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Abstract

Bayesian Nonparametric Latent Feature Models

by

Kurt Tadayuki Miller

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

and the Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Priors for Bayesian nonparametric latent feature models were originally developed
a little over five years ago, sparking interest in a new type of Bayesian nonparametric
model. Since then, there have been three main areas of research for people interested
in these priors: extensions/generalizations of the priors, inference algorithms, and
applications. This dissertation summarizes our work advancing the state of the art in
all three of these areas. In the first area, we present a non-exchangeable framework
for generalizing and extending the original priors, allowing more prior knowledge to
be used in nonparametric priors. Within this framework, we introduce four concrete
generalizations that are applicable when we have prior knowledge about object rela-
tionships that can be captured either via a tree or chain. We discuss how to develop
and derive these priors as well as how to perform posterior inference in models using
them. In the area of inference algorithms, we present the first variational approxi-
mation for one class of these priors, demonstrating in what regimes they might be
preferred over more traditional MCMC approaches. Finally, we present an application
of basic nonparametric latent features models to link prediction as well as applications
of our non-exchangeable priors to tree-structured choice models and human genomic
data.
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2.2.4 Inverse Lévy Measure . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Priors for Binary Latent Feature Models . . . . . . . . . . . . . . . . 21
2.3.1 The Beta Process . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 The Stick Breaking Process . . . . . . . . . . . . . . . . . . . 25
2.3.3 The Indian Buffet Process . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Priors for Integer Valued Latent Feature Models . . . . . . . . . . . . 33
2.4.1 The Gamma Process . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 The Stick Breaking Process . . . . . . . . . . . . . . . . . . . 35
2.4.3 The Infinite Gamma Poisson Feature Model . . . . . . . . . . 36
2.4.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Bayesian Nonparametric Latent Feature Model Inference Algorithms 42
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 MCMC for the Beta Process . . . . . . . . . . . . . . . . . . . 46
3.2.2 MCMC for the Gamma Process . . . . . . . . . . . . . . . . . 49

iii



3.3 Variational Inference Algorithms . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Variational Inference Algorithms for the Beta Process Overview 51
3.3.2 Finite Variational Approach . . . . . . . . . . . . . . . . . . . 52
3.3.3 Infinite Variational Approach . . . . . . . . . . . . . . . . . . 53
3.3.4 Variational Lower Bound . . . . . . . . . . . . . . . . . . . . . 53
3.3.5 Parameter Updates . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.6 Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Comparison of MCMC and Variational Inference Algorithms for the
Beta Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Priors for Non-exchangeable Bayesian Nonparametric Latent Fea-
ture Models 63
4.1 Alternate Views of the Exchangeable Priors . . . . . . . . . . . . . . 64

4.1.1 Alternate Views of the Beta Process . . . . . . . . . . . . . . 64
4.1.2 Alternate Views of the Gamma Process . . . . . . . . . . . . . 65

4.2 Desiderata for Non-Exchangeable Generalizations . . . . . . . . . . . 66
4.3 Non-Exchangeable Generalizations . . . . . . . . . . . . . . . . . . . 66
4.4 Tree-based Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Tree-based BP . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1.1 Tree-based BP Stochastic Process . . . . . . . . . . . 68
4.4.1.2 Tree-based BP Conditional Distributions . . . . . . . 70
4.4.1.3 Tree-based IBP . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Tree-based GP . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2.1 Tree-based GP Stochastic Process . . . . . . . . . . . 73
4.4.2.2 Tree-based GP Conditional Distributions . . . . . . . 74
4.4.2.3 Tree-based IGPFM . . . . . . . . . . . . . . . . . . . 75

4.5 Chain-based Generalizations . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Chain-based BP . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1.1 Chain-based BP Stochastic Process . . . . . . . . . . 77
4.5.1.2 Chain-based BP Conditional Distributions . . . . . . 79
4.5.1.3 Chain-based IBP . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Chain-based GP . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2.1 Chain-based GP Stochastic Process . . . . . . . . . . 81
4.5.2.2 Chain-based GP Conditional Distributions . . . . . . 84
4.5.2.3 Chain-based IGPFM . . . . . . . . . . . . . . . . . . 85

4.6 Further Power of These Priors . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



Appendix 4.A Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.A.1 Tree-based BP . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.A.2 Tree-based GP . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.A.3 Chain-based BP . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.A.3.1 Chain-based BP Stochastic Process . . . . . . . . . . 97
4.A.3.2 Chain-based BP Derivation . . . . . . . . . . . . . . 98
4.A.3.3 Computation of ξi . . . . . . . . . . . . . . . . . . . 102
4.A.3.4 Chain-based BP Equivalence . . . . . . . . . . . . . 104

4.A.4 Chain-based GP . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.A.4.1 Chain-based GP Stochastic Process . . . . . . . . . . 105
4.A.4.2 Chain-based GP Derivation . . . . . . . . . . . . . . 107

5 Non-exchangeable Bayesian Nonparametric Latent Feature Model
Inference Algorithms 111
5.1 Sampling zik for Old Columns . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 pIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.2 pIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.3 cIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.4 cIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Sampling pk for Old Columns . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1 pIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.2 pIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.3 cIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.4 cIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Sampling the New Columns . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 pIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.2 pIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.3 cIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.4 cIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Sampling pk for New Columns . . . . . . . . . . . . . . . . . . . . . . 120
5.4.1 pIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.2 pIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.3 cIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.4 cIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Sampling α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5.1 pIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.2 pIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.3 cIBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.4 cIGPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

v



Appendix 5.A Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.A.1 Chain-based BP . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.A.2 Chain-based GP . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Applications 132
6.1 Relational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.2 The nonparametric latent feature relational model . . . . . . . 135

6.1.2.1 Basic model . . . . . . . . . . . . . . . . . . . . . . . 135
6.1.2.2 The Indian Buffet Process and the basic generative

model . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1.2.3 Full nonparametric latent feature relational model . . 137
6.1.2.4 Variations of the nonparametric latent feature rela-

tional model . . . . . . . . . . . . . . . . . . . . . . 138
6.1.2.5 Related nonparametric latent feature models . . . . . 138

6.1.3 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . 139
6.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.4.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . 141
6.1.4.2 Multi-relational data sets . . . . . . . . . . . . . . . 142
6.1.4.3 Predicting NIPS coauthorship . . . . . . . . . . . . . 143

6.2 Tree-Structured Choice Models . . . . . . . . . . . . . . . . . . . . . 144
6.3 Human Genomic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Conclusion 156

Bibliography 158

vi



Chapter 1

Introduction

In many statistical problems, we observe some set of data and wish to infer various
quantities related to it. This can be as simple as estimating the mean of the data or
can be more complicated like estimating the entire distribution of the data. Whatever
it is we wish to infer, we generally need to make some kind of assumption about
the form, structure, and/or distribution of the data. Often, the more assumptions
we make, the simpler it is to perform inference, but if these assumptions are false,
we could be drawing incorrect inferences from the data. A common assumption is
that the data comes from some simple distribution with a few unknown parameters.
The simplest kind of inference then reduces to estimating the exact values of these
parameters. This is often a very useful first step in understanding the data, but as our
understanding of the data grows, it is desirable to reduce the number of assumptions
we make and allow for richer models. We therefore often look beyond these simple
parametric models to nonparametric ones. This dissertation explores how to do this
in the Bayesian setting for one particular class of models.

The field of Bayesian nonparametric statistics seeks to combine the best of the
Bayesian and nonparametric worlds. From the Bayesian world, we would like a mathe-
matically elegant framework for updating our beliefs about unknown quantities based
on any data we observe. More concretely, we would like to be able to place a prior
p(φ) on unknown quantities or parameters φ, observe data X thought to be related
to φ via a likelihood function p(X|φ), and then update our belief about what φ is via
Bayes’s rule p(φ|X) ∝ p(X|φ)p(φ). This has traditionally been done in the parametric
setting in which φ is a finite dimensional real-valued vector. From the nonparametric
world, we seek to develop priors and models that allow us to draw more complex
inferences as we observe more and more data. In order to do this, we cannot assume
any particular fixed parametric form when modeling the data. We must have models
that can grow in complexity as we observe more data.

Bayesian nonparametric methods (also commonly referred to as nonparamet-
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Chapter 1. Introduction

ric Bayesian methods) combine these two paradigms by letting φ be an infinite-
dimensional parameter. Defining the prior p(φ) on this infinite-dimensional parameter
space is equivalent to defining an infinite-dimensional stochastic process. With this
generality, one could develop many exotic stochastic processes as priors. However, few
of them lead to reasonable predictive models for which we know how to compute the
posterior distribution p(φ|X). Therefore, the trick is to develop stochastic processes
over infinite-dimensional spaces in such a way that for useful likelihoods p(X|φ), we
can practically compute p(φ|X).

There are many Bayesian nonparametric priors based on random infinite-dimensional
objects. In the machine learning community, work has mostly focused on three of
these Bayesian nonparametric priors:

1. Gaussian process

2. Dirichlet process/Chinese restaurant process and related priors

3. Beta process/Indian buffet process and related priors

The Gaussian process is a prior on the infinite-dimensional space of continuous
functions and therefore is directly applicable to nonparametric regression, though it
has also been successfully applied to classification as well as other domains. Of the
Bayesian nonparametric priors we list above, it has the longest history with some of
its main ideas going back centuries to Gauss himself with later developments in the
early twentieth century. It gained in popularity in the latter half of the twentieth
century in the geostatistical community under the name of Kriging (Cressie, 1993;
Stein, 1999) before taking off in the machine learning community in the 1990s. For
an overview of these priors, see Rasmussen and Williams (2006).

The Dirichlet process and its extensions are priors on the infinite-dimensional
space of discrete distributions. They are commonly used as priors on latent class
models such as those used in clustering and mixed membership models. The Dirichlet
process was first introduced by Ferguson (1973), but again did not gain widespread
adoption until the late 1990s/early 2000s when computational techniques and re-
sources allowed them to be more practically applicable. While there are now various
tutorials, chapters and monographs on these priors, one of the best introductions is
Chapter 2 of Sudderth (2006).

The Beta process and related priors are examples of priors for Bayesian nonpara-
metric latent feature models and are the focus of this dissertation. These are priors
on the infinite-dimensional space of discrete measures (not necessarily distributions)
and are commonly used as priors on binary matrices or non-negative integer valued
matrices. They have the shortest history in the machine learning community, hav-
ing been originally introduced by Griffiths and Ghahramani (2006) and Thibaux and
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Chapter 1. Introduction

Jordan (2007), with roots in the work of Hjort (1990) and Kim (1999) in the survival
analysis community. This earlier work itself was based on Lévy processese developed
by Paul Lévy in the 1930s. The next chapter will provide a formal introduction to
these priors and reviews the required background.

Since Bayesian nonparametric latent feature models have the shortest history,
there are still many areas that need to be further developed. These areas can be
broken down into three categories:

• Extensions and generalizations of the priors: we must understand the assump-
tions of these priors and, when they do not adequately fit our desired uses, figure
out how we can extend them or generalize them to make them more broadly
applicable.

• Inference algorithms: we must be able to perform posterior inference in models
using these priors. As was stated earlier, it is easy to define infinite-dimensional
stochastic processes, but these are not practical unless we can compute posterior
distributions.

• Applications: we must understand and explore the applications for which these
priors are appropriate as well as for which they are suboptimal. Without good
applications, these priors will find limited interest.

This dissertation presents our work in all three of these areas. We begin by review-
ing relevant background in Chapter 2 and introducing the basic priors for Bayesian
nonparametric latent feature models. Chapter 3 reviews sample-based inference al-
gorithms and introduces our work on variational inference algorithms. Chapter 4
presents our nonexchangeable generalizations of the priors for Bayesian nonparamet-
ric latent feature models and Chapter 5 discusses inference algorithms for models
using these new priors. Chapter 6 brings all of this work together by discussing our
applications of these priors. We summarize our contributions in Chapter 7.

3



Chapter 2

Bayesian Nonparametric Latent
Feature Models

In this chapter, we introduce Bayesian nonparametric latent feature models and pro-
vide the relevant background material. We start by motivating their use as well as
establishing notation and background material in Section 2.1. We then review Lévy
processes, one of the principal mathematical tools for developing these priors in Sec-
tion 2.2. Given this background, the final two sections of this chapter review the two
main classes of priors for latent feature models. In Section 2.3, we discuss priors for
Bayesian nonparametric latent feature models with binary-valued latent features and
in Section 2.4, we discuss priors for Bayesian nonparametric latent feature models
with non-negative integer valued latent features. Knowledge of everything in this
chapter is not necessary for users of these priors and models, but will be important
for anyone interested in fully understanding and extending them.

In this chapter (and the rest of this dissertation), we will assume knowledge of
several concepts. First, we assume the reader is familiar with probability theory.
Measure theoretic probability theory at the level of Durrett (2004) or Kallenberg
(1997) is sufficient, but not entirely necessary. Second, the reader should be comfort-
able with probabilistic graphical models and the ideas behind latent class methods
such as Gaussian mixture models. To review these concepts, see Bishop (2007) or
Koller and Friedman (2009). Finally, we assume the reader is familiar with the basics
of Bayesian analysis as described in Gelman et al. (2003) and Markov Chain Monte
Carlo as described in Robert and Casella (2004).

4
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(a) (b) (c)

Figure 2.1: Gaussian mixture models. (a) Data generated from a Gaussian mixture model.
(b) One potential set of class membership assignments and corresponding Gaussian dis-
tributions. (c) The relevant class membership matrix corresponding to (b).

2.1 Overview

Probabilistic graphical models provide a powerful formalism for working with data.
Many unsupervised approaches use this framework to find latent structure in observed
data that can help explain our observations.

Latent class models such as the Gaussian mixture model are a popular class of
unsupervised models. We begin by giving a high level motivation for these approaches
and then introduce their generalization to latent feature models.

2.1.1 Latent Class Models

In the Gaussian mixture model (GMM, also known as a Mixture of Gaussians, MoG),
a special case of latent class models, we observe N data points x1, x2, . . . , xN and we
believe that these data points have been generated by the mixture of several different
Gaussian distributions. Each data point is assumed to have been generated from a
single one of these distributions. For example, if xi ∈ R2, then our observations might
look like Figure 2.1(a) where this data comes from a mixture of three Gaussians. Our
goal is then to infer what the parameters are for each of the Gaussians and which
data points have been generated from each Gaussian. Given the raw data in Figure
2.1(a), we might infer the latent class memberships indicated by the different colors
in Figure 2.1(b) along with the corresponding Gaussians. As part of this, we wish

5
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to infer a binary matrix Z where Z is an N ×K matrix where N is the number of
data points and K is the number of classes. In this matrix, there is a one (black in
the figure) at Z(i, j) if the ith observation was generated from the jth class and zero
(white in the figure) otherwise. Figure 2.1(c) shows the class memberships inferred in
Figure 2.1(b). For details on inference and inference algorithms, see Bishop (2007).
Note that in general, we are rarely 100% sure about class memberships, so we will
often infer distributions on entries in Z.

Latent class models beyond the GMM allow for more general distributions than
just the normal distribution to generate each class, but all assume that there is some
underlying binary matrix Z that must be inferred.

There are several issues that must be addressed with this latent class representa-
tion. First of all, we often do not know K, the number of latent classes that generate
any particular data set. While there are both frequentist and Bayesian approaches to
this tackling this problem, we focus on the Bayesian approaches. Within the Bayesian
approaches, the Dirichlet process, one of the three Bayesian nonparametric priors we
mentioned in Chapter 1, has become a very popular solution to this problem over the
past ten years. Due to the success of this approach, much of the later developments
in priors for Bayesian nonparametric latent feature models that we will soon describe
can be related to developments of the Dirichlet Process. While knowledge of these
developments is extremely useful and highly recommended for the understanding of
Bayesian nonparametric latent feature models and priors, we will not review this prior
work since it is not required background. Unfortunately, there are no concise reviews
of the relevant work, but the interested reader can begin with recent review articles
such as Teh and Jordan (2010) and Teh (2010), or the longer book by Hjort et al.
(2010).

The second issue is that while latent class models are excellent models across a
wide variety of data, they are not always the best choice of models. For example, when
modeling various kinds of human data, if we used a latent class model, then it would
be equivalent to saying that there are certain classes of people and that each person
only belongs to a single group. When taken to its extreme and each person belongs
to his/her own group, this would allow us to model people we have seen very well.
However, this would not allow us to generalize whatever we learn to apply to people we
have not seen yet. Therefore, we would like classes to correspond to multiple people so
that our results can generalize. In order to explain people well though, the classes we
would need to infer would be very specific and we would need a large amount of data
to learn those classes well. In addition, if we learned the characteristics of each class
independently, we would fail to capture the fact that different classes share different
characteristics. We would ideally like to learn a more compact representation that
captures these overlapping characteristics. This is precisely the point of latent feature
models.
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2.1.2 Latent Feature Models

Latent feature models address the last issue brought up in the previous section. That
is, latent feature models allow us to learn a compact representation that can simul-
taneously explain our observations as well as any unobserved data. Just like latent
class models, they are not applicable to every kind of data, but there are many data
sets that are well modeled with latent features.

Latent feature models generalize the form of the latent matrix Z that we wished
to infer in the previous section. In latent class models, Z is a binary matrix with
each row corresponding to each data point and each column corresponding to a class.
There can be only one non-zero entry in each row, but each column ideally has
multiple non-zero entries. In latent feature models, each row still corresponds to a
single data point, but now the columns correspond to different features and each
data point may be possess different amounts of each of these features. In general,
these can be real-valued features with many non-zero entries in every row. However,
in order to have a practical model, each row of Z can only have a finite number of
non-zero entries and it is hard to directly work with a real-valued process that has
this kind of sparsity, so it is hard to have a real-valued nonparametric prior. In this
dissertation, we therefore restrict our attention to priors for binary and non-negative
integer valued features since this is a reasonble place to start and we will show how
to attain the desired sparsity of Z. These kinds of priors can then be combined with
real valued processes to generate nonparmetric real-valued priors. Therefore, we will
work with binary or non-negative integer valued matrices in which every row is now
allowed to have multiple non-zero entries. It’s as simple as that! The rest of this
dissertation flushes out this simple idea.

There are two main kinds of priors for Bayesian nonparametric latent feature
models we will discuss. In the first type, Z is still a binary matrix as described above,
so data points either have or do not have the feature. In the second type, Z is a non-
negative integer valued matrix in which entries are the number of times each data
point has that feature. We will discuss these two types in more detail in Sections 2.3
and 2.4.

What is the interpretation of the columns of Z in these latent feature models?
Going back to the human data data example, in the binary-valued latent feature
models, the columns might correspond to features that humans either do or do not
possess that we wish to infer. For example, if we had no prior information about
people, the unobserved binary features that we wish to infer might be “UC Berkeley
student,” “soccer player,” and “lives in California.” Each of these may have some
effect on our observed data and humans may have any number of these features. As
an example of a non-negative integer valued features, there might be a feature such as
“number of cars owned.” These are most often used as counts of various attributes.

7



Chapter 2. Bayesian Nonparametric Latent Feature Models

Note that any latent class model can be represented by a latent feature model
in which each row is restricted to have only a single non-zero entry, so latent class
models can be seen as a special instance of latent feature models. In addition, the
exact opposite is also true. Anything represented by a latent feature model can also
be represented by a latent class model. Sticking to binary features, it is clear that with
the three binary features listed previously, we could easily construct 23 = eight classes
and use a latent class model to have an equally expressive model. Thus, we can see
that latent class models, by using exponentially many more classes, can explain the
same thing as much more compact latent feature models, so latent feature models can
be seen as a special case of latent class models. However, as the number of features K
grows, we would need 2K classes to explain the same thing as a latent feature model
with K features. Furthermore, we might think all “soccer players” should share some
attribute which is easy to do if each feature has an associated parameter, but harder
to do when using 2K classes.

Given that latent class models and latent feature models are just as expressive
as each other and that latent feature models furthermore have much more compact
representations and allow for easier parameter sharing, it might seem that we should
always use latent feature models. However, as is often the case, learning these richer,
more compact and expressive models is more computationally intensive, so if data is
well explained by latent classes, it is more efficient to use latent class models.

As a final note, there are several naming variations used for “latent feature mod-
els.” Some people also refer to the models developed in this section as “multiple class
models,” “binary factor models,” “factorial models,” “distributed representations,”
and several other variations along these lines. In addition, people will also call other,
related kinds of models “latent feature models.” For this entire dissertation, when
we discuss “latent feature models,” we are referring to the models motivated in this
section.

2.1.3 Notation

Now that we have motivated latent feature models, we must explain how they work
and we must again tackle the problem that K, the number of features, is not known
to us in advance. For now, assume that knowledge of K is not an issue. As mentioned
in Chapter 1, one of the big advantages of Bayesian nonparametric approaches is that
by using rich priors in our models, inference of K is part and parcel of the posterior
inference process. This idea will be further developed in later sections.

We assume there are N entities that we will observe data about. Our variables
will be the following:

• Observations:

8
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– X: Our observations associated with theN entities. Often, X = (x1, . . . , xN),
that is, X is composed of separate observations xi, one for each entity i.
We will see examples in Sections 6.1 and 6.2 in which this is not true, but
for now, assume X = (x1, . . . , xN).

• Unknowns:

– Z: The N ×K latent feature matrix as described earlier.

· Let zi correspond to the ith row of Z and therefore the feature vector
corresponding to the ith entity.

· We will occasionally need to refer to a particular column, and will use
the index k to signify this, so zk will correspond to the kth column.
Besides the index, context will help determine if we are referring to a
row or column.

· Let zik be the (i, k) entry of the matrix.

· During inference, we will need to refer to the matrix except particular
entries. Let Z−ik be all of Z except the (i, k) entry.

· If we are just referring to the kth column zk, let z(−i)k be all of zk
except zik.

– θ: Additional parameters describing how Z influences X. This is going
to be problem specific depending on what our observations are as well as
what the likelihood model is.

We will work within the Bayesian framework, so we must place a prior on our
unknowns Z and θ. We assume an independent prior p(Z, θ) = p(Z)p(θ), so we must
therefore define:

• p(X|Z, θ): The likelihood model. This will always be application specific and
must be tailored to X.

• p(θ): The prior on θ. Again this will be application specific.

• p(Z): The prior on Z. This can be developed independent of the application
and is the focus of much of this dissertation, but as we discuss starting in
Chapter 4, it is often helpful if this is adapted to be more suitable for particular
assumptions about our observations.

Then, given our observations X, our goal will be to infer Z and θ via Bayes’s rule:

p(Z, θ|X) ∝ p(X|Z, θ)p(θ)p(Z).
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Sometimes we are interested in the posterior distribution of Z and θ itself and some-
times we wish to use it to do prediction on any parts of X we might not have observed
base on the parts we have observed. We do this by integrating over the posterior dis-
tribution

p(Xunobserved|Xobserved) =

∫
p(Xunobserved|Z, θ)dP (Z, θ|Xobserved).

Since p(X|Z, θ) and p(θ) are application specific, our main focus will be on p(Z) until
we get to Chapter 6, the applications chapter.

2.1.4 Exchangeability and De Finetti’s Theorem

Before we dive into the math needed to define the two Bayesian nonparametric latent
feature priors, we first discuss exchangeability, a property which will be used in the
basic prior for Z. Recall that zi refers to the ith row of Z.

Definition 2.1.1. A finite set of observations z1, . . . , zN is exchangeable if every per-
mutation of z1, . . . , zN has the same joint distribution as every other permutation.
An infinite collection is called exchangeable if every finite subcollection is exchange-
able. (Schervish, 1995)

This just means that for every set of entities, the order we see them should not
affect our prior belief about the kinds of Z. This is often a valid assumption and is
widely used in many probabilistic models. All of the initial development of Bayesian
nonparametric latent feature models has assumed infinite exchangeability and this
has a very important consequence, De Finetti’s theorem.

Theorem 2.1.2 (De Finetti’s theorem). {zi}∞i=1 is infinitely exchangeable if and only
if there is a random probability measure P such that for any n,

p(z1, . . . , zn) =

∫ [ n∏
i=1

p(zi|θ)
]
dP (θ).

(Schervish, 1995)

Therefore, if we know that Z is exchangeable, which is our assumption here, then
there is a distribution P known as the De Finetti mixing distribution such that,
conditional on θ drawn from P , the zi are i.i.d. For the priors we consider here, the
mixing distribution will be a Lévy process, which is the subject of the next section.

In Chapter 4, we will discuss models in which the exchangeability assumption is
violated and how to adapt our priors to handle this fact. Until then, we will assume
all models are exchangeable.
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2.2 Lévy Processes

As mentioned in Chapter 1, priors for Bayesian nonparametric models work by defin-
ing an infinite-dimensional stochastic process that serves as a prior on our unknown
parameter φ. In the case of latent feature priors, this unknown parameter φ is the Z
described in previous sections. It turns out that the infinite-dimensional stochastic
processes that we will define as priors on Z are special cases of a much older family
of stochastic processes known as Lévy processes. There are many books and papers
written about Lévy processes, but for a background sufficient for the topics discussed
here, we have consulted the combination of books by Durrett (2004), Fristedt and
Gray (1996), Sato (1999), and Kingman (1993). This section reviews the relevant
background so that in Sections 2.3 and 2.4 we can discuss all relevant aspects of
latent feature priors without needing to review these concepts.

2.2.1 Definitions and Theorems

Definition 2.2.1. A Lévy process in R or R+, respectively, is a right-continuous
function Y from [0,∞) to R or R+ for which Y0 = 0 a.s. and Y has stationary,
independent increments. Let Yt be the value of Y at t. (Fristedt and Gray, 1996)

Note that since Lévy processes have stationary, independent increments, they
are infinitely divisible. For priors for Bayesian nonparametric latent feature models,
we are only interested in the special case of Lévy processes in R+, which are non-
decreasing functions also known as subordinators.

Lévy processes have a special representation and decomposition that are very
important for understanding and simulating them. First we need a definition.

Definition 2.2.2. A measure ν on R \ {0} is called a Lévy measure if∫
R\{0}

(y2 ∧ 1)ν(dy) < ∞. (2.1)

A measure ν on R+ is called a Lévy measure if∫
(0,∞)

(y ∧ 1)ν(dy) < ∞. (2.2)

(Fristedt and Gray, 1996)

This means that ν is a Lévy measure if for all ε, there is finite mass more than ε
away from zero. ν is allowed to have infinite mass near the origin, but Equation (2.1)
defines how fast ν is allowed to grow near the origin. Given this definition, we can
now introduce the Lévy-Khinchine representation of Lévy processes.

11



Chapter 2. Bayesian Nonparametric Latent Feature Models

Theorem 2.2.3 (Lévy-Khinchine Representation Theorem). There is a one-to-one
correspondence between all infinitely divisible distributions (and therefore Lévy pro-
cesses) Y and the set of triples (η, σ, ν) where η ∈ R, σ ∈ R+, and ν is a Lévy measure
such that for all t, the characteristic function of Yt is

E[eiuYt ] = exp(−ψ(u, t))

where

ψ(u, t) = −iηut+ t
σ2u2

2
+ t

∫
R\{0}

(1− eiuy + itχ(y))ν(dy)

where χ(·) can take one of several forms, one of which is

χ(x) = (x ∧ 1) ∨ (−1). (2.3)

A special case of this occurs when Y is a subordinator. In this case, there is a one-
to-one correspondence between all infinitely divisible functions on R+ and pairs (ξ, ν)
where ξ ∈ R+ and ν is a Lévy measure for R+ such that for all t, the moment
generating function of Yt is

E[e−uYt ] = exp(−θ(u, t)) (2.4)

where

θ(u, t) = ξut+ t

∫
(0,∞)

(1− e−uy)ν(dy). (2.5)

(Fristedt and Gray, 1996)

There are also multivariate extensions of this representation that can be found in
Sato (1999).

By examining the components of ψ and θ and matching them to characteristic
and moment generating functions of known distributions, one can guess at least part
of the next result, the Lévy-Itō decomposition. The first part of ψ corresponds to
the characteristic function of a constant function, the second part is from a Gaussian
distribution, and the last part is related to a compound Poisson process. Intuitively,
when specializing to the case of the subordinator, the Gaussian part disappears and
the last term reduces exactly to a compound Poisson process.

Theorem 2.2.4 (Lévy-Itō Decomposition Theorem). Let Yt be a Lévy process on
R with triple (η, σ, ν) as defined in Theorem 2.2.3. Let (X,W ) be an independent
pair where W is standard Brownian motion and X is a Poisson point process in
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(0,∞)× (R \ {0}) whose intensity measure is λ× ν where λ is the Lebesgue measure.
Then there exists a sequence of εk ↓ 0 such that

Yt
d
= ηt+ σWt + (2.6)

lim
k→∞

[∫
(−∞,−εk]∪[εk,∞)

xX((0, t]× dx)− t
∫

(−∞,−εk]∪[εk,∞)

xν(dx)

]
where χ(·) is as in Equation (2.3).

For the case when Yt is a subordinator, then ν satisfies Equation (2.2), and the
Lévy-Itō decomposition simplifies. Now let Yt be a subordinator and the pair (ξ, ν) be
as defined in Theorem 2.2.3. Let X be a Poisson process in (0,∞) × (0,∞] whose
intensity measure is λ× ν where λ is again the Lebesgue measure. Then

Yt
d
= ξt+

∫
xX((0, t]× dx). (2.7)

(Fristedt and Gray, 1996)

We can see that the first term in Equation (2.6) corresponds to a drift term and the
second term corresponds to standard Brownian motion. The final term is a compound
Poisson process centered about zero by subtracting off the mean. This limit is called
a compensated sum of jumps and for this reason, the Lévy measure ν is also referred
to as a compensator. The reason for the compensation is that the limit does not
necessarily exist unless we compute the indicated difference. This last term is often
broken up into two parts, a compound Poisson process defined on (−∞,−ε] ∪ [ε,∞)
for some ε > 0 and a compensated Poisson process defined on (−ε, ε).

In the case of subordinators, which is the case we are interested in, things become
even simpler. By the Lévy-Itō decomposition, a subordinator is the combination of a
constant drift term and a compound Poisson process. The priors we construct only
rely on pure-jump processes, so we further simplify to only looking at the compound
Poisson process part. Specializing all the earlier results to this case, this means that
for these pure-jump subordinator, Yt, the only unknown is ν, a Lévy measure satisfy-
ing Equation (2.2). We also reinterpret Yt to be Y (0, t], the measure assigned to the
interval (0, t]. Since Y can be constructed from a non-negative Poisson process, this
defines a random measure and we can more generally talk about Y (A) for Borel sets
A. Since Y has stationary independent increments, Y (A) and Y (B) are independent
for disjoint sets A and B and identically distributed if λ(A) = λ(B).

Using the convention that the Bayesian nonparametric latent feature community
has adopted, we redefine ν to be what was previously the product measure λ× ν. By
doing so, we can allow λ to be different than the Lebesgue measures on some space
Ω, but if it is not a multiple of the Lebesgue measure, the resulting process will not
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be a Lévy process since it will not have stationary increments. Instead, it will be a
completely random measure as defined by Kingman (1967).

Definition 2.2.5. A random measure Φ is a completely random measure if, for any fi-
nite collectionA1, . . . , An of disjoint sets, the random variables Φ(A1),Φ(A2), . . . ,Φ(An)
are independent. (Kingman, 1967)

All of the following results hold for both pure-jump completely random mea-
sures and pure-jump subordinators and for this reason, some people prefer to discuss
completely random measures since they allow for more flexible, non-stationary rep-
resentations.

For Y defined as above, the joint measure ν(dω, dy) is now defined on Ω× [0,∞)
and the Lévy-Khinchine representation theorem now says that

E[e−uY (A)] = exp

(
−
∫

(0,∞)

∫
A

(1− e−uy)ν(dω, dy)

)
. (2.8)

It is easy to see that for the special case of the Lebesgue measure for what used to
be λ, this reduces to Equations (2.4) and (2.5).

The corresponding Lévy-Itō decomposition says that there is a Poisson process X
on Ω× [0,∞) with intensity measure ν such that

Y (A)
d
=

∫
xX(A× dx).

Therefore, to define our priors, we must identify ν and then know how to simulate
from these Lévy processes and perform posterior updates on them.

In order to perform posterior updates, we must address one more issue and that
is the issue of having atoms in ν. Atoms are not allowed in the base measure of
Lévy processes since we must have stationary increments, but they are permitted in
completely random measures. Furthermore, in completely random measures, since
what happens in any location or subset of locations is independent of what happens
elsewhere, we can always separately reason about the continuous part of ν and any
atoms. We will let ν ′ be the part of the Lévy measure with atoms. We therefore
assume that when discussing ν for the rest of this section, it has no atoms and that
we are independently reasoning about the atoms produced by ν ′.

How do we deal with atoms in ν ′? Let Y ′ be a completely random measure
with a Lévy measure ν ′ with discrete support. The atoms in ν ′, the points at which
ν ′({ω}, [0,∞)) > 0, are known as fixed points of discontinuity because they are the
locations at which p(Y ′({ω}) > 0) > 0.

For fixed points of discontinuity in the case of the beta and to-be-introduced
Bernoulli processes, we must have that ν ′({ω}, (0,∞)) ≤ 1. Call the set of all these
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points D. We can then construct Y ′ as Y ′ =
∑

ω∈D pωδω. ν ′ determines the values of
pω as

p(pω ∈ A) = ν ′({ω} × A) ∀A ⊂ (0,∞)

p(pω = 0) = 1− ν ′({ω} × (0,∞)).

For the gamma and Poisson processes defined in Section 2.4.1, we will have a different,
be equally simple relationship. Therefore, reasoning about the discontinuities in ν ′ is
straightforward. For the rest of this section, we focus on the continuous part ν.

2.2.2 Lévy Process Take-Away Message

Section 2.2.1 had some rather technical definitions and theorems that are good back-
ground knowledge when working with priors Bayesian nonparametric latent feature
models. If we are not concerned with all the mathematical detail, what is the take-
away message?

The take-away message is that when working with random measures defined by
pure-jump non-negative Lévy processes or a completely random process, we must
only identify ν. Then we can equivalently work with a Poisson process with intensity
measure ν.

To better understand all these definitions, we now visualize pure-jump non-negative
Lévy processes and how these relate to Poisson processes with base measure ν. For
concreteness, we define ν to be the Lévy measure for the beta process defined on a
space Ω× [0, 1], which we will fully introduce in Section 2.3.1,

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω). (2.9)

Here B0 is known as the base measure (instead of using the Lebesgue measure) and
c is known as the concentration parameter. In general, c can be a function of ω, but
this is not commonly used in latent feature priors. Note that by using a more generic
B0, the domain Ω can also be more general than [0,∞) and in the cases when B0

is not a constant multiple of the Lebesgue measure, the name “completely random
measure” is more appropriate than Lévy process. Also, the term “subordinator” is
used only when the domain is [0,∞).

Let X be a Poisson process with base measure ν on the space Ω × [0, 1] and for
concreteness, let B0 be the uniform distribution on [0, 1], thus restricting X to be a
Poisson process on [0, 1] × [0, 1]. The measure ν can be seen in Figure 2.2(a). Note
that since ν has the term cp−1(1− p)c−1, it is an infinite, improper beta measure in p
and therefore has infinite mass. The result is that the Poisson process X drawn with
intensity measure ν seen in Figure 2.2(b) has a countably infinite number of points.
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Figure 2.2: Visualization of a Lévy process. (a) The Lévy measure ν from Equation (2.9)
with B0 the uniform distribution on [0, 1]. (b) A random Poisson process X drawn with
intensity measure ν. Note that since ν is improper, it has infinite mass, so X has a
countably infinite there are a countably infinite number of points. By Campbell’s theorem
(Section 2.2.3), though, for any ε > 0, there are only a finite number of points with p
greater than ε. (c) The Poisson process X with the heights of p made explicit since those
are what we sum over in Equation (2.10) to get Y . (d) The corresponding Lévy process
where Y is the results of summing over the increments corresponding to the heights of
X, shown in blue.
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By Campbell’s theorem (Section 2.2.3), though, for any ε > 0, there are only a finite
number of points with p greater than ε. By the Lévy-Itō decomposition, Y is the
result of integrating the heights (p) of all the points in X. We make the heights of X
explicit in Figure 2.2(c) and show the resulting Y in Figure 2.2(d).

Since Y is equivalent to the integral of a discrete Poisson process which has a
countably infinite number of points, we can represent Y as a discrete measure:

Y =
∞∑
k=1

pkδωk , (2.10)

where {(ωk, pk)}∞k=1 are the random points of the Poisson process X. Due to the
definition of ν, all pk must be in the range of [0, 1].

Thus, we have gone from mathematically elegant, but potentially complex Lévy
processes to the special case of pure-jump non-negative Lévy processes in which we
only need to define the Lévy measure ν which in turn gives us the discrete represen-
tation as seen in Figure 2.2 and made concrete by Equation (2.10).

