
Representation of Coalitional Games with Algebraic

Decision Diagrams

Karthik Aadithya
Tomasz Michalak
Nicholas Jennings

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-8

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-8.html

January 30, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Representation of Coalitional Games
with Algebraic Decision Diagrams

Karthik .V. Aadithya∗‡, Tomasz P. Michalak†, and Nicholas R. Jennings†

∗Department of Electrical Engineering and Computer Sciences, The University of California, Berkeley, CA, USA
†School of Electronics and Computer Science, University of Southampton, UK

‡Contact author. Email: kv.aadithya@gmail.com

Abstract—With the advent of algorithmic coalitional game theory, it is
important to design coalitional game representation schemes that are both
compact and efficient with respect to solution concept computation. To this
end, we propose a new method for representing coalitional games. We show
that our representation (a) is fully expressive (i.e., can be used to represent
any coalitional game), (b) is compact (i.e., has size polynomial in the number
of agents) for many games of practical interest, (c) enablespolynomial time
Banzhaf Index and Shapley Value computation, (d) enables polynomial time
algorithms for several core-related questions, such as testing if a given vector
is in the core, checking if the core is empty and computing thesmallestǫ such
that the strong-ǫ core is non-empty, and (e) enables polynomial time cost of
stability computation. To the best of our knowledge, no existing coalitional
game representation offers all these advantages. The core data structure
behind our representation is the Algebraic Decision Diagram (ADD), which is
a widely applied and well-researched topic in the Electrical Engineering (EE)
community. Borrowing ideas from the EE literature, we have also been able
to prove a previously unknown, powerful, positive result that enables efficient
solution concept computation for a wide range of coalitional games. Hence
we are hopeful that our representation opens the doors for using the rich
corpus of ADD-related EE literature for advancing the field of algorithmic
coalitional game theory.

I. I NTRODUCTION

The study of interactions amongmultiple, autonomous, self-interested
intelligent agents, who can form coalitionsin order to achieve common
goals, realize collective payoffs or share common goods/costs, is an
important and recurring theme in multi-agent systems. Coalitional game
theory provides a mathematical framework for modelling and analysing
such interactions. Historically, the field of coalitional game theory was
mainly concerned withdeveloping solution conceptsfor predicting the
outcomes of such interactions, namely, which coalitions would be formed
and how the gains from co-operation would be divided amongst coalition
members. More recently however, with the advent ofalgorithmic game
theory, there is an increased emphasis ondeveloping efficient algorithms
for computing such solution concepts [1].

With the new emphasis on solution conceptcomputation, the key question
is: “How should coalitional games be represented so that solution
concepts can be computed as efficiently as possible?”. The traditional
characteristic function representation (which maps every subset of agents
to a real number) is no longer considered adequate because, irrespective
of the game, it is always of length exponential in the number of agents.
Compactnessis, therefore, one of the key properties desirable in a
representation scheme for coalitional games [2], [3]. However, elementary
counting arguments show that any representation scheme that isfully
expressive(i.e., can be used to represent any coalitional game) cannot
be always compact (i.e., there will exist many games for which the
representation would require exponential number of bits). Hence we focus
on designinga fully-expressive representation that is compact for most
games of practical interest.

Apart from compactness, the other key requirement iscomputational
efficiency, i.e., the representation should enableefficient (polynomial time)
algorithms for answering game-theoretic questionsabout widely accepted
solution concepts such as the core, the Banzhaf Index and the Shapley
Value [2], [3]. The most important problems in this context include
(a) testing if a given payoff vector is in the core (TEST CORE), (b) check-
ing if the core is empty (EMPTY CORE), (c) computing the smallestǫ
such that the strong-ǫ core is non-empty (ǫ-CORE), (d) computing the
cost of stabilising the grand coalition (CoS), (e) computing the Banzhaf
Indices of all agents (BI), and (f) computing the Shapley Values of all
agents (SV) [4]–[8].

This paper presents a new method of representing coalitional games,
under whichall the six problems above can be solved in polynomial

time. Our representation isfully-expressiveand it is alsocompact for
many games of interest. Moreover, our representation has ahighly
intuitive construction, i.e., given a description for a coalitional game
in plain English (such as in Examples 1-5 of§II), the process of
converting this description into our representation is often very natural
and straightforward.

To the best of our knowledge,no existing representation offers all
the above advantages. Indeed, our analysis in§II shows that existing
representations are often inadequate — either they blow up in size or the
solution concepts become computationally intractable — even for games
that can be described fairly simply in words and analysed fairly easily
using back-of-the-envelope combinatorics. To avoid such shortcomings,
the design philosphybehind our representation is that: the process of
constructing the representation from a word description should be as quick
and intuitive as possible, and as easy as asking a series of questions of
the form “What happens if a particular agent is present in the coalition?
What happens otherwise?”.

The core data structure behind our representation is the Algebraic
Decision Diagram (ADD)1 [9], which, as we show in§III, is ideally
suited to implement the above design philosophy. ADDs are, in fact, well-
known and widely used in the Electrical Engineering (EE) community to
efficiently represent and analyse real-valued functions of boolean vector-
valued arguments. To the best of our knowledge, this paper is the first to
recognize that ADDs can also be highly useful, compact representations
for coalitional games. For instance, in§III, we illustrate the power of
ADDs to compactly represent coalitional games, using as examples the
same easy-to-describe games on which existing representation schemes
were earlier (in§II) shown to be inadequate.

Besides being compact, ADDs are alsocomputationally efficient; indeed,
in §IV, we demonstrate thatmany game-theoretic questions can be
reduced to efficiently solvable ADD problems. Capitalizing on this, we
develop efficient (polynomial time) ADD-based algorithms for solving
the six problems above, namely,TEST CORE, EMPTY CORE, ǫ-CORE,
CoS, BI and SV. For each of these problems, we present readily
implementable pseudocode of a polynomial time solution.

Perhaps the greatest advantage of adopting an ADD-based coalitional
game representation is therich corpus of EE literature on ADD con-
struction, manipulation and analysis. For example, drawing upon the EE
literature on ADD construction for symmetric boolean functions [10],
we have been able to prove (in§VI) that a wide range of coalitional
games (roughly, all those games where the agents are partitioned into a
fixed number of distinct “types”, where the value of a coalition depends
only on the number of agents of each type included in the coalition)
are efficiently solvable for the core, cost of stability, Banzhaf Indices
and Shapley Values. We believe that many more positive results will
be discovered in the future, based on exploring the connection between
ADDs and coalitional games. Our representation, therefore, opens the
doors for using the vast EE literature on ADDs to advance the field of
algorithmic coalitional game theory.

II. PREVIOUS WORK

We now present an overview of existing techniques for coalitional game
representation. Backed by suitable examples, we highlight thepros and
consof each representation technique.

Characteristic function representation:This is the traditional way to
represent a coalitional game. It consists of a tuple〈N, ν〉 whereN is a

1also known as Multi-Terminal Binary Decision Diagram

set of agents andν : 2N →R is acharacteristic functionthat maps every
subset of agents to a real number, withν(∅) = 0. Mathematically, this
representation is also aformal definitionfor the concept of a coalitional
game.

