
How Open Should Open Source Be?

Adam Barth
Saung Li
Benjamin I. P. Rubinstein
Dawn Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-98

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-98.html

August 31, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Pongsin Poosankam, Wil Robertson, Aleksandr
Simma, and Daniel Veditz for their helpful comments and assistance. We
gratefully acknowledge the support of the NSF through grant DMS-
0707060, and the support of the Siebel Scholars Foundation.

How Open Should Open Source Be?

Adam Barth
Google

adam@adambarth.com

Saung Li
CS Division, UC Berkeley
shadowcwal@berkeley.edu

Benjamin I. P. Rubinstein
Microsoft Research

ben.rubinstein@microsoft.com

Dawn Song
CS Division, UC Berkeley

dawnsong@eecs.berkeley.edu

Abstract—Many open-source projects land security fixes in
public repositories before shipping these patches to users. This
paper presents attacks on such projects—taking Firefox as a
case-study—that exploit patch metadata to efficiently search for
security patches prior to shipping. Using access-restricted bug
reports linked from patch descriptions, security patches can
be immediately identified for 260 out of 300 days of Firefox 3
development. In response to Mozilla obfuscating descriptions,
we show that machine learning can exploit metadata such as
patch author to search for security patches, extending the total
window of vulnerability by 5 months in an 8 month period
when examining up to two patches daily. Finally we present
strong evidence that further metadata obfuscation is unlikely
to prevent information leaks, and we argue that open-source
projects instead ought to keep security patches secret until they
are ready to be released.

Keywords-open-source software security; information leak-
age; learning-based attacks

I. INTRODUCTION

Many open-source software development projects, such
as Firefox, Chromium, Apache, the Linux kernel, and
OpenSSL, produce software that is run by hundreds of
millions of users and machines. Following the open-source
spirit, these projects make all code changes immediately
visible to the public in open code repositories, including
landing fixes to security vulnerabilities in public develop-
ment branches before publicly announcing the vulnerability
and providing an updated version to end users. This common
practice raises the question of whether this extreme openness
increases the window of vulnerability by enabling attackers
to discover vulnerabilities earlier in the security life-cycle,
e.g., via program analysis [1]. The conventional wisdom is
that detecting these security patches is made prohibitively
difficult because the patches are hidden among a cacophony
of non-security changes. For example, the central Firefox
repository receives, on average, 38.6 patches per day, of
which 0.34 fix security vulnerabilities. Recently, blackhats in
the Metasploit project have used the “description” metadata
field to find Firefox patches that refer to non-public bug
numbers [2]. The Firefox developers have responded by
obfuscating the description field, but where does this cat-
and-mouse game end?

In this paper, we analyze information leaks in open-source
life-cycles, through a case-study on Firefox 3 and 3.5, to
answer three key questions: (1) Does the metadata asso-

ciated with patches in the source code repository contain
information about whether the patch is security sensitive?
(2) Using this information as a guide, how much less effort
does an attacker need to expend to find unannounced security
vulnerabilities? (3) By how much do these information leaks
increase the total window of vulnerability? We do not study
the task of reverse engineering exploits from patches [1],
but instead focus on prioritizing the search for security
patches to decrease attack cost. In so doing we make several
contributions:

• For all but 40 out of 300 days of Firefox 3 active
development, a simple join of Firefox’s repository and
bug tracker identifies a newly landed security patch.

• Even if the patch-bug ID link is obfuscated perfectly,
off-the-shelf machine learning can rank patches using
remaining metadata such that examining up to two
patches daily will add an extra 5 months of vulnerabil-
ity within an 8 month period of Firefox 3 development.

• We offer strong evidence that obfuscating patch meta-
data achieves diminishing returns, and even under com-
plete obfuscation a random ranker adds over 2 months
of vulnerability by examining just 2 patches daily.

• We argue that instead of obfuscating metadata, open-
source projects like Firefox should land security patches
in a private release branch accessible to trusted testers.

We first quantify the severity of information leaks due
to Firefox’s bug tracker Bugzilla. Upon arrival of a
new patch in the mozilla-central main development
trunk, it is a simple matter for an attacker to parse the
patch’s description field for a bug ID and then consult
Bugzilla for the corresponding bug history. We show that
for the vast majority of days of active Firefox development,
a corresponding Bugzilla bug report page was access
restricted at the time of landing, divulging the patch’s nature
as fixing a vulnerability, in which case the attacker need only
reverse-engineer one patch to find a zero-day vulnerability.

Prompted by Metasploit blackhats exploiting this infor-
mation leak, Mozilla recently began obfuscating patch de-
scriptions [2]. Given the wealth of metadata still available,
including patch author, the set of files modified, and the size
of these modifications, we conjectured that machine learn-
ing could significantly narrow an attacker’s search space
of patches. While we show that each feature individually

contains little information about whether patches are security
sensitive, our experiments on Firefox show that a non-linear
combination of features provides valuable guidance for
attackers. Our attack uses an off-the-shelf implementation
of a support vector machine (SVM) trained to discriminate
between security and non-security patches based on non-
description metadata. We then use the SVM to rank newly-
landed patches by likelihood of fixing a vulnerability. We
measure the cost to the adversary by attacker effort—the
number of patches the attacker would need to examine
before finding the first vulnerability; for over a third of
an 8 month period of Firefox 3, an SVM-assisted attacker
discovers a security patch upon the first patch examined
daily. We measure the benefit to the attacker by the increase
to the window of vulnerability; an attacker who examines the
top two patches ranked by the detection algorithm each day
will add an extra 148 days of vulnerability to the 229 day
period we study, representing a 6.4-fold increase over the
window of vulnerability caused by the latency in deploying
security updates.

In performing the cost-benefit analysis of the SVM ranker,
we also consider a random ranker which searches through
recently landed patches in random order. While the random
ranker serves as a benchmark with which to judge the
SVM’s performance, it demonstrates that even under perfect
obfuscation of all patch metadata, an attacker need not
expend significant effort to yield moderate results.

Our results suggest that Firefox should change its security
life-cycle to avoid leaking information about unannounced
vulnerabilities in its public source code repositories. Instead
of landing security patches in the central repository, Firefox
developers should land security patches in a private release
branch that is available only to a set of trusted testers.
The developers can then merge the patches into the public
repository at the same time they release the security update
to all users and announce the vulnerability.

Although we study Firefox specifically, we believe our
results generalize to other open-source projects, includ-
ing Chromium, Apache, the Linux kernel, and OpenSSL,
which land vulnerability fixes in public repositories before
announcing the vulnerability and making security updates
available. However, we choose to study these issues in
Firefox because Firefox has a state-of-the-art process for
responding to vulnerability reports and publishes the ground
truth about which patches fix security vulnerabilities [3].

Organization. The remainder of the paper is organized as
follows. Section II describes the existing Firefox security
life-cycle. Section III lays out the dataset we analyze.
Section IV explains our methodology. Section V presents
our results. Section VI recommends a secure security life-
cycle. Section VII concludes.

Figure 1. Information leaked about security-sensitive bug numbers has pre-
viously been exploited by attackers to identify undisclosed vulnerabilities,
when bug numbers were linked from landed patches via patch descriptions.

II. LIFE-CYCLE OF A VULNERABILITY

This section describes the life-cycle of a security patch
for Firefox. We take Firefox as a representative example,
but many open-source projects use a similar life-cycle.

A. Stages in the Life-Cycle

In the Firefox open-source project, vulnerabilities proceed
through a sequence of observable stages:

1) Bug filed. The Firefox project encourages security
researchers to report vulnerabilities via the project’s
public bug tracker Bugzilla. When filed, security
bugs are marked “private” (meaning access is re-
stricted to a trusted set of individuals on the security
team [4]; see Figure 1) and are assigned a unique ID.

2) Patch landed in mozilla-central. Once the developers
determine the best way to fix the vulnerability, a devel-
oper writes a patch for the mainline “trunk” of Firefox
development. Other developers review the patch for
correctness. Once the patch is approved, the developer
lands the patch in the public mozilla-central
Mercurial repository.

3) Patch landed in release branches. After the patch
successfully lands on mozilla-central (includ-
ing passing all the automated regression and perfor-
mance tests), the developers merge the patch to one
or more of the Firefox release branches.

4) Security update released. At some point, a release
driver decides to release an updated version of Firefox
containing one or more security fixes (and possibly
some non-security related changes). These releases
are typically made from the release branch, not from
the mozilla-central repository. The current state
of the release branch is packaged, signed, and made
available to users via Firefox’s auto-update system.

5) Vulnerability announced. Mozilla announces the vul-
nerabilities fixed in the release [3]. For the majority
of vulnerabilities, disclosure is simultaneous with the
release. However, in some cases disclosure can occur
weeks later (after the security update is applied by
most users).

0 50 100 150 200 250 300 350

Mozilla−Central Firefox Patch Volume

Time (days after 2008−07−17)

N
um

be
r

of
 p

at
ch

es
 p

er
 d

ay
(lo

g
sc

al
e)

1
2

5
10

10
0

10
00

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

● ● ● ● ● ● ● ●● ●

●

● ●●

●

●● ● ●●●

●

● ● ● ●● ●●

●●

●● ●

●

●

●

●● ●

●

● ●● ●

● ●●

●

●

●

●

●●

● ●

● ●

●

● ●●●

●

●● ●●● ● ● ●

●

● ●●

●

● ●●●●●● ● ●

●

● ●

●

●

●

Non−security patches
Security patches
Security update release dates

Figure 2. Attackers must find security patches within a “thundering herd” of non-security patches.

6) Security update applied. Once a user’s auto-update
client receives an updated version of the Firefox binary
and the user chooses to install the binary, Firefox
updates itself. Upon installation, the user is protected
from an attacker exploiting the vulnerability.

Previous work [5] has analyzed the dynamics between steps
(4) and (6), finding that the user experience and download
size have a dramatic effect on the time delay and, hence, the
window of vulnerability. With a sufficiently well-designed
update experience, browser vendors can reduce the lag
between (4) and (6) to a matter of days. Recent releases
of Firefox have an improved update experience that reduces
the window of vulnerability between steps (4) and (6).

However, not as much attention has been paid to the
dynamics between steps (1) and (4), likely because most
people make the assumption that little is revealed about a
vulnerability until the vulnerability is intentionally disclosed
in step (4). Unfortunately, there are a number of information
leaks in this process that invalidate that assumption.

