
Avoiding Communication in Two-Sided Krylov

Subspace Methods

Erin Carson
Nicholas Knight
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-93

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html

August 16, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This paper was researched with Government support under and awarded
by the Department of Defense, Air Force Office of Scientific Research,
National Defense Science and Engineering Graduate (NDSEG) Fellowship,
32 CFR 168a. This research was also supported by Microsoft (Award
#024263) and Intel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional support comes from Par
Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung,
U.S. DOE grants DE-SC0003959, DE-AC02-05-CH11231, Lawrence
Berkeley National Laboratory, and NSF SDCI under Grant Number OCI-
1032639.

Avoiding Communication in Two-Sided Krylov

Subspace Methods

Erin Carson, Nicholas Knight, and James Demmel

Department of Computer Science
University of California at Berkeley, Berkeley, CA, USA

ecc2z@eecs.berkeley.edu, knight@eecs.berkeley.edu, demmel@eecs.berkeley.edu

1

Contents

1 Introduction 3

2 Related Work 5
2.1 Related Work in s−step Methods . 5
2.2 Related Work in Avoiding Communication in KSMs 6

3 Derivation of Algorithms 6
3.1 Two-term vs. three-term recurrences . 7
3.2 Communication-avoiding biconjugate gradient method (CA-BICG) 8

3.2.1 Consistent and inconsistent BIOMIN 9
3.2.2 CA-BIOMIN . 9
3.2.3 Consistent and inconsistent BIORES 11
3.2.4 CA-BIORES . 14

3.3 Communication-avoiding conjugate gradient squared method (CA-CGS) . . . 17
3.3.1 BIOMINS . 17
3.3.2 CA-BIOMINS . 17

3.4 Communication-avoiding biconjugate gradient-stabilized method (CA-BICGSTAB) 21
3.4.1 CA-BICGSTAB . 23

3.5 Preconditioning . 24

4 Convergence 26
4.1 Choice of Basis . 26

4.1.1 Monomial Basis . 27
4.1.2 Newton Basis . 28
4.1.3 Chebyshev Basis . 30
4.1.4 Basis Scaling vs. Matrix Equilibration 31

4.2 Convergence Results . 32
4.2.1 Diagonal Matrices . 32
4.2.2 Results for Test Matrices from Various Applications 34
4.2.3 E�ect on Maximum Attainable Accuracy 41
4.2.4 Further Techniques for Improving Convergence: TSQR 44

5 Implementation Details 45
5.1 Matrix Powers Kernel Variants for Multiple RHSs and AH 45
5.2 Finding Eigenvalue Estimates . 46
5.3 Choice of Basis in Practice . 46

6 Future Work and Conclusions 47
6.1 Conclusions and Comments on Convergence 47
6.2 Future Work . 48

2

1 Introduction

The cost of an algorithm is a function of both computation, the number of arithmetic op-
erations performed, and communication, the amount of data movement. Communication
cost encapsulates both data movement between levels of the memory hierarchy and between
processors, and the number of messages in which the data is sent. In terms of performance,
communication costs are much greater than computation costs on modern computer archi-
tectures, and the gap is only expected to widen in future systems. Therefore, in order to
increase the performance of an algorithm, we must turn to strategies to minimize commu-
nication rather than try to decrease the number of arithmetic operations. We call this a
�communication-avoiding� (CA) approach to algorithmic design.

Many scienti�c applications require codes which solve linear systems. Methods for solving
linear systems can be classi�ed either as direct methods, which perform a �xed number of
steps to �nd a solution, or iterative methods, which repeatedly re�ne a candidate solution
until acceptable convergence is reached. Such iterative methods are commonly used when
the matrix is too large to be solved with direct methods, when the matrix is sparse, or
when an error tolerance greater than machine precision is acceptable. The most general and
�exible class of iterative methods are Krylov Subspace Methods (KSMs). These methods are
based on projection onto expanding subspaces, where, in each iteration s, the �best� solution
is chosen from the expanding Krylov subspace, K(s, A, v) = span{v, Av, A2v, ..., As−1v}.
Numerous variants of Krylov subspace methods exist, each with di�erent properties, di�erent
storage requirements, and di�erent methods of selecting the �best� new solution.

Standard implementations of KSMs require one or more Sparse Matrix-Vector Multi-
plications (SpMVs) and one or more vector operations in each iteration. These are both
communication-bound operations. To perform an SpMV, each processor must communicate
entries of the source vector to other processors in the parallel algorithm, and A must be read
from slow memory in the sequential algorithm. Vector operations, such as dot products,
involve a global reduction in the parallel algorithm, and a number of reads and writes to
slow memory in the sequential algorithm (depending on the size of the vectors and the size of
the fast memory). The goal of Communication-Avoiding KSMs (CA-KSMs) is to break the
dependency between SpMV and vector operations in each iteration, enabling us to perform
s iterations for the communication cost of 1 +O(1) iterations.

Hoemmen, et al. have previously derived and tested algorithms for communication-
avoiding implementations of both the Generalized Minimal Residual Method (CA-GMRES)
and the Conjugate Gradient Method (CA-CG) [20, 27]. Communication-avoiding direct
methods have also been implemented and analyzed - for a good overview, see [3]. In our work,
we focus speci�cally on two-sided KSMs, which, implicitly or explicitly, use two di�erent
Krylov subspaces - one for the �right-hand� space, span{v, Av, A2v, ...}, and one for the
�left-hand� space, span{w, AHw, (AH)2w, ...}, where AH denotes the conjugate transpose
of A. Two-sided KSMs are speci�cally suited for nonsymmetric linear systems, which arise
frequently in many scienti�c domains.

The approach to avoiding communication in KSMs involves two communication-avoiding
kernels - the matrix powers kernel (Akx), and the Tall-Skinny QR kernel (TSQR). By using
communication-avoiding kernels, we are able to reduce parallel latency, and sequential band-
width and latency costs in a KSM by a factor of O(s). If we are communication-bound, this

3

suggests up to a factor of s speedup, which is desirable even for small s.
Given a matrix A, a vector v, and a basis length s, the matrix powers kernel computes the

basis vectors [p0(A)v, p1(A)v, p2(A)v, ..., ps−1(A)v], where pj is a polynomial of degree j. If
A is well-partitioned (i.e., A has a low surface-to-volume ratio, see [12]), the s−dimensional
basis can be computed only reading A (or communicating entries of v in the parallel case)
1+O(1) times. Therefore, to perform s iterations of the KSM, we only need to communicate
1 +O(1) times as opposed to s times (s SpMV operations) in the standard implementation.
This idea has been discussed in the literature for the stencil case, dating back to Hong and
Kung's red-blue pebble game [21]. Our implementation uses the same approach, but also
extends to general graphs, with the only requirement that they remain well-partitioned.

The TSQR kernel is useful for avoiding communication in KSMs which require explicit
orthogonalization (e.g., GMRES). The TSQR operation is performed on the output of the
matrix powers kernel, which is a tall-skinny matrix (O(n) × O(s)), to orthogonalize the
basis. This replaces the Modi�ed Gram-Schmidt operation in standard GMRES, reducing
communication by a factor of s (see [12, 20, 27] for details).

In addition to the matrix powers kernel and TSQR, our communication-avoiding imple-
mentations also require an additional kernel to compute the Gram-like matrix, Ṽ TV , where
V and Ṽ are O(n)×O(s) matrices of Krylov basis vectors (the output of the matrix powers
kernel). We do not discuss implementation of this kernel further, as this operation can be
performed in a straightforward block-wise fashion so as to minimize communication.

Our primary contributions are as follows:

• We have derived three new two-sided Communication-Avoiding Krylov Subspace Meth-
ods (CA-KSMs): Biconjugate Gradient (CA-BICG), Conjugate Gradient Squared (CA-
CGS), and Biconjugate Gradient Stabilized (CA-BICGSTAB). These are mathemat-
ically, but not numerically, equivalent to the standard implementations, in the sense
that after every s steps, they produce an identical solution as the conventional al-
gorithm in exact arithmetic. We give algorithms for two-term recurrence versions of
each method. We also comment on 3-term variants for these methods, which are more
susceptible to round o� error, but may be attractive if computation costs are too high
or storage is limited. We give an example derivation for BICG (CA-BICG3).

• Our CA-KSMs handle complex inputs, and preconditioning in the s-step basis. In
order to remain communication-avoiding, the preconditioned matrix M−1

L AM−1
R must

be well-partitioned. Since preconditioning serves to reduce the condition number of A,
we only expect this to improve the quality of our s-step bases.

• We provide convergence results for our methods on a set of small test matrices. The
monomial basis quickly becomes ill-conditioned for larger basis sizes, which can slow
down or prevent convergence. We derive the necessary recurrences and change-of-basis
matrices for both the Newton basis and the scaled and shifted Chebyshev basis. Both
of these recurrences are known to produce bases which can be much better conditioned
than the monomial basis, thus preserving convergence for higher s values. We describe
methods for obtaining good eigenvalue estimates in practice, used for construction of
both these bases. Using these more stable bases, we are able to maintain stability
(compared against the standard implementation) for basis lengths as high as s =

4

20. Note that if the algorithm is communication-bound, even basis length s = 2
theoretically results in 2 times less communication than the standard algorithm, and
thus should yield a 2× speedup. We also explore techniques such as orthogonalization
of the basis, restarting, and de�ation.

• We discuss implementation details for these methods, speci�cally for variants of the
matrix powers kernel. Our algorithms can exploit either multiple right-hand-sides
(RHSs) or computations with AH as well as A, which both present opportunities for
data reuse in certain KSMs. We also discuss future opportunities for auto-tuning, such
as choosing a basis and a basis size, which must be selected to achieve both performance
and stability.

In all subsequent sections of this paper, we use BICG, CGS, and BICGSTAB to refer to the
standard implementations of these KSMs (as described in [33, 35, 39], respectively), and CA-
BICG, CA-CGS, and CA-BICGSTAB to refer to our communication-avoiding algorithms.

2 Related Work

There is a wealth of work described in the literature related to s-step KSMs and the idea of
avoiding communication. A thorough overview is given in [20], which we summarize here.

2.1 Related Work in s−step Methods

The �rst instance of an s−step method in the literature is Van Rosendale's conjugate gradient
method [31]. Van Rosendale's implementation was motivated by exposing more parallelism
using the PRAM model. Chronopoulous and Gear later created an s−step GMRES method
with the goal of exposing more parallel optimizations [9]. Walker looked into s-step bases
as a method for improving stability in GMRES by replacing the modi�ed Gram-Schmidt
orthogonalization process with Householder QR [41]. All these authors used the monomial
basis, and found that convergence often could not be guaranteed for s > 5. It was later
discovered that this behavior was due to the inherent instability of the monomial basis,
which motivated research into the use of other bases for the Krylov Subspace.

Hindmarsh and Walker used a scaled (normalized) monomial basis to improve conver-
gence [19], but only saw minimal improvement. Joubert and Carey implemented a scaled
and shifted Chebyshev basis which provided more accurate results [23]. Bai et al. also saw
improved convergence using a Newton basis [1]. Constructing other bases for the Krylov
Subspace will be covered more thoroughly in Section 4.

Although successively scaling the basis vectors serves to lower the condition number of
the basis matrix, hopefully yielding convergence closer to that of the standard method, this
computation reintroduces the dependency we sought to remove, hindering communication-
avoidance. Hoemmen resolves this problem using a novel matrix equilibration and balancing
approach as a preprocessing step, which eliminates the need for scaled basis vectors [20].

5

2.2 Related Work in Avoiding Communication in KSMs

Our work is most closely related to that of [12, 20, 27]. Although their e�orts focused on Lanc-
zos, Arnoldi, CG and GMRES, the method by which we have derived our communication-
avoiding algorithms is closely related. In addition to working with di�erent Krylov Subspace
Methods (BICG, CGS, and BICGSTAB), we also make contributions in improving conver-
gence and identify further optimizations for, and variants of, the matrix powers kernel.

There have been many e�orts to avoid communication in Krylov Subspace Methods in
the past which di�er from our approach. These can be categorized as follows:

• Reducing synchronization cost

� Replacing Modi�ed Gram-Schmidt with Classical Gram-Schmidt, although con-
sidered to be less stable, requires fewer synchronization points in methods which
require explicit orthogonalization [18].

� Asynchronous iterations relax synchronization constraints to reduce data depen-
dencies, but lead to nondeterministic behavior (see, e.g., [8, 5, 6, 13, 42]).

• Increasing/Exploiting Temporal Locality

� Block Krylov Methods can be used to solve many systems at a time (multiple
RHSs for the same matrix A) (see, e.g., [10, 38, 15, 28, 26, 2]).

� Blocking Covers can be used to reformulate the KSM to exploit temporal locality
by blocking dot products. This work is a direct precursor to our methods. The
same approach can be applied to avoid communication in multigrid [37, 25].

• Altering the Krylov Method

� Chebyshev Iteration is an iterative method (but not an s−step method) which
requires no inner products, and only one SpMV per iteration. Removing the global
communication requirement has advantages in performance, but disadvantages in
terms of convergence, as information can't travel as quickly (see, e.g., [4]).

3 Derivation of Algorithms

We will reorganize three BICG-like methods - BICG, CGS, and BICGSTAB - to avoid
communication. In exact arithmetic, our communication-avoiding variants will get the same
answer as the original versions. In �nite precision, our algorithms accumulate di�erent
rounding errors, and the iterates may diverge signi�cantly. Our communication-avoiding
implementation is based on an s-step formulation of the original algorithm. This means we
explicitly extend each of the underlying Krylov spaces by s dimensions and then perform s
steps of Lanczos biorthogonalization, or something closely related.

