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This technical report serves as an informal proceedings for the 9th International Workshop on Satis-
fiability Modulo Theories (SMT’11), held as a satellite workshop of the 2011 Interational Conference on
Computer-Aided Verification (CAV), held in Snowbird, Utah, USA.

The workshop spans two days. The program comprises two morning keynote talks, and presentations of
peer-reviewed full articles, extended abstracts, and presentation-only papers that have appeared elsewhere.
These proceedings include a brief statement of the goals of the workshop, the workshop program, abstracts
for the invited talks and presentation-only papers, and full-length papers.

Motivation and Goals of the Workshop

Determining the satisfiability of first-order formulas modulo background theories, known as the Satisfiability
Modulo Theories (SMT) problem, has proved to be an enabling technology for verification, synthesis, test
generation, compiler optimization, scheduling, and other areas. The success of SMT techniques depends
on the development of both domain-specific decision procedures for each background theory (e.g., linear
arithmetic, the theory of arrays, or the theory of bit-vectors) and combination methods that allow one to
obtain more versatile SMT tools, usually leveraging Boolean satisfiability (SAT) solvers. These ingredients
together make SMT techniques well-suited for use in larger automated reasoning and verification efforts.

The aim of the SMT 2011 workshop is to bring together researchers working on SMT and users of SMT
techniques. Relevant topics include, but are not limited to:

• New decision procedures and new theories of interest;

• Combinations of decision procedures;

• Novel implementation techniques;

• Benchmarks and evaluation methodologies;

• Applications and case studies, and

• Theoretical results.
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Workshop Program

Day 1: July 14

Time Details Page No.
8:45 – 9:00 Welcome and Introduction
9:00 – 10:00 INVITED TALK

Viktor Kuncak.
Software Construction using Executable Constraints. 5

10:00 – 10:30 Break I
INTERPOLANTS

10:30 – 11:00 Maria Paola Bonacina and Moa Johansson.
Towards interpolation in an SMT solver with integrated superposition. 9

11:00 – 11:30 Amit Goel, Sava Krstic, Rupak Majumdar and Sai Deep Tetali.
Quantified Interpolation for SMT. 19

11:30 – 12:00 Andrew Reynolds, Cesare Tinelli and Liana Hadarean.
Certified Interpolant Generation for EUF. 30

12:00 – 2:00 Lunch
DECISION PROCEDURES I

2:00 – 2:30 David Deharbe, Pascal Fontaine, Stephan Merz and Bruno Woltzenlogel Paleo.
Exploiting Symmetry in SMT Problems (presentation only). 6

2:30 – 3:00 Ruzica Piskac and Thomas Wies.
Decision Procedures for Automating Termination Proofs (presentation only). 6

3:00 – 3:30 Thomas Wies, Marco Muniz and Viktor Kuncak.
An Efficient Decision Procedure for Imperative Tree Data Structures
(presentation only). 6

3:30 – 4:00 Break II
DECISION PROCEDURES II

4:00 – 4:30 Dejan Jovanovic and Leonardo De Moura.
Cutting to the Chase: Solving Linear Integer Arithmetic (presentation only). 7

4:30 – 5:00 Duckki Oe and Aaron Stump.
Extended Abstract: Combining a Logical Framework with an RUP Checker
for SMT Proofs. 40

5:00 – 6:00 SMT Business Meeting
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Day 2: July 15

Time Details Page No.
9:00 – 10:00 INVITED TALK

Bud Mishra.
When Biology Meets (Symbolic) Computing:
Algebra, Biology, Computability and Diophantus. 5

10:00 – 10:30 Break I
MODEL CHECKING AND SYNTHESIS

10:30 – 11:00 Hyondeuk Kim, Fabio Somenzi and Hoonsang Jin.
Selective SMT Encoding for Hardware Model Checking. 49

11:00 – 11:30 Timothy King and Clark Barrett.
Exploring and Categorizing Error Spaces using BMC and SMT. 59

11:30 – 12:00 Steve Haynal and Heidi Haynal.
Generating and Searching Families of FFT Algorithms (presentation only). 7

12:00 – 2:00 Lunch
SMT FOR SOFTWARE

2:00 – 2:30 Arie Gurfinkel, Sagar Chaki and Samir Sapra.
Efficient Predicate Abstraction of Program Summaries (presentation only). 7

2:30 – 3:00 Mahmoud Said, Chao Wang, Zijiang Yang and Karem Sakallah.
Generating Data Race Witnesses by an SMT-based Analysis (presentation only). 8

3:00 – 3:30 Stephan Falke, Florian Merz and Carsten Sinz.
A Theory of C-Style Memory Allocation. 71

3:30 – 4:00 Break II
4:00 - 6:00 SMTLIB INITIATIVE AND SMTCOMP
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Abstracts of Invited Talks

Software Construction using Executable Constraints.
Viktor Kuncak (EPFL)

Constructing software that satisfies the desired properties can greatly benefit from solvers based on
satisfiability modulo theories (SMT) paradigm. We propose a research program in which software construc-
tion and SMT technology become even more interconnected than today. Instead of checking properties of
low-level legacy programs, new generations of SMT solvers could focus on constructing programs and val-
ues within compilers and run-time systems of declarative programming languages designed with constraint
solving in mind. This agenda has implications on both theories and interfaces of future SMT solvers.

The theories of interest come in part from functional programming languages and from data structure
libraries. They include algebraic data types (term algebras), arrays, maps, sets, and multisets, extended
with recursively defined functions. New interfaces for SMT solvers are driven by their extended role: in
addition to yes/no satisfiability answers, we need synthesis of values and programs. To answer declarative
queries at run-time, we need efficient generation and fair enumeration of models, as well as their mapping to
programming language values. To support the compilation of implicit specifications, we need SMT solvers
that can solve parameterized problems and perform constraint simplification. Ultimately, SMT solvers can
become virtual machines for constraint programming, working with data structures directly manipulated by
programs, and performing selective specialization of frequently invoked constraint solving paths.

This is joint work with: Barbara Jobstmann, Ali Sinan Koeksal, Ruzica Piskac, and Philippe Suter. More
information at http://lara.epfl.ch/w/impro and http://richmodels.org .

When Biology Meets (Symbolic) Computing: Algebra, Biology, Computability and Diophantus.
Bud Mishra (NYU)

In this talk, I will introduce a new approach to compositional and hierarchical modeling of biological
systems and its relations to certain problems in algebra and algorithmics: namely, decision procedures for
systems of linear Diophantine equations and inequalities, whose coefficients range over algebraic numbers
and intervals. The questions, addressed here, are central to the success of the emerging field of systems
biology and relate to questions in decidability theory, algorithmic algebra, hybrid automata models, etc.
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Abstracts of Presentation-Only Papers

Presentation-only papers are those that have appeared (or will appear) at other conference or journal venues,
but which have been judged by the program committee to be of interest to the SMT community.

Exploiting Symmetry in SMT Problems.
David Deharbe, Pascal Fontaine, Stephan Merz and Bruno Woltzenlogel Paleo.

Methods exploiting problem symmetries have been very successful in several areas including constraint
programming and SAT solving. We here recast a technique to enhance the performance of SMT-solvers by
detecting symmetries in the input formulas and use them to prune the search space of the SMT algorithm.
This technique is based on the concept of (syntactic) invariance by permutation of constants. An algorithm
for solving SMT by taking advantage of such symmetries is presented. The idea here is very simple: given a
formula G invariant by all permutations of some uninterpreted constants c0, . . . , cn, for any model M of G,
if term t does not contain these constants and M satisfies t = ci for some i, then there should be a model in
which t equals c0. While checking for unsatisfiability, it is thus sufficient to look for models assigning t and
c0 to the same value. We present a heuristic to guess symmetries, and we show that checking if a formula is
invariant by all permutations of some uninterpreted constants can be done in linear time. The overhead of
this technique is thus very small, and we show that the technique can account for an exponential decrease of
running times on some series of crafted benchmarks based on the pigeonhole problem. The implementation
of this algorithm in the SMT-solver veriT is used to illustrate the practical benefits of this approach. It results
in a significant improvement of veriT’s performances on the SMT-LIB benchmarks that places it ahead of
the winners of the last editions of the SMT-COMP contest in the QF UF category. Used as a preprocessing
technique, similar improvements are observed for all the five other tested SMT solvers.

Decision Procedures for Automating Termination Proofs.
Ruzica Piskac and Thomas Wies.

Automated termination provers often use the following schema to prove that a program terminates:
construct a relational abstraction of the program’s transition relation and show that the relational abstraction
is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing
the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We
believe we can significantly increase the class of programs that are amenable to automated termination
proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We
therefore present a new decision procedure for reasoning about multiset orderings, which are among the
most powerful orderings used to prove termination. We show that, using our decision procedure, one can
automatically prove termination of natural abstractions of programs.

An Efficient Decision Procedure for Imperative Tree Data Structures.
Thomas Wies, Marco Muniz and Viktor Kuncak.

We present a new decidable logic called TREX for expressing constraints about imperative tree data
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structures. In particular, TREX supports a transitive closure operator that can express reachability con-
straints, which often appear in data structure invariants. We show that our logic is closed under weakest
precondition computation, which enables its use for automated program verification. We further show that
satisfiability of formulas in TREX is decidable in NP. The low complexity makes it an attractive alterna-
tive to more expensive logics such as monadic second-order logic (MSOL) over trees, which have been
traditionally used for reasoning about tree data structures.

Cutting to the Chase: Solving Linear Integer Arithmetic.
Dejan Jovanovic and Leonardo De Moura.

We describe a new algorithm for solving linear integer programming problems. The algorithm performs
a DPLL style search for a feasible assignment, while using a novel cut procedure to guide the search away
from the conflicting states. This paper was accepted at CADE’11.

Generating and Searching Families of FFT Algorithms.
Steven Haynal and Heidi Haynal.

A fundamental question of longstanding theoretical interest is to prove the lowest exact count of real
additions and multiplications required to compute a power-of-two discrete Fourier transform (DFT). For 35
years the split-radix algorithm held the record by requiring just 4n log n − 6n + 8 arithmetic operations
on real numbers for a size-n DFT, and was widely believed to be the best possible. Recent work by Van
Buskirk et al. demonstrated improvements to the split-radix operation count by using multiplier coefficients
or “twiddle factors” that are not nth roots of unity for a size-n DFT.

This paper presents a Boolean Satisfiability-based proof of the lowest operation count for certain classes
of DFT algorithms. First, we present a novel way to choose new yet valid twiddle factors for the nodes
in flowgraphs generated by common power-of-two fast Fourier transform algorithms, FFTs. With this new
technique, we can generate a large family of FFTs realizable by a fixed flowgraph. This solution space
of FFTs is cast as a Boolean Satisfiability problem, and a modern Satisfiability Modulo Theory solver is
applied to search for FFTs requiring the fewest arithmetic operations. Surprisingly, we find that there are
FFTs requiring fewer operations than the split-radix even when all twiddle factors are nth roots of unity.

Efficient Predicate Abstraction of Program Summaries.
Arie Gurfinkel, Sagar Chaki and Samir Sapra.

Predicate abstraction is an effective technique for scaling Software Model Checking to real programs.
Traditionally, predicate ab- straction abstracts each basic block of a program P to construct a small finite
abstract model a Boolean program BP , whose state-transition relation is over some chosen (finite) set of
predicates. This is called Small- Block Encoding (SBE). A recent advancement is Large-Block Encoding
(LBE) where abstraction is applied to a summarized program so that the abstract transitions of BP corre-
spond to loop-free fragments of P. In this paper, we expand on the original notion of LBE to promote flex-
ibility. We explore and describe efficient ways to perform CEGAR bot- tleneck operations: generating and
solving predicate abstraction queries (PAQs). We make the following contributions. First, we define a gen-
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eral notion of program summarization based on loop cutsets. Second, we give a linear time algorithm to
construct PAQs for a loop-free fragment of a program. Third, we compare two approaches to solving PAQs:
a classical AllSAT-based one, and a new one based on Linear Decision Diagrams (LDDs). The approaches
are evaluated on a large benchmark from open- source software. Our results show that the new LDD-based
approach significantly outperforms (and complements) the AllSAT one.

Generating Data Race Witnesses by an SMT-based Analysis.
Mahmoud Said, Chao Wang, Zijiang Yang and Karem Sakallah.

Data race is one of the most dangerous errors in multi-threaded programming, and despite intensive
studies, it remains a notorious cause of failures in concurrent systems. Detecting data races, statically or
dynamically, is already a hard problem, and yet it is even harder for a programmer to decide whether or
how a reported data race can appear in the actual program execution. In this paper we propose an algorithm
for generating debugging aid information called witnesses, which are concrete thread schedules that can
deterministically trigger the data races. More specifically, given a concrete execution trace of the program,
which may be non-erroneous but have triggered a warning in Eraser-style data race detectors, we use a
symbolic analysis based on SMT solvers to search for such a witness among alternative interleavings of
events of that trace. Our symbolic analysis precisely encodes the sequential consistency semantics using a
scalable predictive model to ensure that the reported witness is always feasible.
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Towards interpolation in an SMT-solver with integrated
superposition∗

Maria Paola Bonacina Moa Johansson
Dipartimento di Informatica

Università degli Studi di Verona
Strada Le Grazie 15, I-39134 Verona, Italy

mariapaola.bonacina@univr.it moakristin.johansson@univr.it

Abstract
Interpolation is a technique for extracting intermediate formulæ from a proof. It has applications in

formal verification, where interpolation may enable a program analyser to discover information about
intermediate program locations and states. We study interpolation in the theorem proving method
DPLL(Γ+T ), which integrates tightly a superposition based prover Γ in a DPLL(T ) based SMT-solver
to unite their respective strengths. We show how a first interpolation system for DPLL(Γ+T ) can be
obtained from interpolation systems for DPLL, equality sharing and Γ. We describe ongoing work on an
interpolation system for Γ, by presenting and proving complete an interpolation system for the ground
case, followed by a discussion of ongoing work on an extension to the general case. Thanks to the mod-
ular design of DPLL(Γ+T ), its interpolation system can be extended easily beyond the ground case once
a general interpolation system for Γ becomes available.

1 Introduction
Interpolation is a theorem proving technique which has recently found several applications in verifica-
tion. Informally, interpolants are formulæ ‘in-between’ other fomulæ in a proof: for a proof of A ` B
with interpolant I , A ` I and I ` B, with I only containing symbols shared between A and B.
Interpolation was first proposed for abstraction refinement in software model checking, initially for
propositional logic and propositional satisfiability [16], and then for quantifier free fragments of first-
order theories and their combinations [21, 17, 11, 5, 8, 3]. In the Counter-Example Guided Abstraction
Refinement paradigm, interpolants from the proof of unsatisfiability of the formula produced from a
spurious counter-example may capture intermediate states in an error trace, and can be used to refine
the abstraction by re-introducing predicates from the interpolants to exclude states leading to spurious
errors.

Interpolation has also found applications for invariant generation in the context of inference systems
for first-order logic with equality [18, 13, 9]. Here, one assumes that a k-step unwinding of a loop does
not satisfy the post-condition. The formulæ expressing this produces a contradiction if the loop does
satisfy the post-condition. An interpolant, containing only the symbols occurring in the loop body, can
be extracted and used to guide the construction of a loop invariant [18].

A third application of interpolation is to supplement annotation generation by a weakest pre-condition
calculus [19]. In this context, interpolation allows a static analyser to avoid inserting irrelevant program
variables in annotations, such as procedure summaries.

∗Research supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione Università e Ricerca, Italy, and by
COST Action IC0901 of the European Union.
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The aim of this work is to develop an interpolation system for DPLL(Γ+T ) [2], a new theorem
proving method which integrates a first-order inference system Γ, based on resolution and superposition,
into the DPLL(T ) framework for satisfiability modulo theories. The motivation for DPLL(Γ+T ) is to
unite the strengths of resolution based provers, such as automated treatment of quantifiers, with those
of SMT-solvers, such as built-in theories and scalability on large ground problems. All these features
are crucial for applications to verification. For instance, formulæ with quantifiers are necessary to state
invariants and to axiomatise theories without decision procedures. Heuristic techniques for instantiating
variables in SMT-solvers can be used, but they can be fragile and require a lot of user effort to get
right [15]. Thus, DPLL(Gamma+T) has properties attractive to the application areas, exemplified above,
where also interpolation has uses. Hence an interpolating version of DPLL(Γ+T ) would be of interest
for the formal verification community. The work described in this paper is still in progress; we describe
how a first interpolation system for DPLL(Γ+T ), thanks to its modular design, is built from interpolation
systems for DPLL, equality sharing and Γ.

We will use the propositional interpolation system for DPLL independently discovered by Huang,
Krajı́ček and Pudlàk [10, 20, 14], later reformulated and proved correct in the context of satisfiability
modulo theories by Yorsh and Musuvathi [21]. We call this algorithm HKPYM from the initials of
the authors. Yorsh and Musuvathi also gave an interpolation system for equality sharing, which we
refer to as EQSH [21]. EQSH requires that the satisfiability procedures for the built in theories can
produce proofs and interpolants. Then HKPYM and EQSH can be integrated to yield an interpolation
system for DPLL(T ) [21, 5, 8]. What remains for an interpolation system for DPLL(Γ + T ) is an
interpolation system for Γ. We present a novel complete interpolation system for Γ in the ground case
and give a modular interpolation system for DPLL(Γ+T ). We consider our interpolation system for
superposition to be clearer and more general than previous work, because its working is specified for
each generative inference, which was not done before. We conclude with a discussion of related work
and an overview of ongoing work aiming at extending the ground interpolation system for Γ to proofs
involving substitutions, under suitable restrictions. The interpolation system for DPLL(Γ+T ) is currently
restricted to the ground case, but easily extendable to the non-ground case once such an interpolation
system for Γ is available, which is the ultimate goal of this project.

2 Preliminaries
We assume the basic definitions commonly used in theorem proving. Equality in the inference systems
will be denoted by ' and the symbol ./ stands for either ' or 6'.

Let A and B be two formulæ. We denote by ΣA, and ΣB , the set of constant, function and predicate
symbols that occur in A, and B, respectively, and we use \ for set difference. A non-variable symbol is
A-coloured, if it is in ΣA\ΣB , B-coloured, if it is in ΣB \ΣA, and transparent, if it is in ΣT = ΣA∩ΣB .
This extends to terms, literals and clauses:

Definition 2.1 A term, literal or clause is transparent if all its symbols are transparent, A-coloured
if it contains at least one A-coloured symbol, and the rest are transparent (similarly for B-coloured).
Otherwise it is AB-mixed.

A clause is colourable if it contains no AB-mixed literals. We use, ambiguously, LA for the language
of terms, literals or formulæ made of symbols in ΣA; LB and LT are defined similarly for ΣB and ΣT ,
respectively. We let LX stand for either LA, LB or LT .

A theory is presented by a set T of sentences, meaning that the theory is the set of all logical con-
sequences of T . It is customary to call T itself a theory. Let ΣT be the signature of T , and LT the
language of terms, literals or formulæ built from ΣT . Then, let LT be the language of terms, literals
or formulæ built from ΣT ∪ ΣT : in other words, whenever a theory is involved, theory symbols are
considered transparent:

10



Definition 2.2 (Theory Interpolant) A formula I is a theory interpolant of formulæ A and B such that
A `T B, if (i) A `T I , (ii) I `T B and (iii) I is in LT . A formula I is a reverse theory interpolant of
formulæ A and B such that A,B `T ⊥, if (i) A `T I , (ii) B, I `T ⊥ and (iii) I is in LT .

Reverse interpolants are more widely used in the context of theorem proving, since practical theorem
provers work refutationally. In keeping with most of the literature, in the following we shall write
“interpolant” for “reverse interpolant”, unless the distinction is relevant. Furthermore, when it is clear
from the context, we may omit the “theory” prefix and just write “interpolant”. Similarly, we may use `
instead of `T .

Definition 2.3 (Projection) Let C be a disjunction (conjunction) of literals. The projection of C on
language LX , denoted C|X , is the disjunction (conjunction) obtained from C by removing any literal
whose atom is not in LX . By convention, if C is a disjunction and C|X is empty, then C|X =⊥; if C is
a conjunction and C|X is empty, then C|X = >.

Many approaches to interpolation work by annotating each clause C in a refutation of A and B with
auxiliary formulæ, called partial interpolants:

Definition 2.4 (Partial interpolant) A partial interpolant PI(C) of a clause C occurring in a refutation
of A ∪B is an interpolant of A ∧ ¬(C|A) and B ∧ ¬(C|B).

By Definition 2.2 applied to Definition 2.4, a partial interpolant needs to satisfy the following re-
quirements:

Proposition 2.1 A partial interpolant for a clause C have to satisfy:

1. A ∧ ¬(C|A) ` PI(C) or, equivalently, A ` C|A ∨ PI(C)

2. B ∧ ¬(C|B) ∧ PI(C) `⊥ or, equivalently, B ∧ PI(C) ` C|B , and

3. PI(C) is transparent.

We now give a brief overview of the DPLL(T ) and DPLL(Γ +T ) theorem proving methods for
satisfiability modulo theories. DPLL(T ) combines propositional reasoning by DPLL with decision pro-
cedures for specific theories. DPLL(Γ+T ) is a further extension which also features an interface to a
first-order prover with resolution and superposition. We refer to [2] for a description of DPLL(Γ+T ),
which includes DPLL(T ). DPLL(Γ+T ) works with hypothetical clauses, where the hypotheses are
the connection between Γ-inferences and the partial model M maintained by DPLL(T ). Hypothetical
clauses have the form H . C, where C is a clause and the hypothesis H is a set of ground literals. The
literals in H come from M and are the literals that were used as premises to infer C by a Γ-inference.
DPLL(Γ+T ) employs model-based theory combination [6], which is a version of equality sharing where
only equalities between ground terms are propagated. DPLL(Γ+T ) can be described as a transition sys-
tem with two kinds of states: M || F (candidate model and set of clauses) and M || F || C (candidate
model, set of clauses and conflict clause). Let S = R] P stand for the set of input clauses, where R is
a set of non-ground clauses, without occurrences of T -symbols, while P is a set of ground clauses that
typically do contain T -symbols. A transition system derivation for DPLL(Γ+T ) is defined as follows:

Definition 2.5 (Transition system derivation) Let U stand for DPLL(Γ+T ), and S be the input set
R] P . A transition system derivation, or U-derivation, is a sequence of state transitions:
∆0 =⇒U ∆1 =⇒U . . .∆i =⇒U ∆i+1 =⇒U . . ., where ∀i ≥ 0, ∆i is of the form Mi ||Fi or Mi ||Fi ||Ci,
each transition is determined by a transition rule in U and ∆0 = ||F0, where F0 = {∅ . C | C ∈ S}.

A transition system derivation is characterised by the sets F ∗ =
⋃

i≥0 Fi of all generated clauses
and C∗ = {Ci|i > 0} of all conflict clauses. A DPLL(Γ+T ) refutation is a refutation by propositional
resolution plus T -conflict clauses, which are derived when one of the theory solvers discovers an incon-
sistency with the current model, and inferences performed by Γ. We denote the proof tree produced by
the T -solver for a T -conflict clause C, by ΠT (C).

11



Definition 2.6 (DPLL(Γ+T )-proof tree) Given a DPLL(Γ+T )-derivation,

∆0 =⇒
U

∆1 =⇒
U

. . .∆i =⇒
U

∆i+1 =⇒
U

. . . ,

for all C ∈ C∗ and H . C ∈ F ∗, the DPLL(Γ+T )-proof tree ΠU (C) of C is defined as follows:

• If C ∈ F0, ΠU (C) consists of a node labelled by C;

• If C is generated by resolving conflict clause C1 with justification C2, ΠU (C) consists of a node
labelled by C with sub-trees ΠU (C1) and ΠU (C2);

• If C is a T -conflict clause, ΠU (C) = ΠT (C);

• If H . C is inferred by a Γ-based transition from hypothetical clauses {H1 . C1, . . . ,Hm . Cm}
and literals {lm+1, . . . , lk}, ΠU (H . C) consists of a node labelled by H . C with m sub-trees
ΠU (H1 . C1), . . . ,ΠU (Hm . Cm).

If the derivation halts reporting unsatisfiable, ΠU (2) is a DPLL(Γ+T )-refutation.

Hypotheses need to be discharged when the hypothetical clause H . 2 is generated. The system then
switches to conflict resolution mode, with ¬H as the conflict clause. A refutation is reached only when
¬H is reduced to 2. Thus, a DPLL(Γ+T )-refutation is obtained by attaching a non-ground proof tree
with H .2, or ¬H , as root, to a ground proof tree with ¬H among its leaves and 2 as root.