2.2.3 Campbell’s Theorem

As we have mentioned, X will have an infinite number of points when ν is an improper
Lévy measure. How can we be sure Y is a finite measure? This is addressed by
Campbell’s Theorem.

Theorem 2.2.6 (Campbell’s Theorem). Let X be a Poisson process on Ω × (0,∞]
with mean measure ν. Then the sum

Σ =
∑

(ω,p)∈X

p

is absolutely convergent if and only if∫
Ω

∫ ∞
0

p · ν(dω, dp) < ∞.

(Kingman, 1993)

In the beta process as well as the gamma process introduced in Section 2.4.1,
we start with an improper beta and gamma distribution in the Lévy measure, but
by multiplying by p in Campbell’s theorem, they become integrable, so Y has finite
measure.
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2.2.4 Inverse Lévy Measure

The final issue we wish to address before moving on to priors for the latent feature
models is how to get we samples from X given ν? The inverse Lévy measure algorithm
by Wolpert and Ickstadt (1998b) is a generic inference technique for pure-jump non-
negative Lévy processed that allows us to sample X by generating the points in X
in decreasing order of p. For particular instances of ν, as we will discuss shortly, the
inverse Lévy measure has a closed form solution, but it often does not.

We start by assuming ν decomposes into a product measure on Ω× (0,∞]

ν(dω, dp) = A(dp)B(dω).

This is a valid assumption for all latent feature priors discussed in this dissertation.
Let α = B(Ω). We will generate X = {(ωi, pi)}∞i=1 in decreasing order of pi. Since
this is a product measure, we sample the pi independently from a Poisson process
with intensity αA and then sample each ωi independently from B/α.

We are therefore just left with sampling a Poisson process with intensity αA in
decreasing order. We can do this by first generating points τi from a standard unit-rate
Poisson process on [0,∞). We then use the mapping theorem for Poisson processes
(Kingman, 1993) to transform these points into pi. This is as simple as setting

pi = inf{u ≥ 0 : αA([u,∞)) ≤ τi}. (2.11)

For general ν, this will not have a closed form solution, but it is a single dimensional
estimation problem that can be solved numerically.

To make this more concrete, we will describe the inverse Lévy measure for the
beta process ν in Equation (2.9) when c = 1, a special case for which an elegant
closed form solution is known:

ν(dω, dp) = p−1dpB0(dω). (2.12)

Let α = B0(Ω). Then given the points {τi}∞i=1 from a unit-rate Poisson process on
[0,∞), we convert these to points from a Poisson process with rate ν as shown in
Figure 2.3 and discussed below.

We start by calculating the distribution of p1. ν is continuous and defined on
[0, 1], so plugging in ν into Equation (2.11) gives us p1 satisfies

τ1 = α

∫ 1

p1

p−1dp

= −α log(p1).
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Figure 2.3: A demonstration of the inverse Lévy measure algorithm with ν as in Equa-
tion (2.12). (a) αA[x, 1]. Note that αA[1, 1] = 0 and for ε > 0, limε↓0 αA[ε, 1] = ∞.
(b) A unit-rate Poisson process τ is shown along the y-axis extending to ∞. (c) Finally,
to get our desired Poisson process, p with intensity measure ν, we use the continuous
mapping theorem to map {τi}∞i=1 to {pi}∞i=1 though Equation (2.11). This corresponds
to finding pi such that αA[pi, 1] = τi for each i. Since there are an infinite number of
points in {τi}∞i=1, there are an infinite number of points in {pi}∞i=1, almost all of which
are arbitrarily close to the origin.
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Since τ1, the first point in a unit-rate Poisson process is an Exponential(1) random
variable, using the change of variable formula, the distribution of p1 is then calculated
to be

p(p1) = p(τ1(p1))

∣∣∣∣dτ1(p1)

dp1

∣∣∣∣
= exp (α log(p1))

∣∣∣∣ ddp1

(−α log(p1))

∣∣∣∣
= αpα−1

1 .

In other words, p1 ∼ Beta(α, 1).
We now compute the distribution p(pi|pi−1). Given, τi−1, in the unit-rate Poisson

process, we know that the distribution of τi − τi−1 is again an Exponential(1) ran-
dom variable. As before, we can calculate τi = −α log(pi) and τi−1 = −α log(pi−1).
Therefore,

p(pi|pi−1) = p(τi(pi)|τi−1(pi−1))

∣∣∣∣dτi(pi)dpi

∣∣∣∣
= exp (α log(pi)− α log(pi−1)

∣∣∣∣ ddpi (−α log(pi))

∣∣∣∣
= α

pα−1
i

pαi−1

.

Note that since pi < pi−1, then we can also look at the ratio vi = pi/pi−1. Then

p(vi|pi−1) = p(pi(vi)|pi−1)

∣∣∣∣dpi(vi)dvi

∣∣∣∣
= α

(pi−1vi)
α−1

pαi−1

∣∣∣∣ ddvipi−1vi

∣∣∣∣
= αvα−1

i .

So the ratio vi = pi/pi−1 is independent of the value of pi−1 and is Beta(α, 1) dis-
tributed. In other words, in the special case of ν in Equation (2.12), we can sample
pi in decreasing order by sampling

vi
i.i.d.∼ Beta(α, 1)

pi =
i∏

k=1

vk.
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This gives us the stick breaking representation for the beta process that we discuss
in Section 2.3.2, which was originally derived in an alternate manner.

2.3 Priors for Binary Latent Feature Models

We are now finally ready to introduce our first prior for Bayesian nonparametric
latent feature models. This section reviews priors for binary latent features. Section
2.4 reviews priors for non-negative integer valued latent features.

In Section 2.1, we motivated the development of a prior p(Z) on N × K binary
matrices. However, since Z represents unobserved features that we wish to infer, we
rarely know K, so in practice, we would like a prior that places positive mass on all
possible N×K binary matrices, whatever the value of K is. We do this by developing
a prior on these latent feature matrices such that K is allowed to be infinite, but such
that all mass is placed on matrices having a finite number of non-zero entries. If we
do this, then we will have a prior for a Bayesian nonparametric binary latent feature
model.

In the next three subsections, we develop three equivalent ways to define an ex-
changeable stochastic process that serves as a nonparametric prior on Z. In Section
2.3.1, we introduce how the beta process (BP) can be used to create a prior on Z.
We then show how we can use the inverse Lévy measure and the corresponding stick
breaking process to more practically do this in Section 2.3.2. Understanding how the
beta process is used to generate priors on Z, we then show how we can marginalize
out the beta process to directly get a prior on Z known as the Indian buffet process
(IBP) in Section 2.3.3. We then review at a very high level several extensions to the
basic priors that have resulted from these developments in Section 2.3.4.

The order we present the ideas here is helpful for understanding, but different
than the historical order they were developed. The BP was originally developed
by Hjort (1990) and later clarified by Kim (1999) in the field of Bayesian survival
analysis. The IBP was independently developed by Griffiths and Ghahramani (2006)
motivated by a prior for Bayesian nonparametric latent class models, the so-called
Chinese restaurant process that we discuss in Section 2.4.3. It was not until later
that anyone realized the IBP and BP were related. This connection was made clear
by Thibaux and Jordan (2007) as we discuss in Section 2.3.3. The stick breaking
process turns out to be identical to the inverse Lévy measure of the beta process, but
was developed independently based on the IBP by Teh et al. (2007) in parallel with
Thibaux and Jordan (2007) discovering the relationship between the BP and the IBP.
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2.3.1 The Beta Process

We introduced the beta process (BP) in Section 2.2.2. The BP is the Lévy process
with the Lévy measure in Equation (2.9)

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω)

where B0 is our base measure and c is a concentration parameter. In addition, we
showed in Figure 2.2 what this process looks like when B0 is the Uniform[0, 1] measure.
This process was originally developed by Hjort (1990) using a limiting argument for
beta distributions. It later was clarified by Kim (1999). The developments in this
section follow the work by Thibaux and Jordan (2007) who originally showed how the
BP could be used as a nonparametric latent feature prior and whose work more closely
followed Kim (1999) than Hjort (1990). This work was later mirrored by Paisley and
Carin (2009), whose work was primarily influenced by the BP representation by Hjort
(1990).

We rename the random measure Y generated by the BP to be B as is done by
Thibaux and Jordan (2007). Using Equation (2.9), we can see that

B =
∞∑
k=1

pkδωk ,

where {ωk, pk}∞k=1 are the countably infinite points generated by a Poisson process
with intensity ν. Each of the atoms in B then has location ωk and weight pk where
pk ∈ [0, 1]. For a set S, this gives us the measure B(S) =

∑
k:ωk∈S pk. We write

B ∼ BP(c, B0) to denote that B is drawn from a beta process. We formalize this in
the next definition.

Definition 2.3.1. Let B0 be a measure on Ω and c > 0 be a concentration parameter.
The beta process B, written B ∼ BP(c, B0), is the completely random measure with
Lévy measure

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω).

We then define the Bernoulli process to be:

Definition 2.3.2. Let H be a measure on Ω. The Bernoulli process z with hazard
rate H, written z ∼ BeP(H), is the completely random measure with Lévy measure

ν(dω, dp) = δ1(dp)H(dω)

where δ1 is the delta function at one.
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Figure 2.4: We visualize B ∼ BP(c, B0) in the top figure and directly below it draw
zi ∼ BeP(B) for i = 1, . . . , 100. A black dot in the ith row indicates that zi has the
corresponding feature. As we can see, ωi with a large pi naturally are present in more zi.

By having the delta function at one, all points in z must have value one. All points
that do not appear in z have value zero. If H is a continuous measure, this means the
locations of the atoms of z are a Poisson process with intensity H. This takes the form
z =

∑N
k=1 δωk where N ∼ Poisson(H(Ω)) and each of the ωk are sampled i.i.d. from

the distribution H/H(Ω). If H is discrete and takes the form H =
∑∞

k=1 pkδωk , then
we define z to be z =

∑∞
k=1 bkδωk where bk ∼ Bernoulli(pk). This is straightforward

from our discussion of fixed points of discontinuity in Section 2.2.1.
Putting all of this together, our full stochastic process for generating the binary

latent feature matrix Z is

B ∼ BP(c, B0)

zi|B ∼ BeP(B) i = 1, . . . , N.

We visualize this in Figure 2.4.
Since zi takes on values zero and one, we can store it in an infinitely long binary

row vector where each column corresponds to ωk. In addition, since B has finite mass
by Campbell’s theorem, zi itself will have a finite number of non-zero entries, so we
can store all rows of Z = {z1, . . . , zN} in a finite amount of space by only storing
non-zero features.
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Now we can see that any binary matrix Z with N rows and a finite number of
non-zero columns will have positive probability under this prior, meaning we have
defined a valid nonparametric prior. This is our first step towards having a useful
nonparametric prior. What do we do with all the {ωi}? Often, each feature will
have an associated parameter which we can let be ωi, so B0 is the prior on these
feature values. Or, if we let B0 be uniform on [0, 1], we can use ωi as random number
generator for computing values associated with each feature. For simplicity, when
discussing the Indian buffet process in Section 2.3.3, we leave out mentions of ωi, but
we can always add them back in. In Chapter 3, we discuss how we can use this prior
to perform posterior inference, allowing this to be used in practical models, and in
Chapter 6, we complete the story by demonstrating applications of these priors.

Before continuing on to other representation of this prior on Z, we address pos-
terior updates to B based on Z as this will be useful in both Section 2.3.3 as well as
when we discuss inference algorithms in Chapter 3.

If we observe z1, . . . , zN , what is our posterior belief about B? Theorem 3.3 of
Kim (1999) answered this question. In the notation of Thibaux and Jordan (2007),
the posterior takes the form:

B|z1, . . . , zN ∼ BP(c+N,BN) (2.13)

where BN =
c

c+N
B0 +

1

c+N

N∑
i=1

zi =
c

c+N
B0 +

∑
j

mN,j

c+N
δωj

where ωj are the set of all atoms present in z1, . . . , zN and mN,j =
∑N

i=1 zi({ωj}) is
the number of times ωj occurs in all the zi. In other words, in the posterior the weight
of the continuous measure B0 is reduced and we add in a discrete measure located at
the atoms of the zi weighted by how many times they occur.

An equivalent, but slightly clearer way of thinking about this that more closely
parallels the presentation of Kim (1999) is that we start off with a beta process B
with Lévy measure

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω).

We then draw zi from the resulting discrete measure. For each atom in B, we draw
ωj with probability pj. If we have drawn a point ωj a total of mN,j > 0 times after N
draws, then the the posterior distribution of pj at ωj is the Beta(mN,j, N −mN,j + c)
distribution

Γ(N + c)

Γ(mN,j)Γ(N −mN,j + c)
pmN,j−1(1− p)N−mN,j+c−1,
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just as if we had started off with a Beta(0, c) prior and then observed N observations
z1, . . . , zN from a Bernoulli distribution. Since we have observed at least one zi at
location ωj, we know that B must have had an atom at ωj, resulting in this discrete
posterior.

For the continuous part of the posterior Lévy measure, the probability of not
seeing any zi at some ωj is (1− pj)N , so the continuous part of the Lévy measure is

cp−1(1− p)c+N−1dpB0(dω).

This is similar to starting with a Beta(0, c) prior and then not observing anything after
N attempts. The resulting posterior is still improper, thus resulting in a posterior
beta process. Combining these two parts gives us the posterior Lévy measure.

2.3.2 The Stick Breaking Process

The beta-Bernoulli process prior on Z presented in the previous section tells us the
distribution of B and Z, but it does not tell us how to actually generate samples form
this prior. In order to use it in models, we need to know how to get samples of both B
and Z. As discussed in Section 2.2.4, the inverse Lévy measure algorithm of Wolpert
and Ickstadt (1998b) is precisely such a way to draw the atoms of B =

∑∞
k=1 pkδωk

in strictly decreasing order of pk. To do this, we let α = B0(ωk) and assume c = 1,
which is the special case corresponding to the Indian buffet process introduced in the
next section1. Then we draw

vk
i.i.d.∼ Beta(α, 1)

pk|{vi}∞i=1 =
k∏
i=1

vi

ωk
i.i.d.∼ B0/α.

This is referred to as the stick breaking process because we start with a stick of length
one. Then we break off a Beta(α, 1) piece of this stick. This is p1. Then we break
off a Beta(α, 1) fraction of p1 and call this p2, and continue this process where each
pk is a Beta(α, 1) fraction of pk−1. This construction is due to Teh et al. (2007)
who derived it based on a limiting argument for the IBP, although the derivation
in Section 2.2.4 is more direct. An alternate stick breaking construction based on
a different limiting argument has also been derived by Paisley et al. (2010). This
construction has recently been rederived and extended by Broderick et al. (2011)
by directly examining the underlying random measure rather than with a limiting

1For general c, there is no closed form stick breaking process.
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argument.
We can continue the stick breaking process arbitrarily long, although for practical

reasons, we are only able to store a finite number of atoms of B. Given these atoms,
it is very easy to sample the Bernoulli process zi via a Bernoulli sampler. This gives
us a practical way to get samples of B and Z.

2.3.3 The Indian Buffet Process

We have seen how to generate Z = (z1, . . . , zN) via

p(z1, . . . , zN) =

∫ [ N∏
i=1

p(zi|B)

]
dP (B),

where B is drawn from the BP and zi are drawn conditionally independently via
the BeP. Due to these conditionally independent draws, the rows (z1, . . . , zN) are
exchangeable as is seen by checking De Finetti’s theorem in Section 2.1.4.

The Indian Buffet Process (IBP) is a way to draw Z directly without first needing
to sample B developed by Griffiths and Ghahramani (2006). It was derived without
any knowledge of the BP and it came as a revelation when the BP was shown to be
the De Finetti mixing distribution for the IBP by Thibaux and Jordan (2007).

We first introduce the IBP itself, then we discuss how to derive in two different
ways, the first using the beta-Bernoulli process, the second involving the original
derivation without knowledge of the BP.

The Indian Buffet Process The IBP sets c = 1 in the BP and has a single parameter
α which is equivalent to B0(Ω) in the BP and is a culinary metaphor2 describing how
to generate the non-zero columns of Z. In this metaphor, each row of Z corresponds
to a customer at an Indian buffet and each column corresponds to one of infinitely
many dishes. zik, the entry at (i, k), will be one if the ith customer tastes the kth dish
and zero otherwise. We fill in the matrix as shown in Figure 2.5 and as described
without the culinary metaphor below.

To generate matrices Z from the IBP(α), start with an all-zero matrix and perform
the following:

• In the first row, mark the first Poisson(α) columns as one. Leave the rest all
zero.

2The Bayesian nonparametric community has been keen on finding culinary metaphors for new
processes since the Chinese Restaurant Process was developed as a culinary metaphor for sampling
from the Dirichlet Process.
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• Now assuming we have filled in the first i− 1 rows, fill in the ith row as follows:

– Look at each non-zero column. If there are mk non-zero entries in the kth

column, set the (i, k) entry to one with probability mk/i.

– Now add an additional Poisson(α/i) ones after that last non-zero column.

See Figure 2.5 to visualize this.
We initially claimed that the IBP is an exchangeable prior, so that permuting the

rows of Z does not change the probability of seeing Z, but it is clear given the descrip-
tion of the IBP and the figures in Figure 2.5 that as described, it is not exchangeable.
This is remedied by remembering that the order of the columns themselves do not
have any real meaning – they are just placeholders for some feature. In the culinary
metaphor, the dishes themselves might have been arranged arbitrarily. So instead of
placing a prior on Z itself, we are placing a prior on equivalence classes of Z, which we
denote by [Z]. [Z] is the class of all matrices that map to the same left-ordered form.
The left-ordered form of Z is the matrix that results from permuting the columns so
that they are sorted by their binary values. It is clear that multiple matrices have
the same left-ordered form and that for all of these, permuting the columns does not
affect how many features overlap between different people. When we place the IBP
prior on these equivalence classes, then the prior is exchangeable. For details, see
Griffiths and Ghahramani (2006).

If we wish for a parameter ωk to be associated with each column as in the beta
process, then after sampling Z, we can sample ωk independently from B0/B0(α).

Derivation 1 We now derive how to get the IBP from the beta-Bernoulli process
construction of p(Z). To correspond exactly to the IBP, we set c = 1, but leave c as
a variable in the below derivation.

For the first person to enter the the restaurant corresponds to z1. So we wish to
sample z1 from the distribution

p(z1) =

∫
p(z1|B)dP (B),

where B ∼ BP(c, B0). Thibaux and Jordan (2007) showed that this marginal distri-
bution of z1 is BeP(B0). The reasoning is that by construction, z1 takes values in
{0, 1} and is a completely random measure, so it is a Bernoulli process. These are
characterized entirely by their hazard rate, which is their expectation. In this case,
the hazard function is therefore E[z1] = E[E[z1|B]] = E[B] = B0.

As mentioned right after Definition 2.3.2, a Bernoulli process with a continuous
hazard function is a Poisson process with N ∼ Poisson(B0(Ω)) points where the

27



Chapter 2. Bayesian Nonparametric Latent Feature Models

...

→

(a)

→ ...

(b)

→
...

(c)

Figure 2.5: A demonstration of the Indian Buffet Process. We start with an empty (all-
zero) matrix Z where each row corresponds to a person entering the buffet and each
column corresponds to a dish. We fill in Z row by row. (a) The first customer to
enter the restaurant tries the first Poisson(α) dishes, which is recorded by changing the
corresponding entries of Z to one. (b) and (c) For the ith customer, there are two steps.
The first step is trying at all previously sampled dishes with probability proportional to
the number of people who have previous tried it (details in the main text). The next step
is to try a Poisson(α/i) number of new dishes.
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locations of those points are drawn independently from B0/B0(Ω). Since we have
defined α = B0(Ω), this means z1 is a draw of Poisson(α) points as in the IBP.

For the ith person to enter the restaurant, we wish to sample zi from the posterior
distribution

p(zi|z1, . . . , zi−1) =

∫
p(zi|B)dP (B|z1, . . . , zi−1).

Recalling Section 2.3.1, then by Equation (2.13), the posterior distribution of B given
z1, . . . , zi−1 is:

B|z1, . . . , zi−1 ∼ BP(c+ i− 1, Bi−1)

where Bi−1 =
c

c+ i− 1
B0 +

1

c+ i− 1

i−1∑
j=1

zj =
c

c+ i− 1
B0 +

∑
j

mi−1,j

c+ i− 1
δωj

By the same reasoning as for z1, we can therefore show that zi ∼ BeP(Bi−1). Since
Bi−1 is a mixed continuous and discrete measure, we deal with zi for the continuous
and discrete parts separately.

For the discrete part, following the text after Definition 2.3.2, sampling from this
is equivalent to sampling each ωj independently with probability

mi−1,j

c+i−1
. Here mi−1,j

is the number of times feature j was present in z1, . . . , zN , (i.e. mk, the number of
times the dish was previously sampled in the IBP description above) and c = 1, which
means we sample each of the previously sampled dished with probability mk/i.

For the continuous part c
c+i−1

B0 with c = 1, then similar to z1, this corresponds

to sampling a Poisson
(

c
c+i−1

B0(Ω)
)

= Poisson (α/i) number of new dishes.
Therefore the steps for sampling each zi as derived by marginalizing out B are

equivalent to those of the IBP and it becomes clear how the mix of a continuous and
discrete posterior distribution of B directly affect the two aspects of sampling zi in
the IBP. Also, in this formulation, it is clear that the order of the columns is arbitrary,
so this defines a prior on equivalence classes of matrices.

Derivation 2 The alternate derivation of the IBP is the original derivation in Grif-
fiths and Ghahramani (2006) and proceeds by placing a prior on finite N×K matrices
and then letting K go to infinity. This turns out to be equivalent to the previous
derivation.

We first introduce a finite beta-Bernoulli prior for generating an N ×K matrix Z
in which both N and K are finite. To generate Z from this prior, we sample

πk ∼ Beta(α/K, 1) k ∈ {1, . . . , K}
zik ∼ Bernoulli(πk) i ∈ {1, . . . , N}, k ∈ {1, . . . , K}
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where α is a parameter. As K → ∞, the π here will correspond to the p in the BP,
but we keep the notation as π to be consistent with Griffiths and Ghahramani (2006).
Conditioned on πk all entries of the kth column are independent Bernoulli samples.

For finite K, we get that

p(Z|π) =
K∏
k=1

N∏
i=1

p(zik|πk)

=
K∏
k=1

πmkk (1− πk)N−mk

where mk =
∑N

i=1 zik is the number of objects with feature k.
We note that the prior on πk is conjugate to this likelihood, so we can integrate

out each πk to get

p(Z) =
K∏
k=1

α
K

Γ
(
mk + α

K

)
Γ (N −mk + 1)

Γ
(
N + 1 + α

K

) .

As we take K → ∞, this will define a prior on Z such that each row only has
a finite number of non-zero entries. However, by construction, all of these matrices
will be extremely sparse and as the number of columns goes to infinity, the proba-
bility of any particular configuration will go to zero. To fix this problem, Griffiths
and Ghahramani (2006) defined the notion of equivalence classes of matrices, the
left-ordered form we mentioned earlier. Since multiple matrices map to the same
equivalence class, we will see that even though the probability of any particular ma-
trix goes to zero, the probability of its equivalence class does not. The number of
matrices in the equivalence class of Z can be shown to be(

K
K0 · · · K2N−1

)
=

K!∏2N−1

h=0 Kh!

where Kh is the number of columns having the binary representation of the number h
in Z. It is easy to see that each of these matrices is going to have the same likelihood
under the prior, so if we define the class [Z] to be all matrices having the same
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left-ordered form as Z, then

p([Z]) =
∑
Z∈[Z]

p(Z)

=
K!∏2N−1

h=0 Kh!

K∏
k=1

α
K

Γ
(
mk + α

K

)
Γ (N −mk + 1)

Γ
(
N + 1 + α

K

) .

Taking the limit as K →∞, we get

p([Z]) =
αK

+∏2N−1

h=1 Kh!
exp{−αHN}

K+∏
k=1

(N −mk)!(mk − 1)!

N !

where K+ is the number of non-zero columns and HN =
∑N

j=1
1
j

is the N th harmonic

number. This is exactly the prior distribution of the equivalence class [Z] under the
Indian Buffet Process. For details on taking the limit, see Griffiths and Ghahramani
(2006).

We should also note that the distribution of the {πk}Kk=1 converges to the distri-
bution of {pk}∞k=1 of B drawn from the beta process as K →∞. Therefore, to get a
finite approximation to B, we can now either get draws from a truncated stick break-
ing process (truncated meaning we just stop after some K and assume all smaller pk
are zero) or we can draw the set {πk}Kk=1 independently from Beta(α/K, 1).

Derivation summary We have described two ways to derive the IBP, one using the
Lévy process framework and the other using a limiting argument on a parametric
class of priors. Both of these produce the same prior and demonstrate contrasting
ways to generate them. Various extensions to these priors proceed by extending one
or both of these derivations, so they are both important to understand.

2.3.4 Extensions

Since the original development, there have been several variations and extensions to
the BP/IBP. We do not go into depth about any of these, merely highlighting some
of the recent work done in this field.

One way to extend the BP/IBP is to develop a two-parameter version. In the
original prior, there is only one parameter, α. Both Ghahramani et al. (2006) and
Thibaux and Jordan (2007) looked at their formulations (the IBP and BP, respec-
tively) and identified distinct ways to introduce another parameter beyond α in such
a way that the original prior was a special case. This allowed for more flexibility in
the sharing of features or concentrations of features.
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A development after identifying the relationship between the IBP and the BP was
to develop the hierarchical beta process (HBP) (Thibaux and Jordan, 2007). This
work mirrors the work done on the hierarchical Dirichlet process (HDP) by Teh et al.
(2005). In the HBP, we wish to draw latent features for two (or more) non-overlapping
groups of objects. One way to attempt this would be to use a common base measure
B0 and draw B(1) ∼ BP(c, B0) for the first group and B(2) ∼ BP(c, B0) for the second
group and use these to generate the respective features for each group. However,
since B0 is continuous, B(1) and B(2) would not share any atoms and hence would
not have any features in common. In order for B(1) and B(2) to share atoms, B0 must
be discrete, but in order to have a nonparametric prior allowing for an unbounded
number of features, B0 must have countably infinite support. The solution is to add
an extra layer in the hierarchy and have B0 itself be a random draw from a beta
process. This allows for there to be an infinite number of unknown features that are
shared across groups.

The HBP is an example of a prior that induces dependencies across different
instantiations of beta processes. The dependent IBP of Williamson et al. (2010a)
seeks to also induce dependencies across latent features induced by known covariates
related to our observations.

Other priors have addressed known limitations or assumptions of the BP/IBP.
One such limitation is that the weights {pk}∞k=1 drawn from the beta process in order
of decreasing size shrink exponentially quickly in expectation. For some applications,
this is not a realistic assumption and we might hope for a slower decrease to capture
phenomena like power laws. To address this issue, Teh and Görür (2009) created the
IBP with power-law behavior. They demonstrate how to do this by modifying the
Lévy measure and derive the corresponding marginalized representation. This work
was partially inspired by properties of the Pitman-Yor process, an extension of the
Dirichlet Process (Pitman and Yor, 1997). An alternate power-law approach based
on a stick-breaking construction was recently introduced by Broderick et al. (2011).

Another extension addresses the lack of correlations between the features them-
selves since in the BP, the ωk are sampled independently. Doshi-Velez and Ghahra-
mani (2009a) developed a prior that introduced correlations in the features.

Austerweil and Griffiths (2010) develop the transformed IBP, which allows ωk to
be slightly transformed across different instantiations. This work was inspired by the
transformed Dirichlet process by Sudderth et al. (2005).

A large focus of later chapters in this dissertation is on developing non-exchangeable
priors, that is, priors on Z such that the rows are not exchangeable. An early exam-
ple of one of these priors is the Markov IBP by Van Gael et al. (2009), which allows
the rows of Z to be related in a Markov chain. In Chapter 4, we introduce our own
Markov non-exchangeable variation of the IBP that improves upon the prior by Van
Gael et al. (2009) along with several other non-exchangeable variations.
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2.4 Priors for Integer Valued Latent Feature Models

The second class of priors for nonparametric latent feature models we wish to discuss
are for non-negative integer valued latent feature models. This class of priors is even
more recent than the binary latent feature priors, with the first prior specifically for
non-negative latent features developed by Titsias (2008). However, as with most good
ideas, it built upon closely related work. Wolpert and Ickstadt (1998a) derived many
of the necessary results for using these priors and these results themselves use the
gamma process, which is a Lévy process older than the beta process that was even
used in original definition of the Dirichlet process (Ferguson, 1973).

Much of the description here mirrors the work done for binary latent feature
priors. Over the course of this section, we will introduce multiple ways to generate
a prior p(Z) on non-negative integer valued matrices with an unbounded number
of non-zero columns. Just as for the BP/IBP, we will first introduce a completely
random measure and discuss how to use it to generate non-negative integer valued
Z in Section 2.4.1. We then discuss stick breaking in Section 2.4.2 before describing
how to integrate out the completely random measure in Section 2.4.3. Section 2.4.4
finishes with some extensions that can be done with these priors.

2.4.1 The Gamma Process

Definition 2.4.1. The gamma process (GP) is a completely random measure with
Lévy measure

ν(dω, dp) = c
e−cp

p
dpB0(dω).

We write B ∼ GP(c, B0) to denote that B is drawn from a GP with base measure B0

and concentration parameter c.

Just like the BP had an improper beta Lévy measure which lead B to have a
countably infinite number of points, the GP has an improper gamma measure, which
means that B here will also have a countably infinite number of points, all but a finite
number of which will have mass arbitrarily close to zero. We know that B will be a
finite measure again by Campbell’s theorem from Section 2.2.3. Whereas the weights
p in the BP were in [0, 1], the weights p in the GP are in [0,∞). Unlike for the beta
process, the measure B has a simple characterization due to the aggregation property
of the gamma distribution

B(S) ∼ Gamma(cB0(S), c) ∀S ⊂ Ω. (2.14)

For a proof of this result, see Section 3 of Dufresne et al. (1991).
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Just as the beta distribution is the conjugate prior for the binary-valued Bernoulli
distribution, the gamma distribution is the conjugate prior for the non-negative inte-
ger valued-Poisson distribution. Hence, following that analogy, to get our nonpara-
metric prior on Z, we will now sample zi ∼ PP(B) where PP stands for Poisson
process. zi is now a vector with the counts of the number of times each atom in B
is present in the ith entity. Thus, our full stochastic process for generating the latent
feature matrix Z is

B ∼ GP(c, B0)

zi|B ∼ PP(B) i = 1, . . . , N.

As we did for the BP, if we only observe z1, . . . , zN , we wish to update our posterior
belief of B. In the notation of Thibaux (2008), Wolpert and Ickstadt (1998a) showed
that this is just

B|z1, . . . , zN ∼ GP(c+N,BN) (2.15)

where BN =
c

c+N
B0 +

1

c+N

N∑
j=1

zj.

In other words, just like for the BP, the posterior the weight of the continuous measure
B0 is reduced and we add in a discrete measure located at the atoms of the zi weighted
by how many times they occur.

An equivalent, but slightly clearer way of thinking about this that makes explicit
what is going on is that we start off with a gamma process B with Lévy measure

ν(dω, dp) = cp−1e−cpdpB0(dω).

We then draw zi from the resulting discrete measure. For each atom in B, we draw
ωj a Poisson(pj) number of times. If we have drawn a point ωj a total of mN,j > 0
times after N draws, then the the posterior distribution of pj at ωj is the proper
Gamma(mN,j, N + c) distribution

(c+N)mN,j

Γ(mN,j)
p
mN,j−1
j e−(c+N)pj ,

just as if we had started off with a Gamma(0, c) prior and then observed N observa-
tions z1, . . . , zN from a Poisson distribution. Since we have observed at least one zi at
location ωj, we know that B must have had an atom at ωj, resulting in the discrete
posterior.

For the continuous part of the posterior Lévy measure, the probability of not
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seeing any zi at ωj is e−Npj , so the continuous part of the Lévy measure is

cp−1e−(c+N)pdpB0(dω).

This is similar to starting with a Gamma(0, c) prior and then not observing any-
thing after N attempts. The resulting posterior is still improper, thus resulting in
a posterior gamma process. Combining these two parts gives us the posterior Lévy
measure.

2.4.2 The Stick Breaking Process

Again, following the development of the BP, we wish to sample B ∼ GP(c, B0) using
a stick breaking construction. However, most likely due to the fact that the use of
the GP is relatively young in the nonparametric latent feature community, no stick
breaking construction with closed form has been presented for this prior. We can
always use the inverse Lévy measure algorithm to sample B, but we might hope for
a closed form solution for special cases, just like for the BP.

While it is unlikely that a stick breaking construction for the GP that generates
sticks in decreasing size exists, we can leverage the stick breaking construction of the
Dirichlet Process (DP) developed by Sethuraman (1994) to get a size-biased sample
of the sticks of the GP. In such a sample, the sticks will be drawn in decreasing order
of expectation (though the sticks themselves are most likely not of strictly decreasing
size).

Let α = B0(Ω). In the stick breaking construction for the DP, we sample

vk ∼ Beta(1, α)

pk ∼ vk

k−1∏
i=1

(1− vk).

It is well known that the DP is a normalized gamma process, i.e., if B ∼ GP(1, B0),
then B/B(Ω) is a DP. This fact was originally mentioned by Ferguson (1973) and
has been used successfully in papers extending the DP such as those by Rao and Teh
(2009) and Lin et al. (2010).

Since the DP is a normalized GP, we expect it to have unit mass, which it does
since

∑∞
k=1 pk = 1. This means that given the sticks from a DP, all we need to do

is scale all this sticks up to be a draw from a GP. Using Equation 2.14, we know
that B(Ω) ∼ Gamma(α, 1) and that by properties of the gamma distribution, B(Ω)
is independent of the normalized measure B/B(Ω). Therefore, to get a stick breaking
construction for GP, we use the stick breaking construction for the DP and scale the
sticks up by a random draw from Gamma(α, 1).
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2.4.3 The Infinite Gamma Poisson Feature Model

Similar to the BP, we have seen how to generate Z = (z1, . . . , zN) via

p(z1, . . . , zN) =

∫ [ N∏
i=1

p(zi|B)

]
dP (B),

where B is drawn from the GP and zi are drawn conditionally independently via a
PP. Therefore, the rows (z1, . . . , zN) are also exchangeable as is seen by checking De
Finetti’s theorem in Section 2.1.4.

The Infinite Gamma Poisson Feature Model (IGPFM) is a way to directly sample
Z without first needing to sample B, just like the IBP is for the BP, and was developed
by Titsias (2008). It was again derived without knowledge of the GP, but the GP can
be shown to be the De Finetti mixing distribution for the IGPFM (Thibaux, 2008).

We first introduce an earlier culinary metaphor for sampling partitions called the
Chinese restaurant process that will be used by the IGPFM. Next we introduce the
IGPFM itself, then show how to derive it in two different ways, the first from the GP
and the second as Titsias (2008) did without knowledge of the GP.

The Chinese Restaurant Process In the Bayesian nonparametric world, there are
several examples of processes and their De Finetti mixing distribution. We have
already discussed the IBP and the BP and this section discusses the IGPFM and the
GP. The first widely used pair were the Chinese restaurant process (CRP) and the
Dirichlet process (DP). As we have already mentioned, the DP is a normalized GP,
so before diving into the marginal representation of the IGPFM, it is useful to review
the CRP.

The CRP is a method of sampling clusterings of points when the underlying
clustering is derived from the DP. The CRP’s name goes back to the 1980s (Aldous,
1983) and is related to the earlier work by Blackwell and MacQueen (1973) as well
as the Ewens sampling formula (Ewens, 1972). The CRP is a culinary metaphor for
how m people sit at tables in a Chinese restaurant. All people who sit at the same
table are assigned to the same partition and in this way, the distribution over seating
configurations determines a distribution over partitions. There is a single parameter
α for this process.

The m people are assigned to tables in an incremental fashion as follows:

• The first customer starts a new table.

• The ith customer sits at each of the occupied tables with probability proportional
to the number of people sitting there and sits at a new, unoccupied table with
probability proportional to α. To be more precise, if the kth occupied table has
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mi−1,k of the people 1, . . . , i− 1 sitting at it, then the ith person sits at it with
probability

mi−1,k

i−1+α
and sits at a new table with probability α

i−1+α
.

If we only care about the sizes of the partitions resulting from this process, and
we let cj be the number of partitions with j customers, then the probability assigned
by the CRP to a partition with (c1, c2, . . . , cm) (since necessarily ci = 0 for all i > m)
is

p(c1, . . . , cm) =
m!∏m

j=1 cj!j
cj
αK

Γ(α)

Γ(α +m)

where K =
∑m

j=1 cj, the number of occupied partitions. This process will be used by
the IGPFM.