Each of these steps normally requires O(s) parallel synchronization points (rounds of mes-
sages), but we will use communication-avoiding kernels: the matrix powers kernel instead of
s SpMVs and computing a Gram-like matrix to replace inner products. One step of the s-step

6

method now involves only two synchronizations. We say this approach is communication-
avoiding because we reduce the latency cost asymptotically, by a factor of Θ(s). However,
the ability to avoid communication in the sparse portion is constrained by the structure of
As: for example, if As, s > 1 has diameter s − 1, one parallel processor or cache block will
need a copy of the entire matrix and source vector. Except for block diagonal matrices and
assuming, as always, no cancellation in powers of A, we expect s to remain modest, say
less than 30. Thus in practice, the constants in our big-O notation may be relevant. The
additional costs of the communication-avoiding biorthogonalization kernel grow slowly with
s, exceeding the standard algorithm by factors of O(s) more �ops and words moved.

The main concern with s-step methods is how to compute the s-step basis stably in
practice. The sequence of vectors (x, Ax, A2x, . . .), which is the monomial basis of a Krylov
space, typically becomes linearly dependent in �nite precision faster than in exact arithmetic
(when it does so always before An+1x). This happens when the sequence converges to an
eigenvector of A, as in the power method. We cannot hope to �nd s basis vectors of a space
of dimension less than s, yet this is exactly what we may ask our algorithm to �nd.

If A is normal, we can use spectral information to �nd Newton and Chebyshev polynomial
bases that are linearly independent for greater s values. In practice, we expect matrices
that are roughly normal, i.e., relatively few defective eigenvalues, to also bene�t from these
polynomials. Unfortunately, when A is highly nonnormal, the analogy with polynomial
interpolation breaks down and we can no longer bound the condition number of our s-
step bases by the condition number of a polynomial de�ned on the spectrum of A (in fact,
convergence theory for the standard algorithms breaks down as well). Attempts to instead
use the �eld of values of A or the convex hull of the spectrum have been unsuccessful in
general. Although we only discuss the Newton and Chebyshev polynomials, our presentation
assumes only that a polynomial satisfy a three-term recurrence, which is general enough for
all the classical orthogonal polynomials.

All algorithms we present assume complex-valued inputs, and we will not discuss the
straightforward simpli�cations that arise for real data.

3.1 Two-term vs. three-term recurrences

All of the BICG-like methods we consider originate with the nonsymmetric Lanczos process,
and so the vector iterates always satisfy two- or three-term recurrences. In the case of the
BICG algorithm, we consider both the BIOMIN (two pairs of coupled two-term recurrences)
and the BIORES (one pair of uncoupled three-term recurrences) forms.

In �nite precision, the BICG-like methods we consider demonstrate a deviation between
the computed residual and true residual. This is because the candidate solution and residual
are updated independently, with di�erent rounding errors. Usually this destroys convergence:
as the computed residual norm decreases, the corrections to the true residual become smaller,
causing the true residual to stagnate or worsen. This limits the maximum attainable accuracy
of the method, which we want to be independent of the data. It is demonstrated in [17]
that this instability can be worse for three-term recurrences than for two- term recurrences.
We did not generalize this error analysis to our communication-avoiding formulations, but
conjecture that the same conclusion holds.

We note two algorithmic approaches to cope with this problem of round o� accumulation.

7

The �rst approach is to substitute the true residual rm = b− Axm on iteration m, in place
of the computed residual. The authors of [34] have formalized the problem of dynamically
selecting m and minimizing the impact of such a substitution on the underlying Lanczos
process. For our convergence studies, we monitored the true residual for stagnation, chose
the corresponding iterations m, and reran the method with these statically selected restart
indices m. A dynamic restarting approach for CA-KSMs is future work.

The second algorithmic approach is based on the observation that BICG-like methods
unnecessarily restrict the Lanczos vectors to be the residuals; this is called enforcing con-
sistency. An inconsistent formulation [16] computes scalar multiples of the residuals, and
the �exibility to arbitrarily choose these scaling factors gives more control over the sizes
of the iterates and scalar coe�cients, and thus the bounds on round o� error. Relaxing
consistency also enables us to avoid pivot breakdowns in three-term recurrence variants of
BICG and CGS. The inconsistent formulations of classical BICG and CGS incur no more
communication or computation asymptotically and involve only slight modi�cations to the
consistent versions. The same is true for communication-avoiding inconsistent formulations
and we give an example for inconsistent BIORES, below. This preventative measure does
not eliminate the possibility of stagnation - it only attempts to postpone it - thus restarting
might still be necessary. For this reason, we only considered restarting in our convergence
studies and consider inconsistent formulations a future direction.

Although they have di�erent stability properties, two-term and three-term recurrence
variants have similar computation communication, and storage costs. This might be sur-
prising: in the case of BICG, the two-term variant BIOMIN produces four Krylov bases
while the three-term variant BIORES produces only two, yet both versions perform the
same number of SpMV operations per iteration. The BIOMIN variant couples the search
directions and the residuals in order to advance four Krylov spaces with two SpMV opera-
tions. Unfortunately, in order to avoid communication, we must break the data dependency
introduced by this coupling. Thus, our communication-avoiding BIOMIN implementation
explicitly constructs all four Krylov bases, at the cost of doubling sparse �ops and words
moved in parallel. Our communication-avoiding BIORES implementation avoids doubling
the sparse �ops, but instead requires maintaining a number of n-vectors proportional to the
number of steps we wish to take without communication (s).

We chose to implement and experiment with two-term recurrence, consistent formulations
of BICG, CGS, and BICGSTAB, in order to compare convergence with MATLAB BICG,
CGS, and BICGSTAB. We discuss three-term and inconsistent formulations to suggest that
the communication-avoiding algorithm design space o�ers �exibility to trade o� stability and
performance.

3.2 Communication-avoiding biconjugate gradient method (CA-BICG)

We present derivations for four variants of communication-avoiding BICG (CA-BICG):

• CA-BIOMIN (consistent version), Alg. 3

• CA-BIOMIN (inconsistent version), Alg. 4

• CA-BIORES (consistent version), Alg. 7

8

• CA-BIORES (inconsistent version), Alg. 8

The names BIOMIN and BIORES refer to the two-term- and three-term-recurrence variants
of the classical BICG method, which we present in Algs. 1, 2, 5, and 6. We referenced [16]
for these algorithms, as well as the naming conventions.

Our numerical experiments were performed with consistent CA-BIOMIN, Alg. 3, which
is closest to what is implemented in MATLAB BICG. The other variants have di�erent
stability properties and performance characteristics, and we present them as directions for
future work.

3.2.1 Consistent and inconsistent BIOMIN

We present two versions of two-term classical BICG. [16] refers to this as algorithm as
BIOMIN, and we will do the same. The standard version, as in MATLAB BICG is due to
[14], and is consistent - see Alg. 1 . We also present an inconsistent variant in Alg. 2.

Algorithm 1 Consistent BIOMIN

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0).
2: Choose p̃0 = r̃0 so that δ0 = r̃H0 r0 6= 0 and δ′0 = p̃H0 Ap0 6= 0.
3: repeat for m = 0, 1, . . .,
4: Set δ′m = p̃HmApm. If δ

′
m = 0, declare pivot breakdown and STOP.

5: Take steps along search directions:
6: ωm = δm/δ

′
m.

7: rm+1 = rm − ωmApm.
8: r̃m+1 = r̃m − ωmAH p̃m.
9: Update candidate solution: xm+1 = xm + ωmpm.

10: Set δm+1 = r̃Hm+1rm+1. If δm+1 = 0, STOP.
11: If rm+1 = 0, terminate with xex = xm+1.
12: Otherwise, declare Lanczos breakdown.
13: Update search directions:
14: ψm = −δm+1/δm.
15: pm+1 = rm+1 − ψmpm.
16: p̃m+1 = r̃m+1 − ψmp̃m.
17: until ||rm+1|| is small.
18: Terminate with approximate solution x ≈ xm+1

3.2.2 CA-BIOMIN

We �rst consider the consistent BIOMIN algorithm in Alg. 1. Starting at iteration m, we
must identify the data dependencies through the end of iteration m + s − 1. These data
dependencies are the four s-step bases

[P,R] = [pm, Apm, . . . , A
spm, rm, Arm, . . . , A

srm][
P̃ , R̃

]
=
[
p̃m, A

H p̃m, . . . ,
(
AH
)s
p̃m, r̃m, A

H r̃m, . . . ,
(
AH
)s
r̃m
]

9

Algorithm 2 Inconsistent BIOMIN

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0) /γ−1 for some γ−1 6= 0, e.g. so ||r0|| = 1.
2: Rede�ne x0 = x0/γ−1.
3: Choose p̃0 = r̃0 so that δ0 = r̃H0 r0 6= 0 and δ′0 = p̃H0 Ap0 6= 0.
4: repeat for m = 0, 1, . . .,
5: Set δ′m = p̃HmApm. If δ

′
m = 0, declare pivot breakdown and STOP.

6: Take steps along search directions:
7: φm = δ′m/δm.
8: Choose γm 6= 0 and γ̃m 6= 0 arbitrarily.
9: rm+1 = (rm − φmApm) /γm.

10: r̃m+1 =
(
r̃m − φmAH p̃m

)
/γ̃m.

11: πm+1 = −πmφm/γm, with π0 = 1/γ−1.
12: Update candidate solution: xm+1 = − (φmxm + pm) /γm.
13: Set δm+1 = r̃Hm+1rm+1. If δm+1 = 0, STOP.
14: If rm+1 = 0, terminate with xex = xm+1/πm+1.
15: Otherwise, declare Lanczos breakdown.
16: Update search directions:
17: ψm = γ̃mδm+1/δ

′
m.

18: ψ̃m = γmδm+1/δ′m.
19: pm+1 = rm+1 − ψmpm.
20: p̃m+1 = r̃m+1 − ψ̃mp̃m.
21: until ||rm+1|| / |πm+1| is small.
22: Terminate with approximate solution x ≈ xm+1/πm+1.

10

and the scalar coe�cient δm. The columns of these matrices span Krylov spaces. We

compute s-step bases of these Krylov spaces,
[
P̂ , R̂, ˆ̃P, ˆ̃R

]
, calling the matrix powers kernel.

As previously mentioned, we might choose to use a di�erent polynomial basis besides the
monomial basis for stability reasons - we have decorated the Akx bases with carats. For ease
of presentation, assume we use the same polynomials ρj(z), 0 ≤ j ≤ s for all four bases, and

that ρj has nonzero leading coe�cient so that degρj = j. For example, P̂ (:, j) = ρj+1 (A) pm

and ˆ̃R(:, j) = ρj+1

(
AH
)
r̃m. Then we can �nd an upper triangular s + 1 × s + 1 change of

basis matrix B, to recover the monomial (or Krylov) bases, according to[
P̂ , R̂, ˆ̃P, ˆ̃R

]
· I4,4 ⊗B =

[
P,R, P̃ , R̃

]
We discuss the choice of polynomials and computing such a matrix B later.

Since all iterates in iterations m : m + s can be expressed as a linear combination of
the vectors in the s-step bases, we can run nonsymmetric Lanczos symbolically with the
coe�cient vectors, for j = 0 : s and k = 0 : s− j,[

P̂ , R̂
]
ckj = Akrm+j

[
ˆ̃P, ˆ̃R

]
dkj =

(
AH
)k
r̃m+j[

P̂ , R̂
]
akj = Akpm+j

[
ˆ̃P, ˆ̃R

]
bkj =

(
AH
)k
p̃m+j

to represent the iterates locally/in fast memory. This also lets us compute the inner products,
although not symbolically - the inner products are encoded in the entries of the Gram-like

matrix G =
[

ˆ̃P, ˆ̃R
]H [

P̂ , R̂
]
and recoverable using the coe�cient vectors.

At this point we simply state the algorithm, in Alg. 3. It is a purely mechanical process
to generalize this result to the inconsistent BIOMIN formulation (Alg. 2), which we present
in Alg. 4.

3.2.3 Consistent and inconsistent BIORES

We present two versions of three-term BICG in Algs. 5 and 6. Gutknecht, in [16] refers
to this as algorithm as BIORES, and we will do the same. The di�erence between the
consistent and inconsistent versions is the same as with BIOMIN, except additionally, the
consistent version is able to avoid the pivot breakdown condition, which means a division
by zero when γm vanishes or perhaps over�ow when γm nearly vanishes. Pivot breakdown
is due to a zero pivot, when (implicitly) performing Gaussian elimination on the (implicit)
tridiagonal matrix, and is easily avoided. As before, the additional cost is negligible - we
simply maintain an extra scalar πm.

[16] also presents BIODIR, another 3-term variant, which constructs a set of biconjugate
rather than biorthogonal bases. Biconjugate means biorthogonal with respect to the A
inner product - because A is not necessarily SPD, this is a formal inner product. This
variant has the advantage of avoiding Lanczos breakdown (by stalling, perhaps inde�nitely,
in the case of an incurable breakdown), but is still susceptible to pivot breakdown unless an
inconsistent formulation is applied. BIODIR is part of a large class of look-ahead Lanczos
methods, which are designed to overcome Lanczos breakdowns and near breakdowns. A

11

Algorithm 3 Communication-avoiding consistent BIOMIN

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0).
2: Choose p̃0 = r̃0 so that δ0 = r̃H0 r0 6= 0 and δ′0 = p̃H0 Ap0 6= 0.
3: repeat for m = 0, 1, . . .,
4: Extend the four Krylov bases by s dimensions, using the matrix powers kernel (Akx).