Pros: Fully expressive (by definition).
Cons: Always of length exponential in the number of agents; hence no
solution concept can be computed efficiently.

Induced subgraph representation:This representation, proposed by Deng
and Papadimitriou [1], consists of an undirected, edge-weighted graph
G(V,E) whereV is a (finite) set of agents andE : V × V → R is a
symmetric function that maps everypair of agents to a real number. The
valueν(C) of a coalitionC ⊆ V is the total weight of all edges in the
subgraph ofG induced byC.

Pros: Always compact.BI andSV are easy (in P).
Cons: Not fully expressive.CoS and all core-related questions are hard
(NP-Hard or worse).

Unrestricted Marginal Contribution Network (MC-Net) representation:
This representation, proposed by Ieong and Shoham [2], consists ofa
(finite) set of “rules” of the formPattern→ Value, wherePattern is a
propositional formulaover the set of agentsN andValueis a real number.
Given a coalitionC ⊆ N , the Patternpart of each rule is first evaluated
under the truth assignmentx ⇐⇒ x ∈ C, for everyx ∈N . Then the
Value parts ofonly those rules whose Pattern part is satisfied byC are
summed up to yield the valueν(C).

Example 1. The 1-of-2 gamesG1/2
n . This is a family of games where

thenth gameG1/2
n has2n agents{x1 ... xn, y1 ... yn}. For everyi, the

agentsxi andyi aresubstitutesfor each other, but not for any other agent.
Therefore, a coalition iswinning (has a value 1) iff, for everyi, at least
one of {xi, yi} is present in the coalition. All non-winning coalitions
have zero value.

It is straightforward and intuitive to translate the above word description
into an MC-Net forG1/2

n . Indeed, the resulting MC-Net has only one
rule: n∧

i=1

(xi ∨ yi) → 1

Example 2. The 2-of-3 gamesG2/3
n . In this family, thenth gameG2/3

n

has3n agents{x1 ... xn, y1 ... yn, z1 ... zn}. For everyi, any pair
of agents in{xi, yi, zi} is a substitutefor any otherpair. Therefore, a
coalition iswinning iff, for every i, at least two of{xi, yi, zi} are present
in the coalition.

Translating the above word description into an MC-Net is also intuitive
and straightforward. The resulting MC-Net again has only one rule:

n∧

i=1

[(xi ∧ yi) ∨ (yi ∧ zi) ∨ (zi ∧ xi)] → 1

Pros: Fully expressive. Compact and intuitive construction for many
games of interest (such as the 1-of-2 and 2-of-3 games above).
Cons:All solution concepts are hard.

Basic MC-Net representation:This representation, also proposed by Ieong
and Shoham [2], makes MC-Nets more tractable forBI and SV by
imposing the restriction that thePattern part of each MC-Net rule can
only be a conjunction of literals. This restriction does not compromise the
fully expressiveproperty of MC-Nets. However, it seriously undermines
the “intuitiveness” of MC-Net construction. For example, under the added
restriction, it is no longer straightforward and intuitive to construct MC-
Nets for the 1-of-2 and 2-of-3 games above. Indeed, it is proved in [3] that
all basic MC-Nets for the 1-of-2 games with positiveValuesnecessarily
contain exponentially many rules. Thus, the added restriction also appears
to have seriously compromised on compactness.

Pros: Fully expressive. Compact for some games (including all induced-
subgraph games).SV andBI are easy.
Cons: Construction is often un-intuitive/exponential (even for easy-to-
describe games like the 1-of-2 and 2-of-3 games).CoS and all core-
related questions are hard.

Read-once MC-Net representation:This representation, proposed by
Elkind et. al. [3], allows a larger class ofPatternscompared to basic

MC-Nets, without sacrificing on efficientBI and SV computation. In
this representation, aPatterncan be anyread-once boolean formula, i.e.,
any boolean formula wherein each variable appears at most once. Under
this relaxed condition, some games that were previously intractable (using
only basic MC-Net rules), now become tractable. For example, the 1-of-
2 MC-Net above is not a basic MC-Net, but it is a read-once MC-Net.
However, the 2-of-3 MC-Net above is neither basic nor read-once, so the
2-of-3 game is still intractable.

Pros: Fully expressive. Compact for many games for which no compact
basic MC-Net is likely to exist (e.g., the 1-of-2 games).SV andBI are
easy.
Cons: Construction can be un-intuitive/exponential (even for easy-to-
describe games like the 2-of-3 games).CoS and all core-related questions
are hard.

We now present additional pathological examples of easy-to-describeand
easy-to-analyse games, for which constructing an MC-Net is nevertheless
extremely un-intuitive and likely exponential.

Example 3. The Majority games G
M
n . Here the nth game GM

n

has 2n+ 1 agents{x1 ... x2n+1}. A coalition is winning iff it is a
majority, i.e., its size is more thann.

Majority games are of practical interest because they are one of the few
classes ofweighted voting gamesthat are easy to analyse. For example,
just by inspection, the SV of each agent inGM

n is 1

2n+1
, while the BI of

each agent is 1

22n

(
2n
n

)
. The core ofGM

n is empty, theCoS is n/(n+1)
and the strong-ǫ core is non-empty for everyǫ ≥ n/(2n+1). However,
in spite of being so easy to describe and analyse, no compact MC-Net is
known for the majority games.

Example 4. The Glove gamesGgl
m,n. The gameGgl

m,n hasm+ n agents
{l1 ... lm, r1 ... rn}. Each left agentli has oneleft glove, while each
right agentrj has oneright glove. The value of a coalition is the number
of pairs of gloves held by the coalition, i.e., if a coalitionC hasθ1 left
agents andθ2 right agents, thenν(C) = min(θ1, θ2).

Glove games are of practical interest because they are one of the
few classes ofcoalitional resource gamesthat are easy to analyse.
For instance, by recognizing that a left (right) agent makes a positive
marginal contribution to a coalition iff the coalition already contains
more right (left) agents than left (right) agents, elementary enumerative
combinatorics is sufficient to solve theBI andSV problems. The core
is also easily characterised: form < n (m > n), the core has exactly
one payoff vector that assigns 1 to every left (right) agent and 0 to every
right (left) agent; form=n, the core comprises all vectors of the form
[x ... x
︸ ︷︷ ︸

m times

, y ... y
︸ ︷︷ ︸

n times

], wherex≥0, y≥0 andx+y = 1. Again, despite their

simplicity of analysis, no compact MC-Net representation is known for
the glove games.

Example 5. The Square gamesGsq
n . In this family of games,Gsq

n has
n agents{x1 ... xn}. The value of a coalition is the square of the size
of the coalition, i.e., if a coalitionC hasθ members, thenν(C) = θ2.

Square games are among the simplest examples ofsuper-additive games.
They are also easy to analyse. For example, just by inspection, theBI of
each agent inGsq

n is n (and so is theSV). It is also easy to test if a given
vector is in the core: just sort the vector, compute a cumulative sum and
check if the result is element-wise at least[1, 4, 9 ... n2]. Again, in spite
of this extreme simplicity, a compact MC-Net representation forGsq

n is
yet to be found.