The Infinite Gamma Poisson Feature Model The Infinite Gamma Poisson Feature
Model (IGPFM) samples Z when c = 1 and α = B0(Ω). Unlike the IBP, there is
no culinary metaphor, just a generative process. To generate a matrix Z from the
IGPFM(α), start with an all-zero matrix and perform the following:

• In the first row, we first decide the total count of features we will add and
then we decide how to split this count up into individual features. We do this
by sampling g1, a Negative Binomial NB(α, 1/2) number of features and then
partition g1 according to the CRP(α). The partitions become the new features
and the counts in the partitions are the counts entered in the matrix.

For example, we might first draw g1 = 7 from the NB(α, 1/2), which means that
the first row will have a total of seven (not necessarily unique) features. We
then run the CRP to see how this count will be partitioned into unique features.
The CRP might split these seven features up across three unique features having
counts (4, 1, 2), so the first row would be (4, 1, 2, 0, 0 . . .).

• Now assuming we have filled in the first i − 1 rows, we fill in the ith row as
follows:

– First look at all features that are present in z1, . . . , zi−1. Let mi−1,k be
the number of times the kth feature has occurred in z1, . . . , zi−1, that is,
mi−1,k =

∑i−1
j=1 zjk. Draw zik ∼ NB

(
mi−1,k,

i
i+1

)
. Thus, the features that

are more prevalent in 1, . . . , i − 1 have a higher chance of being selected
than those features which are not.

– Now select the total count of new features gi that will be unique to the ith

row from NB
(
α, i

i+1

)
, and distribute this into unique features according to

the CRP(α).
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As in the IBP, this process in itself is not exchangeable, but by equivalence classes
based on left-ordered forms for non-negative integer valued matrices, we get the same
kind of exchangeability result.

Derivation 1 The first derivation of the IGPFM is due to Thibaux (2008), showing
that it results from marginalizing out the gamma-Poisson process construction of
p(Z). We let c = 1 and α = B0(Ω).

For the first row of Z, z1, we sample z1 from

p(z1) ∼
∫
p(z1|B)dP (B)

where p(z1|B) is a Poisson process and the prior on B is GP(c, B0).
By Equation (2.14), the measure of B(Ω) ∼ Gamma(B0(Ω), 1). Therefore, re-

calling that if x|λ ∼ Poisson(λ) and λ ∼ Gamma(a, b), then by marginalizing out
λ, we get x ∼ NB

(
a, b

1+b

)
, then we can see that the total count of points in z1 is

NB(α, 1/2). Let this be g1 as in the IGPFM.
Now we need to know how to allocate the g1 points in z1. Given g1 and B for any

B, we note that z1 is a set of g1 independent draws from B/B(Ω), which is itself a
DP. Marginalizing out B therefore gives us that z1 is a draw of g1 points from the
CRP(α).

For the ith row of Z, zi, we sample zi from the conditional distribution

p(zi|z1, . . . , zi−1) ∼
∫
p(zi|B)dP (B|z1, . . . , zi−1)

where p(zi|B) is a Poisson process and the posterior of B given z1, . . . , zi−1 is as given
by Equation (2.15):

B|z1, . . . , zi−1 ∼ GP(c+ i− 1, Bi−1)

where Bi−1 =
c

c+ i− 1
B0 +

1

c+ i− 1

i−1∑
j=1

zj.

Bi−1 is a mixed continuous and discrete measure, so since B and zi are completely
random measures, we treat the continuous and discrete parts of Bi−1 separately.

For the discrete part, we treat each atom in
∑i−1

j=1 zj independently (which is
valid since this is a completely random measure). Using Equation (2.14) on each
atom, we see that for the kth atom ωk, if it has appeared mi−1,k times in z1, . . . , zi−1,
then B({ωk})|z1, . . . , zi−1 ∼ Gamma(mi−1,k, c + i − 1). zik is drawn from a Poisson
distribution conditioned upon B({ωk}), which means that when we marginalize out
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B({ωk}), we get zik|z1, . . . , zi−1 ∼ NB
(
mi−1,k,

i
i+1

)
.

For the continuous part, the updated c is c + i− 1 and we have shrunk the base
measure B0 by c

c+i−1
. Equation (2.14) therefore tells us that on the continuous part

of the posterior, B(Ω)|z1, . . . , zi−1 ∼ Gamma(cB0(Ω), i+ c−1), which means that for
c = 1 and α = B0(Ω), the total count of new features in zi is NB

(
α, i

i+1

)
. Call this

count gi. By the same argument as for z1, these counts are partitioned according to
the CRP(α).

Therefore the steps for sampling each zi as derived by marginalizing out B are
equivalent to those of the IGPFM and it becomes clear how the mix of a continuous
and discrete posterior distribution of B directly affect the two aspects of sampling zi
in the IGPFM.

Derivation 2 The second derivation is the original derivation by Titsias (2008) and
proceeds by placing a prior on finite N×K matrices and then letting K go to infinity.
This turns out to be equivalent to the previous derivation.

We first introduce a finite gamma-Poisson prior for generating an N ×K matrix
Z in which both N and K are finite. To generate Z from this prior, we sample

λk ∼ Gamma
( α
K
, 1
)

k ∈ {1, . . . , K}
zik ∼ Poisson(λk) i ∈ {1, . . . , N}, k ∈ {1, . . . , K}

where α is a parameter. In the infinite limit, λ become equivalent to the p of the GP.
Conditioned on λk, all entries of the kth column are independent Poisson samples.

This gives us that

p(Z|λ) =
N∏
n=1

K∏
k=1

λznkk exp(−λk)
znk!

=
K∏
k=1

λmkk exp(−Nλk)∏N
n=1 znk!

where mk =
∑N

n=1 znk. Integrating out λ gives

p(Z|α) =
K∏
k=1

Γ
(
mk + α

K

)
Γ
(
α
K

)
(N + 1)mk+ α

K

∏N
n=1 znk!

.

This is exchangeable and the columns are independent.
By associating each matrix Z with its equivalence class [Z] as is done in the

IBP, we see that each equivalence class consists of K!∏∞
h=0Kh!

matrices where Kh is the
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number of columns that have a particular value3. Therefore

p([Z]|α) =
K!∏∞

h=0 Kh!

K∏
k=1

Γ
(
mk + α

K

)
Γ
(
α
K

)
(N + 1)mk+ α

K

∏N
n=1 znk!

. (2.16)

By using the exact same limits as in Griffiths and Ghahramani (2005) when K →
∞ in Equation (2.16), we get that if K+ is the number of non-empty columns, then

p([Z]|α) =
1∏∞

h=1 Kh!

αK
+

(N + 1)m+α

∏K+

k=1(mk − 1)!∏K+

k=1

∏N
n=1 znk!

(2.17)

where m =
∑K+

k=1mk.
Titsias (2008) shows that this is the same distribution as the IGPFM (up to

equivalence classes). We should also note that the distribution of the {λk}Kk=1 con-
verges to the distribution of {pk}∞k=1 of B drawn from the gamma process as K →∞.
Therefore, to get a finite approximation to B, we can now either get draws from a
truncated stick breaking process or we can draw the set {λk}Kk=1 independently from
Gamma

(
α
K
, 1
)
.

Derivation summary We have derived the IGPFM in two ways, one based on the
gamma process and one based on defining a parametric prior on N ×K matrices and
letting K →∞. Both of these define equivalent priors and can be used to generalize
the IGPFM.

2.4.4 Extensions

The GP has been much less used than the BP in Bayesian nonparametric latent
feature models, so there are few extensions. The main extension is the hierarchical
GP by Thibaux (2008) which is the logical hierarchical extension to the GP applicable
to simultaneous inference of feature counts across groups of data. There exist other
variations of the GP, but most have been used for applications besides latent feature
models. For example, taking advantage of the relationship between the GP and the
DP, both Rao and Teh (2009) and Lin et al. (2010) have worked with variations on
the GP for more flexible DP priors.

3We use some unique mapping from columns to integers such that the all zero column corresponds
to K0. In Titsias (2008), he assumes that there exists a c such that znk < c, but this isn’t true. In
our notation, an infinite number have Kh = 0, which is fine. Note also that in Titsias (2008), he
accidentally uses a

∑
instead of

∏
.
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2.5 Summary

In this chapter, we have introduced the ideas behind Bayesian nonparametric latent
feature models and discussed two concrete latent feature priors, the BP/IBP and the
GP/IGPFM. Both of these classes of priors are exchangeable and can be derived either
by constructing a parametric prior for finite N×K matrices and letting K →∞ or by
identifying and working with their De Finetti mixing distributions, which themselves
are Lévy processes/completely random measures. Both of these derivation techniques
are extremely helpful and allow us to construct generalizations of these priors.

While we have motivated the use of these models and priors, we have not told
how to use them in concrete applications, nor how to perform inference in them. In
the next chapter, Chapter 3, we discuss how to inference algorithms for these models.
The next two chapters, Chapters 4 and 5 discuss extensions to the basic priors as well
as inference algorithms for these extensions. Finally, Chapter 6 ties this all together
by discussing concrete applications.
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Chapter 3

Bayesian Nonparametric Latent
Feature Model Inference Algorithms

Now that we have established two different priors useful in Bayesian nonparametric
latent feature models, we must be able to apply them to various applications and
perform posterior inference.

Given an observation X, we wish to follow the outline from Section 2.1.3. First,
we must determine if our data X is suitable for a latent feature model and if so, if one
of our priors p(Z) seems suitable. Assuming we are in a context where using one of
these models makes sense, we must then define the likelihood p(X|Z, θ) and the prior
p(θ). Inference algorithms, which we discuss in this chapter, involves computing our
posterior beliefs about Z and θ. In particular, we must use Bayes’s rule to compute

p(Z, θ|X) ∝ p(X|Z, θ)p(θ)p(Z).

Unfortunately, performing this inference exactly is intractable since the distribution
p(Z, θ|X) has no simple closed form. Even if we ignored θ, we would need to compute
the right hand side for every possible Z and then normalize to get the posterior
distribution on the left hand side. Given that the domain of Z is countably infinite,
this is not possible.

We must therefore resort to some kind of approximate inference algorithm. There
are two main classes of approximate inference algorithms: sample-based techniques,
of which Markov Chain Monte Carlo (MCMC) is the most popular for Bayesian
nonparametric models, and variational techniques, for which näıve mean field is the
most prevalent. For appropriate background on MCMC, see Robert and Casella
(2004) and for appropriate background on variational methods, see Wainwright and
Jordan (2008).

While we reviewed several different representations of the priors for Bayesian
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p(φ)

Samples from p(φ)

Monte Carlo approximation Variational approximation

Approximate p(φ) with simpler q(φ)

Figure 3.1: A comparison of the two main classes of approximate inference algorithms.
Sample-based approaches such as Monte Carlo methods approximate the true distribution
p(φ) by getting samples from it and using them to approximate the whole distribution.
Variational approaches attempt to find a simpler distribution q(φ) that approximates p(φ)
well.

nonparametric latent feature models in Chapter 2, the majority of MCMC techniques
have been developed for their marginalized representations, the IBP and IGPFM,
though there are a few that work with the Lévy process stick breaking constructions.
Variational inference algorithms have so far focused on the Lévy process stick breaking
constructions, but are potentially applicable to the marginalized representations.

3.1 Overview

The main difference between the sample-based MCMC approximations and varia-
tional approximations lies in how they both approximate a distribution. Suppose we
wish to approximate some distribution p(φ) such as the distribution in Figure 3.1. If
this distribution does not have a nice form that we can easily work with, then we can
use sample-based and variational approaches to approximate it.

In sample-based approaches, we wish to get samples from p(φ) and approximate
it with those samples. If we can either directly sample from p(φ) or sample from a
very close distribution and use standard rejection sampling, that can work very well.
However, it is often very hard to do this, especially if φ has multiple components.
MCMC gives us a way to construct a Markov chain such that after the chain has
burned-in (run long enough), the samples we get from it are from p(φ). The longer
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we run the chain and the more samples we get, the better an approximation. This
is a kind of Monte Carlo approximation shown in the left portion of Figure 3.1. We
discuss how to use MCMC to approximate posterior distributions of the beta process
and gamma process in Section 3.2.

In variational approximations, instead of approximating p(φ) with samples, we
find a simpler distribution q(φ) from a parameterized family of distributions Q that
is as close as possible to p(φ). In mean field approximations, one particular kind of
variational approximation, we optimize the parameters of q so that it is as close as
possible to p as measured by the KullbackLeibler divergence (KL divergence) D(q||p).
This is shown in the right portion of Figure 3.1. In that figure, Q is the family of
normal distributions, so the closest q is still not a great fit for p, but the optimal
q is easy to compute. Whereas in MCMC in which we can run the chain longer to
get a better approximation of p(φ), once the optimization in the variational inference
algorithm is done for a particular family Q, we have as close an approximation as
we are going to get while staying in the family Q. However, we can always make
Q a more complex family to get a better approximate of p, but the bigger Q gets,
the harder the optimization. If Q is the family of all distributions, the minimizer of
D(q||p) is p itself, which we assume is hard to work with (else we would not be trying
to approximate it). We discuss variational inference algorithms for our nonparametric
priors in Section 3.3.

Therefore, the two kind of approximations have two different ways of finding
closer approximations. With MCMC, the longer we run the chain, the better an
approximation we get. With variational approximations, the bigger the family Q we
allow, the better an approximation. In both cases, better approximations result in
increased running time. However, there are instances when one works better than
the other and it is therefore important to understand both and know when each one
is the better algorithm to use.

Both MCMC and variational approximations have been developed for the BP/IBP,
but to date, only MCMC approaches have been developed for the GP/IGPFM. We
do not go into inference algorithms for any of the extensions of the nonparametric
algorithms mentioned in Chapter 2.

After reviewing the MCMC approaches for both the BP and GP in Section 3.2,
we discuss our variational approximation for the BP in Section 3.3. Then in Section
3.4, we compare the performance of MCMC and the variational approximation for
the BP using the linear-Gaussian likelihood function discussed in Sections 3.2.1 and
3.3.
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3.2 Markov Chain Monte Carlo

In this section, we introduce MCMC approximate inference algorithms for Bayesian
nonparametric latent feature models that use both the beta process and the gamma
process.

In general, the idea of MCMC is to start off with an arbitrary guess of what
Z and θ are and construct a Markov Chain that eventually generates samples from
the true posterior p(Z, θ|X). Assume that θ = (θ1, . . . , θd) is a d-dimensional vector
and that Z stores only the finitely many non-zero columns of the latent feature ma-
trix (thereby implicitly acknowledging the infinitely many all-zero features). Often,
there is a parameter θk for each non-zero feature along with several other param-
eters independent of the features. We will construct a Markov chain to generate
samples (Z(1), θ(1)), (Z(2), θ(2)), . . ., where (Z(m), θ(m)) represents the mth sample from
the chain. To obtain these samples, we construct a transition kernel to go from the
(m − 1)th sample to the mth sample. We will use a Gibbs sampler below, a partic-
ularly simple form of MCMC sampler, although these can also be augmented with
Metropolis-Hastings proposals.

To sample (Z(m), θ(m)) from (Z(m−1), θ(m−1)), we iteratively update each single
component of Z and θ. Assume below that whatever components of Z and θ that are
being condition on are the most recent samples (of which some may be from sample
m − 1 and some from m). Also, let Z−ik be all of Z except the (i, k) entry and θ−j
be all of θ except the jth entry. A single iteration updates each element in turn until
we have updated all components of Z and θ:

1. For i = 1, . . . , N , if there are K+ non-zero features in Z, then

(a) For k = 1, . . . , K+, sample:

zik ∼ p(zik|Z−ik, θ,X)

∝ p(X|Z−ik, zik, θ)p(zik|Z−ik).

(b) We must also consider the possibility that the ith row has features unique
to it that are not already present in Z. This is how the sampler can explore
the whole space of potential latent feature matrices. We therefore sample
the number of new features (and their configuration for the IGPFM) unique
to the ith row.

2. For j = 1, . . . , d, sample

θj ∼ p(θj|Z, θ−j, X)

∝ p(X|Z, θ−j, θj)p(θj|θ−j).
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This algorithm is still correct if we vary the order of the updates from those above
as long as we eventually update all components. The details for each of these steps
are provided for each of the models in the following sections. As we will see, all
the hard details were worked out in descriptions of the prior because the rows of Z
are exchangeable, so these updates will be straightforward. We then ignore the first
many samples until after the burn-in period of the Markov chain, at which point,
(Z(m), θ(m)) will be samples from the desired posterior distribution. For details on
why this works as well as convergence diagnostics, see Robert and Casella (2004) or
Gelman et al. (2003).

3.2.1 MCMC for the Beta Process

There are several sample-based approximation algorithms for the BP/IBP. These
include Gibbs samplers (Griffiths and Ghahramani, 2006), particle filters (Wood
and Griffiths, 2006), slice sampling (Teh et al., 2007), and improved Gibbs samplers
(Doshi-Velez and Ghahramani, 2009b; Doshi-Velez et al., 2009a). Of these samplers,
all except the slice sampler work with the marginalized IBP representation of the
beta process. We will only discuss the basic Gibbs sampler here.

The Gibbs sampler works with the IBP representation. We first present the Gibbs
sampler assuming a generic likelihood and then present a concrete version using a
linear-Gaussian likelihood. The purpose of the concrete model will be twofold. First,
it will show that the steps needed for Gibbs samplers are not that challenging to
compute and second, we will use this exact model to compare MCMC against the
variational approximations in Section 3.4.

Generic Likelihood Earlier in Section 3.2, we presented an overview of all the steps
we need to derive the Gibbs sampler. Step (2) of sampling θ is application specific and
must be addressed individually for each application, so to fill in a generic inference
algorithm, we only need to address the two parts of Step (1) of the Gibbs sampler.
These two steps are:

1. For non-zero columns, we must first be able to sample

zik ∝ p(X|Z−ik, zik, θ)p(zik|Z−ik).

2. For each row we must also be able to sample the number of new features unique
to the ith row.

For the first step, we only need to consider zik ∈ {0, 1}, so we evaluate the right-
hand side for zik = 0 and zik = 1, normalize, and sample zik from the resulting
Bernoulli distribution. The term p(X|Z−ik, zik, θ) is the likelihood assuming we knew
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all of Z and θ. The term p(zik|Z−ik) is the prior probability of zik = 0 or zik = 1 given
the rest of the matrix. To evaluate this term, we use exchangeability of the rows of
Z to assume the ith row is the last row to be added to Z after the N − 1 other rows
have been added. Then the prior probability of zik being non-zero is the same as the
probability that the last customer to enter the Indian buffet samples the kth dish as
discussed in Section 2.3.3. This is just

p(zik = 0|Z−ik) =
N −m−ik

N

p(zik = 1|Z−ik) =
m−ik
N

,

where m−ik is the number of times feature k is present in Z excluding the ith row.
For the second step, we must sample the number of features that are unique to

the ith row. This step can be tricky if the likelihood p(X|Z, θ) is not conjugate to
the prior p(θ) for any feature specific parameters. For a review of conjugacy, see
(Robert, 2007). This step is tricky because we only store the feature-specific θk for
each non-zero column of Z. Therefore, when we sample new columns of Z, we have
not yet sampled any corresponding θk and we must integrate these unknowns out. If
we cannot, we can adapt techniques developed for the DP by Neal (1998) to the IBP
in order to sample with non-conjugate priors. Here we will assume that θ does have
a conjugate prior so that we do not need to worry about this.

To sample the number of features unique to row i, we sample Knew
i , the number

of new features and since they are binary features, add the corresponding number of
ones to the ith row of Z. Fortunately, by exchangeability again, we know from Section
2.3.3 that Knew

i ∼ Poisson(α/N). So we can therefore sample

p(Knew
i |X,Z, θ, α) ∝ p(X|Z,Knew

i , θ)p(Knew
i |α)

where p(X|Z,Knew
i , θ) is the probability of our observations if we have the old part

of Z augmented with Knew
i additional features in the ith row and θ contains all the

parameters associated with the old features and any likelihood specific features, but
does not contain any parameters associated with the new columns. This is the term
that is problematic in non-conjugate models. p(Knew

i |α) is Poisson(α/N).
We must evaluate the right-hand side for Knew

i ∈ Z∗ where Z∗ = {0} ∪ Z+. We
cannot do this exactly, so we often sample Knew

i from a large set {0, 1, . . . , c} for
some large c since the prior probability of Knew

i > c gets arbitrarily close to zero as c
increases. This is an approximation that can be removed by the use of a slice sampler
as described by Teh et al. (2007).
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Figure 3.2: The Linear Gaussian model. (a) A visual display of what the data and
unknowns of the linear-Gaussian might look like. (b) The corresponding graphical model.

Linear-Gaussian Likelihood We now demonstrate how this full process works using
a specific likelihood. This likelihood is the linear-Gaussian model presented by Grif-
fiths and Ghahramani (2006) as a means of discovering features shared across images.
By examine a specific likelihood model, we will be able to make a concrete empirical
comparison between the Gibbs sampler and variational inference techniques on real
data with a real likelihood. We save this comparison for Section 3.4.

In the linear-Gaussian model, we assume that X is an N ×D real-valued matrix
where there are N -row observations each having D dimensions. We believe that
there is some underlying latent feature matrix Z and that for each feature k, there is
a normally distributed D-dimensional vector Ak that is the associated with it. We let
A be the matrix where {Ak} are arranged as the columns. A is the only parameter
and is therefore the generic θ we discussed before. This can be seen pictorially in
Figure 3.2(a). Our generative model is the graphical model seen in Figure 3.2(b) and
takes the form

p(Z|α) = IBP(α)

p(Ak|σ2
A) = N (0, σ2

AI)

p(Xi|Z,A, σ2
n) = N (ziA, σ

2
nI).

We assume σA, σn, and α are all known, but in practice, we must also infer them.
In this simple model, the prior on A is conjugate to the likelihood, so we can
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integrate A out of the model entirely. Therefore, we are left a likelihood of

p(X|Z, σ2
n, σ

2
A) =

1

(2π)ND/2σ
(N−K)D
n σKDA

∣∣∣Z>Z + σ2
n

σ2
A
I
∣∣∣D/2

exp

{
− 1

2σ2
n

tr

(
X>

(
I − Z

(
Z>Z +

σ2
n

σ2
A

I

)−1

Z>

)
X

)}

For details on how to derive this, see Griffiths and Ghahramani (2006).
Therefore, the posterior distribution is p(Z|X) and we can plug this likelihood

into our generic discussion and ignore all mentions of θ. In Chapter 6, we will see
examples of non-conjugate priors in which we do need to worry about the parameters
θ.

3.2.2 MCMC for the Gamma Process

For the gamma process, only a Gibbs sampler has been developed. We review it here
in the context of using a generic likelihood. For details on an application specific
implementation see Titsias (2008).

Earlier in Section 3.2, we presented an overview of all the steps we need to de-
rive the Gibbs sampler. Step (2) of sampling θ is application specific and must be
addressed individually for each application, so to fill in a generic inference algorithm,
we only need to address the two parts of Step (1) of the Gibbs sampler. These two
steps are:

1. For non-zero columns, we must first be able to sample

zik ∝ p(X|Z−ik, zik, θ)p(zik|Z−ik).

2. For each row we must also be able to sample the number and configuration of
new features unique to the ith row.

For the first step, we need to consider zik ∈ Z∗, so we should evaluate the right-
hand side for each of these infinite number of possibilities and then normalize. The
term p(X|Z−ik, zik, θ) is the likelihood assuming we knew all of Z and θ. The term
p(zik|Z−ik) is the prior probability of zik taking on any particular value. We again
can use exchangeability and compute this as if the ith row were the last row to be
added to Z as described in Section 2.4.3. This distribution is zik ∼ NB

(
m−ik,

N
N+1

)
where m−ik is the total count of feature k in Z excluding the ith row.

To be exact, a Metropolis-Hastings step would be appropriate to sample the new
value of zik since we cannot evaluate the above for all Z∗. A close approximation
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often done in practice is to sample zik from a finite number of values, for example
{0, 1, . . . , c} for some large c since the prior probability of zik > c gets arbitrarily close
to zero as c increases.

For the second step, we must sample the number and configuration of features
that are unique to the ith row. As is the case with the IBP, this step can be tricky
if the likelihood p(X|Z, θ) is not conjugate to the prior p(θ) for any feature specific
parameters. We will assume that it is conjugate here but can again adapt techniques
from Neal (1998) to handle non-conjugate cases.

We must directly sample the number of new features in row i and their allocation.
Designate the new non-zero columns containing the allocation of the new features
by znew

i . Let gi be the number of new features in znew
i . Then, since given znew

i , gi is
deterministic, we wish to sample znew

i from

p(znew
i |X,Z, θ, α) ∝ p(X|Z, znew

i , θ)p(znew
i |gi)p(gi|Z, α), (3.1)

where p(X|Z, znew
i , θ) is the likelihood ofX given the old features Z, the new allocation

of features znew
i to the ith row, and the old θ; p(znew

i |gi) is the probability of the
allocation of features given their count; and p(gi|Z, α) is the probability that gi new
features are present in row i. By exchangeability, we know from Section 2.4.3 that
gi ∼ NB

(
α, N

N+1

)
and that given gi, z

new
i is distributed according to the CRP.

To be completely correct, we must evaluate Equation (3.1) for all possible counts gi
and all allocations of those counts znew

i and then sample from the resulting posterior.
Since we cannot do this in practice, we can either sample using an Metropolis-Hastings
step or, given that the distribution on gi makes it unlikely to have gi large, we can
often evaluate gi for only a moderate range {0, 1, . . . , gmax} for some gmax and find
a reasonable approximation. There are also some likelihoods that allow us to first
sample gi and then sample the configuration znew

i given gi, allowing each step to be
from a narrower sample space, increasing the likelihood of getting a decent sample.

3.3 Variational Inference Algorithms

In this section, we discuss our work on variational inference algorithms for the beta
process. This was the first variational approximation for a nonparametric latent
feature model and was originally published as Doshi-Velez et al. (2009b). A later
variational approximation for the BP was introduced by Paisley and Carin (2009).
There has been no work on variational inference algorithms for the GP when used
in latent feature models, but for one example of a variational approximation for a
related model using the GP, see (Hoffman et al., 2010).
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3.3.1 Variational Inference Algorithms for the Beta Process Overview

We derive our variational inference procedures using the IBP representation with the
linear-Gaussian likelihood model introduced in Section 3.2.1, in which A and ε are
zero mean Gaussians with variances σ2

A and σ2
n respectively. The updates can also be

adapted to other exponential family likelihood models such as the infinite ICA model
(Knowles and Ghahramani, 2007), but we do not review that here. Details on such a
variational inference algorithm for ICA can be found in (Doshi-Velez et al., 2009c).

We denote the set of hidden variables in the IBP by W = {π,Z,A} and the set
of parameters by θ = {α, σ2

A, σ
2
n}. Note that here π is equivalent to the set of p, the

weights of the Beta process introduced in Section 2.3.1, renamed to match the original
naming convention of Griffiths and Ghahramani (2006). Computing the true log pos-
terior ln p(W |X,θ) = ln p(W ,X|θ)− ln p(X|θ) is difficult due to the intractability
of computing the log marginal probability ln p(X|θ) = ln

∫
p(X,W |θ)dW .

Mean field variational methods approximate the true posterior with a variational
distribution q(W ) from some tractable family of distributions Q (Beal, 2003; Wain-
wright and Jordan, 2008). Inference in this approach then reduces to finding the
member q ∈ Q that minimizes the KL divergence D(q(W )||p(W |X,θ)). Since the
KL divergence D(q||p) is non-negative and equal to zero iff p = q, the unrestricted
solution to our problem is to set q(W ) = p(W |X,θ). However, this general opti-
mization problem is intractable. We therefore restrict Q to a parameterized family
of distributions for which this optimization is tractable.

For the IBP, we will let Q be the factorized family

q(W ) = qτ (π)qφ(A)qν(Z) (3.2)

where τ , φ, and ν are the variational parameters that we optimize to minimize
D(q||p). See Figure 3.3 to visualize this approximation.

Inference then consists of optimizing the parameters of the approximating distri-
bution to most closely match the true posterior.

This optimization is equivalent to maximizing a lower bound on the evidence:

arg max
τ,φ,ν

ln p(X|θ)−D(q||p) = arg max
τ,φ,ν

H[q] + Eq[ln(p(X,W |θ)]. (3.3)

where H[q] is the entropy of distribution q. Therefore, to minimize D(q||p), we can
iteratively update the variational parameters so as to maximize the right side of
Equation (3.3).

We derive two mean field approximations, both of which apply a truncation level
K to the maximum number of features in the variational distribution. The first
minimizes the KL-divergence between the variational distribution and a finite ap-
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Figure 3.3: The variational approximation used for the IBP. On the left, we show the
true graphical model. On the right, we show the fully factorized variational approximation
along with the variational parameters to optimize.

proximation pK to the IBP described below; we refer to this approach as the finite
variational approach. The second approach minimizes the KL-divergence to the true
IBP posterior. We call this approach the infinite variational method because, while
our variational distribution is finite, its updates are based the true IBP posterior over
an infinite number of features.

Most of the required expectations are straightforward to compute, and many of
the parameter updates follow directly from standard update equations for variational
inference in the exponential family (Beal, 2003; Wainwright and Jordan, 2008). We
focus on the non-trivial computations. For details on the more trivial calculations,
see (Doshi-Velez et al., 2009c).

3.3.2 Finite Variational Approach

The finite variational method uses a finite beta-Bernoulli approximation to the IBP
as discussed in derivation two of Section 2.3.3. The finite beta-Bernoulli prior with K
features first draws each feature’s probability πk independently from Beta(α/K, 1).
Then, each znk is independently drawn from Bernoulli(πk) for all n.

Our finite variational approach approximates the true IBP prior p(W ,X|θ) with
pK(W ,X|θ) in Equation (3.3) where pK uses the prior on Z defined by the fi-
nite beta-Bernoulli prior. While variational inference with the finite beta-Bernoulli
prior is not the same as variational inference with the true IBP, the variational
updates are significantly more straightforward and, in the limit of large K, the fi-
nite beta-Bernoulli approximation is equivalent to the IBP. We use a fully factor-
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ized variational distribution qτk(πk) = Beta(πk; τk1, τk2), qφk(Ak·) = N (Ak·; φ̄k,Φk),
qνnk(znk) = Bernoulli(znk; νnk).

3.3.3 Infinite Variational Approach

The second variational approach, similar to the one used by Blei and Jordan (2004)
for the DP, uses a truncated version of the stick-breaking construction for the IBP
as the approximating variational distribution q. Instead of directly approximating
the distribution of πk from the beta process in our variational algorithm, we will
work with the distribution of the stick-breaking variables v = {v1, . . . , vK}. In our
truncated distribution with truncation level K, the probability πk of feature k is∏k

i=1 vi for k ≤ K and zero otherwise. The advantage of using v as our hidden variable
is that under the IBP prior, the {v1 . . . vK} are independent draws from the Beta
distribution, whereas the {π1 . . . πK} are dependent. We therefore use the factorized
variational distribution q(W ) = qτ (v)qφ(A)qν(Z) where qτk(vk) = Beta(vk; τk1, τk2),
qφk(Ak·) = N (Ak·; φ̄k,Φk), and qνnk(znk) = Bernoulli(Znk; νnk).

3.3.4 Variational Lower Bound

We split the expectation in Equation (3.3) into terms depending on each of the latent
variables. Here, v are the stick-breaking parameters in the infinite approach; the
expression for the finite Beta approximation is identical except with π substituted
into the expectations.

ln p(X|θ) ≥ H[q] +
∑K

k=1 Ev [ln p(vk|α)]

+
∑K

k=1 EA [ln p(Ak·|σ2
A)]

+
∑K

k=1

∑N
n=1 Ev,Z [ln p(znk|v)]

+
∑N

n=1 EZ,A [ln p(Xn·|Z,A, σ2
n)]

In the finite Beta approximation, all of the expectations are straightforward expo-
nential family calculations. In the infinite case, the key difficulty lies in computing
the expectations Ev,Z [ln p(znk|v)]. We decompose this expectation as

Ev,Z [ln p(znk|v)] = Ev,Z
[
ln p(znk = 1|v)I(znk=1)p(znk = 0|v)I(znk=0)

]
= νnk

(∑k
m=1 ψ(τk2)− ψ(τk1 + τk2)

)
+(1− νnk)Ev

[
ln
(

1−∏k
m=1 vm

)]
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where I(·) is the indicator function that its argument is true and ψ(·) is the digamma
function. We are still left with the problem of evaluating the expectation Ev[ln(1 −∏k

m=1 vm)], or alternatively, computing a lower bound for the expression.
There are computationally intensive methods for finding arbitrarily good lower

bounds for this term using a Taylor series expansion of ln(1 − x). However, we
present a more computationally efficient bound that is only slightly looser. We first
introduce a multinomial distribution qk(y) that we will optimize to get as tight a
lower bound as possible and use Jensen’s inequality:

Ev

[
ln

(
1−

k∏
m=1

vm

)]
= Ev

[
ln
(∑k

y=1 qk(y)
(1−vy)

∏y−1
m=1 vm

qk(y)

)]
≥ EvEy

[
ln
(
(1− vy)

∏y−1
m=1 vm

)
− ln qk(y)

]
= Ey

[
ψ(τy2) +

∑y−1
m=1 ψ(τm1)−∑y

m=1 ψ(τm1 + τm2)
]

+H(qk).

These equations hold for any qk. We take derivatives to find the qk that maximizes
the lower bound:

qk(y) ∝ exp

(
ψ(τy2) +

y−1∑
m=1

ψ(τm1)−
y∑

m=1

ψ(τm1 + τm2)

)
,

where the proportionality is required to make qk a valid distribution. We can plug this
multinomial lower bound for Ev,Z [ln p(znk|v)] back into the lower bound on ln p(X|θ)
and then optimize this lower bound.

3.3.5 Parameter Updates

The parameter updates in the finite model are all straightforward updates from the
exponential family (Wainwright and Jordan, 2008). In the infinite case, updates for
the variational parameter for A remain standard exponential family updates. The
update on Z is also relatively straightforward to compute

qνnk(znk) ∝ exp
(
Ev,A,Z−nk [ln p(W ,X|θ)]

)
∝ exp

(
EA,Z−nk(ln p(Xn·|Zn·,A, σ

2
n)) + Ev(ln p(znk|v))

)
,

where we can again approximate Ev(ln p(znk|v)) with a Taylor series or the multino-
mial method presented in Section 3.3.4.

The update for the stick-breaking variables v is more complex because the varia-
tional updates no longer stay in the exponential family due to the terms Ev(ln p(znk|v)).
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If we use a Taylor series approximation for this term, we no longer have closed form
updates for v and must resort to numerical optimization. If we use the multinomial
lower bound, then for fixed qk(y), terms decompose independently for each vm and
we get a closed form exponential family update. We will use the latter approach in
our results section.

3.3.6 Truncation Error

Both of our variational inference approaches require us to choose a truncation level K
for our variational distribution. Building on results from Thibaux and Jordan (2007)
and Teh et al. (2007), we present bounds on how close the marginal distributions are
when using a truncated stick-breaking prior and the true IBP stick-breaking prior.
Our development parallels bounds for the Dirichlet Process by Ishwaran and James
(2001) and presents the first such truncation bounds for the IBP.

Intuitively, the error in the truncation will depend on the probability that, given
N observations, we observe features beyond the first K in the data (otherwise the
truncation should have no effect). Let us denote the marginal distribution of obser-
vation X by m∞(X) when we integrate over W drawn from the IBP. Let mK(X) be
the marginal distribution when W are drawn from the truncated stick-breaking prior
with truncation level K.

Using the Beta Process representation for the IBP (Thibaux and Jordan, 2007)
and using an analysis similar to the one in Ishwaran and James (2001), we can show
that the difference between these distributions is at most

1

4

∫
|mK(X)−m∞(X)|dX ≤ Pr(∃k > K, n with znk = 1)

= 1− Pr (all zik = 0, i ∈ {1, . . . , N}, k > K)

= 1− E

( ∞∏
i=K+1

(1− πi)
)N
 . (3.4)

We present here one formal bound for this difference. We have listed several similar
bounds in Doshi-Velez et al. (2009c) that can be derived directly by applying Jensen’s
inequality to the expectation above as well as a heuristic bound which tends to be
tighter in practice.