5:

[[
P̂ , R̂

]
, B
]

= Akx (A, s, [pm, rm]),
[[

ˆ̃P, ˆ̃R
]
, B̃
]

= Akx
(
AH , s, [p̃m, r̃m]

)
.

6: Compute G =
[

ˆ̃P, ˆ̃R
]H [

P̂ , R̂
]
.

7: Initialize coe�cient vectors

8: [c00, c
1
0, . . . , c

s
0] =

[
0s+1,s+1

B

]
, [a00, a

1
0, . . . , a

s
0] =

[
B

0s+1,s+1

]
,

9: [d00, d
1
0, . . . , d

s
0] =

[
0s+1,s+1

B̃

]
, [b00, b

1
0, . . . , b

s
0] =

[
B̃

0s+1,s+1

]
, e0 =

[
02s+2,1

1

]
.

10: for j = 0 : s− 1, do

11: δ′m+j =
(
b0j
)H

Ga1j . If δ
′
m+j = 0, declare pivot breakdown and STOP.

12: Take steps along search directions:
13: ωm+j = δm+j/δ

′
m+j.

14: ckj+1 = ckj − ωm+ja
k+1
j , dkj+1 = dkj − ωm+jb

k+1
j , for k = 0 : s− j − 1.

15: Update candidate solution: ej+1 = ej + ωm+j

[
a0j
0

]
.

16: Set δm+j+1 =
(
d0j+1

)H
Gc0j+1. If δm+j+1 = 0, STOP.

17: If
[
P̂ , R̂

]
c0j+1 = 0, terminate with xex =

[
P̂ , R̂, xm

]
ej+1.

18: Otherwise, declare Lanczos breakdown.
19: Update search directions:
20: ψm+j = −δm+j+1/δm+j.
21: akj+1 = ckj+1 − ψm+ja

k
j , b

k
j+1 = dkj+1 − ψm+jb

k
j , for k = 0 : s− j − 1.

22: end for
23: Recover iterates from last inner iteration.
24: rm+s =

[
P̂ , R̂

]
c0s, pm+s =

[
P̂ , R̂

]
a0s,

25: r̃m+s =
[

ˆ̃P, ˆ̃R
]
d0s, p̃m+s =

[
ˆ̃P, ˆ̃R

]
b0s, xm+s =

[
P̂ , R̂, xm

]
es.

26: until ||rm+s|| is small.
27: Terminate with approximate solution x ≈ xm+s.

12

Algorithm 4 Communication-avoiding inconsistent BIOMIN

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0) /γ−1 for some γ−1 6= 0, e.g., so ||r0|| = 1.
2: Rede�ne x0 = x0/γ−1.
3: Choose p̃0 = r̃0 so that δ0 = r̃H0 r0 6= 0 and δ′0 = p̃H0 Ap0 6= 0.
4: repeat for m = 0, 1, . . .,
5: Extend the four Krylov bases by s dimensions, using the matrix powers kernel (Akx).

6:

[[
P̂ , R̂

]
, B
]

= Akx (A, s, [pm, rm]),
[[

ˆ̃P, ˆ̃R
]
, B̃
]

= Akx
(
AH , s, [p̃m, r̃m]

)
.

7: Compute G =
[

ˆ̃P, ˆ̃R
]H [

P̂ , R̂
]
.

8: Initialize coe�cient vectors

9: [c00, c
1
0, . . . , c

s
0] =

[
0s+1,s+1

B

]
, [a00, a

1
0, . . . , a

s
0] =

[
B

0s+1,s+1

]
,

10: [d00, d
1
0, . . . , d

s
0] =

[
0s+1,s+1

B̃

]
, [b00, b

1
0, . . . , b

s
0] =

[
B̃

0s+1,s+1

]
, e0 =

[
02s+2,1

1

]
.

11: for j = 0 : s− 1, do

12: δ′m+j =
(
b0j
)H

Ga1j . If δ
′
m+j = 0, declare pivot breakdown and STOP.

13: Take steps along search directions:
14: φm+j = δ′m+j/δm+j.
15: Choose γm+j 6= 0 and γ̃m+j 6= 0 arbitrarily.
16: ckj+1 =

(
ckj − φm+ja

k+1
j

)
/γm+j, d

k
j+1 =

(
dkj − φm+jb

k+1
j

)
/γ̃m+j, for k = 0 :

s− j − 1.
17: πm+j+1 = −πm+jφm+j/γm+j, with π0 = 1/γ−1.

18: Update candidate solution: ej+1 = −
(
φm+jej +

[
a0j
0

])
/γm+j.

19: Set δm+j+1 =
(
d0j+1

)H
Gc0j+1. If δm+j+1 = 0, STOP.

20: If
[
P̂ , R̂

]
c0j+1 = 0, terminate with xex =

([
P̂ , R̂, xm

]
ej+1

)
/πm+j+1.

21: Otherwise, declare Lanczos breakdown.
22: Update search directions:
23: ψm+j = γ̃m+jδm+j+1/δ

′
m+j, ψ̃m+j = γm+jδm+j+1/δ′m+j.

24: akj+1 = ckj+1 − ψm+ja
k
j , b

k
j+1 = dkj+1 − ψ̃m+jb

k
j , for k = 0 : s− j − 1.

25: end for
26: Recover iterates from last inner iteration.
27: rm+s =

[
P̂ , R̂

]
c0s, pm+s =

[
P̂ , R̂

]
a0s,

28: r̃m+s =
[

ˆ̃P, ˆ̃R
]
d0s, p̃m+s =

[
ˆ̃P, ˆ̃R

]
b0s, xm+s =

[
P̂ , R̂, xm

]
es.

29: until ||rm+s|| / |πm+s| is small.
30: Terminate with approximate solution x ≈ xm+s/πm+s.

13

communication-avoiding BIODIR formulation can be derived in a similar way to BIORES
and has similar costs except requires the storage of an extra iterate. We conjecture that our
communication-avoiding approach will generalize to other look-ahead Lanczos methods; this
is future work.

Algorithm 5 Consistent BIORES

Require: Initial approximation x0 for solving Ax = b.
1: Compute r0 = (b− Ax0).
2: Choose r̃0 so that δ0 = r̃H0 r0 6= 0.
3: repeat for m = 0, 1, . . .,
4: Set αm = r̃HmArm/δm and α̃m = αm.
5: Set βm−1 = γ̃m−1δm/δm−1 and β̃m−1 = γm−1δm/δm−1 = βm−1γm−1/γ̃m−1, with β−1 =
β̃−1 = 0.

6: Set γm = αm − βm−1. If γm = 0, declare pivot breakdown and STOP.
7: Choose γ̃m 6= 0 arbitrarily.
8: rm+1 = (Arm − αmrm − βm−1rm−1) /γm
9: r̃m+1 =

(
AH r̃m − α̃mr̃m − β̃m−1r̃m−1

)
/γ̃m

10: xm+1 = − (rm + αmxm + βm−1xm−1) /γm.
11: δm+1 = r̃Hm+1rm+1. If δm+1 = 0, STOP.
12: If rm+1 = 0, terminate with xex = xm+1. Otherwise,
13: If r̃m+1 6= 0, declare Lanczos breakdown;
14: If r̃m+1 = 0, declare left termination.
15: until ||rm+1|| is small.
16: Terminate with approximate solution x ≈ xm+1.

3.2.4 CA-BIORES

The derivation here seems more complicated than CA-BIOMIN but the di�erence is super-
�cial, purely due to the fact that we represent the iterates partially in terms of the s-step
history

R`−1 = [rm−s+1, rm−s+2, . . . , rm] and R̃`−1 = [r̃m−s+1, r̃m−s+2, . . . , r̃m]

where ` indexes the outer iterations, and m = `s+ j, where j indexes the inner iterations for
the current outer iterations. We combine the s-step history with the s-step bases generated
from rm and r̃m, as

R̂ := [R`−1(:, 1 : s), ρ0 (A) rm, ρ1 (A) rm, . . . , ρs (A) rm]

ˆ̃R :=
[
R̃`−1(:, 1 : s), ρ̃0

(
AH
)
r̃m, ρ̃1

(
AH
)
r̃m, . . . , ρ̃s

(
AH
)
r̃m

]

14

Algorithm 6 Inconsistent BIORES

Require: Initial approximation x0 for solving Ax = b.
1: Compute r0 = (b− Ax0) /γ−1 for some γ−1 6= 0, e.g., so ||r0|| = 1.
2: Rede�ne x0 = x0/γ−1.
3: Choose r̃0 so that δ0 = r̃H0 r0 6= 0.
4: repeat for m = 0, 1, . . .,
5: Set αm = r̃HmArm/δm and α̃m = αm.
6: Set βm−1 = γ̃m−1δm/δm−1 and β̃m−1 = γm−1δm/δm−1 = βm−1γm−1/γ̃m−1, with β−1 =
β̃−1 = 0.

7: Choose γm 6= 0 and γ̃m 6= 0 arbitrarily.
8: πm+1 = − (αmπm + βm−1πm−1) /γm with π0 = 1/γ−1.
9: rm+1 = (Arm − αmrm − βm−1rm−1) /γm

10: r̃m+1 =
(
AH r̃m − α̃mr̃m − β̃m−1r̃m−1

)
/γ̃m.

11: xm+1 = − (rm + αmxm + βm−1xm−1) /γm.
12: δm+1 = r̃Hm+1rm+1. If δm+1 = 0, STOP.
13: If rm+1 = 0, terminate with xex = xm+1/πm+1. Otherwise,
14: If r̃m+1 6= 0, declare Lanczos breakdown;
15: If r̃m+1 = 0, declare left termination.
16: until ||rm+1|| / |πm+1| is small.
17: Terminate with approximate solution x ≈ xm+1/πm+1.

where ρj (z) and ρ̃j (z) are polynomials of (exact) degree j. The matrix powers kernel also
provides change-of-basis matrices B and B̃ to perform the transformations

R := R̂

[
Is,s 0s,s+1

0s+1,s B

]
= [rm−s+1, . . . , rm−1, rm, Arm, . . . , A

srm]

R̃ := ˆ̃R

[
Is,s 0s,s+1

0s+1,s B̃

]
=
[
r̃m−s+1, . . . , r̃m−1, r̃m, A

H r̃m, . . . ,
(
AH
)s
r̃m
]

We will apply these transformations implicitly. Note that the initial conditions β−1 = β̃−1 =
0 truncate the three-term recurrence before m = 0 and allow us to de�ne ri = r̃i = 0n,1 when
i < 0, and r0 and r̃0 are readily available from the input data. We assume m ≥ 0.

Our goal is to compute

R` = [rm+1, rm+2, . . . , rm+s] and R̃` = [r̃m+1, r̃m+2, . . . , r̃m+s]

from the s-step history and s-step bases. Examine the residual update formulas:

rm+1 = (Arm − αmrm − βm−1rm−1) /γm and r̃m+1 =
(
AH r̃m − α̃mr̃m − β̃m−1r̃m−1

)
/γ̃m

15

manipulated to become

Akrm+j+1 =

(
Ak+1rm+j − Ak [rm+j−1, rm+j]

[
βm+j−1

αm+j

])
/γm+j

Ak−1 [rm+j, rm+j+1, rm+j+2]

 −βm+j

−αm+j+1

γm+j+1

(
AH
)k
r̃m+j+1 =

((
AH
)k+1

r̃m+j −
(
AH
)k

[r̃m+j−1, r̃m+j]

[
β̃m+j−1

α̃m+j

])
/γ̃m+j

(
AH
)k−1

[r̃m+j, r̃m+j+1, r̃m+j+2]

 −β̃m+j

−α̃m+j+1

γ̃m+j+1

and introduce the coe�cient vectors

R̂ckj = Akrm+j and ˆ̃Rdkj =
(
AH
)k
r̃m+j

As with BIOMIN, we substitute these coe�cient vectors into the recurrences for the left and
right residuals. This step is more involved here so we provide an intermediate result before
stating the algorithm. Provided the Lanczos coe�cients are available (we will show how to
compute them shortly), the constraints −s ≤ j ≤ s and 0 ≤ k ≤ s allow us to express the
left and right residuals as

ckj+1 =

(
ck+1
j −

[
ckj−1, c

k
j

] [βm+j−1

αm+j

])
/γm+j j > −1[

0s,1

B(:, k + 1)

]
j = −1

[
ck−1j , ck−1j+1 , c

k−1
j+2

] −βm+j

−αm+j+1

γm+j+1

 j < −1, k > 0

[
Is,s(:, s+ j + 1)

0s+1,1

]
j < −1, k = 0

dkj+1 =

(
dk+1
j −

[
dkj−1, d

k
j

] [β̃m+j−1

α̃m+j

])
/γ̃m+j j > −1[

0s,1

B̃(:, k + 1)

]
j = −1

[
dk−1j , dk−1j+1 , d

k−1
j+2

] −β̃m+j

−α̃m+j+1

γ̃m+j+1

 j < −1, k > 0

[
Is,s(:, s+ j + 1)

0s+1,1

]
j < −1, k = 0

16

We avoid the inner products in the same way as CA-BIOMIN, by the use of the Gram-like

matrix G = ˆ̃RHR̂. The rest of the computations in BIORES require no communication.
We present both consistent and inconsistent versions of communication-avoiding BIORES
together in Algs. 7 and 8.

