Representation of Coalitional Games with Algebraic
Decision Diagrams

Karthik Aadithya
Tomasz Michalak
Nicholas Jennings

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-8
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-8.html

January 30, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Representation of Coalitional Games
with Algebraic Decision Diagrams

Karthik .V. Aadithya, Tomasz P. Michalak and Nicholas R. Jennings
*Department of Electrical Engineering and Computer Sciences, Theetsity of California, Berkeley, CA, USA
fSchool of Electronics and Computer Science, University of Southampti
fContact author. Email: kv.aadithya@gmail.com

Abstract—With the advent of algorithmic coalitional game theory, it is time Our representation ifully-expressiveand it is alsocompact for
important to design coalitional game representation schees that are both many games of interesiMoreover, our representation has highly

compact and efficient with respect to solution concept compation. To this . itive construction i.e., given a description for a coalitional game
end, we propose a new method for representing coalitional gaes. We show

that our representation (a) is fully expressive (i.e., can & used to represent N Plain English (such as in Examples 1-5 6fi), the process of
any coalitional game), (b) is compact (i.e., has size polynval in the number ~ converting this description into our representation is often very natural
of agents) for many games of practical interest, (c) enablegolynomial time and straightforward.

Banzhaf Index and Shapley Value computation, (d) enables pynomial time . .
algorithms for several core-related questions, such as tésg if a given vector 10 the best of our knowledgeno existing representation offers all

is in the core, checking if the core is empty and computing themalleste such the above advantagesndeed, our analysis i§ll shows that existing
that the strong-e core is non-empty, and (e) enables polynomial time cost of representations are often inadequate — either they blow up in size or the
stability computation. To the best of our knowledge, no exisng coalitional g4 tion concepts become computationally intractable — even for games

game representation offers all these advantages. The coreatd structure that be d ibed fairly simolv i d d vsed fairl i
behind our representation is the Algebraic Decision Diagran (ADD), which is at can be described Tairly simply in words and analysed tairly easily

a widely applied and well-researched topic in the ElectrickEngineering (EE) ~ Using back-of-the-envelope combinatorics. To avoid such shortgsmnin
community. Borrowing ideas from the EE literature, we have dso been able the design philosphybehind our representation is that: the process of
to prove a previously unknown, powerful, positive result that enables efficient constructing the representation from a word description should be ds quic

solution concept computation for a wide range of coalitionhgames. Hence P . - . .
we are hopeful that our representation opens the doors for tag the rich and intuitive as possible, and as easy as asking a series of questions of

corpus of ADD-related EE literature for advancing the field of algorithmic ~ the form “What happens if a particular agent is present in the coalition?

coalitional game theory. What happens otherwise?”.
The core data structure behind our representation is the Algebraic
|. INTRODUCTION Decision Diagram (ADD) [9], which, as we show ir§lll, is ideally

uited to implement the above design philosophy. ADDs are, in fact, well-

The study of interactions amongultiple, autonomous, self-lnterestecinown and widely used in the Electrical Engineering (EE) community to

intelligent agents, Wh9 can form coalitions order to achieve common efficiently represent and analyse real-valued functions of boolectorve
goals, realize collective payoffs or share common goods/costs, is

; : ; . o VAlled arguments. To the best of our knowledge, this paper is the first to
Important and recurring ‘he”?e in multi-agent systems_. Coalitional ga.%%ognize that ADDs can also be highly useful, compact represergation
theory prowd_es a mgthe_mancal frar_nework for .rT‘Ode”'“g and analysuflgr coalitional games. For instance, #ill, we illustrate the power of
such interactions. Historically, the field of coalitional game theory w Ds to compactly represent coalitional games, using as examples the

mzilnly conc;erneﬁ_vzltrde\t/_eloplng SO:Ut'OE.Cﬁnceﬁ’{?r predlclténg t]t]e same easy-to-describe games on which existing representation scheme
outcomes of such interactions, namely, which coalitions would be formed " e, (in§11) shown to be inadequate.

and how the gains from co-operation would be divided amongst coalition) . L
members. More recently however, with the advenlgjorithmic game Besides being compact, ADDs are atsumputationally efficientindeed,

theory, there is an increased emphasisdaveloping efficient algorithms in 81V, we demonstrate thamany game-theoretic questions can be
for computing such solution concepts [1]. reduced to efficiently solvable ADD problen@apitalizing on this, we

) develop efficient (polynomial time) ADD-based algorithms for solving
With the new emphasis on solution concepmputationthe key question the six problems above, namel}EST CORE, EMPTY CORE, ¢- CORE,

IS: Ho‘tN shoutl)d coalltlotnzzll gamft?s_ b?l represent_(ka)ld ;o_rtrf:att szl_ltj.t' , Bl and SV. For each of these problems, we present readily
concepts can be computed as €elliciently as possibles. 1he tradiiofgy, e nentaple pseudocode of a polynomial time solution.

characteristic function representation (which maps every subsetafsag) i
to a real number) is no longer considered adequate because, mpePerhaps the greatest advantage of adopting an ADD-based coalitional

of the game, it is always of length exponential in the number of agerfi@me representation is tivech corpus of EE literature on ADD con-
Compactnesss, therefore, one of the key properties desirable in $ruction, manipulation and analysisor example, drawing upon the EE
representation scheme for coalitional games [2], [3]. However, exizny literature on ADD construction for symmetric boolean functions [10],
counting arguments show that any representation scheme ttiallyis W€ have been able to prove (V1) that a wide range of coalitional
expressive(i.e., can be used to represent any coalitional game) can§gtmes (roughly, all those games where the agents are partitioned into a
be always compact (i.e., there will exist many games for which tffixed number of distinct “types”, where the valge of a cqalltlon dep_ef‘ds
representation would require exponential number of bits). Hence eussfo Oy on the number of agents of each type included in the coalition)

on designinga fully-expressive representation that is compact for mo&f€ efficiently solvable for the core, cost of stability, Banzhaf Indices
games of practical interest and Shapley Values. We believe that many more positive results will

be discovered in the future, based on exploring the connection between
ADDs and coalitional games. Our representation, therefore, opens the
doors for using the vast EE literature on ADDs to advance the field of
8|g}9rithmic coalitional game theory.

Apart from compactnessthe other key requirement isomputational
efficiencyi.e., the representation should enadificient (polynomial time)
algorithms for answering game-theoretic questiabsut widely accepted
solution concepts such as the core, the Banzhaf Index and the Sha
Value [2], [3]. The most important problems in this context include I
(a) testing if a given payoff vector is in the cofBE§ST CORE), (b) check-

ing if the core is empty EMPTY CORE), (c) computing the smallest \We now present an overview of existing techniques for coalitional game
such that the strong-core is non-emptyet CORE), (d) computing the representation. Backed by suitable examples, we highlighptbg and
cost of stabilising the grand coalitio€gS), (e) computing the Banzhaf consof each representation technique.