The above discussion brings out three important shortcomings of existing
coalitional game representations: (a) existing representations are not
compact for many games of practical interest, (b) there is no standard
procedure for translating a word description into the existing representa-
tions, and (c)CoS and all core-related questions are NP-Hard or worse
in all the existing representations.

By contrast, our ADD-based representation (described in subsequent
sections) is bothcompactand intuitive to construct, even for the patho-
logical examples above. Moreover, under our representation, efficient
(polynomial time) algorithms exist forBI, SV, CoS and all core-related

Fig. 1. ADD construction from decision tree for the square gameG
sq
4

.

questions.

III. O UR REPRESENTATION BASED ONALGEBRAIC DECISION

DIAGRAMS

In this section, we illustrate the power of ADDs to compactly represent
coalitional games.

A. The key ADD idea: Remove duplication from decision trees

ADDs are, in essence, highly optimized representations for ordered
decision trees. In general, a decision tree is of size exponential in the
number of decision variables. However, the observation is thatmost
practically encountered decision trees contain a significant amount of
duplication, i.e., there exist many subtrees within the decision tree that
are isomorphic to one another.

For example, consider the ordered decision tree for the square gameGsq
4

from Eg. 5, which is shown in Fig. 1 (a). In the figure, each non-terminal
node (decision node) is labelled with an agent (the corresponding decision
variable). Moreover, each decision node has exactly two edges leading
away from itself, one dashed and the other solid. The left (right) child
of each decision node, obtained by following the dashed (solid) edge,
corresponds to anexclude (include)decision, i.e., the agent is excluded
from (included in) the coalition. Coalition values are specified by the
terminal nodes. It is readily seen that this decision tree contains significant
duplication (e.g., consider the identical sub-trees rooted at the nodes
labelledx3, as pointed out in Fig. 1 (a)).

The fundamental idea behind the ADD is that:it is wasteful to maintain
multiple identical copies of duplicated subtrees; instead, such isomorphic
subtrees should be merged together, thereby resulting in a much smaller
(but equivalent) directed acyclic graph (DAG) [9], [11]. To this end,three
reduction ruleshave been formulated for compressing a decision tree into
a DAG [11]:

Rule 1: Merge isomorphic terminal nodes.That is, if two terminal nodes
u andv carry the same value, deleteu and redirect all its incoming edges
to v.
Rule 2: Delete dummy nodes.That is, if the left child of a decision node
u is the same as its right child, then deleteu and redirect all its incoming
edges to this (only) child.
Rule 3: Merge isomorphic decision nodes.That is, if two nodesu andv
have (a) identical labels, (b) identical left children and (c) identical right
children, deleteu and redirect all its incoming edges tov.

For example, the decision tree of Fig. 1 (a) contains four isomorphic
terminal nodes with value 1, six isomorphic terminal nodes with value 4
and four isomorphic terminal nodes with value 9. To get rid of all this
duplication, Rule 1 (above) is applied 3+5+3=11 times in succession,
resulting in the DAG of Fig. 1 (b). This DAG is not free from isomorphic
nodes either. In fact, as shown in Fig. 1 (b), it has two sets of three
isomorphic nodes each, which can be merged by applying Rule 3 four
times in succession, thereby resulting in the DAG of Fig. 1 (c). This
DAG again contains two isomorphic nodes (as shown in Fig. 1 (c)),
which are merged by a single application of Rule 3. This results in
the DAG of Fig. 1 (d), which ismaximally compressedin the sense
that it cannot be made smaller by any further application of Rules 1-3.
Such amaximally compressedDAG (which can be shown to be a unique
and canonical representation for the original decision tree) is called an
Algebraic Decision Diagram. Thus, Fig. 1 (d) is an ADD representation
for the square gameGsq

4 .

B. A formal definition for the ADD-based representation

Having explained the fundamentals of ADDs, we now formally define our
ADD-based representation for coalitional games. In this representation, a
coalitional game is specified by a tuple〈N,<,G(V,E, LV , LE)〉, where

⋄ N is a finite set (the set of agents)
⋄ < is a strict total order defined onN
⋄ G(V,E, LV , LE) is a vertex-labelled, edge-labelled, directed acyclic

graph (the ADD) that satisfies the following:

◦ V is a finite set (the set of ADD vertices)
◦ E ⊂ V × V is a finite set (the set of ADD edges)
◦ LV : V → N ∪ R is a function that labels each ADD vertex with

either an agent (for non-terminal vertices) or a real number (for
terminal vertices)

◦ LE : E → {SOLID, DASHED} is a function that labels each ADD
edge as eitherSOLID or DASHED

◦ G contains exactly one root/source vertex, i.e., exactly one vertex of
in-degree zero

◦ For all verticesu andv, if (u, v) is an edge inG, thenu < v

◦ For each non-terminal vertexu, there exists exactly one vertexv,
called the left child ofu, such that(u, v) ∈ E andLE((u, v)) =
DASHED

◦ For each non-terminal vertexu, there exists exactly one vertexv,
called the right child ofu, such that(u, v) ∈ E andLE((u, v)) =
SOLID

◦ The reduction rules 1-3 of the previous subsection cannot be used to
simplify G any further.

C. Noteworthy properties of ADDs

As a consequence of the reduction rules of§III-A, ADDs have many
interesting and useful properties. Of these, we now list the properties
that are especially relevant to coalitional games.

Sub-ADDs as coalitional games:In an ADD,everynodeu can be thought
of as the source node of a unique coalitional game rooted atu. Viewed
this way, each ADD node represents a coalitional game in its own right.
For instance, the root (source node) of Fig. 1 (d) represents the square
gameGsq

4 . The left child of the root represents another coalitional game,
namely, a square game played by the agents{x2, x3, x4}. The right child
of the root represents yet another coalitional game, namely, the game
played by agents{x2, x3, x4} where the value of ak-sized coalition is
(k+1)2. In general, given an ADD with agents{x1 < x2 < . . . < xn},
every decision nodeu with labelxi represents a unique coalitional game
played by agentsxi to xn, whose ADD representation is given by the
sub-ADD rooted atu.

Reusability of sub-ADDs:As mentioned above, each sub-ADD of an ADD
represents a unique coalitional game. Moreover, each sub-ADD, once
created, can be “re-used” again and again at no extra cost. For example,
in Fig. 1 (d), the sub-ADD rooted at the middle node labelledx3 is used
twice: once corresponding to the decision “excludex1 but includex2”
and once corresponding to the decision “includex1 but excludex2”.
Likewise, the sub-ADDs rooted at the middle two nodes labelledx4

are each used twice. In general, given an ADD, a sub-ADD rooted at
nodeu is used as many times as the in-degree ofu. This is analogous
to dynamic programming: ADD nodes are like memoized solutions to
dynamic programming sub-problems; a one-time effort is expended to
create them, which pays back many times over. Thus, ADDs provide a

framework that allows simpler coalitional games (rooted at sub-ADDs)
to be used as building blocks for constructing more complex coalitional
games.

