shown indented and below the containing subclade; they are 
listed in order of descending number of contained species. 
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Table 6:  LUCA clade 

 Table 7, also generated by BWMPath, presents information on the groups in the LUCA 
clade.  The first column lists the number of subclades being considered.  For the LUCA clade, 
this number is a constant three, as we wanted to include all of the subclades.  The second column 
lists the minimum number of species that we require to represent each subclade.  The third 
column lists the number of ortholog groups found in the OMA data given the number of 
subclades and the minimum required number of species representing each of the subclades.  For 
example, in the first row with three subclades, we required only a single species to represent each 
subclade and we found 101 groups.  In the second row, we required a minimum of two species 
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instead of one to represent each subclade and the number of groups found was reduced from 101 
to 62. 
 

# subclades # species # groups product 
3 1 101 303 
3 2 62 372 
3 3 35 315 
3 4 26 312 
3 5 20 300 
3 6 16 288 
3 7 12 252 
3 8 9 216 
3 9 7 189 
3 10 7 210 
3 11 5 165 
3 12 3 108 
3 13 2 78 
3 14 2 84 
3 15 2 90 
3 16 2 96 
3 17 1 51 
3 18 0 0 

 
Table 7:  LUCA ortholog groups 

 One approach to selecting which row in the table to choose for our LUCA genome is to 
maximize the product of subclades, species, and groups; this product is shown in column four.  
Such a criterion tends to maximize diversity while providing a relatively large number of groups.  
Based solely on this criterion, we would have selected the second row as it has a maximal 
product of 372.  However, we augmented this criterion by also requiring that no individual factor 
in the product be too small.  Row 2 has only two species / subclade and later rows have a greater 
number of species; however, as we increase the number of required species, the number of 
groups found decreases.  Row 3, in bold, offers a good compromise for the LUCA genome, 
requiring at least three species per subclade while still offering 35 groups in total.  For the LUCA 
genome, we used the parameters in row 3:  all three of the LUCA subclades with at least three 
species representing each subclade. 

The sequence for each of these LUCA genes that is a homolog of a group was 
reconstructed from the gene sequences in the group.  For example, Table 5 lists the nine gene 
sequences used to reconstruct LUCA’s homolog to the ortholog group 558 genes.  In each case 
for LUCA, the same number of genes from each subclade, three or more, was used in the 
reconstruction.  We effected the reconstruction itself by using the selected group sequences as 
input to our genome determination pipeline.  For group 558, the sequences for the nine genes 
listed in Table 5 were the pipeline input.  The output of the pipeline was the sequence of the 
LUCA homolog to the ortholog group.  After removing some problematic ones, our LUCA 
genome has a total of 33 genes, one for each ortholog group. 
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5.4 LUCAEukaryota genome 
In comparison to the quantity that has been applied to LUCA’s genome, research on 
LUCAEukaryota’s (and later reference species) genome is scant.  Dacks and Doolittle [101] note 
that it would be possible to reconstruct the evolution of LUCAEukaryota if some existing 
Eukaryotes retained features of LUCAEukaryota and if we could identify which Eukaryotes 
these were, but that it is not clear the either situation is true.  They conclude that the best 
approach is to apply information from many Eukaryote genome sequences to the problem, but do 
not further pursue this research.  Arisue et al [102] used an ML analysis of 22 genes to determine 
the root of the LUCAEukaryota phylogenetic tree but did not reconstruct the genome. 

As with the LUCA genome, we sought not to reconstruct a comprehensive 
LUCAEukaryota genome, but to determine its orthologs to genes in a subset of its subclades in a 
conservative, balanced manner.  Table 8 lists the Eukaryota subclades and species counts.  
Again, subclades containing only a single species are not listed. 
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Table 8:  Eukaryota clade 
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 With LUCAEukaryota and its successor reference species, there is a tradeoff between the 
number of subclades included and the minimum number of species required to represent each 
clade.  Table 9 contains the results of exploring this tradeoff using BWMPath.  The number of 
groups obtained goes down with the product of number of subclades and minimum required 
number of species.  For example, two subclades and four species yield 426 groups.  Increasing 
the subclade number to three reduces the number of groups to 289; similarly, increasing the 
number of required species from four to five with two subclades reduces the number of groups to 
71. 
 

# subclades #species # groups product 
2 1 1445 2890 
2 2 1121 4484 
2 3 818 4908 
2 4 426 3408 
2 5 71 710 
2 6 0 0 
3 1 976 2928 
3 2 740 4440 
3 3 549 4941 
3 4 289 3468 
3 5 45 675 
3 6 0 0 
4 1 251 1004 
4 2 0 0 
5 1 0 0 

 
Table 9:  LUCAEukaryota ortholog groups 

 Since no ortholog groups are found when the subclade count is five (or greater) and 
Eukaryota has significantly more than five subclades, it is clear from these results that it is not 
possible to include all of the Eukaryota subclades.  Using the augmented criterion that was 
applied to the LUCA clade, we chose three subclades with at least five species representing each 
subclade, shown in bold in Table 9.  Removing some problematic groups results in 43 groups for 
LUCAEukaryota, a tractable number and similar to the number of LUCA groups.  In addition, 
we lifted the 33 groups in LUCA’s genome to LUCAEukaryota.  This combination resulted in a 
total of 76 genes in LUCAEukaryota’s genome. 

5.5 LUCAMetazoa genome 
As with the LUCAEukaryota genome, research on the LUCAMetazoa genome is scant.  In early 
work, Lake [103] concluded that Metazoa is a monophyletic (sharing a unique, common 
ancestor) taxon by examining ribosomal RNA sequences.  Larroux et al [104] concluded that 
LUCAMetazoa had a cluster of specific genes involved in the development of overall body shape 
but did not research beyond this cluster. 

Table 10 lists the Metazoa subclades and species counts.  Again, subclades containing only 
a single species are not listed.   
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Table 10:  Metazoa clade 
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 As with LUCAEukaryota, we used BWMPath to determine the number of groups that 
match a range of subclade count and minimum required species parameters.  Table 11 contains 
the results. 
 

# subclades # species # groups product 
2 1 3807 7614 
2 2 2740 10960 
2 3 2137 12822 
2 4 1575 12600 
2 5 921 9210 
2 6 256 3072 
2 7 0 0 
3 1 2399 7197 
3 2 0 0 
4 1 1648 6592 
4 2 0 0 
5 1 0 0 

 
Table 11:  LUCAMetazoa ortholog groups 

 Using our augmented selection criterion, we chose two subclades with at least six species 
representing each clade, resulting in 256 groups for LUCAMetazoa, a number significantly 
larger than that for the earlier clades.  In order to have comparable numbers of groups for each 
reference species, from the 256 groups we algorithmically selected the 43 groups with the most 
proteins.  This number is similar to the number of groups in LUCAEukaryota.  Choosing the 
groups that are the most populous gave us the widest possible sets of proteins from which to 
draw.  Our LUCAMetazoa genome then has 43 genes plus 76 genes lifted from earlier reference 
species for a total of 119 genes. 

5.6 LUCAMammalia genome 
As with our earlier, intermediate reference species, little published research has been performed 
on the LUCAMammalia genome sequence.  Bourque et al [105] analyzed the gross genomic 
architecture in terms of rearrangements of LUCAMammalia sequences over time.  Goodman et 
al [106] analyzed the history of the mammalian beta-globin gene family and Graves and Watson 
[107] researched the evolution of mammalian sex chromosomes, which are highly conserved. 

Table 12 lists the Metazoa subclades and species counts.  Again, subclades containing 
only a single species are not listed. 
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Table 12:  Mammalia clade 

 Again we used BWMPath to determine the number of groups found based on subclade 
and species parameters.  Table 13 contains these results. 
 

# subclades # species # groups product 
1 1 20625 20625 
1 2 20138 40276 
1 3 19035 57105 
1 4 18137 72548 
1 5 17489 87445 
1 6 17015 102090 
1 7 16587 116109 
1 8 16192 129536 
1 9 15782 142038 
1 10 15361 153610 
2 1 13747 27494 
2 2 7382 29528 
2 3 0 0 
3 1 6474 19422 
3 2 0 0 

 
Table 13:  LUCAMammalia ortholog groups 

 Using our augmented selection criterion, we chose a total of two subclades with at least 
two species representing each clade, resulting in 7382 groups for LUCAMammalia, the largest 
number of groups yet.  Once again we reduced the number of groups in order to have comparable 
numbers of groups for each subclade.  As with LUCAMetazoa, for LUCAMammalia we selected 
the 44 most populous groups out of the 7382 groups in total.  Together with 119 genes lifted 
from earlier reference species, our LUCAMammalia genome has 163 genes. 

5.7 Homo sapiens genome 
As an existing species, there was no need to reconstruct the Homo sapiens genome but merely to 
sequence it.  We did need to identify a subset of the genome to model.  We included in our HS 
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genome all of the orthologs lifted from all of the earlier reference species.  In addition, we 
needed to include a set of genes that are unique to HS and not present in the earlier reference 
species, just as we did for the other reference species. 

To determine which genes are unique to HS, we used the OMA data to search for human 
genes that have no orthologs.  These are genes that not only do not belong to any groups, but also 
have no pairwise orthologs.  We found that there are a total of 875 such HS genes.  To reduce 
this total, we omitted those for which no function is known and found that 68 genes remained.  
We also omitted those whose function is similar to that of another gene in this set.  There 
remained 39 genes with known, unique function.   

We might expect these genes to provide functions unique to our species, a function 
related to neocortex development for example.  However, that is not typically the case.  Some 
exemplary functions for these genes are: 
 

• structural constituent of ribosome 
• nucleic acid binding 
• DNA binding 
• ATP binding 
• RNA binding 

 
These broad functions are common throughout the clades.  Since we observe that a significant 
majority of the HS unique genes has an unknown function, we conclude that among them are a 
number whose function we associate with uniquely HS characteristics. 
 Our selected 39 genes appear to be unique to Homo sapiens.  Together with 163 lifted 
genes from earlier reference species, we have a total of 202 genes in our Homo sapiens genome. 
 For our population model, we required additional information about the HS genome.  We 
needed its effective length and again used 1.3*108 bases result from Chapter 2. 
 We also required the fraction of HS genes that are homologous to LUCAMammalia.  The 
approach we took was to use Mus musculus (house mouse) as a proxy for LUCAMammalia.  
The mouse genome analysis [108] presents several relevant results:  over 90% of the mouse and 
human genomes have corresponding regions of synteny (genes occurring on the same 
chromosome), approximately 80% have a single ortholog in the HS genome, and less than 1% 
have no homolog in the HS genome.  It seems likely that the actual value is between 80% and 
99% homologs between LUCAMammalia and HS; we used the approximate mean of 90%, 
which is also consistent with the synteny result. 

5.8 Summary 
In our reference species genome reconstruction effort, we determined the appropriate ortholog 
groups for each reference species.  The choice of which groups to use was a typically 
compromise among number of groups available, number of subclades (diversity), and minimum 
number of species per subclade (sequence information).  Changes in the way we made this 
compromise would affect our reference species’ genome content and the results of our overall 
model. 
 We did not further explore the multidimensional genome space as we felt our 
compromise yielded the optimal genome results given available sequence data.  However, 
differences in the genome sequences would ultimately have only a linear effect on our results; 
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see Chapter 8 for this analysis.  Other model parameters have results that are far more 
significant. 
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6 Mutations 

The nucleotides in a strand of DNA are typically replicated without error during the process of 
cell division (reproduction).  In some instances, an error will occur; such errors in the DNA 
copying process are mutations.  Mutations can arise from other processes as well, such as 
horizontal gene transfer [109].  When a mutation occurs in any cell in an asexually reproducing 
species or any cell line leading to a gamete (including gametes themselves) in a sexually 
reproducing species, it is passed on to the next generation and so may be a source of variation 
upon which natural selection can act.  This process is a central tenet of evolutionary theory:  
mutations are the source of individual variation upon which natural selection acts. 

The salient characteristic of biological mutation is that it is a relatively rare occurrence.  
The assessment in [20] measured the empirical rate for substitutions (one nucleotide changing to 
another) to be 9.1*10-9 mutations per base pair per generation.  Thus, observing mutations 
typically requires substantial time spans. 
 Alberts et al [110], Futuyma [19], and Gascuel [34] in aggregate provide good coverage 
of mutation types.  Mutation rates tend to be measured in a relatively piecemeal fashion, 
probably owing to the typically lengthy time period required for such experimental results; 
Denver et al [20], Drake et al [25], Rosenberg and Hastings [26], Zang and Yoder [28], and 
Barrick et al [74] are exemplary.  In the case of Barrick et al, multiple generations of E. coli, a 
rapidly reproducing bacteria species, were sampled over a period of 20 years. 

In our model we assumed spontaneous mutation rates are relatively independent of 
location and so spontaneous rates are essentially identical in highly conserved regions and in 
rapidly evolving regions.  The primary reason that observed rates vary as a function of location is 
because mutations in highly conserved regions prevent viability or reproduction and therefore do 
not fix and do not appear in the general population, as they are culled in no more than a single 
generation.  Hence, conserved regions appear to have a low mutation rate only because 
individuals with mutations in such regions do not proliferate in the population. 
 There has been considerable effort devoted to the neutral theory of evolution, primarily 
by Kimura [111], which states that the rate of evolution in terms of nucleotide substitutions is 
sufficiently high that most mutations must be nearly neutral with respect to natural selection.  If 
that were not the case and approximately half of all mutations induced phenotypes for which 
there is significant negative selection pressure, many fewer individuals would proliferate and 
extinction would be a much more common event.  There is significant evidence in favor of the 
neutral theory [112] as well as against it [113].  In our model, we made little in the way of 
assumptions with respect to the neutral theory.  We assumed only that transitional mutations, 
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those that transition an MRA to its successor MRA, are not sufficiently deleterious to preclude 
the successor MRA from proliferating to the point where its successor is produced. 
 We organized mutation types into four categories as shown in Table 14. 
 
Mutation Type Genome size Sexual 
 change species 
Intragenic mutation     
Single nucleotide substitution     
   change of one base to another     
Nucleotide insertion x   
   insertion of new base(s)     
Nucleotide deletion x   
   deletion of existing base(s)     
Chromosome segment inversion     
   loop in chromosome formed, then reversed (and complemented)     
Microsatellites     
   repeat count variation in small, repeated sequences x   
DNA segment rearrangement     
Crossover   x 
   normal meiotic crossover     
Unequal crossover x x 
   crossover between imperfectly aligned chromosomes     
Chromosome fission     
   chromosome breaks into two     
Chromosome fusion     
   two chromosomes fuse into one     
Chromothripsis     
   rare, massive DNA rearrangements     
Transposable elements     
   moving sequences, carrying transposase gene, sometimes nearby 
genes     
Gene gain and loss     
Chromosome gain and loss x   
   gain or loss of an entire chromosome     
Polyploidy x x 
   change in the number of whole sets of chromosomes     
Horizontal transfer     
Horizontal gene transfer x   
   bacteria through plasmids; other species through retroviruses     

Table 14:  Mutations 

6.1 Empirical Mutations 
As described above, significantly deleterious mutations tend not to be observed.  That is, 
mutations that result in early cell fatality will not be observed by typical methods.  Thus, the 
rates described here represent lower bounds.  Early fatality mutations have the effect of lowering 
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the observed growth rate of a species and so are treated in our population evolution model as an 
effect on growth rates. 

6.1.1 Transitions and Tranversions 
As described earlier, for the simplest mutation type a single, different nucleotide is substituted, 
typically during mitosis, for the original nucleotide.  Two types of substitutions are identified, 
transitions and transversions [19].  Transitions are the substitution of one purine for another (a to 
or from g) or one pyrimidine for another (c to or from t); all of the other substitutions are 
transversions. 
 If the substitution process were unbiased, we would expect transitions to happen half as 
often as transversions, since of the three substitutions that can occur to a given nucleotide, one is 
a transition and two are transversions.  A bias has often been noted in mutation rates, with 
transitions happening more frequently than expected in the purely unbiased case [28 114].  
However, this bias is not universal but rather is species specific. Keller et al [115] investigated 
four genome sequences of Podisma pedestris, a grasshopper species with a very large genome, 
and found no significant differences between transition and transversion rates. 
 In the cases where there is such a bias, the Kimura two-parameter matrix model [116] 
may be applied.  In this model, transitions occur at rate α per site and transversion occur at a rate 
of β per site.  The transition rate bias for this model is α/(2β).  With this model, Kimura derived 
the probability of observing a transition P(t) or transversion Q(t) at a site in two sequences 
separated by time t: 
 
 P(t) = ¼ + ¼ e-8βt – ½ e-4(α+β)t 
and 
 Q(t) = ½ - ½ e-8βt . 
 
From these equations, it is clear that 
 
 

€ 

lim
t→∞

P(t) =1/4  
 
and similarly, 
 
 

€ 

lim
t→∞

Q(t) =1/2 . 
 
Hence for large t, the transition bias, P(t)/Q(t), approaches the value in the unbiased case, ¼ / ½ 
= ½.  Since our model involves a wide variety of species for which transition bias is not likely to 
be universal and since our reference species are comparatively widely separated in time, we 
assume the transition bias for our model to be ½, indicative of an unbiased transition model. 

6.1.2 Overall mutation rate 
Drake et al [25] surveyed mutation rates of all biological domains and viruses.  They found rates 
as high as 1/genome per generation in viruses.  They defined effective genome size as the portion 
of a genome where mutations are likely to be deleterious.  For microbes, the effective genome 
size is approximately equivalent to the total genome size; for Eukaryotes the effective genome 
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size is much less than the total size.  They found a somewhat unexpected constant value:  for all 
biological domains, a mutation rate of 1/300 per cell division per effective genome was found. 
 Of course, the mutation rate per site per generation varies widely as both the number of 
cell divisions per generation and the genome size vary substantially:  the number of cell divisions 
per generation varies from 1 for bacteria to as many as 600 in Homo sapiens males [117] and 
genome size varies over 7 orders of magnitude, from approximately 105 to 1012 bases [118].  
Effective genome size likely varies over a comparable magnitude. 
 There is evidence for elevated mutation rates in response to environmental factors [26].  
Since we are modeling evolution over long time periods under conditions we cannot accurately 
replicate, we do not further consider these environmentally induced rate variations. 