An interpolation system is a mechanism to annotate each clause C in a refutation of A and B with
a partial interpolant. To define an interpolation system, one needs to define the partial interpolants that
it associates to the clauses in a proof. Since each clause in a proof is generated by some inference rule,
the definition of an interpolation system needs to cover all possibilities. The fundamental property of an
interpolation system is completeness:

Definition 2.7 (Complete interpolation system) An interpolation system is complete for inference sys-
tem Γ, or transition system U , if for all sets of clauses A and B, such that A∪B is unsatisfiable, and for
all refutations of A ∪B by Γ, or U , respectively, it generates an interpolant of (A,B).

The key property of partial interpolants is that PI(2) is an interpolant of A and B. Thus, in order to
prove that an interpolation system is complete, it is sufficient to show that it annotates the clauses in any
refutation with clauses that are indeed partial interpolants.

3 An Interpolation System for DPLL(Γ + T )
A complete interpolation system for DPLL(Γ + T ) must be able to compute partial interpolants for each
clause in the proof tree in Def. 2.6, that is: propositional resolvents, T -conflict clauses, and clauses
derived by Γ. The latter are covered by the new interpolation system given in this section. Propositional
resolvents are dealt with by a propositional interpolation system such as HKPYM [10, 20, 14, 21]. Since
T is a combination, T -conflict clauses are handled by EQSH [21], which requires that the component
theories are equality interpolating:

Definition 3.1 (Equality Interpolating Theory) A theory T is equality interpolating if for all T -formulæ
A and B, whenever A ∧B |=T ta ' tb, where ta is an A-coloured ground term and tb is a B-coloured
ground term, then A ∧B |=T ta ' t ∧ tb ' t for some transparent ground term t.

Several theories used in practice are indeed equality interpolating, for example quantifier-free theo-
ries of uninterpreted functions and linear arithmetic [21]. Without this requirement, the notion of trans-
parency is not stable: if ta ' tb without any transparent t such that ta ' t and tb ' t, the congruence
class of ta and tb includes no transparent term, which means a coloured term should “become” transpar-
ent, to serve as a representative for terms of both colours. This is clearly undesirable as transparent terms
are those used to build interpolants. A similar issue arises for Γ, which also reasons about equalities. If
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an AB-mixed equality ta ' tb is derived, it can be used to simplify clauses in A, introducing B-coloured
symbols, which now should be considered transparent as they have become shared between A and B.
Proofs without AB-mixed equalities were termed colourable in [8]:

Definition 3.2 (Colourable proof) A proof is colourable if it contains no AB-mixed literals.

We proceed to connect the notion of equality-interpolating theory with the following requirement,
that appeared in [18], under the name AB-oriented ordering, and then in [12]:

Definition 3.3 (Separating ordering) An ordering � is separating if t � s whenever s is transparent
and t is not, for all ground terms, or literals, s and t.

If the theory is equality-interpolating, whenever ta ' tb holds, ta ' t and tb ' t also hold, and a
separating ordering ensures that, if ta ' t and tb ' t are derived, t replaces ta and tb, or becomes the
representative of the congruence class of ta and tb.

Lemma 3.1 If the ordering is separating, all ground Γ-proof-trees are colourable.

The proof is by induction on the structure of the proof tree (see [1]). To get a superposition based
theorem prover to produce ground colourable proofs, it is thus sufficient to adopt a separating ordering.
Separating orderings exist, and were implemented, for instance, in Vampire [9]. From now on, we
assume that the built-in theories Ti, 1 ≤ i ≤ n, are equality-interpolating, and that the ordering � for
Γ-inferences is separating, so that all ground proofs are colourable. Under these assumptions, we present
a complete interpolation system for Γ in the ground case, where the inferences rules, with premises and
consequences labelled for later reference, are as follows (see [2] for full details):

Resolution:
p1 : (C ∨ l) p2 : (D ∨ ¬l)

c : (C ∨D)
∀m ∈ C : l � m ∀m ∈ D : ¬l � m

Paramodulation:
p1 : (C ∨ s ' r) p2 : (D ∨ l[s])

c : (C ∨ l[r] ∨D)
(i) (ii) (iii)

Superposition:
p1 : (C ∨ s ' r) p2 : (D ∨ l[s] ./ t)

c : (C ∨ l[r] ./ t ∨D)
(i) (ii) (iv) (v)

where (i) s � r, (ii) ∀m ∈ C : (s ' r) � m, (iii) ∀m ∈ D : l[s] � m, (iv) l[s] � t, (v) ∀m ∈ D : (l[s] ./
t) � m; and Simplification inferences are instances of Paramodulation/Superposition, where c replaces
p2, C is empty, and (i) is the only side condition.

Definition 3.4 (GΓI interpolation system) Let c : C be a clause that appears in a ground Γ-refutation
of A ∪B:

• If c : C ∈ A, then PI(c) =⊥, if c : C ∈ B, then PI(c) = >.

• If c : C is generated from premises p1 and p2 by a Γ-inference, PI(c) is defined as follows:

– Resolution: c : C ∨D generated from p1 : C ∨ l and p2 : D ∨ ¬l
∗ l is A-coloured: PI(c) = PI(p1) ∨ PI(p2)

∗ l is B-coloured: PI(c) = PI(p1) ∧ PI(p2)

∗ l is transparent: PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))

– Paramodulation/Superposition/Simplification: c : C ∨ l[r]∨D generated from p1 : C ∨ s ' r
and p2 : D ∨ l[s]

∗ s ' r is A-coloured: PI(c) = PI(p1) ∨ PI(p2)

∗ s ' r is B-coloured: PI(c) = PI(p1) ∧ PI(p2)
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∗ s ' r, l[s] are transparent: PI(c) = (s ' r ∨ PI(p1)) ∧ (l[s] ∨ PI(p2))

∗ s ' r is transparent, l[s] is not: PI(c) = (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2)).

Superposition is treated like Paramodulation, with l[s] replaced by l[s] ./ t, and the case for Simplifi-
cation is subsumed by those for Paramodulation and Superposition. As we assume a separating ordering,
transparent terms are smaller than coloured ones and we do not need to consider the case where s ' r is
coloured and l[s] is transparent for paramodulation inferences. In such a case, s must be transparent, as
it also occurs in the transparent literal l[s], and r must be coloured. The separating ordering would thus
re-orient such an equation to r ' s, and only inferences rewriting a coloured term are allowed.

Theorem 1 If the ordering is separating, GΓI is a complete interpolation system for all ground Γ-
refutations.

Proof: By induction on the structure of the proof. We need to prove that for all clauses c : C in the
refutation, the partial interpolants satisfy the requirements in Proposition 2.1.
Base cases: c : C is an input clause. Trivial.
Inductive cases:
Inductive hypothesis: for k ∈ {1, 2} it holds that:

1. A ∧ ¬(pk|A) ` PI(pk) or, equivalently, A ` pk|A ∨ PI(pk)

2. B ∧ ¬(pk|B) ∧ PI(pk) `⊥ or, equivalently, B ∧ PI(pk) ` pk|B
3. PI(pk) is transparent.

Resolution: c : C ∨D generated from p1 : C ∨ l and p2 : D ∨ ¬l
• l is A-coloured: l|A = l, (¬l)|A = ¬l, l|B =⊥= (¬l)|B

1. A ` (C ∨D)|A ∨PI(p1)∨PI(p2). From inductive hypothesis (1) we have A ` (C ∨ l)|A ∨
PI(p1) and A ` (D ∨ ¬l)|A ∨ PI(p2). A resolution step gives A ` (C ∨D)|A ∨ PI(p1) ∨
PI(p2) as desired.

2. B ∧ (PI(p1)∨PI(p2)) ` (C ∨D)|B . From inductive hypothesis (2) we have B ∧PI(p1) `
C|B and B ∧ PI(p2) ` D|B from which the inductive conclusion follows.

3. Transparency of the partial interpolant follows from the inductive hypothesis.
• l is B-coloured: Symmetric to the previous case.
• l is transparent: l|A = l = l|B , (¬l)|A = ¬l = (¬l)|B

1. A ∧ ¬(C ∨ D)|A ` (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)) or, equivalently, A ∧ ¬C|A ∧ ¬D|A `
(l∨PI(p1))∧(¬l∨PI(p2)). From inductive hypothesis (1) we have A∧¬C|A ` l∨PI(p1)
and A ∧ ¬D|A ` ¬l ∨ PI(p2), which together give the desired result.

2. B ∧ (l ∨ PI(p1))∧ (¬l ∨ PI(p2)) ` (C ∨D)|B . By case analysis on l in PI(c): if l is true,
l holds, l subsumes l ∨ PI(p1) and simplifies ¬l ∨ PI(p2) to PI(p2); if l is false, ¬l holds,
¬l subsumes ¬l ∨ PI(p2) and simplifies l ∨ PI(p1) to PI(p1); so that we need to establish:
(a) B ∧ l ∧ PI(p2) ` (C ∨ D)|B . From inductive hypothesis (2) we have B ∧ PI(p2) `

D|B ∨ ¬l whence B ∧ l ∧ PI(p2) ` D|B .
(b) B ∧ ¬l ∧ PI(p1) ` (C ∨D)|B . From inductive hypothesis (2) we have B ∧ PI(p1) `

C|B ∨ l whence B ∧ ¬l ∧ PI(p1) ` C|B .
3. Transparency of the partial interpolant follows from the inductive hypothesis and the assump-

tion that l is transparent.

Paramodulation/Superposition/Simplification: c : C ∨ l[r] ∨ D generated from p1 : C ∨ s ' r and
p2 : D ∨ l[s]

• s ' r is A-coloured: either s and r are both A-coloured, or, since s � r, s is A-coloured and
r is transparent; since there are no AB-mixed literals, either l[s] and l[r] are both A-coloured, or
l[s] is A-coloured and l[r] is transparent; thus, we have: (s ' r)|A = (s ' r), l[s]|A = l[s],
l[r]|A = l[r], (s ' r)|B =⊥, l[s]|B =⊥
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1. A ` (C ∨ l[r] ∨ D)|A ∨ PI(p1) ∨ PI(p2). Inductive hypothesis (1) gives A ` C|A ∨ s '
r ∨ PI(p1) and A ` D|A ∨ l[s] ∨ PI(p2); Thus, the inductive conclusion follows by a
paramodulation step.

2. B ∧ (PI(p1) ∨ PI(p2)) ` (C ∨ l[r] ∨ D)|B . From inductive hypothesis (2) we have B ∧
PI(p1) ` C|B and B ∧ PI(p2) ` D|B , which proves the inductive conclusion.

3. The partial interpolant is transparent by inductive hypothesis.
• s ' r is B-coloured: Symmetric to the previous case.
• s ' r and l[s] are transparent: l[r] is also transparent, and all three literals are unaffected by

projections.
1. A ∧ ¬(C|A) ∧ ¬l[r] ∧ ¬(D|A) ` (s ' r ∨ PI(p1)) ∧ (l[s] ∨ PI(p2)). From inductive

hypothesis (1) we have A ∧ ¬C|A ` s ' r ∨ PI(p1) and A ∧ ¬D|A ` l[s] ∨ PI(p2), which
together give the desired result.

2. B∧ (s ' r∨PI(p1))∧ (l[s]∨PI(p2))) ` (C ∨ l[r]∨D)|B . We do a case analysis on s ' r
and l[s]:
(a) If s ' r and l[s] are both true, then l[r] is true.
(b) If s ' r is true and l[s] is false, then PI(p2) must be true and D ∨ l[s] is equivalent to

D, so that induction hypothesis (2) gives B ∧ PI(p2) ` D|B .
(c) If s ' r is false and l[s] is true, then PI(p1) must be true and C ∨ s ' r is equivalent to

C, so that induction hypothesis (2) gives B ∧ PI(p1) ` C|B .
(d) If s ' r and l[s] are both false, then PI(p1) and PI(p2) must be true and induction

hypothesis (2) gives B ∧ PI(p1) ` C|B and B ∧ PI(p2) ` D|B .
3. Transparency of the partial interpolant follows from the inductive hypothesis and the assump-

tion that s ' r and l[s] are transparent.
• s ' r is transparent, l[s] is not:

1. A ` (C ∨ l[r] ∨ D)|A ∨ (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2)). This is equivalent to:
A ∧ ((s 6' r ∧ ¬PI(p1)) ∨ (s ' r ∧ ¬PI(p2))) ` (C ∨ l[r] ∨ D)|A. We perform a case
analysis on s ' r:
(a) If s ' r is false, s ' r ∧ ¬PI(p2) is false, and it suffices to establish A ∧ s 6' r ∧
¬PI(p1) ` (C∨l[r]∨D)|A. By induction hypothesis (1) we have A∧s 6' r∧¬PI(p1) `
C|A, which suffices.

(b) If s ' r is true, s 6' r ∧ ¬PI(p1) is false, and it suffices to establish A ∧ s ' r ∧
¬PI(p2) ` (C ∨ l[r]∨D)|A or, equivalently, A∧ s ' r ∧¬PI(p2) ` (C ∨ l[s]∨D)|A
since s ' r holds. By induction hypothesis (1) we have A ∧ ¬PI(p2) ` (l[s] ∨D)|A,
and we are done.

2. B ∧ (s ' r ∨ PI(p1)) ∧ (s 6' r ∨ PI(p2))) ` (C ∨ l[r] ∨D)|B . By case analysis on s ' r:
(a) If s ' r is true, s ' r ∨ PI(p1) is subsumed, s 6' r is false and PI(p2) must be true.

Thus, it suffices to establish B∧s ' r∧PI(p2) ` (C ∨ l[r]∨D)|B , which is equivalent
to B ∧ s ' r ∧ PI(p2) ` (C ∨ l[s] ∨D)|B , since s ' r holds. By induction hypothesis
(2) we have B ∧ PI(p2) ` l[s]|B ∨D|B , which closes this case.

(b) If s 6' r is true, s 6' r ∨ PI(p2) is subsumed, s ' r is false and PI(p1) must be true.
Thus, we need to establish B ∧ s 6' r ∧ PI(p1) ` (C ∨ l[r] ∨ D)|B . By induction
hypothesis (2) we have B ∧ s 6' r ∧ PI(p1) ` C|B , which suffices.

3. Transparency follows from the transparency of s ' r and the inductive hypothesis.

2

Having obtained a complete interpolation system for Γ, we can now define an interpolation system
for DPLL(Γ+T ):

Definition 3.5 (I∗ interpolation system) Let c : C be a clause that appears in a DPLL(Γ+T )-refutation
of A ∪B:
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• If c : C ∈ A, then PI(c) =⊥, if c : C ∈ B, then PI(c) = >.

• If c : C is a T -conflict clause, PI(c) is the T -interpolant of ((¬C)|A, (¬C)|B) produced by EQSH
from the refutation ¬C `T ⊥;

• If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:

– If l is A-coloured, then PI(c) = PI(p1) ∨ PI(p2),
– If l is B-coloured, then PI(c) = PI(p1) ∧ PI(p2) and
– If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

• If c : C is a hypothetical clause H . C inferred by a generative Γ-based transition from premises
{H1.C1, . . . ,Hm.Cm} and {lm+1, . . . , lk}, then PI(c) is the partial interpolant produced by the
interpolation system GΓI for the Γ-inference inferring C from premises C1, . . . , Cm, lm+1, . . . , lk.

The partial interpolant for a hypothetical clause H . C is given by the partial interpolant for the corre-
sponding regular clause C, because the Γ-inference embedded in a Γ-based transition ignores hypothe-
ses, and, when H . 2 is generated, the hypotheses in H are discharged by propositional resolution
steps, whose partial interpolant is computed as in HKPYM. In summary, the modular construction of
DPLL(Γ+T ) allows us to define its interpolation system from the interpolation systems of its compo-
nents. Furthermore, this allows us to simply replace GΓI by a general interpolation system for Γ once
available. The requirement that all theories in T are equality-interpolating guarantees that the T -conflict
clauses do not introduce in the proof AB-mixed literals, and the completeness of I∗ thus follows from
the completeness of its component interpolation systems.

4 Related Work
Interpolation for coloured superposition proofs was first considered by McMillan [18], and further stud-
ied, with some criticism that restricted it to ground proofs, by Kovàcs and Voronkov [13]. Coloured is
a stronger requirement than colourable: each inference may involve at most one colour, so that not only
AB-mixed literals, but also AB-mixed clauses are forbidden. The main similarity between our work
and these is the adoption of a separating ordering, where transparent literals are smaller than coloured
ones. However, our approach differs is several ways: Firstly, in the ground case, we relax the require-
ment of coloured proofs, and only require the notion of colourable proofs from [8]. We showed that
when a separating ordering is used, every ground Γ-refutation is colourable. Secondly, the target infer-
ence system in [13] is LASCA (Linear Arithmetic Superposition CAlculus), which is superposition with
linear arithmetic built in. We do not consider arithmetic within Γ, because in DPLL(Γ+T ) arithmetic
is handled by the DPLL(T ) part, and therefore by an interpolating decision procedure for arithmetic
(e.g. [17]). Thirdly, our notion of partial interpolant is different from [13], which focused on proving
existence of partial interpolants1 only for transparent ground clauses in coloured proof-trees. No explicit
interpolation system is given in either [13] or [18]. We define explicitly the partial interpolants for every
generative rule in Γ. Thus, we consider the interpolation system I∗ to be more concrete and representing
a more direct generalisation of propositional interpolation systems to ground first-order logic.

Christ and Hoenicke considers interpolation in the presence of quantifiers in the context of DPLL(T )
[4]. They assume instantiations are found by heuristic methods, such as triggering, rather than by unifi-
cation as in superposition. The interpolation method is based on McMillan’s ground interpolation sys-
tem for resolution [17], extended to introduce quantifiers in interpolants, when instantiations introduce
coloured terms. This approach thus goes beyond colourable proofs for resolution. Equality reasoning is
assumed to be handled by an interpolating decision procedure.

Our interpolation system for ground superposition also covers proofs in EUF (Equality with Un-
interpreted Functions). McMillan’s interpolation system for EUF in [17] consists of inference rules
for reflexivity, symmetry, congruence, transitivity and contradiction, instrumented to compute formulas

1Referred to as C-interpolants in [13].
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akin to partial interpolants for each inference step. There are several versions of each rule, depending
on side conditions relating to the colour of the inferences leading up to the conclusion. The interpola-
tion system by Fuchs et al. [7], on the other hand, works on colourable congruence graphs, generated
by the congruence closure algorithm. While we rely on the separating ordering to ensure that no AB-
mixed literals are present in the proof, Fuchs et al. use the fact that EUF is equality interpolating and
perform some modifications on the congruence graph, introducing transparent constants to separate A-
coloured and B-coloured terms as needed, essentially implementing the requirement that the theory be
equality-interpolating. While our interpolation system will include all transparent literals derived from
A, the specialised congruence closure method can summarise chains originating only from A, and only
consider adding the last transparent term in such a chain. This means that it tend to produce shorter
interpolants, which for some applications may be desirable. At this stage of research, we have focused
on completeness of the interpolation system, with analysis of the properties of interpolants for various
applications left as further work. Last, the algorithm in [7] is restricted to EUF only, while our aim is a
much more general interpolation system.

5 Current and Future Work
We reported on ongoing work on interpolation for the theorem proving method DPLL(Γ+T ). We showed
how an interpolation system for DPLL(Γ+T ) can be constructed modularly from interpolation systems
for DPLL, equality sharing and for Γ, a first-order resolution and superposition based prover. We pre-
sented and proved correct a novel interpolation system for Γ in the ground case for colourable proofs.
Current work in progress aims at extending the interpolation system to general proofs with substitution
under suitable restrictions. The interpolation system for general Γ-proofs can then simply be plugged
into the interpolation system for DPLL(Γ+T ), to extend it beyond ground proofs. In order to generalise
the ground interpolation system for Γ to some class of proofs in full first order logic, we need to extend
our approach to handle variables and substitutions. In the ground case, we can ensure colours are stable
by imposing a separating ordering, which prevents equations between A-coloured and B-coloured terms
from being generated. In the general case, a separating ordering is no longer sufficient to ensure that
proofs are colourable, as we may unify two literals of different colour, which may have the side effect
of generating AB-mixed literals by substitution. One way of avoiding AB-mixed literals is to impose
the restriction that the proof is coloured. For coloured proofs, we have that substitution and projec-
tion commute, allowing a straightforward extension from the ground interpolation system of the cases
where both pivots, or literals paramodulated from and into, have the same colour. However, non-ground
coloured proofs also have to deal with the cases where one of the premises is transparent and the other
coloured. Thus, excluding AB-mixed literals is not enough to ensure colours are stable, as substitutions
may also paint transparent literals as a side effect. Our current work is concerned with extending the
interpolation system to these inferences, in which the partial interpolants may contain quantifiers. One
of the approaches we are studying is procrastination, suggested by McMillan [18], which involves the
addition of a special inference rule that delays superposition steps and record restrictions on variable
instantiations. We are also considering instance purification [4], where coloured literals occurring in
partial interpolants are replaced by quantified variables.
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Abstract
Interpolation algorithms form the basis of several successful verification systems. We describe a

generic interpolation algorithm for (quantified) first-order logic with background theories, pointing out
implementation choices in (1) partitioning literals, (2) introducing quantifiers, and (3) partitioning theory
lemmas. The choices lead to different quantified interpolants and to different known algorithms in
the literature. We show how to incorporate ground-interpolating decision procedures directly in the
interpolation algorithm, enabling direct integration with SMT solvers. We provide some initial evaluation
of interpolation-based parameterized verification of protocols and conclude that more research is needed
in tuning the quality of interpolants.

1 Introduction

Given two formulas A and B whose conjunction is unsatisfiable, an interpolant for the pair (A,B) is a
formula I in the common language of A and B such that A implies I and B implies ¬I [3] (see [8] for a
textbook account). Interpolants for propositional or first-order formulas form the basis for several successful
software verification systems [9, 16, 17]. While interpolants exist for full first-order logic [3] together with
recursively enumerable background theories [11], their use in verification tools, until recently, has been
restricted to either propositional logic, or to quantifier-free formulas in special theory combinations (EUF and
rational linear arithmetic or difference logic). On the other hand, many verification problems for software
require the use of quantification (e.g., to say every object in a collection has some property), or the use of
theories for which quantifier-free interpolants do not exist, even if the two formulas are quantifier-free (e.g.,
the theory of arrays).

This limitation of current interpolation-based software verification tools is understood, and there have
been several recent attempts to compute and apply quantified interpolants for first-order logical formulas
with background theories in interpolation-based model checking. One way to generate quantified interpolants
in the presence of background theories is to extend a first-order theorem prover (such as Spass [21]) with an
explicitly coded axiomatization of the background theory, to generate a proof of unsatisfiability with pure
first-order reasoning, and to construct an interpolant out of this proof, using standard techniques [3, 8, 10].
This approach, described and implemented by McMillan [18], has been used to verify small array and list
processing programs. However, it fails to exploit the power of modern SMT solvers to generate ground
interpolants for many theories.

In this paper, we give a description of quantified interpolation algorithms on top of SMT solvers,
parameterizing over all different choices that arise in the algorithms: the construction of propositional
interpolants [4, 10, 12, 17, 20], the position and introduction of quantifiers [1, 10], and the integration with
ground decision procedures [2]. As special cases, we get known interpolation algorithms [1, 10]. While many
of these ideas have been published before, our contribution is the way we organize the ideas into a single
coherent account.
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2 Preliminary Definitions

Syntax of First-Order Logic. A signature Σ = (S, F, P ) consists of a set S of sorts, a set F of function
symbols, and a set P of predicate symbols, where the arities of the symbols in F and P are constructed
using the sorts in S (we consider the arity of a function or a predicate to be a built-in part of the function or
predicate symbol). A constant is a function of arity zero. For a signature Σ, we write ΣS (respectively, ΣF ,
ΣP ) for S (respectively F , P ). For signatures Σ1 and Σ2, we write Σ1 ⊆ Σ2 if ΣS

1 ⊆ ΣS
2 , ΣF

1 ⊆ ΣF
2 , and

ΣP
1 ⊆ ΣP

2 . The union and intersection of signatures is defined as the pointwise union and intersection of their
component sets. For each sort σ, we fix a set Xσ of free variable symbols of sort σ which are disjoint from
the function and predicate symbols ΣF ∪ ΣP . We also fix a set Xbool of free propositional symbols.

In what follows, we use meta-variables a, b, c to represent constants, f , g, h to represent (non-constant)
function symbols, and p, q to represent predicate symbols.

For a signature Σ, the set of Σ-terms is the smallest set such that (1) each free variable symbol u ∈ Xσ is
a Σ-term of sort σ for all σ ∈ ΣS , (2) each constant symbol u ∈ ΣF of sort σ is a Σ-term of sort σ, and (3)
f(t1, . . . , tn) is a Σ-term of sort σ, given f ∈ ΣF is a function symbol of arity σ1 × . . .× σn → σ and ti is
a Σ-term of sort σi for i = 1, . . . , n.

The set of Σ-atoms is the smallest set such that (1) each propositional symbol u ∈ Xbool is a Σ-atom, (2)
p(t1, . . . , tn) is a Σ-atom given that p ∈ ΣP is a predicate symbol of arity σ1 × . . .× σn and ti is a Σ-term
of sort σi for i = 1, . . . , n.

