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Abstract

Cloud computing is pervasive, but cloud service
outages still take place. One might say that the
computing forecast for tomorrow is “cloudy with
a chance of failure.” One main reason why ma-
jor outages still occur is that there are many un-
known large-scale failure scenarios in which recov-
ery might fail. We propose a new type of cloud
service, Failure as a Service (FaaS), which allows
cloud services to routinely perform large-scale fail-
ure drills in real deployments.

1 Introduction

“The best way to avoid failure is to fail constantly.”
“Learn with real scale, not toy models.”

– Netflix Engineers [21]

Cloud computing has matured. More and more
local computing applications are replaced by easy-
to-use on-demand services accessible via computer
network (a.k.a. cloud services). Running behind
these services are massive hardware infrastructures
and complex management tasks (e.g., lots of soft-
ware upgrades) that can exhibit failures which, if
not handled correctly, can lead to severe implica-
tions. In past outages, failures were often cascaded
to other healthy clusters, dependent services went
down, manual mistake-prone recovery code had to
be quickly written during the outage, and users were
frustrated and furious [2, 11, 12, 13, 22, 25, 26].

In many service outages in the past, the service
providers believed that they had anticipated the fail-
ure scenarios and expected recovery to work. Such
incorrect expectations could arise because cloud

service deployment is complex and many scenar-
ios might have not been tested. When a service be-
comes popular, for example, it suddenly must deal
with more requests, machines, data, and failures. In
other words, the scale of an actual deployment is
typically orders of magnitude larger than the scale
of a testing framework or a “toy model” [21]. As a
result,there are many unknown real-production sce-
narios in which a failure recovery might not work.

The Netflix engineers’ quote above sums up our
motivation. Many real scenarios cannot be cov-
ered in offline testing, and thus a new paradigm has
emerged: failures should be deliberately injected in
actual deployments [17, 18]. For example, Amazon
invented the “GameDay” exercise that injects real
failures (e.g., machine failures, power outages) into
real production systems, which has proven effective
in many ways: the exercise drives the identification
and mitigation of risks and impacts from failures,
builds confidence in recovering systems after fail-
ures and under stress, and allows the organization to
schedule failures instead of waiting for unplanned,
unscheduled failures.

Despite these benefits, production failure testing
unfortunately remains uncommon outside of the few
large organizations with the engineering resources,
operational expertise, and managerial discipline to
execute it. Also, to the best of our knowledge, no
existing literature has laid out the concept, design
space, and challenges of this new paradigm. As
a result, cloud-service newcomers cannot reap the
benefits of this new approach.

In this paper, we attempt to “commoditize” this
new paradigm in a new type of service: Failure
as a Service (FaaS), a cloud service for perform-
ing large-scale, online failure drills. The principle
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Service Outage Root Event→ “Supposedly Tolerable” Failure→ Incorrect Recovery→ Major Outage
EBS [2] Network misconfiguration→ Huge nodes partitioning→ Re-mirroring storm → many clusters collapsed
Gmail [11] Upgrade event→ Some servers offline→ Bad request routing→ All routing servers went down
Gmail [12] Maintenance→ A datacenter (DC) offline→ Bad cross-DC re-mirroring → Many DCs went down
App Eng. [13] Power failure→ 25% machines of a DC offline→ Bad failover → All user apps in degraded states
PayPal [22] Network failure→ Front-end systems offline→ Late failover → Global service interruption
Skype [25] System overload→ 30% supernodes failed→ Positive feedback loop→ Almost all supernodes failed
Wikipedia [26] Overheated DC→ The DC offline→ Broken failover mechanism→ Global outage

Table 1: Recent major outages of popular cloud services than lasted for hours to days.

we promote here is to make failure a first-class cit-
izen for cloud services. That is, rather than waiting
for unexpected failures to happen, cloud services
should run failure drills from time to time. When a
drill finds a recovery problem, the drill can be can-
celled, and major outage can be prevented.

In the following sections, we motivate our work
further (§2), elaborate the concept of FaaS (§3),
present the challenges of commoditizing this con-
cept (§4), describe our design strategies (§5), and
finally conclude (§7).

2 Extended Motivation

To strongly motivate our proposal, here we recap
some major service outages that happened in the last
two years and then discuss the lessons learned.