6.1.3 Substitutions 
Substitutions, where a single base changes to a different one, are the cause of Single Nucleotide 
Polymorphisms (SNPs).  Kimura [116] described a mathematical model for substitutions but did 
not provide empirical data of the sort we require. 
 Barrick et al [74] determined E. coli substitution rates over a significant period of time – 
40,000 generations over nearly 20 years.  The E. coli were grown with glucose as a limiting 
nutrient.  Samples were sequenced at generations 2,000, 5,000, 10,000, 15,000, 20,000, and 
40,000. Substitutions and other mutations were observed.  A mutator mutation occurred 
sometime after generation 20,000 that caused a significant increase in the substitution rate.  We 
calculated total rates that include the increased, mutator rates.  They observed a substitution rate 
of 6.84*10-9 per generation per site. 
 Denver et al [20] observed C. elegans mutating in a benign environment to ensure all but 
the most deleterious mutations accumulated over time.  This assessment appears correct as they 
noted a decline in fitness over time.  Their observations covered 396 generations.  They observed 
substitutions and indels.  They observed a substitution rate of 9.1*10-9 per generation per site. 
 Eyre-Walker and Keightley [119] determined mutation rates in hominids by assuming 
that the synonymous mutation rate in coding regions is equivalent to the mutation rate.  They 
noted substitution differences between human and chimpanzee genomes, and human and gorilla 
genomes.  We converted their mutations/year measures into mutations/generation measures 
using their generation times.  They observed substitution rates (per generation per site) of 
3.33x10-8 for Homo sapiens, 2.44x10-8 for Pan troglodytes, and 2.46*10-8 for Gorilla gorilla. 
 Nachman and Crowell [120] investigated the rate of mutation in Homo sapiens by 
comparing pseudogenes in Homo sapiens and Pan troglodytes.  They estimated the substitution 
rate to be 2.5*10-8.  Roach et al [121] also observed the Homo sapiens substitution rate by 
comparing the sequences of a small family.  They estimated the rate to be 1.1*10-8. 
 Hudson et al [122] noted that bacterial substitution rates may vary with respect to 
adjacent nucleotides and chromosome location.  In our model, we used mean mutation rates 
independent of both adjacent nucleotide and chromosome location as both types of information 
are difficult to discern reliably in long-term evolution models. 
 Lynch et al [123] did a long-term mutation-accumulation experiment with 
Saccharomyces cerevisiae.  They observed a substitution rate of 3.3*10-10 per site per generation. 
 Haag-Liautard et al [124] did a long-term mutation-accumulation experiment with 
Drosophila melanogaster.  They observed a substitution rate of 5.68*10-9 per site per generation. 



 
57 

 Note that these rates vary significantly.  In our model, we applied this mutation data to 
the appropriate species, recognizing that rates do vary among species and using means where 
multiple rates were available. 

6.1.4 Insertions and Deletions (Indels) 
Barrick et al [74] also observed indels.  They observed a total insertion rate of 2.27*10-10 per 
generation per site and a rate of 4.32*10-11 for insertions of length 1.  They also found a total 
deletion rate of 1.40*10-10 and a rate of 5.40*10-11 for deletions of length 1. 
 Denver et al [20] also observed indels as well as substitutions with indels being a 
majority of the mutations.  They observed a total insertion rate of 9.1*10-9  and a total deletion 
rate of 2.8*10-9 per generation per site. 
 Jeffreys et al [125] found high mutation rate, tandem-repeat minisatellites (repeated 
sections of DNA consisting of a short series of bases 10–60 bases in length).  Mutation rates as 
high as 5*10-2 per generation were observed.  Evidence of such high mutability is limited to 
Homo sapiens and does not appear to occur in coding regions of the genome.  As a result, we did 
not consider these mutations further. 
 Weber and Wong [126] observed short, tandem repeats (STRs) in Homo sapiens.  They 
found very high rates of mutation in repeat number of the STRS with a mean of 1.2*10-3 per site 
per generation.  The majority of the changes (91%) were the gain or loss of a single repeat unit.  
This result does not appear to be broadly applicable and we did not consider it in our model. 
 Fan et al [127] observed indel patterns in mammalian genomes.  They used multiple 
alignments of 19 mammalian species to determine two things.  First, they tabulated the ratio of 
deletions to insertions and found a mean of 2.09.   Second, they fit the observations to a power 
law fk = coefficient * k-power where fk is the probability of an insertion or deletion with gap length 
k and coefficient and power are derived from fitting the observations to the power law.  They 
found mean values of fk = .52 * k-1.48 for deletion and mean values of fk = .47 * k-1.38 for 
insertion. 
 Graur and Wen-Hsiung [128] found the ratio of nonsynonymous substitution to 
synonymous substitution in mammalian coding sequences to average .74/3.51 where the units are 
substitutions per site per 109 years.  They also found the substitution rate for untranslated regions 
to average 2.03 per site per 109 years.  Since mammalian generation time varies over 
approximately two orders of magnitude, we could not effectively convert this result to a 
substitution rate per generation per site. 
 Haag-Liautard et al [124] observed an insertion rate of 9.8*10-10 per site per generation in 
Drosophila melanogaster.  The observed deletion rate was 1.59*10-9 per site per generation. 
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6.1.5 Inversions 
Inversions reverse the order of a contiguous set of bases in a sequence.  Since DNA is 
directional, inversions also have the effect of complementing the reversed bases; for example, 
inverting the sequence GCAAAC results in the sequence GTTTGC, with the reversed but 
uncomplemented sequence CAAACG, on the opposite DNA strand.  Single inversions can have 
significant implications for genome function, for example they can cause hemophilia [129]. 
 Barrick et al [74] found an inversion in their mutation rate study.  They observed an 
inversion rate of 5.40*10-12 per generation per site. 
 Kelchner and Wendel [130] detected inversions as short as 4 bases in length in 
chloroplast genomes.  Contrastingly, long inversions (>1000 bases) are comparatively widely 
reported [131-133].   
 Feuk et al [134] observed a distribution of lengths in human genome inversions.  In our 
model, we fit this distribution to a power law, analogous to the power law found by Fan et al 
[127] for indels. 

6.1.6 Microsatellites and homopolymeric runs 
Microsatellites [135] are short (typically 2-4 bases in length) contiguous, repeated sequences.  
Homopolymeric runs are a single base version of microsatellites.  Repeat count variation of 
microsatellites is a common mutation.  We treated these simply as insertions or deletions as 
appropriate. 

6.1.7 Normal and unequal crossover 
Sexually reproducing species have a process of genetic recombination that occurs occasionally 
during meiosis.  This crossover process results in new combinations of DNA sequences in each 
chromosome [136]. 
 During normal crossover, DNA lost from a chromosome is exactly matched by the DNA 
it gains from the other chromosome in the pair and vice versa.  Although this process offers an 
opportunity to gain advantageous genes, it offers an equal opportunity to loss them or to gain 
deleterious genes.  From this perspective, normal crossover is neutral in effect and we did not 
consider it further. 
 Unequal crossover occurs when the exchange of DNA material is not symmetric:  one 
chromosome is increased in size while the other in the pair is reduced by the same amount.  We 
modeled unequal crossover as we would any other insertion or deletion as appropriate. 

6.1.8 Chromosome fission and fusion 
Chromosome fission occurs when a single chromosome divides to become two chromosomes.  
Chromosome fusion occurs when two distinct chromosomes fuse to become a single one.  We 
found a specific reference only to fusion.  Ijdo et al [137] found evidence that Homo sapiens 
chromosome 2 was produced by the fusion of two ancestral ape chromosomes.  They concluded 
that head-to-head, telomere-telomere fusion had occurred.  These mutations have little or no 
effect on the genes contained on the fissioned chromosome or the fused chromosomes and we 
did not consider them further. 
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6.1.9 Chromothripsis 
Massive rearrangements, termed chromothripsis, in a one-off event have been observed for 
cancer cells [138].  In these events, tens to hundreds of sequence rearrangements occur.  We did 
not further consider these rare events that likely typically lead to fatality. 

6.1.10 Transposable elements 
Transposable elements (transposons) [136] are mobile genetic elements that have only modest 
target site selectivity; they are typically able to insert themselves at any DNA site.  They move at 
a rate of 1*10-5 in bacteria.  We modeled them as a deletion from the source site and an insertion 
at the target site as appropriate. 

6.1.11 Chromosome gain and loss 
Chromosome gain and loss occurs when an entire chromosome is gained or lost in the genome of 
a cell.  We found specific references only to chromosome gain. 
 Crow [117] examined mutation rates based on prevalence of mutation-induced diseases.  
He found that males have a higher mutation rate than females and that the male rate increases 
with age with an accelerating rate.  He also found that .3% of liveborns are aneuplid (have an 
abnormal number of chromosomes); the most common aneuploidy is trisomy 21, an additional 
copy of chromosome 21 leading to Down’s Syndrome. 
 Hook [139] looked at Homo sapiens chromosome abnormalities as a function of maternal 
age.  In particular, they found trisomy of some chromosomes to vary from approximately .2% at 
maternal age of 15 to 15% at maternal age 49. 
 In our model, we treated chromosome gain as a mechanism for producing additional 
DNA material. 

6.1.12 Polyploidy 
According to Ramsey and Schemske [140], polyploidy, defined as the possession of three or 
more complete sets of chromosomes, is an important feature of genome evolution in many 
eukaryote taxa.  Yeasts, insects, amphibians, reptiles, and fishes are known to contain polyploid 
forms, and recent evidence of extensive gene duplication suggests that the mammalian genome 
has a polyploid origin.  They performed a broad literature review and concluded that the studies 
reviewed provide insights into the process of polyploid formation in natural populations, but 
caution that further research in natural populations is needed to test the findings.   
 Ramsey and Schemske distinguished between autoploidy in which all sets of 
chromosomes come from the same species and alloploidy in which the sets of chromosomes 
come from different species.  They found an autoploidy rate of 1.05*10-4. 
 Wolfe and Shields [141] found evidence for whole genome duplication (tetraploidy) in 
yeast (Saccharomyces cerevisiae). 
 In our model, we treated polyploidy as a mechanism for producing additional DNA 
material. 

6.1.13 Horizontal gene transfer 
Horizontal Gene Transfer (HGT) is any process whereby an organism incorporates genetic 
material from a source other than a parent organism.  HGT includes retroviral infection, bacterial 
transformation where a bacterial cell absorbs external DNA, and other processes. 
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 Dagan and Martin [142] looked at HGT in the Prokaryote domain.  Using current 
distributions of genes across genomes, a reference tree, and a model that assumes the 
distributions are due to gene loss only, they concluded that more than 66% of prokaryotic 
genomes have been affected by HGT. 
 Zhaxybayeva et al [143] evaluated HGT between cyanobacteria and other prokaryotes.  
Out of a large number of datasets, 23% suggested HGT to or from cyanobacteria. 
 Choi and Kim [109] evaluated Horizontal Gene Transfer (HGT) across all of the 
biological domains.  They used a method to identify HGT among all curated protein domain 
families in the Pfam database [144].  More than 50% of Archaea have evidence of Horizontal 
Gene Transfer (HGT); 30-50% of Bacteria did the same, but less than 10% of Eukaryota show 
such evidence.  They suggest that HGT will have very little effect on phylogenetic tree 
construction if large sequence lengths (whole genomes or large numbers of common genes) are 
used. 
 Kunin et al [145] reconstructed the microbial phylogeny network using four distinct 
reconstruction methods.  They found that the bulk of gene transfer occurred vertically (parent to 
offspring) as opposed to horizontally.   They calculated a mean ratio of HGT events to vertical 
transfers of 5.35%. 
 Glansdorff et al [43] suggest that HGT may not have been so common during the time 
after LUCA.  They suggest that loss of paralogs just prior to phylogenetic tree bifurcation may 
explain many events attributable to HGT. 
 Costas [146] states that approximately 8% of the human genome comes from retroviruses 
and that most are from human endogenous retroviruses (HERVs).  He suggests that the retroviral 
sequence may have impact in regulatory regions near coding sequence, but does not suggest that 
this impact is a significant effect. 
 HGT clearly had a significant role in the evolution of Prokaryotes, though it was perhaps 
not as prevalent as some suggest.  However, it seems to have had a very minor role in Eukaryote 
evolution and perhaps even in the evolution of LUCA itself if LUCA was in fact a Eukaryote.  
HGT was therefore not further considered in our sequence evolution model. 

6.2 Model mutations 
There is significant evidence [147] that the substitution rate variation among sites is a gamma 
distribution [148].  However, in our model we use empirically derived averages as these 
represent the available results and more detailed data is unlikely to be obtainable given the 
lengthy time frames that we consider. 
 In our work, we modeled four major evolutionary steps:  LUCAEukaryota from LUCA, 
LUCAMetazoa from LUCAEukaryota, LUCAMammalia from LUCAMetazoa, and HUMAN 
from LUCAMammalia.  For each step, we derived the relevant mutation rates, using rates from 
appropriate species if available, taken from the empirical data described above.  For example, in 
deriving rates to use in LUCAEukaryota from LUCA evolution, we used E. coli rates.  Similarly, 
in deriving rates for HUMAN from LUCAMammalia evolution, we used primate rates. 
 For unchanged nucleotides, we used a probability of 1.0 as the probability of any 
mutation at all is so small.  Although the actual probability is clearly slightly less than 1, this 
approximation is a very good one.  For substitution rates, we used the data in Table 15.  The first 
column indicates the major evolutionary step.  The second column indicates the actual species 
relevant to the evolution step; these species are listed between their encompassing reference 
species.  The third column indicates the empirical probability of the mutation per site per 
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generation.  The last column indicates the mean probability used in our model.  In cases where 
there are no relevant species, the rate for the previous reference species was used.  The rate mean 
is divided exactly by 3, because only 1/3 of substitutions result in the correct base being 
produced. 
 

Reference species evolution Relevant species Rate Rate mean 
   divided by 3 
LUCA    
  E. coli 6.84E-09   
LUCAEukaryota from LUCA     2.28E-09 
  S. cerevisiae 3.30E-10   
LUCAMetazoa from LUCAEukaryota     1.10E-10 
  C. elegans 9.10E-09   
  D. melanogaster 5.68E-09   
LUCAMammalia from LUCAMetazoa     2.46E-09 
  Primates 2.37E-08   
HUMAN from LUCAMammalia     7.89E-09 

Table 15:  Substitution rates 
 We modeled indels of length one or greater.  Three approaches from three different 
sources are most relevant: 
 

1. Fixed probability:  Empirical evidence from Barrick et al [74] and Denver et al [20] 
suggest that length 1 indels are most common and longer indels have a lower probability 
independent of length. 

2. Affine probability:  The study by Liu et al [72] concluded that affine gap costing for 
indels yielded the most accurate results.  Gap costs are given by cost = c0 + c1*k where k 
is the gap (indel) length, c0 is the gap-open cost and c1 is the gap extend cost.  In affine 
costs, c0 > 0.  Affine costs seem to model the cost of breaking and rejoining the DNA 
strand plus the increasing cost of rejoining it at an increasing distance from the original 
break.  

3. Power law probability:  The study by Fan et al [127] concludes that indel probability is 
most accurately modeled by a power law Pk = c0 * k-p where Pk is the probability of an 
indel of length k, c0 is the probability of an indel of length 1, and p is the power applied to 
the length with p > 1 indicating that the probability declines with length. 

 
Using fixed probability in our model caused a unrealistically large number of large indels.  In the 
worst cases, nearly the entire source genome was deleted and the entire target genome inserted.  
Using power law probability in our model, even with the comparatively small powers from Fan 
et al [127], only the very shortest indels were found as longer ones were too improbable to occur.  
It may be that the power law observed by Fan et al is primarily an artifact of the scoring that was 
used in their alignments. 
 For our model indel rates, we used the observed rates for the relevant species combined 
with the affine probability in Liu et al [72].  In particular, we used c0 + c1*k where c0 is the 
relevant species rate for an indel of length 1 and c1 was the ratio of length 1 to length 2 
probabilities.  These were computed separately for insertions and deletions. 
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Reference species evolution 
Relevant 
species Rate Rate mean 

LUCA    
 E. coli 4.32E-11  

LUCAEukaryota from LUCA   4.32E-11 
LUCAMetazoa from LUCAEukaryota   4.32E-11 

 C. elegans 9.10E-09  

 
D. 

melanogaster 9.80E-10  
LUCAMammalia from LUCAMetazoa   5.04E-09 

HUMAN from LUCAMammalia   5.04E-09 
  Ratio  

LUCA    
 E. coli 4.00  

LUCAEukaryota from LUCA   4.00 
LUCAMetazoa from LUCAEukaryota   4.00 

 C. elegans 9.00  
LUCAMammalia from LUCAMetazoa   9.00 

HUMAN from LUCAMammalia   9.00 

Table 16:  Insertion rates 
 Table 16 lists the insertion rates.  It is formatted similarly to Table 15 with the addition of 
the ratio parameters.  We note that insertions have an additional aspect that deletions do not.  
When bases are deleted through a mutation, the correct bases are deleted by definition.  
However, when there is an insertion, it is unlikely that the correct bases (the bases in that 
subsequence of the target) are inserted.  We used a more accurate model where we assumed that 
random bases are inserted and then substitutions take place to correct the random bases.  As a 
given base has a ¾ chance of being incorrect, we added a probability of .75 * k * the relevant 
substitution rate to the overall probability of each insertion, where k is the length of the insertion. 
 Table 17 the deletion rates.  They were determined in a way entirely analogous to the 
insertion rates. 
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Reference species evolution 
Relevant 
species Rate Rate mean 

LUCA    
  E. coli 5.40E-11   
LUCAEukaryota from LUCA     5.40E-11 
LUCAMetazoa from LUCAEukaryota     5.40E-11 
  C. elegans 2.80E-09   

  
D. 
melanogaster 1.59E-09   

LUCAMammalia from LUCAMetazoa     2.20E-09 
HUMAN from LUCAMammalia     2.20E-09 
    Ratio   
LUCA    
  E. coli 5.00   
LUCAEukaryota from LUCA     5.00 
LUCAMetazoa from LUCAEukaryota     5.00 
  C. elegans 2.00   
LUCAMammalia from LUCAMetazoa     2.00 
HUMAN from LUCAMammalia     2.00 
    

Table 17:  Deletion rates 
 We also modeled inversions, which have been noted to be a significant mutation 
mechanism [129-131 133 134].  The available data for the previous mutations may be accurately 
described as less than abundant, but the data for inversions is truly scant.  We used the rate from 
a single E. coli observation for all of our reference species.  From the data in Feuk et al [134], we 
derived a power law for the distribution of inversions as a function of length, much as was done 
by Fan et al [127]. 
 Very short inversions (4 bases) seem to occur only in the presence of unique sequences 
that allow hairpin secondary structures in the DNA strand.  In addition, large inversions (> 1000 
bases) will tend to simply duplicate the gene on the opposite strand running in the opposite 
direction and so have little impact on gene function.  Since we are modeling mutations in coding 
DNA, we must consider relatively commonly occurring mutations with lengths between these 
two extremes.  We somewhat arbitrarily chose 12 (3 * 4, the minimum length observed) and 
model inversions that are this length or longer.  
 As we did with indels, we normalized our inversion distribution so that our minimum 
length inversions have the observed probability and longer inversions have lower probability. 
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Reference species evolution Relevant species Rate Rate mean 
    
LUCA    
  E. coli 2.88E-11   
LUCAEukaryota from LUCA     2.88E-11 
LUCAMetazoa from LUCAEukaryota     2.88E-11 
LUCAMammalia from LUCAMetazoa     2.88E-11 
HUMAN from LUCAMammalia     2.88E-11 
        
Length       
minimum length 12     
maximum length unlimited     
        
Power law parameters       
coefficient 2.1     
power 0.295     

Table 18:  Inversion rates 
 Table 18 lists the inversion rates that we used in our model. 
 We treated the remaining mutation types as described in their respective sections.  In 
particular, many (polyploidy for example) were treated simply as mechanisms that add random 
DNA to the genome.  Their rate is sufficiently high that they do not affect overall evolution 
duration. 