The set of quantifier-free Σ-formulas is the smallest set such that (1) each Σ-atom is a Σ-formula, (2)
if ϕ,ψ are Σ-formulas, so are ¬ϕ, ϕ ∧ ψ. The set of Σ-formulas is the smallest set such that (1) every
quantifier-free Σ-formula is a Σ-formula, and (2) if ϕ is a Σ-formula and x ∈ Xσ a free variable, then
∀x : Xσ.ϕ and ∃x : Xσ.ϕ are Σ-formulas. We shall use the usual derived formulas ϕ ∨ ψ, ϕ⇒ ψ, ϕ⇔ ψ.
A sentence is a formula with no free variables. We will use the notation φ[t 7→ s] for the formula obtained
from φ by replacing every occurrence of a subterm t in it simultaneously with a term s. We omit the prefix Σ-
when it is clear from the context. We write vars(ϕ) for the free variable symbols in ϕ.

Semantics. For a signature Σ = (S, F, P ) and a set X of free variable symbols over sorts in S, a Σ-structure
A over X is a map which interprets (a) each sort σ ∈ S as a non-empty domain Aσ, (b) each free variable
constant symbol u ∈ Xσ as an element uA ∈ Aσ, (c) each free propositional symbol u ∈ Xbool as a
truth value in {true, false}, (d) each function symbol f ∈ F of arity σ1 × . . . × σn → σ as a function
fA : Aσ1 × . . . × Aσn → Aσ, and (e) each predicate symbol p ∈ P of arity σ1 × . . . × σn as a relation
pA ⊆ Aσ1 × . . .×Aσn . For a Σ-formula ϕ with free variables X0 ⊆ X , we denote by ϕA, the evaluation
of ϕ under A (defined in the usual way). For a formula ϕ, we write A |= ϕ if ϕA = true. A formula ϕ is
satisfiable if A |= ϕ for some structure A over vars(ϕ). For formulas ϕ, ϕ′, we write ϕ |= ϕ′ if for every
structure A such that A |= ϕ we have A |= ϕ′.

A literal is either an atomic formula p or the negation ¬p of an atomic formula. A clause is a prenex
formula of the form ∀x1 . . . ∀xmC where C is a disjunction of distinct literals. We assume for convenience
that the sets of bound variables are disjoint for any two clauses. A ground clause is a clause which has
no variables (and no quantifiers). The empty clause � is just the constant false. For simplicity, we omit
the universal quantifiers and assume that each variable is implicitly universally quantified. Also, we do
not explicitly deal with existential quantifiers in the formulas, assuming that we have introduced Skolem
functions for each existentially quantified variable.

Interpolants. Let ΣA and ΣB be two signatures, and let A and B be two sets of clauses over ΣA and ΣB

respectively. Suppose that A ∪ B is unsatisfiable. By Craig’s theorem [3], there is a sentence I over the
signature ΣA ∩ ΣB such that A |= I and B |= ¬I . We call such an I an interpolant for (A,B).
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Resolution Proof System. Let A be a set of ground clauses. A resolution proof tree for A is a rooted,
node-labeled, binary tree where each node n is labeled with a clause θ(n) so that every leaf is labeled by a
clause from A, and every internal node is an instance of the resolution proof rule:

L ∨ φ L̄ ∨ φ′

φ ∨ φ′
(RESOLUTION)

That is, for every internal node n with children n1 and n2, we have that θ(n1) ≡ (L ∨ φ), θ(n2) ≡ (L̄ ∨ φ′),
and θ(n) ≡ φ∨ φ′, for some literal L and clauses φ and φ′. A refutation of A is a resolution proof tree where
the root is labeled with �.

Suppose now that A is a set of clauses, not necessarily ground. To prove that A is unsatisfiable, we can
use the ground resolution technique: generate a finite number of ground instances of each clause in A (by
substituting ground terms for variables) and construct a refutation tree with these ground clauses at the leaves.
The technique is sound and complete: A is unsatisfiable if and only if there exists such a ground refutation.
See, e.g., [8].

3 Quantified Interpolants for First-Order Logic

We first give an algorithm to derive an interpolant from a resolution proof of unsatisfiability for first-order
logic without equality. In §4, we generalize the technique to compute interpolants for first-order logic in the
presence of background theories.

Let A and B be sets of clauses such that A ∪ B is unsatisfiable and suppose Ω is a refutation tree for
A∗ ∪B∗, where A∗ and B∗ are finite sets of ground instances of A and B respectively. As above, for every
node n, the clause that labels it is denoted θ(n).

Example 1 Let ΣA = {f, g,∼}, ΣB = {a, b, f,∼}, and let A and B consist of the following clauses, where
x, y are (implicitly universally quantified) variables.1

A : x 6∼ y ⇒ g(f(x)) 6∼ g(f(y)) x ∼ y ⇒ g(x) ∼ g(y)
B : a 6∼ b f(a) ∼ f(b)

Figure 1 shows a refutation of A ∪ B where the clauses superscripted with the symbol † are obtained by
instantiating the clauses of A via substitutions [x 7→ a, y 7→ b] and [x 7→ f(a), y 7→ f(b)] respectively.
These two clauses constitute the set A∗, while the set B∗ is just B.

Working inductively from leaves of Ω towards the root, we will associate with every node n its partial
interpolant I(n), which is a first-order formula, not necessarily ground and not necessarily a clause. The
partial interpolant for the root of Ω will be the desired interpolant for the pair A,B.

We say that a literal is A∗-local if it or its negation occurs in an A∗-clause, but neither occurs in any of
the B∗-clauses. B∗-local literals are defined analogously. The remaining literals are shared; each of them
occurs, negated or not, in an A∗-clause and in a B∗-clause.

The construction of partial interpolants begins with assigning one of the marks a, b, or ab to every literal
in every leaf clause [5]. The rule is: mark each occurrence of any shared literal arbitrarily, and mark each
occurrence of a non-shared literal either a or b, depending on whether the literal is A∗-local or B∗-local.2

1Treat ∼ just as a binary relation. We are currently in the logic without equality.
2Pudlak’s [20] and McMillan’s [17] constructions are the special cases that correspond to marking all shared literals with ab or b

respectively.
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Figure 1: Refutation proof for Example 1

The marking propagates to internal nodes as follows. If n1 and n2 are the children nodes of n, then every
literal of θ(n) that occurs in only one of the children clauses θ(n1), θ(n2) inherits the marking from that
child clause. For literals that occur in both children clauses with the same marking, that marking is preserved
in θ(n). In the remaining case (the literal occurs in the children clauses with different markings), the literal is
marked ab in θ(n).

Removing all literals marked b from the clause θ(n) produces a subclause that will be denoted α(n);
the additional removal of literals marked ab produces α](n). The subclauses β(n) and β](n) are defined
analogously. Note that

α(n) ∨ β](n) ≡ θ(n) ≡ α](n) ∨ β(n) (1)

Partial interpolants I(n) will be crafted with the aim to prove that

A |= I(n) ∨ α](n) and B |= ¬I(n) ∨ β](n) (2)

hold for every node n of Ω. Since both α](root) and β](root) are empty clauses, it will follow from (2) that
the formula I(root) is an interpolant for A and B provided it is written over the common signature ΣA ∩ΣB .

The inductive definition of partial interpolants begins with

I(n) = β(n), if n is an A-leaf; and I(n) = ¬α(n), if n is a B-leaf (3)

which satisfies (2) in view of (1).
To define I(n) for an internal node n with children n1 and n2, we first obtain a propositional combination

J(n) of I(n1) and I(n2). Assuming L is the literal that is resolved at the node n, and that L and L̄ occur in
θ(n1) and θ(n2) respectively, we look at the mark of L in θ(n1) and the mark of L̄ in θ(n2), and define

J(n) =


I(n1) ∨ I(n2) if both marks are a

I(n1) ∧ I(n2) if both marks are b

(L ∨ I(n1)) ∧ (L̄ ∨ I(n2)) otherwise

(4)

Note that the last case applies when the two marks are distinct or both are equal to ab.

Lemma 1 (D’Silva [4]) If both I(n1) and I(n2) satisfy condition (2), then so does J(n).

The partial interpolant I(n) will be obtained by adding some quantifiers to the formula J(n), in a
non-unique manner. There is a degree of freedom here, expressed by the parameter F in the formula
I(n) ≡ QA

F (J(n)) of Lemma 4 below. The parameter F ranges over a set of sequences of subterms of J(n)
called flags.
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a 6∼ b⇒ f(a) 6∼ f(b)

Figure 2: Partial interpolants for Example 1

Before precise definitions it behooves us to look at some examples.
Observe that if we set I(n) = J(n) for every node, we will get the formula I(root) satisfying A |=

I(root) and B |= ¬I(root). It need not be an interpolant because non-common symbols may occur in it.
We give three examples, and in each of them we show how to fix I(root) into an interpolant by replacing
non-common subterms with quantified variables.

Example 2 The signatures are ΣA = {a,R} and ΣB = {b, R}. Each of the clause sets A and B consists
of a single clause: R(a, v) and ¬R(u, b) respectively. (u and v are variables.) The instances R(a, b) and
¬R(a, b) of these clauses are the labels of the leaves of a one-step refutation. The marking algorithm allows
us to arbitrarily choose the marking of the only occurring literal R(a, b). Each of the nine (3× 3) choices
leads by the formula (4) to J(root) = R(a, b). Replacing the non-common terms a and b with fresh variables
gives us R(x, y). Of all the possible ways to close this formula, two are interpolants: ∃x ∀y R(x, y) and
∀y ∃xR(x, y).

Example 3 The signatures are ΣA = {g, f,∼} and ΣB = {h, f,∼}, and we again have singleton clause
sets A = {f(u, g(u)) ∼ f(g(u), u)} and B = {f(h(v), w) 6∼ f(w, h(v))}. The substitutions [u 7→
h(p)] and [v 7→ p, w 7→ g(h(p))] applied to these clauses produce the ground clause f(h(p), g(h(p))) ∼
f(g(h(p)), h(p)) and its negation. As in Example 2, J(root) is exactly this clause. With fresh variables x for
h(p) and y for g(h(p)), it becomes f(x, y) ∼ f(y, x). It is not difficult to check that the clause can be closed
only in one way to become an interpolant: ∀x ∃y f(x, y) ∼ f(y, x).

Example 4 In Example 1, the literals a ∼ b and f(a) ∼ f(b) occur (possibly negated) in both A∗ and B∗.
We can mark their occurrences arbitrarily, but for definiteness, let us use McMillan’s marking and mark
them b. The remaining two literals occur only in A∗-clauses and so must be marked a. With I(n) = J(n)
for all nodes, the formula (4) produces partial interpolants shown in Figure 2. Abstraction of non-common
terms a and b from J(root) with fresh variables and subsequent quantification leads to the interpolant
∀x ∀y (x 6∼ y ⇒ f(x) 6∼ f(y)). The choice of quantifiers is again unique.

Huang [10] shows how to replace the non-common symbols in I(root) with fresh variables and prefix
the resulting formula with quantifiers that bound the fresh variables, so that at the end we have the desired
interpolant for A and B. Christ and Hoenicke [1] observe that quantification does not need to wait for the
end of the process, when J(root) is obtained. Instead, there is an opportunity to introduce some quantifiers
when generating the partial interpolant I(n) from J(n) at each node. The amount of quantifier introductions
is arbitrary to a certain extent and we will precisely specify it. Huang’s algorithm comes out as a special case
when all quantification is postponed until the root is reached. At the other extreme, choosing to introduce as
many quantifiers as possible at each node results in the algorithm of [1].
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Example 5 With the clause sets A = {q ∨ p1(u),¬q ∨ p2(u)} and B = {¬(p1(u)),¬(p2(u))} over the
respective signatures ΣA = {p1, p2, q} and ΣB = {p1, p2, a}, the two extreme quantification strategies
produce distinct intepolants:

IHuang = ∀x (p1(x) ∨ p2(x)) ICh-Ho = (∀x p1(x)) ∨ (∀x p2(x))

Example 6 This example demonstrates that there may be even more quantification choices than the two
extremes IHuang and ICh-Ho. Start with any pair A,B, where, as in Example 5, IHuang and ICh-Ho are
distinct. Let s be a fresh propositional variable, let A∗ be the set that contains the clauses s ∨ c and ¬s ∨ c
for every clause c ∈ A, and let B∗ be derived from B in the same manner. Let Ω be a refutation tree for the
pair A,B. Take two copies Ω1 and Ω2 of Ω. For every leaf n of Ω labelled with the clause c (say), label the
corresponding node n1 of Ω1 with s ∨ c and the corresponding node of Ω2 with ¬s ∨ c. Add the root node to
the union of Ω1 and Ω2 to obtain a refutation tree Ω∗ for A∗, B∗.

Suppose two partial interpolation strategies applied to Ω produce interpolants I1 and I2. Then we can
apply a combination of these strategies to Ω∗; the first on its subtree Ω1 and the second on Ω2. The resulting
interpolant I∗ for A∗, B∗ will be (s ∧ I1) ∨ (¬s ∧ I2). Thus, among other choices, I∗ can be IHuang (when
I1 = I2 = IHuang), or ICh-Ho, or (s ∧ IHuang) ∨ (¬s ∧ ICh-Ho).

The FOL Interpolation Algorithm. We classify terms over ΣA ∪ ΣB into straight, A-bent and B-bent
depending on whether their top symbol is common (belongs to ΣA ∩ ΣB), or is exclusively in ΣA, or
exclusively in ΣB . 3 For a formula φ over ΣA ∪ ΣB and a bent term t, define

QA
t φ =

{
∃z φ[t 7→ z] if t is A-bent
∀z φ[t 7→ z] if t is B-bent

where z is a fresh variable. Define QB
t φ dually (swapping ∀ and ∃ above). The following lemma is proved by

induction on the derivation of A ` φ and B ` φ in any proof system for first-order logic.

Lemma 2 Let t be a bent ground term. If A |= φ then A |= QA
t φ. If B |= φ then B |= QB

t φ.

By definition, a bent factor of a formula φ is a bent ground term that has an occurrence in φ at which all
its superterms are straight and ground.

A sequence F = 〈t1, t2, . . . , tk〉 of bent factors of φ will be called a flag if it respects the subterm
ordering (ti is a subterm of tj only if i < j); and it is upward-closed in the sense that every bent factor
that contains some member of F as a subterm is itself a member of F . A flag 〈t1, t2, . . . , tk〉 is maximal
if it is not a subsequence of another flag. For any flag F of φ, we define QA

Fφ = QA
t1 QA

t2 · · · Q
A
tk
φ and

QB
Fφ = QB

t1 QB
t2 · · · Q

B
tk
φ.

Lemma 3 Let F be a flag of φ. (1) If A |= φ then A |= QA
Fφ. If B |= φ then B |= QB

Fφ. (2) Then
|= QA

F (¬φ)⇔ ¬(QB
F φ).

Proof: Part (1) is a simple generalization of Lemma 2. For part (2), obtain |= QA
t (¬φ)⇔ ¬(QB

t φ) from
definitions. The general case follows by induction.

Lemma 4 Let n be a node of Ω with children n1 and n2. Suppose
3The top symbol of a term t is that f for which t is of the form f(t1, . . . , tn).
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• I(n1) and I(n2) have been defined and both satisfy property (2);

• J(n) is as in (4);

• F is a flag of J(n) that does not contain any subterms of α](n) or β](n).

Then (2) holds at n for I(n) ≡ QA
F (J(n)).

Proof: Since F contains no subterms of α](n), it is a flag of J(n)∨α](n) and the formulas QA
F (J(n)∨α](n))

and (QA
F (J(n))) ∨ α](n) are equivalent. The latter is the same as I(n) ∨ α](n). Since A |= J(n) ∨ α](n)

holds by Lemma 1, we can deduce A |= I(n) ∨ α](n) with the aid of Lemma 3.
The proof of B |= ¬I(n) ∨ β](n) is similar after we represent ¬I(n) as QB

F (¬J(n)) (Lemma 3).
We summarize the computation of an interpolant for the pair A,B of sets of clauses:

Algorithm 1 1. Obtain a refutation tree Ω for A∗ ∪B∗, where A∗ is some finite set of ground instances
of A, and similarly for B∗.

2. Starting with a legitimate choice of marking of literal occurrences in θ(n) at the leaves of Ω, extend
the marking to literal occurrences in the clauses labeling the internal nodes of Ω.

3. Define I(n) at the leaves as in (3).

4. For each internal node n, define J(n) as in (4), then choose a flag F of J(n) that does not contain
subterms of α](n) or β](n), then set I(n) to be QA

F (J(n)).

5. At the root, choose a maximal flag F and set I(root) = QA
F (J(root)).

Theorem 1 The formula I(root) produced at the end of a run of Algorithm 1 is an interpolant for A,B.

Proof: The conditions in (2) hold for every node n of Ω. This follows by induction, where the induction step
is justified by Lemma 4 and the base case (when n is a leaf) holds as observed after the defining equation (3).
The instance of (2) with n = root gives us A |= I(root) and B |= ¬I(root), so it only remains to check that
I(root) does not contain symbols that are not in the common signature ΣA ∩ΣB . This follows from: (1) the
definition of I(root) as QA

F (J(root)), where F is a maximal flag of J(root); and (2) the general observation
that when F is a maximal flag of φ, then QA

Fφ has no bent factors and therefore no occurrences of symbols
not in ΣA ∩ ΣB .

4 Quantified Interpolants for Theories

We proceed to extend this method to allow the construction of interpolants so that it works in the presence of
background theories. For recursively enumerable theories, interpolants can be generated by reduction to pure
first-order reasoning by enumerating the (finitely many, by compactness) theory lemmas used in a proof of
unsatisfiability [11]. We show how interpolants can be computed directly on top of decision procedures.

Interpolation Modulo Theories. A Σ-theory is a set of Σ-sentences closed under logical deduction.4 Given
a Σ-theory T , a T -model is a Σ-structure that satisfies all sentences in T . A Σ-formula ϕ over a set V of
free variable symbols is T -valid, denoted |=T ϕ, if it is satisfied by all T -models over V . A Σ-formula is

4A set T of Σ-sentences is closed under logical deduction if whenever ϕ ∈ T and ϕ⇒ ψ is valid, we have ψ ∈ T .
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T -satisfiable if it is satisfied by some T -model over V , and is T -unsatisfiable if it is not T -satisfiable. The
satisfiability problem of a Σ-theory T is the problem of deciding, for every Σ-formula ϕ, whether or not ϕ is
T -satisfiable.

Let T be a Σ-theory. Let A be a ΣA-formula and B a ΣB-formula, with Σ ⊆ ΣA ∩ΣB , such that A ∧B
is T -unsatisfiable. A formula I is a T -interpolant of (A,B) if: (1) I is over ΣA ∩ΣB; (2) |=T A⇒ I; and
(3) |=T B ⇒ ¬I .

The rest of §4 explains how satisfiability-modulo-theory solvers (based on decision procedures) can be
extended into procedures for T -interpolant generation. We will need the following modulo T generalizations
of results of §3. The proofs apply verbatim.

Proposition 1 Lemma 1 holds if |= in (2) is replaced with |=T . Lemmas 2–4 also remain true if |= in them is
replaced with |=T .

(I) Theory Lemmas and Partitioning Them. Modern SMT solvers combine a propositional SAT solver
with decision procedures that can check T -satisfiability of sets of literals. When a decision procedure is
called on an input set L of literals and it finds this set unsatisfiable, then it usually finds an unsatisfiable subset
{L1, . . . , Lk} of L, and we know that the clause L1 ∨ · · · ∨ Lk is a theorem of T . Theorems that arise this
way in runs of an SMT solver are called theory lemmas.

During a successful refutation run of an SMT solver applied to an input clause set A ∪B, the solver will
generate finite sets A∗ of ground instances of clauses of A, B∗ of ground instances of clauses of B, and Λ of
theory lemmas, the union of which is propositionally unsatisfiable. Moreover, it is possible to extract from
the run of the solver a refutation tree Ω with the clauses from A∗, B∗, and Λ at the leaves.

With the refutation tree Ω at hand, we can partition Λ arbitrarily into ΛA and ΛB and then use the
Algorithm 1 of §3 with the sets A† = A∗ ∪ ΛA and B† = B∗ ∪ ΛB in place of A∗ and B∗. The formula
I(root) produced by the algorithm will be a T -interpolant for the pair (A,B). To prove this, we can repeat
the proof of Theorem 1, replacing |= in it with |=T , and referring to Proposition 1. The only place where
an additional argument is needed is for the base case of the induction: checking that the |=T -version of (2)
holds for every leaf node n. In view of (3), this amounts to proving that A |=T θ(n) holds if θ(n) ∈ A†, and
the B |=T θ(n) holds if θ(n) ∈ B†. For the proof of the first statement, just note that A |= θ(n) holds when
θ(n) ∈ A∗ and that |=T θ(n) holds when θ(n) ∈ ΛA. The second statement is symmetric.

Example 7 The choice of the partition of Λ into ΛA and ΛB affects the resulting interpolant. Let T be the
theory of extensional arrays [14] over the signature Σ = {read ,write}, with the axioms

read(write(u, i, x), i) = x i = j ∨ read(write(u, i, x), j) = read(u, j)
u = v ⇔ ∀i(read(u, i) = read(v, i))

(Axioms are implicitly universally quantified.) Let ΣA = Σ ∪ {r, s, a, e}, ΣB = Σ ∪ {r, s, b, c}, and let
A = {r = write(s, a, e)} and B = {b 6= c, read(r, b) 6= read(s, b), read(r, c) 6= read(s, c)} be sets of unit
(single-literal) ground clauses. Theory lemmas

b 6= c⇒ a 6= b ∨ a 6= c a 6= b ∧ r = write(s, a, e)⇒ read(r, b) = read(s, b)
a 6= c ∧ r = write(s, a, e)⇒ read(r, c) = read(s, c)

can be easily combined with the clauses of A and B into a refutation tree. If we treat all theory lemmas as
A-clauses (that is, set ΛB = ∅) then we obtain the interpolant ∀j ∀k (j = k ∨ read(r, j) = read(s, j) ∨
read(r, k) = read(s, k)); at the other extreme, treating theory lemmas as B-clauses produces the interpolant
∃i∃x (r = write(s, i, x)). In both cases, we use Huang’s marking and quantification procedure.
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Instead of dumping all theory lemmas in one of the sets A†, B†, we can attempt to minimize the number
of shared literals—and with it the number of quantifiers in the interpolant—with the following symmetric
partitioning algorithm. Let L be the set of all literals (and their negations) that occur in A∗ ∪B∗ ∪ Λ. Let
Lab, La, Lb be the sets of shared, A∗-local, and B∗-local literals respectively, as defined in §3. We have a
partition L = La +Lb +Lab +Lnew, where Lnew contains literals that occur only in theory lemmas. Let Λa

be the set of theory lemmas that do not use any Lb-literals, and define Λb analogously. Now add Λa to A∗,
add Λb to B∗, and repeat the procedure with these new A∗ and B∗. Repeat the procedure until it stabilizes,
which happens when both Λa and Λb are empty. At this point, put each of the remaining theory lemmas in
A† or B† arbitrarily.

For example, consider the unsatisfiable pair s = write(r, a, x)∧ read(s, b) 6= x and t = write(r, a, y)∧
read(t, b) = y ∧ read(r, b) 6= y. A proof of unsatisfiability can be generated using theory lem-
mas s = write(r, a, x) ⇒ read(s, a) = x; read(s, a) = x ∧ read(s, b) 6= x ⇒ a 6= b; and
a 6= b ∧ t = write(r, a, y) ⇒ read(t, b) = read(r, b). The partitioning algorithm above would put
the first two lemmas in A†, and the last in B†, and the interpolant would be a 6= b. If, instead, we put all the
lemmas in A†, then t and y need to be quantified. Similarly, if all the lemmas were put in B†, then s and x
need to be quantified.
(II) Ground Interpolation. A theory T is ground-interpolating if for every T -lemma split into two clauses
A ∨ B there exists a ground formula φ such that |=T A ∨ φ, |=T B ∨ ¬φ, and φ uses only symbols that
either belong to the signature of T or are shared by A and B.5 Efficient ground-interpolating algorithms exist
for some common theories (rational/real linear arithmetic; EUF—“equality with uninterpreted functions”)
[2, 6, 15]. On the other hand, there are theories of practical interest that are not ground-interpolating; in fact,
Example 7 shows the theory of arrays is not ground-interpolating.