Indices of all agentsH|), and (f) computing the Shapley Values of allcharacteristic function representatiorithis is the traditional way to
agents §V) [4]-[8]. represent a coalitional game. It consists of a tufig /) where N is a
This paper presents a new method of representing coalitional games,

under whichall the six problems above can be solved in polynomial talso known as Multi-Terminal Binary Decision Diagram

. PREVIOUS WORK

set of agents and : 2 — R is acharacteristic functiorthat maps every MC-Nets, without sacrificing on efficierBl and SV computation. In
subset of agents to a real number, witf)) = 0. Mathematically, this this representation, Batterncan be anyead-once boolean formulae.,
representation is alsofarmal definitionfor the concept of a coalitional any boolean formula wherein each variable appears at most onder Un

game. this relaxed condition, some games that were previously intractable (using
Pros: Fully expressive (by definition). only basic MC-Net rules), now become tractable. For example, the 1-of

Cons: Always of length exponential in the number of agents; hence foMC-Net above is not a basic MC-Net, but it is a read-once MC-Net.

solution concept can be computed efficiently. However, the 2-0f-3 MC-Net above is neither basic nor read-orcthes

A . 2-of-3 game is still intractable.
Induced subgraph representatiofibis representation, proposed by DengJ _))
and Papadimitriou [1], consists of an undirected, edge-weighted grapiS: Fully expressive. Compact for many games for which no compact
G(V,E) whereV is a (finite) set of agents anl : V x V — R is a basic MC-Net is likely to exist (e.g., the 1-of-2 gameSY and Bl are
symmetric function that maps evepgir of agents to a real number. The€aSsy.

value v(C) of a coalitionC' C V is the total weight of all edges in the Cons: Construction can be un-intuitive/exponential (even for easy-to-
subgraph ofG induced byC’._ describe games like the 2-of-3 gamés)S and all core-related questions

. are hard.
Pros: Always compactBl andSV are easy (in P).

Cons: Not fully expressiveCoS and all core-related questions are hardVe Now present additional pathological examples of easy-to-desanitbe
(NP-Hard or worse). easy-to-analyse games, for which constructing an MC-Net is nelesthe

. . I .__extremely un-intuitive and likely exponential.
Unrestricted Marginal Contribution Network (MC-Net) representation: y y exp

This representation, proposed by leong and Shoham [2], consisis dFx@mple 3. The Majority games Gy Here the_”té game _Gﬁ{
(finite) set of “rules” of the formPattern — Valug wherePatternis a Nas2n+ 1 agents{z1 ... 2,41} A coalition is winning iff it is a
propositional formulaover the set of agents andValueis a real number. Maority, i.e., its size is more than.

Given a coalitionC C N, the Patternpart of each rule is first evaluated Majority games are of practical interest because they are one of the few
under the truth assignment < =z € C, for everyx € N. Then the classes ofveighted voting gamethat are easy to analyse. For example,
Value parts ofonly those rules whose Pattern part is satisfied(yare just by inspection, the SV of each agentGr}’ is Tl-u while the BI of
summed up to yield the value(C'). each agent is;3- (*"). The core ofG} is empty, theCoS is n/(n+1)
Example 1. The 1-of-2 gamexG/2. This is a family of games where and the strong-core is non-empty for every > n/(2n+1). However,
the nt" gameG,l/Q has2n agents{z ... zn, Y1 ... yn }. For everyi, the N spite of being SO easy to describe and analyse, no compact MC-Net is
agentsr; andy; aresubstitutegor each other, but not for any other agent<"own for the majority games.

Therefore, a coalition isvinning (has a value 1) iff, for every, at least Example 4. The Glove games}ﬁl,n. The gameG?,i,n hasm + n agents

one of {z;,y;} is present in the coalition. All non-winning coalitions{l1 ... Im, 71 ... 7»}. Eachleft agentl; has oneleft glove, while each
have zero value. right agentr; has oneight glove. The value of a coalition is the number

It is straightforward and intuitive to translate the above word descripti&h Pairs of gloves held by the coalition, i.e., if a coalitiafi hasf left
into an MC-Net forGY/2. Indeed, the resulting MC-Net has only ong?9ents and’ right agents, thew(C’) = min(61, 62).

rule: n Glove games are of practical interest because they are one of the
/\(:ci\/yi) —1 few classes ofcoalitional resource gameshat are easy to analyse.
i=1 For instance, by recognizing that a left (right) agent makes a positive

Example 2. The 2-of-3 gameGﬁ/S. In this family, then®" gameG?/s marginal contribution to a coalition iff the coalition already contains
has3n agents{z; ... £, Y1 ... Yn, 21 ... zn}. FOr everyi, any pair more right (left) agents than left (right) agents, elementary enumerativ
of agents in{z;,y:, z:} is asubstitutefor any otherpair. Therefore, a combinatorics is sufficient to solve tH& and SV problems. The core

coalition iswinningiff, for every i, at least two of{z;, i, z; } are present IS also easily characterised: fon < n (m > n), the core has exactly
in the coalition. one payoff vector that assigns 1 to every left (right) agent and 0 ty eve

. T right (left) agent; form =n, the core comprises all vectors of the form
Translating the above word description into an MC-Net is also mtumvﬁ 2,y ... yl, wherez >0, y>0 anda+y — 1. Again, despite their
N —

and straightforward. The resulting MC-Net again has only one rule:
n mtimes .,
/\ (i Ayi) V (i A zi) V(25 Azi)] = 1 simplicity of analysis, no compact MC-Net representation is known for
il the glove games.

Pros: Fully expressive. Compact and intuitive construction for manfxample 5. The Square game$s3®. In this family of games(+? has

games of interest (Such as the 1-of-2 and 2-of-3 games above). n agents{m1 CL’n}. The Value Of a Coalition iS the Square Of the SiZe
Cons:All solution concepts are hard. of the coalition, i.e., if a coalitiorC' hasd members, them(C) = 6°.

Basic MC-Net representatioiThis representation, also proposed by leongduare games are among the simplest examplespr-additive games
and Shoham [2], makes MC-Nets more tractable Bbr and SV by They are also easy to analyse. For example, just by inspectioB| tioé
imposing the restriction that thattern part of each MC-Net rule can €ach agentirtz;? is n (and so is theV). It is also easy to test if a given
only be a conjunction of literals. This restriction does not compromise tMector is in the core: just sort the vector, compute a cumulative sum and
fully expressiveproperty of MC-Nets. However, it seriously undermine§heck if the result is element-wise at le@ist 4, 9 ... n°]. Again, in spite

the “intuitiveness” of MC-Net construction. For example, under theeeldd Of this extreme simplicity, a compact MC-Net representationdgf is
restriction, it is no longer straightforward and intuitive to construct M€t to be found.

Nets for the 1-of-2 and 2-of-3 games above. Indeed, itis proveB]i&t e anove discussion brings out three important shortcomings of existin
all basic MC-Nets for the 1-of-2 games with positivaluesnecessarily alitional game representations: (a) existing representations are not
contain exp_onentlally many_rules. Thus, the added restriction also FPeYmpact for many games of practical interest, (b) there is no standard
to have seriously compromised on compactness. procedure for translating a word description into the existing representa-
Pros: Fully expressive. Compact for some games (including all inducetibns, and (c)CoS and all core-related questions are NP-Hard or worse
subgraph gamesgV andBl are easy. in all the existing representations.