3.3 Communication-avoiding conjugate gradient squared method
(CA-CGS)

The multiplication by AH and corresponding left Krylov vectors (residuals r̃) only contribute
to the BICG solution of Ax = b through the scalar coe�cients. BICG does not exploit the
reduction in magnitude of the left residuals unless we solve a dual system. In an e�ort to
get faster convergence, or when AH might not be available, for instance when the linear
system A is the Jacobian in a (matrix-free) Newton-Krylov method, one might demand
a transpose-free method such as CGS (conjugate gradient squared, [35]), a QOR (quasi-
orthogonal residual) method derived from BICG (another QOR method), that avoids the
multiplication by AH . CGS respects the mutual biorthogonality of the two Krylov spaces
(and so the Lanczos coe�cients are the same as BICG, in exact arithmetic), however, the
polynomials representing the CGS residuals are the squares of those in BICG. These squared
residuals are required to avoid keeping track of the left Lanczos vectors. However, CGS
actually interprets the squared BICG residuals as the true residuals, and updates the solution
accordingly. This heuristic decision was motivated by the observation that the BICG residual
polynomials typically reduce the norm of the starting vector, and so one would hope that
applying the BICG polynomial again (to an already-reduced residual) might reduce it further.
But because it squares the polynomials, CGS might have more irregular convergence than
BICG. As a side e�ect, larger intermediate quantities in CGS could worsen local round o�,
leading to a (faster) deviation between computed and true residuals.

3.3.1 BIOMINS

We consider the BIOMINS form of CGS, the original from variant [35], presented in Alg.
9. Alg. 9 has been slightly reorganized to absorb his auxiliary quantities u and v. Some
notation changed from his: (α, β, ρ, σ, q) → (ω, ψ, δ, δ′, s). Our notation also borrows from
�7.4.1 of [33] and �14 of [16].

3.3.2 CA-BIOMINS

Of the four vector iterates in Alg. 9, three are explicitly multiplied by A. The standard
version in [35] only performs two actual SpMV operations per iteration. Our CA imple-
mentations will involve a call to Akx with three right-hand sides, and to the 2s power, to
replace s iterations. This is a 3× increase in sparse �ops, more depending on redundant
�ops. We note that a CA-BIORESS (three-term CGS) implementation would only involve
two right-hand sides, in exchange for maintaining a 2s-step history. Furthermore, we can
derive an inconsistent version of CA-BIORESS with the same advantages as inconsistent
BIORES. However, we believe that CA-BICGSTAB is a better alternative than any of these

17

Algorithm 7 Communication-avoiding consistent BIORES

Require: Initial approximation x0 for solving Ax = b. Compute r0 = (b− Ax0).
1: Choose r̃0 so that δ0 = r̃H0 r0 6= 0.
2: Base case: R−1 = 0n,s and R̃−1 = 0n,s, x−1 = 0n,1
3: Base case: βi−1 = β̃i−1 = αi = α̃i = δi = γi = γ̃i = 0 for i = −s : −1
4: repeat for ` = 0, 1, 2 . . . and m = s`,

5: Set R̂ = [R`−1, 0n,s+1] and
ˆ̃R =

[
R̃`−1, 0n,s+1

]
.

6:

[
R̂(:, s+ 1 : 2s+ 1), B

]
= Akx (A, s, rm),

[
ˆ̃R(:, s+ 1 : 2s+ 1), B̃

]
=

Akx
(
AH , s, r̃m

)
.

7: Compute G = ˆ̃RHR̂.

8:

[
c0−s, c

0
−s+1, . . . , c

0
−1
]

=

[
Is,s

0s+1,s

]
,
[
d0−s, d

0
−s+1, . . . , d

0
−1
]

=

[
Is,s

0s+1,s

]
.

9: for j = −s : −2, do
10: for k = 1 : s+ j + 1 do

11: ckj+1 =
[
ck−1j , ck−1j+1 , c

k−1
j+2

] −βm+j

−αm+j+1

γm+j+1

, dkj+1 =
[
dk−1j , dk−1j+1 , d

k−1
j+2

] −β̃m+j

−α̃m+j+1

γ̃m+j+1

.
12: end for
13: end for

14: [c00, c
1
0, . . . , c

s
0] =

[
0s,s+1

B

]
, [d00, d

1
0, . . . , d

s
0] =

[
0s,s+1

B̃

]
, e−1 =

[
02s+2,1

1

]
, e0 =

02s+1,1

1
0

.
15: for j = 0 : s− 1, do

16: Set αm+j =
(
d0j
)H

Gc1j and α̃m+j = αm+j.

17: Set βm+j−1 = γ̃m+j−1δm+j/δm+j−1, with β−1 = 0.

18: Set β̃m+j−1 = γm+j−1δm+j/δm+j−1 = βm+j−1γm+j−1/γ̃m+j−1, with β̃−1 = 0.
19: Set γm+j = αm+j − βm+j−1. If γm+j = 0, declare pivot breakdown and STOP.
20: Choose γ̃m+j 6= 0 arbitrarily.

21: ckj+1 =

(
ck+1
j −

[
ckj−1, c

k
j

] [βm+j−1
αm+j

])
/γm+j, for k = 0 : s− j − 1.

22: dkj+1 =
[
dk−1j , dk−1j+1 , d

k−1
j+2

] −β̃m+j

−α̃m+j+1

γ̃m+j+1

, for k = 0 : s− j − 1.

23: ej+1 = −
([

c0j
02,1

]
+ [ej−1, ej]

[
βm+j−1
αm+j

])
/γm+j.

24: Set δm+j+1 =
(
d0j+1

)H
Gc0j+1. If δm+j+1 = 0, STOP.

25: If R̂c0j+1 = 0, terminate with xex =
[
R̂, xm−1, xm

]
ej+1.

26: If ˆ̃Rdj+1 6= 0, declare Lanczos breakdown;

27: If ˆ̃Rdj+1 = 0, declare left termination.
28: end for
29: rm+s = R̂c0s, r̃m+s = ˆ̃Rd0s, xm+s =

[
R̂, xm−1, xm

]
es.

30: until ||rm+s|| is small.
31: Terminate with approximate solution x ≈ xm+s.

18

Algorithm 8 Communication-avoiding inconsistent BIORES

Require: Initial approximation x0 for solving Ax = b.
1: Compute r0 = (b− Ax0) /γ−1 for some γ−1 6= 0, e.g., so ||r0|| = 1.
2: Rede�ne x0 = x0/γ−1. Choose r̃0 so that δ0 = r̃H0 r0 6= 0.
3: Base case: R−1 = 0n,s and R̃−1 = 0n,s,x−1 = 0n,1
4: Base case: βi−1 = β̃i−1 = αi = α̃i = δi = γi−1 = γ̃i−1 = πi = 0 for i = −s : −1
5: repeat for ` = 0, 1, 2 . . . and m = s`,

6: Set R̂ = [R`−1, 0n,s+1] and
ˆ̃R =

[
R̃`−1, 0n,s+1

]
.

7:

[
R̂(:, s+ 1 : 2s+ 1), B

]
= Akx (A, s, rm),

[
ˆ̃R(:, s+ 1 : 2s+ 1), B̃

]
=

Akx
(
AH , s, r̃m

)
.

8: Compute G = ˆ̃RHR̂.

9:

[
c0−s, c

0
−s+1, . . . , c

0
−1
]

=

[
Is,s

0s+1,s

]
,
[
d0−s, d

0
−s+1, . . . , d

0
−1
]

=

[
Is,s

0s+1,s

]
.

10: for j = −s : −2, do
11: for k = 1 : s+ j + 1 do

12: ckj+1 =
[
ck−1j , ck−1j+1 , c

k−1
j+2

] −βm+j

−αm+j+1

γm+j+1

, dkj+1 =
[
dk−1j , dk−1j+1 , d

k−1
j+2

] −β̃m+j

−α̃m+j+1

γ̃m+j+1

.
13: end for
14: end for

15: [c00, c
1
0, . . . , c

s
0] =

[
0s,s+1

B

]
, [d00, d

1
0, . . . , d

s
0] =

[
0s,s+1

B̃

]
, e−1 =

[
02s+2,1

1

]
, e0 =

02s+1,1

0
1

.
16: for j = 0 : s− 1, do

17: αm+j =
(
d0j
)H

Gc1j , α̃m+j = αm+j, βm+j−1 = γ̃m+j−1δm+j/δm+j−1, with β−1 = 0.

18: Set β̃m+j−1 = γm+j−1δm/δm+j−1 = βm+j−1γm+j−1/γ̃m+j−1, with β̃−1 = 0.
19: Choose γm+j 6= 0 and γ̃m+j 6= 0 arbitrarily.
20: πm+j+1 = − (αm+jπm+j + βm+j−1πm+j−1) /γm+j with π0 = 1/γ−1.

21: ckj+1 =

(
ck+1
j −

[
ckj−1, c

k
j

] [βm+j−1
αm+j

])
/γm+j, for k = 0 : s− j − 1.

22: dkj+1 =
[
dk−1j , dk−1j+1 , d

k−1
j+2

] −β̃m+j

−α̃m+j+1

γ̃m+j+1

, for k = 0 : s− j − 1.

23: ej+1 = −
([

c0j
02,1

]
+ [ej−1, ej]

[
βm+j−1
αm+j

])
/γm+j.

24: Set δm+j+1 =
(
d0j+1

)H
Gc0j+1. If δm+j+1 = 0, STOP.

25: If R̂c0j+1 = 0, terminate with xex =
([
R̂, xm−1, xm

]
ej+1

)
/πm+j+1.

26: If ˆ̃Rdj+1 6= 0, declare Lanczos breakdown;

27: If ˆ̃Rdj+1 = 0, declare left termination.
28: end for
29: rm+s = R̂c0s, r̃m+s = ˆ̃Rd0s, xm+s =

[
R̂, xm−1, xm

]
es.

30: until ||rm+s|| is small.
31: Terminate with approximate solution x ≈ xm+s/πm+s.

19

Algorithm 9 BIOMINS

Require: Initial approximation x0 for solving Ax = b.
1: Compute s0 = p0 = r0 = b− Ax0.
2: Choose r̃0 arbitrary such that δ0 = r̃H0 r0 6= 0 and δ′0 = r̃H0 Ap0 6= 0.
3: Set ψ−1 = 0 and s−1 = 0n,s.
4: repeat for m = 0, 1, . . .,
5: Set δ′m = r̃H0 Apm. If δ

′
m = 0, STOP and declare pivot breakdown.

6: Take steps along search directions:
7: ωm = δm/δ

′
m.

8: sm = rm + ψm−1sm−1 − ωmApm.
9: rm+1 = rm − 2ωmArm − 2ωmψm−1Asm−1 − ω2

mA
2pm.

10: Update candidate solution:
11: xm+1 = xm + 2ωmrm + 2ωmψm−1sm−1 + ω2

mApm.
12: Set δm+1 = r̃H0 rm+1. If δm+1 = 0, STOP.
13: If rm+1 = 0n,1, terminate with xex = xm+1.
14: Otherwise, declare Lanczos breakdown.
15: Update search direction:
16: ψm = −δm+1/δm.
17: pm+1 = rm+1 + 2ψmsm + ψ2

mpm.
18: until ||rm+1|| is small.
19: Terminate with approximate solution x ≈ xm+1.

methods, in terms of stability and performance, and will not discuss any CGS variants other
than consistent BIOMINS.

We start with the iterates (rm, pm, sm−1) given by the initial data (m = 0) or from a
previous iteration (m > 0). We call the matrix powers kernel to compute

P̂ = [ρ0 (A) pm, ρ1 (A) pm, . . . , ρs (A) pm]

R̂ = [ρ0 (A) rm, ρ1 (A) rm, . . . , ρs (A) rm]

Ŝ = [ρ0 (A) sm−1, ρ1 (A) sm−1, . . . , ρs (A) sm−1]

where ρj (z) and ρ̃j (z) are polynomials of (exact) degree j. (In principle, we might use a
di�erent polynomial for each basis matrix.) Akx also provides a change-of-basis matrix B
that allows us to convert back to the Krylov basis,[

P̂ , R̂, Ŝ
] [B
O4s+2,2s+1

]
=
[
pm, Apm, . . . , A

2spm
]

[
P̂ , R̂, Ŝ

]02s+1,2s+1

B
02s+1,2s+1

 =
[
rm, Arm, . . . , A

2srm
]

[
P̂ , R̂, Ŝ

] [04s+2,2s+1

B

]
=
[
sm−1, Asm−1, . . . , A

2ssm−1
]

although we apply this transformation implicitly.

20

Using these 2s-step Krylov bases, substituting the coe�cient vectors, de�ned for 0 ≤ k ≤
2s, [

P̂ , R̂, Ŝ
]
akj = Akpm+j[

P̂ , R̂, Ŝ
]
bkj =

(
AH
)k
rm+j[

P̂ , R̂, Ŝ
]
ckj = Aksm+j

and row vector g = r̃H0

[
P̂ , R̂, Ŝ

]
, we arrive at a communication-avoiding version in Alg. 10.