2.1 Major Service Outages

In September 2009, a fraction of Gmail’s servers
were taken offline for a routine upgrade (which is
commonly done and “should be fine”). But due to
some recent changes on the re-routing code, com-
bined with the request load at that time, several rout-
ing servers refused to serve the extra load. This
transferred the load to other servers, which then
caused a ripple of overloaded servers, resulting in
a global outage [11].

In February 2010, Google experienced a power
failure that affected 25% of the machines in a dat-
acenter. Google App Engine, designed to quickly
recover from this type of failure, failed to do so this
time. According to the report, the engineers “failed
to plan” for this particular case [13].

In December 2010, Skype faced some overload
that caused 30% of the supernodes to go down. The
rest of the supernodes were not able to handle the

extra responsibility, creating a “positive feedback
loop”, which led to a near complete outage [25].

2.2 Lessons Learned

From these outages and many others, it is obvi-
ous that many common events could lead to fail-
ures, events such as software upgrades, power fail-
ures, and increased load. Therefore, many cloud
services already employ automated failure recovery
protocols. However, they do not always work as ex-
pected, leading to severe implications. We illustrate
further this problem by listing more outages in Ta-
ble 1. All these outages began with root events that
led to supposedly tolerable failures (in italic), how-
ever, the broken recovery protocols (in bold) gave
rise to major outages.

One lesson learned here is that the correctness of
recovery depends on the deployment scenarios (the
load, executing code, environment, etc.). However,
it is hard (or perhaps impossible) to test recovery
for all possible scenarios, especially for large-scale
deployments. As a result, the limit of a large-scale
failure recovery is often unknown. In Google’s case,
the recovery did not work when 25% of the ma-
chines in the datacenter failed. Similarly in Skype’s
case when 30% of the supernodes died. What of-
ten happens here is that recovery tries to achieve
high-availability (e.g., by quickly re-mirroring lost
data replicas or re-routing load to other live ma-
chines [11, 13, 25]) rather than sacrificing some
availability (e.g., returning errors to users). Such
“greedy” recovery would then lead to major out-
ages. On the other hand, “lazy” recovery has docu-
mented disadvantages [10, 22].

In summary, the outages we listed above are high-
profile outages. We believe that many other cloud
services face similar problems. A cloud service ide-
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ally should ensure that its recovery strategies work
correctly (e.g., not too aggressive/slow) for its de-
ployment scenarios. We believe performing failure
drills is a promising solution that can catch the type
of recovery problems we mentioned above. In the
following section, we elaborate our proposal.

3 Failure as a Service

Failure as a Service (FaaS) is a new type of cloud
service for performing large-scale, online failure
drills. The goal is analogous to that of fire drills.
That is, before experiencing unexpected failure sce-
narios, a cloud service could perform failure drills
from time to time to find out the real-deployment
scenarios in which its recovery does not work. Be-
low, we discuss our proposed service architecture
(Figure 1), a use case of FaaS, the supported fail-
ure modes, and the three important characteristics of
our proposed failure drills (large-scale, online, and
a service).

• Service Architecture: Figure 1 illustrates our
FaaS architecture. Target service is a cloud service
(e.g., HadoopFS) that exercises failure drills and
runs on VMs. The monitoring service collects run-
time information from the target service (e.g., #user
requests, #under-replicated files). This information
are used for writing failure-drill specifications exe-
cuted by the FaaS controller. The controller runs on
multiple machines for fault-tolerance and sends drill
commands to FaaS agents running on the same VMs
as the target service. An agent could enable/disable
virtual failures supported by FaaS-enabled VMs.

• Use Case:An example use case of FaaS is for
maintenance events [11, 12]. Before completely
taking some machines offline, a service provider
could use FaaS to virtually disconnect the machines
and monitor the recovery. If everything works as
expected (e.g., smooth failover, no aggressive re-
mirroring, no violated SLAs), the provider could
proceed with the real maintenance event with better
confidence of success. But, if the drill finds a recov-
ery problem, the drill can be cancelled, and ideally
FaaS should quickly restore the system to a good
state (i.e., a safety challenge). Later, we discuss fur-
ther this challenge (§4) and our solutions (§5).