Cons:_ Constructio_n is often un-intuitive/exponential (even for easy-t%-y contrast, our ADD-based representation (described in subsequen
describe games like the 1-0f-2 and 2-0f-3 gamé®)S and all core- gections) is botttompactand intuitive to construgteven for the patho-
related questions are hard. logical examples above. Moreover, under our representationjeetfic
Read-once MC-Net representatiofThis representation, proposed by(polynomial time) algorithms exist faBl , SV, CoS and all core-related
Elkind et. al. [3], allows a larger class ¢fatternscompared to basic

-~~~ Identical

P () subtrees
, / , (a
AT
GlElklleiles

Fig. 1. ADD construction from decision tree for the squarenga=;.

questions. B. A formal definition for the ADD-based representation

Having explained the fundamentals of ADDs, we now formally define our
ADD-based representation for coalitional games. In this representation
coalitional game is specified by a tupl&y, <, G(V, E, Lv, L)), where

In this section, we illustrate the power of ADDs to compactly represesty is a finite set (the set of agents)

coalitional games. o < is a strict total order defined oiV

o G(V,E, Ly, Lg) is a vertex-labelled, edge-labelled, directed acyclic
graph (the ADD) that satisfies the following:

ADDs are, in essence, highly optimized representations for ordered V is a finite set (the set of ADD vertices)
decision trees. In general, a decision tree is of size exponential in thg £ - v x v/ is a finite set (the set of ADD edges)
number of decision variables. However, the observation is thast oLy :V — NUR is a function that labels each ADD vertex with

prac.tlcallly gncountered qu'Slon trees conta!n 2 5|gn|f|ca.1n.t amount of either an agent (for non-terminal vertices) or a real number (for
duplication i.e., there exist many subtrees within the decision tree that terminal vertices)

are isomorphic to one another. N o Lp:E — {SOLID, DASHED} is a function that labels each ADD
For example, consider the ordered decision tree for the square @§fe edge as eitheBOL| D or DASHED

from Eg. 5, which is shown in Fig. 1 (a). In the figure, each non-termina
node (decision node) is labelled with an agent (the corresponding decisio
variable). Moreover, each decision node has exactly two edges Ieading;
away from itself, one dashed and the other solid. The left (right) child) :
of each decision node, obtained by following the dashed (solid) edge® FOr €ach non-terminal vertex, there exists exactly one vertex
corresponds to aexclude (includepecision, i.e., the agent is excluded ~ called the left child ofu, such that(u,v) € E and Lp((u,v)) =
from (included in) the coalition. Coalition values are specified by the DASHED

terminal nodes. It is readily seen that this decision tree contains significare For each non-terminal vertex, there exists exactly one vertex
duplication (e.g., consider the identical sub-trees rooted at the nodes called the right child ofu, such that(u,v) € E and Lg((u,v)) =
labelledzs, as pointed out in Fig. 1 (a)). SOLID

The fundamental idea behind the ADD is thiatis wasteful to maintain © The reduction rules 1-3 of the previous subsection cannot be used to
multiple identical copies of duplicated subtrees: instead, such isomorphic SImplify G any further.

subtrees should be merged togethtbereby resulting in a much smaller)

(but equivalent) directed acyclic graph (DAG) [9], [11]. To this etidge C- Noteworthy properties of ADDs

reduction ruleshave been formulated for compressing a decision tree inA% a consequence of the reduction rules§tf-A, ADDs have many

a DAG [11]: interesting and useful properties. Of these, we now list the properties
Rule 1: Merge isomorphic terminal node$hat is, if two terminal nodes that are especially relevant to coalitional games.

u andv carry the same value, deleteand redirect all its incoming edges g\, _ApDs as coalitional gamel an ADD, everynodeu can be thought
tow. of as the source node of a unique coalitional game rootad &tewed

Rule 2: Delete dummy node3hat is, if the left child of a decision node thjs way, each ADD node represents a coalitional game in its own right.
u is the same as its right child, then deletend redirect all its incoming For instance, the root (source node) of Fig. 1 (d) represents thaesqu
edges to this (only) child. gameG;®. The left child of the root represents another coalitional game,
Rule 3: Merge isomorphic decision nodeEhat is, if two nodes, andv namely, a square game played by the agénts =3, x4 }. The right child

have (a) identical labels, (b) identical left children and (c) identicaltriglof the root represents yet another coalitional game, namely, the game
children, deletex and redirect all its incoming edges to played by agent§z2, 3,24} where the value of &-sized coalition is

For example, the decision tree of Fig. 1 (a) contains four isomorpﬂfé"‘l)z- In general, given an ADD with agenf:; <z < ... <wn},
terminal nodes with value 1, six isomorphic terminal nodes with value&€ry decision node with label z; represents a unique coalitional game
and four isomorphic terminal nodes with value 9. To get rid of all thiBlayed by agents:; to x,,, whose ADD representation is given by the
duplication, Rule 1 (above) is applied 3+5+3=11 times in successi§HP-ADD rooted atu.

resulting in the DAG of Fig. 1 (b). This DAG is not free from isomorphidReusability of sub-ADDsAs mentioned above, each sub-ADD of an ADD
nodes either. In fact, as shown in Fig. 1 (b), it has two sets of thregpresents a unique coalitional game. Moreover, each sub-ADDy onc
isomorphic nodes each, which can be merged by applying Rule 3 faueated, can be “re-used” again and again at no extra cost. Fopkxam
times in succession, thereby resulting in the DAG of Fig. 1 (c). Thia Fig. 1 (d), the sub-ADD rooted at the middle node labeligds used
DAG again contains two isomorphic nodes (as shown in Fig. 1 (c)yice: once corresponding to the decision “excludebut includez.”
which are merged by a single application of Rule 3. This results and once corresponding to the decision “inclucle but excludexs”.

the DAG of Fig. 1 (d), which ismaximally compresseth the sense Likewise, the sub-ADDs rooted at the middle two nodes labelted
that it cannot be made smaller by any further application of Rules 1laBe each used twice. In general, given an ADD, a sub-ADD rooted at
Such amaximally compresseDBAG (which can be shown to be a uniquenodew is used as many times as the in-degrea:ofThis is analogous
and canonical representation for the original decision tree) is called tandynamic programming: ADD nodes are like memoized solutions to
Algebraic Decision Diagram. Thus, Fig. 1 (d) is an ADD representatiatynamic programming sub-problems; a one-time effort is expended to
for the square gamé&’}?. create them, which pays back many times over. Thus, ADDs provide a

Ill. OUR REPRESENTATION BASED ONALGEBRAIC DECISION
DIAGRAMS

A. The key ADD idea: Remove duplication from decision trees

o (G contains exactly one root/source vertex, i.e., exactly one vertex of
in-degree zero
For all verticesu andv, if (u,v) is an edge i, thenu < v

framework that allows simpler coalitional games (rooted at sub-ADDs)
to be used as building blocks for constructing more complex coalitional
games.