6.3 Summary 
In this chapter, we described our effort to characterize mutation types and rates.  We found that 
there is a wide variety of mutation types and their rates vary with species.  We concluded that 
only a small subset of mutation types have a significant effect on evolution duration and other 
evolution aspects.  We were limited by the available data and described how we treated the 
limited data in each case.  Chapter 8 includes an analysis of how the model results are sensitive 
to these and other parameters.  We have considerable confidence in the accuracy of the results 
described in this chapter and use them as parameters for the population model, we have less 
confidence in some of the other population model parameters; these distinctions and their 
implications are described in Chapter 8. 
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7 Sequence Evolution Model 

7.1 Related work 
Much work over the last several decades has gone into sequence evolution models.  Graur and Li 
[149] give a comprehensive overview of genome evolution, the principles of which are common 
to any evolution model.  Two types of evolution models are relevant to this research.  One type is 
a broad model, which attempts to cover long expanses of evolutionary time but is not specific to 
sequence evolution per se.  Wright [150] did the best-known early work in this area; more recent 
thinking has come from Fisher [151].  These models are composed of biological trait frequency 
distributions, including compound distributions and correlations, and path analysis attempting to 
describe causation. 
 The other type is probabilistic models, of which Beerenwinkel et al [152] and Komarova 
and Wodarz [153] are exemplary.  These models use Bayesian networks of specific mutations.  
Bayesian networks [154] are probabilistic models that represent a set of random variables and 
their dependencies in a directed graph. 
 Coalescent theory [155 156] creates gene phylogenetic trees, starting with a sample 
distribution of the sequences of the leaf nodes.  It can be used, for example, to determine when 
the most recent common ancestor (the root of the tree) of all of the leaves existed.  It is at this 
root node that all of the gene sequences at the leaves have coalesced. Coalescent theory is 
primarily a population evolution model, though it uses specifics of sequences to make its 
predictions. 
 Ma et al [133] offers an infinite sites model of sequence evolution.  This model suggests 
that genomes are sufficient in length that a reasonable approximation of long-term evolution uses 
each site in a genome at most once.  The results of this model were our first indication that 
inversions were a significant mutation mechanism. 
 We described in Chapter 6, Kimura’s [16] neutral theory of evolution that states that the 
rate of evolution in terms of nucleotide substitutions is sufficiently high that most mutations must 
be nearly neutral with respect to natural selection.  Neutral theory is primarily a population 
evolution model that makes little use of sequence specifics.  In our sequence evolution model, 
we made little in the way of assumptions with respect to the neutral theory. 
  Felsenstein and Churchill [157] describe the use of hidden Markov models to allow 
mutation rates to vary as a function of location in a genome.  These results are used to estimate 
phylogenetic tree branch lengths.  In our model, we took an approach of mutations having rates 
dependent on reference species but independent of location in a sequence. 
 Considerable research has been done on sequence alignment algorithms [58 67 69-72 75 
77 78 158-168] and we applied that work throughout our sequence evolution model. 
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7.2 Model description 
With the exception of LUCA, each of our reference species is a successor to a previous reference 
species; we refer to these as successor reference species.  As Chapter 3 describes, we constructed 
a hidden Markov model for each successor reference species, containing the most probable paths 
over which it might have evolved from its predecessor.  In particular, we constructed a Markov 
model for each gene in our reference species’ genomes.  For those genes with a predecessor 
homolog, we constructed the Markov model between the gene and its homolog with the 
sequence lengths left unchanged.  For genes with no predecessor homolog, we used a sample set 
of nonhomologous genes from the immediate predecessor reference species and a sample set of 
random sequences generated through the use of a random number generator. 

7.2.1 Basic global alignment algorithm 
Note that a path through the Markov model for a given gene corresponds to an alignment path 
through the edit graph from the source, the predecessor gene, to the target, the successor gene.  
Thus, to construct the Markov model for two genes, we align their sequences using edit graphs.  
We made extensive use of prior work in sequence alignment, extending it in some areas. 
 Our model has some advantages in comparison to others.  We can identify the source and 
the target and are therefore able to distinguish insertions from deletions, a distinction that cannot 
be made in general.  This distinction is important as we find that typically insertions and 
deletions have different probabilities.  We know which mutation mechanisms to apply and their 
rates; therefore we can produce a biologically accurate alignment with scoring corresponding to 
actual mutation probabilities. 
 The basis for our sequence evolution model is the two sequence alignment described by 
Waterman [67] as a global distance alignment.  It is a global alignment due to its accounting for 
all of the bases in both the source and target sequences; such an alignment is simply one that 
begins at the upper left corner of the edit graph and ends at the bottom right. 
 

 a t c g a t 
a             
t             
g             
c     m d     
g     i x     
t             

Figure 15:  Sequence alignment edit graph 
 In Figure 15, the source sequence is written down the left side and the target sequence is 
written across the top.  Once any path arrives at a cell, there are three ways to traverse the cell.  
For example, to traverse cell x: 
 

1. The base to its left, a source base, may be matched to the base above it, a target base.  In 
the case of cell x, the “g” to its left in the source matches with the “g” above it in the 
target.  Since these bases are identical in this case, this match is an identity; if the bases 
were different, the match would be a substitution, indicating that a substitution mutation 
had occurred.  Either match type would be a diagonal traversal through the cell.  The total 
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score for this cell traversal is the score from predecessor cell m + the score for the match 
(identity or substitution, the former in this case). 

2. The base to its left, a source base, may be deleted.  It is not matched to the corresponding 
base in the target.  A deletion would be a vertical traversal through the cell.  The total 
score for this traversal is the score from cell d + the score for an incremental deletion.  As 
we are using affine scores, the score for a deletion of length k ≠ k * the score for a 
deletion of length 1 and the incremental score must be calculated. 

3. The base above it, a target base, may be inserted. It is not matched to the corresponding 
base in the source.  An insertion would be a horizontal traversal through the cell.  The 
total score for this traversal is the score from cell i + the score for an incremental 
insertion. Again, the affine score for an insertion of length k ≠ k * the score for an 
insertion of length 1 and the incremental score must be calculated. 

 
To find the optimal path through the edit graph, we start at the upper left cell and proceed left to 
right row by row, computing the three scores for each cell by computing the score for the three 
corresponding, earlier cells (m, d, i) before computing the score at the given cell.  At each cell, 
the best of the three scores becomes the score for that cell, which indicates the optimal path 
ending at that cell.  The score for the global alignment is the score for the lower right cell and the 
optimal path can be traced backwards from the lower right cell, always choosing the earlier cell 
with the best score, until the cell at the upper left is reached. 
 To create a biologically accurate model, our scores are based on actual mutation 
probabilities from Chapter 6.  As these probabilities are very small, our actual scores tended to 
be very small, often below the limits of conventional computer arithmetic.  To avoid this 
drawback, we used log values in our calculations.  As a result, our scores were all negative with 
the exception of the case of two identical sequences, resulting in a score of 0.  This approach 
yields a single, optimal path with a single, optimal score.  For our purposes, it has several 
drawbacks.   

7.2.2 Multiple paths 
Evolution will tend to take very probable paths but is not likely to always take the optimal path.  
Thus, we would like to find multiple, high probability paths in our alignments.  Again, there is 
prior work in algorithm development for finding multiple paths [169-171].  Our algorithm sought 
the k-best paths for each sequence alignment.  At each cell, it combined the traversal score 
(match, deletion, or insertion) with the k-best scores of the appropriate predecessor cell, yielding 
a total of 3*k-best scores for the cell.  The k-best out of all of these scores were then chosen to be 
the scores for the cell. 
 There are clearly more paths through longer sequences and we chose our k-best to reflect 
that fact.  The total number of paths through two sequences of length n is approximately 

€ 

1+ 2( )
2n+1

* n ; two sequences of length 1000 have approximately 10767 paths through them 
[67].  Obviously, we could only examine a tiny fraction of the possible paths.  However, the 
highest scoring paths were the most probable and these were the paths we sought.  We chose k-
best to be a slowly increasing function of the two sequence lengths.  We computed k-best as  
 
 k-best = ((lengthsource * lengthtarget)^.25)/2 
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This value is one half of the square root of the geometric mean of the two sequence lengths.  We 
set k-best to have a minimum of 4, applicable only to very short sequences we used for testing 
purposes. 

7.2.3 Diagonal constraint 
As we performed a comparatively large number of alignments in total, we aligned sequences of 
nontrivial length (up to approximately 9000 base pairs), and we computed the k-best paths for 
each alignment, the total required computation time was a concern as the algorithmic complexity 
is order of lengthsource * lengthtarget * k-best.  Computer memory space was a similar concern as a 
straightforward implementation would also require order of lengthsource * lengthtarget * k-best 
space.  An insight of ours, also noted by others such as Chao et al [159], was that the most 
probable alignments are constrained to lie near the major diagonal of the edit graph. 
 Consider the edit graph with the shaded major diagonal in Figure 16.  Any path that 
includes cells above and to the right of the shaded diagonal will have had many insertions to get 
to the right of the diagonal and would then require many deletions to get back down to the lower 
right corner.  Such a path has too many insertions and deletions to be very probable.  Similarly, 
any path that includes cells below and to the left of the diagonal will have had many deletions to 
get below the diagonal and would then require many insertions to get back right to the lower 
right corner.  Again, such a path has too many insertions and deletions to be very probable. 
 

 a t c g a t 
a             
t             
g             
c             
g             
t             

Figure 16:  Diagonal in edit graph 
 Hence, we constrained our search for optimal paths to those that occupied only cells 
within a distance ddiagonal from the major diagonal.  To calculate an appropriate diagonal distance, 
we first computed the diagonal length, as the allowed distance from the diagonal must be greater 
for longer sequences.  We then took the square root of the diagonal length so that the distance 
would not grow too quickly as sequence length increased.  Finally, we took twice that result to 
be conservative compared to a successful result reported by Chao et al [159].  Thus, the diagonal 
distance we used was 
 
 lengthdiagonal = (lengthsource

2 + lengthtarget
2)1/2 

 ddiagonal = 2 * lengthdiagonal
1/2 

 
We considered only paths whose nodes had a perpendicular distance from the diagonal no larger 
than ddiagonal.  For two sequences of length 1000, ddiagonal = 75; thus the diagonal was effectively 
150 bases wide.  This width is significantly larger than the successful result reported by Chao et 
al. 
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7.2.4 Inversions 
Chapter 6 describes inversions as a significant mutation mechanism and we included them in our 
model.  There is a smaller, but still significant, body of work in algorithms to identify inversions 
[160 164 166 171].   
 The problem of identifying inversions is related to, though distinct from, the global 
alignment problem.  In global alignment, we search for alignments that cover each of the 
sequences from end to end, accounting for each base in each sequence.  Every path must start at 
the upper left of the edit graph and end at the lower right, despite potentially having a very low 
score.  Conversely, inversions may start at any point and end at any point in the edit graph, but 
we seek only good inversions with comparatively high scores and therefore high probabilities of 
occurrence – these are known as local alignments.  In both cases, sequences are aligned with a 
combination of matches and indels. 
 To find inversions, we find good local alignments of a copy of the source sequence, 
which has been reversed and complemented, and the original target sequence.  To find inversions 
for the sequences in Figure 17a, we create the edit graph shown in Figure 17b.  The sequence 
written down the left side of the graph is the reversed and complemented source sequence.  It has 
been capitalized to indicate that it is an inverted sequence.   
 

 c c a g a a   c c a g a a 
c        T   d    
t        T   d    
g        C   d    
g        C  m d    
a        A i i x    
a        G       

Figure 17a,b:  Inversion edit graph 
 Our goal was to find the best inversion from each cell in the original graph, so we 
attempted to find a good inversion that ends at each cell in the inversion edit graph; many had no 
good inversion.  Our fundamental local alignment algorithm was taken from Waterman [67].   
 Figure 17 has a perfect inversion in the first four sites.  Once any inversion path arrives at 
a cell, there are three ways to traverse the cell.  For example, to traverse cell x in Figure 17b: 
 

1. The base to its left, a source base, may be matched to the base above it, a target base.  In 
the case of cell x, the “A” to its left in the source matches with the “a” above it in the 
target.  Since these bases are identical in this case, this match is an identity; if the bases 
were different, this match would be a substitution.  Either match would be a diagonal 
traversal through the cell.  The total score for this cell traversal is the score from 
predecessor cell m + the score for the match (identity or substitution, the former in this 
case).  Only inversions that begin with an identity match are optimal and so only those 
were ultimately considered in our search. 

2. Since we seek inversions anywhere earlier than cell x in the edit graph, any number of 
source bases may be deleted.  These are not matched to the corresponding bases in the 
target.  A deletion would be a vertical traversal through the cell. We chose the score from 
the highest scoring of the cells labeled d and refer to that cell as dhighest  The total score for 
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this traversal is the score from predecessor cell dhighest + the score for a deletion of 
corresponding length. 

3. Similar to deletions, any number of target bases may be inserted.  These are not matched 
to the corresponding bases in the source.  An insertion would be a horizontal traversal 
through the cell. We chose the score from the highest scoring of the cells labeled i and 
refer to that cell as ihighest   The total score for this traversal is the score from predecessor 
cell ihighest + the score for an insertion of corresponding length.  

 
To find the best inversions in the edit graph, we started at the upper left cell and proceeded left to 
right row by row, computing the three scores for each cell by computing the three earlier cells 
(m, dhighest, ihighest) before computing the score at the given cell.  At each cell, the best of the three 
scores became the score for that cell, which indicates the best inversion ending at that cell. 
 Waterman [67] describes an efficient algorithm for finding inversions.  Part of its 
efficiency is due to its removing from the edit graph all but the longest, best inversions.  Our goal 
was distinct in that we wished to find the best inversion for each cell in the edit graph.  As a 
result, we used a less efficient local alignment algorithm to identify a complete set of inversions.  
Our version of the algorithm was order 
 
  lengthsource*lengthtarget*(lengthsource+lengthtarget) 
  
in complexity.  As we did with our global alignment algorithm, we constrained our search to 
high probability inversions that lie in the diagonal.  However, since the source sequence is 
reversed, we constrained our search to the minor diagonal as shown in Figure 17b.  Since the 
diagonal distance is a constraint on the length of an inversion, we used twice the diagonal 
distance used in our global alignment algorithm. 
 During the inversion identification process, scoring was done in a unique way as well.  
During global alignment, we used actual mutation probabilities for scoring.  As the logs of these 
probabilities are always negative, the score was an arbitrarily large negative number.  While 
identifying good inversions, we must end an inversion whose score has fallen too low rather than 
always extending it all the way back to the upper left corner cell.  We used the scoring from 
Waterman [67]: 
 

• Match identities scored 10; 
• Match substitutions scored -11; and 
• Indels of length k scored -15 – 5*k. 

 
When the score for an inversion fell to 0 or less, the inversion was ended.  We also normalized 
inversion scores based on total length; when this normalization was not done, long inversions 
dominated.  When the inversions were subsequently used in the context of a global alignment, 
our biologically accurate scoring was used for the mutations contained within the inversion as 
well as the inversion mutation itself. 
 The inversion coordinate space is distinct from the global alignment coordinate space 
because the source sequence in reversed in the former case.  The inversion coordinate space must 
be transformed into the global alignment coordinate space in order to determine which global 
alignment cells begin and end inversions.  The column coordinates are identical as the target 
sequence is unchanged for inversions.   
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 c c a g a a   c c a g a a    c c a g a a 
T                             c             
T                             t             
C                             g             
C                             g             
A                             a             
G                             a             

Figure 18a,b,c:  Inversion coordinate transformation 
 To transform the row coordinates, we first reflected the coordinates about the horizontal 
center of the edit graph as shown in the transformation from Figure 18a to b.  This reflection 
brings the row coordinates into the original location of the inversion before the source sequence 
was reversed.  However, the start and end of the inversion are transposed; a reflection about the 
horizontal center of the inversion, as shown in the transformation from Figure 18b to c, put the 
inversion into the correct orientation. 
 To integrate inversions into our basic global alignment algorithm, we added a 4th step to 
those described in Section 7.2.1: 
 

4.  The cell may be traversed by an inversion that ends at this cell if a good such inversion 
exists.  The total score for the inversion is the score of an inversion mutation of length k + 
the score of the matches and indels contained in the inversion itself.  This score is added 
to the k-best scores from the cell at the beginning of the inversion, resulting in a 4th set of 
k-best scores for the current cell. 

 
This 4th set of k-best scores is combined with the other three sets and the k-best scores from this 
combination make up the k-best scores for the cell. 

7.2.5 Global alignments performed 
As described above, for those genes with a predecessor homolog, we constructed the Markov 
model between the gene and its homolog with the sequence lengths left unchanged.  For genes 
with no predecessor homolog, we used a sample set of nonhomologous genes from the 
predecessor reference species and a sample set of random sequences generated through the use of 
a random number generator.   
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 LUCAMammalia   
 LUCAMammalia LUCAMetazoa LUCAEukaryota LUCA Random 
 unique homolog homolog homolog sequences 
HUMAN 1 1 1 1 3 
      
 LUCAMetazoa    
 LUCAMetazoa LUCAEukaryota LUCA Random  
 unique homolog homolog sequences  
LUCAMammalia 1 1 1 3  
      
 LUCAEukaryota     
 LUCAEukaryota LUCA Random   
 unique homolog sequences   
LUCAMetazoa 1 1 3   
      
 LUCA      
 LUCA Random    
 unique sequences    
LUCAEukaryota 1 3    

Table 19:  Nonhomologous alignments 
 Table 19 indicates the specific alignments performed.  The rows are labeled with the 
reference species.  Each nonhomologous gene from a reference species is aligned with the type 
and number of genes given in its rows.  For example, a nonhomologous LUCAMetazoa gene is 
aligned with two genes from its predecessor, LUCAEukaryota (one gene unique to 
LUCAEukaryota and one LUCAEukaryota gene that is homologous to a LUCA gene) and three 
random sequences.  We took one sample from each such homology group in order to have a 
broad range of sequences. 
 The nonhomologous source genes were cropped (with the center of the sequence 
retained) or extended (with the original sequence centered between two randomly generated 
sequences of appropriate length) to match the length of the target gene.  We performed these 
adjustments because terminal insertions or deletions in such cases do not impact our model.  The 
random source sequences were generated identical in length to the target gene. 
 

Reference species Nonhomologous Nonhomologous Homologous Total Total 
 genes alignments genes/alignments genes alignments 

LUCA 33   33  
LUCAEukaryota 43 172 33 76 205 
LUCAMetazoa 43 215 76 119 291 

LUCAMammalia 44 264 119 163 383 
HUMAN 39 273 163 202 436 

Table 20:  Gene and alignment counts 
 In Table 20, we show total gene and alignment counts.  As LUCA is our initial reference 
species, it has only nonhomologous genes and no alignments are performed on them.  For each 
alignment, the data from multiple paths were calculated and aggregated as described in 7.2.2. 
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7.2.6 Distance measure 
In order to make comparisons between different alignment paths, we defined a positive distance 
measure to quantify the distance between any given source and target sequence through a 
specific alignment path. For distance, we used the negative of the score for each path computed 
during the alignment process. 
 In our calculations, we aggregated these distances.  We aggregated individual path 
distances up to an alignment pair distance, alignment pair distances up to a gene distance, and 
gene distances up to a reference species distance.  In most calculations to aggregate distances, we 
calculated a mean; since the scores were logs, these were geometric means rather than arithmetic 
means.  The one potential exception was aggregating path distances up to a gene distance.  In 
this case, each path increases the probability of the overall alignment, rather than simply being a 
part of the mean. 
 To aggregate path distances, we noted that high scoring paths in a given alignment will 
typically have the majority of their mutations in common.  These mutations in common do not 
represent independent probabilities and do not increase the overall probability.  We must 
distinguish the common mutations from those mutations of each path that are unique and so 
represent independent probabilities. 
 