Relationship between an ADD node and its children:For every (non-
terminal) ADD nodeu, there is an intuitive relationship between the
coalitional game rooted atu and the coalitional games rooted at the
children of u: supposeu has labelxi; then the left (right) child of
u represents a coalitional game played by the agentsxi+1 to xn, that
describes how to evaluate the characteristic functionin the absence
(presence) of agentxi. In general, for every decision nodeu with labelxi,
the left (right) child ofu specifies what happens if agentxi is excluded
from (included in) the coalition. This observation forms the basis of
our intuitive procedure (§III-D) for constructing an ADD from a word
description of a coalitional game.

Compactness:Often, the reduction rules of§III-A are so powerful that
they transform an exponential-sized decision tree into a polynomial-sized
ADD [9], [11]. For instance, generalising the ADD construction of Fig. 1,
we see that the ADD representation forGsq

n would contain a total of
1+2+ ... +(n+1) = (n+1)(n+2)/2 nodes, which is polynomial in
the number of agentsn. This is true not only for square games; in fact,
as seen from Table I, a polynomial-sized ADD exists (and in§III-D, we
show how to construct it) for every single pathological example of§II.

Game # agents ADD size

G
1/2
n 2n 2n+ 2

G
2/3
n 3n 4n+ 2

GM
n 2n+ 1 n2 + 2n+ 3

Ggl
m,n m+ n 1

6
(min(m,n))3 + 11

6
min(m,n) +mn+ 1

Gsq
n n 1

2
n2 + 3

2
n+ 1

TABLE I. ADD sizes for the pathological examples of§II, indicating that
polynomial-sized ADD representations are possible even forgames that have no
known polynomial MC-Net.

Expressiveness:ADDs are fully expressive(i.e., they can be used to
represent any coalitional game). This follows from a two-step reasoning:
(1) every coalitional game can be represented as a decision tree, and
(2) every decision tree can be transformed into an ADD by the reduction
rules of§III-A [11].

Importance of agent ordering:Given a coalitional game, the size of its
ADD representation often depends strongly on the agent ordering chosen
[11]. For instance, consider the 1-of-2 gamesG

1/2
n : if the agent ordering

is <1: x1 <y1 <x2 <y2 < . . . < xn <yn, the ADD size is2n + 2;
but if the agent ordering is<2: x1 < . . . < xn < y1 < . . . < yn,
the ADD size shoots up to2n+1 − 1. To achieve compactness, it is
therefore crucial to choose a “good” variable ordering. However, for a
general ADD, the problem of finding an optimal variable ordering is
NP-Hard [12]. Hence we suggest two guidelines that usually result in a
good variable ordering: (1) place substitute agents close to each other,
and (2) place “less significant” agents ahead of “more significant” agents.
For example, the first guideline applied toG1/2

n suggests the ordering
<1 above. Similarly, forG2/3

n , the first guideline suggests the ordering
x1 < y1 < z1 . . . xn < yn < zn, which results in ADD size4n + 2.
To take another example: for the glove gamesGgl

m,n, the first guideline
would advocate grouping all the left agents together and all the right
agents together. The second guideline would then decide which group to
put first: if m ≤ n (m > n), the group of right (left) agents should come
first, followed by the group of left (right) agents (within a group, the
ordering is immaterial because of symmetry). This results in the ADD
size shown in Table I.

D. The intuitive ADD construction procedure

In §III-A, we described three reduction rules for systematically con-
structing an ADD from a decision tree. However, for large games, it
is not practical to build a decision tree and then convert it to an ADD.
Rather, we need an intuitive method to construct an ADD directly from

Fig. 2. ADD representations for the pathological examples of§II: (a) ADD for
G

gl
5,3, (b) ADD for GM

4
, (c,d) Recursive relations illustrating ADD construction

for G1/2
n andG2/3

n respectively.

a word description of the coalitional game, i.e., bypassing the decision
tree altogether. This subsection describes such a method.

Our method works in a bottom-up fashion, first constructing (sub) ADDs
for simpler coalitional games, and then using these as building blocks for
more complex coalitional games. At each decision node so constructed,
the key idea is to ask the questions “What happens if this particular agent
is excluded from the coalition? What happens otherwise?”. If both these
answers are identical, the current decision node is a dummy node (i.e.,
it should not even exist in the ADD). If the answers are different, then
the answer to the former question yields the current decision node’s left
child, while the answer to the latter question yields the right child. This
question-answer routine is continued recursively until a terminal node is
reached. Moreover, at each decision node, a new child node is created only
if no existing sub-ADD answers the corresponding exclusion/inclusion
question; otherwise, we just draw an edge from the current decision
node to the previously computed sub-ADD that answers the question
(i.e., without incurring the cost of creating a new node).

Algorithm 1 illustrates the above question-answer method for the majority
gamesGM

n . At each decision node, the variablek keeps track of
the current coalition size; the moment a majority is attained (or it is
determined that no majority can be attained), the current decision node’s
relevant child is designated the appropriate terminal node (0 or 1). If both
outcomes are possible, a recursive call is initiated with an updated value
of k. A hash table is used to memoise sub-ADDs. Running this algorithm
for n = 4 produces the ADD of Fig. 2 (b). From the figure, it is easy
to generalise that the ADD forGM

n would contain exactly(n+ 1)2 + 2
nodes, as indicated in Table I.

Algorithm 4 produces ADD representations for the square games, using
the same invariant as Algorithm 1.

Algorithm 3 applies the same question answer procedure to the glove
gamesGgl

m,n (where m ≥ n is assumed without loss of generality).
The pattern remains exactly the same as Algorithm 1: answer the
exclusion/inclusion questions, use a hash-table that memoises sub-ADDs.
But the invariant is more complicated. At each decision node, two
variablesθ1 and θ2 are maintained;θ1 denotes the number of distinct
pairs of gloves already present in the coalition, whileθ2 denotes the
maximum number of pairs possible assuming that no more left agents will
join the coalition. Running this algorithm with(m,n) = (5, 3) produces
the ADD of Fig. 2 (a). The generalisation to arbitrary(m,n) is, however,

Algorithms 1-5 illustrate the intuitive construction of
ADDs for the pathological examples of§II.

Algorithm 1: ADD creation forGM
n : Run createmaj ADD(n, 1, 0,∅)

function create maj ADD(n, label, k, hash table)

// invariant: k = size of current coalition

if hash table contains key(label, k) then
return hash table[(label, k)];

end

// answer the exclusion question

ADDNode left child;
if n+ k < label then

left child = Terminal node with value 0;
else

left child = createmaj ADD(n, label+1, k, hashtable);
end

// answer the inclusion question

ADDNode right child;
if k == n then

right child = Terminal node with value 1;
else

right child = createmaj ADD(n, label+1, k+1, hashtable);
end

// combine the exclusion and inclusion answers

ADDNode curr =new ADDNode (decision variable =xlabel);
curr → left = left child, curr→ right = right child;
hash table[(label, k)] = curr;

return curr;

end

Algorithm 2: ADD creation forG1/2
n : Run create1 of 2 ADD(n)

function create 1 of 2 ADD(n)

if n == 1 return the base case ADD of Fig. 2 (c);

ADDNode prev = create1 of 2 ADD(n-1);

ADDNodeX = new ADDNode (decision variable =xn);
ADDNode Y = new ADDNode (decision variable =yn);
ADDNode ZERO =Terminal node with value 0;