3.4 Communication-avoiding biconjugate gradient-stabilized method
(CA-BICGSTAB)

The CGS method reinforced the idea that the BICG algorithm only exploits the fact that
the right Krylov basis is biorthogonal to the left Krylov basis - the biorthogonality need not
be mutual. Lanczos-type product methods (LTPMs) use a di�erent polynomial recurrence
for the left basis and combine this with the CGS strategy, applying this second polynomial
to the right basis in order to avoid computing the left basis at all. The hope is that the
left polynomial further reduces the residual. Many LTPMs, including BICGSTAB and its
variants, choose the left polynomial to have smoothing or stabilizing properties. As with
Lanczos (versus, e.g., Arnoldi), a shorter polynomial recurrence is preferable for performance
reasons.

In the case of BICGSTAB, the left polynomial takes a two-term recurrence, and amounts
to extending the Krylov space by one dimension (a new basis vector), and taking a steepest
descent step in that direction (line search). This is a local one-dimensional minimization,
which should result in a smoother convergence curve and avoid possible over�ow conditions
in CGS. However, an issue with BICGSTAB is that if the input data is all real, the stabilizing
polynomial will have only real zeros. Such a polynomial will not reduce error components in
the direction of eigenvectors corresponding to eigenvalues with large imaginary components
(relative to their real components). Matrices with such a spectrum are also more susceptible
to a minimization breakdown in BICGSTAB, a new breakdown condition.

These two drawbacks to BICGSTAB are addressed in the literature by many newer
LTPMs by using (at least) two-dimensional residual smoothing. Other smoothers, like
Chebyshev polynomials, have also been considered. In this work, we only demonstrate
our communication-avoiding approach on the simplest LTPMs (CGS and BICGSTAB). We
conjecture that our approach generalizes to all LTPMs with short polynomial recurrences,
and that the �exibility to choose a polynomial basis in Akx could accelerate the computation
of the left polynomials, when the recurrence coe�cients are known in advance.

We also note that BICGSTAB(`) is a promising direction for future work, especially once
combined with the communication-avoiding tall-skinny QR kernel, as described in [20].

We present the version of BICGSTAB from [33] in Alg. 11. Note that the vector iterates
sm are unrelated to the scalar s; no ambiguity will arise since the former is always subscripted
while the latter is never.

21

Algorithm 10 Communication-avoiding BIOMINS

Require: Initial approximation x0 for solving Ax = b.
1: Compute s0 = p0 = r0 = b− Ax0.
2: Choose r̃0 arbitrary such that δ0 = r̃H0 r0 6= 0 and δ′0 = r̃H0 Ap0 6= 0.
3: Set ψ−1 = 0 and s−1 = 0n,s.
4: repeat for m = 0, 1, . . .,
5: Compute three 2s-step Krylov bases using the matrix powers kernel (Akx):

6:

[[
P̂ , R̂, Ŝ

]
, B
]

= akx (A, 2s, [pm, rm, sm−1]).

7: Compute g = r̃H0

[
P̂ , R̂, Ŝ

]
.

8: Initialize coe�cient vectors

9: [a00, a
1
0, . . . , a

s
0] =

[
B

O4s+2,2s+1

]
,

10: [b00, b
1
0, . . . , b

s
0] =

02s+2,2s+1

B
O2s+2,2s+1

, and
11:

[
c0−1, c

1
−1, . . . , c

s
−1
]

=

[
O4s+2,2s+1

B

]
, and

12: e0 =

[
06s+3,1

1

]
.

13: for j = 0 : s− 1, do
14: δ′m+j = ga1j . If δ

′
m+j = 0, declare pivot breakdown and STOP.

15: Take steps along search direction:
16: ωm+j = δm+j/δ

′
m+j.

17: ckj = bkj + ψm+j−1c
k
j−1 − ωm+ja

k+1
j , for k = 0 : 2 (s− j − 1).

18: bkj+1 = bkj − 2ωm+jb
k+1
j − 2ωm+jψm+j−1c

k+1
m+j−1 − ω2

m+ja
k+1
m , for k = 0 :

2 (s− j − 1).

19: Update candidate solution: ej+1 = ej + 2ωm

[
b0j
0

]
+ 2ωmψm−1

[
c0j−1

0

]
+ ω2

m

[
a1j
0

]
.

20: Set δm+j+1 = gb0j+1. If δm+j+1 = 0, STOP.

21: If
[
P̂ , R̂, Ŝ

]
b0j+1 = 0n,1, terminate with xex =

[
P̂ , R̂, Ŝ, xm

]
ej+1.

22: Otherwise, declare Lanczos breakdown.
23: Update search direction:
24: ψm+j = −δm+j+1/δm+j.
25: akj+1 = bkj+1 + 2ψm+jc

k
j + ψ2

m+jam+j, for k = 0 : 2 (s− j − 1).
26: end for
27: Recover iterates from last inner iteration.
28: rm+s =

[
P̂ , R̂, Ŝ

]
b0s, pm+s =

[
P̂ , R̂, Ŝ

]
a0s,

29: sm+s−1 =
[
P̂ , R̂, Ŝ

]
c0s−1, and xm+s =

[
P̂ , R̂, Ŝ, xm

]
es.

30: until ||rm+s|| is small.
31: Terminate with approximate solution x ≈ xm+s.

22

Algorithm 11 BICGSTAB

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0).
2: Choose r̃0 arbitrary.
3: repeat for m = 0, 1, . . .,
4: αm =

(
r̃H0 rm

)
/
(
r̃H0 Apm

)
.

5: sm = rm − αmApm
6: ωm =

(
sHmAsm

)
/
(

(Asm)H Asm

)
.

7: xm+1 = xm + αmpm + ωmsm.
8: rm+1 = sm − ωmAsm.
9: βm =

(
r̃H0 rm+1

)
/
(
r̃H0 rm

)
× (αm/ωm).

10: pm+1 = rm+1 + βm (pm − ωmApm).
11: until ||rm+1|| is small.
12: Terminate with approximate solution x ≈ xm+1.

3.4.1 CA-BICGSTAB

First, we note that the vector iterates sm are auxiliary quantities introduced to simplify the
underlying coupled two-term recurrences

rm+1 = (I − ωmA) (rm − αmApm)

pm+1 = rm+1 + βm (I − ωmA) pm

and we do not need them. We substitute the de�nition sm = rm − αmApm to recover these
recurrences, and this also gives us new expressions for

ωm =
rHmArm − αmrHmA2pm − αmpHmAHArm + αmαmp

H
mA

HA2pm

rHmA
HArm − αmrHmAHA2pm − αmpHm (AH)2Arm + αmαm (AH)2A2pm

xm+1 = xm + αmpm + ωm (rm − αmApm)

Since BICGSTAB avoids multiplications by AH , while applying A twice per iteration, the
underlying Krylov space is extended by two dimensions per iteration, as opposed to BICG.
Thus, in order to take s steps of BICGSTAB in a communication-avoiding manner, we need
to explicitly extend the Krylov spaces by 2s dimensions with Akx. Also, we compute inner
products involving the shadow residual vector r̃0 as well as iterates {r, p}. We will replace
the former using a �Gram vector� and the latter with a �Gram matrix:�

g = r̃H0

[
P̂ , R̂

]
G =

[
P̂ , R̂

]H [
P̂ , R̂

]
Our call to Akx takes the two source vectors [pm, rm]] and produce the 2s-step bases [P̂ , R̂],
similar to CA-BICG. Lastly we introduce the coe�cient vectors[

P̂ , R̂
]
bkj = Akrm+j[

P̂ , R̂
]
akj = Akpm+j

23

and use these vectors as well as G and g to reach the communication-avoiding version, in
Alg. 12.

A more costly version of CA-BICGSTAB can be derived using the auxiliary vector iterates
sm in 11. In this case, we call Akx with three source vectors to compute three s-step bases,
as well as introduce a third coe�cient vector. We do not present this algorithm here, but it
can be easily derived like Alg. 12. When we performed our numerical experiments, we used
this three-iterate version in order to compare with MATLAB BICGSTAB (which also uses
three iterates). It is future work to see if and how the �oating-point properties of the two-
iterate version (Alg. 12) di�er from this three-iterate version. We note that the three-iterate
version does more �ops than Alg. 12, and so conjecture that Alg. 12 will have no worse
round o�. That is, we conjecture our numerical experiments will produce similar (if not
better) results when we implement Alg. 12.

3.5 Preconditioning

Preconditioning is a technique frequently used in practice to accelerate the convergence of
KSMs by replacing Ax = b by an equivalent linear system Ãy = c, where Ã = M−1

L AM−1
R ,

y = MRx, and c = M−1
L b. We call ML and MR left and right preconditioners, respectively;

these preconditioners are chosen so that Ã has a smaller condition number than A. When A
and Ã are normal, this lowers theoretic upper bounds on the worst-case rate of convergence
for Krylov methods. Selecting an appropriate preconditioner is a wide �eld of study itself,
which we do not discuss further here.

Our concern is primarily the extension of our methods to the preconditioned case, such
that communication is still avoided. Foremost, we require that the preconditioned matrix
Ã can be well-partitioned or have a special structure we can exploit - otherwise, we cannot
avoid communication with the matrix powers kernel. However, even if communication can
not be avoided by use of the matrix powers kernel, we could compute the s SpMVs in a
straightforward way in the outer loop and still save in communication costs by blocking the
dot products in the inner loop, as discussed in [37]. When Ã can be well-partitioned (and
is explicitly available), our usual communication-avoiding matrix powers kernel can still be
used. The simplest case for which this holds is (block) diagonal preconditioning, used in
many scienti�c applications. A Krylov subspace for Ã can be computed using the same
dependencies required for A , as application of the diagonal preconditioner matrix requires
only local work. If the matrix is dense, but has a special structure we can exploit (i.e.,
the low-rank structure in Hierarchical Semiseparable (HSS) Matrices), we can still avoid
communication with a di�erent variant of the matrix powers kernel, which will be discussed
in future work.

The preconditioned variants of our CA-KSMs require a few additional changes from the
unpreconditioned versions. In the case of left- or split-preconditioning, our algorithms will
report the preconditioned residuals, zm , instead of the unpreconditioned residuals, rm. This
means that we must compute ||rm||2 = ||M−1zm||2 in order to check convergence, where M
is the left preconditioner, or left part of the split preconditioner. The communication cost
incurred by the preconditioner solve is a lower order term (compared to the preconditioned
matrix powers kernel invocation), assuming M−1 is well-partitioned.

Others have discussed the use of polynomial preconditioners [32]. Polynomial precondi-

24

Algorithm 12 Communication-avoiding BICGSTAB

Require: Initial approximation x0 for solving Ax = b.
1: Compute p0 = r0 = (b− Ax0).
2: Choose r̃0 arbitrary.
3: repeat for m = 0, 1, . . .,
4: Extend the two Krylov bases by 2s dimensions, using the matrix powers kernel (Akx).

5:

[[
P̂ , R̂

]
, B
]

= Akx (A, 2s, [pm, rm]).

6: Compute g = r̃H0

[
P̂ , R̂

]
.

7: Compute G =
[

ˆ̃P, ˆ̃R
]H [

P̂ , R̂
]
.

8: Initialize coe�cient vectors

9: [b00, b
1
0, . . . , b

s
0] =

[
0s+1,s+1

B

]
, [a00, a

1
0, . . . , a

s
0] =

[
B

0s+1,s+1

]
. e0 =

[
02s+2,1

1

]
.

10: for j = 0 : s− 1, do
11: αm+j = gb0j/ga

1
j .

12: ωm+j =
(b0j)

H
Gb1j−αm+j(b0j)

H
Ga2j−αm+j(a1j)

H
Gb1j+αm+jαm+j(a1j)

H
Ga2j

(b1j)
H
Gb1j−αm+j(b1j)

H
Ga2j−αm+j(a2j)

H
Gb1j+αm+jαm+j(a2j)

H
Ga2j

.

13: Update candidate solution:

14: ej+1 = ej + αm+j

[
a0j
0

]
+ ωm+j

[
b0j
0

]
− αm+jωm+j

[
a1j
0

]
.

15: Update residual:
16: bkj+1 = bkj − αm+ja

k+1
j − ωm+jb

k+1
j + αm+jωm+ja

k+2
j , for k = 0 : 2(s− j − 1).

17: Update search direction:
18: βm+j =

(
gb0j+1/gb

0
j

)
× (αm+j/ωm+j).

19: akj+1 = bkj+1 + βm+ja
k
j − βm+jωm+ja

k+1
j , for k = 0 : 2(s− j − 1).

20: end for
21: Recover iterates from last inner iteration.
22: rm+s =

[
P̂ , R̂

]
b0s, pm+s =

[
P̂ , R̂

]
a0s,

23: xm+s =
[
P̂ , R̂, xm

]
es.

24: until ||rm+s|| is small.
25: Terminate with approximate solution x ≈ xm+s.

25

tioning could be easily incorporated in our methods, as the general implementation of the
matrix powers kernel computes polynomials of A. Hoemmen et al. have also devised an al-
gorithm to avoid communication in the case of semiseparable, hierarchical, and hierarchical
semiseparable matrices (matrices with low-rank o�-diagonal blocks) [20, 12]. Such matri-
ces arise when, for example, A is tridiagonal: the inverse of a tridiagonal, although dense,
has the property that any submatrix strictly above or strictly below the diagonal has rank
1. Hoemmen exploits such low-rank o�-diagonal blocks in order to avoid communication
when applying Ã, although he notes that his algorithm introduces signi�cantly additional
computational requirements. In future work, we will investigate Hoemmen's approach and
determine its practicality, as well as investigate communication-avoiding approaches for other
classes of preconditioners.