 
Table 21:  Alignment path examples 

 Consider the two alignment paths through the same sequence pair in Table 21.  Path 1 has 
11 substitutions and no indels; path 2 has 8 substitutions, 1 insertion of length 1, and 1 deletion 
of length 1.  They share most of the same mutations, in this case the 8 substitutions. 
 Our results indicated that our most probable paths shared nearly all of the same 
mutations.  As a result, we concluded that the multiple paths do not represent significant, 
probabilistic independence.  Hence, we ultimately calculated geometric means to aggregate path 
distances up to a gene distance. 

7.3 Model results 
Our sequence evolution model generated a plethora of results. To provide a sense of the 
magnitude, Table 22 lists the alignment path counts. 
 

1.  cgatcacaatcggaatgacaaggaacaaa 
    |   || | ||||||  |    ||||||| 
    catgcaaagtcggaagaattcagaacaaa 
 
 
 
2.  cgat-cacaatcggaatgacaaggaacaaa 
    | || || | ||||||  |    ||||||| 
    c-atgcaaagtcggaagaattcagaacaaa 
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Reference species Total Total Total 
 genes alignments paths 

LUCA 33   
LUCAEukaryota 76 205 3992 
LUCAMetazoa 119 291 5152 

LUCAMammalia 163 383 8272 
HUMAN 202 436 5991 

      
Total with inversions   23407 

Total without inversions   23407 
Grand total     46814 

Table 22:  Alignment paths 
 Since we produced nearly 50,000 paths, we summarize our results.  We note that though 
the HUMAN genes we modeled were more numerous than the LUCAMammalia genes, 
LUCAMammalia had more alignment paths.  This result is because LUCAMammalia had a 
greater number of large, nonhomologous genes than HUMAN had and more paths are generated 
for large genes than are generated for smaller ones.  We present results from the model that 
included inversions.  For a comparison with the model without inversions, see 7.4.1. 

7.3.1 Homologous gene 
One of our homologous LUCAMammalia genes is 38089LUCAMammalia.  This gene is an ATP 
synthase [172], which is an enzyme that synthesizes ATP from ADP.  It has a homolog in each 
reference species.  The LUCAMammalia gene was aligned with its predecessor homolog, 
38089LUCAMetazoa. 
 

 
Figure 19:  Homologous alignment example 

 In Figure 19, we present the model results from one path in this alignment and a portion 
of the aligned sequences.  The source and target sequence lengths are nearly identical, as is often 
but not always the case with homologs.  We show our raw distance measure as well as the 
distance normalized to distance per kilobase so that alignments of different length sequences can 

 Path:  38089LUCAMetazoa to 38089LUCAMammalia 
 paths: 1 source bases: 1859 target bases: 1857 
 distance: 4.0855E3 per Kb: 2.2000E3 
 subs dist: 1.5987E4 
 subs:    454 per Kb: 244 
 inserts: 9 per Kb: 4 
 deletes: 11 per Kb: 5 
 inverts: 0 per Kb: 0 
 invCount: 0 per Kb: 0 
 insertions: len count 
   1 9 
 deletions: len count 
   1 8 
   3 1 
 
................................................................................ 
tcccctgaaggacatcaacgaactgacccaaagcatctacattcccagtggtgttaacactcccgctttgagccg-catg 
 ||  ||  ||| |||| |   | |||||||||||||||||| ||||| || || ||     | ||| | ||| |  ||  
acctttgtcggatatcagcagtcagacccaaagcatctacatccccagaggagtcaatgtgtctgctcttagcagagat- 
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be compared.  The subs dist (substitutions distance) is the distance that would apply if the only 
mutations were k substitutions where k is the length of the target sequence.  The substitutions 
distance approximates a worst-case distance; it equals the worst-case distance when the source 
and target are the same length.  We expected our alignments to produce lower distances than the 
substitutions distance and, in fact, they did except when source and target lengths are 
significantly mismatched. 
 There were 454 substitutions in this path.  For random sequences of the same length, the 
expected number of substitutions would be .75 * length = 1393.  As 454 is much less than 1393, 
it is clear that these two sequences are much more similar than two random ones, as expected for 
homologs.  There were relatively few insertions or deletions, and their net result, 2, was the 
difference in the sequence lengths as expected.  No valuable inversions were identified, so both 
inverts, the number of inverted bases, and inversions, the number of inversion subsequences, are 
0.  Information on mutation spectra, the quantity and size of the individual insertions, deletions, 
and inversions, is included.  No inversion spectra are shown as there were no inversions. 
 We also show a portion of the sequence alignment itself.  It is depicted in the same way 
as other alignments with the addition of an initial line indicating the location of any inversions; 
as there were none in this case, it consists of all ‘.’s.  This sequence portion includes one base 
insertion and one base deletion, both near the right end of the sequences.  

7.3.2 Nonhomologous gene 
One of our nonhomologous LUCAMammalia genes is 28898LUCAMammalia, which has no 
homolog in earlier reference species.  28898LUCAMammalia is a bone morphogenetic protein 
receptor type-2 precursor [173], which plays a role in bone regeneration as well as embryo 
development. 28898LUCAMammalia was aligned with three nonhomologous genes from 
LUCAMetazoa as well as with three random sequences. 
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Figure 20:  Nonhomologous alignment example 

 In Figure 20, we show the results of aligning 28898LUCAMammalia with 
215350LUCAMetazoa, a nonhomologous gene arbitrarily chosen from among those in 
LUCAMetazoa; we also show a portion of the sequence alignment.  The length of 
215350LUCAMetazoa was augmented with random sequence to match the length of 
28898LUCAMammalia.  

 Path:  215350LUCAMetazoa to 28898LUCAMammalia 
 paths: 1 source bases: 3123 target bases: 3123 
 distance: 1.4765E4 per Kb: 4.7278E3 
 subs dist: 2.6886E4 
 subs:    1239 per Kb: 396 
 inserts: 212 per Kb: 67 
 deletes: 212 per Kb: 67 
 inverts: 978 per Kb: 313 
 invCount: 44 per Kb: 14 
 insertions: len count 
   1 163 
   2 16 
   3 3 
   4 2 
 deletions: len count 
   1 152 
   2 19 
   3 4 
   5 2 
 inversions: len count 
   12 8 
   13 7 
   14 5 
   15 4 
   16 1 
   19 1 
   21 1 
   22 3 
   24 2 
   26 1 
   28 1 
   29 1 
   30 1 
   33 1 
   34 1 
   37 1 
   42 1 
   43 1 
   45 1 
   57 1 
   87 1 
 
..ctg--gtaacggctt.......................................................... 
-tGAC--CATTGCCGAAgggagaaggggcctgagtccgtgtcgggaatggcccttcaaattgtgcatccaatgca 
 ||||  | | || | || | |    |||  | | || || |    |||| || ||    ||  ||  || |||  
atgacttcctcgctgcagcg-gccctggcgggtg-ccctggctaccatggaccatcctgctggtca-gcactgcg 
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 As with the homologous alignment, this alignment distance is less than the substitution 
distance, 1.4765*104 versus 2.6886*104.  Compared to the homologous alignment, the distance 
in this nonhomologous alignment is higher per kilobase, 4.727*103 versus 2.200*103.  
Substitutions, insertions, and deletions per kilobase were all higher in this nonhomologous case, 
244, 4, and 5 versus 396, 67, and 67 respectively. 
 Arguably, the greatest contrast with the homologous alignment was the inversion result:  
none in the homologous case versus 14 inversions per kilobase and 313 inverted bases per 
kilobase in the nonhomologous case.  Note that these inversions improve the overall distance of a 
path even though they cause an increase in distance due to their presence.  In the portion of the 
nonhomologous alignment shown, there is a single, length 15 inversion.  The lowercase bases in 
the top line indicate the bases in the original source with their order reversed; the uppercase 
bases below are the complemented bases aligned with the target.  Note that there were mutations 
found within the inversion as well, 4 substitutions and an insertion of length 2. 
 Insertion, deletion, and inversion spectra are shown.  Although indels become less 
probable rapidly with length, insertion probability falls much more slowly with length, despite 
being governed by a power law.  As a result, few long indels are evident while longer inversions 
are more common. 
 



 
78 

 
Figure 21:  Random alignment example 

 In Figure 21, we show the results of 28898LUCAMammalia aligned with a random 
sequence of the same length.  Of note is that the distance in the random alignment is greater than 
the distance in nonhomologous gene alignment, 1.4930*104 versus 1.4765*104.  This result is 
generalized and quantitatively analyzed in 7.4.2. 

7.3.3 Homologous and nonhomologous results 
In Figure 22, we show the model distances for homologous and nonhomologous alignments for 
the reference species; all values are per kilobase.  For all reference species, distances were higher 
in the nonhomologous alignments compared to the homologous alignments. 
 

 Path:  RANDOMA3123 to 28898LUCAMammalia 
 paths: 1 source bases: 3123 target bases: 3123 
 distance: 1.4930E4 per Kb: 4.7808E3 
 subs dist: 2.6886E4 
 subs:    1282 per Kb: 410 
 inserts: 204 per Kb: 65 
 deletes: 204 per Kb: 65 
 inverts: 831 per Kb: 266 
 invCount: 39 per Kb: 12 
 insertions: len count 
   1 172 
   2 13 
   3 2 
 deletions: len count 
   1 174 
   2 11 
   3 1 
   5 1 
 inversions: len count 
   12 7 
   13 2 
   14 2 
   15 2 
   16 1 
   17 4 
   18 3 
   19 4 
   20 2 
   24 1 
   25 2 
   26 2 
   31 1 
   32 2 
   36 1 
   47 1 
   49 1 
   56 1 
............................................tacttggttgtatcgtaata................ 
agtttttacccacagttac-gatct-ac-aaaactctgg-ttgtATGAACCAACATAGCATTATttagttatttttaat- 
|    || | | | |   | |  ||  |     | |||| |   ||| |||| | | || |  |  ||  | |     |  
atgacttcctcgctgcagcggccctggcgggtgccctggctaccatggaccatcct-gc-tggt-cag-cactgcggctg 
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Figure 22:  Distance comparison 
 In Figure 23, we compare a) substitutions, b) inserted bases, c) deleted bases, and d) 
inverted bases; all values are per kilobase.  Note that the inserted bases count always equals 
deleted bases count in the nonhomologous results.  This equality is due to the source length 
being adjusted so that it is equal to the target length in such alignments in our model. 
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Figure 23a,b,c,d:  Nonhomologous mutation comparison 

 For each reference species, mutation counts are higher in the nonhomologous alignments 
compared to the homologous alignments with one exception.  For LUCAEukaryota evolving 
from LUCA, the homologous insertion count was higher than the nonhomologous insertion 
count, 115, versus 50.  While nonhomologous alignment pairs were always matched in length, 
homologous pairs were not.  We suggest that this result may be due to the incorporation of 
introns into the LUCAEukaryotic genome in evolving from the LUCA genome.  These introns 
increased the length of homologous LUCAEukaryotic genes.  Although our sequences include 
only exons, the inclusion of introns may have been accompanied by increases in exon length.  
This result provides modest, further evidence that LUCA was a prokaryote, as prokaryotes lack 
introns. 
 Although we expected distances to be shorter for homologous alignments, the 
consistency of this result for so many measures was less expected.  Most prominent is the 
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significant difference in inversion results.  From this result, it is clear that inversions are a 
significant factor in the evolution of new function. 

7.3.4 Reference species results 
In Figure 24, we show a summary of the mutations for each reference species.  The vertical axis 
is bases with the given mutation per kilobase of sequence.  The inverts values are inverted base 
counts rather than inversion counts as using inverted base counts makes these values comparable 
to the others.  This summary includes both homologous and nonhomologous results.   
 

Figure 24:  Reference species mutation comparison 
 Substitutions are clearly the dominant mutation mechanism as expected given their 
comparatively high probability.  The higher value for substitutions in LUCAEukaryota is likely 
due to its comparatively long distance from its predecessor reference species, LUCA.  A 
comparatively large number of bases are inverted in each reference species.  However, since the 
probability of an inversion falls slowly as a function of length, the inverted bases may almost as 
likely be contained in a small number of large inversions as they are to be contained in a large 
number of small inversions.  The mutation spectra can determine which of these two 
explanations is accurate. 
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Figure 25:  Mutation spectra 

 In Figure 25, we show mutation spectra for each reference species.  These show the 
frequency of each length of each mutation type per kilobase of sequence; the graphs have a log-
log scale.  As expected insertion and deletion frequencies fall rapidly with increasing length; this 
effect is much smaller with inversions.  Using the inversion spectra results and normalizing by 
the number of bases in each inversion length, we conclude that most inverted bases are in short 
length inversions. 

7.4 Model analysis 
From our sequence evolution model results, we were able to investigate several aspects of 
sequence evolution, described below. 
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7.4.1 Inversion mutations 
Inversions as a significant mutation mechanism was suggested by Ma et al [133] who found 
them in large-scale studies of whole chromosomes.  Smaller inversions, referred to as 
microinversions, were found significant in a study by Chaisson et al [132].  Our inversion 
identification algorithm, described in Section 7.2.4, found a substantial number of inversions; we 
even found at least one unexpected case of contiguous inversions. 
 As part of our sequence evolution model analysis, we assessed inversion significance.  
We first performed each set of gene alignments with and without inversions.  The inversions 
alignment scores include the scores for the inversions themselves as well as any substitutions and 
indels within the inverted subsequences.   
 Our null hypothesis was that the number of inversion alignments with shorter distances 
would be equal to the number of noninversion alignments with the same distance for 
corresponding alignments.  Because our model produces the highest scoring, most probable 
paths, adding an insignificant mutation type to the model would result in no change in alignment 
distances; hence, we treated an equal distance as the no-difference result in our assessment. 
 Since there are two possible outcomes for each independent trial (shorter distance or 
equal distance), we had a binomial distribution [174].  With our 50% probability of success and 
our relatively large sample sizes, the normal distribution applies. 
 

  HUMAN LUCAMammalia LUCAMetazoa LUCAEukaryota 
shorter inversion distances 283 331 269 199 

alignments 436 381 291 205 

mean 218 190.5 145.5 102.5 

standard deviation 10.44 9.76 8.53 7.16 
difference from mean 65.0 140.5 123.5 96.5 

sd's from mean 6.23 14.40 14.48 13.48 

diff / no inversion distance 0.03159 0.04235 0.04134 0.03806 

Table 23:  Inversions in alignments 
 In Table 23 we show the inversion analysis results.  The first row shows the number of 
successful trials, those inversion alignments with shorter distances out of the total number of 
reference species alignments shown in the second row.  The next two rows show the mean and 
standard deviation of the corresponding normal distribution.  Following these are a row 
indicating the difference between the number of successful trials and the mean, and a row 
showing how many standard deviations above the mean our result lays.  Since all of the 
reference species’ results are more than 3 standard deviations above the mean, we reject the null 
hypothesis and conclude that inversions are a significant mutation mechanism in our model.  
Note that these results include both nonhomologous and homologous alignments, with the latter 
having relatively few inversions.  If we had only looked at the nonhomologous results, the 
effects of inversions would be even more dramatic. 
 The final row indicates the ratio of the mean difference in distance between alignments 
with and without inversions to the mean distance without inversions.  Although these ratios 
amount to only a few percent, since they are ratios of logs their effect is significant. 

7.4.2 Evolution of nonhomologous genes 
Each of our successor reference species has a genome with a set of nonhomologous genes.  
These genes in the genome are unique to the reference species and thus do not a have a 
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corresponding homolog in the predecessor reference species.  Clearly, these nonhomologous 
genes evolved from a sequence in the predecessor reference species; there are two possibilities 
for how this evolution may have occurred.  The first possibility is that the nonhomologous gene 
evolved from an unrelated gene in the predecessor species.  The second possibility is that the 
nonhomologous gene evolved from relatively random, noncoding sequence in the predecessor 
species.   
 In our model, we investigated both possibilities.  In particular, we attempted to answer 
the question of whether or not arbitrary coding sequence had an advantage in evolving novel 
genes (and therefore novel function) as compared to random sequence.  For each nonhomologous 
gene in each reference species (excluding LUCA as it has no predecessor in our model) we did 
an alignment with three random sequences and a sample from each group of genes in its 
predecessor’s genome as described above.  Note that although each gene was aligned only with 
gene sequences from its immediate predecessor, many of those genes have homologs in yet 
earlier species. 
 We noted that in most cases, the coding sequence distance to the nonhomologous, target 
gene was shorter than the random sequence distance to the nonhomologous, target gene.  To 
quantify this difference, for each target gene we computed the mean mr and standard deviation sr 
of the distancer from the random sequences to the target.  Using this mean and standard deviation 
for each gene, we computed the normalized differences diffnonhomo between each nonhomologous 
gene distancenonhomo and mr: 
 
 diffnonhomo = (distancenonhomo - mr) / sr 
 
We performed the analogous calculation for each random sequence distancer: 
 
 diffr = (distancer - mr) / sr 
 
Under the null hypothesis of no difference between nonhomologous and random distances, these 
normalized differences should be comparable in scale for all genes and should have 0 mean and 
unit variance.  We performed a ttest on the two sets of differences using a one-tailed distribution, 
as the diffnonhomo were typically negative.  We used a heteroscedastic ttest [175] as the samples 
were of unequal variance.  We also computed a mean for the diffnonhomo.  The results are shown 
Table 24. 
 

 HUMAN LUCAMammalia LUCAMetazoa LUCAEukaryota 
ttest 1.134% 1.846% 0.002% 19.513% 
mean -0.422 -1.611 2.560 -0.484 

Table 24:  Nonhomologous gene ttest 
 With the exception of LUCAMetazoa, we reject the null hypothesis for each reference 
species as these results indicate that distancenonhomo and distancer are somewhat likely (>80%) to 
have different means.  In particular, the mean of diffnonhomo was negative with the exception of 
LUCAMetazoa.  Although the overall sample sizes were comparatively small, this analysis 
provides modest evidence that coding sequence in general has an overall advantage, compared to 
random sequence, in evolving into an unrelated coding sequence.  This advantage may be due, 
for example, to protein secondary and tertiary structures that are functional in many different 
contexts in biology. 
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 Since the overall sample sizes were comparatively small and LUCAMetazoa showed a 
contradictory result, we elected to retain the random sequence results in our model along with the 
nonhomologous gene results. 

7.4.3 Universal source sequences 
Noting our evidence from Section 7.4.2 that novel sequence is more likely to come from coding 
sequence than from random sequence, we investigated whether there might be universal source 
sequences.  These are sequences are comparatively more likely to evolve into many other 
nonhomologous, coding sequences.  To shed some light on this question, we selected four genes 
from LUCAMammalia, one from each of its groups, to be our source genes.  We looked at the 
distance from each of these four genes to each of our nonhomologous, target genes, the 39 genes 
unique to HUMAN.  We normalized the distances to their target sequence lengths so that they 
could be compared.  We performed a one-factor analysis of variance (ANOVA [176]) on the four 
groups of normalized distances. 
 Our null hypothesis was that the means of the distances for the four source genes would 
be the equal.  Our analysis of variance result indicated (p < .033) that we should reject the null 
hypothesis and conclude that the means are not equal.  This result provides modest evidence for 
universal source sequences. 
 The source gene with the lowest mean distance was 215350LUCAMammalia, a gene 
with homologs going all the way back to LUCA.  The function of this gene is described as 
uncharacterized according to the OMA database [92].  We suggest that a possibility is that its 
primary function is to act as a universal source sequence. 