B. Information Leaks in Each Stage

Each stage in the vulnerability life-cycle leaks some
amount of information about vulnerabilities to potential
attackers. For example, even step (1) leaks information
because bug numbers are issued sequentially and a brute-
force attack can determine which are “forbidden” and hence
represent security vulnerabilities. Of course, simply knowing
that a vulnerability was reported to Firefox does not give an
attacker much useful information for creating an exploit.

More information is leaked in stage (2) when develop-
ers land security patches in mozilla-central because
mozilla-central is a public repository. It is unclear,
a priori, whether an attacker will be able to find secu-
rity patches landing in mozilla-central because these

security patches are landed amid a “thundering herd” of
other patches (cf. Figure 2), but if an attacker can detect
that a patch fixes a security vulnerability, the attacker can
learn information about that vulnerability. For example, the
attacker learns where in the code base the vulnerability
exists. If the patch fixes a vulnerability by adding a bounds
check, the attacker can look for program inputs that generate
large buffers of the checked type. In this paper, we do not
evaluate the difficulty of reverse engineering an exploit from
a vulnerability fix, but there has been some previous work [1]
on reverse engineering exploits from binary patches (which
is, of course, more difficult than reverse engineering exploits
from source patches). Instead we focus on reducing attacker
effort through efficient methods for prioritizing their search.

III. ANALYSIS GOALS AND SETUP

In this section, we describe the dataset and the perfor-
mance metrics for searching for security patches.

A. Dataset

Set of Patches. In our experiment, we focused on the
complete life-cycle of Firefox 3, which lasted over 12
months, contained 14,416 non-security patches, 125 security
patches, and 12 security updates. We use publicly available
data starting from the release of Firefox 3 and ending with
the release of Firefox 3.5. Also, to strengthen our results,
we focus on the mozilla-central repository, which
receives the vast majority of Firefox development effort.
We cloned the entire mozilla-central repository to
our experimental machines to identify all patches during
the life-cycle of Firefox 3. We ignore the release branches
to evaluate how well our search methods are able to find
security fixes amid mainline development (see Figure 2).

Although we focus our attention to Firefox 3, we re-
peat our results on Firefox 3.5 and expect our results to
generalize to other releases of Firefox and to other open-
source projects. Firefox 3.5 was released June 30, 2009 and
remained active until the release of Firefox 3.6 on January
21, 2010. During this 6 month period, 7 minor releases to
Firefox were made ending with Firefox 3.5.7 on January 5,
2010. During the 6 month period, 7,033 patches were landed
of which 54 fixed vulnerabilities.
Ground Truth. We determined the “ground truth” of
whether a patch fixes a security vulnerability by examining
the list of known vulnerabilities published by Firefox [3].
Each list of Common Vulnerabilities and Exposures on the
known vulnerability web page contains a link to one or
more entries in Bugzilla. At the time we crawled these
bug entries (after disclosure), the entries were public and
contained links to the Mercurial commits that fixed the
vulnerabilities (both in mozilla-central and in the
release branches). Our crawler harvested these links and
extracted the unique identifier for each patch.

The known vulnerability page dates each vulnerability
disclosure, and we assume that these disclosure dates are
accurate. Each bug entry is timestamped with its creation
date and every message on the bug thread is dated as well.
Finally, the mozilla-central pushlog website contains
the date and time of every change in the “pushlog,” which
we also assume is authoritative.

B. Attack Performance Metrics

We consider attackers who search for security patches
in open-source repositories, with the goal of reverse-
engineering them to produce zero-day exploits. We focus on
three different methods for ranking patches for an attacker to
search through, to find a security vulnerability. Each search
method can be thought of as producing a ranking on the pool
of recently landed patches, where better rankings place (at
least) one security patch higher than non-security patches.
The attacker examines the landed patches in rank order,
until a security patch is found. The ranker’s usefulness, as
formalized below, lies in the reduction to attacker effort and
in the increase to the window of vulnerability.

1) Cost of Vulnerability Discovery: Attacker Effort:
Given a set of patches and a ranking function, we call the
rank of the first true security patch the attacker effort. This
quantity reflects the number of patches the attacker has to
examine when searching the ranked list before finding the
first patch that fixes a security vulnerability. For example, if
the third-highest ranked patch actually fixes a security vul-
nerability, then the attacker needs to examine three patches
before finding the vulnerability, resulting in an attacker effort
of three. Using this metric, we can compute the percent of
days on which an attacker who expends a given effort will
be able to find a security patch.

Figure 3. An example patch with metadata from the Firefox Mercurial
repository. In addition to patch description and bug number, several features
leak information about the security-related nature of a patch.

2) Benefit for the Attacker: Window of Vulnerability:
Another metric we propose is the increase to the window of
vulnerability due to the assistance of a ranker. In particular,
an attacker who discovers a vulnerability d days before the
next security update increases the total window of vulnera-
bility for Firefox users by d days. (Notice that knowing of
multiple vulnerabilities simultaneously does not increase the
aggregate window of vulnerability because knowing multiple
vulnerabilities simultaneously is redundant.)

Previous work [6] explores the effectiveness of browser
update mechanisms, finding that security updates take some
amount of time to propagate to users. In particular, they
measured the cumulative distribution of the number of days
users take to update their browsers after security updates [6,
Figure 3]. After about 10 days, the penetration growth rate
rapidly decreases, asymptotically approaching about 80%.
By integrating the area above the CDF up to 80%, we can
estimate the expected number of days a user takes to update
Firefox 3 conditioned that they are in the first 80% who
update. We estimate this quantity, the post-release window
of vulnerability, to be 3.4 days, which we use as a baseline
value for comparing windows of vulnerability.

IV. METHODOLOGY

In this section, we describe the methodology we use to
analyze information leaks in the open-source security life-
cycle. We present three security patch search methods, by
order of decreasing levels of patch metadata used.

A. Exploiting Patch Description and Bug History

Our simplest approach to discovering security
patches is an attack recently observed in the wild [2].
mozilla-central metadata can include a patch
description which regularly references the number of the
bug fixed by the patch (cf. Figure 3). When a new patch
lands, the attacker can parse the description field for bug
numbers, and query Bugzilla for the corresponding bug
history. If the bug history page is access restricted (cf.
Figure 1) or it records a previous core-security add/remove
event (a flag indicating that access to the bug report is
restricted to the security team), then the attacker can
be confident that the landed patch fixes a vulnerability.
After crawling all patches in mozilla-central we
simulated this attack by parsing description fields and
querying Bugzilla; if an add/remove event occurred
prior to the simulated day of examination then we infer
that an attacker would have correctly deemed the patch to
be security-related.

B. A Learning-Based Ranker

Given a collection of past patches, an attacker can label
them based on whether the patches have been announced as
vulnerability fixes. Using these labels, the attacker can train
a statistical machine learning algorithm to predict whether a
new patch fixes an unannounced vulnerability—a supervised
binary classification problem. We consider learners that
output a real-valued confidence for their predictions. The
attacker can use these confidence values to rank a set of
patches, before examining the patches in rank order.
Features used by the Learner. There are a number of
features we could use to identify security patches. When
Mozilla became aware of the previous attack, they began to
take steps to obfuscate patch descriptions [2]. Obfuscating
and de-obfuscating the patch description is clearly a cat-
and-mouse game. To simulate perfect obfuscation of the
patch description by the Firefox developers, we analyze
information leaks in other metadata associated with each
patch (cf. Figure 3).
• Author. We hypothesize that information about the

patch author (the developer who wrote the patch) will
leak a sizable amount of information because Firefox
has a security team [4] that is responsible for fixing
security vulnerabilities. Most members of the Firefox
community do not have access to security bugs and are
unlikely to write security patches.

• Top-level directory. For each file that was modified
by the patch, we observe the top-level directory in
the repository that contained the file. In the Firefox
directory structure, the top-level directory roughly cor-
responds to the module containing the file. If a patch
touches more than one top-level directory, we pick the
directory that contains the most modified files.

• File type. For each file that a patch modified, we
observe the file’s extension to impute the file’s type.
E.g., Firefox patches often modify C++ implementation
files, interface description files, and XML user interface
descriptions. If a patch touches more than one type of
file, we pick the type with the most modified files.

• Patch size. We observe a number of size metrics
for each patch, including the total size of the diff in
characters, the number of lines in the diff, the number
of files in the diff, and the average size of all modified
files. Although these features are highly correlated, the
SVM’s ability to model non-linear patterns lets us take
advantage of all these features.

• Temporal. The timestamp for each patch reveals the
time of day and the day of week the patch was landed in
the mozilla-central repository. We include these
features in case, for example, some developers prefer
to land security fixes at night or on the weekends.

Although these features are harder to obfuscate than the
free-form description field, we do not claim that these
features cannot be obfuscated. Instead, we claim that there
are a large number of small information leaks that can be
combined to detect security patches. Of course, this set of
features is far from exhaustive and serves only as a lower
bound on the attacker’s abilities.
Learning Algorithm. For our detection algorithm, we
use the popular libsvm library for support vector ma-
chine (SVM) learning [7]. Although we could improve our
metrics by tuning the learning algorithm, we choose to use
the default configuration to strengthen our conclusions—
extracting basic features (as detailed above) and running
libsvm in its default configuration requires only basic
knowledge of Python and almost no expertise in machine
learning.

Support vector machines perform supervised binary clas-
sification by learning a maximum-margin hyperplane in a
high-dimensional feature space [8]–[10]. Many feature map-
pings are possible, and the default libsvm configuration
uses the feature mapping induced by the RBF kernel, which
takes a parameter γ that controls kernel width. The SVM
takes another parameter C, which controls regularization.
An attacker need not know how to set these parameters
because libsvm chooses the parameters that optimize 5-
fold cross-validation estimates over a grid of (C, γ) pairs.
The optimizing pair is then used to train the final model. We
enable a feature of libsvm that learns posterior probability
estimates Pr (patch fixes a vulnerability | patch) rather than
security/non-security class predictions [11]. We refer to these
posterior probabilities as probabilities or scores.

We present nominal features (author, top-level directory,
and file type) to the SVM as binary vectors. For example,
the ith author out of N developers in the Firefox project is
represented as N−1 zeros and a single 1 in the ith position.