X → left child = Y , X → right child = prev;
Y → left child = ZERO,Y → right child = prev;

return X;
end

Algorithm 3: ADD creation forGgl
m,n: Run creategl ADD(m, n, 1, 0, 0,∅)

function create gl ADD(m, n, label, θ1, θ2, hash table)

// invariants: θ1 = # paired gloves, θ2 = min(# unpaired
left gloves, # undecided right gloves)

if hash table contains key(label, θ1, θ2) then
return hash table[(label, θ1, θ2)];

end

// answer the exclusion question

ADDNode left child;
if label≤ m then

if label== m AND θ2 == 0 then
left child = Terminal node with value 0;

else
left child = creategl ADD(m, n, label+1, 0,θ2, hash table);

end
else

if label== n+m then
left child = Terminal node with value θ1;

else
left child = creategl ADD(m, n, label+1,θ1, min(θ2,m+n−label), hash table);

end
end

// answer the inclusion question

ADDNode right child;
if label≤ m then

if θ2 == n− 1 then
right child = creategl ADD(m, n, m+1, 0, n, hashtable);

else
right child = creategl ADD(m, n, label+1, 0,θ2+1, hash table);

end
else

if label== n+m then
right child = Terminal node with value θ1 + 1;

else
right child = creategl ADD(m, n, label+1,θ1+1, θ2−1, hash table);

end
end

// combine the exclusion and inclusion answers

ADDNode curr =new ADDNode(decision variable =(label≤ m) ? llabel : rlabel−m);
curr → left = left child, curr→ right = right child;
hash table[(label, θ1, θ2)] = curr;

return curr;

end

Algorithm 4: ADD creation forGsq
n : Run createsq ADD(n, 1, 0,∅)

function create sq ADD(n, label, k, hash table)

// invariant: k = size of current coalition

if hash table contains key(label, k) then
return hash table[(label, k)];

end

// answer the exclusion question

ADDNode left child;
if label== n then

left child = Terminal node with value k2;
else

left child = createsq ADD(n, label+1, k, hashtable);
end

// answer the inclusion question

ADDNode right child;
if label== n then

right child = Terminal node with value (k + 1)2;
else

right child = createsq ADD(n, label+1, k+1, hashtable);
end

// combine the exclusion and inclusion answers

ADDNode curr =new ADDNode (decision variable =xlabel);
curr → left = left child, curr→ right = right child;
hash table[(label, k)] = curr;

return curr;

end

Algorithm 5: ADD creation forG2/3
n : Run create2 of 3 ADD(n)

function create 2 of 3 ADD(n)
if n == 1 return the base case ADD of Fig. 2 (d);

ADDNode prev = create2 of 3 ADD(n-1);

ADDNodeX = new ADDNode (decision variable =xn);
ADDNode Y1 = new ADDNode (decision variable =yn);
ADDNode Y2 = new ADDNode (decision variable =yn);
ADDNodeZ = new ADDNode (decision variable =zn);
ADDNode ZERO =Terminal node with value 0;

X → left child = Y1, X → right child = Y2;
Y1 → left child = ZERO,Y1 → right child = Z;
Y2 → left child = Z, Y2 → right child = prev;
Z → left child = ZERO,Z → right child = prev;

return X;
end

lengthy and tedious; so we omit the proof for theGgl
m,n ADD size quoted

in Table I.

Similarly, Algorithm 2 and Algorithm 5 produce ADD representations for
the 1-of-2 and 2-of-3 games respectively. The recursive relationsused
here are much simpler; they are illustrated (along with the base case
n = 1) in Fig. 2 (c) and Fig. 2 (d) respectively.

IV. OUR REPRESENTATION: THE ALGORITHMS

This section presents polynomial time ADD-based algorithms (along with
readily implementable pseudocode) for solving the six key game-theoretic
problems mentioned in§I: TEST-CORE, EMPTY-CORE, ǫ-CORE, CoS,
BI andSV.

A. TEST-CORE, EMPTY-CORE, ǫ-CORE and CoS

Given a coalitional gameg = 〈N, ν : 2N →R〉, with ν(∅)=0. Consider
a payoff vector~x (which is a|N | dimensional vector whose entries add
up to ν(N)) that maps every agenta ∈ N to a payoff ~x[a]. We say
that a coalitionC ⊆ N is happy with the payoff vector~x provided
the sum of the payoffs of all agents belonging toC is at leastν(C),
i.e., the vector~x collectively assigns to coalitionC a payoff that is at
least as large as the intrinsic valueν(C). The core [4] of a coalitional
game is the set of all payoff vectors~x such that every coalitionC ⊆ N
is happywith ~x. The intuitive explanation is that the core contains all
stablepayoff divisions, i.e., all possible ways of distributing the value of
the grand coalition among its members so that no subset of agents has
any incentive to “break off” from the grand coalition.

However, the problem is that for many coalitional games, the core is
empty (i.e., there exists no stable way to distribute the value of the grand
coalition among its members) [4]. For such games, a solution concept
called the strongǫ-core [5] has been proposed, which uses aweaker
stability criterion: for every coalitionC ⊆ N , the collective payoff
assigned toC should be at leastν(C) − ǫ. The intuition behind the
strong ǫ-core is that no coalitionC ⊆ N would gain more thanǫ by
breaking off from the grand coalition. In other words, if a penalty ofǫ
is imposed for leaving the grand coalition, then there is no incentive for
any subset of agents to break off. The challenge is to find the smallest

ǫ such that this weaker condition can be satisfied by at least one payoff
vector~x.

More recently, a new solution concept [6] based onthe cost of stabilising
the grand coalitionhas been proposed for games whose core is empty:
here it is assumed that abenevolent external partywould like to stabilise
the grand coalition by awarding it a value∆ over and above its intrinsic
valueν(N). The problem is to find the smallest∆ such that the amount
ν(N) + ∆ can be distributed among the agents, leaving no coalition
C ⊆ N with an incentive to break off. This smallest∆ is called thecost
of stability (CoS).

Fig. 3. Converting an ADD into an augmented DAG. Top: Rules to introduce
intermediate nodes on ADD edges and before the ADD root. Bottom: Example
conversions of theG1/2

2
ADD (left) and theGM

2
ADD (right) to augmented DAGs

(the newly introduced nodes are indicated by boxes around them).

Algorithms 6–8 describe polynomial-time ADD-based procedures for
solving TEST-CORE, EMPTY-CORE, ǫ-CORE and CoS. These algo-
rithms work by generating anaugmented DAGfrom the given ADD.
In the augmented DAG,all agents occur on all paths, and in the correct
order. That is, if the game is played by agentsx1<x2< . . . <xn, then
every complete path(starting at the source node and ending at one of the
terminal nodes) in the augmented DAG would correspond to the label
sequencex1, x2 . . . xn, followed by a terminal node. Fig. 3 shows how
to convert an ADD into an augmented DAG, by inserting intermediate
nodes (if necessary) on each ADD edge and before the ADD root. Note
that the concepts such as terminal/non-terminal nodes, dashed/solid edges,
left/right children etc. apply equally well to augmented DAGs. Also note
that the size of the augmented DAG is polynomial in the size of the
original ADD.