Relationship between an ADD node and its childrémr every (non-
terminal) ADD nodeuw, there is an intuitive relationship between the
coalitional game rooted at and the coalitional games rooted at the
children of u: supposeu has labelz;; then the left (right) child of
u represents a coalitional game played by the agents to z,, that
describes how to evaluate the characteristic funciiorthe absence
(presence) of agent;. In general, for every decision nodewith labelz;,
the left (right) child ofu specifies what happens if agent is excluded
from (included in) the coalition. This observation forms the basis of
our intuitive procedure§(ll-D) for constructing an ADD from a word
description of a coalitional game.

CompactnessOften, the reduction rules dflll-A are so powerful that Recursive
they transform an exponential-sized decision tree into a polynomial-sized relation
ADD [9], [11]. For instance, generalising the ADD construction of Fig. 1

X X Recursi
we see that the ADD representation f@f? would contain a total of relation.

1+2+ ... +(n+1) = (n+1)(n+2)/2 nodes, which is polynomial in
the number of agents. This is true not only for square games; in fact,
as seen from Table |, a polynomial-sized ADD exists (anglikhD, we
show how to construct it) for every single pathological examplé&lbf

Game # agents ADD size Fig. 2. ADD representations for the pathological example§lbf(a) ADD for

G}L/2 m on 42 Ggfs, (b) ADD for Gi”, (c,d) Recursive relations illustrating ADD construction
for G,ll/ % and Gi/ 3 respectively.

G¥3 3n dn +2

aM on +1 n?+2n+3 o N _ _ N
Gl 1 (min 34 Umin 1 a word descrlptlon. of the coglltlonal game, i.e., bypassing the decision
G";;Z" mn - g(min(m, n))l +2 i 3 (_:nl’ n) +mn+ tree altogether. This subsection describes such a method.

Our method works in a bottom-up fashion, first constructing (sub) ADDs
TABLE I. ADD sizes for the pathological examples @fl, indicating that for simpler coalitional games, and then using these as building blocks for
polynomial-sized ADD representations are possible evergémnes that have no Mmore complex coalitional games. At each decision node so constructed,
known polynomial MC-Net. the key idea is to ask the questions “What happens if this particular agent
is excluded from the coalition? What happens otherwise?”. If both these
Expressiveness:ADDs are fully expressive(i.e., they can be used to answers are identical, the current decision node is a dummy node (i.e.,
represent any coalitional game). This follows from a two-step reagonift should not even exist in the ADD). If the answers are different, then
(1) every coalitional game can be represented as a decision tree, @gdanswer to the former question yields the current decision node’s left
(2) every decision tree can be transformed into an ADD by the reductigRild, while the answer to the latter question yields the right child. This
rules of§lll-A [11]. question-answer routine is continued recursively until a terminal node is
Importance of agent ordering:Given a coalitional game, the size of itsreached. Moreover, at each decision node, a new child node iscredie
ADD representation often depends strongly on the agent orderingicho no existing sub-ADD answers the corresponding exclusion/inclusion
[11]. For instance, consider the 1-of-2 gan@gQ; if the agent ordering guestion; otherwise, we just draw an edge from the current decision
IS <1: 21 <y1 <T2<Ya< ... <p <yn, the ADD size is2n +2; node to the previously computed sub-ADD that answers the question
but if the agent ordering isa: z1 < ... <Zp<y1 < ... <uyn, (-6, withoutincurring the cost of creating a new node).
the ADD size shoots up t@"*™" — 1. To achieve compactness, it isAlgorithm 1 illustrates the above question-answer method for the majority
therefore crucial to choose a “good” variable ordering. Howevar,a@ games G . At each decision node, the variable keeps track of
general ADD, the problem of finding an optimal variable ordering ithe current coalition size; the moment a majority is attained (or it is
NP-Hard [12]. Hence we suggest two guidelines that usually result irdatermined that no majority can be attained), the current decision node’s
good variable ordering: (1) place substitute agents close to each othgevant child is designated the appropriate terminal node (0 or 1)tHf bo
and (2) place “less significant” agents ahead of “more significant”tageutcomes are possible, a recursive call is initiated with an updated value
For example, the first guideline applied @./> suggests the ordering of k. A hash table is used to memoise sub-ADDs. Running this algorithm
<y above. Similarly, forG2/3, the first guideline suggests the orderingor n = 4 produces the ADD of Fig. 2 (b). From the figure, it is easy
1 <Y1 <21 ... Ty < Yn < zn, Which results in ADD sizedn + 2. to generalise that the ADD fo&2’ would contain exactlyn + 1) 4 2
To take another example: for the glove ganiéy ,,, the first guideline nodes, as indicated in Table I.
would advocate grouping all the left agents together and all the righiorithm 4 produces ADD representations for the square games, using
agents together. The second guideline would then decide which grougH® same invariant as Algorithm 1.
put first: if m < n (m > n), the group of right (left) agents should come . . .
first, followed by the group of left (right) agents (within a group, théAIgonthm 3 applies the same question answer procedure to the glove

ol ; . .
ordering is immaterial because of symmetry). This results in the AD: mesGin, (Wher_em e bl k.JSS of .generallty).
size shown in Table I. e pattern remains exactly the same as Algorithm 1: answer the

exclusion/inclusion questions, use a hash-table that memoises sub-ADDs
But the invariant is more complicated. At each decision node, two
variablesf; and 6, are maintainedf; denotes the number of distinct

In §llI-A, we described three reduction rules for systematically copairs of gloves already present in the coalition, while denotes the
structing an ADD from a decision tree. However, for large games, ritaximum number of pairs possible assuming that no more left agents will
is not practical to build a decision tree and then convert it to an AD@in the coalition. Running this algorithm withmn, n) = (5, 3) produces
Rather, we need an intuitive method to construct an ADD directly frothe ADD of Fig. 2 (a). The generalisation to arbitrdry, n) is, however,

D. The intuitive ADD construction procedure

Algorithms 1-5 illustrate the intuitive construction gf
ADDs for the pathological examples @fl.

Algorithm 3: ADD creation forG¢! ,: Run creategl_ADD(m, n, 1, 0, 0,0)

m,n-

Algorithm 4: ADD creation forG;?: Run createsq ADD(n, 1, 0, ()

Algorithm 1: ADD creation forG’: Run createmaj ADD(n, 1, 0,0)

function create_maj_ADD(n, label, k, hash table)
/'l invariant:

if hash table contains keylabel k) then
| retun hashtableflabel k)];
end

k = size of current coalition

/1 answer the exclusion question
ADDNode left child;
if n+ k < labelthen
\ left_child = Ter mi nal node with val ue 0;
else
\ left_child = createmaj ADD(n, label+1, k, hashtable);
end
/1 answer the inclusion question
ADDNode right child;
if k ==n then
\ right_child = Ter mi nal node with value 1;
else
\ right_child = createmaj ADD(n, label+1, k+1, hashable);
end
/'l combine the exclusion and inclusion answers
ADDNode curr =new ADDNode (decision variable %;.5.:);
curr — left = left_child, curr — right = right_child;
hash tablef(label k)] = curr;
return curr;
end