After training an SVM on patches labeled as security or

1 2 5 10 20 50 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PMF of Random Ranker Effort (100 patches)

Random ranker effort (log scale)

P
ro

ba
bi

lit
y

Security Patches

1
5
10
20
50

Figure 4. The distribution of the random ranker’s effort X as a function
of ns for n = 100, as given by Equation (3).

0 20 40 60 80 100

1
2

5
10

20
50

Expectation of Random Attacker Effort

Number of security patches

E
xp

ec
te

d
at

ta
ck

er
 e

ffo
rt

 (
lo

g
sc

al
e)

Patches n

n=20
n=40
n=60
n=80
n=100

Figure 5. The random ranker’s expected effort E [X] as a function of ns

for n ∈ {20, 40, 60, 80, 100}, as given by Equation (1).

0 100 200 300 400 500 600

1
2

5
10

20
50

10
0

20
0

Effect of Increasing Pool Size with Constant Fraction

Number of patches

E
xp

ec
te

d
at

ta
ck

er
 e

ffo
rt

 (
lo

g
sc

al
e)

Fraction of security patches

10^−2.5
10^−2

10^−1.5
10^−1

10^−0.5

Figure 6. The random ranker’s expected effort E [X] as a
function of n for constant fractions of security patches ns/n ∈
{0.0032, 0.01, 0.032, 0.1, 0.32}, as given by Equation (1).

1 2 5 10 20 50

0
5

10
15

20
25

30
Random Ranker: Vulnerability Window vs. Effort

(31 day cycle, with 39 patches landing daily)

Patches attacker is willing to examine daily (log scale)

E
xp

ec
te

d
in

cr
ea

se
 to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

Frac. security patches

10^−2.5
10^−2
10^−1.5
10^−1
10^−0.5

Figure 7. The random ranker’s expected vulnerability window increase
vs. daily budget, for a 31 day cycle with 39 patches daily (the Firefox 3
averages). Benefits shown for security patch fractions of Figure 6.

non-security, we can use the SVM to rank a set of previously
unseen patches by ordering the patches in decreasing order
of score. If the SVM is given sufficient training data, we
expect the higher-ranked patches to be more likely to fix
vulnerabilities. As we show in Section V, even though the
SVM scores are unsuitable for classification, they are an
effective means for ranking patches.

Note that detecting patches that repair vulnerabilities
can be cast as learning problems other than scalar-valued
supervised classification. For example, we could take a more

direct approach via ranking or ordinal regression (although
these again do not directly optimize our primary interest:
having one security patch ranked high). However, we use an
SVM because it balances statistical performance for learning
highly non-linear decision rules and availability of off-the-
shelf software appropriate for data mining novices.

Online Learning. To limit the detector to information avail-
able to real attackers, we perform the following simulation
using the dates collected in our data set. For each day,
starting on the day between major releases of Firefox, we

perform the following steps:
1) We train a fresh SVM on all the patches landed in the

repository between the day Firefox 3 was released and
the most recent security update before the current day,
labeling each patch according to the publicly known
vulnerabilities list [3].1

2) We then use the trained SVM to rank all the patches
landed since the most recent security update.

After running the complete online simulation, we observe
the highest ranking received by a real vulnerability fix on
each day. This ranking corresponds to the SVM-assisted
attacker effort for that day.

C. The Random Ranker

To model an attacker searching for security patches un-
der complete metadata obfuscation, we consider a random
ranker who examines available patches in a random order.
By comparing this ranker with the SVM, we may gain
insight into the amount of information leaked by seemingly
innocuous patch metadata.

We model the random ranker as selecting patches one-
at-a-time, uniformly-at-random without replacement from
the pool of patches available in mozilla-central. The
attacker’s effort is the random number X of patches ex-
amined up to and including the first patch drawn that fixes
a vulnerability. We summarize the cost of using unassisted
random ranking via the expected attacker effort, which we
derive in Appendix A to be

E [X] =

(
n
ns

)−1 n−ns+1∑
x=1

x

(
n− x
ns − 1

)
, (1)

where n > 0 is the total number of available patches, and
1 ≤ ns < n is the number of these that fix vulnerabilities.

The probability mass and expectation of X are explored
in Figures 4 and 5. For ns = 1 the distribution of effort
is uniform; and as the number of security patches increases
under a constant pool size, mass quickly concentrates on
lower effort (note that in each figure attacker effort is
depicted on a log scale). Similarly the significant effect of
varying ns on the expected effort can be seen in Figure 5.

The expected increase to the window of vulnerability is
also derived in Appendix A. Both expected cost and benefit
metrics can be efficiently computed exactly for the random
ranker, given patch counts n and ns.

Figures 6 and 7 show the random ranker’s expected cost
and benefit, for a typical Firefox 3 inter-point release cycle
with constant fractions of security patches; in both cases
effort is shown on a log scale. The first figure shows that
attacker effort increases under a growing pool of patches,

1Note that not all security patches are disclosed as fixing vulnerabilities
by the following release. Such patches are necessarily (mis)labeled as non-
security, and trained on as such. Once the true patch is disclosed, we re-label
and re-train. The net effect of delayed disclosure is a slight degradation to
the SML-assisted ranker’s performance.

1 2 5 10 20

0
50

10
0

15
0

20
0

25
0

Bugzilla Window Increase by Patches Discovered

No. security patches discovered per cycle (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

Figure 8. The total increases to the window of vulnerability when searching
for multiple security patches per inter-release period in Firefox 3, by linking
patch description to bug history.

with constant fraction being security-related. For a typical
cycle (of length 31 days), typical patch landing rate (of 39
patches daily) and fixed fraction of security-related landed
patches, Figure 7 shows the expected window increase as a
function of daily budget. Again we see a great difference
over increasing proportions of security patches, and the
effect of proportion on the dependence of benefit on budget.
Since the average fraction of security-related patches for
Firefox 3 is 0.0085, the curves at 10−2 should approximate
the performance of the random ranker for Firefox 3 as
is verified in Section V. By including curves at atypical
security patch rates (from the perspective of Firefox) we
offer a preview of the cost and benefit achieved by the
random ranker as applied to other open-source projects.

V. RESULTS

We now present results of searching for Firefox security
patches. We first explore searching using the patch descrip-
tion and Bugzilla, we then explore the discriminative
power of the individual features, and finally we evaluate
and compare SVM-assisted search and random search.

A. Exploiting Patch Description and Bug History

We simulated the search for security patches described in
Section IV-A, that parses patch description fields for bug
numbers, queries Bugzilla, and then uses evidence of
core-security add/drop events or access restriction of the bug
report pages to determine which patches fix vulnerabilities.
The attacker effort due to search is essentially naught—only
a handful of HTTP requests are submitted per landed patch,
and no source code need be analyzed. When executed daily
over 300 days of Firefox 3 development, a security patch is

Analysis of Individual Features' Discriminative Power

Information gain ratio

F
ea

tu
re

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

author

top dir

diff length

diff lines

file type

file size

diff files

time of day

day of week

Figure 9. The features ordered by decreasing ability to discriminate be-
tween security and non-security patches, as represented by the information
gain ratio.

found on all but 40 days yielding a total window of vulner-
ability increase (summed over all inter-release periods) of a
staggering 260 days. We obtained similar results on Firefox
3.5 over a period of 232 days with an aggregate window of
vulnerability increase of 219 days. As an attacker may wish
to find more than one security patch at a time, we re-ran
the attack terminating the search in each inter-release cycle
only when the required number of security patches were
discovered. Figure 8 displays the resulting increases to the
vulnerability windows as a function of number of security
patches desired. The window increase drops slightly to 247
and 238 days total, when the required number of security
patches grows to 2 and 3 respectively.

By exploiting patch descriptions and the nature of security
patches leaked by the Firefox bug tracker, an attacker
searching for security patches increases the total window
of vulnerability for Firefox 3 and 3.5 by factors of 9.4 and
10.1 over baseline, respectively.

B. Metadata Feature Analysis

Prior to evaluating the SVM-assisted ranker, we analyzed
the ability of individual features to discriminate between
security and non-security patches. We adopt the information
theoretic information gain ratio, which reflects the decrease
in entropy of the training set class labels when split by each
individual feature (cf. Appendix B for details on information
gain). The results are presented in Figures 9–12.

The individual features’ discriminative abilities are
recorded in Figure 9. For the nominal features—author,
top-level directory, file type, and day of week—we com-
pute the information gain ratios directly, whereas for the
remaining continuous features we use the gain ratio given

by choosing the best threshold value. The author feature
has the most discriminative power, providing a gain ratio
1.8 times larger than the next most informative feature. The
next two most discriminative features are top-level directory
and diff length, with the remaining features contributing less
information.

Furthermore, observe thateach individual feature alone
provides only insignificant discriminative power, since the
maximum information gain ratio is a tiny 3 × 10−3. To
add credence to these numbers, we note also that the
unnormalized information gains (cf. Appendix B) have a
similar ordering with the author feature coming out on top
with an information gain of 2 × 10−2, which corresponds
to a small change in entropy. To summarize, we offer the
following remark.

Remark 5.1: Some features provide discriminative power
for separating security patches from non-security patches,
with author, top-level directory, and diff length among the
most discriminative. However, individually, no feature pro-
vides significant discriminative power for separating security
patches from non-security patches.

To give intuition why some features provide discriminat-
ing power for security vs. non-security patches, we analyze
in more detail the three most discriminative features: the
author, top-level directory, and diff length.

For the author and top-level directory features, we analyze
their influential feature values. For each occurring feature
value, we compute its proportion value: the proportion of
patches with that feature value that are security sensitive.
Figures 10 and 11 depict the influential feature values for
authors and top-level directory by ranking the feature values
by their proportion values. During the life-cycle of Firefox 3,
a total of 516 authors contributed patches out of which 38
contributed at least one security patch; only these 38 authors
are shown in Figure 10. Notice that the top four authors
(labeled) are all members of the Mozilla Security Group [4].

To explore the third most individually discriminative
feature, the continuous diff length, we plot the feature CDFs
for security and non-security patches in Figure 12. Since the
diff length distribution is extremely tail heavy (producing
CDFs resembling step-functions) Figure 12 zooms in on the
left portion of the CDF by plotting the curves for the first
6, 500 (out of 7, 500) unique diff lengths. From the relative
positions of the CDFs, we observe that security patches have
shorter diff lengths than non-security patches. This matches
our expectations that patches that add features to Firefox
require larger diffs.