We begin the derivation of the truncation bound by applying Jensen’s inequality
to Equation (3.4):

−E

( ∞∏
i=K+1

(1− πi)
)N
 ≤ −(E[ ∞∏

i=K+1

(1− πi)
])N

. (3.5)
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The Beta Process construction for the IBP implies that the sequence π1, π2, . . . can be
modeled as a Poisson process on the unit interval (0, 1) with rate ν(x)dx = αx−1dx.
It follows that the unordered truncated sequence πK+1, πK+2, . . . may be modeled as
a Poisson process on the interval (0, πK) with the same rate. The Levy-Khinchine
formula states that the moment generating function of a Poisson process X with rate
ν can be written as

E[exp(f(X))] = exp

(∫
(exp(f(x))− 1)ν(x)dx

)
,

where f(X) =
∑

x∈X f(x). We apply the Levy-Khinchine formula to simplify the
inner expectation of Equation (3.5):

E

[
∞∏

i=K+1

(1− πi)
]

= E

[
exp

(
∞∑

i=K+1

ln(1− πi)
)]

= EπK
[
exp

(∫ πK

0

(exp(ln(1− x))− 1) ν(x)dx

)]
= EπK [exp (−απK)] .

Finally, we apply Jensen’s inequality, using the fact that πK is the product of inde-
pendent Beta(α, 1) variables to get

EπK [exp (−απK)] ≥ exp (Eπk [−απK ])

= exp

(
−α
(

α

1 + α

)K)
.

Substituting the expression into Equation (3.5) gives

1

4

∫
|mK(X)−m∞(X)|dX ≤ 1− exp

(
−Nα

(
α

1 + α

)K)
. (3.6)

Similar to truncation bound for the Dirichlet Process, we see that for fixed K, the
expected error increases with N and α— the factors that increase the expected num-
ber of features in a data set. However, the bound decreases exponentially quickly as
K is increased.

Figure 3.4 shows our truncation bound and the true L1 distance based on 1000
Monte Carlo simulations of an IBP matrix with N = 30 observations and α = 5.
As expected, the bound decreases exponentially fast with the truncation level K.
However, the bound is fairly loose. In practice, we find that heuristic bound using
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Figure 3.4: Truncation bound and true L1 distance.

Taylor expansions (see extended version) provides much tighter estimates of the loss.

3.4 Comparison of MCMC and Variational Inference
Algorithms for the Beta Process

We compared the variational approaches with both Gibbs sampling and particle fil-
tering. Mean field variational algorithms are only guaranteed to converge to a local
optimum, so we applied standard optimization tricks to improve performance. Each
run was given a number of random restarts and the hyperparameters for the noise and
feature variance were tempered to smooth the posterior. We also experimented with
several other techniques such as gradually introducing data and merging correlated
features that were less useful as the size and dimensionality of the data sets increased;
they were not included in the final experiments.

The sampling methods we compared against were the collapsed Gibbs sampler
described in Section 3.2.1 and a partially-uncollapsed alternative in which instantiated
features are explicitly represented and new features are integrated out. In contrast
to the variational methods, the number of features present in the IBP matrix will
adaptively grow or shrink in the samplers. To provide a fair comparison with the
variational approaches, we also tested finite variants of the collapsed and uncollapsed
Gibbs samplers. Finally, we also tested against the particle filter of Wood and Griffiths
(2006). All sampling methods were annealed and given an equal number of restarts
as the variational methods.

Both the variational and Gibbs sampling algorithms were heavily optimized for ef-
ficient matrix computation so we could evaluate the algorithms both on their running
times and the quality of the inference. For the particle filter, we used the imple-
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Figure 3.5: Evolution of test log-likelihoods over a thirty-minute interval for N = 500,
D = 500, and K = 20. The finite uncollapsed Gibbs sampler has the fastest rise but gets
caught in a lower optima than the variational approach.

mentation provided by Wood and Griffiths (2006). To measure the quality of these
methods, we held out one third of the observations on the last half of the data set.
Once the inference was complete, we computed the predictive likelihood of the held
out data and averaged over restarts.

3.4.1 Synthetic Data

The synthetic data sets consisted of Z and A matrices randomly generated from the
truncated stick-breaking prior. Figure 3.5 shows the evolution of the test-likelihood
over a thirty minute interval for a data set with 500 observations of 500 dimensions
each generated with 20 latent features.1 The error bars indicate the variation over the
5 random starts. The finite uncollapsed Gibbs sampler (dotted green) rises quickly
but consistently gets caught in a lower optima and has higher variance. This variance
is not due to the samplers mixing, but instead due to each sampler getting stuck in
widely varying local optima. The variational methods are slightly slower per iteration
but soon find regions of higher predictive likelihoods. The remaining samplers are
much slower per iteration, often failing to mix within the allotted interval.

Figures 3.6(a) and 3.6(b) show results from a systematic series of tests in which we

1The particle filter must be run to completion before making prediction, so we cannot test its
predictive performance over time. We instead plot the test likelihood only at the end of the inference
for particle filters with 10 and 50 particles (the two magenta points).
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Figure 3.6: Inference algorithm comparison. (a) Time versus truncation (K). The vari-
ational approaches are generally orders of magnitude faster than the samplers (note log
scale on the time axis). (b) Time versus log-likelihood plot for K = 20. The larger dots
correspond to D = 5 the smaller dots to D = 10, 50, 100, 500, 1000.
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tested all combinations of observation count N = {5, 10, 50, 100, 500, 1000}, dimen-
sionality D = {5, 10, 50, 100, 500, 1000}, and truncation level K = {5, 10, 15, 20, 25}.
Each of the samplers was run for 1000 iterations on three chains and the particle filter
was run with 500 particles. For the variational methods, we used a stopping criterion
that halted the optimization when the variational lower bound between the current
and previous iterations changed by a multiplicative factor of less than 10−4 and the
tempering process had completed.

Results are shown in Figure 3.6. Figure 3.6(a) shows how the computation time
scales with the truncation level. The variational approaches and the uncollapsed
Gibbs are consistently an order of magnitude faster than other algorithms. Fig-
ure 3.6(b) shows the interplay between dimensionality, computation time, and test
log-likelihood for data sets of size N = 5 and N = 1000 respectively. For N = 1000,
the collapsed Gibbs samplers and particle filter did not finish, so they do not ap-
pear on the plot. We chose K = 20 as a representative truncation level. Each line
represents increasing dimensionality for a particular method (the large dot indicates
D = 5, the subsequent dots correspond to D = 10, 50, etc.). The nearly vertical
lines of the variational methods show that they are quite robust to increasing dimen-
sion. As dimensionality and data set size increase, the variational methods become
increasingly faster than the samplers. By comparing the lines across the likelihood
dimension, we see that for the very small data set, the variational method often has
a lower test log-likelihood than the samplers. In this regime, the samplers are fast to
mix and explore the posterior. However, the test log-likelihoods are comparable for
the larger data set.

3.4.2 Real Data

We next tested two real-world data sets to show how our approach fared with complex,
noisy data not drawn from the IBP prior (our main goal was not to demonstrate low-
rank approximations). The Yale Faces (Georghiades et al., 2001) data set consisted of
721 32x32 pixel frontal-face images of 14 people with varying expressions and lighting
conditions. We set σa and σn based on the variance of the data. The speech data
set consisted of 245 observations sampled from a 10-microphone audio recording of
5 different speakers. We applied the ICA version of our inference algorithm, where
the mixing matrix S modulated the effect of each speaker on the audio signals. The
feature and noise variances were taken from an initial run of the Gibbs sampler where
σn and σa were also sampled.

Tables 3.1 and 3.2 show the results for each of the data sets. All Gibbs samplers
were uncollapsed and run for 200 iterations.2 In the higher dimensional Yale data set,

2On the Yale data set, we did not test the collapsed samplers because the finite collapsed Gibbs
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the variational methods outperformed the uncollapsed Gibbs sampler. When started
from a random position, the uncollapsed Gibbs sampler quickly became stuck in a
local optima. The variational method was able to find better local optima because it
was initially very uncertain about which features were present in which data points;
expressing this uncertainty explicitly through the variational parameters (instead of
through a sequence of samples) allowed it the flexibility to improve upon its bad
initial starting point.

The story for the speech data set, however, is quite different. Here, the variational
methods were not only slower than the samplers, but they also achieved lower test-
likelihoods. The evaluation on the synthetic data sets points to a potential reason for
the difference: the speech data set is much simpler than the Yale data set, consisting
of 10 dimensions (vs. 1032 in the Yale data set). In this regime, the Gibbs samplers
perform well and the approximations made by the variational method become appar-
ent. As the dimensionality grows, the samplers have more trouble mixing, but the
variational methods are still able to find regions of high probability mass.

Table 3.1: Running times in seconds and test log-likelihoods for the Yale Faces data set.

Algorithm K Time Test Log-
Likelihood
(×106)

5 464.19 -2.250
Finite Gibbs 10 940.47 -2.246

25 2973.7 -2.247
5 163.24 -1.066

Finite Variational 10 767.1 -0.908
25 10072 -0.746
5 176.62 -1.051

Infinite Variational 10 632.53 -0.914
25 19061 -0.750

3.4.3 Summary

The combinatorial nature of the BP/IBP poses specific challenges for sampling-based
inference procedures. Whereas sampling methods work in the discrete space of bi-
nary matrices, the variational method allows for soft assignments of features because

sampler required one hour per iteration with K = 5 and the infinite collapsed Gibbs sampler
generated one sample every 50 hours. In the iICA model, the features A cannot be marginalized.
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Table 3.2: Running times in seconds and test log-likelihoods for the speech data set.

Algorithm K Time Test Log-
Likelihood

2 56 -0.7444
Finite Gibbs 5 120 -0.4220

9 201 -0.4205
Infinite Gibbs na 186 -0.4257

2 2477 -0.8455
Finite Variational 5 8129 -0.5082

9 8539 -0.4551
2 2702 -0.8810

Infinite Variational 5 6065 -0.5000
9 8491 -0.5486

it approaches the inference problem as a continuous optimization. We showed exper-
imentally that, especially for high dimensional problems, the soft assignments allow
the variational methods to explore the posterior space faster than sampling-based
approaches.
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Chapter 4

Priors for Non-exchangeable Bayesian
Nonparametric Latent Feature

Models

As was mentioned in Chapter 2, there are several ways people can extend or generalize
the priors for the beta-Bernoulli and gamma-Poisson nonparametric latent feature
models. In this chapter, we focus on relaxing one assumption of these priors, the
assumption of exchangeability.

While exchangeability is appropriate in some applications (e.g., bag-of-words mod-
els for documents), exchangeability is sometimes assumed simply for computational
reasons; non-exchangeable models might be a better choice for applications based on
subject matter. Drawing on ideas from graphical models, in this chapter, we present
a framework for deriving non-exchangeable generalizations and provide two concrete
examples for both the beta and gamma processes for which reasonable approximate
posterior inference algorithms still exist. Our priors are applicable to the general
setting in which the known dependencies between objects can be expressed using a
tree, in which edge lengths indicate the strength of relationships, or using a Markov
chain.

This chapter introduces the framework for working with these priors as well as the
priors themselves. The main idea behind this work is that previously, we defined rich
completely random measures as our De Finetti mixing distributions and sampled zi
conditionally independently given these measures. This is the simplest way we could
sample zi given B. Why not impose a richer way to sample the zi given B, so that
there can be dependence on the different draws? In our work, we assume we have
some prior knowledge about the relationships between the observations or entities in
our models and we wish to use that prior knowledge to induce richer dependencies
amongst the zi. In the next chapter, Chapter 5, we discuss inference algorithms for
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models using these priors. This work has been previously presented at conferences
and workshops in Miller et al. (2008a,b, 2010).

4.1 Alternate Views of the Exchangeable Priors

We begin by defining an alternate, but equivalent, view of the way matrices are
generated in the exchangeable versions of the BP and GP. Though this view is more
complicated than the view presented in Chapter 2, it will allow us to generalize
our techniques to non-exchangeable priors. We then discuss our desiderata for how to
generalize these priors in Section 4.2 and then present our nonexchangeable framework
and each of our two non-exchangeable variations.

As before, we first draw B from either the BP or GP to get {(pk, ωk)}∞k=1. What is
different is how we generate zi. In this section, we construct stochastic processes that
generate zi in a way that is equivalent to the conditionally independent draws of the
exchangeable prior, but that allows us to generalize into richer stochastic processes for
generating zi without drastically increasing the cost of posterior inference algorithms.
We define these priors differently for the BP and GP, but the similarities between the
derivations are quite obvious.

4.1.1 Alternate Views of the Beta Process

Once we have generated

B =
∞∑
k=1

pkδωk ,

from the BP, then in the Bernoulli process, we sample each zik conditionally indepen-
dently with probability pk. We wish to develop an alternate view of this conditionally
independent Bernoulli sampling.

Let γk = − log(1− pk). Now we generate each column based on either the tree or
independent chains in Figure 4.1 with a zero at the root that mutates into a one along
each edge with exponential rate γk or equivalently with independent zeros mutating
to a one. Each entry is still a conditionally independent Bernoulli(pk) draw.

While this might seems like an odd way to sample from a Bernoulli(pk) distribu-
tion, the idea of mutations on a tree or chain will help us derive our non-exchangeable
generalizations. This prior is obviously still equivalent to the beta-Bernoulli prior we
introduced in Chapter 2.
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Figure 4.1: Alternate view on how to generate columns from the beta-Bernoulli prior.
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Figure 4.2: Alternate view on how to generate columns from the gamma-Poisson prior.

4.1.2 Alternate Views of the Gamma Process

Once we have generated

B =
∞∑
k=1

pkδωk ,

from the GP, then we sample each zik conditionally independently from a Poisson(pk).
We wish to develop an alternate view of this conditionally independent Poisson sam-
pling.

We now generate each column by letting there be an independent Poisson process
with rate pk along each edge in either the tree or independent chains in Figure 4.2
with each entry zik being the number of events that have occurred from the root to
the leaf. Each entry is still a conditionally independent Poisson(pk) draw.

While this might seems like an odd way to sample from a Poisson(pk) distribution,
the idea of counting events on a tree or chain will help us derive our non-exchangeable
generalizations. This prior is obviously still equivalent to the gamma-Poisson prior
we introduced in Chapter 2.
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4.2 Desiderata for Non-Exchangeable Generalizations

We will show how these alternate views can be generalized when object relationships
can be captured through a known tree or chain. There are several different ways
to generalize these priors, so we lay out some desiderata motivating our particular
generalizations.

Our desiderata are:

1. Each row zi should be marginally BeP(B) or PP(B). In other words, marginally
each element in column k is Beta(pk) or Poisson(pk) as in the BP and GP priors,
respectively.

2. The prior should be consistent if we integrate out zi for one or more i.

3. By changing the structure of our tree or chain, we can smoothly interpolate
between the BeP or PP where all elements in a column are conditionally in-
dependent (exchangeable) and priors in which entries in columns are fully de-
pendent. This allows us to vary how much prior information we include in our
prior distributions.

We will show how to generalize our tree and chain-based framework in such a way
that satisfies these desiderata. Before we present these two variations for both the
BP and GP priors, we should note that there exists one other chain-based BP prior,
the Markov IBP (mIBP) introduced by Van Gael et al. (2009). Despite still being
useful, the mIBP was developed using different desiderata and does not satisfy any
of our desiderata.

4.3 Non-Exchangeable Generalizations

We are now ready to present our non-exchangeable generalizations. In Section 4.4,
we present the tree-based generalizations of both the BP and the GP. In Section 4.5,
we present the chain-based generalizations of both the BP and the GP. These are
just two of the non-exchangeable variations that can be developed by having a more
complex stochastic process built on top of completely random measures instead of a
simple exchangeable prior. Other variations are possible and should be pursued as
applications require them.

When developing a non-exchangeable variation, there are two things that must
be kept in mind. First is that the non-exchangeable structure must be amenable to
tractable inference algorithms. Our two examples here are trees and chains, which
are well known to have tractable inference algorithms (Pearl, 1988). Other variations
might include more complex graphical models with low tree-width or other stochastic
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processes on trees or chains. We will see how performing inference in these structures
is a required part of our posterior inference algorithms.

The second thing that must be kept in mind is that we must define our priors
in such a way that we can compute the full posterior distributions and still have
a valid nonparametric model, meaning that there are always an infinite number of
unobserved features that we know how to sample from. This means that in the case
of the BP, the probability of a particular feature being unobserved in N observations,
no matter if we are using trees, chains, or any other structure, must be proportional
to the weighted sum of at least one improper (and potentially some proper) beta
distributions and in the GP, the probability of a feature being unobserved must be
proportional to the weighted sum of at least one improper (and potentially some
proper) gamma distributions. Then we can use the ideas of Kim (1999) and Wolpert
and Ickstadt (1998a) to compute the posterior completely random measures. We
must also define our prior in such a way that whenever we have a non-zero feature,
the posterior distribution of the atom in B corresponding to that feature becomes
proper. This falls out of the fact that we will define these priors such that each
zik is marginally Bernoulli(pk) or Poisson(pk) in order to satisfy the second of our
desiderata.

These two aspects are key to our development of these priors. We now present
our non-exchangeable priors for Z. In each generalization, we start by defining the
non-exchangeable stochastic process for each feature, discuss the relevant posteriors,
and then present a generative process for Z with the underlying Lévy process partially
marginalized out. One key difference in the marginalized representations (the IBP
and IGPFM forms) is that we cannot fully integrate out B and remain tractable.
This is because we need to condition on the atoms and weights of B corresponding to
the previously observed features of Z in order to take advantage of tractable inference
algorithms on chains and trees. Without sampling this part of B, we cannot remain
tractable. We will still marginalize out the parts of B corresponding to unobserved
features, though. We do not discuss any stick-breaking processes because the prior
completely random measures are identical to those of the exchangeable priors.

4.4 Tree-based Generalizations

Why should restrict ourselves to flat trees in Figures 4.1 and 4.2? Below we discuss
how to generalize both the BP and the GP to use trees representing different assump-
tions about the relationships amongst objects in order to use prior knowledge in these
prior distributions as indicated in Figure 4.3.

In the exchangeable BP and GP, for each k, entries {zik}Ni=1 are independent, but
in the tree-based generalizations, the entries will be dependent with the pattern of
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⇒

Figure 4.3: Framework for our tree-based generalizations.

dependence captured by a stochastic process on a rooted tree similar to models used
in phylogenetics. In this tree, the N objects being modeled are at the leaves, and
lengths are assigned to edges in such a way that the total edge length from the root
to any leaf is equal to one. By defining a stochastic process on this tree to jointly
generate the entries {zik}Ni=1, we develop priors such that objects more closely related
in the tree are more likely to have similar features than objects farther way in the
tree. By using the sum-product algorithm for efficient inference on trees, we are then
able to define a nonparametric prior for which posterior inference is nearly as efficient
as inference developed for the exchangeable special case.

What can these priors be used for? They can be used when objects have a known
relationship captured by a tree, such as in phylogenetics; when objects are grouped
according to partial or even full exchangeability; and more generally, whenever we
have similarity data about objects.

4.4.1 Tree-based BP

In this section, we present a non-exchangeable version of the BP in which relationships
between objects are expressed via a known, fixed tree. This prior was introduced as
the phylogenetic Indian Buffet Process (pIBP) in (Miller et al., 2008a).

4.4.1.1 Tree-based BP Stochastic Process

As in the exchangeable BP, we first sample

B ∼ BP(c, B0).

Now instead of sampling zi
i.i.d∼ BeP(B) or equivalently, sampling zik

i.i.d∼ Bernoulli(pi),
we sample {zik}Ni=1 jointly while satisfying all the desiderata from Section 4.2. As in
the alternate view of the BP in Section 4.1.1, we now define

γk = − log(1− pk).

We assume we have a known tree expressing the object relationships in which the
objects appear at the leaves as shown in Figure 4.4(a). For each k, we then indepen-
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Figure 4.4: Tree-based BP per-feature stochastic process. (a) The tree representing the
known object relationships for our tree-based generalizations. (b) The joint stochastic
process for {zik}Ni=1 in the tree-based BP generalization in which an × marks a mutation
event, a black box indicates the corresponding zik is one, and a white box indicates it is
zero.

dently generate each set of features {zik}Ni=1 jointly by defining the stochastic process
shown in Figure 4.4(b). To generate the entries of the kth column, we proceed as
follows. Assign the value zero to the root node of the tree. Along any path from the
root to a leaf, let this value change to a one along each edge with exponential rate
γk. That is, along an edge of length t, let the probability of changing from a zero to
a one be 1 − exp(−γkt). Once the value has changed to a one along any path from
the root, all leaves below that point are assigned the value one as shown in Figure
4.4(b).

The parameterization γk = − log(1− pk) is convenient because it ensures that pk
remains the marginal probability that any single feature is equal to one. To see this,
note that since every leaf node is at distance one from the root, for any entry in the
matrix,

p(zik = 1|pk) = 1− exp(−(− log(1− pk))) = pk

which also guarantees that we recover the beta-Bernoulli prior in the special case
where all branches join at the root, as in the left part of Figure 4.3. By varying
the tree structure, we can smoothly move from a fully exchangeable prior to a prior
in which all object features must be identical. It is a simple corollary that any set
of objects characterized by a set of branches that meet at a single point will be
exchangeable within that set, meaning that the tree can be used to capture notions
of partial exchangeability. Also, since this has been defined as a directed graphical
model, it trivially consistent under marginalization. From this, we can see that we
satisfy all our desiderata.
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4.4.1.2 Tree-based BP Conditional Distributions

Now that we have defined the stochastic process, we show how to evaluate conditional
probabilities in this prior. We treat the tree as a directed graph with variables at
each of the interior nodes and zik at each leaf i. Then, given pk, or equivalently γk, if
there is a length t edge from a parent node x to a child node y, we have

p(y = 0|x = 0, γk) = exp(−γkt)
p(y = 1|x = 0, γk) = 1− exp(−γkt)
p(y = 0|x = 1, γk) = 0

p(y = 1|x = 1, γk) = 1

as the conditional probabilities that define our tree-structured graphical model.
Expressing this process as a graphical model makes it possible to efficiently com-

pute various conditional probabilities that are relevant for posterior inference. Specif-
ically, we will need to evaluate

p(zik|z(−i)k, pk) (4.1)

for zik ∈ {0, 1} and

p
(
{zik}Ni=1|pk

)
, (4.2)

which are trivial in the beta-Bernoulli prior due to the conditional independence of
zik, but more challenging in the tree-based BP where zik are no longer conditionally
independent. To compute Equation (4.1), we use the sum-product algorithm (Pearl,
1988). In order to calculate Equation (4.2), we use the chain rule of probability to
get a set of terms similar to Equation (4.1), the difference being that the posterior in
each term is conditional only on a subset of the other variables. Each term can be
reduced to a simple sum-product calculation by marginalizing over all variables that
do not appear in that term, which can be done easily since all variables appear at
the leaves of the tree. Both Equation (4.1) and Equation (4.2) can be calculated in
O(N) time by a dynamic program.

We can also compute the posterior of B given observations z1, . . . , zN . Recall
Equation (2.13) for the posterior of B in case of the exchangeable BP.

B|z1, . . . , zN ∼ BP(c+N,BN)

where BN =
c

c+N
B0 +

1

c+N

N∑
i=1

zi.

70



Chapter 4. Priors for Non-exchangeable Bayesian Nonparametric Latent Feature Models

We will not have as simple a posterior for any of the non-exchangeable priors, but
we can still reason about the posterior efficiently. We can again use Theorem 3.3 of
Kim (1999) to reason about the continuous and discrete parts of the posterior of B
independently. First note that if

∑
t is the sum of all edge lengths in the tree, then the

probability of all entries corresponding to pk being zero is exp (−γk
∑
t) = (1−pk)

∑
t.

This gives us that the continuous part of B has posterior

Bcontinuous|z1, . . . , zN ∼ BP
(
c+

∑
t, BN,continuous

)
(4.3)

where BN,continuous =
c

c+
∑
t
B0.

For the discrete part, the atoms still appear only at locations where we have a
non-zero zik, but there is no closed form that applies to all trees. However, for any par-
ticular tree, we can compute the posterior of pk for all k with a non-zero feature. In the
exchangeable case, the probability of seeing {zik}Ni=1 is p

∑N
i=1 zik(1−p)N−

∑N
i=1 zik , which

immediately gives us that the posterior of pk is exactly Beta
(∑N

i=1 zik, c+N −∑N
i=1

)
.

In the non-exchangeable case, the probability of seeing {zik}Ni=1 given pk is discussed
above in Equation 4.2. Since there is at least one non-zero entry for the discrete part
of B, the posterior when combined with the improper cp−1(1 − p)c−1 prior will be
proper.

4.4.1.3 Tree-based IBP

Just as we can marginalize out B in the exchangeable BP to directly sample Z via the
IBP, we can again marginalize out B in the tree-based BP to sample Z via a process
called the phylogenetic Indian Buffet Process (pIBP) (Miller et al., 2008a). As in the
IBP in Section 2.3.3, the pIBP can be derived either by working with a marginalized
BP or by defining the limit of a finite beta-Bernoulli model. The latter approach was
taken in Miller et al. (2008a).

The pIBP can again be understood in terms of a culinary metaphor, in which each
row of Z is viewed as the choices made by a diner in a buffet line, and in which we
specify how each diner chooses their dishes based on the dishes chosen by previous
diners. We present this process here, leaving derivations for Appendix 4.A.1. Consider
a large extended family that is about to choose dishes at a buffet. Assume that we
are given a tree describing the genealogical relationships of the family members and
assume that dining preferences are related to genealogy. In particular, family members
who are more closely related have more similar preferences. Therefore, as each diner
moves through the buffet line, their choice of dishes will be more dependent on the
selections of previous diners who are closely related to them and less dependent on
the selections of other diners.
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The pIBP generative process is specified as follows.

• The first diner (arbitrarily chosen) starts at the head of a buffet line that has
infinitely many dishes. This person tries Poisson(α) dishes and also adds a brief
annotation to each of these dishes, pk, drawn uniformly from [0, 1]. This note,
through its previously described equivalent representation, γk = − log(1− pk),
will allow us to efficiently compute the probability that subsequent diners choose
the kth dish using the sum-product algorithm.

• Each subsequent diner enters the buffet line and samples some previously tasted
dishes as well as some new ones.

– Based on the annotations attached to the previously sampled dishes as
well as the identity of previous diners, the ith diner samples the kth dish
according to the probability in Equation (4.1) where z(−i)k indicates which
of the previous diners have chosen the kth dish. Through the stochastic
process on the tree, if closely related diners have tried a dish, the current
diner is more likely to also sample it. The preferences of all diners who
have not entered the buffet line are ignored, which can be done by only
performing the sum-product algorithm on the minimal subtree from the
root containing the current diner and all previous diners.

– Each diner also samples a number of new dishes. If ti is the length of the
branch connecting diner i to the rest of the minimal subtree just described,∑
t is the total length of the rest of this subtree, and ψ(·) is the digamma

function, then diner i tries

Poisson
(
α
(
ψ
(∑

t+ ti + 1
)
− ψ

(∑
t+ 1

)))
(4.4)

new dishes. They also add an annotation, pk, to each of the new dishes that
will be used for future inferences, where the density of pk is proportional
to (

1− (1− pk)ti
)

(1− pk)
∑
t p−1

k . (4.5)

This process repeats until all diners have gone through the buffet line, defining
a matrix Z as in the IBP as seen in Figure 4.5(b). Though this process is not
exchangeable, we can let any family member go first and get the same marginal
distribution. This means that each row of Z has a Poisson(α) number of non-zero
columns, yielding a sparse matrix as in the IBP. The IBP is the special case of the
pIBP corresponding to the tree shown in Figure 4.5(a); this fact can be derived from
the pIBP presented here by using identities of the digamma function on the integers,
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Figure 4.5: The tree-based IBP. (a) The exchangeable IBP is a special case of the tree-
based IBP (pIBP) where all branches meet at the root. (b) Different structure trees
capture dependencies among featural representations of objects.

that is ψ(N) = HN−1 − γ, where Hi is the ith harmonic number and γ is the Euler
constant.

4.4.2 Tree-based GP

In this section, we present a non-exchangeable version of the GP in which relationships
between objects are expressed via a known, fixed tree.

4.4.2.1 Tree-based GP Stochastic Process

As in the exchangeable GP, we first sample

B ∼ GP(c, B0).

Now instead of sampling zi
i.i.d∼ PP(B) or equivalently, sampling zik

i.i.d∼ Poisson(pi),
we sample {zik}Ni=1 jointly while satisfying all the desiderata from Section 4.2.

We assume we have a known tree expressing the object relationships in which
the objects appear at the leaves as shown in Figure 4.6(a). For each k, we then
independently generate each set of features {zik}Ni=1 jointly by defining the stochastic
process shown in Figure 4.6(b). To generate the entries of the kth column, we proceed
as follows. Assign the value zero to the root node of the tree. Let there be a Poisson
process on the tree with rate pk. This implies that for an edge of length ti, there will
be a Poisson(pkti) number of events. Now let the values zik be the total number of
events on the path from the root to the node corresponding to i. Therefore, nodes
that are closer in the tree are more highly correlated.

Since the total path from root to any node is of length one, each entry zik is
marginally Poisson(pk), which guarantees that we recover the gamma-Poisson prior
in the special case where all branches join at the root, as in the left part of Figure
4.3. By varying the tree structure, we can smoothly move from a fully exchangeable
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Figure 4.6: Tree-based GP per-feature stochastic process. (a) An example tree repre-
senting the known object relationships for our tree-based generalizations. (b) The joint
stochastic process for {zik}Ni=1 in the tree-based GP generalization.

prio to a prior in which all object features must be identical. It is a simple corollary
that any set of objects characterized by a set of branches that meet at a single point
will be exchangeable within that set, meaning that the tree can be used to capture
notions of partial exchangeability. Also, since this has been defined as a directed
graphical model, it trivially consistent under marginalization. From this, we can see
that we satisfy all our desiderata.

4.4.2.2 Tree-based GP Conditional Distributions

Now that we have defined the stochastic process, we show how to evaluate conditional
probabilities in this prior. We treat the tree as a directed graph with variables at
each of the interior nodes and zik at each leaf i. Then, given pk, if there is a length t
edge from a parent node x to a child node y, we have

p(y − x|x, pk) ∼ Poisson(tipk)

as the conditional probability that define our tree-structured graphical model.
Expressing this process as a graphical model makes it possible to efficiently com-

pute various conditional probabilities that are relevant for posterior inference. Specif-
ically, we will need to evaluate

p(zik|z(−i)k, pk) (4.6)

for zik ∈ {0, 1} and

p
(
{zik}Ni=1|pk

)
, (4.7)

which are trivial in the gamma-Poisson prior due to the conditional independence of
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zik, but more challenging in the tree-based GP where zik are no longer conditionally
independent. To compute Equation (4.6), we use the sum-product algorithm (Pearl,
1988). In order to calculate Equation (4.7), we use the chain rule of probability to
get a set of terms similar to Equation (4.6), the difference being that the posterior in
each term is conditional only on a subset of the other variables. Each term can be
reduced to a simple sum-product calculation by marginalizing over all variables that
do not appear in that term, which can be done easily since all variables appear at
the leaves of the tree. Both Equation (4.6) and Equation (4.7) can be calculated in
O(N) time by a dynamic program.

We can also compute the posterior of B given observations z1, . . . , zN . Recall
Equation (2.15) for the posterior of B in the case of the exchangeable GP.

B|z1, . . . , zN ∼ GP(c+N,BN)

where BN =
c

c+N
B0 +

1

c+N

N∑
j=1

zj.

We will not have as simple a posterior, but we can still reason about the posterior
efficiently. We will reason about the continuous and discrete parts of the posterior
of B independently, using ideas from Wolpert and Ickstadt (1998a). First note that
if
∑
t is the sum of all edge lengths in the tree, then the probability of all entries

corresponding to pk being zero is e−pk
∑
t. This gives us that the continuous part of

B has posterior

Bcontinuous|z1, . . . , zN ∼ GP
(
c+

∑
t, BN,continuous

)
(4.8)

where BN,continuous =
c

c+
∑
t
B0.

For the discrete part, the atoms still appear only at locations where we have a
non-zero zik, but there is no closed form that applies to all trees. However, for any
particular tree, we can compute the posterior of pk for all k with a non-zero feature.
The likelihood of {zik}Ni=1 given pk is discussed above in Equation 4.7 and since there
is at least one non-zero entry for the discrete part of B, the posterior when combined
with the improper cp−1e−cp prior will be proper.

4.4.2.3 Tree-based IGPFM

Just as we can marginalize out B in the exchangeable GP to directly sample Z via
the IGPFM, we can again marginalize out B in the tree-based GP to sample Z, which
we will call the phylogenetic IGPFM (pIGPFM) to be consistent with the naming of
the pIBP. As in the IGPFM in Section 2.4.3, the pIGPFM can be derived either by
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working with a marginalized GP or by defining the limit of a finite gamma-Poisson
model.

The pIGPFM can again be understood in terms of an incremental generative
process for Z in which we generate each row one at a time. We present this process
here, leaving derivations for Appendix 4.A.2.

As in the IGPFM, we start off with an all-zero matrix Z, with c = 1 and α =
B0(Ω). We generate all rows of Z as follows:

• In the first row, we first decide the total count of features we will add and
then we decide how to split this count up into individual features. We do this
by sampling g1, a Negative Binomial NB(α, 1/2) number of features and then
partition g1 according to the CRP. The partitions become the new features and
the counts in the partitions are the counts entered in the matrix.

We then sample pk for each of these new non-zero columns from a Gamma(z1k, 2)
distribution.

• Now assuming we have filled in the first i−1 rows,
∑
t is the total length of the

minimal tree connecting the first i − 1 nodes, and ti is the length of the edge
connecting i to this tree, we fill in the ith row as follows:

– First look at all features that are present in z1, . . . , zi−1. We then sample
zik for each non-zero feature k from Equation (4.6).

– Now select the total count of features gi that will be unique to the ith row
from

gi ∼ NB

(
α,

∑
t+ 1∑

t+ ti + 1

)
, (4.9)

and distribute this into unique features according to the CRP.

We then sample pk for each of these newly non-zero columns from

pk ∼ Gamma
(
zik,
∑

t+ ti + 1
)
. (4.10)

This process repeats until all rows have been filled in, defining a matrix Z as
in the IGPFM. Though this process is not exchangeable, we can let any node go
first and get the same marginal distribution. This means that each row of Z has a
NB(α, 1/2) number of features distributed according to the CRP, yielding a sparse
matrix as in the exchangeable IGPFM. The IGPFM is the special case of the pIGPFM
corresponding to the flat tree shown in the left part of Figure 4.3. This fact can easily
be seen from the above equations if every ti is one.
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4.5 Chain-based Generalizations

Now we move on to our second set of generalizations. Why should we restrict ourselves
to independent chains in Figures 4.1 and 4.2? Below we discuss how to generalize
both the BP and the GP to the case when objects have a known linear (for example
temporal or spatial in one dimension) relationship that can be captured by a chain.

⇒
Figure 4.7: Framework for our chain-based generalizations.

By using the conditional independencies in the Markov chain, we are able to define
a nonparametric prior in which inference is nearly as efficient as inference developed
for the exchangeable special case.

This prior is applicable when objects have a known linear ordering such as those
captured by temporal relationships or linear spatial relationships.

4.5.1 Chain-based BP

In this section, we present a non-exchangeable version of the BP in which relationships
between objects are expressed via a known, fixed chain.

4.5.1.1 Chain-based BP Stochastic Process

As in the exchangeable BP, we first sample

B ∼ BP(c, B0).

Now instead of sampling zi
i.i.d∼ BeP(B) or equivalently, sampling zik

i.i.d∼ Bernoulli(pi),
for each k, we sample {zik}Ni=1 jointly while satisfying all the desiderata from Section
4.2.

We assume we have a known chain such as the one in Figure 4.8(a) expressing
the object relationships. These objects do not have to be evenly spaced, so the edge
lengths have meaning, with shorter edges indicating a stronger dependence. For each
k, we then independently generate each set of features {zik}Ni=1 jointly by defining the
stochastic process

z0k
t1→ z1k

t2→ z2k
t3→ · · · tN→ zNk,
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edge length ti{

(a)

edge length ti{
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Figure 4.8: Chain-based BP per-feature stochastic process. (a) An example chain repre-
senting the known object relationships for our chain-based generalizations. (b) The joint
stochastic process for {zik}Ni=1 in the chain-based BP generalization in which a black box
indicates the corresponding zik is one and a white box indicates it is zero.

where z0k is a dummy variable deterministically set to zero and ti is the edge length
between object i − 1 and object i where we set t1 = ∞. We then define a binary-
valued continuous time stochastic process such that z1k is the value of the process at
time zero, z2k is the value of the process at time t2, z3k is the value of the process at
time t2 + t3, z4k is the value of the process at time t2 + t3 + t4, etc. This is shown in
Figure 4.8(b). We introduce a parameter κ which will be related to a continuous-time
birth-death process.