A ground-interpolating algorithm can replace the generic treatment of theory lemmas in §4(I) with a
more streamlined construction of partial interpolants. Suppose that the resolution tree Ω and the clause sets
A∗, B∗, and Λ are as in §4(I), and let us make a simplifying assumption that Lnew = ∅, i.e., that the theory
lemmas involve only literals that occur in A∗ or B∗.6 We apply the construction of partial interpolants for the
nodes of Ω much as presented in §3. The only substantial addition is the extension of the base-case equations
(3) to cover theory lemmas; for every leaf node n, we now define

I(n) =


β(n) if θ(n) ∈ A∗

¬α(n) if θ(n) ∈ B∗

I1 ∨ I2 ∨ γ(n) if θ(n) ∈ Λ

(5)

where γ(n) denotes the part of θ(n) marked ab and I1, I2 are the theory interpolants for the clause θ(n) split
as (α](n) ∨ γ(n)) ∨ β](n) and α](n) ∨ (γ(n) ∨ β](n)) respectively. Thus, in the case θ(n) ∈ Λ, we have

A |=T I1 ∨ α](n) ∨ γ(n) B |=T I1 ∨ β](n)

A |=T I2 ∨ α](n) B |=T I2 ∨ γ(n) ∨ β](n)

and this implies A |=T I(n) ∨ α](n) and B |=T ¬I(n) ∨ β](n), which is condition (2) with |=T in place of
|=. Apart from this, we leave Algorithm 1 unchanged. The formula I(root) it produces is a T -interpolant for
(A,B). The proof is again a repetition of the proof of Theorem 1 relativized modulo T .

5Another way to phrase this definition would be by requiring that a T -interpolant exists for every pair of mutually inconsistent sets
of literals. Since this condition implies the existence of a ground interpolant for every T -inconsistent pair of ground formulas [2,7,15],
the name ground-interpolating is justified.

6This is actually no restriction if the theory lemmas are produced by a DPLL(T ) solver [19]. Solvers of this kind work on a set
of literals present in the input clauses, and do not extend it [7].
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Note that if θ(n) is a theory lemma in which γ(n) is an empty clause, then there is only one splitting
of θ(n), namely α](n) ∨ β](n), to which we need to apply ground interpolation, and I(n) is the resulting
theory interpolant. This simple situation always arises when one uses “McMillan’s marking” (see footnote 5
in §3), as done in [2, 7, 15].

Example 8 Using ground interpolation algorithms, we can produce simpler interpolants than with the
generic procidure in §4(I). The theory is EUF over the signature Σ = {◦, c, d, e}. Let ΣA = Σ ∪ {a},
ΣB = Σ ∪ {b}, and consider the clause sets A = {a = c, a ◦ d = e} and B = {b = d, c ◦ b 6= e}. The
theory lemma

Λ : a 6= c ∨ a ◦ d 6= e ∨ b 6= d ∨ c ◦ b = e

combines with the four literals of A and B into a (linear) resolution proof. The theory interpolant for the
lemma is I ≡ c ◦ d = e and it is also the final interpolant for A and B.7 On the other hand, if we do
as suggested in §4(I) and add the theory lemma to A, the algorithm of §3 would produce the interpolant
IA ≡ ∀y (y = d ⇒ c ◦ y = e). And if we add the lemma to B, the same algorithm would produce the
interpolant IB ≡ ∃x (x = c ∧ x ◦ d = e).

Clearly, I is a better interpolant than IA or IB . One might object that I can be reconstructed from either
IA or IB by a simple simplification procedure, but that happens by accident. To see this, let us modify the
example by taking ΣA = Σ ∪ {a1, a2} and replacing a with a1 ◦ a2 in the two clauses of A. The theory
interpolant remains the same I , but IA and IB become ∀y1 ∀y2 (y1 ◦ y2 = d ⇒ c ◦ (y1 ◦ y2) = e) and
∃x1 ∃x2 ((x1 ◦ x2) = c ∧ (x1 ◦ x2) ◦ d = e), and neither is now equivalent with I .

(III) Combination of Theories. Modern SMT solvers typically use decision procedures for several theories
(say, T1, . . . , Tn) combined in a “DPLL plus Nelson-Oppen” fashion, abstractly described in, e.g., [13]. As
mentioned in §4(I), a successful refutation run of the solver on the input A ∪B produces a refutation tree
Ω at the leaves of which are the clauses, each of which is either an instance of an A-clause, an instance of
a B-clause, or a theory lemma, that is, a Ti-lemma for some i ∈ {1, . . . , n}. This results in the partition
A∗ +B∗ + Λ1 + . . .+ Λn of the set of clauses that label the leaves of Ω.

Some of the participating theories may come with a ground-interpolating algorithm, some may not, so the
interpolation algorithm to be added to a multiple-theories solver is a combination of the algorithms described
in §4(I) and §4(II). It works as follows.

Assume that T1, . . . , Tk are ground-interpolating, and Tk+1, . . . , Tn are not. In the first stage of the
algorithm, we ignore Λ1, . . . ,Λk and add every lemma of Λk+1, . . . ,Λn to either A∗ or B∗ as described in
§4(I). The process consists of a few rounds of unambiguous decisions (based on the analysis of literal sharing
between each theory lemma and A∗ or B∗), finished with arbitrary decisions for the lemmas that do not
exhibit a predisposition for either side.

At this point, all clauses at the leaves of Ω are from the set A∗ +B∗ + Λ1 + . . .+ Λk, with A∗ and B∗

now including the original non-ground-interpolating theory lemmas. We proceed to define partial interpolants
for the leaves of Ω. As earlier, this begins with marking every literal occurence in every leaf clause θ(n) with
a, b, or ab. There is no guarantee, however, that every literal that occurs in a theory lemma must also occur in
a clause of A∗ ∪B∗. We leave such literal occurrences unmarked and redefine γ(n) (§4(II)) to be the clause
consisting of literals of θ(n) that are either maked ab or are unmarked. The partial interpolants at the leaves
of Ω are now defined by the formula (5) of §4(II), where the “theory interpolants” I1 and I2 are obtained
using the ground interpolation procedure for the appropriate theory Ti (the i is determined by θ(n) ∈ Λi).
The proof of correctness does not require any new ideas.

7It is easy to verify that I is an interpolant for (A,B). In fact, the ground-intepolating algorithm of [6] would produce exactly
this interpolant.
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Abstract

Logical interpolants have found a wide array of applications in automated verification, including
symbolic model checking and predicate abstraction. It is often critical to these applications that reported
interpolants exhibit desired properties, correctness being first and foremost. In this paper, we introduce a
method in which interpolants are computed by type inference within the trusted core of a proof checker.
Interpolants produced this way from a proof of the joint unsatisfiability of two formulas are certified as
correct by construction. We focus our attention to the quantifier-free theory of equality and uninterpreted
functions (EUF) and present an interpolant generating proof calculus that can be encoded in the LFSC
proof checking framework with limited reliance upon computational side conditions. Our experimental
results show that our method generates certified interpolants with small overhead with respect to solving.

1 Introduction

Given a logical theory T , a T -interpolant for a pair of formulas A,B that are jointly unsatisfiable in T is a
formula ϕ over the symbols of T and the free symbols common to A and B such that (i) A |=T ϕ and (ii)
B,ϕ |=T ⊥, where |=T is logical entailment modulo T . For certain theories, interpolants can be generated
efficiently from a refutation of A ∧B.

Interpolants have been used successfully in a variety of contexts, including symbolic model checking
[9] and predicate abstraction [8]. In many applications, it is critical that formulas computed by interpolant-
generation procedures be indeed interpolants, that is, exhibit the defining properties above. For example, in
[9] McMillan shows how interpolants can be used to produce a sound and complete method for checking
safety properties of finite state systems based on a fixed-point computation that over-approximates the set
of reachable states. Using as interpolants formulas that violate property (ii) above makes the method in-
complete, as it leads to spurious counterexamples that do not contribute to the overall progress of the main
algorithm. Even worse, using interpolants formulas that violate property (i) above may cause the algorithm
to reach a fixed point prematurely, thereby reporting a unsound result. While there are known methods to
generate interpolants efficiently [4, 3], none of them do so in a verified way. This is an obstacle to the use of
interpolation-based model checking in applications of formal methods that require independently checkable
proof certificates. We present a way of addressing this deficiency by means of a method for generating
certified interpolants.

We describe how T -interpolants can be efficiently produced using LFSC, a framework for defining
logical calculi that extends the Edinburgh Logical Framework [14] with computational side conditions. In
our approach, a proof system for the theory T of interest is encoded declaratively as a set of types and
typing rules in a user-defined signature, separate from the core of the proof checker. The interpolant itself

∗Work partially supported by grants #0914956 and #0914877 from the National Science Foundation.
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is computed by type inference as a side effect of proof checking. Because the interpolant is computed using
the trusted core of the proof checker, it is certified as correct by construction.

Interpolant-generating calculi exist for many theories, including quantifier-free linear integer arith-
metic [2] and linear real arithmetic [10]. In this work, we focus on the quantifier-free (fragment of the)
theory of equality and uninterpreted functions (EUF). Our approach, however, applies to other quantifier-
free theories. Extending previous work [6], we present an intuitive interpolant-generating calculus for EUF
that is more flexible than previous approaches, and can be implemented in LFSC in a natural way. We have
encoded this calculus in LFSC, and instrumented the SMT-solver Cvc3 [1] to output proofs in this format to
verify the viability of our approach.

Related Work. In [10], McMillan gives a calculus for interpolant generation in EUF that is implemented
within an interpolating theorem prover, intended for the purposes of interpolation-based model checking
and predicate refinement. Fuchs et al. give an alternative approach in [6] for interpolant generation in EUF
in terms of an algorithmic procedure. An approach for efficient interpolant generation in SMT is given by
Cimatti et al. in [4] and is implemented within the MathSAT SMT solver.

Contributions. The preliminary work discussed here has a two-fold contribution. Firstly, we develop a
general framework for generating interpolants in a certified manner via type checking. Secondly, we provide
a novel calculus for interpolant generation in EUF based on the procedure of [6] that can be encoded within
this framework. We present an implementation of our approach and discuss comparative performance results
in various configurations that provide experimental evidence of practical feasibility. We are working on
extending this work to arbitrary quantifier-free formulas, as opposed to only conjunction of literals.

Paper Outline. Section 2 gives an overview of the LFSC framework, in particular, how a proof signature can
incorporate proof rules that carry additional information. Section 3 contains a description of our interpolant
generating calculus for EUF, and details on how it is encoded. A detailed proof of soundness and (relative)
completeness can be found in a longer version of this paper [13]. Finally, experimental results from our
implementation are given in Section 4.

1.1 Formal Preliminaries

We work in the context of first-order logic with equality, and use standard notions of signature, term, lit-
eral, formula, clause, Horn clause, entailment, satisfiability, and so on. We use the symbol ≈ to denote
the equality predicate in the logic. We abbreviate ¬(s ≈ t) as s 6≈ t. We identify finite sets of formu-
las with the conjunction of their elements. For terms or formulas we use “ground”, i.e., variable-free, and
“quantifier-free” interchangeably since for our purposes free variables can be always seen as free constants.
For convenience, we follow Nieuwenhuis and Oliveras [11] in considering only Curried signatures, signa-
tures with no function symbols of positive arity except for a distinguished infix binary symbol · . Then, EUF
can be defined as the (empty) theory of · . This is without loss of generality since a ground formula over
any signature can be converted into an equisatisfiable ground formula over the signature above [11]. For
example, the formula g(a) ≈ f(a, g(a)) can be converted into g · a ≈ (f · a) · (g · a) with f, g and a all
treated as constant symbols.

Throughout the paper we will work with two ground EUF formulas A and B. Let ΣA and ΣB be the
sets of non-logical symbols (i.e., variables/constants) that occur in A and B, respectively. Terms, literals
and formulas over ΣA are A-colorable, and those over ΣB are B-colorable. Such expressions are colorable
if they are either A- or B-colorable, and are AB-colorable if they are both.
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t1 ≈ t2 t2 ≈ t3
t1 ≈ t3 trans

term : type
formula : type
eq : (! t1 term (! t2 term formula))
proof : (! f formula type)

trans : (! t1 term (! t2 term (! t3 term
(! p1 (proof (eq t1 t2)) (! p2 (proof (eq t2 t3))

(proof (eq t1 t3)))))))

t1 ≈ t2 [l1] t2 ≈ t3 [l2]

t1 ≈ t3 [l1 + t2 :: l2]
trans aug

...
term list : type
proof aug : (! f formula

(! tl term list type))

trans aug : (! t1 term (! t2 term (! t3 term
(! tl1 term list (! tl2 term list

(! p1 (proof aug (eq t1 t2) tl1)
(! p2 (proof aug (eq t2 t3) tl2)

(proof aug (eq t1 t3) (concat tl1 t2 tl2)))))))))

Figure 1: Example of two proof systems in LFSC, the second being an augmented version of the first. In
LFSC’s LISP-like concrete syntax, the symbol ! represents LF’s Π binder, for the dependent function space.

2 Interpolant Generation via Type Inference

Edinburgh LF is a framework for defining logics by means of a dependently-typed lambda calculus, the
λΠ-calculus [7]. LFSC (Logical Framework with Side Conditions) extends LF by adding support for com-
putational side conditions, i.e., functional programs used to test logical conditions on proof rules [14]. As
in LF, a proof system can be defined in LFSC as a list of typing declarations, called a signature. Each proof
rule is encoded as a constant symbol whose type represents the inference allowed by the rule. An example
of a minimal proof system in LFSC is given in the upper half of Figure 1, which shows how the transitivity
rule for equality can be encoded in LFSC syntax. In mathematical notation, the LFSC signature in the figure
declares eq, for example, as a symbol of type Πx:term.Π y:term. formula, or, written in more conventional
form, of type term → term → formula. The symbol trans, encoding the transitivity proof rule, has type
Π t1:term.Π t2:term.Π t3:term. (proof (eq t1 t2)→ proof (eq t2 t3)→ proof (eq t1 t3)), indexed by three terms.
Intuitively, for any terms t1, t2, t3, trans produces a proof of the equality t1 ≈ t3 from two subproofs p1 and
p2 of t1 ≈ t2 and t2 ≈ t3, respectively.

The LF metalanguage provides the user with the freedom to choose how to represent logical constructs
in a signature. In particular, we may augment proof rules to carry additional information, through the use
of suitably modified types. The lower half of Figure 1 shows a modified version of the aforementioned cal-
culus. In this version, the modified proof rule takes as premises annotated equalities and produce annotated
equalities. The annotation consists of a list of terms occurring in equalities used to prove the overall equality.
The corresponding proof judgment in LFSC, encoded as the type proof aug, is used by the trans aug rule,
which combines a chain of equalities and concatenates their respectively lists with the intermediate term t2.1

One can write proof terms in this calculus where every subterm of type term list is a (type) variable.
Concretely, this is done by using a distinguished hole symbol , each occurrence of which stands for a
different variable. Then, the lists of intermediate terms can be computed by an LFSC type checker by type

1Although not shown here, the list concatenation constant concat, of type term list → term → term list → term list, can be
given as a logical definition in LFSC, and does not need to be implemented algorithmically.
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t ≈ t refl
t2 ≈ t1
t1 ≈ t2

sym s1 ≈ s2 t1 ≈ t2
s1 · t1 ≈ s2 · t2

cong

t1 ≈ t2 t2 ≈ t3
t1 ≈ t3 trans

t1 ≈ t2 ¬(t1 ≈ t2)
⊥ contra

Figure 2: A standard proof calculus for EUF literals. We assume that all terms are in Curried form, and so
the only function symbol of non-zero arity is · , denoting function application.

inference when type checking the proof term. In this example, type checking a proof term P against a type
of the form ( proof aug (eq t1 t2) ) for some terms t1 and t2 will cause the LFSC checker to verify that P has
type ( proof aug (eq t1 t2) l) for some list of terms l, and if successful, output the computed value of l.

In this example, an account of the steps taken for the proven equality is recorded as specificational
data, in the rule’s annotation. One can follow the same approach to capture information useful to compute
interpolants. In general, one may augment a proof signature to operate on judgments carrying additional
terms that satisfy some specific invariant. We will use the common notion of a partial interpolant in the
next section, which can be encoded as an LF type declaration in a natural way.

Our approach allows for two options for obtaining certified interpolants. First, an LFSC proof term
P can be tested against the type (interpolant F ) for some formula F . In this option, the interpolant F is
explicitly provided as part of the proof, and if proof checking succeeds, then both the proof P and the
interpolant F are certified to be correct. Note that the user and the proof checker must agree on the exact
form for the interpolant F . Alternatively, P can be tested against the type (interpolant ). If the proof
checker verifies that P has type (interpolant F ) for some formula F , it will output the computed value of F .
In this approach, interpolant generation comes as a side effect of proof checking, via type inference, and the
returned interpolant F is correct by construction.

3 Interpolant Generation in EUF with Partial Interpolants

In this section we provide an interpolating calculus for EUF whose rules can be used to build refutations
in EUF but are also annotated with information for generating interpolants from these refutations. For
simplicity, we restrict ourselves to the core case of input sets of formulas containing only literals. A calculus
for general quantifier-free formulas is not substantially harder. It can be developed along similar lines,
relying on existing methods for extending in a uniform way any interpolation procedure for sets of literals
to sets of arbitrary qffs [10]; but this is left to future work.

Our interpolating calculus is an annotated version of the basic calculus for EUF, shown in Figure 2. To
compute an interpolant for two jointly unsatisfiable sets of literals A and B, we take a refutation of A ∪ B
in the basic calculus and lift it to a refutation in our interpolating calculus. The lifting is straightforward and
consists in essence in (i) annotating the literals ofA andB with a suitable color (see later) and (ii) replacing
each rule application by a corresponding set of rule applications in the interpolating calculus. Every rule
in the latter calculus is such that the annotation of the rule’s conclusion is derived from the annotations of
its premises. Thus, these annotations can be left unspecified in the proof, and derived by type inference in
LFSC during proof checking.

Note that since both the proof generation and the proof lifting steps are done before proof checking,
neither of them needs to be trusted. This allows us to handle various complications outside the trusted
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{ t is A-colorable }
t ≈ t [>,>, A]

refl A
t1 ≈ s1 [ϕ1, ψ1, A] t2 ≈ s2 [ϕ2, ψ2, A]

t1 · t2 ≈ s1 · s2 [ϕ1 ∧ ϕ2, ψ1 ∧ ψ2, A]
cong A

t1 ≈ t2 [A]

t1 ≈ t2 [>,>, A]
base A

t1 ≈ t2 [ϕ,ψ,A] t1 6≈ t2 [A]

⊥ [ϕ ∧ ¬ψ]
contra A

t1 ≈ t2 [ϕ1, ψ1, c] t2 ≈ t3 [ϕ2, ψ2, c
′] { t1, t3 are A-colorable }

t1 ≈ t3 [ϕ1 ∧ ϕ2, ψ1 ∧ ψ2, A]
trans A

{ t is B-colorable }
t ≈ t [>, t ≈ t, B]

refl B
t1 ≈ s1 [ϕ1, ψ1, B] t2 ≈ s2 [ϕ2, ψ2, B]

t1 · t2 ≈ s1 · s2 [ϕ1 ∧ ϕ2, t1 · t2 ≈ s1 · s2, B]
cong B

t1 ≈ t2 [B]

t1 ≈ t2 [>, t1 ≈ t2, B]
base B

t1 ≈ t2 [ϕ,ψ,B] t1 6≈ t2 [B]

⊥ [ϕ]
contra B

t1 ≈ t2 [ϕ1, ψ1, c1] t2 ≈ t3 [ϕ2, ψ2, c2] { t1, t3 are B-colorable }
t1 ≈ t3 [ϕ1 ∧ ϕ2 ∧ (ψ1 ∧ ψ2)→ (t1 ≈ t3), t1 ≈ t3, B]

trans B

Figure 3: A-Prover and B-Prover Partial Interpolant Rules. The text in braces denote computational side
conditions. Note that the trans rules are actually a summary of multiple rules for cases of colors c and c′.
In some of these cases, formulas in the annotation of conclusions may be simplified to respect colorability
constraints.

core of LFSC, such as applications of congruence between uncolorable terms. In the end, our interpolating
calculus can be encoded in 203 lines of LFSC type declarations. The core rules contain just one kind of
computational side conditions, which test for term colorability.

3.1 An Interpolating Calculus for EUF

For the rest of this section, we fix two sets A and B of literals such that A ∪ B is unsatisfiable in EUF.
Without loss of generality, we assume that A and B are disjoint.

An interpolant-generating calculus for EUF can be thought of as one that explicitly records the commu-
nication between two provers, a A-prover and a B-prover, whose initial assumptions are the sets A and B,
respectively [6]. In our calculus, this communication is achieved through proof judgments. The rules of the
calculus derive or use as premises one of three kinds of judgments, of the following forms:

A,B ` L [c], A,B ` t1 ≈ t2 [ϕ,ψ, c], A,B ` ⊥ [ϕ]

where L is an equational literal, s, t are terms, ϕ,ψ are quantifier-free formulas, and c is an element of
a binary set of colors. For convenience, we name these colors A and B.2 Although the judgments are
parameterized by the literal sets A and B, these sets do not change within a proof. So from now on, we
will omit A,B ` from proof judgments. Each judgment will consist of a literal annotated with additional
information (the information enclosed in square brackets). The calculus starts with the set of judgments

{L [A] | L ∈ A} ∪ {L [B] | L ∈ B},

and derives new judgments according to the proof rules defined in Figure 3.
2It will be clear from context whether A (B) refers to the input clause set or its associated color.
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Many of the rules in Figure 3 are annotated versions of those in the basic calculus of Figure 2. In
addition, the rules base A and base B are used to provide an equality with the proper annotation. The only
side condition our calculus requires is a test for whether a particular term is colorable. Although not shown
here, symmetry may be applied to judgments of the form t1 ≈ t2 [c] to conclude t2 ≈ t1 [c]. This was
done for simplicity, and does not impact the relative completeness of the calculus. The A and B provers
communicate through judgments of the form t1 ≈ t2 [ϕ,ψ, c], where t1 ≈ t2 is the overall equality that
A and B have cooperated in proving; ϕ contains interpolation information provided by the A-prover for
the benefit of the B-prover; ψ contains interpolation information provided in turn by the B-prover for the
A-prover, possibly using information provided by theA-prover. By construction, ϕ is a conjunction of Horn
clauses and ψ a conjunction of literals.

In addition to its limited dependence on computational side conditions, a clear advantage of our calculus
for EUF is its flexibility. In particular, the user has the option of applying either the trans A or trans B rules
for equalities between AB-colorable terms. This choice produces different interpolants, with different size
and logical strengths.

To show that our calculus is interpolating, we will use the fact that all derived judgments of the form
s ≈ t [ϕ,ψ, c] are partial interpolants in the sense below.

Definition 1. A judgment J of the form t1 ≈ t2 [ϕ,ψ, c] is a partial interpolant if the following hold: (1)
A |= ϕ; (2) B,ϕ |= ψ; (3) A,ψ |= t1 ≈ t2; (4) ti is c-colorable for i = 1, 2; (5) either

a. J is t1 ≈ t2 [ϕ,ψ,A], and ϕ and ψ are AB-colorable, or

b. J is t1 ≈ t2 [ϕ, t1 ≈ t2, B] and ϕ is AB-colorable.

In the definition above, when J is t1 ≈ t2 [ϕ,ψ,A], the formula ϕ ∧ ¬ψ is an interpolant for (A ∧ t1 6≈
t2, B). Similarly, when J is t1 ≈ t2 [ϕ, t1 ≈ t2, B], the formula ϕ is an interpolant for (A,B ∧ t1 6≈ t2)).

Our calculus is sound and complete for interpolation in EUF in the following sense.

Theorem 2. The following hold:

a. For all derivable judgments⊥ [I] we have that (i)A |= I , (ii)B, I |= ⊥ and (iii) I isAB-colorable.

b. For every jointly unsatisfiable set of ground EUF literals A and B, there exists a derivation of the
judgment ⊥ [I], for some formula I .

The proof of soundness above uses fairly standard arguments. That of completeness relies on the fact
that EUF is equality interpolating [15], i.e,, for all colorable terms s, t such that A∧B |= s ≈ t, there exists
an AB-colorable term u such that A,B |= s ≈ u ∧ u ≈ t. The term u, and its subterms, which may not
occur in A ∪B, can be introduced as needed in a proof in our calculus by the refl A and refl B rules.

3.2 Encoding Into LFSC

Our calculus for interpolant generation in EUF can be encoded in an LFSC signature with limited reliance
on computational side conditions. The encoding of the judgements and the rules is relatively straight-
forward. An excerpt of the encoding is provided in Figure 4. Looking at it salient features, we encode
color as a base type in our signature, with two nullary term constructors, A and B. Interpolant judgments
⊥ [ϕ] are encoded as the type (interpolant ϕ). Partial interpolants t1 ≈ t2 [ϕ,ψ, c] are encoded as the type
(p interpolant t1 t2 ϕ ψ c). In proof terms, we specify whether an input literal L occurs in the set A or B by
introducing (local) lambda variables of type (colored L c), where c is the color A or the color B, respectively.
Since formulas in the literal sets A and B can be inferred from the types of the free variables in our proof
terms, the sets do not need to be explicitly recorded as part of the proof judgment types.
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formula : type
term : type
color : type
A: color
B : color

colored : (! f formula (! c color type))
interpolant : (! f formula type)
p interpolant : (! t1 term (! t2 term

(! f1 formula (! f2 formula
(! c color type)))))

Figure 4: An excerpt of the LFSC signature that encodes the interpolation calculus.