Our feature analysis shows that no individual feature
effectively predicts whether a patch is security-related: mo-
tivated attackers should look to more sophisticated statistical
techniques to reduce the cost of finding security patches; and
suggests that obfuscating individual features will not plug
information leaks in the open-source life-cycle. Moreover
certain features cannot be effectively obfuscated. For exam-

●

●

●

●

●
● ● ● ●

● ●
● ●

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ordered Author Values

Feature value rank

P
ro

p.
 p

at
ch

es
 th

at
 a

re
 s

ec
ur

ity
 p

at
ch

es

Nelson Bolyard (1/1)

Daniel Veditz (8/13)

Jason Duell (2/5)

timeless (1/7)

Figure 10. The authors who committed security
patches, ordered by proportion of patches that are
security patches The top four authors are identified
with their security and total patches along-side.

●

●

●

●

●
●

● ●
● ●

● ●
● ●

●
●

● ●

0 10 20 30 40 50
0.

00
0.

05
0.

10
0.

15

Ordered Top−Level Dir. Values

Feature value rank

P
ro

p.
 p

at
ch

es
 th

at
 a

re
 s

ec
ur

ity
 p

at
ch

es

rdf (1/6)

docshell (4/53)

netwerk (10/232)

caps (1/29)

Figure 11. The top-level directories ordered by
the proportion of patches that are security patches
The top four directories are identified with their
security and total patches along-side.

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Diff Lengths

Diff length in characters (zoomed)

P
ro

ba
bi

lit
y

Security patches
Non−security patches

Figure 12. The CDFs of the security and non-
security diff lengths. The figure is “zoomed” in
on the left, with the top 1,000 largest lengths not
shown.

●●
●●
●

●●

●●
●●●●●●●●
●●●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●
●

●
●●●●
●●●●●●●●●●●●

●

●

●●

●●

●

●
●●●●

●

●

●●
●●●
●●●●●
●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●●
●
●●●

●

●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●
●

●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●●
●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●

●
●●
●●

●●●

●

●●
●●●●●●●●●
●
●

●

● ●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●
●●●●●●
●●●●●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

● ●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●

●
●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●

●
●●
●●●●●●●●●●●●

●

●

●

●●●●●

●
●

●●●●●●●●
●●

●●●●●●●●

●

●●●
●●●●
●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●

●

●●●
●●●●●●●●●●
●●●●

●
●
●●
●
●●
●●●●●●●●●●●●●●●●

●●
●●

●

●

●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●
●

●
●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●●●●●●

●
●
●●●●
●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●

●

●●●●
●●

●

●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●

●●●●●●

●●
●●●●●

●
●
●●●●●

●

●

●
●

●●●●●●●●●

●
●
●

●●●
●

●●
●
●

●●●

●●

●●●●●●●

●
●●

●

●●

●●●

● ●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●
●
●●
●●●
●

●●
●

● ●

●●
●●●
●

●●

●

●

●●●

●

●

●

●
●
●
●●●●●
●

●
●
●●●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●
●●
●

●●●●●●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●

●

●●

●●
●

●●

●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●
●●●●●

●●
●●

●
●●●●●●

● ●●●●●●
●●
●●●●●●●●●
●●●●

●●●
●
●●●●●●●
●●
●●●●

●

●●

●

●
●●●●●●●

●

●●
●
●●●●

●●●
●●

●

●

●

●●●●

●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●
●
●
●●●●●●
●●●
●●●●●●●●

●●●●●

●
●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●
●
●
●●●

●
●●●●●●●
●●
●●●●●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●●

●

● ●
●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●●
●●●●
●●●
●

●●●

●●

●●●

●

●

●

●●●●●●
●●
●●●●●●●●●●

●
●
●
●●●●
●●●●●●●●
●●
●●
●●●●

●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●

●
●●
●●
●
●●●●●

●●
●●

●●

●●

●

●●●

●●●●●●
●●●●●●●●●●

●

●●●

●●●●●●
●
●●●
●●●●

●●●●

●●

●

●

●●●●

●●

●●●●

●●●

●

●

●
●●

●

●●●●●●●●●●●
●●●●●●●

●
●●

●●●●
●

●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●
●●●
●●●
●

●●

●
●●●●

●
●
●●●
●

●
●

●●

●
●●

●●

●

●
●●●
●
●●●●●●●
●
●●
●
●

●

●

●
●

● ●●
●●●●
●●
●

●
●●
●●
●

●●●●●●●

●●●●
●●

●

●

●●●●●●●●●●●●●
●●●●
●
●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●

●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●

●●

●
●● ●●●

●
●
●

●

● ●●

●●●●

●

●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●

●

●●●●●
●●
●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●

●

●●

●

●●

●
●
●●●

●●●
●
●
●

●●●●●
●●●

●
●●●

●●●●●●●●
●
●●●●●●●●●●

●●●●●
●
●●●●●●

●●

●●●●●
●
●●●●
●●●
●●●
●●
●

●●●
●
●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●
●●
●●●●●●●●●●●●●●
●●●●●

●
●●
●

●

●
●●●
●
●

●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●
●

●
●●●●●●●●●●●

●
●●●

●●●
●●●●●●

●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●

●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●

●

●

●●
●●●●●
●
●●●●●
●●●●●●

●

●

●●●●●●●
●

●
●

●

●

●●●
●
●

●●
●
●

●

●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●

●●●

●●

●

●
●●
●●●●●●●●
●●●
●

●●
●●
●
●

●●

●●

●●
●●●●●●●●

●●

●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●
●

●

●

●●
●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●●●●

●

●

●●●●●●●
●●●●●●●
●●●●
●●●●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●

●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●●●●●●●
●●●●●●●

●
●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●

●●●●●
●●●
●

●●●●

●
●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●

●

●
●●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●
●●
●●
●●

●

●●●●●●●●
●●●●
●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●

●

●

●●●
●
●
●●●●●●●●●●
●

●●
●●

●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●

●●●●
●●

●

●

●

●●●
●●
●●●●●●
●
●●

●
●●

●

●

●●●●
●
●
●●●●●●●●
●●
●●●●●●●●●

●
●

●

●

●
●●

●
●●●

●

●
●●●
●

●●●●
●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●
●

●●
●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●

●●

●●●

●

●●●
●
●

●●●

●

●

●
●●●

●●●
●

●

●●●●●●●●●●
●
●
●●●●●
●●●●●●
●●●●●●
●
●
●

●

●●●●●●
●
●●●●
●●●●●●●●

●●●

●

●●

●

●●●●●●●●●●
●●
●●●
●

●
●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●

●

●●●

●

●●

●●●
●●

●●

●●●●

●●

●

●

●

●●●
●●
●●●●●●●●●●●●●●●●
●

●●

●

●

●●

●●●
●●●

●●●●●

●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●
●
●

●

●
●
●●●●

●●●
●●
●●●
●

●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●
●●

●

●●●●●

●

●

●

●●
●●●
●
●●
●●

●●●●●●●

●●●●
●●
●●
●

●●●●

●

●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●

●●●

●●

●

●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●

●

●

●●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●●

●

●

●

●●●●●●●●●

●●●●●
●
●●●●●
●
●

●

●

●●●
●
●●
●
●●●●●
●●●●

●

●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●●●

●
●
●

●●●●
●
●●
●
●
●
●
●●

●

●●
●
●●●
●●●●
●

●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●
●●

●
●

●

●

●

●●
●●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●●●●
●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●
●●●●●●
●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●

●●

●●

●

●
●●●

●●

●
●

●

●
●●●
●●●●●●●●●●●●●

●●●●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●●
●●●●

●

●
●●●●●●●

●●●●●●●

●●

●

●●

●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●

●

●

●

●●

●●●
●●●●●●●●
●●
●●
●●

●

●●●
●●●●●●●●●●

●●●
●●
●

●

●

●

●●
●●●
●

●●
●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●
●

●●●

●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●
●

●●●●●●●●●●●●●
●●●
●

●●●

●●

●●●●●●●

●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●

●●

●
●●

●
●

●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●
●

●
●
●●

●

●
●
●●
●
●●

●

●
●●●●●●●●●●●●●●
●●●
●

●

●●●
●●●●●●
●●●
●●

●
●

●

●
●●
●●●●●

●
●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●●
●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●

●●●
●●

● ●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●
●

●

●●
●

●●●

●●
●●

●●

●
●
●●
●●

●

●

●

●●●●

●
●●●●●●●●●●●●●●●
●●●
●

●●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

● ●●●

●●

●●

●

●

●
●●

●
●

●●
●

●

●
●●
●●

●

●

●●●

●
●●●●●●●●
●●●

●

●

●●
●
●●●●●
●●●●●
●●

●●
●●●●●●●●●●●●●●
●●●●
●

●
●

●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●
●●●●●
●●●●●

●
●

●●●●●
●
●
●
●●

●●●
●

●

●●

●●●●●●●●●●●●●
●●●●●●●●●

●

●
●●

●

●●

●
●●
●●

●

●
●●●●●●●
●●●●●●●●

●
●

●

●●●●
●
●●●

●

●●●●●●●●●
●●●
●

●

●
●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●

●

●●●
●●●●●
●●●●

●

●●

●●●●●●●●●●●●●●●
●●

●

●●●●

●
●●●●●●●●●●●●●●

●●●●

●●
●●
●●

●●●
●●

●

●●●
●●●●●●●
●
●
●●

●

●

●●●

●
●●●
●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●
●●●●
●●●●●●

●●
●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●
●

●●●

●
●
●●●●●●●
●●
●●●●●●●
●●●●
●●●●
●●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●

●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●●

●●
●●

●●●●●●

●●●

●

●

●

●

●
●
●●●

●
●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

● ●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●

●●

●●●●●●
●●●●●

●

●

●● ●●
●●●●●●●●●●●●●●●●●●

●●●●●

0 50 100 150 200 2501e
−

05
1e

−
03

1e
−

01

SVM Probability Estimates

Time (days after 2008−09−24)

P
ro

ba
bi

lit
y

of
 b

ei
ng

 a
 s

ec
ur

ity
 p

at
ch

 (
lo

g
sc

al
e)