Algorithm 6 tests if a given payoff vector~x lies in the core of a
coalitional game represented as an ADD. The key observation that makes
the algorithm polynomial is that: it is not necessary to enumerate all
coalitionsC and check that they are happy with~x; rather, it is sufficient to
check that at every terminal nodeu of the augmented DAG, the coalitions
with valueLV ′(u) that receive theleast payoffunder~x are happy. The
least payoffat each terminal node is found using the critical path method
for DAGs [13, Sec. 24.2]. Thus Algorithm 6 runs in time linear in the
size of the augmented DAG.

Algorithm 6: TEST-CORE in polynomial time

Input : Coalitional gameΓ=〈N,<,G(V,E, LV , LE)〉, with ν(∅)=0.
Payoff vector~xtest of dimension|N |, whose entries add up toν(N).
Output : TRUE if ~xtest is in the core ofΓ. FALSE otherwise.
G′(V ′, E′, LV ′ , LE′) = augmented DAG created fromG;
// all further operations only on G′

foreach nodeu ∈ V ′, initialize d[u] = +∞;
initialize d[source node ofG′] = 0;
vector〈DAGNode〉 topological order = topologicalsort(G′);
foreach DAGNodeu in topological order do

if u is a non-terminal nodethen
d[left child(u)] = min(d[left child(u)], d[u]);
d[right child(u)] = min(d[right child(u)], d[u] + ~xtest[LV ′(u)]);

else
if d[u] < LV ′(u) then return FALSE;

end
end
return TRUE;

Algorithm 7 outlines a polynomial time procedure forEMPTY-CORE and
CoS. The main idea is that: for each nodeu in the augmented DAG, a
variabled[u] maintains a lower bound on theleast payoff atu, which is
the shortest path length from the DAG source tou, where eachSOLID
edge(v, w) is assigned a weight~x[v] and eachDASHED edge is assigned
weight zero. This lower bound is enforced by a set oflinear constraints.
Thus,EMPTY-CORE andCoS are both reduced to linear programming
(LP) instances, for which well-known polynomial time techniques (e.g.,
Karmarkar’s algorithm [14]) exist.

Algorithm 7: EMPTY-CORE andCoS in polynomial time

Input : Coalitional gameΓ=〈N,<,G(V,E, LV , LE)〉, with ν(∅)=0.
Output : CoS of Γ and a payoff vector~xCoS. The core is non-empty
iff the returnedCoS is 0 (if so, the returned~xCoS lies in the core; if
not, the core is empty and the returned~xCoS stabilises the grand
coalition while achievingCoS).
G′(V ′, E′, LV ′ , LE′) = augmented DAG created fromG;
// all further operations only on G′

initialize LPconstraints ={d[source node ofG′] = 0};
foreach DAGEdgee = (u, v) in E′ do

if LE′(e) == DASHED then
LPconstraints.add(d[v] ≤ d[u])

else
LPconstraints.add(d[v] ≤ d[u]+~x(LV ′(u)))

end
end
foreach terminal nodeu∈V ′ do LPconstraints.add(d[u]≥LV ′(u));
〈opt, [~dCoS, ~xCoS]〉 = LPsolve(min

∑

a∈N ~x[a] subj. to LPconstraints);

CoS = opt− ν(N); return [CoS, ~xCoS];

Algorithm 8: ǫ-CORE in polynomial time

Input : Coalitional gameΓ=〈N,<,G(V,E, LV , LE)〉, with ν(∅)=0.
Output : The smallestǫ such thatΓ has a non-empty strong-ǫ core
(and a corresponding payoff vector~xǫ)
G′(V ′, E′, LV ′ , LE′) = augmented DAG created fromG;
// all further operations only on G′

initialize LPconstraints ={d[source node ofG] = 0};
foreach DAGEdgee = (u, v) in E′ do

if LE′(e) == DASHED then
LPconstraints.add(d[v] ≤ d[u])

else
LPconstraints.add(d[v] ≤ d[u]+~x(LV ′(u)))

end
end
foreach terminal nodeu∈V ′ do LPconstraints.add(d[u]≥LV ′(u)−ǫ);
LPconstraints.add

(∑

a∈N ~x[a] = ν(N)
)

〈ǫopt, [~dǫ, ~xǫ, ǫopt]〉 = LPsolve(min ǫ subj. to LPconstraints);
return [ǫopt, ~xǫ];

Algorithm 8 solvesǫ-CORE in polynomial time, using techniques very
similar to Algorithm 7. The only difference is that a new variableǫ is
introduced into the LP constraints at the terminal DAG nodes. Minimising
ǫ (subject to the LP constraints) is again an instance of LP (hence solved
in polynomial time).

B. BI and SV

Given a coalitional gameg = 〈N, ν : 2N → R〉, whereν(∅) = 0. The
Banzhaf Index [7]BIg(x) of agentx in this game is defined by:

BIg(x) =
1

2|N|−1

∑

S⊆N\{x}

[ν(S ∪ {x})− ν(S)]

The intuition is thatBIg(x) is theexpected marginal contributionmade
by the agentx to a (uniformly) randomly chosen subset ofN \ {x}.

The Shapley Value [8]SVg(x) of agentx in the gameg is defined by:

SVg(x) =
1

|N |

∑

S⊆N\{x}

1
(

|N | − 1

|S|

) [ν(S ∪ {x})− ν(S)]

The intuition is thatSVg(x) is theexpected marginal contributionmade
by the agentx to thesubset of agents that occurs beforex in a (uniformly)
randomly chosen permutation of all the agentsN .

Algorithm 9 describes a polynomial time procedure for computingBI
andSV, given a coalitional game represented as an ADD. The algorithm
works by dynamic programming. The agents playing the game are
denotedx1<x2<. . .<xn. The agent whoseBI/SV is to be computed
is denotedxi.

To findBI(xi), a dynamic programming sub-problemαout
i (u) is defined

at each nodeu of the given ADD. This sub-problem asks for thenumber
of subsets of{x1, x2 . . . LV (u)} (whereLV (u) is replaced byxn if u is
a terminal node), not containingxi, under whose truth assignment there
exists a path from the source node tou. Another sub-problem,αin

i (u),
counts the subsetscontaining xi that have a source-to-u path. Fig. 4
provides detailed equations for solving these sub-problems at the child
nodes, using the solutions memoised at the parent nodes. Finally, the
dynamic programming solutions at the terminal nodes are put together to
computeBI(xi) (the equations for this are also supplied by Fig. 4).

For computingSV(xi), a dynamic programming sub-problemβout
i (u,m)

is defined at each ADD nodeu, for every0≤m≤|N |. This sub-problem
asks for thenumber ofm-sized subsets of{x1, x2 . . . LV (u)} (where
LV (u) is replaced byxn if u is a terminal node), not containingxi,
under whose truth assignment there exists a path from the source node
to u. Similarly, the sub-problemβin

i (u,m) counts them-sized subsets
containingxi that have a source-to-u path. As before, Fig. 4 provides
the equations for computing sub-problem solutions at child nodes using
solutions memoised at parent nodes.