3.3 Side Conditions for Testing Colorability

Proving colorability for expressions (that is, proving that the non-logical symbols in an expression occur all
in A or all in B) is a common requirement for interpolant generating calculi. To prove such facts a purely
declarative calculus would require Ω(n) proof rule applications for an expression E, where n is the number
of symbols in E. Since LFSC’s side conditions can be used for this purpose, we decided in this work to
verify colorability through them.

Side conditions in LFSC are expressed in a simply typed functional programming language with min-
imal imperative features, and are intended to be simple enough to be verified by manual inspection. As
described in [14], LFSC contains limited support for computational tests run on terms with a mutable state.
In particular, each lambda variable introduced in a proof term contains 32 bit fields that are accessible to the
writer of the signature. The semantics of LFSC’s side condition language provides constructs for toggling
(markvar C) and scrutinizing (ifmarked C C1 C2) these bit fields, where in both cases C is a code term that
evaluates to an LF variable.

We may enforce a scheme for testing colorability using two of these bit fields, one for denoting A-
colorable and the other for denoting B-colorable. Whenever a variable of type (colored L c) is introduced in
our proof, we use a side condition to traverse L and mark the field specified by color c for all variables. Since
LFSC supports term sharing of variables, each mark applies globally for all occurrences of that variable
within our proof. To test the c-colorability of a term t, we use another side condition that traverses t and
succeeds if and only if the field specified by color c has been marked for all variables occurring in t. In total,
the two side condition functions account for 21 lines of functional side condition code.

4 Experimental Results

To evaluate the feasibility of our approach for producing certified interpolants, we used a version of the
Cvc3 SMT solver instrumented to produce LFSC proofs from its refutations of EUF formulas. We ran
experiments on a set of 25,246 unsatisfiable EUF benchmarks, all of which were a conjunction of equational
literals. The benchmarks were extracted from the set of the quantifier-free EUF benchmarks in the SMT-LIB
repository as follows.

In its native proof generation mode, Cvc3 produces unsatisfiability proofs with a two-tiered structure,
where a propositional resolution style skeleton is filled with theory-specific subproofs of theory lemmas, that
is, valid (ground) clauses. First, we selected all unsatisfiable EUF benchmarks that Cvc3 could solve in less
than 60 seconds. We reran Cvc3 on these benchmarks with native proof generation enabled, and examined
all theory lemmas within all proofs. Each theory lemma produced by Cvc3 for EUF is an equational Horn
clause. For each theory lemma e1 ∧ · · · ∧ en → e we encountered, we created a new EUF benchmark
consisting of the unsatisfiable formula e1 ∧ · · · ∧ en ∧ ¬e. We only considered unique3 theory lemmas and

3Benchmarks were passed through multiple filters for recognizing duplication. It was infeasible to verify that certain theory
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Proof Size (KB) Pf Check Time (sec)

Benchmark #

28 0.07 0.07 0.08 0.08 56.1 37.9 50.9 0.01 0.014

NEQ 2185 4.00 4.75 4.34 5.15 2765.8 2276.3 3873.8 0.27 0.524

PEQ 2252 4.65 6.27 5.81 6.91 4901.2 4256.3 7458.9 0.55 1.044

QG-loops6 2854 5.01 5.64 4.90 5.80 2446.0 1872.9 3052.2 0.21 0.418

QG-qg5 5337 9.05 10.08 10.67 9.60 4189.2 3415.2 5514.4 0.39 0.762

QG-qg6 1789 3.16 3.55 3.43 3.62 1970.1 1493.8 2669.7 0.172 0.368

QG-qg7 7860 16.96 22.77 23.07 25.96 19161.2 18843.2 35527.7 2.544 5.024

SEQ 2941 6.04 7.61 7.11 7.86 5517.8 4315.4 6926.6 0.52 0.948

25246 48.95 60.74 59.40 64.98 41007.4 36511.1 65074.2 4.666 9.102

Solving + Pf Gen + Pf Conv (sec)

cvc cvcpf euf eufi cvcpf euf eufi euf eufi

eq_diamond

Figure 5: Cumulative Results for average of Runs 1 . . . 5, grouped by benchmark class. Columns 3 through
6 give Cvc3’s (aggregate) runtime for each of the four configurations. Columns 7 through 9 show the proof
sizes for each of the three proof-producing configurations. Columns 10 and 11 show LFSC proof checking
times for the euf and eufi configurations.

whose corresponding proof contained at least five deduction steps.
We collected runtimes for the following four configurations of our instrumented version of Cvc3:

cvc: Default, solving benchmarks but with no proof generation.
cvcpf: Solving with proof generation in Cvc3’s native format.
euf: Solving with proof generation, translation to LFSC format for EUF.
eufi: Solving with proof generation, translation to LFSC format for

interpolant generation in EUF.

In each configuration, Cvc3’s decision procedure for EUF was used when solving. We ran each config-
uration five times and took the average for all runs. For each benchmark used by configuration eufi, the sets
A andB were determined by randomly placing k

6 of the benchmarks into setA and the rest inB on run k for
k = 1 . . . 5. This did not affect the difficulty of solving, and we believe provided a sufficient measurement
of the effectiveness of our interpolant generation scheme.

We measured total time to solve all benchmarks grouped by benchmark class. These results are shown
in Figure 5. In this data set, proof generation came at a 25% overhead with respect to solving. Converting
proofs to the LFSC format required very little additional overhead. In fact, LFSC proofs in the euf configura-
tion were generally smaller in size (number of bytes) than Cvc3’s native proofs, thus slightly reducing proof
generation times. LFSC proofs in the interpolanting calculus were nearly twice as large as non-interpolating
proofs. The difference in proof size can be attributed to differences in syntax between the two calculi, as
well as additional information added to the header of interpolanting proofs for specifying A and B.

As expected from previous work [12], proof checking times using the LFSC checker were very small
with respect to solving times. Proof checking times without interpolant generation were about an order
of magnitude faster than solving times. Since additional information is inferred within judgments in the
eufi configuration, proof checking took approximately twice as long with interpolant generation as without.
Proof checking times in the eufi configuration were a factor of 5 faster than solving times.

We estimate the time to produce uncertified interpolants by measuring solving and proof generation
without proof checking (configuration cvcpf). Overall, configuration eufi shows a 22% overhead with

lemmas were symbolic permutations of others. However, by visual inspection, we believe that such cases were rare.
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respect to cvcpf, indicating that the generation of certified interpolants is practicably feasible with high-
performance SMT solvers.

5 Conclusion and Future Work

We have introduced a method of generating interpolants by type inference within the trusted core of a
proof checker for LFSC. Our experiments show that this method is efficient and practical for use with high
performance solvers. Overall, interpolant generation in LFSC can be performed 5.38 times faster than
solving time on average. Our method is based on a novel calculus for interpolant generation in EUF. By
performing certain colorability tests during a proof lifting phase, we are able to simplify the amount of side
conditions required during proof checking.

We plan to extend our method to ground EUF formulas with an arbitrary Boolean structure by incorpo-
rating an interpolating version of the propositional resolution calculus. Future work includes instrumenting
Cvc4, the forthcoming successor of Cvc3, to output interpolating proofs for arbitrary ground EUF formulas
as well as in combination with linear real arithmetic. Cvc4 currently supports the theories of EUF and arith-
metic, and preliminary work has been planned for a proof generating infrastructure that aims at minimizing
performance overhead.

The flexibility of our proof lifting phase allows the user to make various decisions when assigning colors
to a congruence graph. In previous work [6], a coloring strategy is used that aims to minimize interpolant
size. We plan to explore other strategies with desired properties in mind, including logical strength, which
has been explored in recent work for the propositional case [5]. In applications such as interpolation-based
model checking [9], logical strength is desirable for an interpolant since a stronger interpolant may produce
tighter over-approximations of the reachability relation.

We also plan to explore other applications of this framework related to automated verification, including
interpolant generation procedures where additional constraints are considered, such as relative strength with
respect to other interpolants. By encoding more restrictive calculi in the LFSC framework, other properties
of produced interpolants may be certified by construction.
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Abstract

We describe work in progress on a new approach, and associated tools, for checking proofs pro-
duced by SMT solvers. The approach extends our previous work on LFSC (“Logical Framework with
Side Conditions”), a meta-language in which different proof systems for different SMT solvers can be
declaratively specified. In this paper, we show how the LFSC proof checker can delegate the check-
ing of propositional inferences (within a proof of an SMT formula) to a propositional proof checker
clcheck based on Reverse Unit Propagation (RUP). This approach shows promising improvements
in proof size and proof checking time for benchmark proofs produced by the clsat QF IDL solver.
We also discuss work in progress to replace clcheck with a different RUP checker we are developing
called vercheck, whose soundness we are in the process of statically verifying.

1 Introduction

The problem of devising a standardized proof format for SMT solvers is an ongoing challenge. A number of
solvers are proof-producing; for example, CVC3, veriT, and Z3 all produce proofs, in different formats [1,
2, 5]. In previous work, we advocated for the use of a flexible meta-language for proof systems called LFSC
(“Logical Framework with Side Conditions”), from which efficient proof-checkers could be generated by
compilation [6, 7]. Our team at The University of Iowa is currently working on a new implementation of
LFSC, intended for public release.

For many SMT problems, propositional reasoning is a large if not the dominating component of proofs.
Compressing the size of propositional proofs is therefore of significant interest (see, e.g., [3]). In the current
paper, we describe an approach, and tools in progress, to compress the size of such proofs, by using an
external propositional proof checker called clcheck, based on the idea of Reverse Unit Propagation.

2 SMT Proofs in LFSC

In previous work, we have advocated the use of a meta-language called LFSC (“Logical Framework with
Side Conditions”) for describing proof systems for SMT solvers [6, 7]. We use a meta-language to avoid
imposing a single proof system on all solvers. SMT solvers support many different logics, and different
solving algorithms naturally give rise to different schemes for representing deductions. Pragmatically, it
may not be realistic to ask solver implementors to support a specific axiomatization, which may not fit well
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(declare var type)
(declare lit type)
(declare pos (! x var lit))
(declare neg (! x var lit))

(declare clause type)
(declare cln clause)
(declare clc (! x lit (! c clause clause)))
(declare concat (! c1 clause (! c2 clause clause)))
(declare in_and_remove (! l lit (! c clause clause)))

Figure 1: Data Structures in LFSC for Generalized Clauses

(declare holds (! c clause type))
(declare R (! c1 clause (! c2 clause

(! u1 (holds c1)
(! u2 (holds c2)
(! n var
(holds (concat (in_and_remove (pos n) c1)

(in_and_remove (neg n) c2)))))))))

(program simplify_clause ((c clause)) clause ...)

(declare satlem (! c1 clause
(! c2 clause
(! c3 clause
(! u1 (holds c1)
(! r (ˆ (simplify_clause c1) c2)
(! u2 (! x (holds c2) (holds c3))

(holds c3))))))))

Figure 2: LFSC Rules for Resolution Proofs

with their internal data structures or algorithms. Instead, we are working towards a common meta-language,
in which different proof systems may be described. This at least would establish a common meta-language
for comparison of proofs and for (meta-language) proof checkers, and could facilitate later adoption of at
least a common core proof system for SMT. Other researchers are working towards similar goals, and we
anticipate development of a common solution in the coming year [1].

Signatures. In LFSC, proof systems are described by signatures. Figures 1 and 2 give part of the
signature we use to produce proofs from our clsat QF IDL solver. Most of the 1000-line signature is
elided here, including rules for CNF conversion and arithmetic reasoning. The rules shown were developed
in our previous work [6], and defer binary resolutions (constructed using the R proof rule) until many of them
can be processed at once when a lemma is added. Resolutions are deferred by constructing a generalized
clause (the clause type declared in Figure 1) using the concat and in and remove constructors.
These constructors represent deferred operations required in order to compute the actual binary resolvent.
The side-condition program simplify clause (code omitted from Figure 2) executes those deferred
operations in an optimized way, to construct the final resolvent of a series of binary resolutions without
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constructing the intermediate resolvents.
Rules can be thought of as richly typed constructors, accepting arguments (via the ! construct) whose

types may mention earlier arguments. For example, the R rule has 5 inputs: c1, c2, u1, u2, and n. The
first two are mentioned in the types of the second two. As an optimization, arguments for c1 and c2 may
be elided in proofs built using these proof rules, since their values can be determined during proof checking
from the types of the arguments for u1 and u2.

The rule satlem uses the caret (ˆ) notation to invoke the simplify clause side-condition program
on a clause c1, to compute a clause c2 without deferred operations concat and in and remove. The
rule specifies (via the u2 argument) that the next subproof of a satlem inference should prove clause c3
under the assumption (x) that the simplified clause c2 holds. Using an assumption here allows the proof to
refer to the proven (simplified) clause without repeating its proof multiple times.

Efficient Proof-Checking. Our current C++ implementation of LFSC compiles a signature into an
efficient C++ proof checker optimized for that signature. Compilation includes compiling side-condition
functions like simplify clause to efficient C++ code. The side-condition programming language is
a simply typed first-order pure functional programming language, augmented with the limited imperative
feature of setting marks on LFSC variables. For details of the optimizations implemented, see our previous
work [6]. There, we demonstrated significant performance gains using the deferred resolution method, and
significantly better proof-checking times than for two other proof checkers (CVC3+HOL and Fx7+Trew).

3 Compressing SMT Proofs Using RUP Inferences

Our goal now is to take advantage of recent advances in proof-checking for SAT to obtain further improve-
ments in LFSC’s runtime performance on SMT proofs. In the format described above, a proof consists of
CNF conversion steps and lemmas, which contain theory reasoning steps and propositional reasoning steps.
In most SMT implementations, propositional inferences are performed by the internal SAT solver in the
form of conflict analysis or other procedures. Reverse Unit Propagation (RUP) has been proposed by van
Gelder as an efficient propositional proof format [4]. The idea behind RUP is to check F ` C by refuting
(F ∪ ¬C) using only unit propagation. In this case, there is a proof of the empty clause using only unit
resolution, which is like standard binary resolution except that one of the two resolved clauses is required to
be a unit clause. Unit resolution is not refutation complete in general, but it has been shown to be complete
when C is a conflict clause generated according to standard conflict-analysis algorithms [4]. In a proof
based on RUP, only the clause C is recorded, and the sequence of such resolutions can be calculated from
that clause. Thus, a long resolution proof of a RUP inference can be compressed to the concluded clause. It
can happen, however, that writing down the clause itself takes more space in the proof than a short resolution
proof would (a point worth exploring further in seeking smaller proofs).

3.1 Delegating Propositional Proofs

In principle, one could implement an RUP checker in the LFSC side condition language. This would require
pure functional data structures for unit propagation, which would largely negate the benefits of the RUP
proof format, which relies on the efficient unit propagation of modern SAT solvers. So instead, we delegate
RUP proof checking to an external RUP checker; see Figure 3 for our work flow. The LFSC rules used
to delegate the checking of propositional inferences from LFSC to the external RUP checker are presented
in Figure 4. The external RUP checker confirms that certain check clauses follow by purely propositional
reasoning from certain assert clauses. Assert clauses include the propositional clauses derived by CNF
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φ solver LFSC RUP checker Y/N
LFSC Pf RUP Pf

Figure 3: Workflow of New Proof System

(declare lemma (! c1 clause
(! c2 clause
(! z unit
(! u1 (holds c1)
(! r (ˆ (print_assert c1) z)
(! u2 (! x (holds c1) (holds c2))
(holds c2))))))))

(declare check (! c2 clause
(! z unit
(! c1 clause
(! r (ˆ (print_check c1) z)
(! u (! x (holds c1) (holds c2))
(holds c2)))))))

Figure 4: LFSC Proof Rules for Delegating Checking of Propositional Inferences

conversion from the original input formula; and also the boolean skeletons of all theory lemmas. In between
some of these asserts, a proof can request that the proof checker confirm that a check clause follows by RUP
from the (propositional) assert clauses, as well as previous check clauses.

The proof rule lemma (Figure 4) is used to assert a clause to the external RUP checker. It requires a
proof (u1) that the asserted clause actually holds. The check rule then delegates checking that a clause c1
follows from earlier clauses, including both asserted and already checked clauses, by purely propositional
reasoning. Note that it does not require a proof of the clause c1 which is being checked, since checking that
this clause holds in the current logical context is being delegated to the external RUP checker. Both rules
use side-condition functions (print_assert and print_check) to print out the clauses in question as
either assert clauses or check clauses. Additionally, before printing any assert or check clauses, proofs in
this signature must print an initial header, giving the number of propositional variables used.

Implementing Delegation. To support delegating propositional proofs, the LFSC compiler was mod-
ified to support printing of numbers, string literals, LFSC variables (used directly to encode propositional
variables) from side-condition functions. To enable a very straightforward implementation, variables are
printed out as their hexadecimal memory addresses. A simple post-processing phase, currently implemented
by a short OCAML program, is used to map hexadecimal addresses to numbers starting with 1.

3.2 Propositional Proof Format

This section describes the proof format that the LFSC checker produces to delegate propositional reasoning
to a RUP checker. It can be best explained by an example. Figure 5 shows an example propositional
proof. We see the initial header, starting with p, specifying the maximum number of different variables that
can appear in the file (here this is a loose bound). Then come assert clauses, which begin with a and are
terminated with 0; and check clauses, which begin with c and are similarly terminated. The format of clauses
is similar to the DIMACS format for CNF SAT problems. The example has four assert clauses and two check
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p 2
a 1 2 0
a 1 -2 0
c 1 0
a -1 2 0
a -1 -2 0
c 0

Figure 5: A Simple Propositional Proof

clauses intermixed. Obviously, the set of those assert clauses is refutable. It is not refutable, however, by
unit resolution, because the assert clauses are all binary. Thus, the first check clause is necessary. The first
two assert clauses and the negation of the first check clause are refutable by resolving the negated check
clause with the first two assert clauses and then resolving their resolvents. Now, the first check clause is
verified. The last check clause, which is empty, simply asks if the entire clauses above it are refutable only
using unit propagation without any more assumptions, which is true in this example.

3.3 The clcheck RUP Proof Checker

We implemented a RUP proof checker, called clcheck that supports the proof format explained above.
Other proof checkers like checker3 combined with rupToRes, which is used in the SAT competition,
could be used with a proper translation. To the best of our knowledge, they do not support intermixed
assertions and checks. Thus, assert clauses and check clauses have to be split into separate files. In SMT
solvers, theory inferences and propositional inferences are naturally intermixed, and those theory inferences
are asserted as clauses to be used in propositional inferences later on. We believe that intermixing assertions
and checks in proofs allows concurrent processing of theory lemmas on the LFSC checker and propositional
lemmas on the RUP checker, which can lead to more efficient proof checking on a modern multicore system.
In our settings, the output of LFSC is directly streamed to clcheck using Unix pipes. So, while clcheck
is checking a RUP inference, LFSC can check the next theory lemma at the same time.

A RUP inference F ` C is verified as follows. First, for each literal in C, add a unit clause with the
negation of that literal to the clause database. Now, the clause database has F ∪ ¬C. Second, propagate
all unit clauses in the database. If it leads to a conflicting clause, C is proved; otherwise, the inference is
invalid. That can be also justified in terms of unit-resolution proof. Because every assignment is caused by
a unit clause, which is the antecedent clause, the empty clause can be derived by applying unit resolution
on each literal of C and that literal’s antecedent clause. Finally, remove those unit clauses added in the first
step and cancel all assignments. One can work more cleverly by avoiding redundancy. Instead of canceling
all assignments, just cancel assignment only caused by ¬C and, after C is verified, incrementally propagate
the new unit clauses in F ∪ C, which will be the new F for the next check. This approach is implemented
in clcheck, which is written in C++ and which uses standard efficient data structures (in particular, watch
lists for literals) for efficient unit propagation.

4 Preliminary Results

Our SMT solver clsat has been modified to generate proofs in the new format in addition to the original
format. We have chosen 39 QF IDL benchmarks that clsat solved in 900 seconds in the SMT competition
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Figure 6: Distribution of Relative Proof Sizes

2009. Because clsat does not support the SMT-LIB 2.0 file format, they are in the SMT-LIB 1.2 format.
Table 1 (page 10) shows the results. The test machine had Intel Xeon X5650 2.67GHz CPU and 12GB of
memory. Times (in seconds) are measured for solving and checking combined so that we can see how the
new format improves the whole work flow, not just proof overhead. That measurement includes I/O overhead
between the solver and checkers. The proof formats in comparison have different syntactic characteristics
that may affect proof sizes. So, we wanted to compare the amount of information as the smallest number of
bits needed to store the proof. That means you cannot modify the syntax to achieve a smaller proof. Instead
of developing such a proof syntax, we used gzip-compression to approximate the amount of information in a
proof. The table shows the gzip-compressed sizes (in bytes) of proofs. The uncompressed proof sizes did not
change the conclusion. However, we believe the compressed sizes are more meaningful as data (especially,
when we see the relative sizes). Note that one benchmark, diamonds.18.5.i.a.u did generate proofs,
but failed to check in both formats due to memory overflow (uncompressed proof sizes reach 2GB in size).

Figure 6 shows the distribution of the relative sizes (ratios) of the new proofs. The horizontal axis is
the relative size in percent (the size of new proof over the size of old proof times 100). And the vertical
axis is the percentage of instances in each range. The number on each bar shows the number of instances
in the range. For 14 benchmarks (accounting 35%), the new proof has almost the same size as the old
counterpart (in the range of 95%-105%). However, there are a variety of compression ratios and mostly
the new proofs are smaller or similar in size. One new proof is as small as 30% of the old counterpart. At
the other extreme, there is one case that the new proof is 12% bigger than the old one. Figure 7 shows the
correlation between the relative proof sizes and the relative proof checking times. For time comparison, we
considered 11 benchmarks that take more than 1 second to solve and check on any system. Because small
checking times have relatively big measurement errors, their relative times are not reliable. In the figure,
each vertex represents a benchmark where its horizontal coordinate is the relative proof size and its vertical
coordinate is the relative checking time. The figure shows a rough linear relationship between relative proof
size and relative checking time along the regression line. The R2 value of the regression is 0.7675. That can
be summarized as the more a proof compresses in the new format, the more checking speeds up.
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Figure 7: Correlation between Relative Checking Times and Relative Proof Sizes

5 Conclusion and Future Work

We have presented an approach for integrating an RUP checker for propositional proofs with the LFSC proof
meta-language, based on delegation to an RUP checker. We have seen promising improvements over pure
LFSC proof-checking, in both proof size and proof-checking time.

Improved LFSC implementation. As mentioned in the introduction, our team at The University of
Iowa is implementing a new version of the LFSC checker, which we anticipate amplifying the benefits we
have observed in our preliminary empirical results. Profiling the current version of LFSC on these bench-
marks shows that at least in some cases, running the side-condition code (simplify clause referenced
in Figure 2) needed to check propositional resolution proofs is not taking a large part of the time for proof
checking. Overhead in other parts of the proof checker outweighs this. Our new implementation is de-
signed to take advantage of optimizations we described in earlier work on fast proof-checking for LF, the
Edinburgh Logical Framework on which LFSC is based [8]. These optimizations are missing in the current
LFSC checker. We anticipate they will lower the overhead of the rest of the proof-checking algorithm, and
thus amplify the benefits of delegating propositional proofs to the RUP checker.

From clcheck to vercheck. In a separate line of research, the authors are implementing a statically
verified modern SAT solver called versat. The specification we are establishing is that if the solver reports
a set of input clauses unsatisfiable, then there exists a resolution proof of the empty clause from those input
clauses. This resolution proof is not constructed at runtime. Rather, we prove that it is guaranteed to
exist whenever the solver reports unsatisfiable. The versat solver uses standard efficient low-level data
structures, based on mutable arrays, and implements standard modern SAT-solving techniques like conflict-
driven clause learning, non-chronological backtracking, and watched literals.

Using the unit-propagation code in versat, we are implementing a trusted RUP checker called vercheck.
The specification we are proving for this tool is that if it confirms an RUP proof of the kind described above,
then the check clauses really do follow from the earlier check and assert clauses. Using vercheckwill help
mitigate the expansion of the trusted computing base incurred by delegating from LFSC. Our current LFSC
C++ checker is around 6kloc C++. The new version currently in progress will be around 4.5kloc OCAML

when complete. The clcheck solver is just under 1kloc C++. The trusted specification for vercheck is
just 355 lines of GURU code (GURU is the research programming language we are using for implementation
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and static verification of versat and vercheck). Also, the old signature for QF IDL proofs from clsat
is 870 lines of LFSC, while the new one is 795 lines. So using vercheck, the new approach based on del-
egation will only increase the number of lines of trusted code by 280 lines total, which seems a worthwhile
price to pay for decreased proof size and improved proof-checking time.
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[1] T. Bouton, D. Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open, Trustable and Efficient SMT-
Solver. In R. Schmidt, editor, 22nd International Conference on Automated Deduction (CADE), pages
151–156, 2009.