7.4.4 LUCA to HUMAN estimate 
With the results from our sequence evolution model, we are now in a position to estimate the 
required mutations that must have taken place in the evolution from LUCA to HUMAN.  We 
used our effective HUMAN genome size from Chapter 2, 1.3*108 base pairs and Figure 24 lists 
the results.  We used our expected progression from LUCA through our intermediate reference 
species to HUMAN. 
 

  substitutions inserts deletes inverts 
HUMAN 180 24 24 85 

LUCAMammalia 374 62 64 259 
LUCAMetazoa 372 58 63 244 

LUCAEukaryota 432 56 47 238 
Total / Kb 1358 200 198 826 
Grand total 1.77E+08 2.60E+07 2.57E+07 1.07E+08 

Table 25:  Total LUCA to HUMAN mutations 
 Table 25 lists the mutation counts.  The Total/Kb row contains total mutation counts per 
kilobase.  We note that the total substitution count is greater than 1000.  This result indicates 
many sites per kilobase changed more than once during the period of evolution from LUCA to 
HUMAN.  The last row indicates total mutation counts needed to produce the entire effective 
portion of the HUMAN genome.  These counts represent our estimate of the total count of 
mutations between LUCA and HUMAN. 
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7.5 Summary 
For our sequence evolution model, we implemented a unique sequence alignment algorithm that 
used actual mutation rates for scoring alignments and included inversion mutations in addition to 
the more common substitutions and indels.  Using this algorithm, we aligned pairs of genes from 
adjacent reference species.  In the case of nonhomologous genes, we also aligned sequences with 
other sequences that we generated randomly. 
 From our nonhomologous alignment results, we concluded that it is somewhat likely that 
nonhomologous genes are more likely to evolve from unrelated genes than from random 
sequences.  In addition, our results suggested that some gene sequences, universal source 
sequences, are more likely to evolve into unrelated genes than other sequences. 
 From our alignment results, we estimated the total number of mutations and types that 
occurred in the evolution of LUCA to Homo sapiens.  A simple majority of these were 
substitutions; inverted bases were also very significant. 
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8 Population Evolution Model 

8.1 Related work 
Gillespie [177] gives a broad overview of population genetics.  Population models in the context 
of the ecological processes that determine size and structure of a population is covered by Begon 
et al [38]. 
 In finite populations, random changes in allele frequencies (variations in one or more 
genome sites that cause a gene to have multiple forms) result from reproduction rate variation 
from one individual to another and to sexual reproduction.  These random changes are known as 
genetic drift [30 178].  Genetic drift can reduce the genetic variation of a population by causing 
one of several alleles to fix (become ubiquitous throughout the population).  It also affects the 
probability of survival of new mutations. 
 A significant component of population evolution is natural selection that acts on fitness 
variations caused by differing phenotypes, which are in turn caused by differing genotypes.  
Natural selection reduces the prevalence of the less fit genotypes.  Futuyma [30] states that many 
geneticists believe that genetic drift explains most sequence differences observed unless there is 
evidence of natural selection or other factors.  However, there is significant evidence that 
selection pressure affects population evolution.  One such example is the differing mutation rates 
observed for synonymous versus nonsynonymous codons [179].  If selection pressure were 
absent, these rates would always be identical.  A comprehensive population evolution model 
must therefore provide a means to incorporate selection effects. 
 Coalescent theory [155 156 178] defines the lineage of a set of alleles.  The alleles in a 
sample are traced backwards in time, joining at common ancestors, often until a single common 
ancestor of all of the alleles is reached.  Our population model produces the genomic future from 
a past, population starting point; coalescent theory produces the genomic past from a current, 
population starting point. Coalescent theory allows the likelihood analysis of the sample 
genomes under various mutation models; it could provide a useful complement to our approach. 
 The concept of carrying capacity [180] describes how a population is limited by its 
environment.  According to Malthus [181], an unconstrained population will have a rate of 
population increase  
 
 dpopulation/dt = g*population, 
 
where g is the growth rate of the population.  The value of g is approximately birthRate - 
deathRate; immigration and emigration also affect g.  This exponential growth rate assumes 
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unlimited resources to support the population.  Recognizing that resources are ultimately always 
limited, Verhulst [182] developed a logistic model of population growth, with 
 
 dpopulation/dt = g*population*(1-(population/K)), 
 
where K is known as the carrying capacity of the environment for the population.  Note that as 
population approaches K, dpopulation/dt approaches 0.  It follows that in an actual population, g 
approaches 0 and birthRate approaches deathRate; these latter rates, however, do not fall to 0 
except in the case of extinction. 
 Research into carrying capacity has shown that the way birthRate and deathRate change 
due to carrying capacity limitations varies depending on the specific situation.  Some research 
indicates that birthRate is constant and deathRate rises; other research indicates that birthRate 
falls and deathRate is constant [183 184].  As a compromise in our model, birthRate and 
deathRate approach each other linearly under the effect of a carrying capacity limitation. 
 Among our reference species, LUCA was likely purely asexual, LUCAEukaryota may 
have engaged in sexual reproduction occasionally (a proxy for LUCAEukaryota, the yeast 
Saccharomyces cerevisiae reproduces mostly by budding and occasionally sexually [185]), and 
the remaining reference species reproduced primarily or solely sexually.  Sexual reproduction 
has an associated cost compared to parthenogenetic reproduction [186], as each parent has only 
half of its genome reproduced in its offspring compared to parthenogenetic reproduction 
(reproduction by cloning).  Yet sexual reproduction dominates in Animalia and much of Plantae. 
 Clearly sexual reproduction provides some advantages [186 187].  One such advantage, 
genetic segregation, was confirmed by Kirkpatrick and Jenkins [188].  In sexual reproduction, 
genetic segregation occurs when chromosome pairs separate during the production of gametes.  
Kirkpatrick and Jenkins assumed that advantageous mutations are relatively rare and that they fix 
through achieving the homozygous state.  Due to genetic segregation, an advantageous mutation 
can achieve a homozygous state through a single mutation in a lineage, while two mutations are 
required to achieve a homozygous state with parthenogenetic reproduction. 
 Another advantage is due to crossing-over and genetic recombination that occurs during 
meiosis [186].  We assume that there is frequent evolutionary advantage to bringing together 
certain alleles of different genes on the same chromosome.  Recombination will cause these 
allele combinations to happen more frequently than they will happen in the absence of 
recombination, even when the frequencies of the two alleles are comparatively low.  In our 
population model, we confirmed this advantage in a somewhat novel context. 
 The Hardy-Weinberg law [189] describes the relationship between allele frequencies and 
genotypic frequencies.  It applies at equilibrium in a randomly mating, sexually reproducing 
population.  If allele A1 has frequency p1 and allele A2 has frequency p2, according to the Hardy-
Weinberg law, the genome frequencies are p1* p1 for genotype A1A1, 2* p1* p2 for A1A2, and p2* 
p2 for A2A2. 
 However, populations often do not mate randomly [190].  One such case is inbreeding 
where individuals are more likely to mate with relatives than with other individuals.  Inbreeding 
results in a higher probability of homozygotes, which has a detrimental effect on the population.  
Another case of nonrandom mating is a species that occupies a large geographic area or one 
containing physical barriers such that individuals are not able to have sexual contact with all 
other individuals.  In this case, there will be genetic distinctions between the isolated 
subpopulations and Hardy-Weinberg will not accurately represent the entire species. 
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 An extreme example of nonrandom mating occurs after speciation [191].  Speciation is 
the division of one species into two, different species; members of one species cannot mate with 
those of the other species and produce fertile offspring.  It is thought to occur when two 
subpopulations of a species are geographically isolated and genetic variation reaches the point 
where members of the subpopulations can no longer successfully mate.  In our model, we 
include speciation as well as a novel form of nonrandom mating. 
 Further limits to random mating arise due to geographic proximity.  To model this effect, 
Kimura [192] devised a stepping-stone model which divided a population into subpopulations.  
The members of a subpopulation are local to each other and mating occurs randomly within a 
subpopulation.  Exchange of individuals occurs only between adjacent subpopulations.  Kimura 
showed that, under some circumstances, the stepping-stone model more accurately reflects 
natural populations than other models.  We used a unique variant of the stepping-stone model in 
our population evolution model. 
 Our population evolution model shares some characteristics with a Markov chain [36 37 
193].  A Markov chain is a finite set of states with probabilities for the transition from one state 
to another and the property that the future state of the system depends only on the previous state.  
Our model also has a finite set of population pools that resemble states; the probability that an 
offspring will belong in a given pool depends only on the pools of its parent(s) and does not 
depend on the pools of more distant ancestors. 

8.2 Model input data 
Much of the input data for our population evolution model was obtained from our sequence 
evolution model.  This information included effective genome length, fraction of the genome that 
is homologous to predecessor reference species, and mutation types, lengths, and counts for both 
homologous and nonhomologous genes.  The mutation rates that we used are described in 
Chapter 6. 
 However, our population model required additional data for its operation.  For reasons 
described later in this chapter, we confined our population model efforts to the evolution from 
LUCAMammalia to Homo sapiens.  Hence, our population model data needs were limited to 
these two reference species. 
 There are a number of other model parameters, described below, that we varied for 
different model runs.  For comparison purposes, we defined a standard model that uses a 
standard value for each of these parameters.  Results from variations in these parameters were 
compared to standard model results. 
 Our population model required population growth rates separated into birth and death 
rates.  For Homo sapiens, we used the values described in Chapter 2.  For LUCAMammalia, we 
used Mus musculus as a proxy and relied on information from the Louisiana Veterinary Medical 
Association [194] and the International Science and Technology Center [195].  Modeling the 
reproduction using this information yielded a birth rate of 1630/year and a death rate of .67/year 
for LUCAMammalia.  The arithmetic means of these values, 815 and .339 respectively, are our 
standard values for birth and death rates. 
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8.3 Model description 
Chapter 2 described our simple evolution model, consisting of the creation of More Recent 
Ancestors (MRAs) through transition mutations.  Included in the simple model were several 
significant constraints not found in biological evolution processes: 
 

• All bases must change. 
• One specific transition mutation had to happen at any given time.   
• Only substitutions occurred. 
• No transition mutation was lost by a subsequent mutation that nullified the earlier 

transition mutation. 
 
Our population evolution model obviates these constraints while containing additional 
components that more accurately simulate biology. 

8.3.1 Model fundamentals 
In our population model, we defined two types of mutations:  

1.  A mutation+:  a plus mutation that creates an MRA; we have also referred to these as 
transition mutations. 
2.  A mutation–:  a minus mutation that nullifies a mutation+ and causes the organism to 
revert to a previous MRA compared to its parent(s). 

Our population model consists of a set of pools with dynamically varying populations; Figure 26 
depicts these pools.  Each pool is numbered according to the net number of mutation+s contained 
in the individuals making up the pool. An individual’s net number of mutation+s is equal to total 
mutation+s that have occurred in the evolutionary history of that individual’s genome minus total 
mutation–s that have occurred.  Pools are distinguished by net mutation+ counts and not other 
characteristics such as geographic location; individuals in different pools will typically be 
physically intermingled.  We describe two pools as similar if their numbers are close in value. 
 Although each individual in a given pool has the same net number of mutation+s, they do 
not all have the same mutation+s; in particular, any pair of individuals in a given pool will 
typically have some mutation+s in common and some unique to each of them.  In addition, each 
individual in each pool will have mutations unrelated to the evolution to the successor reference 
species; these are not tracked in our model. 

 
Figure 26:  Fundamental population model 
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 When a new individual was produced in a pool k, we assumed at most a single, relevant 
mutation occurred due the overall low mutation probability.  If a new individual had no 
mutation, it remained in the same pool as its parent(s).  If it had a mutation+, it was promoted to 
pool k+1; if it had a mutation–, it was demoted to pool k-1.  Each of these possibilities has a 
probability, and each of the three probabilities is distinct for each pool. 
 At any point in a model run, there was a window of active pools.  Active pools were 
defined as those pools with a population ≥ 1.  When a pool’s population reached 1, it was added 
to the window; when a pool’s population fell below 1, it was deleted from the window.  
Mutation, reproduction, and other model actions occurred only within the window.  Individuals 
could still be demoted below the lowest pool in the window, but they were no longer effectively 
included in the model.  They could also be promoted above the highest pool in the window, 
where they would lie dormant until the pool joined the window. 
 The effective sequence length for Homo sapiens and the net number of mutation+s 
required to produce it from the LUCAMammalia genome were derived in Chapter 2 and 
remained constant throughout our population modeling.  These numbers were too large to model 
directly with acceptable compute time due to the algorithmic complexity of our model.  Hence, 
each model run used a smaller model sequence length and corresponding specific number of net 
mutation+s, n.  Results were scaled up from these parameters as needed.  Our standard model 
sequence length was 200. 
 Given the model sequence, we calculated the number of mutation+s n required to evolve 
it from the source reference species (LUCAMammalia) to the target one (Homo sapiens): 
 

 

€ 

n = (HomologousFraction * HomologousCounti
i∈MutationTypes

∑ )

+((1−HomologousFraction) * NonhomologousCounti
i∈MutationTypes

∑ )
 

This value is approximately 255 mutation+s per kilobase for LUCAMammalia to Homo sapiens 
evolution. 

8.3.2 Mutation+ probability 
For our population model mutations, we used the data produced in our sequence models.  In 
particular, for each reference species we defined a mutation+ probability P+ that is a weighted 
mean of the probabilities of the required substitutions, indels, and inversion mutations for the 
homologous and nonhomologous genes for that species.  The weighting is based on the number 
of mutations for homologous and nonhomologous genes and the fraction of genes that are 
homologous. 
 For substitutions, we adjusted our counts for codon redundancy.  Although we have been 
modeling sequences of bases, they are in fact coding sequences and are composed of codons 
(triplets of bases).  The 64 possible codons translate into 20 amino acids plus stop, which ends 
transcription (and so translation), for a total of 21 different translation results; hence the 
translation mapping is redundant.  Without redundancy, there would be an expected value of 
three substitutions for a mutation+ as there is a 1/3 chance of an incorrect base mutating to the 
correct base.  A single substitution in any location in a codon can create any of 64-1=63 different 
codons and there are 21-1=20 different translation results.  Thus, only 20/63 of those codons 
produce a different translation result.  Two different codons produce the same translation result 
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with a 1-(20/63) = 0.683 probability.  The expected number of substitutions for a mutation+ is 
then 3*0.683 = 2.05. 
 For indels, we used length 1 probabilities as they dominate the indel spectra.   
 For inversions, minimum length mutations do not dominate the spectra as they do with 
indels.  We calculated a mean inversion length by dividing the number of inverted bases by the 
number of inversions.  We then used the probability of an inversion of mean length in our 
mutation+ calculation. 
 For each mutation type (substitution, insertion, deletion, and inversion) we took the 
reciprocal of its probability to obtain the expected population required to produce that mutation 
type, Poptype= 1/Ptype.  We then calculated 
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Popmean =

Popi *Counti
i∈MutationTypes

∑

Counti
i∈MutationTypes

∑
 

where Popmean is the mean population for the required mutation+s and Counti is the count of 
mutations required for mutation type i.  Finally, we set P+ = 1/Popmean. 

8.3.3 Mutation– probability 
We also defined the probability of a mutation– undoing a mutation+, P–. Mutation–s have a 
different probability than mutation+s that was calculated as follows. 
 Without redundancy, one substitution would be required for a mutation–.  A single 
substitution in any location in a codon can create any of 64-1=63 different codons.  However, 
only 21-1=20 of those codons produce a different translation result.  A single substitution will 
result in a different translation result (and so will be a mutation–) with a probability of 20/63 = 
.317.  The expected number of substitutions required for a mutation– is the reciprocal of this 
probability 1/0.317 = 3.15.  We note that the expected number of substitutions for a mutation– is 
then higher than the expected number of substitutions for a mutation+. 
 For indels, we used length 1 probabilities, as those are most probable and thus most 
common. 
 For inversions, we used length 12 probabilities, as those minimum length inversions are 
most probable.  Such an inversion affects multiple sites.  A length 12 inversion is the equivalent 
of replacing 12 bases with 12 others.  However, only an expected ¾*12 = 9 will result a 
substitution; an expected 12-9=3 bases will not change.  We treated an inversion like a 
substitution that has 9 times the probability of an inversion. 
 Since the different types of mutations are independent, we simply summed them to 
calculate P– 
 

 

€ 

P− = Pi
i∈MutationTypes

∑  

8.3.4 Pool dynamics 
As new individuals are produced in each pool due to reproduction, the populations of the pools 
change depending on the growth rate g, P+, and P–.  We define: 
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Pno+ = 1 - P+ probability of no mutation+ 
Pno+

n-k  probability of no mutation+ out of (n-k) possible mutation+s 
1 - Pno+

n-k probability of at least 1 mutation+ out of (n-k) possible mutation+s 
and 

Pno– = 1 – P– probability of no mutation– 
Pno–

k  probability of no mutation– undoing any of k mutation+s 
1 – Pno–

k probability of at least 1 mutation– undoing any of k mutation+s. 
 

New individuals leave pool k with probabilities: 
 

PpromoFrom(k) probability a new individual is promoted from pool k into pool k+1 
  = Pno–

k * (1 - Pno+
n-k) 

and 
PdemoFrom(k) probability a new individual is demoted from pool k into pool k-1 
  = Pno+

n-k * (1 – Pno–
k). 

 
New individuals stay in pool k with probability: 

PstaysIn(k) probability a new individual stays in pool k 
  = 1 – (PpromoFrom(k) + PdemoFrom(k)). 

8.3.5 Population size and growth 
Wright [150] defined effective population size as the number of breeding individuals in an 
idealized population that would show the same amount of dispersion of allele frequencies under 
random genetic drift or the same amount of inbreeding as the population under consideration.  It 
is the effective population size that should be used in population modeling.  LUCAMammalia 
and Homo sapiens are dioecious species [178] (a given individual can produce only eggs or 
sperm) with males and females produced in equal numbers.  Given this situation and the fact that 
we mostly have large populations, our effective population size approximately equals overall 
population size. 
 Population size changes were based on a growth rate g where g = birthRate – deathRate 
and birthRate ≥ deathRate.  We defined popk(t) to be the population of pool k at time t.  Our 
standard value for t was 1 year.  We then have: 
 pop0(0)  = 1 
 pop1(0)  = 1 
 popi(0)  = 0 for i > 1 
 popk(t)  =  popk(t-1)  
    + g *  (popk(t-1)*PstaysInK  
     + popk-1(t-1)*PpromoToK  
     + popk+1(t-1)*PdemoToK). 
 