●●
●●

●●

●●
●●●●●●●●
●●●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●●●
●●

●
●●●●
●●●●●●●●●●●●

●

●

●●

●●

●

●
●●●●

●

●

●●
●●●
●●●●●
●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●●
●
●●●

●

●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●●
●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●

●
●●
●●

●●●

●

●●
●●●●●●●●●
●
●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●
●●●●●●
●●●●●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●
●●
●●●●●●●●●●●●

●

●●●●●

●
●

●●●●●●●●
●●

●●●●●●●●

●

●●●
●●●●
●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●

●

●●●
●●●●●●●●●●
●●●●

●
●
●●
●
●●
●●●●●●●●●●●●●●●●

●●
●●

●

●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●●●●●●

●
●●●●
●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●

●

●●●●
●●

●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●

●●●●●●

●●
●●●●●

●
●
●●●●●

●

●

●●●●●●●●●

●
●
●

●●●
●

●●
●
●

●●●

●●

●●●●●●●

●
●●

●

●●

●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●
●
●●
●●●
●

●●
●

●

●●
●●●
●

●●

●

●

●●●

●

●

●
●
●
●●●●●
●

●
●
●●●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●
●●
●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●

●

●●

●●
●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●
●●●●●

●●
●●

●
●●●●●●

●●●●●●
●●
●●●●●●●●●
●●●●

●●●
●
●●●●●●●
●●
●●●●

●

●●

●

●
●●●●●●●

●●
●
●●●●

●●●
●●

●

●

●

●●●●

●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●
●
●
●●●●●●
●●●
●●●●●●●●

●●●●●

●
●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●
●
●
●●●

●
●●●●●●●
●●
●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●●

●

●
●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●●
●●●●
●●●
●

●●●

●●

●●●

●

●

●

●●●●●●
●●
●●●●●●●●●●

●
●
●
●●●●
●●●●●●●●
●●
●●
●●●●

●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●

●
●●
●●
●
●●●●●

●●
●●

●●

●●●

●●●●●●
●●●●●●●●●●

●

●●●

●●●●●●
●
●●●
●●●●

●●●●

●●

●

●●●●

●●

●●●●

●●●

●

●

●
●●

●

●●●●●●●●●●●
●●●●●●●

●
●●

●●●●
●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●
●●●
●●●
●

●●

●
●●●●

●
●
●●●
●

●
●

●●

●
●●

●●

●

●
●●●
●
●●●●●●●
●
●●
●
●

●

●

●
●

●●
●●●●
●●
●

●
●●
●●
●

●●●●●●●

●●●●
●●

●

●

●●●●●●●●●●●●●
●●●●
●
●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●

●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●

●●

●●●

●
●
●

●

●●

●●●●

●

●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●

●

●●●●●
●●
●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●

●

●●

●

●●

●
●
●●●

●●●
●
●
●

●●●●●
●●●

●
●●●

●●●●●●●●
●
●●●●●●●●●●

●●●●●
●
●●●●●●

●●

●●●●●
●
●●●●
●●●
●●●
●●
●

●●●
●
●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●
●●
●●●●●●●●●●●●●●
●●●●●

●
●●
●

●

●●●
●
●

●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●
●

●●●●●●●●●●●

●
●●●

●●●
●●●●●●

●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●

●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●

●

●

●●
●●●●●
●
●●●●●
●●●●●●

●

●

●●●●●●●
●

●
●

●

●

●●●
●
●

●●
●
●

●

●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●

●●●

●●

●

●
●●
●●●●●●●●
●●●
●

●●
●●
●
●

●●

●●
●●●●●●●●

●●

●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●
●

●

●

●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●●●●

●

●

●●●●●●●
●●●●●●●
●●●●
●●●●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●

●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●●●●●●●
●●●●●●●

●
●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●

●●●●●
●●●
●

●●●●

●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●
●●
●●
●●

●

●●●●●●●●
●●●●
●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●

●

●●●
●
●
●●●●●●●●●●
●

●●
●●

●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●

●●●●
●●

●

●

●●●
●●
●●●●●●
●
●●

●
●●

●

●

●●●●
●
●
●●●●●●●●
●●
●●●●●●●●●

●
●

●

●

●
●●

●
●●●

●

●
●●●
●

●●●●
●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●
●

●●
●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●

●●

●●●

●

●●●
●
●

●●●

●

●

●
●●●

●●●
●

●

●●●●●●●●●●
●
●
●●●●●
●●●●●●
●●●●●●
●
●
●

●

●●●●●●
●
●●●●
●●●●●●●●

●●●

●

●●

●

●●●●●●●●●●
●●
●●●
●

●
●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●

●

●●●

●

●●

●●●
●●

●●

●●●●

●

●

●●●
●●
●●●●●●●●●●●●●●●●
●

●●

●

●

●●

●●●
●●●

●●●●●

●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●
●
●

●

●
●
●●●●

●●●
●●
●●●
●

●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●
●●

●

●●●●●

●●
●●●
●
●●
●●

●●●●●●●

●●●●
●●
●●
●

●●●●

●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●

●●●

●●

●

●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●

●

●

●●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●●

●

●

●

●●●●●●●●●

●●●●●
●
●●●●●
●
●

●

●●●
●
●●
●
●●●●●
●●●●

●

●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●●●

●
●
●

●●●●
●
●●
●
●
●
●
●●

●

●●
●
●●●
●●●●
●

●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●
●●

●
●

●

●

●●
●●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●●●●
●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●
●●●●●●
●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●

●●

●●

●
●●●

●●

●
●

●
●●●
●●●●●●●●●●●●●

●●●●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●●
●●●●

●

●
●●●●●●●

●●●●●●●

●●

●

●●

●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●

●

●

●●●
●●●●●●●●
●●
●●
●●

●●●
●●●●●●●●●●

●●●
●●
●

●

●

●●
●●●

●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●●●●●●●●
●●●

●●●

●●

●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●

●
●●

●
●

●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●
●

●
●
●●

●

●
●
●●
●
●●

●

●
●●●●●●●●●●●●●●
●●●
●

●

●●●
●●●●●●
●●●
●●

●
●

●

●
●●
●●●●●

●
●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●●
●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●

●●●
●●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●
●

●

●●
●

●●●

●●
●●

●●

●
●●
●●

●

●

●

●●●●

●
●●●●●●●●●●●●●●●
●●●
●

●●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●●

●●

●●

●

●
●●

●
●

●●
●

●

●
●●
●●

●●●

●
●●●●●●●●
●●●

●

●●
●
●●●●●
●●●●●
●●

●●
●●●●●●●●●●●●●●
●●●●
●

●
●

●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●
●●●●●
●●●●●

●
●

●●●●●
●
●
●
●●

●●●
●

●

●●

●●●●●●●●●●●●●
●●●●●●●●●

●

●
●●

●

●●

●
●●
●●

●

●
●●●●●●●
●●●●●●●●

●
●

●

●●●●
●
●●●

●

●●●●●●●●●
●●●
●

●

●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●

●

●●●
●●●●●
●●●●

●

●●

●●●●●●●●●●●●●●●
●●

●

●●●●

●
●●●●●●●●●●●●●●

●●●●

●●
●●
●●

●●●
●●

●

●●●
●●●●●●●
●
●
●●

●

●

●●●

●
●●●
●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●
●●●●
●●●●●●

●●
●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●
●

●●●

●
●●●●●●●
●●
●●●●●●●
●●●●
●●●●
●●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●

●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●●

●●
●●

●●●●●●

●●●

●

●

●

●

●
●
●●●

●
●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●

●●

●●●●●●
●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●●●

●

●●●● ●●

●●

● ●
●
●●● ●

●

●

●●
●●

●

●

● ●
●●

●

● ●
●

●
●

●●

●

●

●

●●●

●

●
●

●

●

●● ●

●●
●

●

●●● ● ● ● ●●
●

● ●●●●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

Security patches
Non−security patches
Release dates

Figure 13. The time series of SVM probability estimates, with security patches and non-security patches delineated by color.

ple, the Mozilla Committer’s Agreement would be violated if
developer names were redacted from mozilla-central.

C. Classifier Performance

Figure 13 depicts the time series of scores assigned to
each patch by the SVM (the horizontal axis shows the day
when each patch is landed in the repository starting at 2008-
09-24; at which point security patches were first announced).
Note that as mentioned in Section IV-B, we use an online
learning approach, so the score assigned to a patch is only
computed using the SVM trained with labeled patches seen
up to the most recent security update prior to the patch

landing in the repository (and including any out-of-release
delayed disclosures occurring before the patch is landed).
Notice that the scores for security and non-security patches
in the first 50 days are quite similar. Over time, the SVM
learns to assign high scores to a handful of vulnerability
fixes (and a few non-security patches) and low scores to a
handful of non-security patches. However, many patches are
assigned very similar scores of around 0.01 irrespective of
whether they fix vulnerabilities.

Viewed as a binary classifier, the SVM performs poorly
because there is no sharp threshold that divides security
patches from non-security patches. However, when viewed

0 50 100 150 200 250

1
2

5
10

20
50

10
0

50
0

Attacker Effort Time Series

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

SVM−assisted
Random ranker
Release events

Figure 14. The attacker effort of the SVM, and the expected attacker effort of the random ranker, as a function of time.

in terms of the attacker’s utility, the SVM might still be
useful in reducing effort because the relative rankings of
the vulnerability fixes are generally higher than most non-
security patches.

D. Cost-Benefit Analysis of SVM and Random Rankers

Attacker Effort. Figure 14 shows the time series of the
effort the attacker expends to find a vulnerability (as mea-
sured by the number of patches the attacker examines), as
described in Section III-B1. The attacker effort measured for
a given day is computed to reflect the following estimate.
Imagine, for example, an attacker who “wakes up” on a
given day, trains an SVM on publicly available information
(including all labeled patches before the current day), and
then starts looking for security patches among all the (unla-
beled) patches landed in the repository since the most recent
security update, in rank order provided by the SVM. Then
the attacker effort measured for a given day is the number
of patches that the attacker has to examine before finding a
security patch using the rank order provided by the SVM.