Complexity: For BI, (a) each ADD node is visited exactly once (in
topological order), (b) at each non-terminal ADD node, it takes time
O(|N |) for updating the dynamic programming solutions at the child

Notation

◦ N = {x1, x2 . . . xn}

◦ x1 ≤ x2 ≤ . . . ≤ xn

Initialization of the source node

Banzhaf Index Shapley Value

Source
nodeu

j ≤ i
αin
i (u) = 0

αout
i (u) = 2j−1

βin
i (u,m) = 0

βout
i (u,m) =

(

j − 1

m

)

j > i
αin
i (u) = 2j−2

αout
i (u) = 2j−2

βin
i (u,m) =

(

j − 2

m− 1

)

βout
i (u,m) =

(

j − 2

m

)

Algorithm 9: BI andSV in polynomial time

Input : Coalitional gameΓ = 〈N,<,G(V,E, LV , LE)〉, Agentxi ∈ N
Output : BI andSV of agentxi in Γ

foreach nodeu ∈ V , initialize {αin
i (u), αout

i (u), βin
i (u,m), βout

i (u,m)} all to zero;
initialize {αin

i (u), αout
i (u), βin

i (u,m), βout
i (u,m)} for the source node(use table on left);

initialize BI(xi) = 0, SV(xi) = 0;
vector〈ADDNode〉 topological order = topologicalsort(G);
foreach nodeu in topological order do

if u is a non-terminal nodethen
use the dynamic programming table below to:
update {αin

i (v), αout
i (v), βin

i (v,m), βout
i (v,m)}, wherev = left child(u)

update {αin
i (v), αout

i (v), βin
i (v,m), βout

i (v,m)}, wherev = right child(u)
else

update BI(xi) andSV(xi) using the final solution table below
end

end
returnBI(xi),SV(xi)

Dynamic Programming: Computing the solutions to sub-problems at child nodesv using previously computed (and memoized) solutions at the parent nodes u

Banzhaf Index Shapley Value

Non-terminal
nodesu

k ≤ i
αin
i (v)+= 0

αout
i (v)+= αout

i (u)2k−j−1

αin
i (v)+= 0

αout
i (v)+= αout

i (u)2k−j−1

βin
i (v,m)+= 0

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l

)
βin
i (v,m)+= 0

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l − 1

)

k > i

j < i

αin
i (v)+= αout

i (u)2k−j−2

αout
i (v)+= αout

i (u)2k−j−2

αin
i (v)+= αout

i (u)2k−j−2

αout
i (v)+= αout

i (u)2k−j−2

βin
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 2

m− l − 1

)

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 2

m− l

)

βin
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 2

m− l − 2

)

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 2

m− l − 1

)

k > i

j = i

αin
i (v)+= 0

αout
i (v)+= αout

i (u)2k−j−1

αin
i (v)+= αout

i (u)2k−j−1

αout
i (v)+= 0

βin
i (v,m)+= 0

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l

)
βin
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l − 1

)

βout
i (v,m)+= 0

k > i

j > i

αin
i (v)+= αin

i (u)2k−j−1

αout
i (v)+= αout

i (u)2k−j−1

αin
i (v)+= αin

i (u)2k−j−1

αout
i (v)+= αout

i (u)2k−j−1

βin
i (v,m) +=

m∑

l=0

βin
i (u, l)

(

k − j − 1

m− l

)

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l

)

βin
i (v,m) +=

m∑

l=0

βin
i (u, l)

(

k − j − 1

m− l − 1

)

βout
i (v,m)+=

m∑

l=0

βout
i (u, l)

(

k − j − 1

m− l − 1

)

Final solution: Using the answers to dynamic programming sub-problemsat terminal nodesu to computeBI(xi) andSV(xi)

Banzhaf Index Shapley Value

BI(xi)+=
LV (u)

2n−1

[

αin
i (u)− αout

i (u)
]

SV(xi)+=
1

n

n−1∑

m=0

LV (u)
(
n−1

m

)

[

βin
i (u,m+ 1)− βout

i (u,m)
]

Fig. 4. Computation of answers to dynamic programming sub-problems from previously memoized solutions. Note that ifv is a terminal node,k is assumed to be
n+ 1. Also,

(n
k

)

is assumed to be0 wheneverk > n or k < 0, with
(

0

0

)

= 1.

nodes (since this involves at most fourN -bit multiplications), and (c) all
other operations, such as initialization and obtaining the final solution,
are insignificant compared to the update operation in terms of big-O
complexity. Hence the complexity ofBI is O(|N ||ADD|) (which is
polynomial in both the number of agents and the size of the input ADD).

For SV, (a) each ADD node is visited exactly once (in topological order),
(b) at each non-terminal ADD node, it takes timeO(|N |2 log |N |) for
updating the dynamic programming solutions at the child nodes (although
at first sight the complexity appears to beO(|N |3), we point out that
all the SV update equations can be viewed as convolutions of two|N |-
length sequences of|N |-bit numbers, which can be carried out in time
O(|N |2 log |N |) using Fast Fourier Transform (FFT) based techniques
[15]), and (c) all other operations, such as initialization and putting
together the final solution, are insignificant compared to the update
operation in terms of big-O complexity. Hence the complexity ofSV

is O(|N |2 log |N ||ADD|).

V. A DDITIONAL OBSERVATIONS

Here we make two observations that enable efficient analysis of coali-
tional games using ADDs.

Observation 1. The ADD-List. It is well-known that all read-once
boolean formulas can be represented efficiently using ADDs. Specifically,
for every read-once boolean formula onn variables, an ADD of sizeO(n)
can be constructed for it in linear time [16]. Thus, given any basic/read-
once MC-Net, it is possible to very efficiently convert it into alist of
ADDs, with one ADD per MC-Net rule. Each ADD in the list can then
be solved individually forBI or SV (using Algorithm 9); then these
values can be summed up to yield the desired agent’s overallBI or SV
(making use of the additivity property).

The above method, in fact, suggests a general strategy for analysing

unrestricted MC-Nets: (a) convert each MC-Net rule into an ADD,
(b) solve each ADD individually forBI and SV (using Algorithm 9),
and (c) use the additivity property for computing the overallBI andSV
efficiently. Thus, ADDs are a powerful way to analyse unrestricted MC-
Nets for BI and SV. As long as each MC-Net rule can be translated
into a compact ADD, the method will be efficient; there is absolutely no
requirement that the MC-Net rules should be basic/read-once. Therefore,
ADDs enable a much larger class of MC-NetPatterns than was ever
possible before.

Observation 2. Finding “high-yield” coalitions. Consider a situation
whereagents need to be paid to join coalitions. This is common in many
real-life situations: e.g., companies need to pay employees in order for
them to work together. One way to model this is a coalitional game〈N, ν〉,
along with apayment vector~p that specifies the payment required by each
agent to participate. Given an total budgetB, the natural question to ask
is: how to maximiseν(C) such that all agents inC can be paid off
within the budget? Although this problem is NP-Hard in general, it can
be solved efficiently ifg is represented as an ADD. Indeed, the algorithm
is very similar to Algorithm 6 forTEST-CORE: at each terminal ADD
nodeu, use the critical path method for DAGs to find the coalition with
valueLV (u), that requires least payment; of these, pick the coalition that
yields the maximum value, while demanding a payment at mostB.