We began each model run with a single individual in each of the two lowest pools and the 
remaining pools empty.  The population of a pool at time t is its population at time t-1 plus its 
growth times the fraction of offspring that stay in the pool (have the same net number of 
mutation+s) plus offspring promoted from the previous pool plus the offspring demoted from the 
next pool. 
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8.3.6 Sexual reproduction 
The majority of Eukaryotes reproduce sexually, a significant factor in our model.  Sexual 
reproduction was implemented as an overlay on the fundamental model. 
 

 
Figure 27:  Sexual reproduction in population model 

 Figure 27 depicts the sexual reproduction component of our model.  We first determined 
the mutation+s and mutation–s present in the gametes produced during a time period.  These 
mutations occur during the process of creating the gametes, from the time of fertilization 
producing the first complete cell of a new individual until the time that individual creates 
gametes.  Each gamete produced was placed into the appropriate gamete population pool 
depending on the net number of mutation+s it contained that in turn depended on the mutation 
probabilities for that pool.  Each gametea in a pool then fertilized a gameteb, from the same pool 
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or a different pool.  This fertilization combination was probabilistically determined based on 
pool populations – the probability of mating was proportional to the population of the pool 
containing gameteb. 
 For a gamete from population pool k and a gamete from population pool l, the probability 
that they have a specific mutation+ in common is  
 
 (k/n)*(l/n), 
 
where n is the total number of mutation+s.  They have an expected number of mutation+s in 
common  
 
 n*(k/n)*(l/n) = (k*l)/n. 
 
Their expected number of distinct mutation+s is  
 
 (k+l) – (2 * mutation+s in common). 
 
When one gamete fertilizes another, the resulting offspring are very likely to inherit all of the 
mutation+s that their parents have in common.  The offspring will show a binomial distribution 
for the number of mutation+s that are distinct between their parents. 
 For example if n=10, a gamete from pool 8 and one from pool 9 have approximately 7 
mutation+s in common and 3 that are distinct.  When one fertilizes the other, 12.5% of the 
offspring would go into pool 7+0=7, 37.5% would go into pool 7+1=8, 37.5% would go into 
pool 7+2=9, and 12.5% would go into pool 7+3=10.  Note that the range of offspring pools is 
larger than the range of gamete pools due to the range of the distinct mutation+s.   
 In our model, we used this binomial distribution to determine the mutation+ count of the 
offspring produced; these were then placed into the appropriate pools.  Thus, the new population 
of each pool is the superposition of these binomial distributions. 
 We wanted our model to be able to simulate a range of reproduction mechanisms. 
Different species engage in various degrees of sexual reproduction and asexual reproduction.  E. 
coli reproduce only asexually by binary fission, Homo sapiens reproduces only sexually, and the 
yeast Saccharomyces cerevisiae reproduces both sexually and asexually by budding.  We defined 
a model parameter, sexual reproduction fraction, to capture these variations. This parameter is 
0.0 for LUCA and 0.1 for LUCAEukaryota (using Saccharomyces cerevisiae as a proxy).  Both 
Homo sapiens and LUCAMammalia reproduced solely sexually and so the sexual reproduction 
fraction parameter has a standard value of 1.0, meaning 100% sexual reproduction and 0% 
asexual reproduction. 

8.3.7 Environmental carrying capacity 
As noted earlier, under carrying capacity limitations,  
 
 dpopulation/dt = g*population*(1-(population/K)), 
 
where K is the carrying capacity of the environment for the population.  As population 
approaches K, dpopulation/dt approaches 0 and so g must approach 0.  For g to approach 0, 
birthrate must approach deathRate.  Since empirical evidence indicates variation about how 
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these rates change, in our model birthrate and deathRate approach each other linearly under the 
effect of a carrying capacity limitation. 
 Note that births in general don’t fall to 0; only growth falls to 0.  The birthrate and 
deathRate approach each other as the total population nears the carrying capacity.  When the 
total population reaches carrying capacity, birthRate = deathRate.  However, birthRate cannot 
exceed 1 when carrying capacity is reached, as the total population cannot grow beyond the 
carrying capacity.  These calculations are done for each pool using their relative proportion of 
the carrying capacity as the latter applies to the total model population. 
 Our population model required carrying capacity estimates for prehistoric times; few 
specific numbers can be found in the literature for any time period. Yue et al [196] estimated the 
Homo sapiens carrying capacity of China under several scenarios in the post-industrial age to be 
on the order of 109.  In prehistoric times, populations were limited by physical geographic 
boundaries but not by political ones; this situation would yield a higher total figure than that in 
Yue et al.  However, industrialization has increased carrying capacity; preindustrial carrying 
capacity was substantially lower.  Based on this information, we estimated a Homo sapiens 
carrying capacity to be 107.  We also needed a carrying capacity for LUCAMammalia. No 
specific numbers were found in the literature for Mus Musculus, a suitable proxy for 
LUCAMammalia.  Mus musculus has a mass three orders of magnitude lower than Homo 
sapiens, a longevity approximately one order of magnitude lower, and a comparatively high birth 
rate.  Considering these factors, we estimated the LUCAMammalia carrying capacity to be 109.  
The arithmetic mean of these values, 5.05*108, is our standard value for carrying capacity. 

8.3.8 Fitness 
Futuyma [197] defines the relative fitness of the most fit genotype to be 1.0.  A less fit genotype 
i has a relative fitness of 1-si where si is the selection coefficient and measures the relative 
selection against genotype i compared to the most fit genotype.  Note that a higher selection 
coefficient results in a lower fitness. 
 In our model, we defined the fittest poolfittest as that pool with the highest number of 
mutation+s that has a population ≥ 1.0.  A pooli with a smaller number of mutation+s has its birth 
rate reduced through multiplying it by a factor of 1-((fittest-i)*s), where s is the selection 
coefficient for the model.  However, the birth rate cannot fall below 0. 
 For our standard model, we needed to choose a moderately low selection coefficient as 
we expected that a significant fraction of the net mutation+s were likely to be neutral [112].  We 
used a moderate value of 1% for the standard selection coefficient [198]. 

8.3.9 Nonrandom mating 
Typical population models, for example the Hardy-Weinberg law [189], assume individuals mate 
randomly.  However, the random mating assumption is frequently inaccurate [190].  In our 
population model, we implemented two specific forms of nonrandom mating. 
 The first form of nonrandom mating is evolution of new species, speciation.  It is clear 
that many speciation events occurred during the evolution from LUCAMammalia to Homo 
sapiens.  It is difficult to estimate the number of speciation events as a single mutation (a 
polyploidy mutation for example) may cause a speciation event in a short time or a significant 
number of mutations over a long period may be required. 
 As described above, the model sequence length is less than the effective Homo sapiens 
sequence length and a model run begins with minimum population in the two lowest pools and 
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ends when the final pool population reaches 1.  There is thus an implied speciation event both 
prior to and subsequent to a model run.  One implication of the prior speciation event is that 
individuals in low-numbered pools are prevented from mating with individuals in the earlier 
species and so net mutation+s cannot be lost through this mechanism. 
 

 
Figure 28:  Mating radius 

 The second form of nonrandom mating we implemented was a concept that we invented 
called mating radius.  Mating radius is defined as the maximum difference in pool numbers that 
two mates may have.  For example in Figure 28, an individual in poolk with a mating radius 
equal to 2 may mate with individuals in poolk-2 to poolk+2 inclusive and not with individuals in 
pools outside of that range.   Clearly, a speciation event limits mating radius.  We claim that 
geographic proximity is also a cause of limited mating radius.  Consider the offspring resulting 
from the mating of an individual in pool k with an individual in pool l, where k≤l.  These 
offspring will go into pools with a binomial distribution, described in Section 8.3.6, with a 
maximum in pool (k+l)/2.  Hence, the offspring will go into pools similar to pools k and l.  Since 
offspring are likely to have small natal dispersal (geographic distance between birthplace and 
breeding place) [199], individuals on the whole tend to mate with other individuals from similar 
pools. 
 Although related to other forms of nonrandom mating, the mating radius concept is novel 
and the available literature provided no guidance in choosing a numerical value. Our value of 5 
was somewhat arbitrarily chosen to be a moderate value; in particular, we wished to avoid a 
mating radius that was too narrow. To better understand the implications of our choice, we 
examined the sensitivity of the model to different values of the mating radius; these results are 
described in Section 8.4.2. 
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8.3.10 Operation 
Our model operated by iterating through multiple time periods.  During each time period, the 
model iterated through all of the active pools and performed1 the following: 
 

1. Births and deaths – it would calculate the births and deaths that would take place during 
this time period.  The birth rate was adjusted for fitness (using the selection coefficient 
and pool number) and carrying capacity limit; the death rate was adjusted only for 
carrying capacity limit. 

2. Mutations – the mutations for the newborn population were calculated and newborn 
population fractions were placed into demotion, promotion, or stays in pool categories 
depending on net mutation+s. 

3. Gamete production – the number of gametes created was calculated based on the number 
of newborns and the sexual reproduction fraction. 

4. Asexual reproduction – the fraction of the newborn population that did not become 
gametes was calculated. 

5. Sexual reproduction – a mating window for the gametes was calculated based on the 
active pools with at least one gamete and the mating radius.  The pools in the mating 
window are called mate pools.  For each mate pool, the fraction of gametes to mate with 
those in the mate pool was calculated based on the mate pool gamete population size.  
The expected number of common and distinct mutation+s for each mate pool was then 
calculated.  These were used to create the binomial distribution of distinct mutation+s for 
the zygotes.  From these, the new zygote populations were calculated. 

6. Population update – the asexually produced newborns and the zygotes were added to the 
appropriate pools.  The dead were subtracted from the appropriate pools.   

 
When pool n reached a population of 1, it meant that a net number of n mutation+s were present 
in that individual and the model run was complete.  At the completion of a run, a number of 
results were collected. 
 We estimated model algorithmic complexity as a function of the net number of 
mutation+s n.  There are n pools manipulated over a period of y years.  During sexual 
reproduction, each pool is mated with 2*matingRadius other pools and produces offspring that 
are placed into the n pools.  The complexity is then order n*y*((2*matingRadius)*n).  Since n 
and y tended to be of the same order of magnitude and matingRadius was typically small, the 
complexity is order n3.  Although this order is not an extreme one, the inner loop iterations of our 
model included a considerable number of arithmetic operations and comparisons; these caused 
the model to run relatively slowly even with modest values of n. 

                                                 
1 Our model encompassed a relatively wide range of numeric magnitudes.  Some probabilities were below and some 
populations were above the range of magnitudes that typical computer arithmetic formats could express and that 
typical arithmetic floating point instructions could operate upon.  To successfully proceed with the implementation 
and operation of our model, we used the Java BigDecimal class [200] for many model variables.  The BigDecimal 
class allows numeric magnitudes well beyond the range we required at the expense of greater storage space and 
much greater compute time.  An additional disadvantage of the BigDecimal class is a dearth of available arithmetic 
operations beyond the four basic operations.  In particular, we required exponentiation for our probability 
calculations and so we produced our own implementation. 
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8.4 Model Results 

8.4.1 Fundamental results 
We began with a simplified initial model and added components to it to assess their effects.  Our 
initial model used our standard parameter set with the exception of the following: 
 

• No carrying capacity limit; 
• No sexual reproduction (and mating radius was therefore irrelevant); and 
• No fitness effects. 

 
Figure 29 depicts the results.  Figure 29a shows the time per net mutation+.  Note that the net 
mutation+ count is equivalent to the pool number.  Using our standard sequence length parameter 
of 200, there are 51 net mutation+s required to complete the evolution process and so our graph 
ends at 51.  The vertical axis indicates the number of years required to produce an incremental 
net mutation+. 
 For evolution from one reference species to its successor to take place, the time per 
mutation+ must be relatively low and relatively constant. If the result were too high, the 
evolutionary process would be too lengthy.  If the time per mutation+ began low but grew rapidly 
(exponentially for example) as the total number of mutation+s increased, again the evolutionary 
process would be too lengthy; this latter situation was observed with some combinations of 
parameter settings.  Conversely, a too low time per mutation+ would imply a total evolution time 
that was too short. 
 

 
Figure 29a,b:  Initial model results 

 Our initial model produced a time per mutation+ result that was both relatively low and 
relatively constant.  However, the initial model had a result incompatible with any biological 
process.  Figure 29b indicates the population size by pool number at the conclusion of the 
evolution process.  Note that the vertical axis does not indicate population size but it indicates 
the base 10 logarithm of the population size.  The largest pools have populations exceeding 
10300; worse yet, all of these populations exist simultaneously.  Clearly this result is not 
consistent with any realizable biological habitat.  From our experience with this initial model, we 
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imposed upon all subsequent model versions a carrying capacity parameter, limiting the total 
population to a physically realizable value.   
 

 
Figure 30a,b:  Initial model with carrying capacity limit 

 Figure 30 presents the results from the initial model with our standard carrying capacity 
limit imposed.  Our final pool populations (Figure 30b) are large but realistic.  However, the time 
per mutation+ (Figure 30a) grows too rapidly with mutation+ count.  After over 106 years 
duration (at which point the model run was halted), a total net of only 10 mutation+s had 
occurred.  This result was too lengthy to be consistent with the known evolutionary time for 
Homo sapiens. 
 We then investigated the effect of enabling sexual reproduction in our initial model.  
Much has been written about the evolutionary advantages of sexual reproduction [186 187] and 
both LUCAMammalia and Homo sapiens reproduced sexually. 
 

 
Figure 31a,b:  Initial model with carrying capacity and sexual reproduction   

 Figure 31 presents results that are improved somewhat from those without sexual 
reproduction.  In Figure 31a, a total of 21 net mutation+s occurred within approximately 106 
years; this result is more than double the result without sexual reproduction. However, since only 
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21 mutation+s occurred and the time per mutation+ was still rising, this result is also too lengthy 
to be consistent with known evolutionary time. 
 The population profile in Figure 31b was similar to that in Figure 30b, with the 
population being spread among more pools.  In both models, it is clear that the smallest 
numbered pools, those with the least net mutation+s, dominate the population profile.  Even with 
sexual reproduction, the majority of offspring will tend to go into a pool near their parents’ 
pool(s). 
 The time per mutation+ would decrease if the population of the smallest numbered pools 
fell over time.  If the mutation+s have a positive fitness effect, the effect would cause the 
populations of lower numbered pools to be reduced relative to those of higher numbered pools.  
To investigate this effect, we added a large, selection coefficient of 10%. 
 

 
Figure 32a,b:  Initial model with carrying capacity, sexual reproduction, and 10% selection 
coefficient 
 Figure 32 depicts the results of the 10% selection coefficient and the changes from Figure 
31 are dramatic.  With the 10% selection coefficient, the time per mutation+ shown in Figure 32a 
is both low and relatively constant as required.  Figure 32b indicates that the population peak in 
the pools is near to the final pool as opposed to remaining near the initial pools when the 
selection coefficient is 0 as in Figure 31b.  Observation of the position of this peak as the model 
ran indicated that it moves from left to right over time as expected.  It is this population peak 
movement that enables comparatively rapid accumulation of mutation+s over time. 
 A 10% selection coefficient per net mutation+ is too high to be realistic, especially given 
that a significant fraction of the net mutation+s were likely to be neutral.  Using our standard 
value of 1% for the selection coefficient in the model yielded results inconsistent with known 
evolutionary time and improved over but not substantially different from the Figure 31 results, 
for which a selection coefficient of 0 was used.  Clearly fitness alone was not the solution to our 
conundrum. 
 Retaining the 1% selection coefficient and imposing our standard mating radius of 5 was 
the next step in our population evolution modeling. 
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Figure 33a,b:  Standard model 

 Figure 33 depicts results using parameter values that make up our standard model:  
carrying capacity limited, sexual reproduction enabled, selection coefficient of 1%, and mating 
radius of 5.  The time per mutation+ shown in Figure 33a, is both low and relatively constant as 
required by known evolutionary time.   
 We noted 4 epochs in this result: 
 

1. In the first epoch, the time per mutation+ is very low as the early pools grow at their full 
rate, having not yet reached the carrying capacity limit.  In addition, when the highest 
numbered pool k is low, there are such a large number of possible sites for a mutation+ 
and so comparatively few for a mutation– that a significant fraction offspring are 
promoted to the next pool.  The number of sites for a mutation+ is given by the binomial 
coefficient 

€ 

(1
n−k ) where n is the total number of mutation+s; this large number results in a 

high probability of offspring being promoted to a higher pool number.   
2. The second epoch begins just as the 7th net mutation+ occurs and pool 7 has population ≥ 

1.  At this time, the total population reaches the carrying capacity limit.  The time per 
mutation+ climbs, reaching a peak of 49 at mutation+ 12, as the high populations in the 
early pools and limited growth throughout don’t support rapidly populating increasingly 
high numbered pools.   

3. The third epoch begins approximately when the 18th net mutation+ occurs.  At this point, 
the high numbered pools themselves have increased in population sufficiently to support 
populating yet higher numbered pools.  The time per mutation+ then falls to a low value. 

4. The last epoch begins when the maximum net mutation+ count is nearly reached at 
approximately the 46th net mutation+.  Here the time per mutation+ climbs again due to 
three effects.  The first effect is that with a large majority of mutation+s having taken 
place, the probability of a mutation– is much higher than the probability of a mutation+; a 
binomial coefficient analogous to that in epoch 1 applies.  The second effect is that these 
high numbered pools have fewer high numbered pools to mate with due to the cutoff at 
pool 51, the highest pool in this model.  The third effect is that offspring that would go 
into pools higher than pool 51 are lost – there is effectively a speciation event after pool 
51.  These lost offspring cannot produce offspring to contribute to pools numbered 
between 46 and 51. 
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Figure 33b once again indicates that the lowest numbered pools dominate the population profile. 

8.4.2 Parameter sensitivity results 
To fully understand the sensitivity of the model to its parameters, we ran it with a range of 
parameter values and assessed the changes in model results compared to the model results with 
standard parameter values. 
 
Mutation rate 
Experience with the model demonstrated that small changes in mutation rates had little effect.  In 
Figure 34, we show the effects of varying the mutation rates determined in Chapter 6 over a 
range of four orders of magnitude. 
 

 
Figure 34:  Mutation rate vs time 

 A hundredfold decrease in the mutation rate did increase the time as expected, from just 
less than 200 years to just less than 500 years.  Increasing the mutation rate a hundredfold had 
little effect. 
 
Sexual reproduction fraction 
We ran the model with no sexual reproduction, a 0.5 fraction of sexual reproduction (and the 
remainder of the births produced asexually), and with the standard parameter value for 
LUCAMammalia and Homo sapiens, a 1.0 sexual reproduction fraction. 
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Figure 35:  Sexual reproduction fraction vs time 

 Varying the fraction of sexual reproduction had a dramatic effect on the model results; 
note the logarithmic time scale in Figure 35.  These results all use a model sequence length 
below the standard due to the long duration with no sexual reproduction.  With no sexual 
reproduction (and therefore complete asexual reproduction), the evolution time was nearly 5 
orders of magnitude larger than with full sexual reproduction.  Reducing the sexual reproduction 
fraction to 0.5 had little effect, however. 
 
Mating radius 
Mating radius is one of the model parameters for which we have the least confidence in having 
an accurate value.  Hence, its assessment over a range of values was unusually important.   
 

 
Figure 36:  Mating radius vs time 
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 Mating radius variation had a dramatic effect on evolution time; note the logarithmic time 
scale in Figure 36.  Varying the mating radius from 1 to 10 caused an increase in time of 
approximately 3 orders of magnitude. 
 