4 Convergence

4.1 Choice of Basis

As discussed in [12, 27], the matrix powers kernel extends the Krylov spaces using polyno-
mials ρ which may not be simple monomials. For simplicity, we only consider polynomials
that may be computed by a three-term recurrence. Given a starting vector v, we compute a
sequence of vectors

vj =

γv j = 0

α1Av0 + β1v0 j = 1

(αjA+ βjI) vj−1 + γjvj−2 j > 1

Note that αj and βj are de�ned when j ≥ 1 and γj is de�ned when j ≥ 2. The �rst vector
is scaled by some scalar γ. We rearrange terms to uncover the identity

Avj =

{
− β1
α1
v0 + 1

α1
v1 j = 0

− γj+1

αj+1
vj−1 − βj+1

αj+1
vj + 1

αj+1
vj+1 j > 0

or written in matrix form,

A
[
v0 · · · vj

]
=

[
v0 · · · vj+1

]

− β1
α1
− γ2
α2

1
α1

− β2
α2

. . .

1
α2

. . . − γj+1

αj+1

. . . − βj+1

αj+1
1

αj+1

AVj = Vj+1B̂j+1

Now we derive a change-of-basis matrix Bj such that we transform from our polynomial
basis to the Krylov basis:

VjBj =
[
v0 · · · vj

]
Bj =

[
v · · · Ajv

]
= Kj

26

where Kj is a Krylov matrix. The �rst column of Bj is obvious: Bj (:, 1) = 1
γ
e1. Now we

observe that, when 1 < k ≤ j

VjBj (:, k) = Kj (:, k)

AVjBj (:, k) = AKj (:, k)

= Kj (:, k + 1)

= VjBj (:, k + 1)

Vj+1B̂j+1Bj (:, k) = VjBj (:, k + 1)

Now, we note that Bj has a nonzero diagonal and is upper triangular in general, since
span (Vi) = span (Ki) ∀i ≥ 0, based on the assumption that the polynomials pi are of
degree i exactly. This means that the column vector Bj (:, k) is zero in rows (k + 1 : j + 1).

Furthermore, B̂j+1 is upper Hessenberg, so B̂j+1 (:, 1 : k) =

[
B̂j+1 (1 : k + 1, 1 : k)

0j−k+1,k

]
. We

will exploit these zeros by splitting the matrices blockwise:

Vj+1B̂j+1Bj (:, k)

=
[
Vj+1 (:, 1 : k + 1) Vj+1 (:, k + 2 : j + 2)

]
×
[
B̂j+1 (1 : k + 1, 1 : k) B̂ (1 : k + 1, k + 1 : j + 1)

0j−k+1,j B̂j+1 (k + 2 : j + 2, k + 1 : j + 1)

] [
Bj (1 : k, k)

0j−k+1,1

]
=
[
Vj+1 (:, 1 : k + 1) Vj+1 (:, k + 2 : j + 2)

] [B̂j+1 (1 : k + 1, 1 : k)
0j−k+1,j

]
Bj (1 : k, k)

= Vj+1 (:, 1 : k + 1) B̂j+1 (1 : k + 1, 1 : k)Bj (1 : k, k)

= VkB̂j (1 : k + 1, 1 : k)Bj (1 : k, k)

For the right hand side, we have

VjBj (:, k + 1) =
[
Vj (:, 1 : k + 1) Vj (:, k + 2 : j + 1)

] [Bj (1 : k + 1, k + 1)
0j−k,1

]
= Vj (:, 1 : k + 1)Bj (1 : k + 1, k + 1)

= VkBj (1 : k + 1, k + 1)

so combining,

VkBj (1 : k + 1, k + 1) = VkB̂j (1 : k + 1, 1 : k)Bj (1 : k, k)

Bj (1 : k + 1, k + 1) = B̂j (1 : k + 1, 1 : k)Bj (1 : k, k)

This last formula can be used to construct the upper triangular (j + 1)× (j + 1) change-of-
basis matrix Bj for any three-term polynomial recurrence, starting with Bj (1, 1) = 1

γ
, given

the (j + 1)× j upper Hessenberg matrix B̂j. For an s-step basis, j = s.

4.1.1 Monomial Basis

The simplest basis that we can use in our communication-avoiding methods is the monomial
basis, [x, Ax, A2x, ...] .

27

In the case of the scaled monomial basis, with scaling factors (σj)
s
j=0 , we have γ = 1

σ0
and αj leading to

B̂s =

0
σ1 0

σ2 0

σ3
. . .
. . . 0

σs

Note that for the unscaled monomial basis, B̂s = [0 ; I] and Bs = I.
However, it is well-known that the monomial basis converges to the principle eigenvector

of A, a property that is exploited in the Power Method. Therefore, in �nite-precision arith-
metic, monomial basis vectors are subject to becoming linearly dependent if we choose s too
large. As was previously observed by [9, 31], using a rank-de�cient basis leads to convergence
failure, as the Krylov subspace can no longer expand. To remedy this problem, one must use
a more stable basis. Two options that we consider are the Newton basis and the Chebyshev
basis.

4.1.2 Newton Basis

The Newton basis can be written

V = [x, (A− θ1I)x, (A− θ2)(A− θ1)x, ..., (A− θs)(A− θs−1)...(A− θ1)x]

Here, the shifts, [θ1, ..., θs], are taken to be Leja points computed using eigenvalue esti-
mates for A, as described in [29]. For the purpose of convergence results in this paper, we
use the knowledge of the full spectrum of A to compute s Leja points, rather than eigenvalue
estimates. In practice, if the user does not have any information about the spectrum of A,
our method can be adapted to perform O(s) steps of Arnoldi and �nd the eigenvalues of
the resulting upper Hessenberg matrix H, giving us eigenvalue estimates for A (Ritz values).
The Leja ordering routine is then used to select the s �best� shifts to use. The �best� shifts
are de�ned as being largest in magnitude/furthest away from each other (if two shifts are
close together, the resulting basis vectors can again become linearly dependent). We can
write the formula for selecting s shifts as follows

θ1 = argmaxz∈K0
|z|

θj+1 = argmaxz∈Kj

j∏
k=0

|z − zk|

where Kj ≡ {θj+1, θj+2, ..., θs}

Using the same notation as for the monomial basis, for the scaled Newton basis, with
scaling factors (σj)

s
j=0 and shifts (θj)

s
j=1 , we have γ = 1

σ0
and αj, which gives

28

B̂s =

θ1
σ1 θ2

σ2 θ3

σ3
. . .
. . . θs

σs

We can also construct the upper triangular Bs change of basis matrix without construct-

ing B̂s (although the operations to form Bs are analogous). Start with Bs = Is, and build
B according to the following recurrence:

B(i, j) = B(i− 1, j − 1) + θi ·B(i, j − 1)

For example, let's construct Bs for s = 4, with eigenvalues estimates [θ1, θ2, θ3, θ4]. Bs

is an s+ 1× s+ 1 matrix. Using the recurrence above, for s = 4,

B4 =

1 θ1 θ21 θ31 θ41
0 1 θ1 + θ2 θ21 + (θ1 + θ2)θ2 θ31 + (θ21 + (θ1 + θ2)θ2)λθ2
0 0 1 θ1 + θ2 + θ3 θ21 + (θ1 + θ2)θ2 + (θ1 + θ2 + θ3)θ3
0 0 0 1 θ1 + θ2 + θ3 + θ4
0 0 0 0 1

If we have a real matrix with complex eigenvalues and wish to avoid complex arithmetic

(for performance reasons), we use instead use the modi�ed Leja ordering [1], which places
complex conjugate pairs adjacently so the complex values disappear from the computed
basis vectors. The matrix powers kernel for the modi�ed Leja ordering is then used, which
is described in [20]. For consistency, if (θj−1, θj) form a complex conjugate pair, we require
that θj−1 has the positive imaginary component. We have γ = 1

σ0
and

αj =
1

σj

βj =

{
− θj
σj

θj ∈ R
−Re(θj)

σj
θj is part of a complex conjugate pair

γj =

{
−Im(θj−1)

2

σj
(θj−1, θj) are a complex conjugate pair

0 otherwise

Construction of the change of basis matrix is analogous for the modi�ed Leja ordering.
E�ects of the modi�ed Leja ordering on stability have not been thoroughly investigated in
the literature.

The construction of the Newton basis can result in under�ow or over�ow in �nite precision
arithmetic, if the chosen shifts are too close together or too far apart, respectively. Reichel
[30] solves this problem by using an estimate for the capacity of a subset of the complex
plane, de�ned for the set of shifts as

29

ck =
k−1∏
j=1

|θk − θj|1/k

The shifts are divided by this quantity before an ordering is chosen. The convergence
results shown in this paper do not use this capacity estimate, as we expect that the matrix
equilibration routine will su�ciently bound the radius of the spectrum of A - implementation
and analysis is considered future work.

4.1.3 Chebyshev Basis

Chebyshev polynomials are another attractive choice for the construction of the Krylov basis.
Chebyshev polynomials have the property that over all real polynomials of a degree m on
a speci�ed real interval I, the Chebyshev polynomial of degree m minimizes the maximum
absolute value on I. This unique property allows for optimal reduction of error in each
iteration, making many improvements in KSM convergence and analysis possible.

Joubert and Carey [23] present the recurrence for the scaled and shifted Chebyshev
polynomials as

P0(z) = 1

P1(z) =
1

2g
(z − c)

Pk+1(z) =
1

g

[
(z − c)Pk(z)− d2

4g
Pk−1(z)

]
where the coe�cients g, c and d serve to scale and shift the spectrum of A to the unit

circle (Note that this only works for real matrices, whose center lies on the real axis). Using
the spectrum of A, we select these parameters such that the focus of the ellipse are at c± d,
and g = max(|λi|). Here, we have γ = 1 and

αj =

{
1
2g

j = 1
1
g

j > 1

βj =

{
− c

2g
j = 1

− c
g

j > 1

γj = − d2

4g2

This gives us the matrix

30

B̂s =

c d2

4g

2g c d2

4g

g c
. . .

g
. . . d2

4g
. . . c

g

We can equivalently derive a formula to construct the change of basis matrix Bs :

Bs(1, 1) = 1

Bs(i, j) =

{
2gB(i− 1, j − 1) + cB(i, j − 1) + d2

4g
B(i+ 1, j − 1) i = 2

gB(i− 1, j − 1) + cB(i, j − 1) + d2

4g
B(i+ 1, j − 1) otherwise

For example, for s = 4, we get the change of basis matrix

B4 =

1 c c2 + d2

2
c3 + 3

2
cd2 c4 + 3c2d2 + 3

8
d4

0 2g 2cg 3
2
g(4c2 + d2) 2g(4c3 + 3cd2)

0 2g2 6cg2 2g2(6c2 + d2)
0 2g3 8cg3

0 2g4

Note that this simpli�es to the upper-triangular checkerboard pattern if we take c = 0,

which means that the ellipse enclosing the eigenvalues of A is already centered around 0 on
the real axis.

4.1.4 Basis Scaling vs. Matrix Equilibration

As discussed in [20], successively scaling (e.g., normalizing) the basis vectors reintroduces the
global communication requirement between SpMV operations. Even if we wait until the end
of the computation and perform the scaling of all basis vectors in one step, this still requires
an all-to-all communication in each outer loop iteration (or reading and writingO(n) words to
and from slow memory). Although this does not asymptotically increase the communication
costs, it does increase the constant factors, and will thus decrease performance (and can also
fail to improve stability). In order to avoid this extra cost, we perform matrix equilibration
as a preprocessing step before running the CA-KSM. Matrix equilibration is a common
technique to improve the spectrum of ill-conditioned matrices. Our results, as well as results
from [20], indicate that this technique is often good enough for reducing the condition number
of the basis, and thus we do not use the scaled versions of the bases described above (except
in the case of Chebyshev, where �scaling� is constant throughout the execution and refers
to a scaling of the spectrum of A rather than normalization of the basis vectors in every
iteration).

31

4.2 Convergence Results

In this section, we present convergence results which demonstrate that our Communication-
Avoiding methods can maintain stability and convergence similar to the standard implemen-
tation for many test matrices. We present convergence results for the two-term variants
of CA-BICG and CA-BICGSTAB, as the BICG method is the easiest to analyze, and the
BICGSTAB method is most used in practice. All experiments were run with [1, 1, ..., 1] as
the RHS and x0 = 0 as the initial guess, which results in a starting residual r0 = b, with
‖r0‖2 = ‖b‖2 =

√
n.

4.2.1 Diagonal Matrices

We initially show results for diagonal matrices to demonstrate some basic convergence trends.
For diagonal matrices, the only signi�cant round o� errors in our algorithm stem from the
vector and scalar operations (rather than in the matrix powers kernel), making them useful
cases for analysis. The diagonal matrices were created with equally spaced eigenvalues on
an interval chosen to achieve a given condition number. We �rst explore how convergence
changes for all three bases as a function of s, the basis length, and as a function of the
condition number of A. Figure 1 shows results for one matrix with low condition number
(∼ 10), with s varying, and Figure 2 shows results for one value of s, with the condition
number of A varying for the CA-BICG method.