VI. A N EW THEORETICAL RESULT

We now present a previously unknown, positive result showing that a wide
range of coalitional games can in fact be solved efficiently (with respect
to TEST-CORE, EMPTY-CORE, ǫ-CORE, CoS, BI andSV) using our
ADD-based representation. To prove this, we draw upon the EE literature
on ADD construction for symmetric boolean functions.

Definition. k-Typed Coalitional Game (k-TCG). A coalitional game
g = 〈N, ν〉 is said to bek-typed if the set N can be partitioned
into k disjoint subsetsN1, N2 . . . Nk whose union isN , such that
the valueν(C) of every coalition C can be expressed as a function
f(n1, n2 . . . nk), whereni denotes the number of agents ofC belonging
to Ni, for every1 ≤ i ≤ k.

The intuition is that, in ak-TCG, one can group the agents intok types,
and the value of any coalitionC would depend only on the number of
agents of each type, who are inC.

Example 6. Consider a weighted voting gameWn(w1, w2, w3, q) played
among3n agents,n of whom have weightw1, n of whom have weight
w2 andn of whom have weightw3, where the winning quota isq. Then
Wn(w1, w2, w3, q) is a 3-TCG because the value of every coalitionC
can be determined, knowing only the number of agents of each weight
{w1, w2, w3} in C.

Example 7. The glove gamesGgl
m,n are 2-TCGs because the value of

any coalitionC can be determined, knowing only the number of left
agents and the number of right agents inC.

Theorem. Let g = 〈N, ν〉 be ak-TCG with n agents. Theng has an
ADD representation containing at most(1 + n)k(1 + kn/2) nodes.

Proof sketch: The result follows by generalising a theorem outlined in
[10], which states that all1-TCGs played byn agents can be represented
by ADDs containing at mostO(n2) nodes. It is quite straightforward
to generalise this construction tok-TCGs using the variable ordering:
{agents∈ N1} < {agents∈ N2} < . . . < {agents∈ Nk}, where
N1, N2 . . . Nk make up thek-partition ofN (described in the definition
above). Within a setNi, the ordering of agents is immaterial. The ADD
so constructed can be shown to contain at most(1+n)k(1+kn/2) nodes.
Due to space constraints, we omit a detailed proof.

The above result shows that wheneverk is bounded,k-TCGs can be
represented compactly using ADDs. For example, all weighted voting
games with at mostk different weights (wherek is bounded) can be
compactly represented (and hence, efficiently solved forTEST-CORE,
EMPTY-CORE, ǫ-CORE, CoS, BI and SV) using ADDs. Similarly, all
coalitional skill/resource games where the agents can be classified into
at mostk skill/resource profilescan be represented and solved efficiently

using ADDs. Thus, the above theorem at once proves that many gamesof
practical interest, belonging to widely different categories of coalitional
games, can all be compactly represented and efficiently solved using
ADDs.

VII. C ONCLUSIONS

Problem
Induced
subgraph

Unrestricted
MC-Net

Basic
MC-Net

Read-once
MC-Net

ADD

ν(C) givenC X X X X X

TEST-CORE × × × × X

EMPTY-CORE × × × × X

ǫ-CORE × × × × X

CoS × × × × X

BI X × X X X

SV X × X X X

TABLE II. Comparing different representation schemes with respect to efficiency of solution
concept computation.X means the problem is in P and× means the problem is NP-Hard or
worse.

In this paper, we have presented a new method, based on Algebraic
Decision Diagrams, for representing coalitional games. We have demon-
strated that ADDs are not only compact for many games of practical
interest, but also computationally efficient for many solution concepts.
Table II compares the efficiency of solution concept computation in our
representation versus existing state-of-the-art techniques. As the table
shows, no existing representation scheme offers advantages comparable
to ADDs.

We have also presented the ADD-List, a new data structure that enables
efficient BI andSV computation for unrestricted MC-Nets. With ADD-
Lists, a much larger class of MC-NetPatternscan be handled, than was
ever possible before. In short, ADDs offer all the advantages of state-of-
the-art representations, and then some more!

We have also shown that ADDs can be applied to solve a new and inter-
esting problem in coalitional game analysis: finding high-yield coalitions
under a budget constraint.

Most importantly, in this paper, we have forged the first link between
coalitional game theory and Algebraic Decision Diagrams. As a result,
we have made it possible to borrow ideas from the huge EE literature
on ADDs, and apply them to advance the field of algorithmic coalitional
game theory. We have already demonstrated one such application: the
k-typed coalitional games. We feel sure that more applications will be
discovered in the future; thus the full impact of ADDs on coalitional
game theory remains to be seen.

REFERENCES

[1] X. Deng and C. Papadimitriou. On the complexity of cooperative solution
concepts.Mathematics of Operations Research, 19(2):257–266, 1994.

[2] S. Ieong and Y. Shoham. Marginal contribution nets: A compact representa-
tion scheme for coalitional games. InEC ’05: Proceedings of the Sixth ACM
Conference on Electronic Commerce, pages 193–202, 2005.

[3] E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. A tractable
and expressive class of marginal contribution nets and its applications.
Mathematical Logic Quarterly, 55(4):362–376, 2009.

[4] A. Rapoport. N-person game theory: Concepts and applications. Dover
Publications, 2001.

[5] L.S. Shapley and M. Shubik. Quasi-cores in a monetary economy with non-
convex preferences.Econometrica, 34(4):805–827, 1966.

[6] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and
J. Rosenschein. The cost of stability in coalitional games. In Algorithmic
Game Theory, volume 5814 ofLecture Notes in Computer Science, pages
122–134. Springer, Berlin, 2009.

[7] J.F. Banzhaf. Weighted voting does not work: A mathematical analysis.
Rutgers Law Review, 19(2):317–343, 1965.

[8] L.S. Shapley. A value forn-person games. InClassics in Game Theory,
pages 69–79. Princeton University Press, 1997.

[9] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and their applications. Formal
Methods in System Design, 10(2-3):171–206, 1997.

[10] D.E. Ross, K.M. Butler, and M.R. Mercer. Exact ordered Binary Decision
Diagram size when representing classes of symmetric functions. Journal of
Electronic Testing, 2(3):243–259, 1991.

[11] R.E. Bryant. Symbolic boolean manipulation with orderedBinary Decision
Diagrams.ACM Computing Surveys, 24(3):293–318, 1992.

[12] C. Meinel and A. Slobodov̀a. On the complexity of constructing optimal or-
dered Binary Decision Diagrams. InMathematical Foundations of Computer
Science, volume 841 ofLecture Notes in Computer Science, pages 515–524.
Springer, Berlin, 1994.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.Introduction to
Algorithms. The MIT Press, 2 edition, 2001.

[14] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[15] J.W. Cooley, P.A.W. Lewis, and P.D. Welch. The Fast Fourier Transform and
its applications.IEEE Transactions on Education, 12(1):27–34, 1969.

[16] M. Sauerhoff, I. Wegener, and R. Werchner. Optimal ordered Binary Decision
Diagrams for read-once formulas.Discrete Applied Mathematics, 103(1-
3):237–258, 2000.