Algorithm 2: ADD creation forGL/%: Run createl_of_2_ADD(n)

function create_1 of_2_ADD(n)

if n ==1 return the base case ADD of Fig. 2 (c);
ADDNode prev = createl_of 2 ADD(n-1);

ADDNode X = new ADDNode (decision variable z5);

ADDNode Y = new ADDNode (decision variable %,,);

ADDNode ZERO =Termi nal node with val ue 0;
X — left_child =Y, X — right_child = prev;

Y — left_child = ZERO,Y — right_child = prev;

return X;

end

function create_gl_ADD(m, n, label, 6:, 62, hash table)

/1 invariants: ¢, = # paired gloves, f» = mn(# unpaired
left gloves, # undecided right gloves)

if hash table contains keylabel 6., 6-) then

| return hashtable[label 6:,62)];

end

/1 answer the exclusion question

ADDNode left child;

if label < m then

if label== m AND 60> == 0 then

\ left_child = Ter mi nal node with val ue 0;

else

| left_child = creategl ADD(m, n, label+1, 04, hashtable);

end

else

if label==n + m then

| left_child = Ternmi nal node with value 6i;

else

end

end

/1 answer the inclusion question

ADDNode right child;

if label < m then

if o ==n — 1 then

\ right_child = creategl_ADD(m, n, m+1, 0, n, hashable);

else

\ right_child = creategl_ADD(m, n, label+1, 00>+1, hashtable);
end

else

if label==n +m then

| right_child = Terni nal node with value 6+ 1;

else

\ right_child = creategl_ADD(m, n, label+1,0;+1, 6,—1, hashtable);
end

end

/1 conbine the exclusion and inclusion answers

ADDNode curr =new ADDNode(decision variable £label < m) ? liapel : Tiabel-m);
curr — left = left_child, curr — right = right_child;
hashtablef(label 6:, 6-)] = curr;

return curr;
end

| left_child = creategl_ADD(m, n, label+1¢;, min(6,m+n-abel), hashtable);

function create_sq ADD(n, label, k, hash table)
Il invariant: k = size of current coalition
if hash table contains keylabel k) then
| return hashtableflabel k)];
end
/'l answer the exclusion question
ADDNode left child;
if label==n then
| left_child = Termi nal node with val ue k%
else
\ left_child = createsq ADD(n, label+1, k, hashtable);
end
/'l answer the inclusion question
ADDNode right child;
if label== n then
| right_child = Terni nal node with value (k+1)%
else
\ right_child = createsq ADD(n, label+1, k+1, hasttable);
end
/'l conbine the exclusion and inclusion answers
ADDNode curr =new ADDNode (decision variable z45c1);
curr — left = left_child, curr — right = right_child;
hash tablef(label k)] = curr;
return curr;
end

Algorithm 5: ADD creation forG2/*: Run create2_of_3 ADD(n)

function create_2_of _3_ADD(n)

if n == 1 return the base case ADD of Fig. 2 (d);
ADDNode prev = create2_of_3 ADD(n-1);
ADDNode X = new ADDNode (decision variable =,,);
ADDNode Y1 = new ADDNode (decision variable #.);
ADDNode Y> = new ADDNode (decision variable %,,);
ADDNode Z = new ADDNode (decision variable =,,);
ADDNode ZERO =Terni nal node with val ue 0;
X — left_child = Y;, X — right_child = Y3;

Y: — left_child = ZERO, Y1 — right_child = Z;

Y, — left_child = Z, Y, — right_child = prev;

Z — left_child = ZERO, Z — right_child = prev;
return X;

end

lengthy and tedious; so we omit the proof for fﬁ‘éﬁ,n ADD size quoted ¢ such that this weaker condition can be satisfied by at least one payoff

in Table I.

vector x.

Similarly, Algorithm 2 and Algorithm 5 produce ADD representations foMore recently, a new solution concept [6] basedtioa cost of stabilising

the 1-of-2 and 2-of-3 games respectively. The recursive relatises!

the grand coalitionhas been proposed for games whose core is empty:

here are much simpler; they are illustrated (along with the base casee it is assumed thatl®nevolent external partyould like to stabilise

n = 1) in Fig. 2 (c) and Fig. 2 (d) respectively.

IV. OUR REPRESENTATION THE ALGORITHMS

This section presents polynomial time ADD-based algorithms (along Wﬁ
readily implementable pseudocode) for solving the six key game-theorecf
problems mentioned ifl: TEST- CORE, EMPTY- CORE, ¢-CORE, CoS,

Bl andSV.

A. TEST- CORE, EMPTY- CORE, ¢-CORE and CoS

Given a coalitional gamg = (N, v : 2V —R), with v(#)=0. Consider

a payoff vectorZ (which is a|N| dimensional vector whose entries add
up to v(IV)) that maps every agent € N to a payoff #[a]. We say
that a coalitionC C N is happy with the payoff vectorZ provided
the sum of the payoffs of all agents belongingdbis at leastv(C),
i.e., the vectorZ collectively assigns to coalitiod' a payoff that is at
least as large as the intrinsic valu€¢C). The core [4] of a coalitional
game is the set of all payoff vectoissuch that every coalitiod’ C N

is happywith Z. The intuitive explanation is that the core contains all
stablepayoff divisions, i.e., all possible ways of distributing the value of
the grand coalition among its members so that no subset of agents has
any incentive to “break off” from the grand coalition.

However, the problem is that for many coalitional games, the core is
empty (i.e., there exists no stable way to distribute the value of the grand
coalition among its members) [4]. For such games, a solution concept
called the strong-core [5] has been proposed, which usesvaaker
stability criterion for every coalitionC C N, the collective payoff
assigned toC' should be at least(C) — e. The intuition behind the
strong e-core is that no coalitiorC C N would gain more thare by
breaking off from the grand coalition. In other words, if a penaltye of

is imposed for leaving the grand coalition, then there is no incentive foig- 3.
any subset of agents to break off. The challenge is to find the small@&rmediate node

the grand coalition by awarding it a value over and above its intrinsic

valuerv(N). The problem is to find the smalleft such that the amount

Cstability (CoS)

v(N) + A can be distributed among the agents, leaving no coalition
C N with an incentive to break off. This smalleét is called thecost

@) () becomes (@)

%

k>au agents between "a" and "b"
(if "b" is a terminal node, all agents after "a")

becomes

ADD
root

Augmented DAG

Original ADD

Converting an ADD into an augmented DAG. Top: Rulesntooduce
s on ADD edges and before the ADD root. Bottexample

conversions of th(é?é/2 ADD (left) and theG4! ADD (right) to augmented DAGs
(the newly introduced nodes are indicated by boxes arouewh)}th

Algorithms 6-8 describe polynomial-time ADD-based procedures for
solving TEST- CORE, EMPTY- CORE, ¢- CORE and CoS. These algo-
rithms work by generating amugmented DAGrom the given ADD.