These simple examples demonstrate two basic properties of our CA-KSMs. We can see
that if we choose a high s value, the basis vectors can become linearly dependent, resulting
in failure to converge. This happens early on for the monomial basis, as is expected. For
s = 10 (a theoretical 10× speedup), all bases follow the same iterates as the standard
implementation. Behavior for other values of s �interpolates� the data shown, i.e., all bases
will follow the same iterates as the standard implementation for 2 ≤ s ≤ 10. The Newton
and Chebyshev bases (or change of basis matrices) eventually become ill-conditioned as well,
but are able to reproduce the standard iterates using a larger Krylov subspace than the
monomial basis. From Figure 2, it is clear that, like the standard KSMs, convergence of our
CA-KSMs is (somewhat) dependent on the condition number of A. It is also important to
notice, in Figure 1, the stagnation that occurs in all three bases for s = 20. This behavior
is due to build up of round-o� errors in the computed residual, which causes signi�cantly
deviation from the true residual. This behavior worsens (stagnation occurs sooner) with
increasing s. We will discuss remedies for this in Section 4.2.3.

32

Figure 1: Convergence of Diagonal Matrices for Various Values of s. N = 1000, cond~10.

33

(a) (b)

(c)

Figure 2: Convergence of Diagonal Matrices for Various Condition Numbers, (a) 10, (b) 103,
(c) 105. N = 1000. Eigenvalues are uniformly distributed.

4.2.2 Results for Test Matrices from Various Applications

We have performed convergence tests for both CA-BICG and CA-BICGSTAB for the a small
set of test matrices from the University of Florida Sparse Matrix Collection [11]. In these
tests, the matrix equilibration routine was used (when necessary). As above, the starting
vector (r0 = b) used was a vector of all one's, and the initial guess x0 = 0.

mesh2e1 The matrix mesh2e1 is a discretized structural problem from NASA. The dimen-
sion of the matrix is 306, with 2, 018 nonzeros. This matrix is symmetric positive de�nite
(SPD), and is well-conditioned (condition number ∼ 400). Although BICG and BICGSTAB
work for nonsymmetric matrices, we begin with this example as the convergence behavior is
smoother and more predictable for SPD matrices.

Figure 3 shows the eigenvalues of this matrix (blue x's) along with the �rst 30 Leja
points (black o's). The plot on the right shows the condition number of the monomial basis,

34

Newton basis (computed using the shown Leja points), and the Chebyshev basis (where the
bounding ellipse was calculated using the exact eigenvalues), versus the size of the basis.

Figure 3: Spectrum and Leja Points for mesh2e1 (left). Basis Condition Number vs. Basis
Length (right).

35

Figure 4: Convergence of CA-BICG for mesh2e1.

36

Figure 5: Convergence of CA-BICGSTAB for mesh2e1.

pde900 This matrix is a 5-pt central di�erence discretization of a 2D variable-coe�cient
linear elliptic equation on the unit square with Dirichlet boundary conditions, with NX =
NY = 30. It is well-conditioned, with condition number∼ 300. Here, N = 900, and there are
4, 380 nonzeros. This matrix is structurally symmetric, with 50% numeric value symmetry.
This matrix is not positive de�nite. Figure 6 below shows the eigenvalues of this matrix,
selected Leja points, and resulting condition number of the basis for various bases and basis
lengths. Figures 7 and 8 show convergence results for CA-BICG and CA-BICGSTAB for
the di�erent bases, for increasing values of s.

37

Figure 6: Spectrum and Leja Points for pde900 (left). Basis Condition Number vs. Basis
Length (right).

Figure 7: Convergence of CA-BICG for pde900.

38

Figure 8: Convergence of CA-BICGSTAB for pde900.

fs_680_1 This matrix is an unsymmetric facsimile convergence matrix. It is slightly less
well-conditioned, with condition number ∼ 104. After the matrix equilibration routine, the
condition number was lowered to ∼ 103. This matrix is not positive de�nite, and is not
symmetric in structure or in value. Here, N = 680, and there are 2, 184 nonzeros. Figure
9 below shows the eigenvalues of this matrix, selected Leja points, and resulting condition
number of the basis for various bases and basis lengths. Figures 10 and 11 show convergence
results for CA-BICG and CA-BICGSTAB for the di�erent bases, for increasing values of s.

39

Figure 9: Spectrum and Leja Points for fs_680_1 (left). Basis Condition Number vs. Basis
Length (right).

Figure 10: Convergence of CA-BICG for fs_680_1.

40

Figure 11: Convergence of CA-BICGSTAB for fs_680_1.

4.2.3 E�ect on Maximum Attainable Accuracy

In the previous section, we tested for convergence of the true residual to a precision of 10−6

(i.e., ||rm||2 ≤ 10−6). In practice, however, higher precision may be necessary. We see from
the convergence plots in the previous section that, for high s values, for both CA-BICG
and CA-BICGSTAB, our CA method is unable to converge to the same tolerance as the
standard implementations because the convergence stagnates. This e�ect is due to �oating
point round o� error, which causes a discrepancy between the true and computed residuals
(similar plots of the computed residual would appear to continue convergence). This problem
has been observed before, and is known to especially plague 2-sided KSMs [17]. We observe
here that this problem is also present in the CA variants of these methods, and is in fact
exacerbated the larger the s value chosen (this behavior is expected to worsen in the 3-term
variants of the method [17]). As restarting has been used e�ectively to combat this problem
in the BICG method [34], we extend this technique to our CA-KSMs. In the remainder
of this section, we describe the problem of round o� in our CA-KSMs, and present results
which indicate that restarting prevents buildup of round o� error and allows for convergence
to a higher precision.

41

This decrease in maximum attainable accuracy is due to using a basis matrix (or change of
basis matrix with a high condition number), which is (more than) squared in the construction
of the Gram-like matrix. The presence of very large (and very small) values in the Gram-
like matrix leads to �oating point round o� errors when the recurrence coe�cients are used
to recover the monomial basis. In the plots for unrestarted CA-BICGSTAB, we see that
the monomial basis can sometimes achieve a higher maximum attainable accuracy than
the Chebyshev or Newton bases (although it deviates from the standard algorithm iterates
sooner in the execution). This is due to increased round o� error in the construction of and
multiplication by Bs, the change of basis matrix, in both Chebyshev and Newton bases.

If the spectrum of A is large, consecutive shifts used in the Newton basis may di�er by
orders of magnitude, and ellipse parameters chosen for the Chebyshev basis may be large,
leading to an ill-conditioned Bs. By choosing parameters such that the condition number
of the basis matrix is as small as possible, we have also chosen parameters which will make
the condition number of the change of basis matrix high. We expect results for the Newton
basis may be somewhat improved by using Reichel's capacity estimate in computing the
(modi�ed) Leja ordering [30]. Further experiments are required.

For the monomial basis, however, Bs = Is+1, so the change of basis matrix is always
well-conditioned irrespective of the spectrum of A. Here, we have created a change of basis
matrix with very low condition number, which results in a basis matrix with a high condition
number. This e�ect is more prevalent in CA-BICGSTAB than in CA-BICG due to the
use of three (rather than two) Krylov bases in the construction of the Gram-like matrix,
which leads to a signi�cantly higher condition number. We expect that using the variant of
CA-BICGSTAB which only requires two RHSs for the matrix powers kernel would lead to
behavior closer to that of CA-BICG.

Restarting has been used as a way to combat this problem in the BICG method, with
good results [34]. In a similar attempt, we employ restarting of our CA-KSMs. Our results
are shown in Figures 12 and 13, which shows both the unrestarted and restarted methods.
To restart, we take the current x value and restart the algorithm using this x as the ini-
tial guess, which prevents the buildup of �oating point errors. Many techniques exist for
dynamically choosing when the method should be restarted, e.g., [34], by computing the
true residual b − Ax after some number of iterations and monitoring the discrepancy. In
our experiments, we manually experimented to �nd a good restart value for each test case.
Implementing a dynamically selected restart length (in a communication-avoiding way) is
future work. It should be noted that when the algorithm is restarted, there is an expected
plateau before convergence is seen again, as the previous information we had is lost. This
can be combated by using de�ation techniques which require knowledge of eigenvectors for
the smallest eigenvalues. This is, again, considered future work.

42

Figure 12: CA-BICG (top) and CA-BICGSTAB Convergence (bottom) for mesh2e1 Matrix,
for s = 20. s × t is the chosen restart length. Plots on left show convergence without
restarting, plots on right show convergence with restarting technique.

43

Figure 13: CA-BICG (top) and CA-BICGSTAB Convergence (bottom) for fs_680_1 Matrix,
for s = 20. s × t is the chosen restart length. Plots on left show convergence without
restarting, plots on right show convergence with restarting technique.

4.2.4 Further Techniques for Improving Convergence: TSQR

Another technique for improving convergence involves the use of TSQR [12]. This kernel
has two uses in our algorithms. First, we could use the output of this kernel to construct
an orthogonal basis for the Krylov Subspace. To perform this orthogonalization technique,
we perform a TSQR operation on the basis vectors after they are generated by the matrix
powers kernel, once per outer-loop iteration. As this is a communication-avoiding kernel, we
do not asymptotically increase the communication cost, although the constants grow larger,
and the computation cost increases. We then construct the Q basis matrix from the output
of the kernel, and instead use this orthogonalized basis in the s inner loop iterations. We
can easily update the change of basis matrix by pre-multiplication by the R factor.

It should be noted that this approach does not reintroduce dependencies between inner
and outer loops in the Krylov Subspace Method, as occurs when computing scaled bases,
mentioned in Section 2. In work describing computing a scaled basis, each basis vector

44

is orthogonalized against all previous basis vectors as they are computed. In using the
TSQR kernel for orthogonalization, we �rst compute all basis vectors, and then perform the
orthogonalization. Although this approach can result in more round-o� error, it allows us
to preserve our communication-avoiding strategy.

Our initial results have indicated that orthogonalization helps convergence only minimally
in the case of CA-BICGSTAB, and also only minimally for the Newton and Chebyshev bases
in the CA-BICG method. Orthogonalization also does not prevent the stagnation due to
round o� error. The restarting technique described in the previous section is still necessary.
Restarting alone, however, does not allow for convergence when using the monomial basis in
the CA-BICG method. In this case, both orthogonalization and restarting are needed, and
when both these techniques are used, the monomial basis (which can really no longer be called
the �monomial basis�) behaves just as well as the Newton and Chebyshev bases. Because
the orthogonalization through the TSQR operation requires another communication in each
outer loop, we recommend that this technique only be used in the CA-BICG algorithm
with the monomial basis. The monomial basis might be an attractive choice if the user
does not have good eigenvalue estimates to compute Leja points or a bounding ellipse for
the spectrum of A, as are needed for the Newton and Chebyshev bases, respectively. If
using CA-BICGSTAB, or CA-BICG with Newton and Chebyshev, our results indicate that
restarting the algorithm is su�cient for regaining convergence.

Another potential use of this kernel is dynamically changing the number of inner loop
iterations, s, based on the condition number of the R matrix. This prevents the method
from attempting to perform s iterations of the Krylov method with a rank-de�cient basis
matrix, which will occur if the basis length is chosen to be too long (especially for the
monomial basis). If the user does not supply an s value, or is unsure of the best s to use
for convergence, this added TSQR operation can allow us to dynamically change the s value
during each outer loop iteration to ensure convergence. After the TSQR operation, the R
factor is distributed to each processor (R is small, O(s) × O(s)). Each processor can then,
without communication, compute how many steps of the algorithm it is safe to take by
incrementally �nding the rank of R (or incrementally estimating the condition number) -
when the rank of the �rst r columns is less than r, we stop and set s = r − 1. Therefore we
can be sure that our basis vectors are not linearly dependent, and convergence will still be
possible.

5 Implementation Details

5.1 Matrix Powers Kernel Variants for Multiple RHSs and AH

In the CA-CG and CA-GMRES methods studied by [20, 27], only one matrix powers ker-
nel operation is needed with the matrix A. In contrast, our CA-BICG method requires 4
matrix powers kernel operations - two vectors with A and two vectors with AH (only one
RHS is needed for the 3-term recurrence variant), and CA-BICGSTAB requires 3 matrix
powers kernel operations - three di�erent vectors with A. In practice, although the storage
costs increase by a constant, the communication cost does not increase. We can perform the
matrix powers kernel operation with multiple RHSs still reading the matrix A only once.

45

Here, we perform s Sparse Matrix-Matrix Multiplications (SpMMs) instead of s SpMVs.
Vuduc [40] has implemented an optimized version of the SpMM kernel which only requires
reading A once to operate on all RHSs. Such an implementation of the matrix powers
kernel (one that instead computes {B, AB, A2B, ..., AsB}) would also allow for develop-
ment of Communication-Avoiding Block Krylov Methods in which many systems are solved
simultaneously with the same matrix.

We can also perform the matrix powers kernel operations on both A and AT reading the
matrix A only once (simply by switching the direction of the arrows in the layered graph
of dependencies). Because of these further reductions in required communication vs. the
standard implementations, we expect to see a greater performance gain for KSMs which
require multiple Krylov subspaces using a specialized matrix powers kernel.

Because the required functionality of the matrix powers kernel varies depending on which
CA-KSM is used, auto-tuning and code generation is useful. There are currently two active
projects dealing with this problem. One approach involves incorporation of the matrix powers
kernel into pOSKI, an auto-tuned library for sparse matrix computations [22]. Another
involves Selective Embedded Just-In-Time Specialization (SEJITS), in which di�erent code
variants are selected dynamically during execution based on the run-time parameters [7].