Birth and death rates 
Experience with the model demonstrated that small variations in birth and death rates had little 
effect, so we assessed a range for these rates over 4 orders of magnitude in size, centered on the 
standard rates.  Figure 37 depicts these results; the time scale has been expanded to make some 
subtle differences visible. 
 

 
Figure 37:  Birth and death rates vs time 

 Overall, significant changes in birth or death rate had little effect on evolution time – this 
result is due to the limits on these rates imposed by carrying capacity.  We noted one 
counterintuitive effect:  a lower birth rate very slightly decreases evolution time.  A detailed 
examination of the model results showed that the difference occurs just before carrying capacity 
is reached.  A lower birth rate causes the population to reach carrying capacity more slowly and 
allows more generations for higher numbered pools to be populated before the birth rate is 
limited by the carrying capacity. 
 
Carrying capacity 
Environmental carrying capacity is one of the model parameters for which we have the least 
confidence in having an accurate value.  Hence, its assessment over a range of values was 
unusually important. 
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Figure 38:  Carrying capacity vs time 

 Carrying capacity had a significant effect on evolution time; note the logarithmic scale of 
the time axis in Figure 38.  In particular, a hundredfold-reduced carrying capacity caused an 
increase in time of similar magnitude.  A hundredfold increase in carrying capacity caused only a 
modest reduction in time. 
 
Fitness 
To accurately gauge relative fitness, a natural population must be observed over time.  As this 
observation was not possible, we ran the model with a range of fitness values, using selection 
coefficients from 0.0 up to 10 times our standard value. 
 

 
Figure 39:  Fitness vs time 
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 As expected, a higher selection coefficient caused a reduction in evolution time as shown 
in Figure 39.  A higher selection coefficient causes the relative population of earlier pools to be 
reduced as their fitness declines.  This reduction in early pool population is accompanied by an 
increase in later pool populations while subject to the carrying capacity limit. 
 

 
Figure 40:  Population by pool for fitness variants 

 In Figure 40, we show a comparison of pool population profiles for standard fitness and a 
selection coefficient of .10.  The majority of the population resides in the lowest pools in the 
standard model in contrast to the population profile of the .10 fitness model that shows a 
binomial distribution in the high numbered pools centered at pool 42.  This distribution is due to 
the binomial distribution of unique mutation+s in offspring from sexual reproduction described in 
Section 8.3.6. 
 
Model sequence length 
The effective sequence length for Homo sapiens was derived in Chapter 2 to be 1.3*108 bases; 
this value was used consistently in our population model.  However, the computational 
complexity of our model precluded our using this full length in our model runs.  In addition, 
there were clearly speciation events during the evolution from LUCAMammalia to Homo 
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sapiens; these events acted as mating boundaries between population pools and our model runs 
were implicitly bracketed by speciation events.  Our standard model used a model sequence 
length of 200; we investigated model sequence lengths greater than our standard length to 
determine the effect. 
 

 
Figure 41:  Model sequence length vs time 

 As shown in Figure 41, total evolution time falls from sequence length 200 to 600 and 
rises after that.  This reduction in time is due to fitness effects reducing the early pools’ 
population increasingly rapidly.  However, this change is a boundary effect that is reduced as 
model sequence length increases. 
 We also looked at evolution time per sequence base as a function of model sequence 
length.  Taking the accepted value for LUCAMammalia to Homo sapiens evolution of 2*108 
years [201] and dividing by the effective sequence length for Homo sapiens 1.3*108, we know 
that the biological time per base was 1.54 years/base.  If our model accurately captured the 
biological process, it would yield a time/base of approximately 1. 
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Figure 42:  Model sequence length vs time/base 

 Rather than staying near a value of 1, Figure 42 shows that the time/base falls rapidly as 
model sequence length increases.  It is clear that another parameter must be changing as model 
sequence length changes in order for the model to accurately reflect biological evolution.  As the 
model sequence length increases, the number of pools correspondingly increases.  With a larger 
number of pools with which to mate, the mating radius (to which model results are very 
sensitive) must also increase. 
 To investigate this possibility, we ran the model over a combination of model sequence 
lengths and mating radii.  The results are shown in Figure 43. 
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Figure 43:  Time/base 

 When the standard mating radius is used, the time/base decreases from 1.43 at model 
sequence length 200, a value consistent with biological evolution, to .0165 at length 20,000, a 
value far too low implying unrealistically fast evolution.  Increasing the mating radius to 10, the 
time/base decreases from 152, implying unrealistically slow evolution, to .48885, a value just 
below a realistic one.  From this model experience, it is clear that mating radius is a 
monotonically increasing function of sequence length. 
 
Parameter accuracy confidence 
As a complement to these sensitivity results, we also considered our confidence level in the 
accuracy of our model parameters. 
 

 High Moderate Low 
 sensitivity sensitivity sensitivity 

Sexual reproduction 
fraction   

Mutations -- types, 
counts, rates 

    
Effective sequence 
length 

High 
confidence 

    Homologous fraction 
   Birth rate 
    Death rate Moderate 

confidence 
      
Carrying capacity Fitness   
Mating radius     Low 

confidence 
      

Table 26:  LUCAMammalia to Homo sapiens parameter confidence level and sensitivity 
 Table 26 presents the parameters that apply to evolution from LUCAMammalia to Homo 
sapiens in a two-dimensional graph.  The vertical axis indicates our confidence level that the 
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values we used for them accurately reflected the actual values of those measures during the 
biological evolution of LUCAMammalia to Homo sapiens.  The horizontal axis indicates the 
sensitivity of the model to the parameter, as determined earlier in this section.  We put fitness 
into the moderate sensitivity category, as model sensitivity is low when its value is low and high 
when its value is high; we continue to consider it among the most significant parameters. 
 Our comparatively high confidence in the accuracy of some parameter values is due to 
solid empirical data and well-founded algorithms to manipulate it.  We have only modest 
confidence in the birth and death rates because, although we have good empirical values for 
current species, values for theoretical species like LUCAMammalia are speculative and past 
environmental conditions likely had a significant effect on these rates.  We have but poor 
confidence in some parameters, such as carrying capacity, as there is little empirical data related 
to them and/or they clearly varied substantially with environmental changes (for example, 
changes in climate, competition, or predation) over time; one might justly describe our chosen 
values for these parameters as very rough estimates. 
 We note that among the four most significant parameters, only one, sexual reproduction 
fraction, is in our high confidence of accurate value category.  The remaining three parameters 
are in the poor confidence category. The minimal confidence is primarily due to lack of 
empirical data rather than a lack of confidence in the model or the nature of the parameters 
themselves.  Better estimates for these parameters are a clear opportunity for future work. 
 Note that the values in Table 26 are specific to LUCAMammalia to Homo sapiens 
evolution.  Our confidence level in the model parameters is further reduced in the case of 
evolution processes between earlier, adjacent reference species: 
 

• Although we are certain that sexual reproduction was the sole mechanism for the former 
evolution process, we are much less certain about the relative proportions of asexual and 
sexual reproduction for LUCAEukaryota and the frequency of HGT (which functions to 
create genetic diversity for asexually producing species) for LUCA.   

• While we know that mating radius is limited for mammals because of their limited natal 
dispersal, natal dispersal distances vary significantly among species [199].  This variation 
in natal dispersal is likely to have an effect on mating radius for nonmammalian species, 
including LUCAEukaryota and LUCAMetazoa. 

• Carrying capacity has been modeled for Homo sapiens [196] and, based on that result, we 
estimated it for LUCAMammalia.  However, a similar estimate for nonmammalian 
species is likely to be less successful because such species have vastly different 
environmental needs such as physical space and nutritional/energy requirements. 

 
Because of this further decreased confidence in accurate parameter values to which the model is 
very sensitive, we confined our efforts in our population model to LUCAMammalia to Homo 
sapiens evolution. 

8.4.3 Duration results 
The duration of the evolutionary process derived from this model remains of some interest.  As 
stated above, we concentrated our efforts on the LUCAMammalia to Homo sapiens evolutionary 
process.  We calculated the duration for this process for all of our model runs that ran to 
completion.  We present here the result from our standard model. 
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 Our standard model had a sequence length of 200 bases, requiring 51 net mutation+s to 
evolve, and the duration to evolve that sequence with our model using to LUCAMammalia to 
Homo sapiens parameters was 286 years.  The effective Homo sapiens genome length is 1.3*108 
as derived in Chapter 2.  We then calculated: 
 
 286 years * (1.3*108/200) = 186 million years 
 
This value compares well with the broadly accepted duration of approximately 200 million years 
[201].  Based on this result, we concluded that our model could produce results that are 
consistent with the biological process that took place on earth. 
 However, we do not describe this result as an independent confirmation of the 200 
million year value.  Depending on its parameter values, our model generated a range of values 
for this duration from 0.5 million years to values greater than the age of the universe.  In theory, 
it is possible to mitigate this issue by merely confining parameters to accurate values.  However, 
our confidence in parameter value accuracy, shown in Table 26, varied considerably.   

8.5 Model Analysis 
A central result of our model is that, with reasonable estimates for the relevant parameters, the 
time/base is approximately 1 year/base and comparatively constant with model sequence length.  
A time/base that declined with sequence length would imply an evolution time too short to be 
consistent with the broadly accepted time.  Conversely, a time/base that grew with sequence 
length, as shown in Figure 30, would imply an evolution time too long.  Our comparatively 
constant result for the time/base gives us confidence in the veracity of our population model. 

8.5.1 Significant factors in population evolution 
From a large number of model parameters, four emerged as very significant factors because 
model results proved very sensitive to their values: 
 
Sexual reproduction fraction 
Our model demonstrated that sexual reproduction was essential to the evolution from 
LUCAMammalia to Homo sapiens.  As shown in Figure 35, evolution time was overly lengthy 
when it was absent.  In its absence, the population source for higher numbered pools would be 
strictly from mutation; since the probability of a net mutation+ falls as the net mutation+ count 
rises, it is very improbable for higher-numbered pools to be populated and so evolution time rises 
rapidly. 
 It is clear that both partially and fully asexually reproducing species also evolved 
successfully; for example, we expect that the evolution from LUCA to LUCAEukaryota took 
place with little to no sexual reproduction.  We note that the 0.5 sexual reproduction fraction 
time in Figure 35 is very similar to the 1.0 fraction value; this result suggests a comparatively 
small fraction of sexual reproduction, or its equivalent, is sufficient.  For LUCA and its asexually 
reproducing progeny, the equivalent is Horizontal Gene Transfer (HGT).  Treangen and Rocha 
[202] analyzed a number of prokaryote genomes of varying sizes and concluded that the vast 
majority of expansions of protein families are due to HGT.  Our model is clearly consistent with 
this result. 
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Mating radius 
Our model indicated that mating radius, a novel concept introduced in this research, was 
essential to evolution.  This indication comes from the model being very sensitive to mating 
radius.  Doubling the mating radius in our standard model caused the evolution duration to 
increase exponentially.  However, it is also clear that mating radius must increase with model 
sequence length as shown in Figure 43 or evolution time/base falls with increasing sequence 
length.  When mating radius increases with model sequence length, the latter (and by implication 
speciation rate) is not a significant parameter of the model. 
 We know that limited mating radius is a valid phenomenon as speciation clearly causes it.  
We also described in Section 8.3.9 that mating radius is effectively limited by the geographic 
proximity of similar pools from the limited natal dispersion of mammals and the binomial 
distribution of positive mutations produced by sexual reproduction.   
 We speculate that variation in sexual attraction may also limit mating radius.  It is known 
that two individuals must be sufficiently similar (by definition, the same species) in order to mate 
successfully.  However, it is advantageous that they not too similar lest they suffer the adverse 
fitness effects of inbreeding depression [203].  Studies have shown that mammals have various 
mechanisms for avoiding mating with individuals that are too similar, for example have a similar 
major histocompatibility complex (MHC) [204]. 
 Mating with an individual from a similar pool may effectively provide that successful 
combination of similarity (similar number of mutation+s) and dissimilarity (different specific 
mutation+s).  If this speculation is correct and is a factor in sexual attraction, this effect would 
also tend to effectively limit mating radius. 
 
Carrying capacity 
Our model demonstrated that carrying capacity was an essential factor in evolution.  In its 
absence, time/base is acceptable almost independent of other model parameters but population 
sizes grow to unrealistic levels even for short sequence lengths.  Our model demonstrated that 
evolution times are significantly lengthened when carrying capacity is lowered from our standard 
model value but only modestly affected when the carrying capacity is raised.   
 Independent of any specific carrying capacity value, this result suggests that as the 
carrying capacity of an environment for a species falls, the ability of the species to develop 
successful adaptations similarly falls.  We speculate that this result is a partial explanation for the 
common occurrence of extinction, roughly 3 species/year [205]. 
 
Fitness 
Our model indicated that fitness could be a significant factor in evolution; evolution times are 
significantly shortened with a very high selection coefficient.  However, the time difference 
between a 0 selection coefficient and our standard model value of .01 was negligible; thus, the 
model is not sensitive to the selection coefficient value when it is low.   
 There is significant variation in the fitness effect of a mutation.  A frameshift mutation is 
one that causes the all of the codons following it in a gene to change; an insertion of length 1, for 
example, typically has this effect.  A single mutation, such as an early frameshift mutation in a 
human’s beta globin gene (one of the proteins that make up hemoglobin), can be fatal, increasing 
the selection coefficient to 1.  Conversely, a single mutation can confer antibiotic drug resistance 
to a bacterium and allow survival in an antibiotic-laden environment fatal to bacteria lacking the 
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mutation [206].  In addition, mutations with only marginal (<<1%) effect on fitness are 
conserved [198].   
 Because our model results were consistent with those obtained from the literature, we 
conclude that our mutation+s had a mean fitness effect that was slightly above 0 (neutral) with 
significant variation above this mean as it can reach 1. 
 
Other parameters 
Other parameters affected the model, of course.  For example, a significant reduction in mutation 
rate caused a nontrivial increase in evolution time as shown in Figure 34.  However, none of the 
remaining parameters affected our model to the extent of our four most significant ones. 

8.5.2 Generalizations 
From our model results and analysis, we make several generalizations about population 
evolution: 
 
Fundamental population evolution operation 
From our model results, we summarize evolution from LUCAMammalia to Homo sapiens as 
follows: 
 

1. Mutation+s occurred, resulting in gametes whose zygotes would likely be in higher-
numbered pools.  Mutation–s occurred, resulting in gametes whose zygotes would likely 
end up in lower-numbered pools. 

2. Sexual reproduction created zygotes destined for a range of pools broader than that 
encompassed by their gametes (and, by implication, their parents).  A limited mating 
radius reduced the gamete pool range so that higher-numbered pools were populated 
despite most of the gametes being in low-numbered pools. 

3. Decreased fitness (higher selection coefficient) slowed the growth of, and ultimately 
reduced the population of, lower-numbered pools; this resulted change in increased 
population in higher-numbered pools. 

4. By limiting how rapidly population pools could grow, carrying capacity slowed the 
evolution process to the rates we observe in nature. 

 
Small population characteristics 
When the population of a species is comparatively small (when the population is much lower 
than the carrying capacity), virtually any sequence can be produced in a time linear with the 
sequence length.  This result is almost independent of other evolution parameters.  Such a 
situation might exist immediately after a speciation event. 
 Although speciation in prokaryotes is not well defined, a useful working definition might 
be that when an individual evolves in such a way that it has a carrying capacity independent of 
the remainder of the strain, it has become a new species.  This situation occurs when an 
individual evolves antibiotic resistance in an antibiotic-laden environment.  Andersson and Levin 
[206] observed that antibiotic resistance carries a fitness cost, but that the cost is mitigated by 
subsequent evolution.  We speculate that this subsequent evolution is enabled by small 
population characteristics. 
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Progress versus regress 
In the evolution of a population, an offspring from an individual may belong to a higher-
numbered pool, resulting in progress towards the successor reference species, or it may belong to 
a lower-numbered pool, resulting in regress.  Most of the population evolution mechanisms we 
have been describing are relatively balanced with respect to progress versus regress.  Mutation+s 
are balanced by mutation–s; though the latter are in fact more probable than the former.  Sexual 
reproduction broadens the pool range of offspring, but does so symmetrically; mating radius 
narrows the offspring range, also symmetrically.  Carrying capacity limits the population size of 
all pools proportionally. 
 The sole exception to this balance is fitness, which favors higher-numbered pools.  
Progress can take place in the absence of pool fitness variation – higher-numbered pools will 
eventually be populated.  But fitness variation speeds progress. 
 
The speciation ratchet 
When a speciation event occurs, it prevents the mutation+s contained in the new species genome 
from regressing due to sexual reproduction.  Individuals belonging to the new species cannot 
mate successfully with members of lower-numbered pools, as they are a different species.  Thus, 
speciation acts as a ratchet against regression due to sexual reproduction.  It does not, however, 
prevent regression due to mutation–s. 

8.6 Summary 
In this chapter, we described and presented the results of our population model.  Our model used 
a set of population pools defined by relevant mutation types and counts.  Reproduction created 
newborns at the appropriate growth rate; these were placed into the pools based on their 
genomes.  We limited the model scope to LUCAMammalia to Homo sapiens evolution because 
our low confidence in the accuracy of significant model parameters for earlier reference species. 
 Four parameters emerged as most significant:  sexual reproduction, mating radius, 
carrying capacity, and fitness.  Other parameters, such as growth rate and mutation rate, had an 
effect on model results significantly smaller than the four most significant. 
 We described the overall population evolution process based on our model results.  We 
also described how carrying capacity could affect a species’ adaptability, how fitness is distinct 
from other parameters in its asymmetry, and the speciation ratchet. 
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9 Conclusion and Future Work 

9.1 Summary 
The effort in this thesis research was concentrated in four tasks: 
 

1. Creation of and calculation using a simple evolution model to confirm that even such a 
model offered verifiably accurate predictions. 

2. Identification of a set of reference species, starting with LUCA, and reconstruction of a 
portion of the reference species’ genome sequences. 

3. Creation, implementation, and operation of a sequence evolution model, aligning the 
genomes of adjacent reference species to determine the mutations that likely took place 
during their evolution. 

4. Creation, implementation, and operation of a population model that applied the results of 
previous tasks to determine the evolution of a population from one reference species 
genotype to the successor reference species genotype. 

 
Each task produced specific results: 
 

1. The simple model produced an independent time estimate for LUCA’s evolution to 
Homo sapiens consistent with the generally agreed upon value. 

2. The reference species identification and genome reconstruction task produced portions of 
the genome sequences for LUCA and its successor reference species. 

3. The sequence evolution model produced the mutation types and quantities that took place 
during the reference species evolution.  It also suggested that inversions are an important 
mutation type, that nonhomologous sequences are more likely to evolve from unrelated 
coding sequence than from random sequence, and that some sequences may be more 
likely to evolve into unrelated sequences than others. 

4. The population model allowed us to observe four epochs in population evolution and to 
discover a new evolution parameter, mating radius.  It also determined the four most 
significant parameters in population evolution and produced a long-term evolution time 
estimate consistent with the generally agreed upon value. 