Then to generate {zik}Ni=1, we define the continuous-time binary-valued stochastic
process via a birth-death process. For background on birth-death processes, see Feller
(1968) or Cooper (1981). Let this process at time zero be Bernoulli(pk). Then, at
any later point in time, if the stochastic process is in state zero, there will be a birth
process of rate κpk and no death process. If it is in state one, then there will be a
death process of rate κ(1− pk) and no birth process.

Equivalently, we show in Appendix 4.A.3.1, that from this continuous time stochas-
tic process, we can define the transition probability from z(i−1)k to zik. For this
stochastic process, define ci = 1 − e−κti so that κ controls the scaling of the time ti
from [0,∞] to [0, 1]. Now let the transition kernel be

zik
0 1

z(i−1)k 0 1− cipk cipk
1 ci(1− pk) 1− ci + cipk

(4.11)

From the transition kernel, we can see that the stationary distribution is Bernoulli(pk)
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and we have made z1k ∼ Bernoulli(pk), so all entries are marginally Bernoulli(pk).
From the continuous-time process, we know that this process is consistent under
marginalization. Finally, from the transition kernel, if ti =∞, then ci = 1 and z(i−1)k

and zik are conditionally independent, and if ti = 0, then ci = 0 and z(i−1)k = zik. As
ti varies between zero to∞, we smoothly vary between these two extremes. Therefore
in the special case of all ti = ∞, we recover the exchangeable beta-Bernoulli prior
which means we have independent chains as in the left part of Figure 4.7. It is a
simple corollary that any groups of objects connected by infinite length edges are
conditionally independent. From this, we can see that we satisfy all our desiderata.

4.5.1.2 Chain-based BP Conditional Distributions

The conditional distributions are easier for the chain-based BP than for the tree-based
BP. We will be able to compute p(zik|z(−i)k, pk) for zik ∈ {0, 1} and p

(
{zik}Ni=1|pk

)
directly using the Markov structure and Equation (4.11).

We can also compute the posterior of B given observations z1, . . . , zN . Recall
Equation (2.13) for the posterior of B in the case of the exchangeable BP.

B|z1, . . . , zN ∼ BP(c+N,BN)

where BN =
c

c+N
B0 +

1

c+N

N∑
i=1

zi

We will not have as simple a posterior, but we can still reason about the posterior
efficiently. We can again use Theorem 3.3 of Kim (1999) to reason about the con-
tinuous and discrete parts of the posterior of B independently. First note that the
probability of {zik}Ni=1 all being zero is

∏N
i=1(1− cipk). Therefore, the posterior Lévy

measure for the continuous part of B is

ν(dω, dp) = cp−1(1− p)c−1

[
N∏
i=1

(1− cipk)
]
dpBo(dω). (4.12)

This itself is not a beta process, but is a weighted sum of improper and proper beta
measures.

For the discrete part, the atoms still appear only at locations where we have a
non-zero zik. Since there is at least one non-zero entry for each of the atoms in the
discrete part of B, the posterior when combined with the improper cp−1(1 − p)c−1

prior for each atom will be proper. This posterior can be computed efficiently up
to normalizing constant by combining the likelihood p

(
{zik}Ni=1|pk

)
from Equation

(4.11) with the prior.

79



Chapter 4. Priors for Non-exchangeable Bayesian Nonparametric Latent Feature Models

4.5.1.3 Chain-based IBP

Just as we can marginalize out B in the exchangeable BP to directly sample Z via the
IBP, we can again marginalize out B in the chain-based BP to sample Z via a process
we will call the chain Indian Buffet Process (cIBP). As in the IBP in Section 2.3.3,
the cIBP can be derived either by working with a marginalized BP or by defining the
limit of a finite beta-Bernoulli model.

The cIBP can again be understood in terms of a sequential generative process.
We present this process here, leaving derivations for Appendix 4.A.3. We will present
the generative process of Z, skipping the culinary metaphor. We start off with an
all-zero matrix Z, with c = 1 and α = B0(Ω). We generate all rows of Z as follows:

• In the first row, we sample a Poisson(α) number of features, sampling pk ∼
Uniform[0, 1] for each one.

• We fill in the ith row as follows:

– First look at all features that are present in z1, . . . , zi−1. We then sample
zik for each non-zero feature k from Equation (4.11).

– Now sample the number of new features for the ith row from

Poisson (αξi) , (4.13)

where

ξi = ci

(
1−

∑i−1
j=1 cj

2
+

∑i−1
j<k cjck

3
−
∑i−1

j<k<l cjckcl

4
+ · · ·+ (−1)i−1

∏i−1
j=1 cj

i

)
.

If all ci are equal so that we have a homogeneous Markov chain, this can
be computed in O(i) time. Else, as we prove in Figure 4.11 of Appendix
4.A.3, we can compute ξi for all i in O(N2) time. If ci take on a few distinct
values, this can be greatly improved.

We then sample pk for each of these newly non-zero columns from the
distribution proportional to

ci

i−1∏
j=1

(1− cjpk). (4.14)

This process repeats until all rows have been filled in, defining a matrix Z as in
the IBP. Since this process is consistent under marginalization, each row therefore
has a Poisson(α) number of features. We show in Appendix 4.A.3 that in the case
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when ci = 1 for all i, then ξi = 1/i, again verifying that the independent chains are
equivalent to the IBP.

4.5.2 Chain-based GP

In this section, we present a non-exchangeable version of the GP in which relationships
between objects are expressed via a known, fixed chain.

4.5.2.1 Chain-based GP Stochastic Process

As in the exchangeable GP, we first sample

B ∼ GP(c, B0).

Now instead of sampling zi
i.i.d∼ PP(B) or equivalently, sampling zik

i.i.d∼ Poisson(pi),
we sample {zik}Ni=1 jointly while satisfying all the desiderata from Section 4.2.

We assume we have a known chain such as the one in Figure 4.9(a) expressing
the object relationships. These objects do not have to be evenly spaced, so the edge
lengths have meaning, with shorter edges indicating stronger correlation. For each k,
we then independently generate each set of features {zik}Ni=1 jointly by defining the
stochastic process

z0k
t1→ z1k

t2→ z2k
t3→ · · · tN→ zNk,

where z0k is a dummy variable deterministically set to zero and ti is the edge length
between object i − 1 and object i where we set t1 = ∞. We then define a non-
negative integer-valued continuous time stochastic process such that z1k is the value
of the process at time zero, z2k is the value of the process at time t2, z3k is the value
of the process at time t2 + t3, z4k is the value of the process at time t2 + t3 + t4, etc.
This is shown in Figures 4.9(b) and 4.9(c). We introduce a parameter κ which will
be related to a continuous-time birth-death process.

Then to generate {zik}Ni=1, we define the continuous-time non-negative integer-
valued stochastic process via a birth-death process. Let this process at time zero be
Poisson(pk). Then at any point in time, there will be a birth process with rate κpk
and, if there are j objects alive, there will be a death process of rate κj.

As we discuss in Appendix 4.A.4.1, this is equivalent to letting there be a Poisson
process on R with rate κpk. Each of the events from the Poisson process dies off with
exponential rate κ. The value of the birth-death process at time t is the number of
events alive at time t. This view of the process is shown in Figure 4.9(b). The red
dots are the birth events and the blue function attached to each one is the probability
it is still alive at a later point in time.
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Figure 4.9: Chain-based GP per-feature stochastic process. (a) An example chain repre-
senting the known object relationships for our chain-based generalizations. (b) The joint
stochastic process for {zik}Ni=1 in the chain-based GP generalization. These measurements
can be interpreted as the number of objects still alive at particular points in time of a
continuous-time birth-death process. The x-axis is time and the red dots represent birth
events. Each of these events dies with an exponential rate, so the blue function attached
to each event is the probability is it still active at any point in time. (c) If zik is observed
at time t, it is just the number of objects alive at that point.
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From this view, we can define the transitions from z(i−1)k to zik. The equivalence
between the following process and the birth-death process is shown in Appendix
4.A.4.1. We introduce variables yik as follows

z0k
t1→ y1k

t1→ z1k
t2→ y2k

t2→ z2k
t3→ · · · tN→ yNk

tN→ zNk.

These are variables that can be marginalized out, but are introduced to simplify the
generative description. We again define ci = 1 − e−κti so that κ controls the scaling
of the time ti from [0,∞] to [0, 1].

The transitions of this Markov chain are based on an alternating birth-death
process. Recall that z0k is a dummy variable set to zero and t1 = ∞. Then if
z(i−1)k = K, each of the K objects (features) dies independently with parameter
ci ∈ [0, 1] before yik. yik is the number of survivors, so

p(yik|z(i−1)k, pk) ∼ Binomial(z(i−1)k, 1− ci).

Given yik, an additional (independent) Poisson(cipk) number of objects are born. zik
is the sum of yik and the number of new objects, so

p(zik − yik|yik, pk) ∼ Poisson(cipk).

Therefore, if we are concerned with just the transition from z(i−1)k to zik,

p(zik|z(i−1)k, pk)

=

z(i−1)k

∧
zik∑

yik=0

p(zik|yik, pk)p(yik|z(i−1)k, pk)

=

z(i−1)k

∧
zik∑

yik=0

Poisson(zik − yik; cipk)Binomial(yik; z(i−1)k, 1− ci)

=

z(i−1)k

∧
zik∑

yik=0

(cipk)
zik−yike−cipk

(zik − yik)!

(
z(i−1)k

yik

)
(1− ci)yikcz(i−1)k−yik

i . (4.15)

Since t1 =∞, then c1 = 1 which means y1k = 0 so therefore z1k is Poisson(pk). Fur-
thermore, if z(i−1)k is Poisson(pk), then since yik is just a thinning of z(i−1)k, then yik is
distributed Poisson((1−ci)pk). Then since we add an independent Poisson(cipk) num-
ber of objects to get zik, then zik is Poisson(pk), so all zik are marginally Poisson(pk)
for i ≥ 1. From the continuous-time description, we also know that this process is
consistent under marginalization.

If ti = 0, then zik = z(i−1)k. If ti = ∞, then zik is conditionally independent
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of z(i−1)k. As ti varies between zero and ∞, we smoothly vary between these two
extremes. This means that in the special case of ti = ∞ for all i, we recover the
exchangeable gamma-Poisson prior shown with independent chains as in the left part
of Figure 4.7. It is a simple corollary that any group of objects connected by infinite
length edges are conditionally independent. From this, we can see that we satisfy all
our desiderata.

4.5.2.2 Chain-based GP Conditional Distributions

The conditional distributions are easier for the chain-based GP than for the tree-based
GP. We will be able to compute p(zik|z(−i)k, pk) for zik ∈ {0, 1} and p

(
{zik}Ni=1|pk

)
directly using the Markov structure and Equation (4.15).

We can also compute the posterior of B given observations z1, . . . , zN . Recall
Equation (2.15) for the posterior of B in the case of the exchangeable GP.

B|z1, . . . , zN ∼ GP(c+N,BN)

where BN =
c

c+N
B0 +

1

c+N

N∑
j=1

zj.

We will not have as simple a posterior, but we can still reason about the posterior
efficiently. We will reason about the continuous and discrete parts of the posterior of
B independently, using ideas from Wolpert and Ickstadt (1998a). First note that the

probability of {zik}Ni=1 all being zero is e−pk
∑N
i=1 ci . This gives us that the continuous

part of B has posterior

Bcontinuous|z1, . . . , zN ∼ GP

(
c+

N∑
i=1

ci, BN,continuous

)
(4.16)

where BN,continuous =
c

c+
∑N

i=1 ci
B0.

Or in other words, the posterior Lévy measure for the continuous part of B is

ν(dω, dp) = c
e−(c+

∑N
i=1 ci)p

p
dpB0(dω).

For the discrete part, the atoms still appear only at locations where we have a non-
zero zik. Since there is at least one non-zero entry for each of the atoms in the discrete
part of B, the posterior when combined with the improper cp−1e−cp prior for each
atom will be proper. This posterior can be computed efficiently up to normalizing
constant by combining the likelihood p

(
{zik}Ni=1|pk

)
from Equation (4.15) with the
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prior.

4.5.2.3 Chain-based IGPFM

Just as we can marginalize out B in the exchangeable GP to directly sample Z via
the IGPFM, we can again marginalize out B in the chain-based GP to sample Z,
which we will call the chain IGPFM (cIGPFM) to be consistent with the naming of
the cIBP. As in the IGPFM in Section 2.4.3, the cIGPFM can be derived either by
working with a marginalized GP or by defining the limit of a finite gamma-Poisson
model.

The cIGPFM can again be understood in terms of an incremental generative
process for Z in which we generate each row one at a time. We present this process
here, leaving derivations for Appendix 4.A.4.

As in the IGPFM, we start off with an all-zero matrix Z, with c = 1 and α =
B0(Ω). We generate all rows of Z as follows:

• In the first row, we first decide the total count of features we will add and
then we decide how to split this count up into individual features. We do this
by sampling g1, a Negative Binomial NB(α, 1/2) number of features and then
partition g1 according to the CRP. The partitions become the new features and
the counts in the partitions are the counts entered in the matrix.

We then sample pk for each of these new non-zero columns from a Gamma(z1k, 2)
distribution.

• Now assuming we have filled in the first i − 1 rows, we fill in the ith row as
follows:

– First look at all features that are present in z1, . . . , zi−1. We then sample
zik for each non-zero feature k from Equation (4.15).

– Now select the total count of features gi that will be unique to the ith row
from

gi ∼ NB

(
α,

∑i−1
j=1 cj + 1∑i−1

j=1 cj + ci + 1

)
, (4.17)

and distribute this into unique features according to the CRP.

We then sample pk for each of these newly non-zero columns from

pk ∼ Gamma

(
zik,

i−1∑
j=1

cj + ci + 1

)
. (4.18)
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This process repeats until all rows have been filled in, defining a matrix Z as
in the IGPFM. Though this process is not exchangeable, thanks to the consistency
under marginalization, each row of Z has a NB(α, 1/2) number of features distributed
according to the CRP, yielding a sparse matrix as in the exchangeable IGPFM. The
IGPFM is the special case of the pIGPFM corresponding to the independent chains
shown in the left part of Figure 4.7. This fact can easily be seen from the above
equations if every ci is one.

4.6 Further Power of These Priors

We have now show how to create non-exchangeable generalizations to infer latent
features for a single data set. However, we are often presented with multiple struc-
tured data sets for which we might wish to simultaneously infer latent features. Using
the priors defined in this chapter, it is easy to see that we can directly use them in
models to simultaneously infer features shared across multiple data sets in which each
individual data set might be related through a tree, chain, or even be exchangeable.
We show how to do this in Figure 4.10. In Figure 4.10(a), we show an example of
two groups of data in which objects in each group are related through a tree. If
we believe that there is a common set of features present in each of the two groups,
we can combine the two trees at the root so that conditioned on B, the groups are
independent, but share the same set of features. In Figure 4.10(b), we show how to
do the same thing with chains in which we connect the two conditionally independent
chains with an infinite length edge ti. An example in which this is very useful is in
longitudinal data analysis. Each of these extensions also works with more than two
groups of data.

4.7 Summary

In this chapter, we have presented two non-exchangeable generalizations for each of
the BP and GP, one based on known relationships of objects captured by a tree
and the other by a chain. These are just two of the examples of non-exchangeable,
tractable structures that can be used instead of a simple exchangeable prior. We laid
out desiderata for our priors, showed how to define them in such a way that they
satisfy all desiderata, and derived various properties of them.
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⇒

(a)

⇒

tit1

t1

ti

(b)

Figure 4.10: Further power of these priors. (a) We can simultaneously infer latent features
for two independent sets of objects, each related by a particular tree. By connecting the
trees at the root, we can infer features based on the joint tree. (b) We can infer latent
features for two independent sets of data where each one has Markov structure. An
example of this would be longitudinal data. By connecting the independent chains by an
infinite length edge, we can infer features using this joint chain. Each of these extensions
can also work with more than two groups of data.
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Appendix 4.A Derivations

In this appendix, we discuss the derivations of the generative processes for each non-
exchangeable variation as well as a other properties described in Chapter 4. For
each prior, we will perform the derivation in two different ways, one directly using
the Lévy measure and one using the infinite limit of a finite parametric prior. This
shows that for deriving similar priors, we can work with whichever formulation is more
convenient or that we are more comfortable or familiar with. Many of the steps of the
two different kinds of derivations are similar so once one way has been done, it is not
too much effort to switch it to the other kind of derivation. The majority of existing
extensions have been derived using infinite limits of finite priors, but as shown here,
the Lévy measure formulation, though relying on more sophisticated knowledge of
stochastic processes, can often be simpler and more straightforward.

4.A.1 Tree-based BP

We discuss the derivation of the generative process for the tree-based BP discussed
in Section 4.4.1.3.

As with the exchangeable BP, this derivation can be done by examining the un-
derlying completely random measure or by taking the limits of a finite beta-Bernoulli
prior with the stochastic process discussed in Section 4.4.1.1 for each column.

Derivation 1 We now derive how to get the pIBP from the beta-Bernoulli process
construction of p(Z). To correspond exactly to the pIBP, we set c = 1, but leave c as
a variable in the below derivation.

The first person to enter the the restaurant corresponds to z1. We wish to sample
z1 from the distribution

p(z1) =

∫
p(z1|B)dP (B).

In this case, the distribution of B is the prior BP(c, B0).
Since we have assumed that the total edge length to root for any entry is one, this

is equivalent to the first entry in the IBP, so as before, we sample Poisson(B0(Ω))
feature.

Unlike in the IBP, in the pIBP, we now draw pk for the entries sampled by the first
customer uniform from [0, 1]. This is the posterior of pk with only a single, non-zero
observation as discussed in Section 4.4.1.2.

For the ith person to enter the restaurant, we wish to sample zi from the posterior
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distribution

p(zi|z1, . . . , zi−1) =

∫
p(zi|B)dP (B|z1, . . . , zi−1).

Recalling Section 4.4.1.2, we must reason about the discrete and continuous parts of
B independently. We first reason about the discrete part. Since we have sampled pk,
then by the sum product algorithm, we can directly sample zik from Equation (4.1).

We now reason about the continuous part of B for the ith customer. By Equation
(4.3), letting

∑
t and ti be defined as in Section 4.A.1, the posterior Lévy measure

of the continuous part of B given the first i− 1 customers is

ν(dω, dp) = cp−1(1− p)
∑
t+c−1dpB0(dω).

Now our derivation diverges from the IBP derivation. In the IBP, the probability
of observing zik = 1 given pk and that {zjk}i−1

j=1 are all zero is just pk. In the pIBP,

the probability of observing zik = 1 given pk and that {zjk}i−1
j=1 are all zero is the

probability that a zero mutates to a one with exponential rate γk along an edge of
length ti since we know it could not have mutated anywhere else in the tree. This
probability is exp(−γkti) = 1− (1− pk)ti .

Therefore, the number of new dishes for the ith customer is Poisson with parameter
λ where

λ =

∫ ∫ 1

0

c
(
1− (1− p)ti

)
p−1(1− p)

∑
t+c−1dpB0(dω).

Define p = 1− e−s or equivalently s = − log(1− p), we get

λ = cB0(Ω)

∫ ∞
0

e−(
∑
t+c)ses − e−(

∑
t+ti+c)ses

1− e−s e−sds

= cB0(Ω)

[∫ ∞
0

[
e−s

s
− e−(

∑
t+ti+c)s

1− e−s
]
ds−

∫ ∞
0

[
e−s

s
− e−(

∑
t+c)s

1− e−s
]
ds

]
= cB0(Ω)

[
ψ
(∑

t+ ti + c
)
− ψ

(∑
t

+c

)]
.

Letting c = 1 and remembering α = B0(Ω), we see that the ith customer must
draw a

Poisson
(
α
(
ψ
(∑

t+ ti + 1
)
− ψ

(∑
t+ 1

)))
number of new dishes, as in Equation (4.4).

Finally, we draw pk for the new dishes, which is drawing pk from the posterior
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distribution given that a zero mutated to a one along an edge of length ti, but did
not anywhere else on the tree of total edge length

∑
t, which is proportional to(

1− (1− pk)ti
)

(1− pk)
∑
t p−1

k

as in Equation (4.5).

Derivation 2 The alternate derivation of the pIBP is similar to the alternate deriva-
tion of the IBP. We start by placing a prior on finite N ×K matrices and then letting
K go to infinity. As with the IBP derivation, we start by sampling πk which will play
the role of pk in the infinite limit from

πk ∼ Beta(α/K, 1) k ∈ {1, . . . , K}

but now, the zik are drawn via the stochastic process from Section 4.4.1.1.
Instead of computing the closed form distribution of Z, we will compute how to

sample the rows of Z incrementally while marginalizing out all πk for any all-zero
columns. For the first row, since we have marginalized out all πk, then we sample
each of the K entries with probability α/K. Remembering that

Binomial
(
K,

α

K

)
K→∞→ Poisson(α),

this shows that the first row will have a Poisson(α) number of non-zero entries. The
posterior of πk for these entries is Beta

(
α
K

+ 1, 1
)

which goes to a Beta(1, 1), i.e. a
Uniform[0, 1] distribution.

For all subsequent rows, as K → ∞, we can sample zik for non-zero columns
exactly from Equation (4.1).

For the all-zero columns of subsequent rows, we will show that for some constant
ξi depending on the row,

p(zik = 1|z(−i)k = 0, α) =
αξi
K

+ o

(
1

K

)
,

where f = o(g) means f/g → 0. Let K+ be the number of already non-zero rows.
The using the fact that as K → ∞, K+ will be finite and for any fixed, finite K+,
the number of newly sampled non-zero rows is

Binomial

(
K −K+,

αξi
K

)
K→∞→ Poisson(αξi).

We therefore wish to find ξi such that p(zik = 1|z(−i)k = 0, α) = αξi/K + o(1/K).
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For finite K, we can evaluate the probability that zik = 1 given that z(−i)k = 0 in the
pIBP. If ti is the length of the edge that ends at the ith object and

∑
t is the total

length of all other edges in the tree, then we get

p(zik = 1|z(−i)k = 0, α) ∝ p(zik = 1, z(−i)k = 0|α)

=

∫ 1

0

p(zik = 1|z(−i)k = 0, πk)p(z(−i)k = 0|πk)p(πk|α)dπk

=
α

K

(
Γ (α/K) Γ (

∑
t+ 1)

Γ (
∑
t+ α/K + 1)

− Γ (α/K) Γ (
∑
t+ ti + 1)

Γ (
∑
t+ ti + α/K + 1)

)
,

where Γ(·) is the gamma function and similarly

p(zik = 0|z(−i)k = 0, α) ∝ p(zik = 0, z(−i)k = 0|α)

=
α

K

(
Γ (α/K) Γ (

∑
t+ ti + 1)

Γ (
∑
t+ ti + α/K + 1)

)
,

which combined means

p(zik = 1|z(−i)k = 0, α) = 1− Γ (
∑
t+ α/K + 1)

Γ (
∑
t+ 1)

Γ (
∑
t+ ti + 1)

Γ (
∑
t+ ti + α/K + 1)

.

Treating the value α/K as a variable in the equation f(α/K) = p(zik = 1|z(−i)k = 0)
and doing a first-order Taylor expansion about zero, we get

p(zik = 1|z(−i)k = 0, α) = f
( α
K

)
= f(0) +

α

K
f ′(0) + o

(
1

K

)
= 0 +

α

K

(
ψ
(∑

t+ ti + 1
)
− ψ

(∑
t+ 1

))
+ o

(
1

K

)
where ψ(·) = Γ′(·)/Γ(·) is the digamma function.

This gives us that

ξi = ψ
(∑

t+ ti + 1
)
− ψ

(∑
t+ 1

)
.

Therefore the number of new non-zero columns for row i is distributed Poisson(αξi)
under the prior, as in Equation (4.4).

Finally, we sample πk for the newly non-zero rows. This is drawn for a distribution
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proportional to(
1− (1− pk)ti

)
(1− pk)

∑
t p

α
K
−1

k

K→∞→
(
1− (1− pk)ti

)
(1− pk)

∑
t p−1

k

as desired.

4.A.2 Tree-based GP

We discuss the derivation of the generative process for the tree-based GP discussed
in Section 4.4.2.3.

As with the exchangeable GP, this derivation can be done by examining the un-
derlying completely random measure or by taking the limits of a finite gamma-Poisson
prior with the stochastic process discussed in Section 4.4.2.1 for each column.

Derivation 1 We now derive how to get the pIGPFM from the gamma-Poisson
process construction of p(Z). To correspond exactly to the pIGPFM, we set c = 1,
but leave c as a variable in the below derivation.

For the first row z1, we wish to sample from the distribution

p(z1) =

∫
p(z1|B)dP (B).

In this case, the distribution of B is the prior GP(c, B0).
Since we have assumed that the total edge length to root for any entry is one, this

is equivalent to the first entry in the IGPFM, so as before, we sample a NB(α, 1/2)
number of points distributed according to the CRP.

Unlike in the IGPFM, in the pIGPFM, we now draw pk for the newly non-zero
entries. This is the posterior of pk with only a single, non-zero observation at z1k as
discussed in Section 4.4.2.2. This posterior is proportional to the Poisson likelihood
times the improper gamma prior, which is therefore Gamma(z1k, 2), as desired.

For the ith row, we wish to sample zi from the posterior distribution

p(zi|z1, . . . , zi−1) =

∫
p(zi|B, z1, . . . , zi−1)dP (B|z1, . . . , zi−1).

Recalling Section 4.4.2.2, we must reason about the discrete and continuous parts of
B independently. We first reason about the discrete part. Since we have sampled pk,
then by the sum product algorithm, we can directly sample zik from Equation (4.6).

We now reason about the continuous part of B for the ith row. By Equation (4.8),
letting

∑
t and ti be defined as in Section 4.A.2, the posterior Lévy measure of the
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continuous part of B given the first i− 1 rows is

ν(dω, dp) = cp−1e−(
∑
t+c)pdpB0(dω).

Similar to the IGPFM, using Equation (2.14), we get that

B(Ω)|z1, . . . , zi−1 ∼ Gamma
(
cB0(Ω),

∑
t+ c

)
.

Now using the fact that if x|λ ∼ Poisson(tiλ) and λ ∼ Gamma(a, b), then by marginal-

izing out λ, x ∼ NB
(
a, b

b+ti

)
, we get that the total count of unobserved features gi

in zi is NB
(
cB0(Ω),

∑
t+c∑

t+ti+c

)
, which substituting in c = 1 and α = B0(Ω) gives us

NB
(
α,

∑
t+1∑

t+ti+1

)
as in Equation (4.9). We must now figure out how to distribute

these gi new features. The posterior of B is still a GP in this case and ti ≤ 1, so we
can interpret ti as a thinning parameter for a full Poisson process and we know that
the allocation of all features for the full process is distributed according to the CRP.
Thinning the CRP still gives a CRP just with fewer features, so the gi are allocated
according to the CRP.

Finally, we draw pk for the new features, which is drawing pk from the posterior
distribution given that the only events on the tree for feature k occurred along an
edge of length ti with no events anywhere else on the tree of total edge length

∑
t,

which is
Gamma

(
zik,
∑

t+ ti + 1
)

as in Equation (4.10).

Derivation 2 The alternate derivation of the pIGPFM is similar to the alternate
derivation of the IGPFM. We start by placing a prior on finite N ×K matrices and
then letting K go to infinity. As with the IGPFM derivation, we start by sampling
λk which will play the role of pk in the infinite limit from

λk ∼ Gamma
( α
K
, 1
)

k ∈ {1, . . . , K}

but now, the zik are drawn via the stochastic process from Section 4.4.2.1.
Instead of computing the closed form distribution of Z, we will compute how

to sample the rows of Z incrementally while marginalizing out all λk for any all-
zero columns. For the first row, since we have marginalized out all λk, then the
distribution of each z1k is NB

(
α
K
, 1

2

)
. Since the z1k are independent, then since the
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sum of independent NB(ai, b) variables is NB(
∑
ai, b), we have that

p

(∑
k

z1k

∣∣∣∣∣α
)
∼ NB

(
α,

1

2

)
.

We now must compute how to partition these features. This will take several
steps. We will only be concerned with unique partitions of the data, but not the
order that groups of features come in, so if we let bh be the number of z1k that take
on value h, then we can see that there are K!/

∏∞
h=0 bh! elements of the equivalence

class of z11, . . . , z1K , where by definition b0 = K −K+.

p(z11, . . . , z1K |α)

=
K!∏∞
h=0 bh!

K∏
k=1

NB

(
z1k;

α

K
,
1

2

)

=
K!∏∞
h=0 bh!

K∏
k=1

Γ( α
K

+ z1k)

Γ( α
K

)z1k!

(
1

2

) α
K
(

1− 1

2

)z1k
=

K!∏∞
h=0 bh!

( α
K

)K+
( ∏
k:z1k>1

∏z1k−1
j=1 (j + α

K
)

z1k!

)(
1

2

)α(
1− 1

2

)∑K
k=1 z1k

.

Using similar limits to Griffiths and Ghahramani (2006), the probability of the par-
tition having values z11, . . . , z1K is therefore

p(z11, . . . , z1K |α)

=
αK

+∏∞
h=1 bh!

K!

b0!KK+

( ∏
k:z1k>1

∏z1k−1
j=1 (j + α

K
)

z1k!

)(
1

2

)α(
1− 1

2

)∑
k:z1k>1 z1k

K→∞→ αK
+∏∞

h=1 bh!
× 1×

( ∏
k:z1k>1

(z1k − 1)!

z1k!

)(
1

2

)α(
1− 1

2

)∑
k:z1k>1 z1k

=
αK

+∏∞
h=1 bh!

1∏
k:z1k>1 z1k

(
1

2

)α(
1− 1

2

)∑
k:z1k>1 z1k

.

We now note that if we sample g1 =
∑

k z1k, the total number of non-zero features,
from a NB

(
α, 1

2

)
distribution and then partition it into K+ groups according to Ewens
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distribution (Ewens, 1972), we get that

p(z1k, . . . , z1K |α)

=
Γ(α + g1)

Γ(α)g1!

(
1

2

)α(
1− 1

2

)g1
︸ ︷︷ ︸

Negative Binomial

× αK
+∏

k:z1k>1 z1k

Γ(α)g1!

Γ(α + g1)

∞∏
h=1

1

bh!︸ ︷︷ ︸
Ewens

=
αK

+∏∞
h=1 bh!

1∏
k:z1k>1 z1k

(
1

2

)α(
1− 1

2

)∑
k:z1k>0 z1k

. (4.19)

This shows that the proper way to partition g1 to get the new columns is to partition
it according to Ewens distribution.

It is also straightforward to compute the posterior distribution of λk (which play
the role of pk) for non-zero columns. Since this is a conjugate prior, this posterior
distribution is

Gamma
(
zik +

α

K
, 2
)

K→∞→ Gamma(zik, 2)

as desired.
For all subsequent rows, as K → ∞, we can sample zik for non-zero columns

exactly from Equation (4.6) using sum-product.
For the all-zero columns of row i, we will show that for some constant ξi,

p(zik|z(−i)k = 0, α) ∼ NB
( α
K
, ξi

)
.

From this, if we assume the first K+ columns are the non-zero columns so that
columns K+ + 1 through K are all-zero, then

p

(
K∑

k=K++1

zik

∣∣∣∣∣ z(−i)k = 0 ∀k ∈ {K+ + 1, . . . , K}, α
)

∼ NB

(
α(K −K+)

K
, ξi

)
K→∞→ NB (α, ξi) .

So the sum of all the non-zero zik for previously all-zero columns follows a negative
binomial distribution. As we did for the first row, we’ll need to figure out how to
partition these elements. Using exactly the same argument as we did for the first
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row, if we let Knew
i be the number of new non-zero columns in the ith row, then

p(zi(K++1), . . . , ziK |z(−i)k = 0 ∀k ∈ {K+ + 1, . . . , K}, α)

=
αK

new
i∏∞

h=1 bh!

(K −K+)!

b0!KKnew
i

( ∏
k:zik>0

∏zik−1
j=1 (j + α

K
)

zik!

)
ξ
α(K−K+)/K
i (1− ξi)

∑K++Knew
i

k=K++1
zik

K→∞→ αK
new
i∏∞

h=1 bh!
× 1×

( ∏
k:zik>0

(zik − 1)!

zik!

)
ξαi (1− ξi)

∑K++Knew
i

k=K++1
zik

=
αK

new
i∏∞

h=1 bh!

1∏
k:zik>0 zik

ξαi (1− ξi)
∑K++Knew

i
k=K++1

zik .

As before, we note that if we sample gi =
∑K++Knew

i

k=K++1 zik from a NB (α, ξi) distri-
bution and then partition it according to Ewens distribution (Ewens, 1972) into Knew

i

groups, we get that

p(zi(K++1), . . . , ziK |z(−i)k = 0 ∀k ∈ {K+ + 1, . . . , K}, α)

=
Γ(α + gi)

Γ(α)gi!
ξαi (1− ξi)gi︸ ︷︷ ︸

Negative Binomial

× αK
new
i∏

k:zik>0 zik

Γ(α)gi!

Γ(α + gi)

∞∏
h=1

1

bh!︸ ︷︷ ︸
Ewens

=
αK

new
i∏∞

h=1 bh!

1∏
k:zik>0 zik

ξαi (1− ξi)
∑K++Knew

i
k=K++1

zik . (4.20)

This shows that the proper way to partition gi to get the new columns is to partition
it according to Ewens distribution.

We must now identify ξi and we will be done with our derivation. In this case, we
can see that

ξi =

∑
t+ 1∑

t+ ti + 1
, (4.21)

which therefore means we sample gi ∼ NB
(
α,

∑
t+1∑

t+ti+1

)
and partition it according to

the CRP, agreeing with Equation (4.9).
Finally, for each new non-zero column, we sample λk from the posterior distribu-

tion which is

Gamma
(
zik +

α

K
,
∑

t+ ti + 1
)

K→∞→ Gamma
(
zik,
∑

t+ ti + 1
)

agreeing with Equation (4.10).
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4.A.3 Chain-based BP

Here we show four sets of derivations. The first is the equivalence between the
continuous-time stochastic process and the transition kernel defined in Section 4.5.1.1.
The second is the marginal distribution of the cIBP in Section 4.5.1.3. The third is
the dynamic program to efficiently compute ξi in Equation (4.13). The last shows
that Equation (4.13) is equivalent to the IBP when all ci = 1.

4.A.3.1 Chain-based BP Stochastic Process

Here we show the equivalence between the continuous time stochastic process and the
transition kernel defined in Section 4.5.1.1.

First we start with the transition kernel defined by Equation (4.11)

zik
0 1

z(i−1)k 0 1− cipk cipk
1 ci(1− pk) 1− ci + cipk

where ci = 1− e−κti . Since we have defined z0k to be a dummy variable deterministi-
cally set to zero and t1 =∞, we have that z1k ∼ Bernoulli(pk), so at time zero, these
two processes are the same.

We note that for any transition matrix(
1− a a
b 1− b

)
the stationary distribution is a

a+b
, so the stationary distribution is Bernoulli(pk), so

all zik are Bernoulli(pk).
We can also show that this is consistent under marginalization. That is, if we do

not observe zik, then the conditional distribution of z(i+1)k given z(i−1)k is the same
if we use directly use Equation (4.11) with edge length ti + ti+1 between z(i−1)k and
z(i+1)k and if we marginalize out zik. In equations, if we define cj = 1 − e−κ(ti+ti+1),
this just means that(

1− cjpk cjpk
cj(1− pk) 1− cj + cjpk

)
=

(
1− cipk cipk
ci(1− pk) 1− ci + cipk

)(
1− ci+1pk ci+1pk
ci+1(1− pk) 1− ci+1 + ci+1pk

)
So now we know that we have a stationary process consistent under marginaliza-

tion, which is a good indication that there is an underlying continuous-time binary
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valued stochastic process. Since it is consistent under marginalization, we can look
at the transition kernel if we were to shrink ti (remember that we assume known,
fixed ti, so this is a thought exercise for the sake of derivation). Then as ti ↓ 0, using
the Taylor expansion of e−x and the definition ci = 1 − e−κti , the transition kernel
becomes(

1− cipk cipk
ci(1− pk) 1− ci + cipk

)
=

(
1− κpkti + o(ti) κpkti + o(ti)
κ(1− pk)ti + o(ti) 1− κ(1− pk)ti + o(ti)

)
This means that in state zero, there is a birth process of rate κpk and no death
process, and in state one, there is a death process of rate κ(1 − pk) and no birth
process. From this, we see that this therefore defines the continuous-time birth-death
process from Section 4.5.1.1.