In the augmented DAGall agents occur on all paths, and in the correct
order. That is, if the game is played by agents<z: < ... <z, then
every complete patfstarting at the source node and ending at one of the
terminal nodes) in the augmented DAG would correspond to the label
sequencery, z2 ... Tn, followed by a terminal node. Fig. 3 shows how
to convert an ADD into an augmented DAG, by inserting intermediate
nodes (if necessary) on each ADD edge and before the ADD root. Note
that the concepts such as terminal/non-terminal nodes, dashed/sa#&l edg
left/right children etc. apply equally well to augmented DAGs. Also note
that the size of the augmented DAG is polynomial in the size of the

Algorithm 8: ¢-CORE in polynomial time

Input: Coalitional game’= (N, <,G(V, E, Ly, Lg)), with v(0) =0.
Output: The smallest such thatl” has a non-empty strongeore
(and a corresponding payoff vect@r)
G'(V',E', Ly, L) = augmented DAG created frod;
/1l all further operations only on G’
initialize LPconstraints ={d[source node of7] = 0};
foreach DAGEdgee = (u,v) in E’ do
if Lg (e) == DASHED then
| LPconstraints.add(v] < d[u])
else
| LPconstraints.add(v] < d[u]+Z(Ly(u)))
end
end

original ADD.
Algorithm 6 tests if a given payoff vectof lies in the core of a

coalitional game represented as an ADD. The key observation thatsmake

the algorithm polynomial is that: it is not necessary to enumerate
coalitionsC' and check that they are happy withrather, it is sufficient to

foreach terminal nodew € V’ do LPconstraints.add(u] > Ly (u)—e);
LPconstraints.ad®_, . y Zla] = v(N))
(€opt, [de, Ze, €opt]) = LPsOlvein e subj. to LPconstraints);

all return [eopt, Ze;

Algorithm 8 solvese- CORE in polynomial time, using techniques very

check that at every terminal nodeof the augmented DAG, the coalitionssimilar to Algorithm 7. The only difference is that a new variablés

with value Ly (u) that receive thdeast payoffunder® are happy. The

introduced into the LP constraints at the terminal DAG nodes. Minimising

least payoffat each terminal node is found using the critical path methQd(subject to the LP constraints) is again an instance of LP (hence solved
for DAGs [13, Sec. 24.2]. Thus Algorithm 6 runs in time linear in then polynomial time).

size of the augmented DAG.

Algorithm 6: TEST- CORE in polynomial time
Input: Coalitional gamel’= (N, <, G(V, E, Lv, Lg)), with v(0) =0.
Payoff vectorZ;..; of dimension|N|, whose entries add up ta(V).
Output: TRUE if Z;cs: is in the core ofl". FALSE otherwise.
G'(V',E', Ly, Lg) = augmented DAG created froi;
/1 all further operations only on G’
foreach nodew € V', initialize d[u] = +oo;
initialize d[source node of:’] = 0;
vectoDAGNode topological order = topologicalsort(G’);
foreach DAGNodeu in topological order do
if v is a non-terminal nod¢hen
d[left_child(u)] = min(d([left_child(w)], d[u]);
elsed[rightﬁchild(u)] = min(d[right_child(w)], d[u] + Ztest[Ly -+ (u)]);
| if dlu] < Ly/(u) then return FALSE;

end
end

return TRUE;

Algorithm 7 outlines a polynomial time procedure #PTY- CORE and
CoS. The main idea is that: for each nodein the augmented DAG, a
variabled[u] maintains a lower bound on tHeast payoff at:, which is
the shortest path length from the DAG sourceutovhere eactSOLI D
edge(v, w) is assigned a weight[v] and eachDASHED edge is assigned
weight zero. This lower bound is enforced by a setiméar constraints

B. Bl and SV

Given a coalitional gamg = (N,v: 2V — R), wherev())) = 0. The
Banzhaf Index [7]BI,(x) of agentz in this game is defined by:

v S [SULe) —w(S)]

SCN\{z}

Bly(z) =

The intuition is thatBI,(z) is the expected marginal contributiomade
by the agent: to a (uniformly) randomly chosen subset &f\ {z}.

The Shapley Value [8FV,(z) of agentz in the gamey is defined by:
1 1
il > WS Ufz}) —v(9)]
SCN\{z} INI—1
S|

SVy(x) =

The intuition is thatSV, (z) is theexpected marginal contributiomade
by the agent: to thesubset of agents that occurs befaren a (uniformly)
randomly chosen permutation of all the ageifs

Algorithm 9 describes a polynomial time procedure for computiig
andSV, given a coalitional game represented as an ADD. The algorithm
works by dynamic programming. The agents playing the game are
denotedr; <z2 <...<z,. The agent whos8l /SV is to be computed

Thus, EMPTY- CORE and CoS are both reduced to linear programming$ denotedz;.
(LP) instances, for which well-known polynomial time techniques (e.do find Bl (x;), a dynamic programming sub-problesi“‘(u) is defined

Karmarkar’s algorithm [14]) exist.

Algorithm 7: EMPTY- CORE and CoS in polynomial time
Input: Coalitional gamel'= (N, <,G(V, E, Lv, Lg)), with v(0)=0.
Output: CoS of I" and a payoff vectofes. The core is non-empty
iff the returnedCoS is O (if so, the returnedcos lies in the core; if
not, the core is empty and the returnégs stabilises the grand
coalition while achievingCoS).
G'(V',E', Ly, Lg) = augmented DAG created frod;
/1 all further operations only on G’
initialize LPconstraints ={d[source node of+'] = 0};
foreach DAGEdgee = (u,v) in E’ do

if Ly (e) == DASHED then

| LPconstraints.add(v] < d[u])

else

| LPconstraints.add(v] < d[u]+Z(Ly/(u)))

end
end
foreach terminal nodeu €V’ do LPconstraints.add(u] > Ly (u));
(opt, [deos, Teos)) = LPsolve(min > acn Zla] subj. to LPconstraints);
CoS = opt — v(N); return [CoS, Zeos);

at each node; of the given ADD. This sub-problem asks for thember

of subsets ofz1,z2 ... Ly (u)} (WhereLy (u) is replaced by, if v is

a terminal node), not containing;, under whose truth assignment there
exists a path from the source node o Another sub-problemaﬁ"(u),
counts the subsetsontaining z; that have a source-te-path. Fig. 4
provides detailed equations for solving these sub-problems at the child
nodes, using the solutions memoised at the parent nodes. Finally, the
dynamic programming solutions at the terminal nodes are put together to
computeBl (x;) (the equations for this are also supplied by Fig. 4).

For computingSV(z;), a dynamic programming sub-proble®fi“* (u, m)

is defined at each ADD node for every0 <m <|N|. This sub-problem
asks for thenumber ofm-sized subsets ofxi,z2... Ly (u)} (where

Ly (u) is replaced byz, if u is a terminal node), not containing;,
under whose truth assignment there exists a path from the source node
to . Similarly, the sub-problens:™(u, m) counts them-sized subsets
containing z; that have a source-to-path. As before, Fig. 4 provides
the equations for computing sub-problem solutions at child nodes using
solutions memoised at parent nodes.