9.2 Future work 
This research suggests valuable, future work in each of the three research realms of biology:  in 
vivo, in vitro, and in silico.  The largest opportunity for future work relates to our evolution 
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parameters.  For our model, there were three parameters to which it was sensitive and in which 
we had low confidence in their value accuracy.  In addition, we had moderate confidence in two 
other parameters.  Our confidence in model parameter accuracy would have been further reduced 
in modeling the complete LUCA to Homo sapiens evolution process as described in Section 
8.4.2.  However, if future work that produced empirical data relevant to estimating these 
parameters, we could extend our population model to cover the complete LUCA to Homo 
sapiens evolution process.  We would require substantial computer resources for the model 
extension.  We estimate the cost to be $835,000; see Section 10.2 for details. 

9.2.1 In vivo 
Certain parameters of our model are best determined in vivo. In particular, we should determine 
specific values for the significant evolution parameters, sexual reproduction fraction (or HGT 
fraction where applicable), carrying capacity, fitness, and mating radius.  These measurements 
should take place in natural environments to the greatest extent possible.  Ideally, they should be 
determined for multiple proxy species for each reference species.  For example, we should 
determine these parameters for Mus musculus as a proxy for LUCAMammalia and 
Saccharomyces cerevisiae as a proxy for LUCAEukaryota, and Synechocystis (a cyanobacteria) 
as a proxy for LUCA. 

9.2.2 In vitro 
Certain parameters of our model are best determined in vitro.  In particular, we should determine 
in the laboratory more mutation rates, especially inversion rates and lengths.  We should make 
these measurements in a consistent way so that results are comparable.  Again, they should 
ideally be determined for multiple proxy species for each reference species. 

9.2.3 In silico 
There are considerable remaining opportunities for in silico work: 
 

• Complete the reconstruction of the LUCA and other reference species genomes. 
• Apply sequence evolution model to complete reference species genomes. 
• Make additional nonhomologous gene evolution comparisons.  In particular, further 

confirm that such evolution is more probable from coding sequence than from random 
sequence.  Also, confirm or refute our universal source sequence hypothesis: some 
coding sequences are significantly more likely, compared to other coding sequences, to 
evolve into nonhomologous genes. 

• Implement a fully multithreaded version of the population model and operate it on long 
model sequence lengths, simulating long periods between speciation events. 

• Use the results of the suggested in vivo and in vitro work to extend the population model 
all the way back to LUCA. 

• Determine hetereozygosity effects during population evolution. 
• Determine mutation locality effects during population evolution.  At the outset of 

evolution from one reference species to its successor, mutation+s can occur at essentially 
any location.  Eventually, there must be some locality of these mutations in order to make 
a gene composed of contiguous nucleotides.  This need for such locality may partially 
explain the presence of introns in genes. 
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10 Appendix 

10.1 Software tools 
Two significant software packages were created in the course of this research, Blind 
WatchMaker Path (BWMPath) and DropBox Distributed Processing (DDP).  In addition, several 
existing software tools were extensively used.  All of these are described below. 

10.1.1 Blind WatchMaker Path (BWMPath) 
BWMPath contains the bulk of the software written for this thesis, some 13,000 lines of Java 
code.  It offers both a GUI and command line interface, and is able to function as a node in a 
DDP distributed processing environment.  Its specific functions are described thoroughly in the 
dissertation chapters; we summarize them here: 
 

• Manipulation and analysis of genome database information. 
• Creation and operation of a pipeline of existing tools to reconstruct genomes, and 

analyzing results from the pipeline components. 
• Sequence evolution modeling and analysis through sequence alignment. 
• Population evolution modeling and analysis using sequence, mutation, and species data. 

10.1.2 DropBox Distributed Processing (DDP) 
DDP is a distributed processing framework based on a distributed file system.  Our 
computational resources for this research resided in multiple, disparate locations, each connected 
to the Internet through a strict firewall.  The only distributed file system we found that could 
effectively penetrate these firewalls and provide incremental backup with history was Dropbox 
[207].  DDP can be based on any distributed file system that allows all computational resources 
read/write access to all relevant directories and files.  We used it universally with Dropbox for 
the reasons cited above.  DDP is written in Java, which provides multiplatform compatibility.  A 
DDP master application is provided and a DDPLibrary is provided for Java-based worker code to 
include. 

DDP assumes a single master node and any number of worker nodes that communicate 
through a shared directory universally accessible under the auspices of the distributed file 
system.  Workers have unique names based on their Internet host names.  Communication is via 
a formal protocol and each protocol item is instantiated as a file in the shared directory with a 
name in a well-defined format and contents that are specific to the protocol item type.  The file 
name format is “type_worker_time.ddp”, where type is the protocol item type, worker is the 



 
119 

name of the worker (source or destination depending on item type) or ‘*’ indicating a destination 
that is all workers, and time is the time in seconds obtained from the Java method 
Calendar.getInstance().getTimeInMillis().  There is no requirement that the nodes’ 
clocks be synchronized; time is used to distinguish otherwise identical protocol items. 
 

type worker file contents 
epoch *   
announce source none required; useful to put software name and version 
task typically * task description 
init source task description 
lockreq source name of item for which lock is requested 
lock destination name of item locked 
unlock source name of item to unlock 
complete source time 
interrupt typically * time 
exit typically * time 
exited source time 
restart typically * time 
restarted source time 

Table 27:  DDP protocol types 
 In Table 27, we list each DDP protocol type, whether worker is the source of the item or 
the destination, and the protocol item file contents.  A task description must be parseable by the 
worker.  We use a task description that consists of a task type and its parameters, all separated by 
|’s. A time entry in the file contents column indicates the time of a protocol type; responses, such 
as exited, use the time of the request, exit. 

The lockreq/lock/unlock set of types is used to implement mutual exclusion – the 
DDP master ensures that there is at most one lock on any given item at any time.  Anything with 
a unique name can be locked; in our usage, we locked directories in the distributed file system.  
DDP does nothing to enforce the locks and so assumes cooperative processes. 
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Figure 44:  DDP worker code example 

 In Figure 44, we show a listing of minimal Java code for a DDP worker.  The code 
imports the required DDP library file, defines a set of directories to process, and identifies the 
directory where the DDP protocol items will be placed.  All of these directories must be part of 
the distributed file system.  The code then makes a new LibWorker object and announces it to 
the DDP master.  Finally, the code iterates through its directory list, processing only those 
directories on which it is granted a lock.  In this example, up to three workers can usefully 
process the directories simultaneously, since there are three directories to process. 

Our implementation of a DDP worker was considerably more elaborate than the minimal 
one described in Figure 44.  Using additional LibWorker methods, our implementation did the 
following:   
 

1. Look for tasks to perform. 
2. When such a task is found, indicate that a task was initiated. 
3. Request locks on task items and process items on which locks were granted. 
4. Indicate the task is completed when all task items have been processed. 
5. Respond to interrupt, exit, and restart. 

 
Any comprehensive implementation of a DDP worker would need to do these same things. 

The DDP master program and its daemon are run before any workers are started.  The 
DDP master program provides a continuously updated display with the status of workers, locks, 
and tasks.  It offers commands to:   
 

• Start, reset, and stop its daemon process. 
• Interrupt, exit, and restart workers; the latter is useful for updating the software for all 

workers in parallel.   
• Compose task descriptions and run tasks. 
• Test DDP master/worker interaction. 

 

import ddplibrary.LibWorker; 
 
String directoryBase = System.getProperty("user.home") + 
"/Dropbox/”; 
String[] processDirs = {“dir1”, “dir2”, “dir3”}; 
String DDPProtocolDir = directoryBase  + “DDPProtocol/"; 
 
LibWorker.myLibWorker = new LibWorker(DDPProtocolDir); 
LibWorker.myLibWorker.announce(“Example code version 1.0); 
 
for(String dir : processDirs) { 

if(LibWorker.myLibWorker.lock(directoryBase + dir)) { 
 // lock granted; process the directory 
} 

} 
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10.1.3 Multiple Alignment with Fast Fourier Transform (MAFFT) 
MAFFT [71] is an efficient, effective sequence alignment program.  It is primarily oriented 
toward aligning amino acid sequences and, by implication, coding DNA sequences such as those 
used in our research. 

Much effort has been expended on the overall problem of sequence alignment.  Two 
successful efforts at alignment software are the commonly used CLUSTALW [208] and T-
COFFEE [209], which is known for accuracy.  However, neither software tool has made great 
strides in reducing processor time that, in a typical approach using dynamic programming to 
optimize the alignment, involves time proportional to NK, where N is the sequence length and K 
is the number of sequences. 

The frequency of amino acid substitutions, which MAFFT users for alignment, depends 
on the difference of certain amino acid properties, particularly volume and polarity.  
Substitutions that involve amino acids, which are similar in these two properties, tend to preserve 
the structure of the resulting protein and so tend to be neutral with respect to selection pressure.  
MAFFT converts an amino acid sequence into a sequence of vectors, each of which is a 
normalized form of the volume or polarity of the amino acid at that site. 

The correlation between two sequences is the sum of the volume correlation and the 
polarity correlation.  The volume correlation between two sequences with positional lag k is the 
product of the normalized volume of the first sequence at site n and the normalized volume of 
the second sequence at site n+k, summed over the lengths of the two sequences.  The polarity 
correlation is computed analogously. 

A Fourier Transform [210] is a mathematical algorithm which characterizes a sequence 
by its frequency components rather than its amplitude component.  The Fast Fourier Transform 
(FFT) is a computationally efficient version of the algorithm.   Using an FFT to compute 
sequence correlations reduces the O(N2) computation to one that is O(N log N). 

The performance of the MAFFT approach is substantial.  The processor time consumed 
by MAFFT is drastically reduced compared to CLUSTALW with comparable accuracy in 
alignment results.  When the number of sequences to be aligned is large, MAFFT is two orders 
of magnitude faster than T-COFFEE with comparable accuracy. 

10.1.4 Randomized Axelerated Maximum Likelihood (RAxML) 
RAxML [211 212] is a program for constructing phylogenetic trees of sequences based on ML 
inference.  Although ML methods provide more accurate results than parsimony methods, they 
are computationally intensive.   RAxML begins by creating an initial tree based on 
parsimony.  This tree creation is done for two reasons: 
 

1. Parsimony trees are related to ML trees under some evolutionary models.  This tree 
creation ensures that the initial tree has a relatively high likelihood. 

2. Parsimony algorithms are not computationally demanding.  This rapid processing allows 
RAxML to perform several iterations, each with a different initial tree, in a reasonable 
time frame. 

 
The central step in any phylogenetic tree reconstruction algorithm is the tree rearrangement step.  
This step begins with the best (highest likelihood) tree found up to this point.  A range of 
distances is defined, usually beginning with a minimum distance of 1 and a maximum distance 
that is dependent on the specific overall algorithm being used.  Inefficient algorithms must use a 
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relatively small maximum rearrangement distance in order to reach completion in a reasonable 
time frame.  New trees are constructed by moving all subtrees in the best tree a distance between 
the minimum and maximum rearrangement distance, inclusive.  If one of the newly created trees 
has a higher likelihood than the current best tree, it replaces the current best tree.  The process 
repeats until no better tree topology is found. 

A typical approach to the above step is to optimize and compute the likelihood of the 
entire tree each time a subtree is rearranged.  RAxML improves upon this approach by only 
optimizing and computing the likelihood of the local branches adjacent to the newly inserted 
subtree.  This fast pre-scoring is used to make a small list of best potential trees that are likely to 
improve the likelihood of the entire tree compared to the current best tree.  After completion of a 
rearrangement step, RAxML performs global optimization on only those topologies in its best 
potential tree list.  Due to the efficiency of this approach, RAxML is able to analyze significantly 
more topologies and so allow a higher maximum rearrangement distance.  This broader analysis 
results in significantly better final trees. 

Another variation of the process that RAxML performs takes place during the initial 
optimization phase (the first few rearrangement steps).  If during the insertion of a specific 
subtree in a new location a better likelihood results, this new topology is kept immediately and 
all subsequent subtree rearrangements are performed on this improved topology.  This approach 
results in rapid optimization of early trees. 

Overall, the RAxML approach performs better on real data than the other common 
pyholgenetic tree construction programs PHYML, MrBayes, and PAxML [211].  RAxML is thus 
a fast, accurate ML program that allows inference of large trees in reasonable timeframes on 
commodity processor architectures. 

10.1.5 Simultaneous Alignment and Tree estimation (SATe) 
SATe [162 213] is a program that performs simultaneous alignment of a set of leaf sequences 
and construction of the phylogenetic tree that relates them using the ML criterion.  In the cited 
study, it showed both improved tree and alignment accuracy compared to best current two-phase 
methods. 

Methods to do alignment only typically estimate a phylogenetic tree for the input 
sequences and an alignment is then produced, guided by the tree.  These methods are very 
sensitive to the guide tree and often require manual realignment.  Methods to do tree construction 
only from unaligned sequences typically have limitations in either the accuracy of their trees or 
the number of sequences they can handle. 

SATe uses a ML approach and treats gaps in sequences as missing data.  SATe begins 
with a tree and alignment created by RAxML and MAFFT, respectively.  It then searches for a 
tree/alignment pair with a higher ML score by performing hill-climbing searches from the 
current pair(s).  This search is done with an iterative, greedy heuristic to find new pairs with 
better scores.  

In the iterative process, new alignments are proposed by a divide-and-conquer method.  
A branch in a current tree is selected and the subtrees around the branch are determined.  The 
sequences for each of the subtrees (the selected branch and its neighbors) are realigned by 
MAFFT.  These subtree realignments are used to realign the entire sequence set.  RAxML is then 
used to create a tree based on the new global alignment.  Iterations continue until either 
predefined time limit or iteration limit is reached. 
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SATe is effective for simultaneous estimation of trees and alignments with a large 
number of sequences.  For rapidly evolving sequences or over long evolutionary time periods, it 
offers shorter execution times and improved results compared to methods which first estimate 
sequence alignment and then build the phylogenetic tree. 

10.1.6 Phylogenetic Analysis by Maximum Likelihood (PAML) 
PAML [88] is a suite of programs to analyze DNA and amino acid sequences using ML.  The 
suite offers a wide variety of analyses; in this description we focus on the three types of analysis 
that are significantly valuable in our research. 

One type of analysis offered by PAML is comparison of a set of phylogenetic trees.  It 
will calculate their likelihood values under a variety of nucleotide and amino acid models.  These 
models estimate parameters of interest, such as species phylogenies, while allowing other 
parameters, such as substitution rate, to vary at different loci.  The use of ML methods allows 
one locus to use information from other loci in the case of heterogeneous data sets. 

Another type of analysis is estimation of species divergence times.  PAML uses a 
likelihood method that assigns rates to different branches on the tree and then estimates both 
branch rate and divergence times from the sequences.  A rate-smoothing procedure helps assigns 
rates to branches automatically.   

Finally, PAML offers reconstruction of ancestral sequences.  These are the sequences of 
extinct ancestors in a phylogenetic tree.  It uses an empirical Bayes (EB) method that takes into 
account differences in branch lengths and in the relative substitution rates between characters, 
such as nucleotides.  Both marginal and joint reconstructions are implemented.  The marginal 
reconstruction assigns a character state to a single node, often the root node, in a tree.  The joint 
reconstructions assign a set of character states to all ancestral nodes in a tree; this assignment is 
desirable when counts of changes at each site are needed.  The EB approach uses ML estimates 
of branch lengths and substitution rates.  This approach produces accurate character states with 
suboptimal handling of indels.  The ancestral reconstructions may be used in a number of ways, 
such as to estimate selective pressures along lineages and to estimate evolution times between 
ancestral and existing species. 

10.1.7 PRobablistic AligNment Kit (PRANK) 
PRANK [158 163] is a program to analyze DNA and amino acid sequences using ML 
techniques.  One challenge in typical, multiple sequence alignment algorithms is the approach to 
indels that significantly affect sequences of different lengths.  With a typical approach, either the 
indel (also known as a gap) cost is so high that long gaps are not considered or so low that too 
many gaps are found that fragment the sequences.  Separating the gap opening (which initiates a 
gap) cost and the gap extension (indicating that a gap is increasing in length) cost produces better 
results.   
 Progressive algorithms for multiple alignment iterate pairwise alignments from the 
terminal nodes (leaves) toward the root, guided by a phylogenetic tree that relates the sequences.  
The cost of an insertion or deletion should only be borne once, at the position in the tree where it 
actually occurs; PRANK does this costing properly; other multiple alignment algorithms often do 
not.  The PRANK approach skips over a preexisting gap, with whatever preceded the gap being 
extended, so the gap cost is paid only once.  PRANK also allows long deletions to overlap 
insertions by keeping track of overlapping gaps in their child sequences. 
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 In a comparison with a traditional multiple alignment tool, PRANK results with respect 
to variation in sequence length is preferentially explained by single insertion events rather than 
multiple, independent deletions.  The former is significantly more probable than the latter and so 
is likely to be more accurate. 

10.1.8 Dendroscope 
Dendroscope [214] is a program to visualize phylogenetic trees.  A particular of strength of 
Dendroscope is the ability to view large trees, those with greater than 100,000 taxa.  Such large 
trees are especially challenging in that their organization and graphical layout are 
computationally complex and therefore time-consuming.  Dendroscope assigns to each subtree in 
a phylogenetic tree its own bounding box, within which it will be laid out and portrayed.  Trees 
are presented from the root down, and a subtree is drawn only if its bounding box is visible.  
When information at a selected position is desired, the tree is searched from the root down, and 
bounding boxes that do not contain the selected position are not considered; this approach 
significantly improves search time. 
 Though such large trees have not thus far resulted from our research, other Dendroscope 
capabilities, often not shared by other tree viewers, make it an attractive choice.  Among them 
are: 
 

• Collapsing subtrees. 
• Search function. 
• Comprehensive set of graphic export formats. 
• Comprehensive set of tree view formats. 
• Platform independence. 

10.2 Future work compute resources 
 
We estimated the computer resources for the described in silico future work, shown in Table 28.  
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Gene counts  Reconstruct Align Homolog % Homologs 
LUCA 1000 1000    
LUCAEukaryota 5000 5000 5000 20% 1000 
LUCAMetazoa 13000 13000 13000 38% 5000 
LUCAMammalia 25000 25000 25000 52% 13000 
Homo sapiens 25000  25000 90% 22500 
total  44000 68000  41500 
      
Genome reconstruction resources     
core hours/gene 4     
gene count 44000     
total core hours 176000     
      
Sequence alignment compute resources    
core hours/alignment 1     
alignments/homolog 1     
homologous count 41500     
alignments/nonhomolog 10     
nonhomologous count 26500     
total core hours 306500     
      
Population model compute 
resources     
core seconds / base 0.025     
model sequence length 100000     
core hours / ref species 69444     
ref species count 4     
total core hours 277778     
      
Grand total core hours 760278     
Months using 1000 cores 1.06     
      
Amazon EC2 Web 
Services      
High-MEM Double Extra Large     
1000 instances for 1 month $835,000      

Table 28:  Future work compute resources 
 For gene counts, we referred to Krebs and Goldstein [215].  We must reconstruct all of 
the genomes except for Homo sapiens and we must align all of the genes with those of the 
previous reference species except for LUCA.  We estimated a maximum of 100,000 net 
mutation+s between speciation events.  For the cost estimate, we used Amazon EC2 Web 
Services [216].  We created the estimate with High-MEM Double Extra Large instances because 
of the large memory requirements for our model.  The estimate comes to $835,000. 
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