Each continuous segment in the graph corresponds to one
of the 12 security updates during our study. For a period
of time after each release, there are no security patches in
mozilla-central, which is represented on the graph as
a gap between the segments. For the first 50 days of the
experiment both the random ranker and the SVM-assisted
attacker expend relatively large amounts of effort to find
security patches. This poor initial performance of the SVM,
also observed in Figure 13, is due to insufficient training.
The SVM, like any statistical estimator, requires enough
data with which to generalize. Given the SVM’s “warm-up”
effect during the first 50 days, all non-time-series figures in
the sequel are shown using data after 2008-11-13 only.

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − From 2008−11−13

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

SVM−assisted
Random ranker
Security patch exists

Figure 15. The cumulative distribution functions of the attacker effort
displayed in Figure 14, from 11/13/2008 onwards. CDFs are shown for
both the SVM and the random ranker.

Remark 5.2: During the latter 2/3rds of the year (the 8
month period starting 50 days after 2008-09-24) the SVM-
assisted attacker, now with enough training data, regularly
expends significantly less effort than an attacker who exam-
ines patches in a random order.

The general cyclic trends of the SVM-assisted and random
rankers are also noteworthy. In most inter-update periods,
the random ranker enjoys a relatively low attacker effort
(though higher than the SVM’s) which quickly increases.
The reason for this behavior can be understood by plotting
the expected effort for the random ranker with respect to the

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

SVM−assisted
Random ranker

Figure 16. The total increase to the vulnerability window size throughout
the year, for a given level of daily attacker effort with or without SVM
assistance. Results trimmed to 11/13/2008 onwards.

number of security patches for various total patch pool sizes
as shown in Figure 5. Immediately after the landing of a first
post-update security patch, the pool of available patches gets
swamped by non-security patches (cf. Figure 2), correspond-
ing to increasing n in Figure 5 and greatly increasing the
expectation. Further landings of security patches are few
and far between (by virtue of the rarity of such patches),
and so moving across the figure with increasing ns is rare.
As the periods progress, non-security patches continue to
swamp security patches. This trend for the random ranker’s
expected effort is more directly seen in Figure 6, which plots
expected effort over a prototypical cycle of Firefox 3. Over
the single 31 day cycle, 39 patches land daily of which a
constant proportion are security patches. The curve for 10−2

most closely represents Firefox 3 where the security patch
rate is 0.0085 of the total patch rate. The trend observed
empirically in Figure 14 matches both the overall shape and
location of the predicted trend.

At times early on in the inter-release periods, the SVM-
assisted attacker experiences the same upward trending
effort, but eventually the developers land a security patch
that resembles the training data. Given just one “easy” fix,
the effort required of the SVM-assisted attacker plummets.
In two cycles (and partially in two others) the SVM-
assisted attacker must expend more effort than the random
ranker. This is due to a combination of factors including
the small rates of landing security patches which means that
unreleased security patches may not resemble training data.
Proportion of Days of Successful Vulnerability Discovery.
Figure 15 depicts the cumulative distribution function (CDF)
of attacker effort, showing how often the SVM-assisted and
random rankers can find a security patch as a function of

effort. Note that the CDFs asymptote to 0.90 rather than 1.0
because mozilla-central did not contain any security
patches during 10% of the 8 month period.

Remark 5.3: The SVM-assisted attacker discovers a se-
curity patch with the first examined patch for 34% of the 8
month period.

If the unassisted attacker expends the minimum effort of
18.5, it can only find security patches for less than 0.5% of
the 8 month period. By contrast, an SVM-assisted attacker
who examines 17 patches will find a security patch during
44% of the period. In order to find security patches for 22%
of the 8 month period, the random ranker must examine
on average up to 70.3 patches. The SVM-assisted attacker
achieves significantly greater benefit than an attacker who
examines patches in random order, when small to moderate
numbers of patches are examined (i.e., up to 100 patches).

When examining 100 or more patches, the SVM-assisted
and random rankers find security patches for similar pro-
portions of the 8 month period, with the random ranker
achieving slightly better performance.
Total Increase to the Window of Vulnerability. While
the CDF of attacker effort measures how hard the attacker
must work in order to find a patch that fixes a vulnerability,
Figure 16 estimates the value of discovering a vulnerability
by measuring the total increase to the window of vulnera-
bility gained by an attacker who expends a given amount
of effort each day (cf. Section III-B2). Note that this differs
from the previous section by considering an attacker who
aggregates work over multiple days, and who does not re-
examine patches from day-to-day.

Remark 5.4: At 1 or 2 patches examined daily over the
8 month period, the SVM-assisted attacker increases the
window of vulnerability by 89 or 148 days total, respectively.
By contrast the random ranker must examine 3 or 7 patches
a day (roughly 3 times the work) to achieve the approximate
same benefit. At small budgets of 1 or 2 patches daily,
the random ranker achieves window increases of 47 or 82
days which are just over half the SVM-assisted attacker’s
benefits. At higher daily budgets of 7 patches or more, the
two attackers achieve very similar benefits with the random
ranker’s being insignificantly greater.

Compared to the Firefox 3 base-line vulnerability window
size of 3.4 days (cf. Section III-B2), the increases to window
size of 89 and 148 represent multiplicative increases by
factors of 3.9 and 6.4 respectively.
In Search of Severe Vulnerabilities. Thus far, we have
treated all vulnerabilities equally. In reality, attackers pre-
fer to exploit higher severity vulnerabilities because those
vulnerabilities let the attacker gain greater control over the
user’s system. To evaluate how well the attacker fairs at
finding severe vulnerabilities—those judged as either “high”
or “critical” in impact [12]—we measure the attacker effort
required to find the first high or critical vulnerability (i.e.,
we ignore “low” and “moderate” vulnerabilities). Note that

0 50 100 150 200 250

1
2

5
10

20
50

10
0

20
0

Attacker Effort Time Series − Severe Vulnerability Discovery

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

SVM−assisted
Random ranker
Release events

Figure 17. The time series of SVM-assisted and random ranker effort for finding severe (high or critical level) vulnerabilities.

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts (Severe Vulnerabilities)

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

SVM−assisted
Random ranker
Security patch exists

Figure 18. The CDFs of the SVM-assisted and random ranker efforts for
discovering severe vulnerabilities, from 11/13/2008 onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Severe Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

SVM−assisted
Random ranker

Figure 19. Total increase to the vulnerability window for finding severe
vulnerabilities given levels of daily attacker effort, from 11/13/2008 on-
wards.

we did not re-train the SVM on severe vulnerabilities even
though re-training could lead to better results for the special
case of discovering high-severity vulnerabilities. Figures 17–
19 present our results for finding severe vulnerability fixes.
The attacker effort time series for the SVM-assisted and
random rankers are displayed in Figure 17. Overall, attacker
effort curves are similar for all vulnerabilities, but shifted
upwards away from 1 during several inter-update periods.

We can interpret the effect of focusing on severe vulnera-
bilities by examining the attacker effort CDFs in Figure 18.
Although both attackers asymptote to the lower proportion
of the period containing severe vulnerability fixes (down

from 90% for identifying arbitrary vulnerabilities to 86%),
only the random ranker’s CDF is otherwise relatively un-
changed. The random ranker’s minimum effort has increased
from 18.5 to 20.3 patches with a similarly low probability.
The SVM-assisted attacker CDF undergoes a more drastic
change. Examining one patch results in a vulnerability for
14% of the 8 month period, whereas an effort of 6 and 21
produce vulnerabilities for 20% and 34% of the 8 month
period, respectively. To achieve these three proportions the
random ranker must examine 48, 52, and 76 patches.

Remark 5.5: The SVM-assisted attacker is still able to
outperform the random ranker in finding severe vulnerabili-

0 50 100 150 200 250

1
2

5
10

20
50

10
0

50
0

Attacker Effort Time Series − 1st, 2nd, 3rd Vulnerabilities

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

1st vulnerability
2nd vulnerability
3rd vulnerability
Release events

Figure 20. The time series of SVM-assisted ranker effort for finding 1, 2 or 3 vulnerabilities.

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − 1st, 2nd, 3rd Vulnerabilities

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

1st vulnerability
2nd vulnerability
3rd vulnerability
Security fixes exist

Figure 21. The CDFs of the SVM-assisted efforts for discovering 1, 2 or
3 vulnerabilities, from 11/13/2008 onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Effort − 1−3 Vulnerabilities

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

1st vulnerability
2nd vulnerability
3rd vulnerability

Figure 22. Total increase to the vulnerability window for finding 1, 2
or 3 vulnerabilities given levels of daily attacker effort, from 11/13/2008
onwards.

ties, in particular finding such security fixes 20% of the time
by examining 6 patches.

The increases to the severe vulnerability window are
shown for the two attackers in Figure 19. Again, we see
a shift, with the SVM-assisted attacker continuing to out-
perform the random ranker on small budgets (except for a
budget of 1 patch) or otherwise perform similarly.

Remark 5.6: By examining 2 patches daily during the
8 month period, the SVM-assisted attacker increases the
vulnerability window by 131 days. By contrast the random
ranker with budget 2 achieves an expected window increase
of 72 days.

Searching for Multiple Vulnerabilities. An attacker search-
ing for security patches might suffer from false negatives:
the attacker might mistakenly take a security patch as a non-
security patch; or an attacker may simply wish to examine
more patches than represented by the attacker effort defined
above. To model this situation, we considered the problem
of finding 2 or 3 security patches instead of just one.

As depicted in Figures 20–22, finding 1, 2, or 3 security
patches requires progressively more effort. When computing
the increase to the window of vulnerabilities in Figure 22, we
assume that the attacker’s analysis of the examined patches
only turns up the 1st, 2nd and 3rd security fixes respectively.

To find 2 or 3 security patches over 34% of the 8 month
period, the SVM-assisted attacker must examine 35 or 36
patches respectively.

Finally consider approximating the window of vulner-
ability achieved by an attacker examining a single patch
daily with no false negatives. Examining 3 patches a day
increases the total vulnerability window by 83 days even if
the attacker’s analysis produces one false negative each day.
Assuming two false negatives each day, examining 4 patches
daily increases the window by 80 days total. Similarly
increasing the window by 151 or 148 days, approximating
the error-free result under a two patch per day budget,
requires examining 12 or 18 patches daily when suffering
one or two false negatives respectively.

E. Analysis Repeatability Over Independent Periods of Time

In the previous section we explore how an attacker can
find vulnerabilities over the lifetime of a major release of a
large open-source project. It is natural to ask: how repeatable
are these results over subsequent releases? As a first step
towards answering this question, we repeat our analysis on
the complete life-cycle of Firefox 3.5.