Complexity: For Bl , (a) each ADD node is visited exactly once (in

topological order), (b) at each non-terminal ADD node, it takes time
O(|N]) for updating the dynamic programming solutions at the child

Notation Algorithm 9: Bl and SV in polynomial time

oN={z1,22 ... T,} Input: Coalitional gamd” = (N, <,G(V,E, Ly, Lg)), Agentz; € N
oz <z < ... <y Output: Bl andSV of agentz; in I’
Initialization of the source node foreach nodewu € V, initialize {ai"(u), a0" (u), 8" (u, m), B (u,m)} all to zero;
Eanzhat Index Shapley Value initialize {af™(u), af“t (v), 8" (u, m), BZ“ (u, m)} for the source nodéuse table on left)
initialize Bl (z;) = 0, SV(z;) = 0;
:;;Jéze "@ "@ vectofADDNode) topological order = topologicalsort(G);
. B () = 0 foreach nodew in topological order do
i<i = 0 R if u is a non-terminal nodehen
o] (u) =2’ B (uym) = (J) use the dynamic programming table below to:
update {a" (v), a?"*(v), Bi" (v, m), B2 (v,m)}, wherev = left_child(u)
N C Anum) = (j - 2) update {a" (v), af"" (v), Bi" (v, m), B* (v,m)}, wherev = right_child(u)
isi M (w) =2 ml update Bl (z;) and SV(z;) using the final solution table below

a;)ut(ﬂ) — 9i=2 . end
B (u,m) = (j m 2) end
return Bl (z;), SV(x;)

Dynamic Programming: Computing the solutions to sub-problems at chdéswousing previously computed (and memoized) solutions at the parens mode

Banzhaf Index Shapley Value
Non-terminal
T @@ @@ “@ @ @@
k<i ai"(v)+=0 a"(v)+=0 Bi™ (v, m)+=0 Bi" (v, m)+=0
) . . m . m
= A% (W) 4= o (w)2F I Q% ()= 0¥t (y) 2T out _ out k—j—1 out _ out k—j—1
(v) (u) (v) () B (v, m)+ ;B wnl®) B m)+ gﬁ @i, 1
. p in _ - out k - .7 -2 in _ - out k - .7 -2
k>0 al@4= a2 al)4= ettt BT 3 A <m I B AP DL U] P
=0 =0
. . out out k—j—2 out out k—j—2
J < @i (’U)Jr: Qi (u)2 ! Qi (’U)Jr: @i (U)Q ! out - out k —] -2 out = out k—] -2
B (v,m) 4= ;ﬂl @™ 7T B e m) = ;ﬁl @D
k> in in out k—j—1 Bi™(v,m)+=0 B (v, m)+= i@?ut(1) k=i-1
> ;" (v)+=0 ;" (v)+= o] (u)2 i\ i (U, m)+= N |
. out _ _out k—j—1 out _ ou T ot k—j—1 1=0
j=i a7 (v)+=a7" (u)2 af™(v)+=0 B (v, m)+= > B t(u7l)< o) B2 (v, m)+= 0
1=0

. . . . in . S in k 7] -1 in . S in k 7.7 -1
k> a;’z"’(v)+: a;"(u)2k_J_1 a;;"(v)Jr: a:"(u)2k—ﬂ—1 Bi" (v, m) += ,Z;@ (u, l)(m—1) Bi" (v, m) += ,Z;@ (u,1) m—1—1

B (. m) b= 3 B () <k W 1) = o <k_]l o

1=0 =0

j>i o aEb=al @2 T e ()= a2t

N—

Final solution: Using the answers to dynamic programming sub-probé&rterminal nodes to computeBl (x;) and SV(x;)

Banzhaf Index Shapley Value
L in ou i i
Bl (z)+= 22 [ain) — a7 (u)] SV(zi)+= - 3" L(X,(?)) (817 1) — 7, m)|
m=0 m

Fig. 4. Computation of answers to dynamic programming sub-proslfrom previously memoized solutions. Note that ifs a terminal nodek is assumed to be
n+ 1. Also, (}) is assumed to bé wheneverk > n or k < 0, with (8) =1.

nodes (since this involves at most falr-bit multiplications), and (c) all is O(|N|?log |N||ADD]).

other operations, such as initialization and obtaining the final solution,

are insignificant compared to the update operation in terms oibig- V. ADDITIONAL OBSERVATIONS
complexity. Hence the complexity d8l is O(|N||ADD]J) (which is
polynomial in both the number of agents and the size of the input AD |

For SV, (a) each ADD node is visited exactly once (in topological order,
(b) at each non-terminal ADD node, it takes tirt&|N|? log | N|) for b
updating the dynamic programming solutions at the child nodes (althou1%

) ; - 3)
gltl ftlrr]set SS\'/gBt 52?;31233:2 Sgﬁegsvfgwg‘g gérﬁilﬁt?c;?]tsoc;t tgg]at can be constructed for it in linear time [16]. Thus, given any basic/read
P q [t once MC-Net, it is possible to very efficiently convert it intolist of

length sequences ¢fV|-bit numbers, which can be carried out in t'meADDs with one ADD per MC-Net rule. Each ADD in the list can then

9 . : .
O(|N|"log|N]) using Fast Fourier Transform (FFT) based techmqu%se solved individually forBl or SV (using Algorithm 9); then these

[15]), and (c) all other operations, such as initialization and puttin\g;;dlues can be summed up to yield the desired agent's overatr SV
together the final solution, are insignificant compared to the uPd?Pﬁaking use of the additivity property)

operation in terms of big? complexity. Hence the complexity dV -)
The above method, in fact, suggests a general strategy for analysing

ere we make two observations that enable efficient analysis of coali-
jnal games using ADDs.

bservation 1. The ADD-List. It is well-known that all read-once
olean formulas can be represented efficiently using ADDs. Spdigifica
every read-once boolean formula evariables, an ADD of siz&(n)

unrestricted MC-Nets: (a) convert each MC-Net rule into an ADMising ADDs. Thus, the above theorem at once proves that many gdmes
(b) solve each ADD individually foBI and SV (using Algorithm 9), practical interest, belonging to widely different categories of coalitional
and (c) use the additivity property for computing the oveBillandSV games, can all be compactly represented and efficiently solved using
efficiently. Thus, ADDs are a powerful way to analyse unrestricted MBDDs.