Directly from the definition of this process, we can also verify that the stationary
distribution is Bernoulli(pk) by checking the fixed point of the birth-death rates. Let
zk(t) be the value of the continuous-time stochastic process at time t. Then following
notation from (Cooper, 1981), define λi as the birth rate when zk(t) = i, µ0 as the
death rate, and pi(t) is the probability zk(t) = i. Then we can verify that constant
probabilities p0(t) = 1− pk and p1(t) = pk satisfy

0 =
d

dt
pi(t) = λi−1pi−1(t) + µi+1pi+1(t)− (λi + µi)pi(t)

for i = 0 and i = 1. Since zk0 ∼ Bernoulli(pk), the stochastic process is already at its
stationary distribution and we can see that our two definitions are equivalent.

4.A.3.2 Chain-based BP Derivation

We discuss the derivation of the generative process for the chain-based BP discussed
in Section 4.5.1.3.

As with the exchangeable BP, this derivation can be done by examining the un-
derlying completely random measure or by taking the limits of a finite beta-Bernoulli
prior with the stochastic process discussed in Section 4.5.1.1 for each column.

Derivation 1 We now derive how to get the cIBP from the beta-Bernoulli process
construction of p(Z). To correspond exactly to the cIBP, we set c = 1, but leave c as
a variable in the below derivation.

For the first row z1, we wish to sample z1 from the distribution

p(z1) =

∫
p(z1|B)dP (B).
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In this case, the distribution of B is the prior BP(c, B0) and which is equivalent to
the IBP, so we sample Poisson(B0(Ω)) features.

Unlike in the IBP, in the cIBP, we now draw pk for the features sampled in the
first row uniform from [0, 1]. This is the posterior of pk with only a single, non-zero
observation as discussed in Section 4.5.1.2.

For the ith row, we wish to sample zi from the posterior distribution

p(zi|z1, . . . , zi−1) =

∫
p(zi|B, z1, . . . , zi−1)dP (B|z1, . . . , zi−1).

Recalling Section 4.5.1.2, we must reason about the discrete and continuous parts of
B independently. We first reason about the discrete part. Since we have sampled pk,
then we can directly sample zik from Equation (4.11).

We now reason about the continuous part of B for the ith row. By Equation
(4.12), the posterior Lévy measure of the continuous part of B given the first i − 1
rows is

ν(dω, dp) = cp−1(1− p)c−1

[
i−1∏
j=1

(1− cjp)
]
dpB0(dω).

Now our derivation diverges from the IBP derivation. In the IBP, the probability
of observing zik = 1 given pk and that {zjk}i−1

j=1 are all zero is just pk. In the cIBP,

the probability of observing zik = 1 given pk and that {zjk}i−1
j=1 are all zero is cipk as

in Equation (4.11).
Therefore, the number of new features for the ith row is Poisson with parameter

λ where

λ =

∫ ∫ 1

0

cipcp
−1(1− p)c−1

[
i−1∏
j=1

(1− cjp)
]
dpB0(dω)

= ciB0(Ω)

∫ 1

0

c(1− p)c−1

[
i−1∏
j=1

(1− cjp)
]
dp.

Now we note that by expanding
[∏i−1

j=1(1− cjp)
]
, we get a weighted sum of proper
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beta distributions, so we can evaluate this integral.

∫ 1

0
c(1− p)c−1

i−1∏
j=1

(1− cjp)

 dp
=

∫ 1

0
c(1− p)c−1

1− p
i−1∑
j=1

cj + p2
i−1∑
j<k

cjck − · · ·+ (−1)i−1pi−1
i−1∏
j=1

cj

 dp
= c

Γ(1)Γ(c)

Γ(1 + c)
− Γ(2)Γ(c)

Γ(2 + c)

i−1∑
j=1

cj +
Γ(3)Γ(c)

Γ(3 + c)

i−1∑
j<k

cjck − · · ·+
Γ(i)Γ(c)

Γ(i+ c)
(−1)i−1

i−1∏
j=1

cj

 .
Substituting c = 1, this simplifies to

∫ 1

0

i−1∏
j=1

(1− cjp)

 dp = 1− 1

2

i−1∑
j=1

cj +
1

3

i−1∑
j<k

cjck − · · ·+
1

i
(−1)i−1

i−1∏
j=1

cj .

Therefore

λ = αci

(
1− 1

2

i−1∑
j=1

cj +
1

3

i−1∑
j<k

cjck − · · ·+
1

i
(−1)i−1

i−1∏
j=1

cj

)
,

which agrees with Equation (4.13) in which

αξi = αci

(
1−

∑i−1
j=1 cj

2
+

∑i−1
j<k cjck

3
−
∑i−1

j<k<l cjckcl

4
+ · · ·+ (−1)i−1

∏i−1
j=1 cj

i

)
.

So for the ith row, we must draw a Poisson (λ) number of new features.
Finally, we draw pk for the new features, which is drawing pk from the poste-

rior distribution given that only the ith entry is non-zero, which is proportional to

ci

[∏i−1
j=1(1− cjpk)

]
as in Equation (4.14).

Derivation 2 The alternate derivation of the cIBP is similar to the alternate deriva-
tion of the IBP. We start by placing a prior on finite N ×K matrices and then letting
K go to infinity. As with the IBP derivation, we start by sampling πk which will play
the role of pk in the infinite limit from

πk ∼ Beta(α/K, 1) k ∈ {1, . . . , K}

but now, the zik are drawn via the stochastic process from Section 4.5.1.1.
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Now since we are working with a proper prior distribution, computing all quan-
tities is relatively straightforward. As for the pIBP, to figure out the number of new
features sampled for both the first row as well as all subsequent rows i, we must show

p(zik = 1| {zjk}ij=1 = 0, α) =
αξi
K

+ o

(
1

K

)
,

where f = o(g) means f/g → 0. Then using the fact that

Binomial

(
K −K+,

αξi
K

)
K→∞→ Poisson(αξi),

we can derive the desired Poisson distributions.
This approach is doable, but rather tedious. For example, we must show

p
(
zik = 1| {zjk}ij=1 = 0, α

)
∝

∫ 1

0

p(zik = 1|z(i−1)k = 0, πk)p(πk|α)
i−1∏
j=1

p(zjk = 0|z(j−1)k = 0, πk)dπk

=

∫ 1

0

(ciπk)
α

K
π
α/K−1
k

i−1∏
j=1

(1− cjπk)dπk

=

∫ 1

0

ci
α

K
π
α/K
k

(
1− πk

i−1∑
j=1

cj + π2
k

i−1∑
j<k

cjck − . . .+ (−1)i−1πi−1
k

i−1∏
j=1

cj

)
dπk

= ci
α

K

(
1

α/K + 1
− 1

α/K + 2

i−1∑
j=1

cj +
1

α/K + 3

i−1∑
j<k

cjck − . . .+ (−1)i
1

α/K + i

i−1∏
j=1

cj

)
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and

p
(
zik = 0| {zjk}ij=1 = 0, α

)
∝

∫ 1

0

p(πk)
i∏

j=1

p(zjk = 0|z(j−1)k = 0, πk)dπk

=

∫ 1

0

α

K
π
α/K−1
k

i∏
j=1

(1− cjπk)dπk

=

∫ 1

0

α

K
π
α/K−1
k

(
1− πk

i∑
j=1

cj + π2
k

i∑
j<l

cjcl − . . .+ (−1)iπik

i∏
j=1

cj

)
dπk

= 1− α/K

α/K + 1

i∑
j=1

cj +
α/K

α/K + 2

i∑
j<l

cjcl − . . .+ (−1)i
α/K

α/K + i

i∏
j=1

cj.

Normalizing to compute the value of p
(
zik = 1| {zjk}ij=1 = 0, α

)
and taking the first

order Taylor series expansion, we can show that ξi must take the desired form.
To compute the posterior distributions of πk for both the first and all subsequent

rows, we take the limit of the resulting posterior distribution to again get the desired
distributions.

4.A.3.3 Computation of ξi

For each i, we must compute

ξi = 1− 1

2

i−1∑
j=1

cj +
1

3

i−1∑
j<k

cjck − · · ·+
1

i
(−1)i−1

i−1∏
j=1

cj

If all ci (except possibly c1 which is always one) are homogeneous, we can compute
each term directly in O(1) time. If not, then a näıve computation of each term would
take O(2n) time which is intractable. However, using a dynamic program, we can
compute all terms for all i in O(N2) time. We show this dynamic program in Figure
4.11. If ci take on a few distinct values, this can be greatly decreased.
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x

y

z

z · y + x

(a)

0 00

1

1

1

c1 c2(c1)

c3(c2 + c1)
+c2c1

c4(c3 + c2 + c1)
+c3(c2 + c1)

+c2c1

c2

+c2

c3

+c1

+c1

c3(c2c1)

c4(c3c2 + c3c1 + c2c1)

+c3c2c1

c5(c4c3 + c4c2 + c4c1

+ c3c2 + c3c1 + c2c1)

+c4(c3c2 + c3c1 + c2c1)

+c3c2c1

c1 c2 c3

c4

c5

(b)

Figure 4.11: Dynamic program for computing coefficients of ξi in the cIBP. We initialize a
matrix with zeros along the first row and ones along the first column. (a) By introducing
an external variable along diagonals, we use the recursive step shown here to build up the
computations. (b) Using the step from (a), we can fill in the matrix, introducing c1, c2, . . .
along the diagonals. Then the bottom entry in the first column before the diagonal with
ci is

∑i−1
j=1 cj, in the second column, it is

∑i−1
j<k cjck, and so on. For i = 4, we can have

all required computations above. An inductive argument shows that this is correct.
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4.A.3.4 Chain-based BP Equivalence

Here we show that Equation (4.13) is equivalent to the IBP when all ci = 1. To do
this, we must show that

1

i
= 1−

∑i−1
j=1 1

2
+

∑i−1
j<k 1

3
−
∑i−1

j<k<l 1

4
+ · · ·+ (−1)i−1 1

i

We rewrite the sum on the right hand side and express it as

i−1∑
j=0

(−1)j

j + 1

(
i− 1

j

)
=

i−1∑
j=0

aj,

We can also define r0 = 1 and for j > 0,

rj ≡
aj
aj−1

=

(−1)j

j+1

(
i−1
j

)
(−1)j−1

j

(
i−1
j−1

)
=

j − i
j + 1

.

So therefore our original sum is

i−1∑
j=0

aj =
i−1∑
j=0

j∏
k=0

rk

= r0 + r0r1 + · · ·+
i−1∏
k=0

rk

= r0(1 + r1(1 + r2(· · · (1 + ri−2(1 + ri−1)) · · · )))

= 1 +
1− i

2

(
1 +

2− i
3

(
· · ·
(

1 +
−2

i− 1

(
1 +
−1

i

))
· · ·
))

= 1 +
1− i

2

(
1 +

2− i
3

(
· · ·
(

1 +
−2

i− 1

i− 1

i

)
· · ·
))

= 1 +
1− i

2

(
2

i

)
=

1

i
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as desired.

4.A.4 Chain-based GP

Here we show two sets of derivations. The first is the equivalence between the
continuous-time stochastic process and the transition kernel defined in Section 4.5.2.1.
The second is the marginal distribution of the cIGPFM in Section 4.5.2.3.

4.A.4.1 Chain-based GP Stochastic Process

Here we show the equivalence between three descriptions of the continuous-time
stochastic process 4.5.2.1. These three descriptions are

• The continuous-time birth-death process.

• The continuous-time Poisson process with each event dying independently with
exponential rate.

• The transitions defined on the discrete-time birth-death process.

We will show that all three views are equivalent and therefore we can work with any
of them as we see convenient to prove properties of the process.

Description 1 First we establish properties of the continuous-time birth death pro-
cess. Let zk(t) be the value of this process at time t for feature k. Therefore zik
is the value of zk(t) at time

∑i
j=2 tj. Remember that at time t = 0, we set zk(0)

to be initialized as Poisson(pk). Again, we use the notation from (Cooper, 1981)
that λi is the birth rate when zk(t) = i, µi is the death rate when zk(t) = i, and
pi(t) = p(zk(t) = i). For this process, λi = κpk and µi = κi. Then we can verify that
the constant Poisson(pk) probabilities

pi(t) =
pike
−pk

i!

satisfy

0 =
d

dt
pi(t) = λi−1pi−1(t) + µi+1pi+1(t)− (λi + µi)pi(t)

= κpk
pi−1
k e−pk

(i− 1)!
+ κ(i+ 1)

pi+1
k e−pk

(i+ 1)!
− (κpk + κi)

pike
−pk

i!

for all i. Therefore the steady-state and initial state are Poisson(pk), so marginally
zk(t) ∼ Poisson(pk) for all t.
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Description 2 Now that we have established that this continuous-time process has
the correct marginals, we show that it is equivalent to the second description. This is
mostly by definition, but allows us to then show the equivalence of these descriptions
to the third description.

In the second description, we have a Poisson process with rate κpk and each event
dies independently with exponential rate κ.

In this process, during a fixed amount of time t, we expect a Poisson(tκpk) number
of events. The probability that one event happens as t ↓ 0 is (tκpk)e

−tκpk = tκpk+o(t)
and the probability of more than one event happening is o(t), so this is by definition
a birth process with rate κpk. If there are i active events at the current point in
time, the probability that one dies in the next t amount of time as t ↓ 0 is i times
the probability that any particular event dies, which is i(1 − e−κt) = tκi + o(t), and
the probability that more than one event dies is o(t), so this is a death process with
rate κi. As part of proving that the discrete-time birth-death process is equivalent to
this, we will show that the number of events active at time zero with this definition
is Poisson(pk), agreeing with the distribution of zk(0).

Description 3 So the last step is to show that the discrete-time process is equivalent
to the continuous-time Poisson process with exponential deaths and as a side effect,
we will show that the number of active events at time zero in the second description
is Poisson(pk).

In our definition of the discrete-time process, there are two independent processes
that happen from z(i−1)k to zik. Suppose z(i−1)k is observed at time t and zik is
observed at time t + ti. Then the two independent processes that happen from t to
t+ ti are:

• Each active event at time t dies independently with probability ci = 1 − e−κti
before time t+ ti.

• An independent Poisson(cipk) number of events occur and remain active at time
t+ ti.

These two processes can be captured by the two steps of z(i−1)k → yik → zik. The
transition z(i−1)k → yik captures the first step and is the pure death process in which
yik is the number of events alive at t + ti that existed at time t. The transition
yik → zik captures the second step, in which zik − yik is the number of new events
added between t and t + ti. We show that these two steps can be derived from the
second description and is therefore equivalent to discrete-time observations of the
underlying continuous-time process.

The first step represents the fact that each event in the continuous-time Poisson
process dies with exponential rate κ, since 1− e−κti is exactly the probability that an
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event alive at t dies by t+ ti by the memory-less property of the exponential distribu-
tion. Thus, with probability 1− ci = e−κti , each of the events in z(i−1)k is still alive in
zik. This quantity is exactly yik which is therefore distributed Binomial(z(i−1)k, 1−ci).

The second step represents the number of new events that happen between t and
t + ti that are still alive at t + ti. To determine this second quantity, we note that
the base rate of the Poisson process is κpkds. However, an event at time s with
t < s < t + ti only survives until time t + ti with probability e−κ(t+ti−s). Therefore,
the base measure of the Poisson process for events between t and t+ ti surviving until
time t + ti is κpke

−κ(t+ti−s)ds. Integrating this from t to t + ti, we see that the total
number of events born between t and t + ti still alive at time t + ti is Poisson with
rate ∫ t+ti

t

κpke
−κ(t+ti−s)ds = pk

(
1− e−κti

)
≡ cipk,

which is exactly the number of events added in the transition from yik to zik. We can
also see from this that by having z1k be the number of events active at time zero with
t1 =∞, then z1k ∼ Poisson(pk) as desired.

Therefore this two step discrete-time process is equivalent to the observations at
select points in time of the continuous-time process in description two. As discussed
earlier, since in the two steps, we are summing the results of an independent thinned
Poisson process with resulting rate pk(1 − ci) and a Poisson process with rate pkci,
the sum is Poisson with rate pk.

Therefore, we have shown all three descriptions are equivalent and we can choose
which one to work with based on what we wish to show. If we wish to show that zik
is consistent under marginalization, the first description is the most convenient, but
if we wish to compute the transition probability, the third one is most convenient.

4.A.4.2 Chain-based GP Derivation

We discuss the derivation of the generative process for the chain-based GP discussed
in Section 4.5.2.3.

As with the exchangeable GP, this derivation can be done by examining the un-
derlying completely random measure or by taking the limits of a finite gamma-Poisson
prior with the stochastic process discussed in Section 4.5.2.1 for each column. Both
of these derivations are nearly identical to those of the pIGPFM.

Derivation 1 We now derive how to get the cIGPFM from the gamma-Poisson
process construction of p(Z). To correspond exactly to the cIGPFM, we set c = 1,
but leave c as a variable in the below derivation.
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For the first row z1, we wish to sample from the distribution

p(z1) =

∫
p(z1|B)dP (B).

In this case, the distribution of B is the prior GP(c, B0).
Since we have assumed that the total edge length to root for any entry is one, this

is equivalent to the first entry in the IGPFM, so as before, we sample a NB(α, 1/2)
number of points distributed according to the CRP.

Unlike in the IGPFM, in the cIGPFM, we now draw pk for the newly non-zero
entries. This is the posterior of pk with only a single, non-zero observation at z1k as
discussed in Section 4.5.2.2. This posterior is proportional to the Poisson likelihood
times the improper gamma prior, which is therefore Gamma(z1k, 2), as desired.

For the ith row, we wish to sample zi from the posterior distribution

p(zi|z1, . . . , zi−1) =

∫
p(zi|B, z1, . . . , zi−1)dP (B|z1, . . . , zi−1).

Recalling Section 4.5.2.2, we must reason about the discrete and continuous parts of
B independently.

We first reason about the discrete part. Since we have sampled pk, then we can
directly sample zik from Equation (4.15).

We now reason about the continuous part of B for the ith row. By Equation
(4.16), the posterior Lévy measure of the continuous part of B given the first i − 1
rows is

ν(dω, dp) = cp−1e−(c+
∑i−1
j=1 cj)pdpB0(dω).

Similar to the IGPFM, using Equation (2.14), we get that

B(Ω)|z1, . . . , zi−1 ∼ Gamma

(
cB0(Ω), c+

i−1∑
j=1

cj

)
.

Now using the conditional distribution Equation (4.15) with z(i−1)k = 0 and the
fact that if x|λ ∼ Poisson(ciλ) and λ ∼ Gamma(a, b), then by marginalizing out

λ, x ∼ NB
(
a, b

b+ci

)
, we get that the total count of unobserved features gi in zi

is NB

(
cB0(Ω),

c+
∑i−1
j=1 cj

c+
∑i−1
j=1 cj+ci

)
, which substituting in c = 1 and α = B0(Ω) gives us

NB

(
α,

∑i−1
j=1 cj+1∑i−1

j=1 cj+ci+1

)
as in Equation (4.17). We must now figure out how to distribute
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these gi new features. The posterior of B is still a GP in this case and ci ≤ 1, so we
can interpret ci as a thinning parameter for a full Poisson process and we know that
the allocation of all features for the full process is distributed according to the CRP.
Thinning the CRP still gives a CRP just with fewer features, so the gi are allocated
according to the CRP.

Finally, we draw pk for the new features, which is drawing pk from the posterior
distribution given that the only events in the chain for feature k occurred along an
edge of length ti between z(i−1)k and zik with no events anywhere else in the chain,
which is

Gamma

(
zik,

i−1∑
j=1

cj + ci + 1

)
.

as in Equation (4.18).

Derivation 2 The alternate derivation of the cIGPFM is similar to the alternate
derivation of the IGPFM. We start by placing a prior on finite N ×K matrices and
then letting K go to infinity. As with the IGPFM derivation, we start by sampling
λk which will play the role of pk in the infinite limit from

λk ∼ Gamma
( α
K
, 1
)

k ∈ {1, . . . , K}

but now, the zik are drawn via the stochastic process from Section 4.5.2.1.
Instead of computing the closed form distribution of Z, we will compute how

to sample the rows of Z incrementally while marginalizing out all λk for any all-zero
columns. For the first row, since we have marginalized out all λk, then the distribution
of each z1k is NB

(
α
K
, 1

2

)
. By exactly the same steps as for the pIGPFM (since the

marginal distribution of the first row is the same in both cases), this implies that as
K → ∞, we can sample g1 =

∑
k z1k, the total number of non-zero features, from a

NB
(
α, 1

2

)
distribution and then partition it into K+ groups according to the CRP.

Using the same steps, we can again compute the the posterior distribution of λk
(which play the role of pk) for non-zero columns. Since this is a conjugate prior, this
posterior distribution is

Gamma
(
zik +

α

K
, 2
)

K→∞→ Gamma(zik, 2)

as desired.
For all subsequent rows, as K → ∞, we can sample zik for non-zero columns

exactly from Equation (4.15).
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For the all-zero columns of row i, we can check that for some constant ξi,

p(zik|z(−i)k = 0, α) ∼ NB
( α
K
, ξi

)
.

If we do this, then by the exact same argument as in the pIGPFM, then as K →∞,

this will imply that we can sample gi =
∑K++Knew

i

k=K++1 zik from a NB(α, ξi) distribution
and then partition it into Knew

i groups according to the CRP.
We must now identify ξi and we will be done with our derivation. In this case,

using properties of the gamma and Poisson distributions, we can see that

ξi =

∑i−1
j=1 cj + 1∑i−1

j=1 cj + ci + 1
, (4.22)

which therefore means we sample gi ∼ NB

(
α,

∑i−1
j=1 cj+1∑i−1

j=1 cj+ci+1

)
and partition it according

to the CRP, agreeing with Equation (4.17).
Finally, for each new non-zero column, we sample λk from the posterior distribu-

tion which is

Gamma

(
zik +

α

K
,
i−1∑
j=1

cj + ci + 1

)
K→∞→ Gamma

(
zik,

i−1∑
j=1

cj + ci + 1

)

agreeing with Equation (4.18).
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Chapter 5

Non-exchangeable Bayesian
Nonparametric Latent Feature Model

Inference Algorithms

We have now presented our two non-exchangeable generalizations for each of the beta
and gamma processes. In this chapter we discuss how to perform posterior inference
in models using these generalizations. We use the marginalized representations, the
pIBP, cIBP, pIGPFM, and cIGPFM, in our inference algorithms. As in the exchange-
able cases, exact inference is intractable, but approximate posterior inference is pos-
sible via Markov chain Monte Carlo (MCMC) (Robert and Casella, 2004). Sequential
Monte Carlo approaches such as those proposed by Wood and Griffiths (2006) also
work well, especially for the chain-based approaches. To adapt sequential approaches,
we just need to take the generative models from Chapter 4 and apply standard tech-
niques. Samples generated from sequential approached can be easily augmented with
MCMC steps to improve performance, but we will not discuss sequential methods
further.

An important point in our MCMC approaches is that even though we are dealing
with a potentially infinite number of columns in Z, we only need to keep track of
the non-zero columns. In this chapter, let Z refer to all the non-zero columns of the
matrix. The fact that the number of non-zero entries in any given row has a Poisson or
negative binomial distribution means that the number of non-zero columns is almost
surely finite and generally small.

Given the matrix Z, we assume that data X are generated through a likelihood
function p(X|Z). The likelihood as discussed previously may include additional pa-
rameters θ that must be sampled as part of the overall MCMC procedure; we will
not discuss such parameters in our presentation in this chapter since they are often
application specific.
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Unlike the IBP and IGPFM, where pk can always be integrated out, inference in
models using the non-exchangeable priors requires treating pk as an auxiliary vari-
able, sampling it when needed and integrating it out when possible. By sampling pk
for non-zero columns of Z as opposed to integrating it out, we are able to exploit
efficient inference algorithms for trees and chains as discussed in each of the sections
on conditional distributions in Chapter 4. For the all-zero columns, we will integrate
out all corresponding pk, allowing us to only store a finite number of parameters in
each sample.

In the tree-based priors, updating pk and all zik for each column takes O(N+mN)
time where m is the total number of times a zik in column k changes value. Once the
chain has mixed well m is typically small, so time complexity is only slightly worse
than that of models using the exchangeable priors, which is O(N). In the chain-based
priors, the updates take O(N) time. However, in the BP generalization, as we will
discuss in Section 5.3.3, there is a precomputation step whose complexity is anywhere
from O(N) to O(N2) depending on the structure of the chain. In the case of equally
spaced observations, it is O(N), but for more flexible structures, we pay the price for
this flexibility with additional computation that must be run once before we start the
posterior inference algorithm.

Given an initialization of the non-zero columns of Z, the corresponding pk for each
of these columns, and α, we construct a Markov chain where at each step, we only
need to sample each variable from its conditional distribution given all others. After
a sufficient burn-in period, samples will be from the desired posterior distribution.

We now describe how to sample each of the variables in models using each of the
priors, first considering the variables for “old” columns—those with non-zero entries—
and then turning to the addition of “new” columns. The “old” columns correspond
to sampling the part of the ith row associated with the discrete part of the posterior
Lévy measure given all other rows and the “new” columns correspond to sampling
from the continuous part of the posterior Lévy measure. When sampling from the
discrete part, we first generate a sample pk from the discrete Lévy measure, whereas
for the continuous part, we integrate out all of the infinitely many associated pk.

To generate each sample, we repeat the following until we have enough samples:

1. For i = 1 : N :

(a) For each of the non-zero columns (“old columns”), sample zik. See Section
5.1 for details.

(b) Sample the number of new columns for the ith row and, for the GP variants,
sample their partition. See Section 5.3 for details. For each of these new
columns, sample a corresponding pk. See Section 5.4 for details.

2. For k = 1 : K+:
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(a) Sample pk. See Section 5.2 for details.

3. Sample α. See Section 5.5 for details.

If there are additional likelihood specific parameters θ, we resample θ between each
of these iterations.

Fortunately, most derivations have already been done in the previous chapter.
Appendix 5.A contains all derivations not previously discussed.

5.1 Sampling zik for Old Columns

The probability of each zik given all other variables is

p(zik|Z−(ik), pk, X, α) ∝ p(X|Z−(ik), zik)p(zik|z(−i)k, pk), (5.1)

where the first term is the probability of X given a full assignment of the parameters
and depends on the specific prior being used. The second term can be computed
easily depending on which generalization we are using. If a column ever becomes
entirely zero after one of these steps, we drop it from Z.

5.1.1 pIBP

The term p(zik|z(−i)k, pk) can be computed efficiently using the sum-product algo-
rithm as described in Section 4.4.1.2. By appropriately caching messages from the
sum-product algorithm, this evaluation can be reduced to O(1) time. We evaluate
Equation (5.1) for zik = 0 and zik = 1 and sample zik from the corresponding posterior
distribution. If the value of zik changes, we then update the messages for sum-product
in O(N) time.

5.1.2 pIGPFM

The term p(zik|z(−i)k, pk) can again be computed efficiently using the sum-product
algorithm as described in Section 4.4.2.2. By appropriately caching messages from
the sum-product algorithm, this evaluation can be reduced to O(1) time. Unlike in
the pIBP, zik can take on an infinite number of values in the pIGPFM. Since we
cannot evaluate Equation (5.1) for each of these values and then normalize, to be
strictly correct, we must perform a Metropolis-Hastings step to sample zik. A close
approximation often used in practice is to note that the prior likelihood decreases
exponentially quickly as zik grows, so in practice, we can pick some large enough
value M such that is is unlikely zik would be larger than M , evaluate Equation (5.1)
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for zik ∈ [0, . . . ,M ] and sample zik from the corresponding posterior distribution. If
the value of zik changes, we then update the messages for sum-product in O(N) time.

5.1.3 cIBP

We can evaluate

p(zik|z(−i)k, pk) = p(zik|z(i−1)k, z(i+1)k, pk)

∝ p(z(i+1)k|zik, pk)p(zik|z(i−1)k, pk)

for zik ∈ {0, 1}, where each of the last two equations can be computed via the tran-
sition kernel defined in Equation (4.11).

5.1.4 cIGPFM

Just as in the cIBP, for any value of zik, we can evaluate

p(zik|z(−i)k, pk) ∝ p(z(i+1)k|zik, pk)p(zik|z(i−1)k, pk)

where each of the last two equations can be computed via the transition kernel defined
in Equation (4.15). As in the pIGPFM, to be strictly correct, we must perform an
Metropolis-Hastings step to sample zik, but in practice, we often pick a maximum M
and sample zik from [0, . . . ,M ].

5.2 Sampling pk for Old Columns

We only sample pk for the non-zero columns of Z, a fact that will be useful in sub-
sequent calculations since it makes the posterior distribution proper. The posterior
distribution of each pk is independent of all other pk′ and depends only on the kth

column of Z, so we discuss how to sample each of these independently.
Except for the special cases of the exchangeable IBP and IGPFM, there is no

simple posterior distribution from which we can sample pk. However we can evaluate
the posterior probability of any particular value of pk (up to a normalizing constant)
and can therefore sample from its posterior distributions using Metropolis-Hastings.
Let zk be shorthand for {zik}Ni=1, so that for each k, we will independently sample pk
from

p(pk|zk) ∝ p(zk|pk)p(pk)

where p(pk) is the improper beta or gamma prior given by the beta and gamma Lévy
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measures. Despite this improper prior, since there is at least one non-zero entry zik in
each column, the posterior of pk must be proper. We can see this from the following:

p(pk|zk) ∝ p(zk|pk)p(pk)
= p(z(−i)k|zik, pk)p(zik|pk)p(pk).

Since in the generalizations of the BP and GP, each zik is marginally Bernoulli(pk)
or Poisson(pk), respectively, in the BP generalizations

p(zik|pk)︸ ︷︷ ︸
∼Bernoulli(pk)

p(pk)︸ ︷︷ ︸
∼p−1

k

∝ Beta(pk; 1, 1)

and in the GP generalizations

p(zik|pk)︸ ︷︷ ︸
∼Poisson(pk)

p(pk)︸ ︷︷ ︸
∼p−1

k e−pk

∝ Gamma(pk; zik, 2).

The term p(z(−i)k|zik, pk) can be computed via sum-product for trees or chains and
therefore, the posterior is always proper for the non-zero columns and we can effi-
ciently evaluate p(pk|zk). We use this to sample pk from its posterior distribution
using a Metropolis-Hastings step.

Specifically, given a proposed value of p′ for pk, if we use q(p′|pk) as the pro-
posal distribution and the beta or gamma Lévy measure as the prior p(pk), then the
Metropolis-Hastings acceptance ratio for p′ is

min

[
1,
q(pk|p′)
q(p′|pk)

p(p′|zk)
p(pk|zk)

]
= min

[
1,
q(pk|p′)
q(p′|pk)

p(zk|p′)p(p′)
p(zk|pk)p(pk)

]
. (5.2)

We are then left to chose an appropriate proposal distribution q. For example, we
might use q(p′|pk) ∼ N (pk, σ

2
k) where σ2

k = c · pk(1− pk) + δ.

5.2.1 pIBP

Section 4.4.1.2 describes how to compute p(zk|pk) efficiently in O(N) time using
the sum-product algorithm and the chain rule of probabilities. We plug this into
Equation (5.2) to sample pk.

5.2.2 pIGPFM

Section 4.4.2.2 describes how to compute p(zk|pk) efficiently in O(N) time using
the sum-product algorithm and the chain rule of probabilities. We plug this into
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Equation (5.2) to sample pk.

5.2.3 cIBP

We can evaluate

p(zk|pk) =
N∏
i=1

p(zik|z(i−1)k, pk)

using the transition probabilities in Equation (4.11), allowing us to sample pk using
Equation (5.2).

5.2.4 cIGPFM

We can evaluate

p(zk|pk) =
N∏
i=1

p(zik|z(i−1)k, pk)

using Equation (4.15), allowing us to sample pk using Equation (5.2).

5.3 Sampling the New Columns

In addition to sampling zik for all the non-zero features, we must also sample zik for
the infinitely many all-zero features in row i. This is the main tricky step in inference
and requires the most care when deriving new generalizations of the BP and GP.
As previously mentioned, we only sample pk for the non-zero columns, so we must
integrate out pk when computing the posterior for the all-zero columns. We first look
at

p(zik|z(−i)k = 0, α) =

∫ 1

0

p(zik|z(−i)k = 0, pk)p(pk|z(−i)k = 0, α)dpk.

Since we have a nonparametric model in which the posterior of pk given a column
with all zero entries is still improper, the probability that zik is non-zero for any
particular k is zero. This makes sense because otherwise, we would be sampling an
infinite number of new non-zero entries. However, we know that marginally, each row
will only have a finite number of elements, so this cannot be the case.

Since there are an infinite number of these all-zero features, it turns out that
we can sample the number of entries that become non-zero from a non-degenerate
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distribution in a batch versus working with each feature independently. In the case
of the tree-based priors, this distribution was computed exactly in the generative
distribution for the pIBP or pIGPFM, assuming that the ith object is the last one
observed in the tree. In the case of the cIBP and cIGPFM, this distribution is more
complicated as discussed in Sections 5.3.3 and 5.3.4.

Sampling the features for the ith row in a batch, as mentioned in the introduction
to this chapter, is equivalent to sampling the non-zero features generated from the
continuous part of the posterior Lévy measure given all other rows. We will first
calculate the the posterior Lévy measure given all other rows and then show how to
generate the number of new features for the ith row.

In the case of the BP generalizations, we will show how to sample Knew
i , the

number of new non-zero entries in the ith row. We sample Knew
i from its posterior

distribution:

p(Knew
i |X,Z, α) ∝ p(X|Z,Knew

i )p(Knew
i |Z, α), (5.3)

where the term p(X|Z,Knew
i ) is the likelihood of X given that Z is augmented by Knew

i

non-zero entries in the ith row. In Sections 5.3.1 and 5.3.3, we show that p(Knew
i |Z, α)

is a Poisson distribution with rate depending on the configuration of the tree or chain.
To be completely correct, we must evaluate Equation (5.3) for Knew

i ∈ {0, 1, . . .} up
to ∞, normalize, and then sample Knew

i from the resulting distribution. We can use
either Metropolis-Hastings or a slice sampler like the one in (Teh et al., 2007) to do
this exactly or we can approximate this by sampling Knew

i from {0, 1, . . . , Kmax} for
some Kmax such that it is extremely unlikely Knew

i falls outside of the range due to
the Poisson prior on Knew

i .
In the case of the GP generalizations, we must sample the number of new features

in row i and their allocation. Designate the new non-zero columns containing the
allocation of the new features by znew

i . Let gi be the number of new features in znew
i .

Then, since given znew
i , gi is deterministic, we wish to sample znew

i from

p(znew
i |X,Z, α) ∝ p(X|Z, znew

i )p(znew
i |gi)p(gi|Z, α), (5.4)

where p(X|Z, znew
i ) is the likelihood of X given the old features Z and the new al-

location of features znew
i to the ith row, p(znew

i |gi) is the probability of the allocation
of features given their count, and p(gi|Z, α) is the probability that gi new features
are present in row i. We will discuss the latter two terms in Sections 5.3.2 and 5.3.4,
showing that they are Ewens distribution (the CRP in which we only care about
counts in partitions) and a negative binomial, respectively, where the parameters of
the negative binomial have to do with the structure of the tree or chain. To be
completely correct, we must evaluate Equation (5.4) for all possible counts gi and all
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allocations of those counts znew
i and then sample from the resulting posterior. Since

we cannot do this in practice, we can either sample using a Metropolis-Hastings step
or, given that the distribution on gi makes it unlikely to have gi large, we can of-
ten evaluate gi for only a moderate range {0, 1, . . . , gmax} for some gmax and find a
reasonable approximation.

Therefore, to sample the new columns for our generalizations, we must identify
p(Knew

i |Z, α) for the BP generalizations and p(znew
i |gi) and p(gi|Z, α) for the GP

generalizations. Plugging these quantities into Equations (5.3) and (5.4) then allows
us to sample the new columns.

5.3.1 pIBP

For the pIBP, we can see that when computing the posterior distribution of the ith

row, we can view the tree as if the ith object was ordered last. Therefore, all the
calculations from Section 4.4.1 and Appendix 4.A.1 are still valid. Let

∑
t be the

sum of the lengths of all edges in the tree except the edge that connects node i to the
rest of the tree. Let ti be the length of this last edge. Then it was shown that the
posterior Lévy measure of B given z(−i)k = 0 is p−1(1− p)

∑
tdpB0(dω) and therefore,

that the distribution p(Knew
i |Z, α) is

Poisson
(
α
(
ψ
(∑

t+ ti + 1
)
− ψ

(∑
t+ 1

)))
.