[2] L. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In B. Konev, R. Schmidt, and S. Schulz,
editors, 7th International Workshop on the Implementation of Logics (IWIL), 2008.

[3] P. Fontaine, S. Merz, and B. Paleo. Compression of Propositional Resolution Proofs via Partial Regu-
larization. In N. Bjørner and V. Sofronie-Stokkermans, editors, Proceedings of the 23rd International
Conference on Automated Deduction (CADE), 2011. to appear.

[4] Allen Van Gelder. Verifying RUP Proofs of Propositional Unsatisfiability. In 10th International Sym-
posium on Artificial Intelligence and Mathematics (ISAIM), 2008.

[5] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating Theorem Provers: A Case Study Combining HOL-
Light and CVC Lite. Electr. Notes Theor. Comput. Sci., 144(2):43–51, 2006.

[6] D. Oe, A. Reynolds, and A. Stump. Fast and Flexible Proof Checking for SMT. In B. Dutertre and
O. Strichman, editors, Workshop on Satisfiability Modulo Theories (SMT), 2009.

[7] A. Stump and D. Oe. Towards an SMT Proof Format. In C. Barrett and L. de Moura, editors, Interna-
tional Workshop on Satisfiability Modulo Theories, 2008.

[8] M. Zeller, A. Stump, and M. Deters. Signature Compilation for the Edinburgh Logical Framework. In
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solve+check time compressed proof size
benchmarks old new old new
BubbleSort safe blmc010 0.48 0.48 224122 220316
BubbleSort safe blmc016 0.94 0.94 406296 401250
CELAR7 SUB1 1.39 1.38 49754 46620
ckt PROP0 tf 15 0.21 0.11 98277 59202
ckt PROP1 tf 25 0.2 0.16 123252 99474
ckt PROP2 tf 10 0.02 0.02 13762 13057
ckt PROP5 tf 25 0.9 0.54 385940 252867
diamonds.18.5.i.a.u Error Error 112879127 126579755
DTP k2 n35 c245 s19 1.32 0.89 363027 186938
DTP k2 n35 c245 s5 2.51 1.66 709885 340784
DTP k2 n35 c245 s6 3.36 2.32 924559 423192
FISCHER11-6-ninc 0.76 0.47 352386 241472
FISCHER13-1-ninc 0.03 0.03 25785 25642
FISCHER14-9-ninc 56.78 48.31 9851980 7214785
FISCHER6-2-ninc 0.03 0.03 24634 24146
FISCHER8-1-ninc 0.02 0.02 16079 15929
inf-bakery-invalid-2 0.01 0.01 7212 6690
int incompleteness1 0 0 565 525
jobshop6-2-3-3-4-4-11 0.01 0.01 3923 3672
lpsat-goal-12 5.91 3.18 2124140 907239
lpsat-goal-15 19.48 11.09 5613533 2867306
lpsat-goal-2 0.05 0.05 43171 41749
lpsat-goal-8 0.92 0.6 486810 271645
plan-18.cvc 7.26 4.41 1570043 890322
plan-22.cvc 0.9 0.57 286853 190437
plan-30.cvc 5.71 2.51 1571073 545799
plan-33.cvc 23.6 14.55 4485851 2650662
plan-35.cvc 68.74 46.02 10937058 6369656
plan-9.cvc 0.06 0.06 37021 33638
PO2-2-PO2 0.01 0.01 10918 10691
PO2-6-PO2 0.04 0.05 40422 38543
PO4-10-PO4 2.64 1.78 1286666 867640
PO4-4-PO4 0.32 0.32 237111 232804
PO4-8-PO4 1.46 1.04 795994 602860
SelectionSort safe bgmc005 0.06 0.07 36991 36033
SelectionSort safe bgmc009 0.13 0.13 74919 72530
SortingNetwork4 safe bgmc002 0 0 1833 1812
SortingNetwork8 safe bgmc006 0.05 0.05 25317 25167
SortingNetwork8 safe blmc006 0.18 0.17 75659 75482

* Measurement units: times in seconds, sizes in bytes

Table 1: Results of Old and New Proof Systems
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Abstract. In this paper, we study the translation of a hardware model language into a verification condition to
be checked by SMT solvers. In today’s hardware designs, bit-level and word-level operations are often tightly
intermingled. On some designs, a bit-level model checker may perform better than a word-level model checker
or vice versa. Depending on the characteristics of the design, we selectively choose an encoding method (either
bit-level or word-level) to improve the efficiency of hardware model checking. We present a model analysis method
for the encoding selection and evaluate the method on a set of hardware verification problems.

1 Introduction

In recent years, model checkers have increasingly used propositional SAT solvers as decision procedures. In
spite of their effectiveness, SAT solvers only consider the model at the bit level. Encoding word-level opera-
tions into bits often increases the size of the formula and loses information such as high-level data structures.
Recently, word-level model checking [2] has received growing attention. In particular, Satisfiability Modulo
Theories (SMT) solvers have been effectively applied to software verification with predicate abstraction [14]
and bounded model checking [10]. Only to a lesser extent, they have been applied to hardware verification.
The most natural SMT encodings for hardware description are bit-vector (BV) and linear integer arithmetic
(LIA) encodings.LIA encoding for RTL constructs is presented in [6], where control variables are encoded
as Boolean variables and data path variables as integer variables.

Our work is motivated by the results shown in Fig. 1. We have encoded each pair of Verilog design and
property into SMT for bounded model checking (BMC). In particular, we usedBV andLIA encodings for
each design. The details of these encoding methods will be discussed in Sect. 4. The Verilog designs we used
are from VIS Verilog benchmarks [21], Opencores [16] and Altera design examples [19]. We comparedBV
solvers (Boolector-1.4 [3], Z3-2.8 [24], Beaver [1] with Precosat-456r2 [18]) andLIA solvers (MathSAT-4.3
[15], Yices-1.0.28, Z3-2.8) for the encodings. These solvers are the ones that performed best on our BMC
problems. In the experiment, the timeout was set to 1000 seconds. Figure 1 shows the comparison of average
CPU times of the solvers for the two encodings. The points above the diagonal are wins for theBV solvers,
and the ones below are wins for theLIA solvers. As the scatterplot shows, few models work well with both
encodings. We introduce a model analysis method that considers each bit-vector operation in the design and
selects the encoding based on the analysis. In addition, we present several enhancements to SMT encoding
for hardware designs. Our experiments show that our approach selects the right encoding for the hardware
design and improves the efficiency of bounded model checking and equivalence checking.

The rest of this paper is organized as follows. Section 2 reviews logics for hardware modeling. Section 3
describes the translation toBV logic. Section 4 describes the translation toLIA logic. Section 5 presents a
model analysis method and Sect. 6 presents experiments. After a survey of related work in Sect. 7, conclu-
sions are offered in Sect. 8.

⋆ This work was supported by SRC contract 2009-TJ-1859.
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Fig. 1. BV vs. LIA

2 Logics for Hardware Verification

In this section, we recall the definitions of the logicsBV andLIA which we use to encode hardware.

2.1 BV Logic

Let VB(n), n ∈ Z
+, be the set ofBV variables whose domains aren-bit vectors. We assume thati 6= j →

VB(i) ∩ VB(j) = ∅. Let TB(n) be the set ofBV terms whose values aren-bit vectors. The formulae inBV
logic are inductively defined as follows.

– If c ∈ N andc ≤ 2n − 1, thenc[n] ∈ TB(n).
– If x ∈ VB(n), thenx[n] ∈ TB(n).
– If x ∈ VB(n) and 0 ≤ j ≤ i < n, thenx[i : j] ∈ TB(i − j + 1), and if t[n] ∈ TB(n), then
∼ t[n] ∈ TB(n). (∼ is the bit-wise negation operator.)

– If t1[n], t2[n] ∈ TB(n), and⋄ is an arithmetic or bit-wise operator in{+,−, ·, /,%, &, |}, thent1[n] ⋄
t2[n] ∈ TB(n).

– If t1[i] ∈ TB(i) andt2[j] ∈ TB(j), thenconcat(t1[i], t2[j]) ∈ TB(i + j).
– A propositional variablea ∈ VP is a formula.
– If t1[n], t2[n] ∈ TB(n), and⋄ is a relational operator in{=, 6=, <,≤, >,≥}, then t1[n] ⋄ t2[n] is a

formula.
– If f1, f2, and f3 are formulae, then¬f1, f1 ∧ f2, f1 ∨ f2 and ite(f1, f2, f3) are formulae, and if

t1[n], t2[n] ∈ TB(n) andf is a formula, thentite (f, t1[n], t2[n]) ∈ TB(n).

Further formulae can be defined as abbreviations. For instance,x[n] ≪ k, a left shift of x[n] by a
constantk, is defined asconcat( x[n − k − 1 : 0], 0[k]). An atomic formulais one of the formt1[n] ⋄
t2[n], where⋄ is a relational operator. The semantics are defined in the usual way; in particular, arithmetic
is modular,x[i : j] is the subfield ofx[n] comprising the bits fromi to j included,concat(t1[i], t2[j])
concatenatest1[i] andt2[j], andite(f1, f2, f3) is equivalent to(f1 ∧ f2) ∨ (¬f1 ∧ f3). In addition, theterm
if-then-else(tite) operator is defined by the equivalence, for all formulaef andg and for all termst1[n]
andt2[n], of f(tite(g, t1[n], t2[n])) and ite(g, f(t1[n]), f(t2[n])). For A, B, C, D, E ∈ VB(2), (1) is aBV
formula.

(C[2] = A[2] & B[2]) ∧ (D[2] = C[2] + E[2]) . (1)
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2.2 LIA Logic

Let VZ be a set of integer-valued variables. The formulae inLIA logic are inductively defined as follows.

– An integer numberc ∈ Z is a (constant)LIA term, and a variablex ∈ VZ is anLIA term.
– A variablex ∈ VZ is anLIA term, and the productc · x of an integer numberc ∈ Z and a variable

x ∈ VZ is anLIA term.
– If t1 andt2 areLIA terms, so aret1 + t2 andt1 − t2.
– A propositional variablea ∈ VP is a formula.
– If t1 andt2 areLIA terms, and⋄ is a relational operator in{=, 6=, <,≤, >,≥}, thent1 ⋄ t2 is a formula.
– If f1, f2, andf3 are formulae, then¬f1, f1 ∧ f2, f1 ∨ f2 andite(f1, f2, f3) are formulae.
– If t1 andt2 areLIA terms, andf is a formula, thentite(f, t1, t2) is anLIA term.

ForA, B, C, D, E ∈ VZ , (2) is anLIA formula:

(C = A − B) ∧ (D = C + E) . (2)

3 From Hardware Description to BV

In this section, we outline the conversion from hardware description toBV formula. Hardware is assumed to
be described in a subset of the Verilog hardware description language (HDL) [20] suitable for the modeling
of synchronous hardware. The subset supports the mixture of blocking and non-blocking assignments in the
procedural blocks, and allows non-deterministic interleaving of procedural blocks. We impose restrictions to
the description to ensure that the evaluation of each procedural block is not affected by the interleaving of the
assignments in different procedural blocks. The restrictions are compatible with common design guidelines
used in the industry (e.g., blocking assignments for combinational logic and non-blocking assignments for
memory elements) and allow us to produce concise verification conditions. Although the subset includes
essential features of Verilog, it does not support delays, strengths, and other features that are not needed for
RTL verification of synchronous designs.

We represent a hardware description as a Concurrent Control Flow Graph (CCFG) [13] in Static Single
Assignment (SSA) form [7]. With the CCFG, we generate a set of constraints inBV logic for blocking and
non-blocking assignments in each procedural block. If there are multiple assignments to the same target in
different procedural blocks, we generate an additional conflict arbitration constraint.

In Fig. 2, the two procedural blocks at the top are converted into the SSA form at the bottom. In each
procedural block, we generate theBV formula for each target variable. Supposeu, v ∈ VP andw, x, y, z ∈
VB(4). For the targetz, we generate theBV formula

ite(v0, z̄1[4] = 1[4] ∧ z̄2[4] = z̄1[4], z̄2[4] = z1[4]) (3)

in the first procedural block, and

w1[4] = y0[4] ∧ ite(u0, w2[4] = x0[4] ∧ w3[4] = w2[4], w3[4] = w1[4]) ∧ z̄3[4] = w3[4] (4)

in the second procedural block. Then, we introducez′ for z and generate a conflict arbitration constraint
z′[4] = z̄2[4] ∨ z′[4] = z̄3[4]. This formula conjoined with (3) and (4) is the transition relation for the
description, wherez1 andz′ are the current and next state variables forz.
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initial #0 #0 z = 0;

always @(posedge clk)
if (v ) z ⇐ 1;

always @(posedge clk) begin
w = y;
if (u) w = x;
z ⇐ w;

end

initial #0 #0 z1 = 0;

always @(posedge clk) begin
if (v0) z̄1 = 1;
z̄2 = φ(z̄1, z1);

end

always @(posedge clk) begin
w1 = y0;
if (u0) w2 = x0;
w3 = φ(w2, w1);
z̄3 = w3;

end

Fig. 2.Conversion from HDL to SSA form

4 From BV to LIA

In Sect. 3, we showed how a hardware description is converted into aBV formula. In this section, we dis-
cuss the translation fromBV encoding toLIA encoding. SMT encoding for hardware design (RTL Verilog)
was first presented in [6] where bothBV andLIA encodings for combinational circuits were introduced. We
present selective value enumeration and efficient term-ITE introduction forBV arithmetic terms as enhance-
ments to the basicLIA encoding methods presented in [6].

The basic encoding methods often introduces the productk ·X wherek is a constant andX is a variable.
The coefficientk may be large, and large coefficients often degrade the performance ofLIA solvers because
they often require many pivots in the simplex-based ILP (Integer Linear Programming) algorithm [9]. We
tackle the problem with selective enumeration. If the range ofX is small enough to express it with few
term-ITEs, term-ITEs replace the multiplication. For instance, if0 ≤ X ≤ 1 in Z = 2j · X + Y , then the
new encoding with a term-ITE isZ = tite(X = 1, 2j + Y, Y ).

For arithmetic terms, two types of encoding are introduced in [6]: One with a fresh constant and the
other with a term-ITE. TheLIA encodings for an equalityz[n] =

∑m
i=1 xi[n] with a general arithmetic term

can be
(Z = (

∑m
i=1 Xi) − 2n · α) ∧ (0 ≤ α ≤ m − 1) , (5)

and

tm =
∑m

i=1 Xi ∧ tm−1 = tite(tm ≥ (m − 1) · 2n, tm − (m − 1) · 2n, tm)∧

tm−2 = tite(tm−1 ≥ (m − 2) · 2n, tm−1 − (m − 2) · 2n, tm−1) ∧ · · · ∧

t2 = tite(t3 ≥ 2n+1, t3 − 2n+1, t3) ∧ Z = tite(t2 ≥ 2n, t2 − 2n, t2) . (6)

We prefer (6), which introduces term-ITEs, to (5), because (5) often introduces a large coefficient for the
fresh variableα. For multiplication, we use the encoding

tNt−1 = tite(k · X ≥ 2Nt−1 · 2n, k · X − 2Nt−1 · 2n, k · X)∧

tNt−2 = tite(tNt−1 ≥ 2Nt−2 · 2n, tNt−1 − 2Nt−2 · 2n, tNt−1) ∧ · · · ∧

t1 = tite(t2 ≥ 2n+1, t2 − 2n+1, t2) ∧ Z = tite(t1 ≥ 2n, t1 − 2n, t1) . (7)

The conditions of the term-ITEs in (7) enumerate the different overflow cases. If a condition is true, the value
of k · X overflows; hence, the true branch of the term-ITE subtracts a power of 2 from the value ofk · X to
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satisfy the condition0 ≤ k · X < 2n. The number of term-ITEsNt required for encoding a multiplication
k[n] · x[n] in LIA is given byNt = ⌈log2(k)⌉.

For aBV equalityz[n] = k1[n] · x[n] + k2[n] · y[n], the number of term-ITEs can be computed by
computingNt for each multiplication and the addition, or by computingNt for the whole term. Using the
first methodNt = ⌈log2(k1)⌉ + ⌈log2(k2)⌉ + 1, andNt = ⌈log2(k1 + k2)⌉ with the second method. Since

⌈log2(k1 + k2)⌉ ≤ ⌈log2(k1)⌉ + ⌈log2(k2)⌉ + 1 ,

we use the second method. The number of term-ITEs in (6) can be reduced fromm − 1 to ⌈log2(m)⌉.
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The results of Yices (LIA) on the hardware verification problems in Fig. 1 with and without the enhanced
encodings are shown in Fig. 3 and Fig. 4. In the experiments, the timeout was set to 1000 seconds. Figure 3
compares the encodings with and without value enumeration. Figure 4 compares the encodings with and
without term-ITE introduction. Points below the diagonal represent wins for the enhanced encoding. Each
scatterplot shows two lines: The main diagonal, andy = κ · xη, whereκ andη are obtained by least-square
fitting. Figure 3 shows that the encoding with the value enumeration outperforms the one without. Figure 4
shows that the encoding with the term-ITE introduction often outperforms the one without significantly.

5 Model Analysis

Figure 1 shows that choosing the proper encoding is important. Given a hardware design, we analyze the
model to choose betweenBV andLIA (plus, possibly, bit blasting). If the model contains many bit-wise and
bit-select operators, or it uses only a narrow data path, then theBV encoding is more likely to be suitable.
On the other hand, if the model contains a large number of arithmetic and relational operators with a wide
data path, theLIA encoding may be preferable. In practice, we often encounter designs with a mixture of
bit-wise, bit-select, and arithmetic operators. On those problems, it is hard to applyLIA solvers even though
they contain a large number of arithmetic operators with wide data paths. On the other hand, there is still a
chance to applyLIA solver if certain conditions are met. We discuss these conditions in the following.
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5.1 Analysis of Bit-Select Operations

The bit-select operators in hardware designs often produceLIA encodings that are hard for SMT solvers.
Each bit-select operator generates three fresh variables possibly with large coefficients. If there are multiple
bit-select operations applied to one bit-vector, there is no benefit in encoding them inLIA. In [6], the author
showed degradation of performance in anLIA solver as the number of slices of a bit-vector grows. When
a slice includes either the MSB (most significant bit) or the LSB (least significant bit) of a bit-vector, only
two fresh variables are needed. However, theLIA encoding may not be efficient depending on the location
of the slice. According to our experiments, if the bit-vector is decomposed only into two and the slicing bit
is close to the MSB, thenLIA encoding can be still effective.

5.2 Analysis of Bit-Wise Operation

Bit-wise operators makeLIA encoding much harder compared to the encodings for otherBV operators.
There is not much choice but to bit-blast the bit-vectors in the bit-wise operations. On the other hand,
some designs contain a large number of arithmetic operations with wide data paths and a small number
of bit-wise operations. In those designs, the combinational (BV∪ LIA) encoding can be used to encode
the bit-wise operations withBV encoding, and still maintain the arithmetic operations withLIA encoding.
Unfortunately, SMT solvers forBV ∪ LIA encoding do not perform well compared to other solvers (BVor
LIA) according to our experiments. Instead of using theBV ∪ LIA encoding, we apply bit blasting for the
bit-wise operations and useLIA encoding for the arithmetic operations. The experimental result in Fig. 5
comparesLIA encodings with and without bit blasting for the Palu and the retherRTF designs [21] and shows
thatLIA encoding with bit blasting gives much better performance compared to pureLIA encoding.
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Fig. 5. LIA WITH BIT-BLAST vs. LIA

5.3 Scoring System

The model analysis method decides the encoding method based on a scoring system. LetScoreB be the
score forBV encoding andScoreL be the score forLIA encoding. Letwar, wre, wbw, andwbs be the weights
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for the arithmetic, relational, bit-wise, and bit-select operators, withwbw > wbs > war > wre. We give a
larger value towbw andwbs because the numbers of bit-wise and bit-select operators have a stronger impact
on the effectiveness of theLIA encoding than the numbers of arithmetic and relational operators have on the
effectiveness of theBV encoding. The score is computed for each relational expressione in the transition
system based on (8) and (9), in whichn(bw) is the number of bit-wise operators,n(bs) is the number of
bit-select operators,n(ar) is the number of arithmetic operators,n(re) is the number of relational operators,
andnbits(e) is the number of bits ine.

ScoreB =
∑n(bw)

i=1 nbits(ei) × wbw +
∑n(bs)

i=1 nbits(ei) × wbs, (8)

ScoreL =
∑n(ar)

i=1 nbits(ei) × war +
∑n(re)

i=1 nbits(ei) × wre . (9)

A bit-select operator that decomposes the data path into only two and whose slicing bit is close to the MSB
is considered a weak bit-select and is not counted inn(bs). Non-linear operations are linearized as in [4] and
counted inn(ar). Each score represents the amount of bit-vector operations that are suitable for encoding
in eitherBV or LIA.

Given the scoresScoreB andScoreL and their thresholdsthB and thL, we compare the score with its
threshold and decide the encoding method. IfScoreL > thL andScoreB < thB, then we selectLIA encoding,
otherwise we selectBV encoding. When encoding inLIA, the bit-vectors in the bit-wise operations are bit-
blasted, and the bit-vectors only in the relational operators are also bit-blasted. The selective bit blasting in
LIA encoding often improves the efficiency of SMT solvers.

6 Experimental Results

We have implemented a translator calledVl2smtthat uses Icarus Verilog [11] as front end, accepts a Verilog
design as input, and generates an SMT formula for the verification condition of the design. The translator
chooses the encoding method for a given design betweenBV and LIA with bit blasting as discussed in
Sect. 5.3. We used the set of designs of Fig. 1 as training set for the predictor. For each design, three BMC
problems with different bounds are used for the encoding prediction. All results are for the solvers listed as
in Sect. 1 with a timeout of 1000 seconds. Figure 6 shows the comparison of average CPU times ofBV
solvers (Boolector-1.4, Z3-2.8, Beaver with Precosat-456r2) andLIA solvers (MathSAT-4.3, Yices-1.0.28,
Z3-2.8) with the designs classified according to the predicted encoding method. The symbol◦ is used for
designs withBV encoding prediction, and the symbol× is used for the design withLIA encoding prediction.
The scatterplot shows that most designs for whichBV encoding was predicted to work better actually end
up above the diagonal, while most designs for whichLIA encoding was predicted to work better actually end
up under the diagonal. This result shows thatVl2smtpredicts the right encoding for most of the problems in
the training set.

A set of hardware model checking problems from VIS Verilog benchmarks [21], Opencores [16] and
Altera design examples [19] disjoint from the training set was used for evaluation ofVl2smt. The result
of the evaluation in Fig. 7 shows thatVl2smtpredicts the right encoding method for each of these model
checking problem.

Table 1 shows the average number of bits, the numbers of addition, multiplication, relational (re1: with
a constant, re2: with a variable), bit-wise, and bit-select and ignored bit-select operations, the scores, and
the encoding predictions for the models in the training (T-Model) and evaluation (E-Model) sets. For (8) and
(9), we use the weightswbw = bits(e), wbs = bits(e), wadd = 1, wmul, wre1 = 0.1, wre2 = 0.4, and the
thresholdsthB = 500, thL = ScoreL/13 that we got from T-Model. While computingScoreB, the slicing
bit of a bit-select operator (ibs) that is close to either LSB or MSB (bits(e) < 5) is ignored.
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T-Model bit add mult re1 re2 bw bs ibs ScoreL ScoreB Enc

Am2910 11 1 0 21 11 0 0 0 75.6 0 BV
Bakery 5 0 0 371 23 0 0 0 243.8 0 BV

Blackjack 5 4 0 75 14 0 0 0 83.9 0 BV
Cube 2 0 0 0 52 0 0 0 89.6 0 BV

FPMult 10 26 14 0 54 20 11 13 1218.8 10229 BV
Palu 15 9 3 9 19 9 0 4 692.4 9216 BV

RetherRTF 5 0 0 0 8 0 0 0 16 0 BV
Swap 3 0 0 28 11 0 0 0 22.4 0 BV
Miim 3 10 9 0 18 4 3 0 281.2 1540 BV

Timeout 51 1 0 0 20 0 0 0 504 0 LIA
cf fir 8 47 43 0 69 0 0 12 2347.2 0 LIA
FIFOs 55 0 0 75 30 0 0 0 1046.6 0 LIA
FIR 17 20 20 0 4 0 0 9 1715.2 0 LIA

DSPAdder 22 34 64 0 32 0 0 0 3290.8 0 LIA
MinMax 56 2 0 0 21 0 0 0 540.4 0 LIA

E-Model bit add mult re1 re2 bw bs ibs ScoreL ScoreB Enc

cf cordic 2 9 7 0 11 0 0 1 150 0 BV
Daio 2 9 7 0 11 0 0 1 150 0 BV

Dekker 2 0 0 48 4 0 0 0 17.6 0 BV
Unidec 4 0 0 0 55 0 14 14 352 3584 BV
soc ram 46 0 0 186 10 0 0 0 1050.4 0 LIA
AltMult 8 30 28 0 48 0 0 0 1247.2 0 LIA

Table 1.Encoding predictions for the models in T-Model and E-Model sets

7 Related Work

As we discussed in Sect. 4, the basicLIA encoding for combinational circuits was presented in [6]. In
contrast to our selective approach for hardware verification, they adopted the layered approach inside the
solver that deals with EUF, the incompleteBV, and the completeLIA encodings. In [2], the author presented
a word-level reduction method for industrial netlist verification. He focused on simplifying the netlist as
much as possible by applying word-level reductions to equality and disequality comparators. Then, the
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simplified netlist was bit-blasted, and solved with either SAT or BDDs. In [12], the authors appliedBV
solvers to equivalence checking of a system-level model and an RTL design. In [22], the authors presented
a normalization technique to simplify the word-level description of an arithmetic circuit for SAT-based
BMC. In [17], the authors presented a simplification method for RTL-SAT instances with the combination
of interval-arithmetic and Boolean reasoning. Earlier references of word-level hardware verification include
[5], [8], and [25]. Finally, the authors of [23] presented an algorithm selection approach that selects one
among the SAT solvers that performed best on a representative set of problem instances.