TS

FA
FaaS 
Agent

VM
FaaS-
enabled 
VM

Target
System

TS

Monitoring   Service

FA

FaaS Controller

Figure 1: FaaS Architecture.

• Failure Modes: The goal of FaaS is to comple-
ment, not replace, offline testing. Thus, we focus on
supporting failure modes that could happen simulta-
neously on a large number of components, failures
such as machine crashes, network failures (packet
loss/delay at node/rack/datacenter levels), disk fail-
ures (crash/slowdowns), and CPU overload.

All these failure modes represent some form
of resource unavailability common in large-scale
deployments and can bring severe implications if
not anticipated. For example, Facebook engineers
found, in real production, bugs in the Linux stack
that caused 1GB NIC Card to transmit only 1
KB/sec, causing a chain reaction upstream in such a
way that made 100-node cluster to be non-available
for all practical purposes.

With these failure modes, we expect FaaS to un-
cover recovery issues initially caused by some re-
source unavailability. Currently, we do not intend to
support I/O reorderings, Byzantine failures, system-
specific API failures, and failures caused by soft-
ware bugs.

• Why Large-Scale? Cloud service engineers al-
ready exercise many failure scenarios in offline test-
ing, however, the scale of the injected failures,
workloads, and environments (e.g., #machines) are
often orders of magnitude smaller than the scale of
real deployments. For example, Skype, with hun-
dreds of millions of users worldwide, only emu-
lates thousands of users in testing [25]. Facebook
uses 100-machine testing clusters that mimic pro-
duction data and workload of 3000-machine pro-
duction clusters. Thus, scale is one main reason why
recovery problems are still found in production.

• Why Online? Covering many large-scale fail-
ure scenarios in offline testing is infeasible for three
reasons. First, such testing will incur big resource
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and monetary costs for generating large data and
workloads and for powering up a large number of
machines. Second, there are many unknown differ-
ences between testing setups and real deployments
(e.g., #machines, network topology). Although sim-
ulation is an option, problems found in simulations
receive less attention than those found in produc-
tion; as Netflix engineers said, they learn more from
“real scale, not toy models” [21]. Finally, there
are lots of complex dependencies between cloud
services today. Cascading failures across services
might not be observable in offline testing. For these
reasons, there have been suggestions and new prac-
tices to deliberately inject failures in production
[17, 18] (however, as we emphasized before, these
work do not discuss in detail the concept, design
space, and challenges).

• Why as a Service? Any cloud service that
promises fault-tolerance must ensure correct recov-
ery. However, young companies often put more em-
phasis on feature development and commit less re-
sources for recovery testing. Yet, the risk is high;
60% of companies that lose customer data or can-
not resume operations in 10 days are likely to shut
down [8]. Thus, making failure drills an easy-to-use
service will benefit many cloud providers.

Beyond functioning as online failure drills, we
believe FaaS would play a big role in future cloud
benchmarks. Recent work has laid out the impor-
tant elements of cloud benchmarks [3, 9], and one of
them is failure – cloud benchmarks should measure
how various failures affect the benchmarked sys-
tems. However, available cloud benchmarks focus
on performance and elasticity metrics. With FaaS,
future cloud benchmarks will have the capability to
produce availability metrics as well.

4 Challenges

This section elaborates the challenges of commodi-
tizing FaaS. One major challenge is tolearn about
failure implications without suffering through them.

• Safety: The first major challenge is safety; we
would like to check if customer data could be lost
without really losing it, or if SLAs could be vio-
lated without violating them for a long period of

time. Facebook currently exercises failures only in
testing clusters, but not in real deployments, unless
this safety challenge is properly addressed. In a re-
lated story, at a major venue, there was a “spike
drill” where cloud services were challenged to deal
with real massive increases in load [24]. However,
not many participated because of the fear that they
would fail, and indeed, one company that partici-
pated had to abort the drill. To emphasize our point
here, FaaS should be a system that not just merely
injects failures, but also comes with mechanisms
that address this safety challenge.