While the Firefox 3.5 patch volumes correspond to
roughly half those of the year-long period of active de-
velopment on Firefox 3, it is possible that the patches’
metadata may have changed subtly, resulting in significant
differences in SVM-assisted ranker performance. Changes to
contributing authors, functions of top-level directories, diff
sizes or other side-effects of changes to coding policies, time
of day or day of week when patches tend to be landed, could
each contribute to changes to the attacker’s performance.
Given the similar rates of patch landings, one can expect the
random ranker’s performance to be generally unchanged.

Figures 23–25 depict the cost-benefit analysis of the
SVM-assisted and random rankers searching for vulnerabil-
ities in Firefox 3.5. It is clear that similar performance to
Firefox 3 is enjoyed. The CDFs of attacker effort displayed
in Figure 24 show that while the random ranker’s perfor-
mance is roughly the same as before, the SVM-assisted
ranker’s performance at very low effort (1 or 2 patches) is
inferior compared to Firefox 3, while the assisted attacker
enjoys much better performance at low to moderate efforts.

Remark 5.7: The SVM-assisted attacker discovers a se-
curity patch in Firefox 3.5 by the third patch examined,
for 22% of the 5.5 month period; by the 20th patch the
SVM-assisted attacker finds a security patch for 50% of the
period. By contrast the random ranker must examine 69.1 or
95 patches in expectation to find a security patch for these
proportions of the 5.5 month period.

In a similar vein, the increase to the window of vulnera-
bility achieved by the random ranker is comparable between
Firefox 3 and 3.5 (correcting for the differences in release
lifetimes), while the SVM-assisted attacker achieves superior
performance (cf. Figure 25).

Remark 5.8: By examining one or two patches daily, the
SVM-assisted ranker increases the window of vulnerability
(in aggregate) by 97 or 113 days total (representing increases
to the base vulnerability window of factors of 5.8 and
6.7 respectively). By contrast the random ranker achieves
increases of 25.1 or 43.8 days total under the same budgets.

We may conclude from these results that the presented
attacks on Firefox 3 are repeatable for Firefox 3.5, and
we expect our analysis to extend to other major releases of
Firefox and major open-source projects other than Firefox.

F. Feature Analysis Redux: Measuring the Effect of Obfus-
cation

In Section V-B we perform a filter-based feature analysis
for discriminating between security patches and non-security
patches. In this section we ask: what is the effect of obfus-
cating individual features? We answer this question through
a wrapper-based feature analysis in which we perform the
same simulation of an SVM-assisted ranker as above, but
now with one feature removed.

Figure 26 depicts the attacker effort CDFs for the SVM-
assisted ranker when trained with all features, and trained
with either the author, top directory, file type, time of day,
day of week, or the set of diff size features removed. We
remove the number of characters in the diff, number of
lines in the diff, number of files in the diff, and file size
simultaneously, since we observed no difference when only
one of these features was removed. A plausible explanation
for this invariance would be high correlation among these
features. Removing the author feature has the most negative
impact on the attacker effort CDF, reducing the proportion
by 0.12 on average over attacker efforts in [1, 464]. That
is, on average over attacker efforts for 12% of the 8
month period a security patch is found by the SVM-assisted
ranker trained with the author feature while the attacker
without access to patch author information find no security
patch. Removing the time of day has no significant effect;
and removing the top directory, day of week, or file type
have increasingly positive impacts on the overall attacker
effort CDF. Despite libsvm’s use of cross-validation for
tuning the SVM’s parameters, the positive improvements
point to overfitting which could be a product of the high
dimensionality of the learning problem together with a very
small sample of security patches: as noted above, our goal
is merely to lower bound the performance of an attacker
assisted by machine learning.

The increase to the window of vulnerability achieved
by an SVM-assisted attacker without access to individual
features (or the group of diff size features) is shown in
Figure 27. For some attacker efforts the increase is greater
without certain features, but overall we see a more negative
effect overall. The greatest negative effect is observed when
removing the author feature: the increase in window size is

0 50 100 150

1
2

5
10

20
50

10
0

50
0

Attacker Effort Time Series

Time (days after 2009−07−17)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

Firefox 3.5

SVM−assisted
Random ranker
Release events

Figure 23. SVM-assisted and random ranker efforts for finding Firefox 3.5 vulnerabilities.

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

Firefox 3.5

SVM−assisted
Random ranker
Security patch exists

Figure 24. The CDFs of the SVM-assisted and random ranker attacker
efforts, for Firefox 3.5.

1 2 5 10 20 50 100

0
20

40
60

80
10

0
12

0
14

0

Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)
Firefox 3.5

SVM−assisted
Random ranker

Figure 25. Increase to the total window of vulnerability achieved for
varying levels of daily attacker effort, for Firefox 3.5.

only 8 days less on average over attacker efforts in [1, 55]
than when the author feature is included.

We thus draw the following conclusion, which agrees with
the filter-based feature analysis presented in Section V-B.

Remark 5.9: Obfuscating the patch author has the great-
est negative impact on the SVM-assisted ranker’s perfor-
mance, relative to obfuscating other features individually.
However the magnitude of impact is negligible.

As noted above, even if the impact of obfuscating patch
authors were greater, doing so would violate the Mozilla
Committer’s Agreement.

VI. IMPROVING THE SECURITY LIFE-CYCLE

In this section, we explore ways in which open-source
projects can avoid information leaks in their security life-
cycle. Instead of attempting to obfuscate metadata from
would-be attackers, we recommend that open-source devel-
opers land vulnerability fixes in a “private” repository and
use a set of trusted testers to ensure the quality of releases.

A. Workflow

A natural reaction to our experiments is to attempt to plug
the information leaks by obfuscating patches. However, we
argue that this approach does not scale well enough to pre-
vent a sophisticated attacker from detecting security patches

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − Feature Removal

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

All features
No author
No topDir
No fileType
No diffSizeGroup
No timeOfDay
No dayOfWeek
Security fix exists

Figure 26. The effect of removing individual features on the SVM-assisted
attacker effort CDFs, from 11/13/2008 onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Effort − Feature Removal

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

All features
No author
No topDir
No fileType
No diffSizeGroup
No timeOfDay
No dayOfWeek

Figure 27. The effect of removing features on the SVM-assisted increase
to the vulnerability window, from 11/13/2008 onwards.

before announcement because an attacker can use standard
machine learning techniques to aggregate information from
a number of weak indicators. In general, it is difficult to
predict how such a “cat-and-mouse” game would play out,
but, in this case, the attacker appears to have significant
advantage over the defender.

Instead of trying to plug each information leak individ-
ually, we recommend re-organizing the vulnerability life-
cycle to prevent information about vulnerabilities from
flowing to the public (regardless of how well the infor-
mation is obfuscated). Instead of landing security patches
in the public mozilla-central repository first, we
propose landing them in a private release branch. This
release branch can then be made public (and the security
patches merged into the public repository) on the day the
patch is deployed to users. This workflow reverses the
usual integration path by merging security fixes from the
release branch to mozilla-central instead of from
mozilla-central to the release branch.

B. Quality Assurance

The main cost of landing security patches later is that the
patches receive less testing before release. When the Firefox
developers land security patches in mozilla-central,
those patches are tested by a large number of users who
run nightly builds of Firefox. If a security patch causes a
regression (for example, a crash), these users can report the
issue to the Firefox developers before the patch is deployed
to all users. The Firefox developers can then iterate on the
patch and improve the quality of security updates (thereby
making it less costly for users to apply security updates as
soon as they are available).

Instead of having the public at large test security updates
prior to release, we recommend that testing be limited to a
set of trusted testers. Ideally, this set of trusted testers would
be vetted by members of the security team and potentially
sign a non-disclosure agreement regarding the contents of
security updates. The size of the trusted tester pool is a
trade-off between test coverage and the ease with which an
attacker can infiltrate the pool, which is a risk management
decision.

C. Residual Risks

There are two residual risks with this approach. First,
the bug report itself still leaks some amount of information
because the bug is assigned a sequential bug number that
the attacker can probe to determine when a security bug was
filed. This information leak seems fairly innocuous. Second,
the process leaks information about security fixes on the
day the patch becomes available. This leak is problematic
because not all users are updated instantaneously [6]. How-
ever, disclosing the source code contained in each release
is required by many open-source licenses. As a practical
matter, source patches are easier to analyze than binary-only
patches, but attackers can reverse engineer vulnerabilities
from binaries alone [1]. One way to mitigate this risk is to
update all users as quickly as possible [6].

VII. CONCLUSIONS

Landing security patches in public source code repos-
itories significantly increases the window of vulnerability
of open-source projects. Even though security patches are
landed amid a cacophony of non-security patches, we show
that an attacker can exploit patch description fields linking
to bug reports to immediately find a security patch on almost

any day of the year. If patch descriptions are obfuscated, off-
the-shelf machine learning can find security patches from
patch metadata such as author. By examining a nominal
number of patches daily, these attackers increase the total
window of vulnerability for Firefox by factors of 6 to 10
over the baseline window due to deployment latency.

A natural reaction to these findings is to obfuscate more
features in an attempt to make the security patches harder to
identify. However, our analysis shows that no single feature
contains much information about whether a patch fixes a
vulnerability; and even if all patch metadata is obfuscated, a
random ranker can effectively increase the total window of
vulnerability by a factor of 4. Instead of obfuscating patch
metadata, we recommend changing the security life-cycle
of open-source projects to avoid landing security patches in
public repositories. We suggest landing these fixes in private
repositories and having a pool of trusted testers test security
updates.

Our recommendations reduce the openness of open-source
projects by withholding some patches from the community
until the project is ready to release those patches to end
users. However, open-source projects already recognize the
need to withhold some security-sensitive information from
the community (as evidenced by these projects limiting
access to security bugs to a vetted security group). In a broad
view, limiting access to the security patches themselves prior
to release is a small price to pay to significantly reduce the
window of vulnerability for open-source software.

ACKNOWLEDGMENTS

We would like to thank Pongsin Poosankam, Wil Robert-
son, Aleksandr Simma, and Daniel Veditz for their helpful
comments and assistance. We gratefully acknowledge the
support of the NSF through grant DMS-0707060, and the
support of the Siebel Scholars Foundation.