Nets for Bl and SV. As long as each MC-Net rule can be translated
into a compact ADD, the method will be efficient; there is absolutely no
requirement that the MC-Net rules should be basic/read-once. fohere
ADDs enable a much larger class of MC-Neatternsthan was ever

possible before. Problem Induced ~ Unrestricted ~ Basic ~ Read-once

VII. CONCLUSIONS

Observation 2. Finding “high-yield” coalitions. Consider a situation subgraph MC-Net MC-Net MC-Net

whereagents need to be paid to join coalitiorEhis is common in many v(C) givenC v v v v
real-life situations: e.g., companies need to pay employees in order forTEST- CORE X X X X v
them to work together. One way to model this is a coalitional géivie/), EMPTY- CORE X x x x v
along with apayment vectop that specifies the payment required by each ¢ CORE X X x x v
agent to participate. Given an total buddetthe natural question to ask CoS x X X X v
is: how to maximisev(C') such that all agents i’ can be paid off BI 4 X v v v
within the budget? Although this problem is NP-Hard in general, it can sv 4 X v v v

be solved efficiently ify is represented as an ADD. Indeed, the algorithm agie 1. comparing different representation schemes witspeect to efficiency of solution

is very similar to Algorithm 6 forTEST- CORE: at each terminal ADD concept computation/ means the problem is in P and means the problem is NP-Hard or

nodew, use the critical path method for DAGs to find the coalition with worse.

value Lv (u), that requires least paymentf these, pick the coalition that In this paper, we have presented a new method, based on Algebraic
yields the maximum value, while demanding a payment at mibst Decision Diagrams, for representing coalitional games. We have demon
strated that ADDs are not only compact for many games of practical
interest, but also computationally efficient for many solution concepts.
Table Il compares the efficiency of solution concept computation in our
We now present a previously unknown, positive result showing thade w 'éPresentation versus existing state-of-the-art techniques. As the table
range of coalitional games can in fact be solved efficiently (with respediOWs, no existing representation scheme offers advantages aiepar

to TEST- CORE, EMPTY- CORE, ¢- CORE, CoS, Bl and SV) using our (0 ADDs.

ADD-based representation. To prove this, we draw upon the EE literatile have also presented the ADD-List, a new data structure that enables
on ADD construction for symmetric boolean functions. efficient Bl and SV computation for unrestricted MC-Nets. With ADD-
Definition. k-Typed Coalitional Game (:-TCG). A coalitional game LiSts, @ much larger class of MC-Neatternscan be handled, than was

g = (N,v) is said to bek-typed if the set N can be partitioned E€Ver possible before. In short, ADDs offer all the advantages of-sfate
into % disjoint subsetsN1, N> ... N, whose union isN, such that the-art representations, and then some more!

the valuev(C) of every coalition C' can be expressed as a functionWe have also shown that ADDs can be applied to solve a new and inter-
f(n1,n2...ny), wheren; denotes the number of agents@fbelonging esting problem in coalitional game analysis: finding high-yield coalitions
to IV, for everyl <i < k. under a budget constraint.

The intuition is that, in &-TCG, one can group the agents irkdypes, Most importantly, in this paper, we have forged the first link between
and the value of any coalitiof’ would depend only on the number ofcoalitional game theory and Algebraic Decision Diagrams. As a result,
agents of each type, who are @1 we have made it possible to borrow ideas from the huge EE literature

Example 6. Consider a weighted voting gané,, (w1, wa, ws, ¢) played 0N ADDs, and apply them to advance the field of algorithmic coalitional
among3n agents,, of whom have weighto1, n of whom have weight 9ame theory. We have already demonstrated one such application: the
w, andn of whom have weightvs, where the winning quota ig. Then k-typed coalitional games. We feel sure that more applications will be
Wi (w1, wa, ws, q) is a3-TCG because the value of every coalitich discovered in the future; thus the full impact of ADDs on coalitional
can be determined, knowing only the number of agents of each wei§fme theory remains to be seen.

{wl,wz,wg} in C.

Example 7. The glove gameﬁ%,n are 2-TCGs because the value of
any coalitionC' can be determined, knowing only the number of left[1] X. Deng and C. Papadimitriou. On the complexity of coopigeasolution
agents and the number of right agentsin concepts.Mathematics of Operations Researd®9(2):257—-266, 1994.

- - [2] S. leong and Y. Shoham. Marginal contribution nets: A coatpapresenta-
Theorem. Let g = (N,v) be ak-TCG with n agents. Thery has an tion scheme for coalitional games. EC '05: Proceedings of the Sixth ACM

ADD representation containing at mast+ n)*(1+ kn/2) nodes. Conference on Electronic Commergeages 193-202, 2005.

Proof sketch: The result follows by generalising a theorem outlined in[3] E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldgiel A tractable
[10], which states that all-TCGs played by: agents can be represented ~ and expressive class of marginal contribution nets and iglications.
by ADDs containing at mosO(n?) nodes. It is quite straightforward Mathematical Logic Quarterly55(4):362-376, 2009.

to generalise this construction I TCGs using the variable ordering: [4] A. Rapoport. N-person game theory: Concepts and applicatioriBover
{agentse Ni} < {agentse N} < ... < {agents€ N}, where Publications, 2001.

Ni, N» ... Ni, make up thek-partition of N (described in the definition [5] L.S. Shapley and M. Shubik. Quasi-cores in a monetary @egnwith non-
above). Within a sefN;, the ordering of agents is immaterial. The ADD _ COVex preferencestconometrica34(4):805-827, 1966.

so constructed can be shown to contain at nibstn)" (1+kn/2) nodes. [6] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerma. Rothe, and
Due t traint it 2 detailed f J. Rosenschein. The cost of stability in coalitional gamesAlgorithmic
ue o space constraints, we omit a aetailed proor. Game Theoryvolume 5814 ofLecture Notes in Computer Sciengeages

122-134. Springer, Berlin, 2009.
b?] J.F. Banzhaf. Weighted voting does not work: A mathemétazalysis.

VI. ANEW THEORETICAL RESULT

REFERENCES

The above result shows that whenevelis bounded,k-TCGs can be
represented compactly using ADDs. For example, all weighted votin Rutgers Law Reviewl9(2):317—343, 1965.

games with at mosk different weights (vyherek: is bounded) can be [8] L.S. Shapley. A value fom-person games. Ii€lassics in Game Theary
compactly represented (and hence, efficiently solvedTie®T- CORE, pages 69-79. Princeton University Press, 1997.

EMPTY- CORE, -CORE, CoS, Bl and SV) using ADDs. Similarly, all - [0] R, Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Madii Pardo, and
coalitional skill/resource games where the agents can be classified iNto . somenzi. Algebraic Decision Diagrams and their applicatioFormal
at mostk skill/resource profilexan be represented and solved efficiently Methods in System Desigh0(2-3):171-206, 1997.

[10] D.E. Ross, K.M. Butler, and M.R. Mercer. Exact ordereidy Decision
Diagram size when representing classes of symmetric fursctitournal of
Electronic Testing2(3):243-259, 1991.

[11] R.E. Bryant. Symbolic boolean manipulation with orde&idary Decision
Diagrams.ACM Computing Survey24(3):293-318, 1992.

[12] C. Meinel and A. Slobodav. On the complexity of constructing optimal or-
dered Binary Decision Diagrams. Mathematical Foundations of Computer
Sciencevolume 841 ofLecture Notes in Computer Sciengages 515-524.
Springer, Berlin, 1994.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stelntroduction to
Algorithms The MIT Press, 2 edition, 2001.

[14] N. Karmarkar. A new polynomial-time algorithm for linearggramming.
Combinatorica 4(4):373-395, 1984.

[15] J.W. Cooley, P.A.W. Lewis, and P.D. Welch. The Fast feufransform and
its applications.|[EEE Transactions on Educatipi2(1):27—-34, 1969.

[16] M. Sauerhoff, I. Wegener, and R. Werchner. Optimal cedeBinary Decision
Diagrams for read-once formulasDiscrete Applied Mathematics103(1-
3):237-258, 2000.