5.2 Finding Eigenvalue Estimates

In our numerical experiments, we assume full knowledge of the spectrum (as this shows the
best we can hope to do using these bases), but in practice the user might not have any
information about the eigenvalues of A. In this case, if a Newton or Chebyshev basis is to
be used in the computation, we must �rst �nd eigenvalue estimates for A.

This is commonly accomplished by taking s (or O(s)) steps of Arnoldi to get the upper
Hessenberg matrix H. The eigenvalues of H, called Ritz values, are often good estimates for
the eigenvalues of A.

Using the Ritz values, we can then either computed the (modi�ed) Leja points for use
in the Newton basis or �nd good bounding ellipse parameters for use in the Chebyshev
basis [29]. It should be noted that, to use Joubert and Carey's formula for the Chebyshev
basis, we really only need the maximum and minimum real eigenvalues and largest imaginary
eigenvalue (which de�ne the ellipse). Here, instead of computing s eigenvalue estimates, we
might be able to make due with fewer Arnoldi iterations designed to �nd these quantities.

While we don't need to be completely accurate in these estimates, problems can occur in
extreme cases, depending on the spectrum of A. If Arnoldi gives you the s largest eigenvalues
and these are close together, the Newton basis will be ill-conditioned, as the basis vectors
will be nearly linearly dependent. Additionally, an ill-conditioned change of basis matrix will
result if the chosen shifts vary by many orders of magnitude (here the ill-conditioning of the
monomial basis has just been transferred to the change of basis matrix). It is also known
that the Chebyshev basis does poorly if the eigenvalues are clustered inside the ellipse.

5.3 Choice of Basis in Practice

Based on observations about the convergence of the CA-KSMs studied in this paper, we o�er
some preliminary guidance in choosing a basis in practical execution of these methods. In

46

practice, if s > 5 is required, either Newton or Chebyshev basis should be used if the user
knows (some of) the eigenvalues of A or can a�ord to compute estimates, as the monomial
basis rarely convergences in this case (unless the matrix is extremely well conditioned).
Even though some runtime may be lost computing eigenvalue estimates and performing
more �oating point operations in recovering the monomial basis, the ability to choose a
larger value of s (assuming As is still well-partitioned) may still result in a net performance
gain.

Another option for higher s values is to use the monomial basis with orthogonalization
(by performing a TSQR operation on the basis vectors, described in section 4.2.4), although
this requires an additional communication in the outer loop.

If we can only use a small value of s (based on the structure and density of As) or if we
have a very well-conditioned matrix, the monomial basis will usually perform on par with
the Chebyshev and Newton bases. In this case, the monomial basis is the obvious choice,
since fewer �oating point operations are required in the CA-KSM.

In future implementations of these CA-KSMs, the user will not be burdened with making
these decisions. Ideally, an auto-tuner could be used to select an appropriate code variant
that achieves both performance and stability based on matrix structure, eigenvalue estimates,
and other properties of A. The study and development of heuristics to accomplish such a
task is future work.

6 Future Work and Conclusions

6.1 Conclusions and Comments on Convergence

In this work, we have developed three new CA-KSMs: CA-BICG, CA-CGS, and CA-
BICGSTAB. We have implemented the monomial, Newton and Chebyshev bases and studied
convergence properties for a variety of matrices. We are able to use basis length 2 ≤ s ≤ 20,
depending on the matrix properties, where using a basis length of s allows for up to an s×
speedup.

Convergence results indicate that, like standard implementations, our methods su�er
from round o� error. The higher the s value used, the more prominent this e�ect, which
decreases maximum attainable accuracy. To combat this behavior, we have explored restart-
ing in CA-KSMs as a method to reduce stagnation due to deviation of true and computed
residuals, with promising results. We have also discussed the use of using the TSQR kernel
to orthogonalize the basis and dynamically select s, although whether or not this is practical
is yet to be determined.

Based on our initial observations, we have provided details and advice for the practical
implementation of CA-KSMs, including necessary preprocessing steps such as selecting a
polynomial basis for stability purposes. Additionally, we have shown how to further reduce
communication by using a variant of the Akx kernel that does s SpMMs instead of s SpMVs
if we have a method that requires more than one Krylov Subspace. This kernel can also be
used to do CA-Block KSM versions of our methods, to solve multiple systems simultaneously.
Decisions such as these will eventually be handled by a combination of auto-tuning and code
generation.

47

6.2 Future Work

Although initial convergence results are promising, there is much remaining work involved in
understanding, analyzing and improving convergence, as well as in creating e�cient imple-
mentations of these methods, benchmarking performance, and developing auto-tuner heuris-
tics. Making CA-KSMs practical, e�cient, and available for use will require much time and
e�ort. The three areas of future work listed below are considered to be priorities in order to
meet this goal.

Performance Experiments Our next step will be to code parallel, optimized implemen-
tations (both sequential and parallel) of our CA-KSMs and required kernels. We will then
benchmark performance for a variety of matrices, on a variety of platforms. Although we
have shown that communication is theoretically asymptotically reduced in our algorithms,
we must also see how our algorithms behave in practice (how much redundant work is re-
quired, where the optimal s value is depending on matrix surface-to-volume ratio, etc). Such
an analysis will determine the most important areas to work on moving forward.

Auto-tuning and Code Generation for Matrix Powers Many complex optimizations
and implementation decisions are required for both matrix powers kernel performance and
convergence of CA-KSMs. These optimizations are both machine and matrix dependent,
which makes auto-tuning and code generation an attractive approach. Employing such
techniques will lift the burden of expertise from the user, making the use of CA-KSMs more
accessible. Many approaches and ongoing projects exist for this purpose [7, 22, 24]. We also
plan to apply our methods to applications (e.g., as a bottom-solver in multigrid methods), in
conjunction with collaborators at the Communication Avoidance and Communication Hiding
at the Extreme Scale (CACHE) Institute, an interdisciplinary project funded by the U.S.
Department of Energy. We hope that by further study of the convergence and performance
properties of our CA-KSMs, we can contribute to the design of auto-tuners and heuristics,
and the successful integration of our work into existing frameworks.

Techniques to Further Improve Stability In this work, we presented a qualitative
analysis of initial convergence results for a small set of test matrices. A more rigorous
analysis of convergence properties for CA-KSMs will be necessary, and helpful in determining
new methods for improving stability. Current ideas for improving stability include using
techniques such as dispersive Lanczos [36] for �nding better eigenvalue estimates, using
extended precision in (perhaps only part of) the CA-KSM iterations, and further exploring
the use of variable basis length, incremental condition estimation, and orthogonalization
techniques.

Acknowledgements

This paper was researched with Government support under and awarded by the Department
of Defense, Air Force O�ce of Scienti�c Research, National Defense Science and Engineer-
ing Graduate (NDSEG) Fellowship, 32 CFR 168a. This research was also supported by

48

Microsoft (Award #024263) and Intel (Award #024894) funding and by matching fund-
ing by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab
a�liates National Instruments, Nokia, NVIDIA, Oracle, and Samsung. Research supported
by U.S. Department of Energy grants under Grant Numbers DE-SC0003959 and DE-AC02-
05-CH11231, as well as Lawrence Berkeley National Laboratory. Research supported by
NSF SDCI under Grant Number OCI-1032639. The authors would also like to thank Laura
Grigori (INRIA, France) and Mark Hoemmen (Sandia National Labs) for their insightful
comments.

References

[1] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA Journal
of Numerical Analysis, 14(4):563, 1994.

[2] Dennis J.M. Baker, A.H. and E.R. Jessup. On improving linear solver performance:
A block variant of GMRES. SIAM Journal on Scienti�c Computing, 27(5):1608�1626,
2006.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in
numerical linear algebra. SIMAX, see also bebop.cs.berkeley.edu, 2010.

[4] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout,
R.P.C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

[5] G.M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM
(JACM), 25(2):226�244, 1978.

[6] R. Bru, L. Elsner, and M. Neumann. Models of parallel chaotic iteration methods.
Linear Algebra and its Applications, 103:175�192, 1988.

[7] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and A. Fox. SEJITS: Getting productivity and performance with Selective Embedded
JIT Specialization. In First Workshop on Programmable Models for Emerging Archi-
tecture at the 18th International Conference on Parallel Architectures and Compilation
Techniques. Citeseer, 2009.

[8] D. Chazan and W. Miranker. Chaotic relaxation. Linear algebra and its applications,
2(2):199�222, 1969.

[9] A.T. Chronopoulos and C.W. Gear. S-step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics, 25(2):153�168, 1989.

[10] J. Cullum and W.E. Donath. A block Lanczos algorithm for computing the q alge-
braically largest eigenvalues and a corresponding eigenspace of large, sparse, real sym-
metric matrices. In Decision and Control including the 13th Symposium on Adaptive
Processes, 1974 IEEE Conference on, volume 13, pages 505�509. IEEE, 1974.

49

[11] T. Davis. University of Florida Sparse Matrix Collection. NA Digest, 97(23):7, 1997.

[12] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in
computing Krylov subspaces. Technical report, Technical Report UCB/EECS-2007-123,
University of California Berkeley EECS, 2007.

[13] W. Deren. On the convergence of the parallel multisplitting AOR algorithm. Linear
algebra and its applications, 154:473�486, 1991.

[14] R. Fletcher. Conjugate gradient methods for inde�nite systems. Numerical Analysis,
pages 73�89, 1976.

[15] G.H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues.
Mathematical software, 3:361�377, 1977.

[16] M.H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations.
Acta Numerica, 6(1997):271�398, 1997.

[17] M.H. Gutknecht and Z. Strakos. Accuracy of two three-term and three two-term recur-
rences for Krylov space solvers. SIAM Journal on Matrix Analysis and Applications,
22:213, 2000.

[18] V. Hernandez, J.E. Roman, and A. Tomas. Parallel Arnoldi eigensolvers with enhanced
scalability via global communications rearrangement. Parallel Computing, 33(7-8):521�
540, 2007.

[19] A.C. Hindmarsh and H.F. Walker. Note on a Householder implementation of the GM-
RES method. Technical report, Lawrence Livermore National Lab., CA (USA); Utah
State Univ., Logan (USA). Dept. of Mathematics, 1986.

[20] M. Hoemmen. Communication-avoiding Krylov subspace methods. Thesis. UC Berke-
ley, Department of Computer Science, 2010.

[21] J.W. Hong and H.T. Kung. I/O complexity: the red-blue pebble game. In Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing, pages 326�333,
1981.

[22] A. Jain. pOSKI: An extensible autotuning framework to perform optimized SpMVs on
multicore architectures. Technical report, MS Report, EECS Department, University
of California, Berkeley, 2008.

[23] W.D. Joubert and G.F. Carey. Parallelizable restarted iterative methods for nonsym-
metric linear systems. Part I: Theory. International Journal of Computer Mathematics,
44(1):243�267, 1992.

[24] A. LaMielle and M. Strout. Enabling code generation within the Sparse Polyhedral
Framework. Technical report, Technical Report CS-10-102 Colorado State University,
March 2010.

50

[25] C.E. Leiserson, S. Rao, and S. Toledo. E�cient out-of-core algorithms for linear relax-
ation using blocking covers. Journal of Computer and System Sciences, 54(2):332�344,
1997.

[26] G. Meurant. The block preconditioned conjugate gradient method on vector computers.
BIT Numerical Mathematics, 24(4):623�633, 1984.

[27] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in
sparse matrix solvers. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, page 36. ACM, 2009.

[28] D.P. O'Leary. The block conjugate gradient algorithm and related methods. Linear
Algebra and its Applications, 29:293�322, 1980.

[29] B. Philippe and L. Reichel. On the generation of Krylov subspace bases. Applied
Numerical Mathematics, 2011.

[30] L. Reichel. Newton interpolation at Leja points. BIT Numerical Mathematics,
30(2):332�346, 1990.

[31] J.V. Rosendale. Minimizing inner product data dependencies in conjugate gradient
iteration. 1983.

[32] Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient
method. SIAM J. Sci. Stat. Comput., 6(4):865�881, 1985.

[33] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathematics,
2003.

[34] G.L.G. Sleijpen and H.A. van der Vorst. Reliable updated residuals in hybrid Bi-CG
methods. Computing, 56(2):141�163, 1996.

[35] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. Statist.
Comput, 10:36�52, 1989.

[36] S. Toledo. Dispersive Lanczos or (when) does Lanczos converge? In Combinatorial
Scienti�c Computing 2011, Conference Proceedings. SIAM, 2011.

[37] S.A. Toledo. Quantitative performance modeling of scienti�c computations and creating
locality in numerical algorithms. PhD thesis, Massachusetts Institute of Technology,
1995.

[38] R.R. Underwood. An iterative block Lanczos method for the solution of large sparse
symmetric eigenproblems. 1975.

[39] H.A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM Journal on scienti�c and Statistical
Computing, 13:631, 1992.

51

[40] R. Vuduc, J.W. Demmel, and K.A. Yelick. OSKI: A library of automatically tuned
sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521.
IOP Publishing, 2005.

[41] H.F. Walker. Implementation of the GMRES method using Householder transforma-
tions. SIAM Journal on Scienti�c and Statistical Computing, 9:152, 1988.

[42] B. Zhongzhi, W. Deren, and D.J. Evans. Models of asynchronous parallel matrix mul-
tisplitting relaxed iterations. Parallel computing, 21(4):565�582, 1995.

52