REFERENCES

[1] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Auto-
matic patch-based exploit generation is possible: Techniques
and implications,” in Proc. 2008 IEEE Symposium on Security
and Privacy, 2008, pp. 143–157.

[2] D. Veditz, 2009, Personal communication.

[3] M. Foundation, “Known vulnerabilities in Mozilla prod-
ucts,” 2010, [Online at http://www.mozilla.org/security/
known-vulnerabilities/; accessed 14-January-2010].

[4] D. Veditz, “Mozilla security group,” 2010, http://www.
mozilla.org/projects/security/secgrouplist.html.

[5] S. Frei, T. Duebendorfer, and B. Plattner, “Firefox (in) se-
curity update dynamics exposed,” SIGCOMM Comput. Com-
mun. Rev., vol. 39, no. 1, pp. 16–22, 2009.

[6] T. Duebendorfer and S. Frei, “Why silent updates boost
security,” ETH, Tech Report TIK 302, 2009.

[7] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support
vector machines, 2001, software available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm.

[8] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–167, 1998.

[9] N. Cristianini and J. Shawe-Taylor, An Introduction to Sup-
port Vector Machines. Cambridge University Press, 2000.

[10] B. Schölkopf and A. J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, 2001.

[11] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s
probabilistic outputs for support vector machines,” Machine
Learning, vol. 68, pp. 267–276, 2007.

[12] L. Adamski, “Security severity ratings,” 2009, https://wiki.
mozilla.org/Security Severity Ratings.

[13] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[14] J. R. Quinlan, “Induction of decision trees,” Machine Learn-
ing, vol. 1, pp. 81–106, 1986.

[15] U. M. Fayyad, “On the induction of decision trees for multiple
concept learning,” Ph.D. dissertation, Ann Arbor, MI, 1992.

APPENDIX

A. Proofs for the Random Ranker

Here we derive expressions for the random ranker’s ex-
pected cost (attacker effort) and benefit (increase to vulner-
ability window).

1) Proof of Random Ranker Expected Effort: If the
ranker’s sampling were performed with replacement, then
the distribution of attacker effort X would be geometric
with known expectation. Without replacement, if there are
n patches in the pool, ns of which fix vulnerabilities, X has
probability mass

Pr (X = x)

=
(n− ns)!

(n− ns − x+ 1)!
· (n− x+ 1)!

n!
· ns
n− x+ 1

(2)

=

(
n− x
ns − 1

)(
n
ns

)−1
, (3)

for x ∈ {1, . . . , n−ns+1} and zero otherwise. The second
equality follows from some simple algebra. The first equality
is derived as follows. The probability of the first draw being
a non-security patch is the number of non-security patches
over the number of patches or (n− ns)/n. Conditioned on
the first patch not fixing a vulnerability, the second draw has
probability (n−ns−1)/(n−1) of being non-security related
since one fewer patch is in the pool (which is, in particular
a non-security patch). This process continues with the kth

draw having (conditional) probability (n−ns−k+1)/(n−

http://www.mozilla.org/security/known-vulnerabilities/
http://www.mozilla.org/security/known-vulnerabilities/
http://www.mozilla.org/projects/security/secgrouplist.html
http://www.mozilla.org/projects/security/secgrouplist.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://wiki.mozilla.org/Security_Severity_Ratings
https://wiki.mozilla.org/Security_Severity_Ratings

k + 1) of being a non-security patch. After drawing k non-
security patches, the probability of selecting a patch that
fixes a vulnerability is ns/(n− k). Equation (2) follows by
chaining these conditional probabilities.

With X’s probability mass in hand, the expectation can
be efficiently computed for any moderate (n, ns) pair by
summing Equation (3).

2) Random Ranker’s Expected Increase to the Window of
Vulnerability: We begin by constructing the distribution of
the first day an undisclosed vulnerability fix is found after a
security update, when the random ranker is constrained to a
budget b of patches daily, and never re-examines patches.
Let nt and nt,s denote the number of new patches and
new vulnerability fixes landed on day t ∈ N. Let random
variable Xn

ns
be the attacker effort required to find one of

ns vulnerability fixes out of a pool of n patches as described
above. Finally, let At be the event that the first vulnerability
fix is found on day t ∈ N. Then trivially

Pr (A1) = Pr
(
Xn1

n1,s
≤ b
)
.

Now we may condition on ¬A1 to express the probability
of A2 occurring: if A1 does not occur then b non-security-
related patches are removed from the pool, so that the pool
consists of n1,s + n1,s vulnerability fixes and n1 + n2 − b
patches total. The conditional probability of A2 given ¬A2

is then the probability of {Xn1+n2−b
n1,s+n1,s

≤ b}. By induction
we can continue to exploit this conditional independence to
yield for all t > 0

Pr (At+1 | ¬A1 ∩ . . . ∩ ¬At) (4)

= Pr

(
X
(
∑t+1

i=1 ni)−tb∑t+1
i=1 ni,s

≤ b
)

.

The RHS of this expression is easily calculated by summing
Equation (3) over x ∈ [b]. The unconditional probability
distribution now follows from the mutual exclusivity of the
At and the chain rule of probability

Pr (At+1)

= Pr (At+1 ∩ ¬At ∩ . . . ∩ ¬A1)

= Pr

(
At+1

∣∣∣∣∣
t⋂

s=1

¬As

)
t∏

i=1

Pr

(
¬Ai

∣∣∣∣∣
i−1⋂
s=1

¬As

)

= Pr

(
X
(
∑t+1

i=1 ni)−tb∑t+1
i=1 ni,s

≤ b
)

·
t∏

j=1

(
1− Pr

(
X
(
∑j

i=1 ni)−(j−1)b∑j
i=1 ni,s

≤ b
))

.

Thus we need only compute the expression in Equation (5)
once for each t ∈ [N], where N is the number of days until
the next security update. From these conditional probabilities
we can efficiently calculate the unconditional Pr (At) for
each t ∈ [N]. Noting that At implies an increase of

Y = N − t+1 to the window of vulnerability, the expected
increase is

E [Y] =

N∑
t=1

(N − t+ 1)Pr (At) . (5)

Remark A.1: Notice that there can be a non-trivial prob-
ability that no vulnerability fix will be found by the random
ranker in the N day period. This probability is simply
1 −

∑N
t=1 Pr (At). On typical inter-update periods this

probability can be higher than 0.5 for budgets ≈ 1. This
fact serves to reduce the expected increase to the window
of vulnerability, particularly for small budgets.

Remark A.2: The astute reader will notice that we re-
moved b non-security-related patches from the pool on
all days we do not find a vulnerability fix, irrespective
of whether b or more such patches are present. We have
assumed that n is large for simplicity of exposition. Once
n drops to ns + b or lower, we remove all non-security-
related patches upon failing to find a vulnerability fix. On
the next day, the probability of finding a vulnerability fix
is unity. The probabilities of finding vulnerability fixes on
subsequent days are thus zero. Thus as b increases, the
distribution becomes more and more concentrated at the start
of the inter-update period as we would expect. Finally, if no
vulnerability fixes are present in the pool on a particular day,
then the probability of finding such a patch is trivially zero.

B. Feature Analysis

The information theoretic quantity known as the infor-
mation gain measures how well a feature separates a set
of training data, and is popular in information retrieval and
in machine learning within the ID3 and C4.5 decision tree
learning algorithms [13].

For training set S and nominal feature F taking discrete
values in XF , the information gain is defined as

Gain(S, F)

= Entropy(S`)−
∑
x∈XF

|S`,x|
|S|

Entropy(S`,x) , (6)

where S` denotes the multiset of S’s example binary labels,
S`,x denotes the subset of these labels for examples with
feature F value x, and for multiset T taking possible
values in X we have the usual definition of Entropy(T) =
−
∑

x∈X
|Tx|
|T | log2

|Tx|
|T | . The first term of the information

gain, the entropy of the training set, corresponds to the
impurity of the examples’ labels. A pure set with only
one repeated label has zero entropy, while a set having
half positive examples and half negative examples has a
maximum entropy of one. The information gain’s second
term corresponds to the expected entropy of the training
set conditioned on the value of feature F . Thus a feature
having a high information gain corresponds to a large drop
in entropy, meaning that splitting on that feature resulting in

a partition of the training set into subsets of like labels. A
low (necessarily non-negative) information gain corresponds
to a feature that is not predictive of class label.

Two issues require modification of the basic information
gain before use in practice [13]. The first is that nominal
features F with large numbers of discrete values |XF | tend
to have artificially inflated information gains (being as high
as log2 |XF |) since splitting on such features can lead to
numerous small partitions of the training set with trivially
pure labels. An example is the author feature, which has
close to 500 values. In such cases it is common practice to
correct for this artificial inflation by using the information
gain ratio [14] as defined below. We use SF to denote
the multiset of examples’ feature F values in the ratio’s
denominator, which is known as the split information.

GainRatio(S, F) =
Gain(S, F)

Entropy(SF)
. (7)

The second issue comes from taking the idea of many-
valued nominal features to the extreme: continuous features
such as the diff length (of which there are 7,572 unique
values out of 14,541 patches in our dataset) and the file
size (which enjoys 12,795 unique values) are analyzed by
forming a virtual binary feature for each possible threshold
on the feature. The information gain (ratio) of a continuous
feature is defined as the maximum information gain (ratio)
of any induced virtual binary feature [15].

	Introduction
	Life-Cycle of a Vulnerability
	Stages in the Life-Cycle
	Information Leaks in Each Stage

	Analysis Goals and Setup
	Dataset
	Attack Performance Metrics
	Cost of Vulnerability Discovery: Attacker Effort
	Benefit for the Attacker: Window of Vulnerability

	Methodology
	Exploiting Patch Description and Bug History
	A Learning-Based Ranker
	The Random Ranker

	Results
	Exploiting Patch Description and Bug History
	Metadata Feature Analysis
	Classifier Performance
	Cost-Benefit Analysis of SVM and Random Rankers
	Analysis Repeatability Over Independent Periods of Time
	Feature Analysis Redux: Measuring the Effect of Obfuscation

	Improving the Security Life-Cycle
	Workflow
	Quality Assurance
	Residual Risks

	Conclusions
	References
	Appendix
	Proofs for the Random Ranker
	Proof of Random Ranker Expected Effort
	Random Ranker's Expected Increase to the Window of Vulnerability

	Feature Analysis