This safety challenge gets harder due to the like-
lihood of having real failuresbeforea drill. For ex-
ample, due to some previous failure, there are sin-
gle replicas still being re-mirrored. In such a sce-
nario, the drill must be done more carefully (e.g.,
by excluding from the drill the machines that store
the single replicas). Increasing the challenge fur-
ther is the possibility of real failures to occurduring
a drill. For example, a real network failure could
partition the “commando” of the drill (the server
that makes failure decisions) and the agents (e.g.,
the machines that receive drill commands such as a
“go-back-alive” command). Such a situation could
unsafely place the agents in “limbo” for an indefi-
nite period of time.

• Performance: To address the safety challenge,
traditional mechanisms such as snapshots, VM fork-
ing, and process pair are considered heavyweight.
On the other hand, FaaS safety mechanisms must
not impose too much overhead.

• Monetary Cost: In the world of utility comput-
ing, performing large-scale failure drills will cost
extra money; failure drills consume extra resources
such as network bandwidth, storage space, and
processing power. To estimate the cost, let’s as-
sume a machine costs $0.25/hour, raw disk storage
$0.03/GB, and network bandwidth $0.01/GB across
different regions (e.g., west to east coast) and free
within each [1]. A drill that shuts down 100 state-
less servers (e.g., front-end web servers) for 3 hours
would only cost roughly $75 (if the recovery sim-
ply spawns another 100 machines). A drill that re-
mirrors 200 TB of data (kills 100 storage servers
with 2 TB/server) would cost $8000. It is unclear if
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cloud service providers want to incur this monetary
cost.

• Specifications and Integrations: Every failure
drill needs a specification that describes the con-
ditions upon which the drill should start and stop,
the failed resources, the injected failure types, and
so on. For example, a drill can be specified to run
during a peak load, virtually disconnect 100 storage
servers, stop when the overall performance drops,
and cancel halfway if the recovery looks correct.
Drill specifications could be complex, however it
is critical to have correct specifications; imagine a
flawed specification that never stops the drill. At
Facebook, the engineers are highly careful in turn-
ing up the scale of failure drills slowly and steadily
(in testing clusters). This is only done manually so
far; ideally, drill specifications should be statically
checked.

Writing drill specifications requires rich informa-
tion from other service components. To know if
a drill is progressing well, FaaS needs information
from monitoring service. To inject different failure
types, FaaS must control local operating systems (or
VMs). Cloud services that use FaaS might need to
be modified to be drill aware. All these bring inte-
gration challenges.

• Coverage: Although all deployment scenar-
ios cannot be covered, some coverage metrics are
needed to express different specifications that ex-
plore different coverage. Unlike traditional metrics
such as code/path coverage, FaaS needs new metrics
such as failure and scale coverage. For example, one
might write a set of specifications that kill different
portions of available machines (e.g., 1%, 10%) at
different load (e.g., day, night). Such coverage met-
rics also provide a means for FaaS users to measure
the robustness of their systems; when a high-profile
outage happens, many cloud service providers typ-
ically ask the question “Can my system survive the
same failure scenario?”.

5 Design

In this section, we present our FaaS design plan
and principles. We mainly focus on addressing the
safety and monetary challenge.

• Safe Failure Drills: Regarding the safety and per-
formance challenges, achieving all kinds of safety
with a minimum overhead seems infeasible. Thus,
we only guarantee two kinds of safety: (1) the ser-
vice under drill can be rapidly restored to a good
state after a bad drill and (2) there is no data loss.
However, user-facing requests are not completely
masked from the failure implications (e.g., many re-
quests experience increased latencies). To ensure
the first safety, we are currently synthesizing VM
forking and the decoupling of availability-related
metadata and other data management (i.e., we sep-
arate healthy and drill processes). Consider a sce-
nario of a 1000-node system that experiences a re-
mirroring storm that causes only 500 nodes to be
connected. By forking the processes before the drill,
the healthy processes (fully connected nodes) can
quickly take over the drill processes (partially con-
nected nodes) after the drill is cancelled. In order to
observe the real failure implications, workloads are
still directed to the drill processes. The performance
overhead is small because the healthy processes do
not need to process the workloads (i.e., no double
computation). There are more details not discussed
here (e.g., how healthy processes keep their meta-
data up-to-date without processing the workloads).