8 Conclusions

The choice of the right encoding style has great effect on the efficiency of model checkers at the word level.
In this paper, we have presented a selective SMT encoding for hardware model checking. The approach is
based on a model analysis method that selects the encoding by considering several characteristics of the
model. In particular, the effects of bit-vector and bit-select operations have been studied. Experiments show
that our approach selects the right encoding for most of the designs. This greatly improves the efficiency of
hardware model checking. Enhanced encoding techniques have also been introduced and their effectiveness
demonstrated experimentally.
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Exploring and Categorizing Error Spaces using BMC and SMT

Tim King1, Clark Barrett1
1New York University, taking|barrett@cs.nyu.edu

Abstract

We describe an abstract methodology for exploring and categorizing the space of error traces for a
system using a procedure based on Satisfiability Modulo Theories and Bounded Model Checking. A
key component required by the technique is a way to generalize an error trace into a category of error
traces. We describe tools and techniques to support a human expert in this generalization task. Finally,
we report on a case study in which the methodology is applied to a simple version of the Traffic Air and
Collision Avoidance System.

1 Introduction

Finding traces that represent errors in hardware and software by the means of Bounded Model Checking
(BMC) has been one of the great recent success stories in formal methods [4]. Both Boolean Satisfiability
(SAT) and Satisfiability Modulo Theories (SMT) solvers have been used as effective engines for BMC [10].
While SAT techniques are more established, SMT solvers have the advantage of being able to reason natively
at a higher level of abstraction, easing the modeling process and often leading to efficiency gains as well [5].

In this paper, we suggest a novel use of BMC: instead of searching for a single error trace, we develop
a method for exploring and categorizing the space of all errors. Our proposed approach is to repeatedly
complete the following steps: first, use SMT-based BMC to find an error trace; second, generalize the trace
into a set of traces (we call this set a category); third, specify the category formally (using the language of
the SMT solver); and finally, use the formal specification to exclude this category from the next iteration
of the BMC search. If the system is finite, or the categories can be made sufficiently general, the process
terminates with a complete categorization of all error traces together with a sample error trace for each
category.

Such a method may be helpful in situations when a system is known to have many error traces (accord-
ing to some specification) and the system designers believe these error traces to be sufficiently rare or benign
(while changing the system is seen as costly) as to warrant not fixing the errors. By exploring and catego-
rizing the error space, this conjecture can be tested and either confirmed (by verifying that all categories
are non-problematic) or challenged (by finding a category of serious errors that were previously unknown).
Even if no serious errors are found, the procedure can be seen as an aid in developing a more refined speci-
fication (e.g. the original specification can be extended with a formal characterization of “error” categories
that are deemed non-critical).

A key step in our procedure is the generalization of an error trace into a category. This step is challenging
because it must balance generality (which is desirable to ensure the procedure terminates relatively quickly)
with meaningfulness (since each category should be limited to a closely related set of error traces). In this
paper, we specifically and intentionally consider the case in which categories will be evaluated by a human
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(i.e. no formal specification exists for what an “acceptable” error trace might be). This also motivates the
need for keeping the number of categories to a minimum.

The paper is organized as follows. We begin with a review of SMT, BMC, and other necessary back-
ground information. We then explain the main algorithm for error space exploration and categorization.
Next, we introduce a modeling language called transmit, which helps bridge the gap between the sys-
tem model and the SMT back-end. We then describe results on a case study that motivated this work: a
simplified version of the Traffic Air and Collision Avoidance System (TCAS). Finally, we conclude with a
discussion of related and future work.

2 Preliminaries

We assume the reader is familiar with standard notions from many-sorted first order logic and the Satisfi-
ability Modulo Theories (SMT) problem (see for example [12, 5]). We assume SMT-DECIDE is a model-
generating algorithm solving the SMT problem for a theory T with signature ΣT. SMT-DECIDE takes a
ΣT-formula ϕ and returns (sat M) if ϕ is satisfiable (where M is a T-interpretation that satisfies ϕ) and
(unsat) if the formula is unsatisfiable.

Bounded Model Checking (BMC) is a verification technique for systems that works by considering finite
traces of the system up to some maximum size. While limited in its ability to verify properties, it has been
very effective at bug-finding. For our purposes, BMC refers to the process of: selecting a bound k on the
number of system steps; creating a formula that represents execution of the system from the initial state
through k transitions into an error state; and then using an SMT solver to decide whether this formula is
satisfiable. If the formula is satisfiable, this indicates that the error state is reachable. Furthermore, if the
SMT solver can provide information about the satisfying assignment, this can be used to generate a specific
error trace. On the other hand, if the formula is unsatisfiable, this proves that the error cannot be reached in
k steps.

Formally, given a background theory T, we will take as our system model triples of the form (V, I, T ).
Here, V is a set of state variables over sorts from ΣT that describe the state of the system. We call a ΣT-
formula, all of whose free variables are from V , a state formula. I is a state formula which is true exactly
when the state variables take on values representing a valid initial state of the system. T is a ΣT-formula
whose free variables are from V and V ′ (a copy of V containing a variable x′ for each variable x ∈ V ) which
is true iff the system can transition from a state represented by V to a state represented by V ′. We assume
that error states can also be described by state formulas (for simplicity, we consider only safety properties).

Besides V ′, we also define Vi to be a copy of V (containing variables xi for each x ∈ V ) for each i ≥ 0.
Also, for i ≥ 0, the indexing operator (·)i takes a state formula φ and produces a formula φi by replacing
each occurrence of x ∈ V by the corresponding variable xi ∈ Vi. Similarly, the indexing operator applied to
T produces a formula Ti obtained by replacing each occurrence of x ∈ V with xi ∈ Vi and each occurrence
of x′ ∈ V ′ with xi+1 ∈ Vi+1.

The unrolling function UNROLL takes as input a system and an unrolling depth k, and produces a
formula that represents running the system for k steps from a valid initial state:

UNROLL(V, I, T , k) := I0 ∧
k−1∧
i=0

Ti.

A trace τ of length k is a T-interpretation satisfying a k-step unrolling of the system:

60



EXPLORE(V, I, T , E , k)

1 q0 ← UNROLL(V, I, T , E , k)
2 i← 0
3 while SMT-DECIDE(qi) = (sat εi)
4 do Ci ← ANALYZE(εi)
5 qi+1 ← qi ∧ ¬Ci
6 i← i+ 1
7 return [C0, . . . Ci] , [ε0, . . . , εi]

Figure 1: The EXPLORE procedure.

τ |= UNROLL(V, I, T , k).

Given a state formula E describing an error state, an error trace, ε, is a system trace that additionally satisfies
Ei for some i. We extend the unrolling function UNROLL to take as an additional input an error formula E
and to produce a formula additionally requiring E to be satisfied within k transitions:

UNROLL(V, I, T , E , k) := I0 ∧
k−1∧
i=0

Ti ∧
k∨

i=0

Ei.

We refer to the set of all error traces as the error space of the system.

3 Exploring the Error Space

Applications that employ BMC typically use it to generate a single error trace which is immediately reported
to the user as a bug. The user then analyzes the trace and updates the system accordingly. In a scenario in
which some errors may be deemed acceptable and modifying the system is considered to be expensive, this
simple bug-finding and patch loop may no longer be appropriate. BMC can still be used to produce error
traces, but a more complete picture of the error space is desirable in order to determine whether an update
to the system is warranted.

The EXPLORE procedure employs BMC in a more general loop that explores and categorizes multiple
error traces. A diagram of the procedure is shown in Fig. 1. EXPLORE takes as input a system, an error
state, and an unrolling depth k. The procedure unrolls the system to obtain a formula q0 that is satisfied if
there are any error states reachable within k steps. qi is sent to an SMT solver to decide if it is satisfiable (i
is initially 0.) If qi is satisfiable, the model-generating feature of the SMT solver (SMT-DECIDE) is used to
obtain information about a satisfying interpretation of qi. The satisfying interpretation εi is an error trace.
The abstract procedure ANALYZE takes εi and generalizes it to a category formula Ci, such that εi |= Ci. (We
discuss different possible choices for ANALYZE in more detail at the end of the section and in Sec. 4.) To
exclude the traces in Ci and discover a new satisfying error trace, qi is conjoined with the negation of Ci. The
next iteration of the process then occurs, with the SMT solver being invoked with the new query qi+1. If at
some point qi is unsatisfiable, then the categories include all the error traces possible for this k. In this case,
the procedure terminates and outputs the set of categories and satisfying error traces, [C0, . . . Ci] , [ε0, . . . , εi].
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EXPLORE is a straightforward generalization of a well-known solution for extracting multiple solutions
of a single formula. Any solution implemented with multiple calls to an SMT solver must guarantee that
the model returned in one iteration is excluded from the next. The easy way to do this is simply to assert the
negation of some formula φ that is satisfied by the model. φ is an abstraction of the model. In EXPLORE,
this process of abstracting the model and generating such a formula is captured by the ANALYZE procedure.

The choice of category formulas Ci introduced by ANALYZE must be done with care as this controls
which future error traces are generated and also determines how quickly the procedure terminates. In
the general presentation above, ANALYZE does not ensure that the different error traces represent mean-
ingful distinctions or make progress. For example, ANALYZE could introduce the sequence of categories
x0 = 1, x0 = 2, . . . restricting the initial value of a variable x to be a different constant each time (as long
as each has a model), resulting in non-termination. On the other hand, suppose ANALYZE introduces the
sequence (x0 ≤ 1

2), ¬(x0 ≤ 1
2). In this case, we do have termination, but there may be more than two

substantially different kinds of bugs in the original system, whereas with this categorization, only 2 repre-
sentative error traces will be produced. More (and possibly more efficient forms of) exhaustive case splitting
can be done, but this may produce too many error traces.1 While these models may be helpful for assisting
other computations, if models are going to be validated by hand, the number presented to the user needs to
be quite low. We mention all of this to emphasize that the value of the output of EXPLORE crucially depends
on how ANALYZE guides the search through the error space, and also to highlight the difficulty of designing
such a procedure.

4 Interactive Exploration of the Error Space

One of the main contributions of this paper is to evaluate an implementation of ANALYZE which uses an
interactive approach. In particular, rather than trying to automate this step, we have investigated how best to
support a system expert (the analyst) in analyzing the error traces and constructing the category formulas.
This decision is principally motivated by the observation that the categories need to be meaningful and
comprehensible to human evaluators, often taking into account domain-specific concepts, so that there may
not be a good general mechanism for producing categories automatically.

Note that the analyst’s task is not too different from what must be done by system developers when using
BMC as a bug-finding tool. In particular, in order to determine the severity of and appropriate response to
an error trace, a developer must thoroughly understand the trace, be able to abstract this understanding into
a conceptual idea about what is wrong, and then apply this conceptual understanding to fix the problem.
Here, the analyst must similarly understand the error trace and use this to create an abstract idea capturing
the cause of the problem. The additional step required is to express this idea as a category formula.

There are several advantages of this approach over a simple use of BMC for bug-finding. First of all,
under the assumption that there are many error traces to look at, it may not even be feasible to examine each
one individually. Thus the step of categorization is crucial not just to save time but also to have any hope
of covering all the traces. A second advantage is that if the analyst is able to capture the abstract concept
behind each error trace, this ensures that each new error trace will represent a new conceptual problem.
This is much more interesting and instructive than examining many error traces that are just slight variations
of the same basic problem. Finally, this process is much more likely to lead the analyst to find rare and

1If ANALYZE consistently introduced the negation of the satisfying Boolean assignment to each atom in qi, EXPLORE would
be isomorphic to the SMT equivalent of ALLSAT [16], guaranteeing termination. There are a number of possible variations to this
scheme, including predicate abstraction.
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unexpected behaviors as they will work quickly to categorize (and thus eliminate) common and understood
behaviors.

With a human analyst, the EXPLORE procedure can be summarized as a means of letting the analyst
interactively search the error space of a system with the help of SMT-based BMC technology. The computer
performs the difficult search for error traces on demand, while the analyst’s job is to examine the error
traces and produce category formulas for them. This is a paradigm similar to the one followed by users of
interactive theorem provers: let the user focus on the big picture, and let the computer deal with the tedious
details.

5 Transmit

As part of this work, we developed transmit, a language for quickly encoding BMC queries and cate-
gories for use with SMT.2 transmit provides the analyst with tools to support the interactive EXPLORE

procedure. transmit is also an appropriate language for specifying and testing prototypes. A small
example of a transmit specification is given in Fig. 2 and explained in section 6.

Specifications in transmit are written by annotating S-Expressions in an underlying language, such as
SMT-LIB v2. This annotated expression is reduced by transmit to an S-Expression in the underlying lan-
guage using simple recursive top-down transformations. The primary constructs of transmit are: indexed
state variables ([$v]), support for setting the index to the value of a constant expression ([# c (.)]),
bounded repetition of an expression ([#for start end (.)]), and binding a parameter to a value
([bind k c]).

The specification of state predicates and transition relations for BMC problems can be expressed using
transmit in a fairly straightforward definitional style. A typical use of transmit is to bind some
parameters to constants (such as the unroll depth) and then pass the annotated formulas to transmitwhich
produces an SMT query. While declarations of the system generally resemble those in more sophisticated
high-level modeling languages such as SAL or UCLID, transmit specifications are written at a lower
level: just above the level of SMT formulas. transmit can be thought of as a scripting language for
designing SMT-LIB queries, giving the user a large degree of low-level control over the generated query.

transmit is designed to help support the interactive construction of categories during EXPLORE. The
category formulas generated during EXPLORE are formulas over the first k states. It is desirable to make
the specification of the categories hold for multiple choices of k and support basic temporal reasoning.
transmit’s approach to this is to have the categories specified using the same underlying language as
the system specification. Like system specifications, categories have access to the parameterization of the
system, and can be parameterized on k as well. The categories are then given k in the same fashion as
the system description, and are compiled by transmit into a well-defined first order logic formula Ci
(over ∪ki=0Vi) which EXPLORE can use to make progress. transmit specifications given access to k are
powerful enough to express Linear Temporal Logic safety properties [8] with past operators. This shows
that basic temporal reasoning is feasible. By giving the user access to such a powerful specification scheme,
we maximize their ability to interactively explore the space as they see fit.

To assist the analyst, transmit provides tools for parsing models output by a number of SMT solvers3

into a pair of comma-separated-value files (one for system wide constants, and one for state variables). This
format makes it easy to write short scripts that generate visualizations for the traces using tools such as
gnuplot or R.

2An alpha version of transmit is available at http://cs.nyu.edu/~taking.
3Currently CVC3, CVC4 and Z3 are supported.
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1 [bind k 2]
2 (set-logic QF_LRA)
3
4 {- System Paramters -}
5 (declare-fun MinFlowRate () Real)
6 (declare-fun Capacity () Real)
7
8 {- State Variables -}
9 [#for 0 k (declare-fun [$tank] () Real)]

10 [#for 0 k (assert (and (<= [$tank] Capacity) (>= [$tank] 0))) ]
11 [#for 0 k (declare-fun [$incoming] () Real)]
12 [#for 0 k (assert (> [$incoming] 0)) ]
13 [#for 0 k (declare-fun [$outgoing] () Real)]
14 [#for 0 k (assert (< [$outgoing] 0)) ]
15
16 {- Initial State -}
17 (assert (>= [# 0 [$tank]] (* (/ 1 2) Capacity)))
18
19 {- Transition relation -}
20 [#for 0 [- k 1] (assert (= [next [$tank]] (+ [$tank] [$incoming] [$outgoing])))]
21 [#for 0 [- k 1] (assert (ite (<= (* 2 [$tank]) Capacity)
22 (> [next [$incoming]] [$incoming]) (< [next [$incoming]] [$incoming])))]
23 [#for 0 k (assert (=> (>= (+ [$tank] MinFlowRate) 0) (<= [$outgoing] MinFlowRate)))]
24
25 {- Eventually the error formula is satsified. -}
26 (assert (or [#for 0 [- k 1] (> [$outgoing] MinFlowRate)]))
27
28 (check-sat)

Figure 2: transmit specification of a simple hybrid system.

transmit provides tools for facilitating the entire process of the interactive EXPLORE procedure. Do-
ing this with a single tool helps the user maintain consistency between the system description, the categories,
the query, and the satisfying interpretation.

6 Example using transmit and EXPLORE

This section describes an example of a transmit specification, and summarizes how a user might employ
the EXPLORE procedure on this example. The example file is given in Fig. 2. This example models a simple
hybrid system consisting of a water tank with an incoming nozzle whose rate is controllable. The liquid is
continually flowing out of the tank, and the flow must be kept above a certain rate, i.e. there is an error if the
amount of outgoing liquid is below some threshold.

transmit annotations use square brackets and LISP style S-expressions to annotate the formula. Ex-
pressions wrapped in {- and -} are comments in transmit (following notation from Haskell). This
example is built on top of SMT-LIB v2, and compiles to an SMT-LIB v2 query. Line 1 in the example binds
k to the constant 2. Line 2 is the header for the SMT query. Line 5 declares the variable MinFlowRate,
the amount that should leave the tank every cycle. Line 6 declares the variable Capacity. Lines 9-10
declare a state variable $tank and assert that its value is always between 0 and Capacity. To see how
the #for construct expands, the transmit output for these lines is shown below:

(declare-fun |tank_000| () Real)
(declare-fun |tank_001| () Real)
(declare-fun |tank_002| () Real)
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(assert (and (<= |tank_000| Capacity) (>= |tank_000| 0)))
(assert (and (<= |tank_001| Capacity) (>= |tank_001| 0)))
(assert (and (<= |tank_002| Capacity) (>= |tank_002| 0)))

Lines 11-14 similarly declare the state variables [$incoming] and [$outgoing] and assert that the
variables are respectively always positive and negative. Line 17 declares that the initial value of [$tank]
([# 0 [$tank]]) is at least half of Capacity. Lines 20-23 specify the transition relation. The first
part of this is that the next value of $tank ([next [$tank]]) is equal to the sum of the current values
of $tank, $incoming and $outgoing. The transmit output for this is 2 lines, the first of which is:

(assert (= |tank_001| (+ |tank_000| |incoming_000| |outgoing_000|)))

Lines 21-22 give a basic rule for increasing the incoming rate if the tank is at least half empty and decreasing
the rate otherwise. Line 23 specifies that if [$tank] has at least the minimum flow rate currently in it,
then at least this amount flows out. Line 26 is a statement of the error condition: at some point, less than
MinFlowRate flows out of the tank. The transmit output for line 26 is:

(assert (or (> |outgoing_000| MinFlowRate) (> |outgoing_001| MinFlowRate)))

Finally, the file is ended by the SMT (check-sat) command.
We used the EXPLORE procedure on this specification, and generated two categories, after which the

loop terminated with an unsatisfiable result. Our first category was motivated by the observation that the
relationship between MinFlowRate and Capacity is undefined, so it is possible that Capacity is actu-
ally smaller than the magnitude of MinFlowRate (which is negative), meaning that (>= (+ [$tank]
MinFlowRate) 0) would always be false. We used the following formula as a generalization of this
category of errors:

(assert (< (+ Capacity (* 2 MinFlowRate)) 0))

Our second category addresses the main problem of the system. At any point, $outgoing can be suffi-
ciently negative and $incoming sufficiently close to zero that as a result, the value of $tank in the next
state is less than the magnitude of MinFlowRate. We introduced a category for this problem that captures
exactly these cases: (<= (+ [$tank] [$incoming] [$outgoing] MinFlowRate) 0). The
negation of these two categories together with the original formula is unsatisfiable and EXPLORE terminates.

7 Case Study

The Traffic Air and Collision Avoidance System (TCAS) is a currently deployed collision avoidance system
for aircraft [15]. The system provides pilots independent tracking of other aircraft in the local airspace and
in emergency situations provides Resolution Advisories (RAs) to the pilots on how to avoid likely collisions.
TCAS’s RAs are considered a means of defense-in-depth for when normal air traffic management’s separa-
tion procedures have broken down. Due to TCAS’s inherent safety critical nature [1], it has been the subject
of a number formal studies in the past [14, 17, 7, 18]. Other aircraft collision avoidance systems have been
studied in detail as well [19].

TCAS treats the planes as points and attempts to keep the points sufficiently far apart so as to avoid Near
Mid-Air Collisions (NMACs). An NMAC is defined as a situation in which two planes have a horizontal
separation (range) less than the constant NMACw and a vertical separation less than the constant NMACh.4

4We used NMACw = 500ft and NMACh = 100ft.
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Geometrically, this means that an NMAC occurs if a second plane enters a cylinder centered around the first
plane. This over-approximation avoids having to model complex and mostly irrelevant plane and helicopter
geometries that more accurate modeling of mid-air collisions would require. TCAS runs a fixed protocol
every second during which it both checks its sensors and performs sense selection (deciding whether to
issue an RA and if so what RA is selected). Non-linear floating point arithmetic calculations are used for
estimating position, velocity, and the time of closest horizontal distance (TCA), as well as for determining
when to issue an RA and when to stop issuing the RA.

TCAS is an excellent case study for our approach because it is a system that needs to be better understood
but which is very difficult and costly to change. Furthermore, if we define any scenario that leads to an
NMAC to be an error trace, it is clear that errors cannot always be avoided (a malicious pilot could always
cause an NMAC for example). The goal of TCAS is to avoid NMACs in reasonable scenarios. However, it
is not clear how to evaluate the success of this goal.

We applied our technique to a simplified version of TCAS called Tiny TCAS. Tiny TCAS was developed
at MIT Lincoln Laboratory for the purpose of experimenting with formal techniques.5 Tiny TCAS restricts
its attention to the case when one plane is equipped with Tiny TCAS and a single intruder is equipped only
with a transponder (which communicates its position and velocity). Tiny TCAS assumes its variables are
real numbers (ignoring approximations and errors introduced by floating point representations). Tiny TCAS
contains non-linear real arithmetic constraints for projecting positions in the future and calculating when an
RA can be released.

While some existing SMT solvers do have limited support for non-linear real arithmetic[9, 3], there
are no currently available solvers able to analyze the Tiny TCAS model without modification.6 Since Tiny
TCAS already makes many simplifying assumptions, we added one additional simplification (holding con-
stant the horizontal rate at which the aircraft are approaching each other), which allowed us to obtain a linear
model. Formulas generated from the model then fit within the SMT-LIB logic QF_LRA.

Using a Transmit model and the EXPLORE procedure, we generated five categories of system failure
for Tiny TCAS. An automatically generated visualization of an example trace from each category is shown
in Fig. 3. An informal description of the categories is given below. The visualizations are automatically
generated from error traces using a collection of simple scripts. Each figure shows the altitude of the two
planes over time. The blue line is the intruder, and the black line is the plane equipped with Tiny TCAS. The
large orange dots represent an NMAC. The first and last vertical green lines are the first and last time the
horizontal range is small enough for an NMAC to occur (labeled entry and exit). The middle green vertical
line labeled TCA is the time of closest approach or minimum horizontal range. We found automatically
generated visualizations like this to be the key analytical tool in categorizing error traces. Other formal
studies of TCAS have noted the importance of generating visualizations as well [7].

Before explaining the categories, we need the additional concept of a projected NMAC. By extrapolating
based on the current position and velocities of the planes, the future paths of both planes can be estimated.
A projected NMAC exists if an NMAC will occur based on these extrapolated paths.

The intuition behind the categories is as follows:

Doomed There is a projected NMAC from the beginning. Furthermore, even if an RA is issued, the plane
cannot climb or descend fast enough to avoid an NMAC. This is the only category that was anticipated
by the designers. (See Fig. 3a.)