5.3.2 pIGPFM

For the pIGPFM, we can similarly see that when computing the posterior distribution
of the ith row, we can view the tree as if the ith object was ordered last. Therefore,
all the calculations from Section 4.4.2 and Appendix 4.A.2 are still valid. Let

∑
t be

the sum of the lengths of all edges in the tree except the edge that connects node i to
the rest of the tree. Let ti be the length of this last edge. Then it was shown that the
posterior Lévy measure of B given z(−i)k = 0 is p−1e−(

∑
t+1)pdpB0(dω) and therefore,

that the distribution p(gi|Z, α) is

NB

(
α,

∑
t+ 1∑

t+ ti + 1

)
,

and p(znew
i |gi) just follows Ewens distribution with gi objects.
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5.3.3 cIBP

When i = N , all the calculations from Section 4.5.1 and Appendix 4.A.3 are still
valid. In these sections, we showed that p(Knew

N |Z, α) is

Knew
N ∼ Poisson (αξN) ,

where

ξN = cN

(
1−

∑N−1
j=1 cj

2
+

∑N−1
j<k cjck

3
−
∑N−1

j<k<l cjckcl

4
+ · · ·+ (−1)N−1

∏N−1
j=1 cj

N

)
.

When i 6= N , we will show in Appendix 5.A.1 that p(Knew
i |Z, α) is

Knew
i ∼ Poisson (αξi) ,

where

ξi = cici+1

( 1

2 · 1 −
∑

j /∈{i,i+1} cj

3 · 2 +

∑
j<k/∈{i,i+1} cjck

4 · 3 −
∑

j<k<l/∈{i,i+1} cjckcl

5 · 4 +

· · ·+ (−1)N−2

∏
j /∈{i,i+1} cj

N(N − 1)

)
. (5.5)

For a homogeneous Markov chain, this can again be computed in O(N) time or in the
general case, we can use the dynamic program from Figure 4.11 in Appendix 4.A.3.2
to compute this in O(N2) time. Through shared common computations, we can also
compute all ξi ahead of time and cache them in O(N2) time. If ci only take on a few
distinct values, this can be greatly improved.

5.3.4 cIGPFM

When i = N , all the calculations from Section 4.5.2 and Appendix 4.A.4 are still
valid. In these sections, we showed that p(gN |Z, α) is

gN ∼ NB

(
α,

1 +
∑N−1

j=1 cj

1 +
∑N

j=1 cj

)
,

and p(znew
N |gN) is Ewens distribution for gN objects.
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When i 6= N , we will show in Appendix 5.A.2 that p(gi|Z, α) is

gi ∼ NB

(
α,

1− ci+1ci +
∑N

j=1 cj

1 +
∑N

j=1 cj

)
, (5.6)

and p(znew
i |gi) is Ewens distribution with gi objects.

5.4 Sampling pk for New Columns

For each of the new columns generated in the previous step, we must sample an initial
value of pk.

5.4.1 pIBP

Using the same notation as before for edge lengths in which
∑
t is the sum of the

lengths of all edges in the tree except the edge that connects node i to the rest of the
tree and ti is the length of this last edge, if we are sampling pk for a new column in
which only the ith element is non-zero, then as was shown in Section 4.A.1,

p(pk|zk) = p(pk|z(−i)k = 0, zik = 1)

∝
(
1− (1− pk)ti

)
(1− pk)

∑
t p−1

k .

To obtain a sample from this distribution, we use the Metropolis-Hastings sampler
discussed in Section 5.2.

Though it might not be clear that p(pk|zk) is a proper distribution, we could have
also expressed the posterior as

p(pk|zk, α) ∝ p(z(−i)k = 0|zik = 1, pk)p(pk|zik = 1, α),

which is clearly a proper distribution since the last term is now proper.

5.4.2 pIGPFM

Using the same notation as before for edge lengths, if we are sampling pk for a new
column in which only the ith element is non-zero, then as was shown in Section 4.A.2,

pk ∼ Gamma
(
zik,
∑

t+ ti + 1
)
.
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5.4.3 cIBP

If we are sampling pk for column k that only has the ith entry non-zero, then for
i = N , we showed in Section 4.A.3.2 that

p(pk|zk) ∝ cN
∏
j<N

(1− cjpk).

For i 6= N ,

p(pk|zk) ∝ p(pk)
N∏
j=1

p(zjk|z(j−1)k, pk)

∝ cici+1(1− pk)
∏

j /∈{i,i+1}

(1− cjpk).

To obtain a sample from these distributions, we use the Metropolis-Hastings sampler
discussed in Section 5.2.

5.4.4 cIGPFM

If we are sampling pk for column k that only has the ith entry non-zero, then for
i = N , we showed in Section 4.A.4.2 that

pk ∼ Gamma

(
zNk,

N∑
j=1

cj + 1

)
.

For i 6= N , we can similarly show

p(pk|zk) ∝ p(pk)
N∏
j=1

p(zjk|z(j−1)k, pk)

∝ pzik−1
k e−(

∑N
j=1 cj+1)pk

∼ Gamma

(
zik,

N∑
j=1

cj + 1

)
.

5.5 Sampling α

The parameter α = B0(Ω) is an important parameter that determines how many
features are present in inferred models. It is therefore critical to also be able to
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perform posterior inference on α.
For the IBP, this was originally done by Görür et al. (2006) and for the IGPFM,

this was done by Titsias (2008). Both placed a Gamma(α0, β0) prior on α and, since
likelihoods do not depend on α, the posterior distribution of α is

p(α|Z) ∝ p(Z|α)p(α).

For all our priors, we will show that this posterior is always a gamma distribution
with parameters depending on the structure of the model as well as the number of
non-zero columns in Z.

5.5.1 pIBP

Let K+ =
∑N

j=1K
new
j be the number of non-zero features in Z and

∑
t be the total

edge length in the entire tree. Since the total number of non-zero columns in Z is
the sum of independent Poisson variables Knew

i , each drawn from Equation (4.4) in
which we incrementally add Knew

i based on 1, . . . , i− 1, then

p(α|Z) ∝ p(Z|α)p(α)

∼ Poisson
(
K+;α

(
ψ
(
1 +

∑
t
)
− ψ(1)

))
·Gamma(α0, β0)

∼ Gamma
(
α0 +K+, β0 + ψ

(
1 +

∑
t
)
− ψ(1)

)
.

5.5.2 pIGPFM

As shown in Equations (4.19) and (4.20), α again only influences Z through Knew
i .

Therefore, if
∑
t is the total edge length in the entire tree, using these equations

where ξi is defined in Equation (4.21) based on the incremental addition of Knew
i new

distinct features given 1, . . . , i− 1, then

p(α|Z) ∝ p(Z|α)p(α)

∝
[
N∏
i=1

αK
new
i ξαi

]
αα0−1e−β0α

∼ Gamma

(
α0 +K+, β0 − log

(
N∏
j=1

ξj

))
∼ Gamma

(
α0 +K+, β0 + log

(
1 +

∑
t
))

.
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5.5.3 cIBP

In the case of the cIBP, each Knew
i is drawn from Equation (4.13)

Knew
i ∼ Poisson (αξi)

where ξi is

ξi = ci

(
1−

∑i−1
j=1 cj

2
+

∑i−1
j<k cjck

3
−
∑i−1

j<k<l cjckcl

4
+ · · ·+ (−1)i−1

∏i−1
j=1 cj

i

)
.

Therefore,

p(α|Z) ∼ G
(
α0 +K+, β0 +

N∑
i=1

ξi

)
.

It is important to always calculate each ξi only based on 1, . . . , i− 1 in order for this
to be correct. Plugging in ξi, we get

N∑
i=1

ξi =
N∑
i=1

ci −
∑
i<j

cicj
2

+
∑
i<j<k

cicjck
3
− · · ·+ (−1)N−1

∏N
j=1 cj

N
.

5.5.4 cIGPFM

We can again use Equations (4.19) and (4.20) to show that α again only influences
Z through Knew

i . Therefore, using these equations where ξi now defined in Equation
(4.22) based on the incremental addition of Knew

i given 1, . . . , i− 1, then

p(α|Z) ∼ Gamma

(
α0 +K+, β0 − log

(
N∏
j=1

ξj

))

= Gamma

(
α0 +K+, β0 + log

(
1 +

N∑
j=1

cj

))
.

5.6 Summary

We have now shown how to perform each of the steps needed for the inference algo-
rithms for our non-exchangeable variations. Most of the computations were already
done when deriving the marginal representations of each generalization. Only the dis-
tributions of the number of new columns in the chain-based generalizations required
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any additional computations and those can be found in Section 5.A.

Appendix 5.A Derivations

We discuss the additional derivations needed in the inference algorithm of new columns
in the two chain-based generalizations.

5.A.1 Chain-based BP

We discuss the derivation of the sampling distribution of Knew
i for i 6= N in the

chain-based BP discussed in Section 5.3.3.
As with all other derivations, this derivation can be done by examining the un-

derlying completely random measure or by taking the limits of a finite beta-Bernoulli
prior with the stochastic process discussed in Section 4.5.1.1 for each column. In this
section, let z(−i) stand for z1, . . . , zi−1, zi+1, . . . , zN .

Derivation 1 For the ith row, we wish to sample zi from continuous part of the
posterior distribution

p(zi|z(−i)) =

∫
p(zi|B, z(−i))dP (B|z(−i)).

Let ci+(i+1) be 1 − e−κ(ti+ti+1), the parameter of the transition from zi−1 to zi+1 if zi
is not observed. By Equation (4.12), the posterior Lévy measure of the continuous
part of B given z(−i) is

ν(dω, dp) = cp−1(1− p)c−1

 N∏
j=1:j /∈{i,i+1}

(1− cjp)

 (1− ci+(i+1)p)dpB0(dω).

Using the transition probabilities for the cIBP defined in Equation (4.11), the prob-
ability of observing zik = 1 given that z(−i) are all zero and pk is

p(zik = 1|z(−i)k = 0, pk) =
p(z(i+1)k = 0|zik = 1, pk)p(zik = 1|z(i−1)k = 0, pk)

p(zi+1 = 0|zi−1 = 0, pk)

=
cipkci+1(1− pk)
1− ci+(i+1)pk

.
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Therefore, the number of new features for the ith row is Poisson with parameter λ
where

λ =

∫ ∫ 1

0

cipci+1(1− p)
1− ci+(i+1)p

cp−1(1− p)c−1

 N∏
j=1:j /∈{i,i+1}

(1− cjp)

 (1− ci+(i+1)p)dpB0(dω)

= ccici+1B0(Ω)

∫ 1

0
(1− p)c

 N∏
j=1:j /∈{i,i+1}

(1− cjp)

 dp.
Now we note that by expanding

[∏N
j=1:j /∈{i,i+1}(1− cjp)

]
, we get a weighted sum of

proper beta distributions, so we can evaluate this integral.

∫ 1

0
(1− p)c

 N∏
j=1:j /∈{i,i+1}

(1− cip)

 dp
=

∫ 1

0
(1− p)c

1− p
∑

j /∈{i,i+1}

cj + p2
∑

j<k/∈{i,i+1}

cjck − · · ·+ (−1)N−2pN−2
∏

j /∈{i,i+1}

cj

 dp
=

Γ(1)Γ(c+ 1)

Γ(c+ 2)
− Γ(2)Γ(c+ 1)

Γ(c+ 3)

∑
j /∈{i,i+1}

cj +
Γ(3)Γ(c+ 1)

Γ(c+ 4)

∑
j<k/∈{i,i+1}

cjck − · · ·

+
Γ(N − 1)Γ(c+ 1)

Γ(c+N)
(−1)N−2

∏
j /∈{i,i+1}

cj .

Substituting c = 1, this simplifies to

∫ 1

0
(1− p)

 N∏
j=1:j /∈{i,i+1}

(1− cip)

 dp
=

1

2 · 1 −
1

3 · 2
∑

j /∈{i,i+1}

cj +
1

4 · 3
∑
j<k

cjck − · · ·+
1

N(N − 1)
(−1)N−2

∏
j /∈{i,i+1}

cj .

Therefore, substituting B0(Ω) = α,

λ = αcici+1

(
1

2 · 1 −
∑

j /∈{i,i+1} cj

3 · 2 +

∑
j<k cjck

4 · 3 − · · ·+ (−1)N−2

∏
j /∈{i,i+1} cj

N(N − 1)

)
,

which agrees with Equation (5.5).
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Derivation 2 We now show how to derive Equation (5.5) from the infinite limit of
a finite beta-Bernoulli prior. As discussed in Derivation 2 of Section 4.A.1, if we can
show that for some constant ξi,

p(zik = 1|z(−i)k = 0, α) =
αξi
K

+ o

(
1

K

)
,

then Knew
i ∼ Poisson(αξi).

We therefore wish to find ξi such that p(zik = 1|z(−i)k = 0, α) = αξi/K + o(1/K).
For finite K, we can evaluate the probability that zik = 1 given that z(−i)k = 0 in the
cIBP.

p(zik = 1|z(−i)k = 0, α)

∝
∫ 1

0
p(z(i+1)k = 0|zik = 1, pk)p(zik = 1|z(i−1)k = 0, pk)p(pk|α)

×
∏

j /∈{i,i+1}

p(zjk = 0|z(j−1)k = 0, pk)dpk

= cici+1
α

K

(
1

(α/K + 2)(α/K + 1)
− 1

(α/K + 3)(α/K + 2)

N∑
j /∈{i,i+1}

cj +

. . .+ (−1)N−2 1

(α/K +N)(α/K +N − 1)

N∏
j /∈{i,i+1}

cj

)
.

Similarly, no matter what i is

p(zik = 0|z(−i)k = 0, α)

∝
∫ 1

0
p(pk)

N∏
j=1

p(zjk = 0|z(j−1)k = 0, pk)dpk

= 1− α/K

α/K + 1

N∑
j=1

cj +
α/K

α/K + 2

N∑
j<k

cjck − . . .+ (−1)N
α/K

α/K +N

N∏
j=1

cj .

We can now do a first order Taylor series expansion on the resulting normalized
probability to get that p(zik = 1|z(−i)k = 0, α) = αξi/K + o(1/K) where

ξi = cici+1

(1

2
−
∑

j /∈{i,i+1} cj

3 · 2 +

∑
j<l/∈{i,i+1} cjcl

4 · 3 −
∑

j<k<l/∈{i,i+1} cjckcl

5 · 4 +

· · ·+ (−1)N−2

∏N
j /∈{i,i+1} cj

N(N − 1)

)
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as desired.

Equivalence to the IBP We note that similar to what we showed in Section 4.A.3.4
for i = N , that for i 6= N we still must reduce to the IBP in the special when all
ci = 1. In order to have this happen, we must have

1

N
=

1

2 · 1 −
∑

j /∈{i,i+1} 1

3 · 2 +

∑
j<k 1

4 · 3 − · · ·+ (−1)N−2 1

N(N − 1)

=
N−2∑
j=0

(−1)j
(
N−2
j

)
(j + 2)(j + 1)

.

Define

aj ≡
(−1)j

(
N−2
j

)
(j + 2)(j + 1)

.

We also define r0 = 1
2

and for j > 0,

rj ≡
aj
aj−1

=

(−1)j(N−2
j )

(j+2)(j+1)

(−1)j−1(N−2
j−1 )

(j+1)(j)

=
j − (N − 1)

j + 2
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So therefore our original sum is

N−2∑
j=0

(−1)j
(
N−2
j

)
(j + 2)(j + 1)

=
N−2∑
j=0

aj =
N−2∑
j=0

j∏
k=0

rk = r0 + r0r1 + · · ·+
N−2∏
k=0

rk

= r0(1 + r1(1 + r2(· · · (1 + rN−3(1 + rN−2)) · · · )))

=
1

2

(
1− N − 2

3

(
1− N − 3

4

(
· · ·
(

1− 2

N − 1

(
1− 1

N

))
· · ·
)))

=
1

2

(
1− N − 2

3

(
1− N − 3

4

(
· · ·
(

1− 2

N − 2

)
· · ·
)))

=
1

2

(
1− N − 2

3

(
3

N

))
=

1

N
,

as in the case of the IBP.

5.A.2 Chain-based GP

We discuss the derivation of the sampling distribution of gi and its allocation for
i 6= N in the chain-based GP discussed in Section 5.3.4.

As with the exchangeable GP, this derivation can be done by examining the un-
derlying completely random measure or by taking the limits of a finite gamma-Poisson
prior with the stochastic process discussed in Section 4.5.2.1 for each column. In this
section, let z(−i) stand for z1, . . . , zi−1, zi+1, . . . , zN .

Derivation 1 For the ith row, we wish to sample gi from continuous part of the
posterior distribution

p(gi|Z, α) =

∫
p(gi|B,Z)dP (B|Z, α)

and then allocate these gi new features to columns. Let ci+(i+1) be 1 − e−κ(ti+ti+1),
the parameter of the transition from zi−1 to zi+1 if zi is not observed. Note that
ci+(i+1) = ci + ci+1 − cici+1. By Equation (4.16), the posterior Lévy measure of the
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continuous part of B given z(−i) is

ν(dω, dp) = cp−1e−(c+ci+(i+1)+
∑N
j=1:j /∈{i,i+1} cj)pdpB0(dω)

= cp−1e−(c−cici+1+
∑N
j=1 cj)pdpB0(dω).

Therefore, using Equation (2.14), ignoring the discrete part of B and plugging in
B0(dω) = α, we have that

B(Ω)|Z, α ∼ Gamma

(
cα, c− cici+1 +

N∑
j=1

cj

)
.

Using the transition probabilities for the cIGPFM defined in Equation (4.15), the
probability of observing zik given that z(−i) are all zero and pk is

p(zik|z(−i)k = 0, pk) =
p(z(i+1)k = 0|zik, pk)p(zik|z(i−1)k = 0, pk)

p(zi+1 = 0|zi−1 = 0, pk)

=
(cici+1pk)

zik

zik!
e−cici+1pk .

So p(zik|z(−i)k = 0, pk) ∼ Poisson(cici+1pk). Using the summation property of Poisson
variables, this means that

gi|B(Ω) ∼ Poisson (cici+1B(Ω)) .

Therefore, again using the fact that if x|λ ∼ Poisson(cλ) and λ ∼ Gamma(a, b), then
by marginalizing out λ, x ∼ NB

(
a, b

b+c

)
, we get that

gi|Z, α ∼ NB

(
cα,

c− cici+1 +
∑N

j=1 cj

c+
∑N

j=1 cj

)
,

and plugging in c = 1,

gi|Z, α ∼ NB

(
α,

1− cici+1 +
∑N

j=1 cj

1 +
∑N

j=1 cj

)
,

which agrees with Equation (5.6).
Since gi is the result of a thinned Poisson(B(Ω)), the allocation of znew

i |gi must be
the result of a thinned CRP, which is itself a CRP. We weight each partition according
to the cardinality of that partition, which gives us Ewens distribution.
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Derivation 2 As was done in Derivation 2 in Section 4.A.2, we start with the finite
approximation in which for each k, we draw λk ∼ Gamma(α/K, 1) and then draw
{zik}Ni=1 from the stochastic process from Section 4.5.2.1. In this prior, we must find
ξi such that p(zik|z(−i)k = 0, α) ∼ NB(α/K, ξi). If we can do this, then we showed in
Section 4.A.2 that in the infinite limit, gi ∼ NB(α, ξi) and that znew

i |gi is distributed
according to Ewens distribution.

So all we must do is show that ξi =
1−cici+1+

∑N
j=1 cj

1+
∑N
j=1 cj

and we will be done with our

derivation. We start by noting

p(zik|z(−i)k = 0, α) ∝
∫ ∞

0

p(zik, z(−i)k = 0|λk)p(λk|α)dλk

=

∫ ∞
0

p(λk|α)
N∏
j=1

p(zjk|z(j−1)k, λk)dλk.

The terms p(zjk|z(j−1)k, λk) break up into three cases:

1. j = i In this case, we know that since z(i−1)k = 0, zik is distributed Poisson(λkci).

p(zik|z(i−1)k=0, λk) ∼ Poisson(zik;λkci)

=
e−λkci(λkci)

zik

zik!

2. j = i + 1 In this case, since z(i+1)k = 0, we know that all zik elements died
between zik and z(i+1)k and that no new ones were born and survived.

p(z(i+1)k = 0|zik, λk) = p(z(i+1)k = 0|y(i+1)k = 0, λk)p(y(i+1)k = 0|zik, λk)
∼ Poisson(0;λkci+1)Binomial(0; zik, 1− ci+1)

= e−λkci+1cziki+1

3. j 6= i and j 6= i+ 1 We know that both zjk = 0 and z(j−1)k = 0, so

p(zjk = 0|z(j−1)k = 0, λk) ∼ Poisson(0;λkcj)

= e−λkcj
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We can therefore calculate p(zik|z(−i)k = 0, α) as follows

p(zik|z(−i)k = 0, α)

∝
∫ ∞

0

p(z(i+1)k = 0|zik, λk)p(zik|z(i−1)k=0, λk)p(λk|α)
∏

j /∈{i,i+1}

p(zjk|z(j−1)k, λk)dλk

=

∫ ∞
0

e−λkci+1cziki+1

e−λkci(λkci)
zik

zik!

λ
α/K−1
k e−λk

Γ(α/K)

∏
j /∈{i,i+1}

e−λkcjdλk

=

∫ ∞
0

e−λkci+1ci(λkci+1ci)
zik

zik!︸ ︷︷ ︸
=Poisson(zik;λkci+1ci)

λ
α/K−1
k

Γ(α/K)
exp

(
−λk

(
1− ci+1ci +

N∑
j=1

cj

))
︸ ︷︷ ︸

∝Gamma(λk;α/K,1−ci+1ci+
∑N
j=1 cj)

dλk

∝ NB

(
α

K
,
1− ci+1ci +

∑N
j=1 cj

1 +
∑N

j=1 cj

)
.

So for i 6= N ,

ξi =
1− ci+1ci +

∑N
j=1 cj

1 +
∑N

j=1 cj
,

as desired.
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Applications

There have been many applications of the BP including modeling protein interactions
(Chu et al., 2006), binary matrix factorization (Meeds et al., 2007), learning features
for similarity judgement (Navarro and Griffiths, 2007), sparse ICA and factor analysis
(Knowles and Ghahramani, 2007; Rai and Daumé, 2008), bipartite graph learning
(Wood et al., 2006), hidden Markov models (Van Gael et al., 2009; Fox et al., 2009),
and topic models (Williamson et al., 2010b).

The applications of the GP to latent feature models have only included the original
toy motivation in (Titsias, 2008) and matrix factorization (Hoffman et al., 2010).

One important commonality of all these applications is that the likelihood is
insensitive to the number of all-zero columns. This allows us to use nonparametric
priors in which we only need to keep track of the non-zero columns.

In this section, we discuss three applications that we have worked on. In Section
6.1, we introduce the application of link prediction using the IBP. This work was
originally published in Miller et al. (2009). In Section 6.2, we demonstrate how to use
the pIBP introduced in Section 4.4.1 for choice models, thereby extending the work
of Görür et al. (2006). This was originally published in Miller et al. (2008a). Finally,
in Section 6.3, we present unpublished work on applying the cIBP and cIGPFM to
human genomic data in the form of copy number variations.

6.1 Relational Models

As the availability and importance of relational data—such as the friendships sum-
marized on a social networking website—increases, it becomes increasingly important
to have good models for such data. The kinds of latent structure that have been
considered for use in predicting links in such networks have been relatively limited.
In particular, the machine learning community has focused on latent class models,
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adapting Bayesian nonparametric methods to jointly infer how many latent classes
there are while learning which entities belong to each class. We pursue a similar
approach with a richer kind of latent variable—latent features—using a Bayesian
nonparametric approach to simultaneously infer the number of features at the same
time we learn which entities have each feature. Our model combines these inferred
features with known covariates in order to perform link prediction. We demonstrate
that the greater expressiveness of this approach allows us to improve performance on
three data sets.

6.1.1 Introduction

Statistical analysis of social networks and other relational data has been an active
area of research for over seventy years and is becoming an increasingly important
problem as the scope and availability of social network data sets increase (Wasserman
and Faust, 1994). In these problems, we observe the interactions between a set
of entities and we wish to extract informative representations that are useful for
making predictions about the entities and their relationships. One basic challenge is
link prediction, where we observe the relationships (or “links”) between some pairs
of entities in a network (or “graph”) and we try to predict unobserved links. For
example, in a social network, we might only know some subset of people are friends
and some are not, and seek to predict which other people are likely to get along.

Our goal is to improve the expressiveness and performance of generative models
based on extracting latent structure representing the properties of individual entities
from the observed data, so we will focus on these kinds of models. This rules out
approaches like the popular p∗ model that uses global quantities of the graph, such
as how many edges or triangles are present (Wasserman and Pattison, 1996; Robins
et al., 2007). Of the approaches that do link prediction based on attributes of the
individual entities, these can largely be classified into class-based and feature-based
approaches. There are many models that can be placed under these approaches, so
we will focus on the models that are most comparable to our approach.

Most generative models using a class-based representation are based on the stochas-
tic blockmodel, introduced by Wang and Wong (1987) and further developed by Now-
icki and Snijders (2001). In the most basic form of the model, we assume there are
a finite number of classes that entities can belong to and that these classes entirely
determine the structure of the graph, with the probability of a link existing between
two entities depending only on the classes of those entities. In general, these classes
are unobserved, and inference reduces to assigning entities to classes and inferring the
class interactions. One of the important issues that arise in working with this model is
determining how many latent classes there are for a given problem. The Infinite Rela-
tional Model (IRM) (Kemp et al., 2006) used methods from nonparametric Bayesian
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statistics to tackle this problem, allowing the number of classes to be determined at
inference time. The Infinite Hidden Relational Model (Xu et al., 2006) further elab-
orated on this model and the Mixed Membership Stochastic Blockmodel (MMSB)
(Airoldi et al., 2009) extended it to allow entities to have mixed memberships.

All these class-based models share a basic limitation in the kinds of relational
structure they naturally capture. For example, in a social network, we might find a
class which contains “male high school athletes” and another which contains “male
high school musicians.” We might believe these two classes will behave similarly, but
with a class-based model, our options are to either merge the classes or duplicate our
knowledge about common aspects of them. In a similar vein, with a limited amount
of data, it might be reasonable to combine these into a single class “male high school
students,” but with more data we would want to split this group into athletes and
musicians. For every new attribute like this that we add, the number of classes would
potentially double, quickly leading to an overabundance of classes. In addition, if
someone is both an athlete and a musician, we would either have to add another class
for that or use a mixed membership model, which would say that the more a student
is an athlete, the less he is a musician.

An alternative approach that addresses this problem is to use features to describe
the entities. There could be a separate feature for “high school student,” “male,”
“athlete,” and “musician” and the presence or absence of each of these features is
what defines each person and determines their relationships. One class of latent-
feature models for social networks has been developed by Hoff et al. (2002) and
Hoff (2005, 2008), who proposed real-valued vectors as latent representations of the
entities in the network where depending on the model, either the distance, inner
product, or weighted combination of the vectors corresponding to two entities affects
the likelihood of there being a link between them. However, extending our high school
student example, we might hope that instead of having arbitrary real-valued features
(which are still useful for visualization), we would infer binary features where each
feature could correspond to an attribute like “male” or “athlete.” Continuing our
earlier example, if we had a limited amount of data, we might not pick up on a
feature like “athlete.” However, as we observe more interactions, this could emerge
as a clear feature. Instead of doubling the numbers of classes in our model, we add an
additional feature. Determining the number of features will therefore be of extreme
importance.

In this section, we present the nonparametric latent feature relational model, a
Bayesian nonparametric model in which each entity has binary-valued latent features
that influences its relations. In addition, the relations depend on a set of known
covariates. This model allows us to simultaneously infer how many latent features
there are while at the same time inferring what features each entity has and how
those features influence the observations. This model is strictly more expressive than
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the stochastic blockmodel. In Section 6.1.2, we describe a simplified version of our
model and then the full model. In Section 6.1.3, we discuss how to perform inference.
In Section 6.1.4, we illustrate the properties of our model using synthetic data and
then show that the greater expressiveness of the latent feature representation results
in improved link prediction on three real data sets.

6.1.2 The nonparametric latent feature relational model

Assume we observe the directed relational links between a set of N entities. Let Y
be the N ×N binary matrix that contains these links. That is, let yij ≡ Y (i, j) = 1
if we observe a link from entity i to entity j in that relation and yij = 0 if we observe
that there is not a link. Unobserved links are left unfilled. Our goal will be to learn
a model from the observed links such that we can predict the values of the unfilled
entries.

6.1.2.1 Basic model

In our basic model, each entity is described by a set of binary features. We are not
given these features a priori and will attempt to infer them. We assume that the
probability of having a link from one entity to another is entirely determined by the
combined effect of all pairwise feature interactions. If there are K features, then let
Z be the N × K binary matrix where each row corresponds to an entity and each
column corresponds to a feature such that zik ≡ Z(i, k) = 1 if the ith entity has
feature k and zik = 0 otherwise. and let Zi denote the feature vector corresponding
to entity i. Let W be a K ×K real-valued weight matrix where wkk′ ≡ W (k, k′) is
the weight that affects the probability of there being a link from entity i to entity j
if both entity i has feature k and entity j has feature k′.

We assume that links are independent conditioned on Z and W , and that only the
features of entities i and j influence the probability of a link between those entities.
This defines the likelihood

Pr(Y |Z,W ) =
∏
i,j

Pr(yij |Zi, Zj ,W ) (6.1)

where the product ranges over all pairs of entities. Given the feature matrix Z and
weight matrix W , the probability that there is a link from entity i to entity j is

Pr(yij = 1|Z,W ) = σ
(
ZiWZ>j

)
= σ

∑
k,k′

zikzjk′wkk′

 (6.2)

where σ(·) is a function that transforms values on (−∞,∞) to (0, 1) such as the
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sigmoid function σ(x) = 1
1+exp(−x)

or the probit function σ(x) = Φ(x). An important
aspect of this model is that all-zero columns of Z do not affect the likelihood. We
will take advantage of this in Section 6.1.2.2.

This model is very flexible. With a single feature per entity, it is equivalent
to a stochastic blockmodel. However, since entities can have more than a single
feature, the model is more expressive. In the high school student example, each
feature can correspond to an attribute like “male,” “musician,” and “athlete.” If
we were looking at the relation “friend of” (not necessarily symmetric!), then the
weight at the (athlete, musician) entry of W would correspond to the weight that
an athlete would be a friend of a musician. A positive weight would correspond
to an increased probability, a negative weight a decreased probability, and a zero
weight would indicate that there is no correlation between those two features and
the observed relation. The more positively correlated features people have, the more
likely they are to be friends. Another advantage of this representation is that if
our data contained observations of students in two distant locations, we could have a
geographic feature for the different locations. While other features such as “athlete” or
“musician” might indicate that one person could be a friend of another, the geographic
features could have extremely negative weights so that people who live far from each
other are less likely to be friends. However, the parameters for the non-geographic
features would still be tied for all people, allowing us to make stronger inferences
about how they influence the relations. Class-based models would need an abundance
of classes to capture these effects and would not have the same kind of parameter
sharing.

Given the full set of observations Y , we wish to infer the posterior distribution
of the feature matrix Z and the weights W . We do this using Bayes’ theorem,
p(Z,W |Y ) ∝ p(Y |Z,W )p(Z)p(W ), where we have placed an independent prior on Z
and W . Without any prior knowledge about the features or their weights, a natural
prior for W involves placing an independent N(0, σ2

w) prior on each wij. However,
placing a prior on Z is more challenging. If we knew how many features there were, we
could place an arbitrary parametric prior on Z. However, we wish to have a flexible
prior that allows us to simultaneously infer the number of features at the same time
we infer all the entries in Z. The Indian Buffet Process is such a prior.

6.1.2.2 The Indian Buffet Process and the basic generative model

As mentioned in the previous section, any features which are all-zero do not affect the
likelihood. That means that even if we added an infinite number of all-zero features,
the likelihood would remain the same. The Indian Buffet Process (IBP) (Griffiths and
Ghahramani, 2006) is a prior on infinite binary matrices such that with probability
one, a feature matrix drawn from it for a finite number of entities will only have a
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finite number of non-zero features. Moreover, any feature matrix, no matter how
many non-zero features it contains, has positive probability under the IBP prior. It
is therefore a useful nonparametric prior to place on our latent feature matrix Z.

The generative process to sample matrices from the IBP can be described through
a culinary metaphor that gave the IBP its name. In this metaphor, each row of Z
corresponds to a diner at an Indian buffet and each column corresponds to a dish at
the infinitely long buffet. If a customer takes a particular dish, then the entry that
corresponds to the customer’s row and the dish’s column is a one and the entry is
zero otherwise. The culinary metaphor describes how people choose the dishes. In
the IBP, the first customer chooses a Poisson(α) number of dishes to sample, where α
is a parameter of the IBP. The ith customer tries each previously sampled dish with
probability proportional to the number of people that have already tried the dish and
then samples a Poisson(α/i) number of new dishes. This process is exchangeable,
which means that the order in which the customers enter the restaurant does not
affect the configuration of the dishes that people try (up to permutations of the
dishes as described by Griffiths and Ghahramani (2006)). This insight leads to a
straightforward Gibbs sampler to do posterior inference that we describe in Section
6.1.3.

Using an IBP prior on Z, our basic generative latent feature relational model is:

Z ∼ IBP(α)

wkk′ ∼ N (0, σ2
w) for all k, k′ for which features k and k′ are non-zero

yij ∼ σ
(
ZiWZ>j

)
for each observation.

6.1.2.3 Full nonparametric latent feature relational model

We have described the basic nonparametric latent feature relational model. We now
combine it with ideas from the social network community to get our full model. First,
we note that there are many instances of logit models used in statistical network
analysis that make use of covariates in link prediction (Wasserman and Pattison,
1996). Here we will focus on a subset of ideas discussed in (Hoff, 2005). Let Xij be
a vector that influences the relation yij, let Xp,i be a vector of known attributes of
entity i when it is the parent of a link, and let Xc,i be a vector of known attributes of
entity i when it is a child of a link. For example, in Section 6.1.4.2, when Y represents
relationships amongst countries, Xij is a scalar representing the geographic similarity
between countries (Xij = exp(−d(i, j))) since this could influence the relationships
and Xp,i = Xc,i is a set of known features associated with each country (Xp,i and Xc,i

would be distinct if we had covariates specific to each country’s roles). We then let
c be a normally distributed scalar and β, βp, βc, a, and b be normally distributed
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vectors in our full model in which

Pr(yij = 1|Z,W,X, β, a, b, c) = σ
(
ZiWZ>j + β>Xij + (β>p Xp,i + ai) + (β>c Xc,j + bj) + c

)
.

(6.3)

If we do not have information about one or all of X, Xp, and Xc, we drop the
corresponding term(s). In this model, c is a global offset that affects the default
likelihood of a relation and ai and bj are entity and role specific offsets.

So far, we have only considered the case of observing a single relation. It is not
uncommon to observe multiple relations for the same set of entities. For example,
in addition to the “friend of” relation, we might also observe the “admires” and
“collaborates with” relations. We still believe that each entity has a single set of
features that determines all its relations, but these features will not affect each relation
in the same way. If we are given m relations, label them Y 1, Y 2, . . . , Y m. We will
use the same features for each relation, but we will use an independent weight matrix
W i for each relation Y i. In addition, covariates might be relation specific or common
across all relations. Regardless, they will interact in different ways in each relation.
Our full model is now

Pr(Y 1, . . . , Y m|Z, {W i, X i, βi, ai, bi, ci}mi=1) =
m∏
i=1

Pr(Y i|Z,W i, X i, βi, ai, bi, ci).

6.1.2.4 Variations of the nonparametric latent feature relational model

The model that we have defined is for directed graphs in which the matrix Y i is not
assumed to be symmetric. For undirected graphs, we would like to define a symmetric
model. This is easy to do by restricting W i to be symmetric. If we further believe
that the features we learn should not interact, we can assume that W i is diagonal.

6.1.2.5 Related nonparametric latent feature models

There are two models related to our nonparametric latent feature relational model
that both use the IBP as a prior on binary latent feature matrices. The most closely
related model is the Binary Matrix Factorization (BMF) model of Meeds et al. (2007).
The BMF is a general model with several concrete variants, the most relevant of which
was used to predict unobserved entries of binary matrices for image reconstruction
and collaborative filtering. If Y is the observed part of a binary matrix, then in this
variant, we assume that Y |U, V,W ∼ σ(UWV >) where σ(·) is the logistic function,
U and V are independent binary matrices drawn from the IBP, and the entries in W
are independent draws from a normal distribution. If Y is an N×N matrix where we
assume the rows and columns have the same features (i.e., U = V ), then this special
case of their model is equivalent to our basic (covariate-free) model. While Meeds
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et al. (2007) were interested in a more general formalization that is applicable to other
tasks, we have specialized and extended this model for the task of link prediction. The
other related model is the ADCLUS model (Navarro and Griffiths, 2008). This model
assumes we are given a symmetric matrix of non-negative similarities Y and that
Y = ZWZ>+ ε where Z is drawn from the IBP, W is a diagonal matrix with entries
independently drawn from a Gamma distribution, and ε is independent Gaussian
noise. This model does not allow for arbitrary feature interactions nor does it allow
for negative feature correlations.