We also perform VM forking via failure taint
propagation; imagine a drill that fails only 1% of
all available nodes which only changes the states of
the other 10%. In this case, there is no need to fork
all the processes of all the nodes. To ensure that no
data is lost, we mix-and-match classic techniques
such as snapshotting and versioning that are suit-
able for failure-drill purposes. These mechanisms
will be enabled only during the drill.

Beyond the main strategies described above,
there are many more strategies that must be care-
fully designed to ensure safe failure drills. Here, we
describe some. FaaS agents should have the capa-
bility to autonomously cancel a drill; imagine a case
of network partitioning between the controller and
the agents. FaaS-enabled VMs should employ just-
in-time versioning file system; running versioning
all the time might be expensive, but it should be en-
abled before a drill starts in order to prevent buggy
recovery from accidentally deleting or overwriting
files. The overall system must be drill aware; if
a drill is ongoing, unsafe external events such as
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configuration change and software upgrade should
be disabled. The FaaS controller should support
fine-grained specifications; a specification can in-
ject a large-scale failure (e.g., disconnect a data-
center), but it should also be able to exclude some
specific nodes from a drill (e.g., the machines that
store single replicas). FaaS-enabled VMs should
enable fine-grained failures (e.g., virtually discon-
nect specific connections); as shown in Figure1,
a drill can disconnect connections between the tar-
get service nodes, but should not do so between
the agents. Whenever possible, the FaaS controller
should be placed near “important” nodes; placing
the controller near master nodes, for example, will
enable early decision making (e.g., cancel the drill)
because master nodes have more important informa-
tion than slave nodes.

• Cheap Failure Drills: One effective solution in
addressing the cost challenge is by hybrid of live ex-
perimentation and simulation. For example, to cut
the storage cost, some file writes could be simulated
(e.g., re-mirrored data is not stored on disk). To
cut the network cost, some network transfer could
be simulated (e.g., re-mirrored data is not sent over
the network). However, to observe the real impact
of recovery, such simulation must be highly accu-
rate. Accurately simulating the network of hun-
dreds/thousands of machines is a difficult problem.
Fortunately, network data transfer is cheap; it’s usu-
ally free within a region and only costs $0.01/GB
across regions [1]. Storage is expensive, but fortu-
nately easier to simulate. For example, in the con-
text of large-data re-mirroring, simulating mostly
sequential writes is straightforward compared to
simulating random disk accesses. Thus, simulating
storage will greatly cut the overall cost but without
sacrificing too much accuracy; the network does not
have to be simulated.

This strategy however poses another problem: the
performance of applications that need multiple data
replicas (e.g., MapReduce jobs) will not see any im-
provement during the drill because the recovered
data is never written to the disk. To address this, we
plan to explore strategies that could predict which
data accessed by the applications during the drill.
For these data, the storage simulation is disabled.

To further reduce the overall cost, we could write

smarter drill specifications. For example, a specifi-
cation can cancel a drill if the recovery looks correct
half-way in the process (e.g., #under-replicated files
keep going down).

6 Related Work

In order to ensure good reliability, large-scale
production systems are equipped with core ser-
vices such as repair, provisioning, monitoring ser-
vices [19, 23], and workload spikes generators [4].
We believe one missing piece is a failure service,
and FaaS could fill this void. The implications of
large-scale failures have been studied before in the
context of P2P computing [7, 14, 16, 20]. How-
ever, these studies were mostly done in simulation
or small-scale emulation and do not propose ideas
presented in this paper. We also note that FaaS is
different from Testing as a Service (TaaS); in TaaS,
users upload their software to a cloud service to be
analyzed [5]. FATE also only provides offline failure
testing service [15]. DiCE is a framework that per-
forms live/online model checking [6] Finally, exist-
ing online failure-injection frameworks (e.g., Net-
flix’s Chaos Monkey, Amazon GameDay, DevOps
GameDay) motivated our proposal, but they are not
generally available as a service and do not fully
address the challenges (in§4) and opportunities of
Failure as a Service.

7 Conclusion

Failure is part of “cloud’s daily life”. FaaS enables
cloud services to routinely exercise large-scale fail-
ures online, which will strengthen individual, orga-
nizational, and cultural ability to anticipate, miti-
gate, respond to, and recover from failures.
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