5We are working with MIT Lincoln Laboratory to make the description of Tiny TCAS available, but it is not publicly available
yet.

6An integration of interval constraint propagation and Simplex has been done within OpenSMT [13, 6]. Unfortunately at the
time of this writing, this tool is unavailable.
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Figure 3: Automatically generated visualizations of categories for Tiny TCAS.
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Time (in s) Memory (in MB)
k CVC3 Z3 CVC4 CVC3 Z3 CVC4
20 3.82 3.77 2.65 306 60 73
40 MO 598.48 12.51 MO 486 114
60 MO 47.85 20.52 MO 707 185
80 MO 43.45 21.50 MO 899 327
100 MO 121.91 98.10 MO 1720 331

Table 1: Wall clock time and maximum memory for CVC3, Z3, and CVC4 generating a model for Tiny
TCAS with the constraint ¬Doomed∧¬Release∧¬Locked with rangeRateMag = 0.016. MO = Memory
Out (> 6GB)

Locked Because of a projected NMAC, Tiny TCAS issues an RA. However, the trajectory projected by
following this RA still leads to an NMAC. (See Fig. 3c.)

LockThenLevel Because of a projected NMAC, Tiny TCAS issues an RA. The new projected trajec-
tory does not contain an NMAC. However, the intruder then changes its altitude rate, resulting in
an NMAC. (See Fig. 3d.)

Lazy Tiny TCAS does not issue an RA despite an NMAC being projected. This is caused because the
criteria for detecting collision threats are unsound. There are two important sub-cases depending on
whether the TCA is being estimated correctly or not. (See Fig. 3e.)

Release Because of a projected NMAC, Tiny TCAS issues an RA, resulting in a new path on which an
NMAC is not projected. When it appears safe, Tiny TCAS releases the RA. The pilot then changes
the altitude rate in response to the RA being released. This then either directly results in an NMAC,
or an additional change in altitude by the intruder results in an NMAC. (See Fig. 3b.)

All of the previously mentioned categories are expressible as safety properties. They are not, however,
easily expressible as state properties, as they require a significant amount of information about the past.
The system is augmented with witness variables that capture a sufficient amount of history to express the
category. An example of a witness variable is the time an intruder levels off, which is used as a part of
projecting the paths. To avoid introducing non-linearity, case splits are done by transmit. This also
shows the advantage of using a low level tool like transmit.

While challenging for current SMT solvers, we have been able to use the EXPLORE procedure effectively
to analyze Tiny TCAS. Table 1 shows the running time and memory consumption for a particular formula
from our analysis using three SMT solvers and using different values for k.7 The query is immediately after
the categories Doomed, Release and Locked have been discovered, and these categories are being excluded.
The SMT solvers represented are CVC3, Z3, and CVC4.8 To the best of our knowledge, these are the only
3 SMT solvers that can handle the rewriting of the quasi non-linearity in the constraints correctly. CVC3
runs out of memory on every k > 20. This is due to the high memory consumption of the Fourier-Motzkin
decision procedure for QF_LRA[20]. Z3 and CVC4 both use variants of the simplex method [11], and have
significantly better memory performance.

7These experiments were run on an a 2.66GHz Intel Core2 Quad with 8GB memory.
8 We used Z3 version 2.3 (for Linux), CVC4 version “svn co -r1780 https://subversive.cims.nyu.edu/

cvc4/cvc4/branches/arithmetic/preprocess” with “–rewrite-arithmetic-equalities –enable-arithmetic-propagation”
enabled, and CVC3 2.2 with the flag “+model”.
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8 Related Work

Our use of BMC is quite similar to that found in [2]. Both approaches focus on hybrid systems, reduce
the problem to a single SMT query, and find violations of safety properties. Closest to our work on Tiny
TCAS is the work presented in [7, 18]. This work focuses on techniques for proving that an alert is always
issued to the pilot on all error traces. The scenario considered there is parallel runway approaches where an
intruder deviates from a normal approach by banking. Their work proves the existence of conditions under
which an aspect of TCAS is guaranteed to issue an alert. Tiny TCAS and our work focuses on both the case
where alerts are issued and not issued, as well as errors that come about as part of conflict resolution. Other
well known formal analysis on TCAS has focused on guaranteeing conditional safety in the case where both
planes are equipped with TCAS [17].

9 Conclusion and Future Work

We have proposed a novel technique for efficient interactive exploration of the error space of a system. The
procedure uses SMT-based BMC to generate error traces, and then relies on the user to guide the generation
of additional error traces by generalizing and then excluding the current trace. This interactive approach
allows the user to quickly find and understand multiple sources of system failure for complex fixed systems.
We have used this approach to analyze Tiny TCAS, and have succeeded in identifying four additional error
categories beyond those anticipated by the system designer. This shows the potential use and reasonableness
of this approach.

The most serious limitation of our work is in the handling of non-linearity. We had to resort to sim-
plification of the model in order to obtain linear (or nearly-linear) formulas. We plan on using Tiny TCAS
as a motivating example for developing better techniques for solving quantifier free non-linear real arith-
metic. Another interesting possibility is mixing in automated techniques to heuristically help the ANALYZE

component of the system. Abstract interpretation techniques for trace abstraction seem the mostly likely
candidate for success.
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Abstract. This paper introduces the theory TH for reasoning about the correctness of memory access operations
in the context of a C-style heap memory. The proposed approach makes a clear distinction between reasoning
about the values stored in memory and checking whether access to a specific memory location is allowed. The
theory provides support for malloc and free and is presented in the form of axioms that can be converted into
conditional rewrite rules. It is also shown how TH can be used in a bounded model checker for C programs.

1 Introduction

Reasoning about memory access operations is an important part of many program verification tasks. Memory
access checks can, e.g., be used to detect heap or stack buffer overflows which may be exploited by malware
in attacks. In general, accessing unallocated memory can result in unpredictable program behavior, loss of
data, or program crashes.

Whereas several approaches for formalizing computer memory have been presented in the past (see,
e.g., [1, 2, 6, 7, 11–14, 17, 18]), models of heap (or stack) memory access control are not as widespread. This
is in particular true for weakly-typed programming languages such as C.

This paper develops the theory TH for reasoning about validity of heap memory access operations. TH is
suitable for a C-like memory management system using function calls to malloc and free for allocating
and deallocating memory on the heap. The formalization of TH has similarities to the theory of arrays TA
which is governed by McCarthy’s axioms for array read and write operations (sometimes also called read-
over-write axioms)

p = q ⇒ read(write(a, p, x), q) = x

p 6= q ⇒ read(write(a, p, x), q) = read(a, q)

These axioms state that writing the value x into an array a at index p and subsequently reading a’s value at
index q results in the value x if indices p and q are identical. Otherwise, the read operation is not influenced
by the preceding write operation. Arrays are often used to model the content of computer memory. In the
programming language C, memory can be regarded as a large array of byte values.

In [16], we have extended TA with capabilities for reasoning about the correctness of memory access
operations by adding suitable global constraints formalizing heap properties and memory access correctness
predicates. There are two major drawbacks to this approach. First, the approach does not perform local
reasoning but requires knowledge about all past heap-modifying operations. This global view does not lend
itself very well to modular reasoning. Second, the approach does not provide a “separation of concerns”, i.e.,
memory access control is intermixed with read and write operations. malloc and free modify the state

? This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of
the German Excellence Initiative.
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of the memory allocation system, but do not modify the memory content in any of the allocated memory
blocks. Memory write operations, on the other hand, modify the content of allocated memory blocks, but
do not change the state of the memory allocation system. Memory accesses and their correctness are thus
separate concepts. Because of this, memory content and memory allocation state should be represented by
different objects since this makes it possible to reason about them separately.

2 Background

We first recall McCarthy’s theory of arrays TA.

Sorts E : elements
I : indices
A : arrays

Functions read : A× I → E
write : A× I × E → A

Axioms p = q ⇒ read(write(a, p, x), q) = x
p 6= q ⇒ read(write(a, p, x), q) = read(a, q)

Objects of sort A denote arrays, i.e., maps from indices of type I to elements of type E. The write
function is used to store an element in an array. Its counter-part, the read function, is used to retrieve an
element from an array.

In SMT-solvers for TA, the read-over-write axioms are typically applied from left to right using the
if-then-else operator ITE, i.e., a term read(write(a, p, x), q) is replaced by ITE(p= q, x, read(a, q)). After
this transformation has been applied exhaustively, only read operations remain, which can then be treated
as uninterpreted functions. The resulting formula can—if needed—be further transformed into pure equality
logic using Ackermann’s construction: for all array variables a, let Qa be the set of all index arguments that
occur in a read operation for a. Then, each occurrence of read(a, q) is replaced by a fresh variable Aq, and
further (consistency) constraints of the form q1 = q2 ⇒ Aq1 = Aq2 for all q1, q2 ∈ Qa are added as
constraints to the formula. An alternative way to deal with McCarthy’s axioms was presented in [4], adding
instances of this axiom lazily (on demand) in a refinement loop.

3 The Theory TH

This section gives the signature and axioms of the theory TH.

Sorts I : indices (pointers)
S : sizes
H : allocation system states

Functions ε :→ H
malloc : H × I × S → H

free : H × I → H
mallocsize : H × I → S

Predicates accessible : H × I × S
freeable : H × I

mallocable : H × I × S
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ε denotes an “empty” heap object, i.e., a heap to which no memory allocation or deallocation operations
have been applied. malloc(h, p, s) denotes the heap obtained from h by allocating a memory block of size s
starting at address p (if the allocation is possible, i.e., if the block does not overlap with previously allocated
blocks; otherwise the heap state is not modified). Accesses to this memory region are valid in the new
heap. free(h, p) denotes the heap obtained from h by freeing the memory block starting at address p (if it is
currently allocated; otherwise the heap state is not modified). Accesses to this memory region are invalid in
the new heap. mallocsize(h, p) returns the size s if p is the first address of a memory region [p, p+ s) that is
currently allocated in h.

The theory TH does not allow equality tests between objects of sort H . Thus, extensionality axioms for
the equality of heap states are not needed.

The predicate accessible(h, p, s), the main predicate of TH, is used for checking validity of memory read
and write operations. It determines whether access to the memory region [p, p + s) is valid in the heap h,
i.e., whether it falls completely within a currently allocated memory region. freeable(h, p) determines if p
is the first address of a currently allocated memory region. In this case, the memory region pointed to by p
can safely be deallocated. Finally, mallocable(h, p, s) determines whether the memory region [p, p+ s) can
be allocated in h, i.e., does not interfere with any other currently allocated memory region.

In order to simplify presentation, we restrict ourselves to I = S = N in the following. Alternatively,
fixed-width bitvectors could be used (and we do so in our implementation).1

Auxiliary Predicates. For memory regions [p, p + s) and [q, q + t), the predicate disjoint(p, s, q, t) deter-
mines whether the regions are disjoint:

disjoint(p, s, q, t) := p+ s ≤ q ∨ q + t ≤ p

The predicate contained(p, s, q, t) determines whether the memory region [q, q + t) is completely con-
tained in the region [p, p+ s):

contained(p, s, q, t) := p ≤ q ∧ q + t ≤ p+ s

Axioms for mallocable. Recall that the intended semantics of mallocable(h, p, s) is that the region [p, p+s)
can be allocated in h. The exact meaning of this is explained in the following. First, TH assumes that mallocs
of size zero are not allowed.2 Thus,

mallocablesize(h, p, s)⇔ s 6= 0

Additionally, it needs to be ensured that distinct mallocs do not allocate overlapping regions of the heap.
There are several ways to formalize this requirement. In a first step, we use a simplified formalization which
achieves the non-overlapping property by enforcing that a malloc always returns an address that is larger
than all addresses used in previous mallocs (a more general formalization will be presented in Section 4).
This is stated by

mallocabletop(h, p, s)⇔ p ≥ heaptop(h)

1 Fixed-width bitvectors complicate the presentation due to overflow effects in bitvector arithmetic.
2 The C standard states that in this case the result is implementation-defined. Specific ways of how this is handled in concrete

implementations can easily be modeled in theories that extend TH.
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This axiom makes use of the additional function symbol heaptop : H → I which is formalized by

heaptop(ε) = 0

heaptop(free(h, p)) = heaptop(h)

heaptop(malloc(h, p, s)) = p+ s

In the definition of heaptop(ε), a different constant that more accurately reflects the lowest address used
for heap memory on a system can be used instead of 0. The predicate mallocable is now defined as

mallocable(h, p, s) := mallocablesize(h, p, s) ∧mallocabletop(h, p, s)

Axioms for freeable. The intended semantics of freeable(h, p) is that p is the first address of a memory
region that is currently allocated in h. This semantics is captured by the following axioms:3

freeable(ε, q)⇔ ⊥
mallocable(h, p, s) ∧ p = q ⇒ freeable(malloc(h, p, s), q)⇔ >

¬(mallocable(h, p, s) ∧ p = q) ⇒ freeable(malloc(h, p, s), q)⇔ freeable(h, q)

p = q ⇒ freeable(free(h, p), q)⇔ ⊥
p 6= q ⇒ freeable(free(h, p), q)⇔ freeable(h, q)

Notice that, for each possible first argument of freeable (i.e., ε, malloc, or free), the conditions on the
left side of the implications cover all possible cases. This means that exactly one equivalence (on the right
hand side of the implication) is usable under any circumstances. This observation also holds for the axioms
in the following paragraphs.

Axioms for mallocsize. mallocsize(h, p) denotes the size of the currently allocated memory region which
starts at p (if such a region exists; otherwise mallocsize(h, p) is zero):

mallocsize(ε, q) = 0

freeable(h, p) ∧ p = q ⇒ mallocsize(free(h, p), q) = 0

¬(freeable(h, p) ∧ p = q) ⇒ mallocsize(free(h, p), q) = mallocsize(h, q)

mallocable(h, p, s) ∧ p = q ⇒ mallocsize(malloc(h, p, s), q) = s

¬(mallocable(h, p, s) ∧ p = q) ⇒ mallocsize(malloc(h, p, s), q) = mallocsize(h, q)

This function will be used in the axioms for accessible below.

3 For all axiom groups stated below, it would also be possible to add further, more complex “axioms” that can be derived from the
stated axioms (e.g., p 6= q ∧ contained(p, s, q, 1) ⇒ freeable(malloc(h, p, s), q) ⇔ ⊥, which states that a free operation
with an address “in the middle” of an allocated block is not valid). How these derived “axioms” affect the runtime of the
implementation will be investigated in future work.
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Axioms for accessible. Finally, we present the axioms for accessible. Recall that accessible(h, p, s) deter-
mines whether the region [p, p+ s) is completely contained within an allocated memory region.

accessible(ε, p, s)⇔ ⊥
mallocable(h, p, s) ∧ contained(p, s, q, t) ⇒ accessible(malloc(h, p, s), q, t)⇔ >

¬(mallocable(h, p, s) ∧ contained(p, s, q, t)) ⇒ accessible(malloc(h, p, s), q, t)

⇔ accessible(h, q, t)

¬freeable(h, p) ⇒ accessible(free(h, p), q, t)

⇔ accessible(h, q, t)

freeable(h, p) ∧ disjoint(p,mallocsize(h, p), q, t) ⇒ accessible(free(h, p), q, t)

⇔ accessible(h, q, t)

freeable(h, p) ∧ ¬disjoint(p,mallocsize(h, p), q, t) ⇒ accessible(free(h, p), q, t)⇔ ⊥

4 A Generalized Version of mallocable

Figure 1 contains refined axioms for mallocable. Here, mallocablefit(h, p, s) is true iff [p, p + s) is disjoint
from all currently allocated memory regions. The most complex axioms are the mallocable-over-free axioms
(1)–(3) that are concerned with partial overlaps of a freed memory region with a memory region whose
mallocability is to be determined. The different possible overlap situations are depicted in Fig. 1. Then,
mallocable itself is defined by

mallocable(h, p, s) := mallocablesize(h, p, s) ∧mallocablefit(h, p, s)

5 Extensions of the Theory

In order to be able to use the memory model for the verification of C programs, some peculiarities of the
C programming language have to be taken into account. This is mostly related to the special role of NULL-
pointers in C.

malloc(h, 0, s): The malloc-function may return NULL to indicate that the memory allocation could not
be performed, for example because of an out-of-memory situation. Notice that the heap allocation state
is not altered in this situation. To take this into account, mallocable can be replaced by mallocable′,
which is defined by

mallocable′(h, p, s) := (p 6= 0) ∧mallocable(h, p, s)

Furthermore, heaptop(ε) needs to be changed to a non-zero constant.
free(h, 0): Passing NULL to free is explicitly allowed in the C standard, but is specified to have no effect.

To take this into account, freeable′, defined by

freeable′(h, p) := (p = 0) ∨ freeable(h, p)

can be used instead of freeable for checking the correctness of free operations.
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6 Implementation

We have implemented TH in our software bounded model checking tool LLBMC as an alternative to the
combined theory approach presented in [16]. Since current SMT solvers do not support TH (yet?), we
apply the axioms in a pre-processing step before passing the resulting formula to an SMT solver. This
pre-processing is done similarly to the case of TA as discussed in Section 2:

1. The equalities or logical equivalences in the axioms are oriented from left to right, turning them into
conditional rewrite rules.

2. ITE-terms (possibly nested) are used in order to replace instances of left-hand sides by instances of
right-hand sides. In order to prevent a blow-up of the formula, newly created ITE-terms are immediately
simplified.

In LLBMC, mallocable and the corresponding axioms are not needed since suitable non-overlapping assump-
tions (see [16]) ensure that mallocable is always true.

Example 1. In this example we show that the formula

accessible(free(malloc(ε, x, 1), x), x, 1) (4)

is unsatisfiable using the above pre-processing and additional formula simplifications. Using the accessible-
over-free axioms and simplifications of the introduced disjoint-subformula, (4) is equivalent to

ITE(freeable(malloc(ε, x, 1), x),⊥, accessible(malloc(ε, x, 1), x, 1)) (5)

The freeable-over-malloc axioms imply that the predicate freeable(malloc(ε, x, 1), x) is equivalent to the
predicate ITE(mallocable(ε, x, 1),>, freeable(ε, x)). Next, the subformula mallocable(ε, x, 1) is simplified
to >. Thus, (5) is equivalent to

ITE(ITE(>,>, freeable(ε, x)),⊥, accessible(malloc(ε, x, 1), x, 1)) (6)

Using ITE-simplifications, (6) is simplified to ⊥, thus showing unsatisfiability of the original formula. ♦

7 Evaluation

We have evaluated LLBMC using the implementation of TH as described in Section 6 and the implementation
of the approach from [16]. In [16], the TH predicates accessible, freeable, and mallocable are used as well.
In contrast to TH, however, the encoding of accessible(h, p, s) iterates over all mallocs that took place when
obtaining the heap state h and have not been deallocated since then. accessible(h, p, s) is then encoded as
a disjunction over these mallocs, where each disjunct checks whether the access operation falls within the
memory block that is allocated by the malloc.

The evaluation has been performed on a collection of 97 small to medium-sized C programs from various
sources. The largest part of the evaluated benchmarks was selected from the NEC Laboratories America
benchmark suite4, the Run Time Error Detection Test Suites5, and the WCET benchmark selection6. Of
these, only those benchmarks using dynamic heap memory allocation were included.

After unrolling of loops and inlinng of function calls, an average of 95.32 memory allocations per
benchmark remained. The benchmark with the largest number of memory allocations was an algorithm for
the flattening of a tree datastructure. This benchmark contained a total of 6930 memory allocations.

4 Available at http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
5 Available at http://rted.public.iastate.edu/
6 Available at http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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Example 2. The following (artificial) example illustrates the difference between TH and [16].
1 int main()
2 {
3 int i;
4 int ∗p = NULL;
5

6 for (i = 0; i < N; ++i) {
7 p = malloc(4 ∗ sizeof(int));
8 }
9

10 return ∗(p + 3);
11 }

Using TH, the validity of the memory access operation in line 10 can easily be established by considering the
last malloc in the heap state history. Using the approach from [16], on the other hand, builds a disjunction
of N accessible predicates, one for each malloc in the loop. ♦
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Fig. 2. Scatter plots of the run-time and memory consumption of LLBMC comparing the implementation of TH (x-axis) to the
implementation following [16] (y-axis).

Scatter plots of the results are given in Fig. 2. The run-times of TH and [16] are roughly comparable.
The same is true for memory consumption, but TH has a significantly lower ionsumption than [16] in certain
cases. Table 1 contains a detailed comparison for selected benchmarks.

8 Related Work

Several low-level memory models7 for C-like languages have been proposed in the past ([1, 2, 6, 7, 11–14,
17, 18]). However, they do not emphasize memory protection or ignore it completely.

7 In a low-level memory model the memory is not much more than an array of bytes and suitable disjointness or consistency
conditions are stated explicitly.
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benchmark #mallocs/ #accessible time memory
name #frees SSV TH SSV TH
sparsemem 129/51 8374 76.2 49.5 861 404
plenty-of-mallocs 333/0 2 2.0 0.7 154 7
binary-tree 127/127 3048 7.5 9.1 150 94
flatten-trees 6930/0 42420 29.8 26.9 854 261
inplace-reverse 100/100 1800 20.4 10.8 260 119
wcet-bsort100 3/0 120204 12.4 12.1 246 246
wcet-statemate 106/0 2816 2.2 0.9 35 9

Table 1. Comparison of local (TH) and global (SSV, see[16]) memory access formalizations on selected benchmarks. Reported
times are wall-clock times in seconds; memory consumption is given in MBs.

Tuch at al. [18, 17] discuss a typed memory model in the context of interactive theorem proving with
the proof assistant Isabelle/HOL. It is shown that this typed memory model is sound with respect to the
untyped memory model assumed by C.

The memory model presented by Leroy and Blazy [13] is similar to our model and considers read, write,
malloc, and free operations. While the disjointness of memory blocks allocated by separate mallocs is guar-
anteed, no such separation for accesses performed within the same memory block is ensured (e.g., accesses
to different members of a structure). Leroy and Blazy prove properties of their memory model using the
proof assistant Coq (such as semantic preservation of compiler passes). Cohen et al. [7] introduce a typed
memory model similar to [18] for a C-like toy programming language and show that this typed memory
model is sound with respect to the untyped memory model assumed by C. They support pointer arithmetic
and memory access (read and write operations) at arbitrary locations in the memory, but do not consider
memory protection (malloc and free operations). Mehta and Nipkow [14] present a mechanism to reason
about pointer-based programs. Gast [11] gives a formalism for reasoning about memory layouts of C pro-
grams. In both cases, proof obligations are formulated in Hoare logic and verified using Isabelle/HOL.
The memory model used in Havoc is presented in [6]. Havoc uses a reachability predicate based on the
memory model in order to reason about heap-based data structures, but does not support memory protection.

Böhme and Moskal describe several typed heap encodings used by VCC2 and VCC3. A memory model
that is suitable for verification using separation logic is presented in [2], while a separation-based approach
for deductive verification in Caduceus is given in [12]. Neither paper considers memory protection.

KLEE [5], a symbolic execution engine developed by Cadar et al., shares the use of LLVM’s interme-
diate representation with our tool. KLEE uses an untyped, segmented memory model, where each object is
represented by a separate array in the SMT solver STP [10]. How memory access correctness is modeled
is not explicitly mentioned, though. CUTE [15] is a tool that combines symbolic and concrete execution
in an approach called concolic testing. Their memory model uses fixed addresses for memory objects plus
a global variable to store the next free address available for allocation. From what is published, it is not
clear how they handle memory allocation. In general, symbolic execution requires techniques similar to the
ones presented here. E.g., accessing an array of pointers at a “symbolic index” requires some kind of case
distinction.

9 Conclusions and Future Work

We have presented TH, a theory of heap memory allocation, that closely matches the semantics of malloc
and free in C. Furthermore, we have shown how the theory’s axioms can be applied as conditional

79



rewrite rules to reduce a problem from TH to a problem that can be solved by current SMT solvers such
as Boolector [3] or Z3 [8].

An Evaluation in the software bounded model checking tool LLBMC shows that even though application
of TH eliminates the disadvantages of the approach presented in [16] by applying local simplifications to the
formula, it does not impose a performance penalty in comparison to that approach.

As future work based on the results presented in this paper, we intend to combine spatially related
accessible statements and hope to be able to reduce size and complexity of the generated SMT formula this
way. Furthermore, we are planning to develop an approach based on lemmas-on-demand [9, 4] for solving
TH formulas. A further possibility is to use SMT solvers that support quantified axioms (such as Z3 [8]).

In the long term, we hope to be able to use the work presented in this paper as groundwork for a
more modular software bounded model checking approach. For this, we intend to translate each function
separately into our intermediate logic representation and apply syntactic and semantic rewriting on these
functions. Only after this simplification has been performed, the final formula is created and passed on to
the SMT solver. TH represents an important step towards this goal.
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