6.1.3 Inference Algorithms

Exact inference in our nonparametric latent feature relational model is intractable
(Griffiths and Ghahramani, 2006). However, the IBP prior lends itself nicely to ap-
proximate inference algorithms via Markov Chain Monte Carlo (Robert and Casella,
2004). We first describe inference in the single relation, basic model, later extending
it to the full model. In our basic model, we must do posterior inference on Z and
W . Since with probability one, any sample of Z will have a finite number of non-zero
entries, we can store just the non-zero columns of each sample of the infinite binary
matrix Z. Since we do not have a conjugate prior on W , we must also sample the
corresponding entries of W . Our sampler is as follows:

Given W , resample Z We do this by resampling each row Zi in succession. When
sampling entries in the ith row, we use the fact that the IBP is exchangeable to assume
that the ith customer in the IBP was the last one to enter the buffet. Therefore, when
resampling zik for non-zero columns k, if mk is the number of non-zero entries in
column k excluding row i, then

Pr(zik = 1|Z−ik,W, Y ) ∝ mk Pr(Y |zik = 1, Z−ik,W ).

We must also sample zik for each of the infinitely many all-zero columns to add features
to the representation. Here, we use the fact that in the IBP, the prior distribution on
the number of new features for the last customer is Poisson(α/N). As described by
Griffiths and Ghahramani (2006), we must then weight this by the likelihood term
for having that many new features, computing this for 0, 1, . . . .kmax new features
for some maximum number of new features kmax and sampling the number of new
features from this normalized distribution. The main difficulty arises because we have
not sampled the values of W for the all-zero columns and we do not have a conjugate
prior on W , so we cannot compute the likelihood term exactly. We can adopt one of
the non-conjugate sampling approaches from the Dirichlet process (Neal, 2000) to this
task or use the suggestion by Meeds et al. (2007) to include a Metropolis-Hastings
step to propose and either accept or reject some number of new columns and the
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corresponding weights. We chose to use a stochastic Monte Carlo approximation of
the likelihood. Once the number of new features is sampled, we must sample the new
values in W as described below.

Given Z, resample W We sequentially resample each of the weights in W that cor-
respond to non-zero features and drop all weights that correspond to all-zero features.
Since we do not have a conjugate prior on W , we cannot directly sample W from its
posterior. If σ(·) is the probit, we adapt the auxiliary sampling trick from Albert
and Chib (1993) to have a Gibbs sampler for the entries of W . If σ(·) is the logistic
function, no such trick exists and we resort to using a Metropolis-Hastings step for
each weight in which we propose a new weight from a normal distribution centered
around the old one.

Hyperparameters We can also place conjugate priors on the hyperparameters α
and σw and perform posterior inference on them. We use the approach from (Görür
et al., 2006) for sampling of α.

Multiple relations In the case of multiple relations, we can sample Wi given Z
independently for each i as above. However, when we resample Z, we must compute

Pr(zik = 1|Z−ik, {W,Y }mi=1) ∝ mk

m∏
i=1

Pr(Y i|zik = 1, Z−ik,W
i).

Full model In the full model, we must also update {βi, βip, βic, ai, bi, ci}mi=1. By con-
ditioning on these, the update equations for Z and W i take the same form, but with
Equation (6.3) used for the likelihood. When we condition on Z and W i, the posterior
updates for (βi, βip, β

i
c, a

i, bi, ci) are independent and can be derived from the updates
in (Hoff, 2005).

Implementation details Despite the ease of writing down the sampler, samplers for
the IBP often mix slowly due to the extremely large state space full of local optima.
Even if we limited Z to have K columns, there are 2NK potential feature matrices.
In an effort to explore the space better, we can augment the Gibbs sampler for Z
by introducing split-merge style moves as described in Meeds et al. (2007) as well as
perform annealing or tempering to smooth out the likelihood. However, we found
that the most significant improvement came from using a good initialization. A key
insight that was mentioned in Section 6.1.2.1 is that the stochastic blockmodel is a
special case of our model in which each entity only has a single feature. Stochastic
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blockmodels have been shown to perform well for statistical network analysis, so they
seem like a reasonable way to initialize the feature matrix. In the results section, we
compare the performance of a random initialization to one in which Z is initialized
with a matrix learned by the Infinite Relational Model (IRM). To get our initialization
point, we ran the Gibbs sampler for the IRM for only 15 iterations and used the
resulting class assignments to seed Z.

6.1.4 Results

We first qualitatively analyze the strengths and weaknesses of our model on synthetic
data, establishing what we can and cannot expect from it. We then compare our
model against two class-based generative models, the Infinite Relational Model (IRM)
(Kemp et al., 2006) and the Mixed Membership Stochastic Blockmodel (MMSB)
(Airoldi et al., 2009), on two data sets from the original IRM paper and a NIPS
coauthorship data set, establishing that our model does better than the best of those
models on those data sets.

6.1.4.1 Synthetic data

We first focus on the qualitative performance of our model. We applied the basic
model to two very simple synthetic data sets generated from known features. These
data sets were simple enough that the basic model could attain 100% accuracy on
held-out data, but were different enough to address the qualitative characteristics
of the latent features inferred. In one data set, the features were the class-based
features seen in Figure 6.1(a) and in the other, we used the features in Figure 6.1(c).
The observations derived from these features can be seen in Figure 6.1(b) and Figure
6.1(d), respectively.

On both data sets, we initialized Z and W randomly. With the very simple, class-
based model, 50% of the sampled feature matrices were identical to the generating
feature matrix with another 25% differing by a single bit. However, on the other
data set, only 25% of the samples were at most a single bit different than the true
matrix. It is not the case that the other 75% of the samples were bad samples,
though. A randomly chosen sample of Z is shown in Figure 6.1(e). Though this
matrix is different from the true generating features, with the appropriate weight
matrix it predicts just as well as the true feature matrix. These tests show that while
our latent feature approach is able to learn features that explain the data well, due
to subtle interactions between sets of features and weights, the features themselves
will not in general correspond to interpretable features. However, we can expect the
inferred features to do a good job explaining the data. This also indicates that there
are many local optima in the feature space, further motivating the need for good
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(a) (b) (c) (d) (e)

Figure 6.1: Features and corresponding observations for synthetic data. In (a), we show
features that could be explained by a latent-class model that then produces the observation
matrix in (b). White indicates one values, black indicates zero values, and gray indicates
held out values. In (c), we show the feature matrix of our other synthetic data set along
with the corresponding observations in (d). (e) shows the feature matrix of a randomly
chosen sample from our Gibbs sampler.

initialization.

6.1.4.2 Multi-relational data sets

In the original IRM paper, the IRM was applied to several data sets (Kemp et al.,
2006). These include a data set containing 54 relations of 14 countries (such as
“exports to” and “protests”) along with 90 given features of the countries (Rummel,
1999) and a data set containing 26 kinship relationships of 104 people in the Alyawarra
tribe in Central Australia (Denham, 1973). See Kemp et al. (2006), Rummel (1999),
and Denham (1973) for more details on the data sets.

Our goal in applying the latent feature relational model to these data sets was
to demonstrate the effectiveness of our algorithm when compared to two established
class-based algorithms, the IRM and the MMSB, and to demonstrate the effectiveness
of our full algorithm. For the Alyawarra data set, we had no known covariates. For
the countries data set, Xp = Xc was the set of known features of the countries and
X was the country distance similarity matrix described in Section 6.1.2.3.

As mentioned in the synthetic data section, the inferred features do not necessarily
have any interpretable meaning, so we restrict ourselves to a quantitative comparison.
For each data set, we held out 20% of the data during training and we report the
AUC, the area under the ROC (Receiver Operating Characteristic) curve, for the
held-out data (Huang and Ling, 2005). We report results for inferring a global set of
features for all relations as described in Section 6.1.2.3 which we refer to as “global”
as well as results when a different set of features is independently learned for each
relation and then the AUCs of all relations are averaged together, which we refer to as
“single.” In addition, we tried initializing our sampler for the latent feature relational
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model with either a random feature matrix (“LFRM rand”) or class-based features
from the IRM (“LFRM w/ IRM”). We ran our sampler for 1000 iterations for each
configuration using a logistic squashing function (though results using the probit are
similar), throwing out the first 200 samples as burn-in. Each method was given five
random restarts.

Table 6.1: AUC on the countries and kinship data sets. Bold identifies the best perfor-
mance.

Countries single Countries global Alyawarra single Alyawarra global
LFRM w/ IRM 0.8521 ± 0.0035 0.8772 ± 0.0075 0.9346 ± 0.0013 0.9183 ± 0.0108

LFRM rand 0.8529 ± 0.0037 0.7067 ± 0.0534 0.9443 ± 0.0018 0.7127 ± 0.030
IRM 0.8423 ± 0.0034 0.8500 ± 0.0033 0.9310 ± 0.0023 0.8943 ± 0.0300

MMSB 0.8212 ± 0.0032 0.8643 ± 0.0077 0.9005 ± 0.0022 0.9143 ± 0.0097

Results of these tests are in Table 6.1. As can be seen, the LFRM with class-based
initialization outperforms both the IRM and MMSB. On the individual relations
(“single”), the LFRM with random initialization also does well, beating the IRM
initialization on both data sets. However, the random initialization does poorly at
inferring the global features due to the coupling of features and the weights for each of
the relations. This highlights the importance of proper initialization. To demonstrate
that the covariates are helping, but that even without them, our model does well,
we ran the global LFRM with class-based initialization without covariates on the
countries data set and the AUC dropped to 0.8713 ± 0.0105, which is still the best
performance.

On the countries data, the latent feature model inferred on average 5-7 features
when seeded with the IRM and 8-9 with a random initialization. On the kinship data,
it inferred 9-11 features when seeded with the IRM and 13-19 when seeded randomly.

6.1.4.3 Predicting NIPS coauthorship

As our final example, highlighting the expressiveness of the latent feature relational
model, we used the coauthorship data from the NIPS data set compiled in (Globerson
et al., 2007). This data set contains a list of all papers and authors from NIPS 1-
17. We took the 234 authors who had published with the most other people and
looked at their coauthorship information. The symmetric coauthor graph can be seen
in Figure 6.2(a). We again learned models for the latent feature relational model,
the IRM and the MMSB training on 80% of the data and using the remaining 20%
as a test set. For the latent feature model, since the coauthorship relationship is
symmetric, we learned a full, symmetric weight matrix W as described in Section
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Figure 6.2: Predictions for all algorithms on the NIPS coauthorship data set. In (a), a
white entry means two people wrote a paper together. In (b-d), the lighter an entry, the
more likely that algorithm predicted the corresponding people would interact.

6.1.2.4. We did not use any covariates. A visualization of the predictions for each of
these algorithms can be seen in Figure 6.2(b-d). Figure 6.2 really drives home the
difference in expressiveness. Stochastic blockmodels are required to group authors into
classes, and assumes that all members of classes interact similarly. For visualization,
we have ordered the authors by the groups the IRM found. These groups can clearly
be seen in Figure 6.2(c). The MMSB, by allowing partial membership is not as
restrictive. However, on this data set, the IRM outperformed it. The latent feature
relational model is the most expressive of the models and is able to much more
faithfully reproduce the coauthorship network.

The latent feature relational model also quantitatively outperformed the IRM and
MMSB. We again ran our sampler for 1000 samples initializing with either a random
feature matrix or a class-based feature matrix from the IRM and reported the AUC on
the held-out data. Using five restarts for each method, the LFRM w/ IRM performed
best with an AUC of 0.9509, the LFRM rand was next with 0.9466 and much lower
were the IRM at 0.8906 and the MMSB at 0.8705 (all at most ±0.013). On average,
the latent feature relational model inferred 20-22 features when initialized with the
IRM and 38-44 features when initialized randomly.

6.2 Tree-Structured Choice Models

Choice models play important roles in both econometrics (McFadden, 2001) and cog-
nitive psychology (Luce, 1959). They describe what happens when people are given
two or more options and are asked to choose one of them. In this section, we will re-
strict our attention to choices between pairs of objects, though the methods presented
here can be applied more generally.
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Even in the simple case of binary decisions, people’s choices are not determinis-
tic. The Elimination By Aspects (EBA) model is a popular attempt to explain this
variation (Tversky, 1972). EBA hypothesizes that choices are based on a weighted
combination of the features of objects. Keeping our earlier notation, let Z be a feature
matrix where zik = 1 if the ith object has the kth feature and zik = 0 otherwise. For
each of the features, there is a corresponding weight wk. The higher the weight, the
more influence that feature has. The EBA model defines the probability of choosing
object i over object j as

pij =

∑
k wkzik(1− zjk)∑

k wkzik(1− zjk) +
∑

k wk(1− zik)zjk
. (6.4)

For comparison with previous results (Görür et al., 2006) we assume extra noise in
people’s choices, with p̃ij = (1− ε)pij + 0.5ε.

If X is the observed choice matrix where xij contains how many times object i
was chosen over object j, then for any given w and Z, the probability of X is

P (X|Z,w) =
N∏
i=1

∏
i<j

(
xij + xji
xij

)
p̃
xij
ij (1− p̃ij)xji . (6.5)

If the number of features is known, Wickelmaier and Schmid (2004) showed how to
estimate the weight vector and feature matrix. In general, though, the number of
features is not known. Therefore, Görür et al. (2006) applied the IBP to this model
in order to simultaneously infer the number of features, the feature matrix, and the
weights of these features, and obtained improved performance over previous models.

In an influential paper, Tversky and Sattath (1979) introduced the preference tree
model as an extension of EBA. This model is applicable if the relationships of objects
can be captured in a tree structure. In preference trees, each feature has to strictly
obey the tree structure. That is, if two objects share a common feature, then all
descendants of their most recent common ancestor must have that feature. In some
situations, this tree structure may either be known in advance or a good working
hypothesis may be available. An example can be found in an experiment reported
by Rumelhart and Greeno (1971), in which subjects made 36 pairwise choices of
who among a group of nine “well-known personalities” they would like to spend time
with. The nine personalities consisted of three politicians, three athletes and three
movie stars. It was therefore hypothesized that the tree structure summarizing the
prior beliefs about these personalities was similar to the tree shown in Figure 6.3. In
this figure, ` is the length of the edge from each general category of people to each
individual at the leaf.

Just as the IBP can be used to infer features for EBA, the pIBP defines an
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Figure 6.3: Hypothesis about a tree on preferences (Rumelhart and Greeno, 1971).

appropriate prior for the case where features are assumed to follow a tree structure,
as in preference trees. The pIBP model for feature generation can be seen as a soft
version of preference trees, allowing features to break the tree structure but assigning
low probability to these events. Görür et al. (2006) performed a comparison between
the IBP as a prior and EBA models with fixed numbers of features as well as a finite
preference tree model that was able to use the tree structure. It was shown that EBA
with an IBP prior on the feature matrix outperformed all others. As we will show,
using the pIBP gives both quantitatively and qualitatively better results in the case
where the features are drawn using a tree.

To complete the full specification of the EBA model, we assume that each object
has a unique feature as well as an unknown additional number of features that may
or may not be shared as shown in Figure 6.4(a). We place a pIBP prior on the
nonparametric part of the feature matrix and an independent G(1, 1) prior on each
wk. Inference proceeds as outlined above, with the addition of a Metropolis-Hastings
step on wk. A method similar to that in Görür et al. (2006) was used to deal with
the wk values of new columns.

We generated data from this choice model using the tree from Figure 6.3 with
` = 0.1. The tree induces a “block structure” in the choice matrix, with the correlated
features of objects along each branch resulting in similar patterns of choice for those
objects. An example feature matrix generated from this model is shown in Figure
6.4(a). The top row shows the feature weights of the corresponding columns; the
whiter the feature, the more weight that feature has. The feature matrix, Z, is
displayed below where entries that are one are white and zero entries are black.
Fifteen such examples were generated. For each of these examples, we computed the
true value of choosing object i over j as shown in Figure 6.4(b) where the whiter
the (i, j)th entry, the more likely i is to be chosen over j. Based on these values, we
generated data sets with 1, 5, 10, 15, 25, 50, 100, 500, and 1000 choice observations
per pair (i, j) following Equation (6.4). An example of an observed matrix X can be
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(a) (b) (c)

Figure 6.4: Example data demonstrating block structure of the features. (a) True under-
lying features with corresponding weights in the top row. (b) Underlying probability choice
matrix derived from (a) where the lighter the (i, j) entry, the more likely i is to be chosen
over j. (c) An example observed choice matrix X drawn from (b) with 5 observations
per pair.

seen in Figure 6.4(c) with only 5 observations per pair. The lighter the (i, j)th entry,
the more times i was picked over j.

We used these data to examine the effects of two different factors. First, we wished
to show the effect of using the pIBP prior over using the IBP prior as the number
of observed choice decisions varied. The use of prior knowledge should always help,
but with more observations, the influence of the prior should decrease. Second, we
wished to test the effect of varying ` in our prior. The three values we tested were
` = 0.1, ` = 0.5, and ` = 1.0. As mentioned in Section 4.4.1.1, the pIBP with ` = 1.0
is the same as the IBP, but does not integrate over pk analytically.

For each of the nine observation levels on each of the fifteen examples, we per-
formed leave-one-out cross validation with each model. For each model and validation
point at each observation level, we ran an MCMC sampler for 3000 iterations from
three different random initialization points. The first 1000 samples from each run
were discarded as a burn-in period even though all chains appeared to have mixed
within 100 iterations. The predictive likelihood was then averaged across every 10th

sample for all configurations. These results can be seen in Figure 6.5.
As expected, since the pIBP with ` = 0.1 was using the true tree that generated

the data, it was able to beat all other configurations for all numbers of observations
except 1000, in which case all algorithms performed similarly. As the number of
observations increases, the effect of the prior decreases and the models perform more
similarly. The pIBP with ` = 0.5 performs better than the IBP, but not as well
as the pIBP with the correct tree. This shows that even without perfect knowledge
of the tree structure, by inserting some information into the prior, we are able to
outperform algorithms that cannot use the same prior knowledge. We also see that
the IBP and pIBP with ` = 1.0 perform nearly identically, so explicitly sampling pk
in the inference algorithm does not influence the results.

In addition to obtaining higher likelihoods, the results from the pIBP were also
more concise. In Figure 6.6(a), we show the average feature matrices for the pIBP
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Figure 6.5: Comparison of the average predictive log-likelihood of the IBP and pIBP
models with different degrees of prior knowledge along with error bars for choice data.
On the x-axis, we vary the (log) number of observations seen for each (i, j) pair.

and IBP when presented with the choice matrix in Figure 6.4(c). In order to obtain
these averages, the Z matrices for all samples after the burn-in period were collapsed
into equivalent Z matrices in which the weights of all identical columns were summed
together. This results in the same probabilities under the EBA model and allows us
to average these values across all samples. We also dropped all columns whose weight
was below 0.1. As can be seen, the pIBP recovers a feature matrix very similar to
the true data while the IBP requires many more features and still does not achieve
the same performance. This large number of features necessary to explain the same
data was also observed by Görür et al. (2006). Finally, we checked to see how many
examples are needed for the choice probability matrix estimated from the samples
of Z and W to show the same structure as the true choice probability matrix from
Figure 6.4(b). In Figure 6.6(b), we show estimated choice matrices for 1, 10, 100, and
1000 observations per pair. With the pIBP, we observe a block structure immediately,
though not all details of the choice matrix are correct. Within very few observations,
though, the choice probabilities get close to the true values. In the IBP, we need more
than 100 samples before it recovers the block structure.
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Figure 6.6: Comparison of features inferred and resulting implied block structure from
choice data. (a) Mean posterior Z matrices with corresponding weights when presented
with data from Figure 6.4. (b) Mean estimated choice matrices Pij for the pIBP and IBP
when presented with the different numbers of observations from the data in Figure 6.4.
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6.3 Human Genomic Data

In this section, we discuss an application of the cBP and cGP to human genomic
data. The particular application we focus on is an attempt at better understanding
some of the changes in genomic data that influence cancer in humans.

The Cancer Genome Atlas (TCGA) is a collaborative effort to advance the state of
cancer research in the United States lead by the National Cancer Institute (NCI) and
the National Human Genome Research Institute (NHGRI), both at the National In-
stitute of Health (NIH). It is a large-scale operation to coordinate the cancer research
of more than 150 researches at dozens of institutions across the country. Genomic
data related to both tumors and healthy tissue samples from hundreds of people for
twenty different kinds of cancer are in the process of being collected and made avail-
able in full to the research community and in an anonymized form to the public at the
TCGA website (http://cancergenome.nih.gov/, The Cancer Genome Atlas, 2011).
By making all this data available, TCGA aims to significantly accelerate the speed
of progress in cancer research.

There are several ways in which genomic variation can influence the formation of
tumors. Early studies of DNA focused on the variations observable by microscope.
These had to be at least 3 Mb (Megabases, 106 nucleotide bases of DNA) long in order
to be observed. Later studies of DNA discovered much smaller local variation of the
DNA of size smaller than 1 kb as well as SNPs (single-nucleotide polymorphisms),
changes in just a single base that have been shown to be very important. More
recently, researchers have developed the tools to study variations of intermediate
size, between 1 kb and 3 Mb. It has been found that these variations, consisting
of inversions, translocations, and copy number variations (CNVs), are as important
as SNPs in their effect on the human genome (Feuk et al., 2006; Chin et al., 2011;
Freeman et al., 2006).

We focus on the publicly available CNVs of the two forms of cancer in the original
2006 pilot study of TCGA, brain cancer (glioblastoma multiforme, GBM) and ovarian
cancer (serous cystadenocarcinoma, OV). CNVs are structural variations consisting of
insertions, deletions, and duplications of DNA. The copy number itself is the number
of times a particular segment of the DNA can be found. As a simple example, if
a particular portion of the genome promotes tumor growth, a higher copy number
is generally not good. Similarly, if a section of the DNA inhibits tumor growth, a
lower copy number corresponding to a deletion of that section of the genome might
result in faster tumor spread. In more complicated examples, particular patterns of
interacting copy numbers might give indications of how quickly a tumor will spread
as well as what appropriate treatments might be.

The CNV data from TCGA have different levels of preprocessing and smooth-
ing, ranging from level one (least) to level three (most). Each of these levels has
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Figure 6.7: Full copy number data for two samples in the GBM data.

some amount of noise that we must take into account when interpreting the data.
We use data sets from level two which contain “normalized signals for copy number
alterations of aggregated regions.” The GBM data was taken from MSKCC HG-
CGH-244A and the OV data was taken from HMS HG-CGH-244A. MSKCC and
HMS refer to Memorial Sloan-Kettering Cancer Center and Harvard Medical School,
the respective locations that collected the data, and HG-CGH-244A refers to Agilent
Human Genome CGH Microarray 244A, the platform used for collecting the data.
The GBM data contains copy numbers from 476 samples (multiple samples can be
from the same person with one or more samples from healthy regions of the body
and others from tumors) and the OV data has copy numbers from 204 samples, each
with copy numbers taken at 227,612 non-evenly spaced locations. An example of
copy number readings from two samples in the GBM data can be found in Figure 6.7.
Note the noise as well as the spatial patterns.

Data for all samples at all locations can be found in Figure 6.8. Each row cor-
responds to a different person and each column corresponds to a particular location.
Rows 1–476 are from the GBM data and rows 477–680 are from the OV data. Lighter
colors indicate higher count numbers. Note that even though the patterns are differ-
ent between the GBM data and the OV data, there are some features that show up
in both parts of the data.

Our goal will be to develop a method to accurately model this kind of data leverag-
ing the priors for non-exchangeable latent feature models we have developed. Previous
work such as (Barnes et al., 2008) has clustered data in order to identify patterns.
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Figure 6.8: Full copy number data for all samples. Samples 1–476 are from the GBM
data, samples 477–680 are from the OV data.

Our model will find latent features that explain the patterns in the data. We will
show that by using the spatial structure of the data, we are able to explain held-out
portions of the data better than if we ignore it.

Given that the underlying data for the copy numbers are count data (the number of
times a section of the genome occurs), we develop a non-negative integer factorization
of the copy number data that is able to use the spatial dependence of unevenly spaced
observations.

Let X be an N × D matrix where each row corresponds to a sample of D copy
number readings as in Figure 6.8. Latent features will be particular patterns of
duplications or deletions and any particular sample will consist of a sampling of
these features. A priori, we do not know how many of these samples there are, so
a nonparametric model is appropriate. Note that the baseline reading of the copy
numbers is one, so a deletion can at most reduce the copy number by one to zero,
but duplications can be an arbitrary non-negative integer. Therefore, we will model
the deletion process and the duplication process separately by subtracting features
from a cBP and adding features from a cGP to a baseline of one. Also, we know the
spacing of the copy number data and as we can see in Figures 6.7 and 6.8, there is a
linear, spatial dependence in the data that the cBP and cGP can use.

Let ZGP be a D×K ′ non-negative integer valued matrix containing the duplication
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Figure 6.9: Decomposition of X into additive features ZGP, subtractive features −ZBP,
the constant 1 and the Gaussian noise ε. YGP and YBP indicate which samples have which
features. Since additive features are non-negative integers, we model these using the cGP
and since subtractive features must be zero or one, we model these using the cBP.

patterns we wish to infer in which K ′ is the number of non-zero duplication features
and let ZBP be a D×K ′′ zero-one valued matrix containing the deletion patterns we
wish to infer where K ′′ is the number of non-zero deletion features. We will set the
priors

ZGP ∼ cIGPFM(α′)

ZBP ∼ cIBP(α′′).

Then each sample will consist of a baseline of one plus some of the features in ZGP

minus some of the features in ZBP with additive Gaussian noise. Let YGP and YBP be
N ×K ′ and N ×K ′′ zero-one matrices, respectively, indicating which features each
data point has. We will sample each entry in YGP and YBP independently from a
Bernoulli(p) where p is a parameter. If Xi is the ith row of X, 1 is the D-vector of
all ones, YGP,i is the ith row of YGP, YBP,i is the ith row of YBP, and σ2 is the variance
of the additive Gaussian noise, this gives us the likelihood

p(X|ZGP, ZBP, YGP, YBP, σ
2) =

N∏
i=1

p(Xi|ZGP, ZBP, YGP,i, YBP,i, σ
2)

where

N∏
i=1

p(Xi|ZGP, ZBP, YGP,i, YBP,i, σ
2) ∼ N

(
1 + YGP,iZ

>
GP − YBP,iZ

>
BP, σ

2
)
.

This is shown for a toy example in Figure 6.9.
We ran two experiments on different data sets with this model, one a synthetic

data set to verify performance of the model and the other the CNV TCGA data. In
both we compared the performance of the non-exchangeable chain-based priors to a
fully exchangeable prior in which the two Z matrices are drawn from the exchangeable
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IBP and IGPFM. Inference was done via an MCMC sampler.
In the first experiment, we used the model to generate 100 data points at 50

equally spaced locations with α = 10, ti = 1 for all i, κ = 0.1, and σ2 = 1.5, meaning
moderate spatial dependence with a reasonable amount of noise. We then initialized
the samplers for both the exchangeable and non-exchangeable models in one of two
ways. In the first initialization, we randomly initialized all features. In the second
initialization, we initialized the samplers with the true features that generated the
data.

In Figure 6.10, we show the averages of the first 2, 000 iterations of the samplers
for both kinds of initializations and both the exchangeable and non-exchangeable
models with a five-fold cross-validation. As expected, the non-exchangeable model is
able to use the spatial information to infer better features. The noise level was high
enough that the spatial information did help as seen by the decline in performance
for the exchangeable model when initialized by the true features. When the noise
level was much smaller, then both models did equally well since the likelihood was
very informative. This just verifies that the model works as expected.
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Figure 6.10: Average five-fold training and test predictive log likelihood of the first 2, 000
samples from the exchangeable and non-exchangeable models on synthetic data generated
from the non-exchangeable model. The blue lines are from the non-exchangeable models
and the red lines are from the exchangeable models. The solid lines are initialized with
random features, the dotted lines are initialized with the true features.

We then applied the model to the TCGA copy number data from Figure 6.8 in
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which we did not know the true features or any of the true parameters. Unfortunately,
inference algorithms for the model does not currently scale to allow D to be on the
order of 200, 000, so we broke the data down into pieces of D = 500 that would
allow us to run 2, 000 iterations of the sampler after 1, 000 iterations of burn-in with
five-fold cross validation in three to four hours in Matlab. Rather than run each of
the models on the resulting 450 smaller data sets, we randomly chose two segments
to test on. Also, instead of doing posterior inference of all the hyperparameters, we
did a grid search on a validation set within each fold to find optimal settings of the
hyperparameters and did a completely random initialization of the feature matrices.
The likelihoods over time are similar to the solid lines in Figure 6.10, so we only
discuss the resulting predictive likelihoods.

Table 6.2: Test predictive likelihood on random segments with five-fold cross validation.

Data 1 Data 2
Non-exchangeable model -206258.25 ± 15.30 -210438.47 ± 12.17

Exchangeable mode -206643.03 ± 25.71 -210573.99 ± 18.55

The results of this experiment can be seen in Table 6.2. The non-exchangeable
model is consistently better, though generally by a small amount. We also found that
optimal settings for κ varied along the genome, which makes sense from a biological
viewpoint.

6.4 Summary

In this chapter, we presented three different applications of Bayesian nonparametric
latent feature models. Each was from a different area, showing the versatility of these
models. The first application was of the basic exchangeable BP/IBP, demonstrating
how this prior can be very useful for the task of latent feature inference for link
prediction. This is a promising direction that is still being explored. The second and
third applications were to choice data and human genomic data, two applications in
which object relationships could be captured by either a tree or chain. These are
precisely the scenarios in which our non-exchangeable generalizations are well suited
and we demonstrated how the use of this prior information improved performance.
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Conclusion

This dissertation has outlined the three broad areas that people working in the young
field of Bayesian nonparametric latent feature models have focused on: extensions
and generalizations of the priors, inference algorithms, and applications. We have
reviewed the state of the art in all three of these areas and made contributions to
each. For priors, we have introduced several non-exchangeable variations of priors for
Bayesian nonparametric latent feature models. These variations are suitable in cases
in which we know data is either related through a tree or through a chain. Through
our work in deriving these priors, we demonstrated how to extend the basic priors and
outlined blueprints for how future priors can be developed. For inference algorithms,
we have contributed the first variational approximation for the IBP, demonstrating
that it can scale better than Gibbs samplers in different data regimes. Finally, for
applications, we have introduced three applications including link prediction, tree-
structured choice models, and copy numbers from biology.

The field of Bayesian nonparametric latent feature models is still a young field
and even though great strides have been made in all three areas of work by us as
well as others, there is still much room for improvement. The non-exchangeable
generalizations presented here, while more expressive than the original priors, do not
capture all non-exchangeable object relationships. As applications demand, more
priors and models should be developed and we hope that the ideas, desiderata and
various derivations presented here can be used as blueprints for even richer priors. In
terms of inference algorithms, until these models scale to much larger data sets, the
practical application of these priors will remain limited. The main issue is that even
for binary latent feature models, if we truncate the number of features at K, there are
still 2NK binary matrices that we must perform inference over. This is an extremely
high dimensional discrete space and both MCMC and variational algorithms have
difficulty in this space. Current research has started to address this issue, but there
is no one algorithm which will work for all problems and therefore, this is still an
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active area of research. Finally, there are countless unexplored applications of these
models and priors that have yet to be explored. As research progresses in all three
of these areas, we will see wider use of these models. Until this happens, though, we
must continue to push what we know how to do with these models and priors.

157



Bibliography

Edoardo M. Airoldi, David M. Blei, Eric P. Xing, and Stephen E. Fienberg. Mixed
membership stochastic block models. In D. Koller, Y. Bengio, D. Schuurmans, and
L. Bottou, editors, Advances in Neural Information Processing Systems (NIPS) 21.
Red Hook, NY: Curran Associates, 2009.

James H. Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous
response data. Journal of the American Statistical Association, 88(422):669–679,
1993.

David J. Aldous. Exchangeability and Related Topics. Springer Lecture Notes in
Mathematics. Springer-Verlag, 1983. Lectures from the 13th Summer School on
Probability Theory held in Saint-Flour, 1983.

Joseph L. Austerweil and Thomas L. Griffiths. Learning invariant features using the
transformed Indian buffet process. In Advances in Neural Information Processing
Systems (NIPS), 2010.

Chris Barnes, Vincent Plagnol, Tomas Fitzgerald, Richard Redon, Jonathan Mar-
chini, David Clayton, and Matthew E Hurles. A robust statistical method for
case-control association testing with copy number variation. Nature Genetics, 40
(10):1245–1252, 2008.

Mathew J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD
thesis, Gatsby Computational Neuroscience Unit, UCL, 2003.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, second
edition, 2007.

David Blackwell and James B. MacQueen. Ferguson distributions via Polya urn
schemes. The Annals of Statistics, 1(2):353–355, 1973.

David M. Blei and Michael I. Jordan. Variational methods for the Dirichlet process.
In Proceedings of the International Conference on Machine learning (ICML), 2004.

158



BIBLIOGRAPHY

Tamara Broderick, Michael I. Jordan, and Jim Pitman. Beta processes, stick-
breaking, and power laws. arXiv:1106.0539v1, 2011.

Lynda Chin, William C. Hahn, Gad Getz, and Matthew Meyerson. Making sense of
cancer genomic data. Genes & Development, 25:534–555, 2011.

Wei Chu, Zoubin Ghahramani, Roland Krause, and David L. Wild. Identifying pro-
tein complexes in high-throughput protein interaction screens using an infinite la-
tent feature model. In BIOCOMPUTING 2006: Proceedins of the Pacific Sympo-
sium on Biocomputing, 2006.

Robert B. Cooper. Introduction to Queueing Theory. North Holland, second edition,
1981.

Noel A. C. Cressie. Statistics for Spatial Data. Wiley-Interscience, 1993.

Woodrow W. Denham. The Detection of Patterns in Alyawarra Nonverbal Behavior.
PhD thesis, University of Washington, 1973.

Finale Doshi-Velez and Zoubin Ghahramani. Correlated non-parametric latent feature
models. In Proceedings of Uncertainty in Artificial Intelligence (UAI), 2009a.

Finale Doshi-Velez and Zoubin Ghahramani. Accelerated sampling for the Indian
buffet process. In Proceedings of the International Conference on Machine learning
(ICML), 2009b.

Finale Doshi-Velez, David Knowles, Shakir Mohamed, and Zoubin Ghahramani.
Large scale nonparametric Bayesian inference: Data parallelisation in the Indian
buffet process. In Advances in Neural Information Processing Systems (NIPS),
2009a.

Finale Doshi-Velez, Kurt T. Miller, Jurgen Van Gael, and Yee Whye Teh. Variational
inference for the Indian buffet process. In Proceedings of the Conference on Artificial
Intelligence and Statistics (AISTATS), 2009b.

Finale Doshi-Velez, Kurt T. Miller, Jurgen Van Gael, and Yee Whye Teh. Varia-
tional inference for the Indian buffet process. Technical report, Department of
Engineering, University of Cambridge, 2009c.

François Dufresne, Hans U. Gerber, and Elias S. W. Shiu. Risk theory with the gamma
process. ASTIN Bulletin International Actuarial Association, 21(2):177–192, 1991.

Rick Durrett. Probability: Theory and Examples. Duxbury Press, third edition, 2004.

159



BIBLIOGRAPHY

Warren Ewens. The sampling theory of selectively neutral alleles. Theoretical Popu-
lation Biology, 3:87–112, 1972.

William Feller. An Introduction to Probability Theory and Its Applications, volume 1.
John Wiley and Sons, Inc., third edition, 1968.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The
Annals of Statistics, 1(2):209–230, 1973.

Lars Feuk, Andrew R. Carson, and Stephen W. Scherer. Structural variation in the
human genome. Nature Reviews Genetics, 7:85–97, 2006.

Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Shar-
ing features among dynamic systems with beta processes. In Advances in Neural
Information Processing Systems (NIPS), 2009.

Jennifer L. Freeman, George H. Perry, Lars Feuk, Richard Redon, Steven A. McCar-
roll, David M. Altshuler, Hiroyuki Aburatani, Keith W. Jones, Chris Tyler-Smith,
Matthew E. Hurles, Nigel P. Carter, Stephen W. Scherer, , and Charles Lee. Copy
number variation: New insights in genome diversity. Genome Research, 16:949–961,
2006.

Bert Fristedt and Lawrence Gray. A Modern Approach to Probability Theory.
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